137 research outputs found

    Flood modelling for cities using Cloud computing

    Get PDF
    Urban flood risk modelling is a highly topical example of intensive computational processing. Such processing is increasingly required by a range of organisations including local government, engineering consultancies and the insurance industry to fulfil statutory requirements and provide professional services. As the demands for this type of work become more common, then ownership of high-end computational resources is warranted but if use is more sporadic and with tight deadlines then the use of Cloud computing could provide a cost-effective alternative. However, uptake of the Cloud by such organisations is often thwarted by the perceived technical barriers to entry. In this paper we present an architecture that helps to simplify the process of performing parameter sweep work on an Infrastructure as a Service Cloud. A parameter sweep version of the urban flood modelling, analysis and visualisation software “CityCat” was developed and deployed to estimate spatial and temporal flood risk at a whole city scale – far larger than had previously been possible. Performing this work on the Cloud allowed us access to more computing power than we would have been able to purchase locally for such a short time-frame (∼21 months of processing in a single calendar month). We go further to illustrate the considerations, both functional and non-functional, which need to be addressed if such an endeavour is to be successfully achieved

    Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments

    Get PDF
    This chapter presents software architectures of the big data processing platforms. It will provide an in-depth knowledge on resource management techniques involved while deploying big data processing systems on cloud environment. It starts from the very basics and gradually introduce the core components of resource management which we have divided in multiple layers. It covers the state-of-art practices and researches done in SLA-based resource management with a specific focus on the job scheduling mechanisms.Comment: 27 pages, 9 figure

    Complex Event Processing as a Service in Multi-Cloud Environments

    Get PDF
    The rise of mobile technologies and the Internet of Things, combined with advances in Web technologies, have created a new Big Data world in which the volume and velocity of data generation have achieved an unprecedented scale. As a technology created to process continuous streams of data, Complex Event Processing (CEP) has been often related to Big Data and used as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP market is still dominated by solutions that are costly and inflexible or too low-level and hard to operate. To address these problems, this research proposes the creation of a CEP system that can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system would give its users CEP functionalities associated with the advantages of the services model, such as no up-front investment and low maintenance cost. Nevertheless, creating such a service involves challenges that are not addressed by current CEP systems. This research proposes solutions for three open problems that exist in this context. First, to address the problem of understanding and reusing existing CEP management procedures, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism as a technology- and language-agnostic representation of queries and their reconfigurations. Second, to address the problem of evaluating CEP query management and processing strategies, this research introduces CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant design. To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by experiments that showed it can simulate existing systems with accuracy and low execution overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-tolerant service. In tandem, these results confirm this research significantly advances the CEP state of the art and provides novel tools and methodologies that can be applied to CEP research

