
Resource Provisioning and

Scheduling Algorithms for Hybrid

Workflows in Edge Cloud

Computing

by

Raed Alsurdeh

Supervisor: Assoc. Prof. Bahman Javadi

Associate Supervisors: Dr. Rodrigo N. Calheiros and Dr. Kenan

M. Matawie

A thesis submitted in total fulfillment for the

degree of Doctor of Philosophy

in the

School of Computer, Data and Mathematical Sciences

Western Sydney University

December 2020

Dedication

This Thesis is dedicated to my wife for

her absolute love, trust, support and

patience

to my father and my mother for their love

and encouragement

to my daughters

i

Acknowledgements

All the praises and thanks be to Allah (SWT) with whose, guidance and blessing

have I been able to accomplish this thesis. The completion of this thesis would

not have been possible without the support and encouragement of several special

people. I would like to take this opportunity to show my gratitude to those

who have assisted me in a myriad of ways. First of all, I would to express my

endless grateful to my research principle supervisor A/Prof. Bahman Javadi for

his remarkable support along my degree journey. Thanks for his extreme academic

guidance, brilliant motivation and outstanding support in all critical situations I

experienced. I would to thank also my co-supervisor Dr. Rodrigo Calheiros for

his remarkable support and brilliant ideas that steered me to the right directions.

Also, I would to thank my co-supervisor Dr. Kenan for his exceptional support

and guidance in solving mysterious mathematical problems in my research.

Thank you Sana Al-husband, the wife and the friend, for all support you provided,

and thank you for the confident you are giving me to pass the hard times. Thank

you my parents, you were the great motivation to finish this degree. Thank you

my lovely daughters (Lyan, Talya and Julia) for the time you gave me. Thank you

my brothers, my sisters, my Parent-in-law and my brothers-in-law for supporting

me and my family.

I would like to thank and appreciate all my friends for their outstanding sup-

port. Special thank for Mohammad ALKHALAILEH, Maria and Rekha. Thank

you Nabil and Guang for the technical support. Thank you to all staff in the

library and GRS for all help and support I received. Thank you to Dr Campbell

Aitken, who provided professional editing services in accordance with the Institute

of Professional Editors’ Guidelines for editing research theses.

I would like to express my sincere gratitude to Western Sydney University. WSU

has assisted me in gaining new research skills and knowledge of IT over the last

five years. I am also grateful for Australia for giving the opportunity to have this

experience.

Raed Alsurdeh July 2020

ii

Declaration of Authorship

I, Raed Alsurdeh, declare that this thesis titled, ‘Resource Provisioning and Schedul-

ing Algorithms for Hybrid Workflows in Edge Cloud Computing’ and the work

presented in it are my own. I confirm that:

I confirm that the work presented in this thesis is, to the best of my knowledge

and belief, original except as acknowledged in the text. I hereby declare that I

have not submitted this material, either in full or in part, for a degree at this or

any other institution.

Signed:

Date:

iii

Contents

Dedication i

Acknowledgements ii

Declaration of Authorship iii

List of Figures vii

List of Tables ix

Abbreviations x

Abstract xii

1 Introduction 1

1.1 Background . 4

1.1.1 Computing Systems . 4

1.1.2 Hybrid Workflows . 6

1.2 Problem Definition: Hybrid Workflow Scheduling in Cloud Systems 9

1.3 Contributions . 13

1.4 Thesis Organization . 16

2 Literature review 19

2.1 Resource Provisioning and Workflow Scheduling 20

2.1.1 Resource Provisioning in Cloud Computing 20

2.1.2 Workflow Scheduling in Cloud Computing 23

2.2 Workflow Scheduling in Edge Cloud Computing 31

2.3 Summary . 34

3 Cloud Resource Provisioning for Hybrid Stream and Batch Work-
flows 36

3.1 Introduction . 37

3.2 Related Work . 39

3.3 Hybrid Workflow Model . 41

iv

Contents v

3.3.1 Stream Task . 41

3.3.2 Batch Task . 44

3.4 Resource estimation and provisioning framework 45

3.4.1 Queuing System Builder . 46

3.4.2 Workflow Configuration Plan Generator 46

3.4.3 Execution Time Estimator 50

3.4.4 Hybrid-Workflow Resource Provisioning Optimizer 52

3.5 Performance evaluation . 53

3.5.1 Experimental setup . 53

3.5.2 Results and discussions . 55

3.5.2.1 Window size . 57

3.5.2.2 Arrival Rate . 57

3.5.2.3 Throughput . 59

3.6 Summary . 60

4 Hybrid Workflow Scheduling on Edge Cloud Computing 62

4.1 Introduction . 63

4.2 Related Work . 64

4.3 Edge Cloud Computing System Model 66

4.4 Hybrid Workflow Scheduling in Edge Cloud Resources 68

4.4.1 Resource Estimation with Gradient Descent Search Approach 69

4.4.1.1 Resource Estimation Problem Formulation 70

4.4.1.2 Resource Estimation Algorithm 71

4.4.2 Hybrid Workflow Provisioning and Scheduling on Edge Cloud
Computing Environment . 73

4.5 Performance Evaluation . 75

4.5.1 Experimental Setup . 76

4.5.2 Results and Discussions . 78

4.5.2.1 Resource Estimation Evaluation 79

4.5.2.2 Adaptability Analysis 82

4.5.2.3 Edge Capability Analysis 82

4.5.2.4 Optimization Time Analysis 85

4.6 Summary . 86

5 Hybrid Workflow Provisioning and Scheduling on Cooperative
Edge Cloud Computing 87

5.1 Introduction . 87

5.2 Related Work . 89

5.3 A Cooperative Edge Cloud Computing System 90

5.4 Hybrid Workflow Scheduling on Cooperative Edge Cloud Comput-
ing . 92

5.4.1 Hybrid Workflow Resource Estimation with a Gradient De-
scent Approximation Technique 95

5.4.2 Hybrid Workflow Provisioning and Scheduling Framework
on Cooperative Edge Cloud Computing Environment 97

Contents vi

5.5 Performance Evaluation . 102

5.5.1 Experimental Setup . 103

5.5.2 Results and Discussions . 105

5.5.2.1 Edge Cooperation Evaluation 105

5.5.2.2 Analysis of Edge Cooperation Impact on Data trans-
fer time and cost 108

5.6 Summary . 111

6 Implementation and Simulation Environment 112

6.1 Introduction . 112

6.2 Workflow Management System . 114

6.2.1 User Management . 115

6.2.2 Workflow Engine . 117

6.3 Implementation and Prototyping 120

6.4 Framework Evaluation . 124

6.5 Summary . 127

7 Discussion and Conclusions 128

7.1 Discussion . 128

7.2 Future Directions . 134

7.2.1 Statistical approaches for Gradient Descent Search optimiza-
tion for hybrid workflows . 134

7.2.2 SLA-based optimization solutions in cooperative edge context135

7.2.3 Towards decentralized service management solutions in edge
cloud systems . 136

7.2.4 Reliable computing in edge cloud systems: a service-oriented
approach . 136

7.3 Summary . 137

Bibliography 139

List of Figures

1.1 Thesis organization. 16

3.1 Hybrid workflow example . 43

3.2 Resource estimation and provisioning framework 45

3.3 High level stream and batch applications dependencies for data an-
alytics workflows [1] . 54

3.4 Window size variation impact on the small workflow 56

3.5 Window size variation impact on the medium workflow 56

3.6 Window size variation impact on the large workflow 56

3.7 Arrival rate variation impact on the Small workflow 58

3.8 Arrival rate variation impact on the Medium workflow 58

3.9 Arrival rate variation impact on the Large workflow 58

3.10 Throughput variation impact on the Small workflow 59

3.11 Throughput variation impact on the Medium workflow 59

3.12 Throughput variation impact on the Large workflow 59

4.1 Edge cloud computing system model 67

4.2 A high-level abstraction of hybrid workflow estimation and scheduling 69

4.3 Resource estimation formulation with GDS technique 72

4.4 Window size variation impact on the small workflow 80

4.5 Window size variation impact on the medium workflow 80

4.6 Window size variation impact on the large workflow 80

4.7 Arrival variation impact on the small workflow 81

4.8 Arrival variation impact on the medium workflow 81

4.9 Arrival variation impact on the large workflow 81

4.10 Throughput variation impact on the small workflow 83

4.11 Throughput variation impact on the medium workflow 83

4.12 Throughput variation impact on the large workflow 83

4.13 Arrival rate and window size reduction with cost increase: large
workflow . 84

4.14 Compare the variation of execution time for small and large work-
flows based on edge capability and change in arrival rate 84

4.15 Optimization time of PSO and C-GDHW for different hybrid work-
flows (Log Scale) . 85

5.1 Cooperative Edge Cloud Computing System Model 91

vii

List of Figures viii

5.2 Workflow Scheduling Framework on Cooperative Edge Cloud Com-
puting . 93

5.3 Window size variation impact on small hybrid workflow scheduling . 106

5.4 Window size variation impact on medium hybrid workflow scheduling106

5.5 Window size variation impact on large hybrid workflow scheduling . 106

5.6 Arrival rate variation impact on small hybrid workflow scheduling . 107

5.7 Arrival rate variation impact on medium hybrid workflow scheduling 107

5.8 Arrival rate variation impact on large hybrid workflow scheduling . 107

5.9 Throughput variation impact on small hybrid workflow scheduling . 109

5.10 Throughput variation impact on medium hybrid workflow scheduling109

5.11 Throughput variation impact on large hybrid workflow scheduling . 109

5.12 Edge cooperation impact on data transfer time and cost 110

5.13 Edge cooperation impact on amount of data migrated 110

6.1 Hybrid Workflow Scheduling Management Architecture 115

6.2 Task definition in JSON format . 116

6.3 The sequence diagram for running a workflow 121

6.4 CoopEdgeCloudSim simulator entities 122

6.5 The class diagram hierarchy for CoopEdgeCloudSim 123

6.6 The sequence diagram for running a workflow 126

6.7 Execution time variation - window size scenario 126

6.8 Execution cost variation - window size scenario 126

List of Tables

1.1 Data analytics workflows challenges [2] 9

3.1 Mathematical notations . 42

3.2 An example of particle position (a configuration plan) 47

3.3 Workflows Characteristics . 55

3.4 Types of VMs used in performance evaluation 55