    Processamento de eventos complexos como serviço em ambientes multi-nuvem

    Get PDF
    Orientadores: Luiz Fernando Bittencourt, Miriam Akemi Manabe CapretzTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O surgimento das tecnologias de dispositivos móveis e da Internet das Coisas, combinada com avanços das tecnologias Web, criou um novo mundo de Big Data em que o volume e a velocidade da geração de dados atingiu uma escala sem precedentes. Por ser uma tecnologia criada para processar fluxos contínuos de dados, o Processamento de Eventos Complexos (CEP, do inglês Complex Event Processing) tem sido frequentemente associado a Big Data e aplicado como uma ferramenta para obter informações em tempo real. Todavia, apesar desta onda de interesse, o mercado de CEP ainda é dominado por soluções proprietárias que requerem grandes investimentos para sua aquisição e não proveem a flexibilidade que os usuários necessitam. Como alternativa, algumas empresas adotam soluções de baixo nível que demandam intenso treinamento técnico e possuem alto custo operacional. A fim de solucionar esses problemas, esta pesquisa propõe a criação de um sistema de CEP que pode ser oferecido como serviço e usado através da Internet. Um sistema de CEP como Serviço (CEPaaS, do inglês CEP as a Service) oferece aos usuários as funcionalidades de CEP aliadas às vantagens do modelo de serviços, tais como redução do investimento inicial e baixo custo de manutenção. No entanto, a criação de tal serviço envolve inúmeros desafios que não são abordados no atual estado da arte de CEP. Em especial, esta pesquisa propõe soluções para três problemas em aberto que existem neste contexto. Em primeiro lugar, para o problema de entender e reusar a enorme variedade de procedimentos para gerência de sistemas CEP, esta pesquisa propõe o formalismo Reescrita de Grafos com Atributos para Gerência de Processamento de Eventos Complexos (AGeCEP, do inglês Attributed Graph Rewriting for Complex Event Processing Management). Este formalismo inclui modelos para consultas CEP e transformações de consultas que são independentes de tecnologia e linguagem. Em segundo lugar, para o problema de avaliar estratégias de gerência e processamento de consultas CEP, esta pesquisa apresenta CEPSim, um simulador de sistemas CEP baseado em nuvem. Por fim, esta pesquisa também descreve um sistema CEPaaS fundamentado em ambientes multi-nuvem, sistemas de gerência de contêineres e um design multiusuário baseado em AGeCEP. Para demonstrar sua viabilidade, o formalismo AGeCEP foi usado para projetar um gerente autônomo e um conjunto de políticas de auto-gerenciamento para sistemas CEP. Além disso, o simulador CEPSim foi minuciosamente avaliado através de experimentos que demonstram sua capacidade de simular sistemas CEP com acurácia e baixo custo adicional de processamento. Por fim, experimentos adicionais validaram o sistema CEPaaS e demonstraram que o objetivo de oferecer funcionalidades CEP como um serviço escalável e tolerante a falhas foi atingido. Em conjunto, esses resultados confirmam que esta pesquisa avança significantemente o estado da arte e também oferece novas ferramentas e metodologias que podem ser aplicadas à pesquisa em CEPAbstract: The rise of mobile technologies and the Internet of Things, combined with advances in Web technologies, have created a new Big Data world in which the volume and velocity of data generation have achieved an unprecedented scale. As a technology created to process continuous streams of data, Complex Event Processing (CEP) has been often related to Big Data and used as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP market is still dominated by solutions that are costly and inflexible or too low-level and hard to operate. To address these problems, this research proposes the creation of a CEP system that can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system would give its users CEP functionalities associated with the advantages of the services model, such as no up-front investment and low maintenance cost. Nevertheless, creating such a service involves challenges that are not addressed by current CEP systems. This research proposes solutions for three open problems that exist in this context. First, to address the problem of understanding and reusing existing CEP management procedures, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism as a technology- and language-agnostic representation of queries and their reconfigurations. Second, to address the problem of evaluating CEP query management and processing strategies, this research introduces CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant design. To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by experiments that showed it can simulate existing systems with accuracy and low execution overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-tolerant service. In tandem, these results confirm this research significantly advances the CEP state of the art and provides novel tools and methodologies that can be applied to CEP researchDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140920/2012-9CNP

    Evaluating and Enabling Scalable High Performance Computing Workloads on Commercial Clouds

    Get PDF
    Performance, usability, and accessibility are critical components of high performance computing (HPC). Usability and performance are especially important to academic researchers as they generally have little time to learn a new technology and demand a certain type of performance in order to ensure the quality and quantity of their research results. We have observed that while not all workloads run well in the cloud, some workloads perform well. We have also observed that although commercial cloud adoption by industry has been growing at a rapid pace, its use by academic researchers has not grown as quickly. We aim to help close this gap and enable researchers to utilize the commercial cloud more efficiently and effectively. We present our results on architecting and benchmarking an HPC environment on Amazon Web Services (AWS) where we observe that there are particular types of applications that are and are not suited for the commercial cloud. Then, we present our results on architecting and building a provisioning and workflow management tool (PAW), where we developed an application that enables a user to launch an HPC environment in the cloud, execute a customizable workflow, and after the workflow has completed delete the HPC environment automatically. We then present our results on the scalability of PAW and the commercial cloud for compute intensive workloads by deploying a 1.1 million vCPU cluster. We then discuss our research into the feasibility of utilizing commercial cloud infrastructure to help tackle the large spikes and data-intensive characteristics of Transportation Cyberphysical Systems (TCPS) workloads. Then, we present our research in utilizing the commercial cloud for urgent HPC applications by deploying a 1.5 million vCPU cluster to process 211TB of traffic video data to be utilized by first responders during an evacuation situation. Lastly, we present the contributions and conclusions drawn from this work

    Cloud Security in 21st Century: Current Key Issues in Service Models on Cloud Computing and how to overcome them

    Get PDF
    Cloud computing is a disruptive innovation which offers new ways to increase capacity and capabilities of the organization’s IT infrastructure. In last few years cloud computing has taken computing industry by storm and many organizations are using cloud computing services to increase the efficiency, decrease their IT budgets and play an important role in defining the IT strategy of their business. Cloud computing offers various benefits such as scalability, elasticity, reducing IT expenditure considerably. Moreover, the architecture of such a utility computing consists of service models and deployment models which have been explained in the paper .Security is a key concern in all the web applications when they start interacting with applications in the public domain. The purpose of this paper is to provide the key security issues in service models of Cloud computing: Infrastructure-as-a-Service, Software-as-a-service and Platform-as-as-service. Finally, the paper will discuss some of the solutions been offered by cloud service providers for the following service models: Software as a service (SaaS), Platform as a service (PaaS) and Infrastructure as a Service (IaaS)

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Multimodal Approach for Big Data Analytics and Applications

    Get PDF
    The thesis presents multimodal conceptual frameworks and their applications in improving the robustness and the performance of big data analytics through cross-modal interaction or integration. A joint interpretation of several knowledge renderings such as stream, batch, linguistics, visuals and metadata creates a unified view that can provide a more accurate and holistic approach to data analytics compared to a single standalone knowledge base. Novel approaches in the thesis involve integrating multimodal framework with state-of-the-art computational models for big data, cloud computing, natural language processing, image processing, video processing, and contextual metadata. The integration of these disparate fields has the potential to improve computational tools and techniques dramatically. Thus, the contributions place multimodality at the forefront of big data analytics; the research aims at mapping and under- standing multimodal correspondence between different modalities. The primary contribution of the thesis is the Multimodal Analytics Framework (MAF), a collaborative ensemble framework for stream and batch processing along with cues from multiple input modalities like language, visuals and metadata to combine benefits from both low-latency and high-throughput. The framework is a five-step process: Data ingestion. As a first step towards Big Data analytics, a high velocity, fault-tolerant streaming data acquisition pipeline is proposed through a distributed big data setup, followed by mining and searching patterns in it while data is still in transit. The data ingestion methods are demonstrated using Hadoop ecosystem tools like Kafka and Flume as sample implementations. Decision making on the ingested data to use the best-fit tools and methods. In Big Data Analytics, the primary challenges often remain in processing heterogeneous data pools with a one-method-fits all approach. The research introduces a decision-making system to select the best-fit solutions for the incoming data stream. This is the second step towards building a data processing pipeline presented in the thesis. The decision-making system introduces a Fuzzy Graph-based method to provide real-time and offline decision-making. Lifelong incremental machine learning. In the third step, the thesis describes a Lifelong Learning model at the processing layer of the analytical pipeline, following the data acquisition and decision making at step two for downstream processing. Lifelong learning iteratively increments the training model using a proposed Multi-agent Lambda Architecture (MALA), a collaborative ensemble architecture between the stream and batch data. As part of the proposed MAF, MALA is one of the primary contributions of the research.The work introduces a general-purpose and comprehensive approach in hybrid learning of batch and stream processing to achieve lifelong learning objectives. Improving machine learning results through ensemble learning. As an extension of the Lifelong Learning model, the thesis proposes a boosting based Ensemble method as the fourth step of the framework, improving lifelong learning results by reducing the learning error in each iteration of a streaming window. The strategy is to incrementally boost the learning accuracy on each iterating mini-batch, enabling the model to accumulate knowledge faster. The base learners adapt more quickly in smaller intervals of a sliding window, improving the machine learning accuracy rate by countering the concept drift. Cross-modal integration between text, image, video and metadata for more comprehensive data coverage than a text-only dataset. The final contribution of this thesis is a new multimodal method where three different modalities: text, visuals (image and video) and metadata, are intertwined along with real-time and batch data for more comprehensive input data coverage than text-only data. The model is validated through a detailed case study on the contemporary and relevant topic of the COVID-19 pandemic. While the remainder of the thesis deals with text-only input, the COVID-19 dataset analyzes both textual and visual information in integration. Post completion of this research work, as an extension to the current framework, multimodal machine learning is investigated as a future research direction
    corecore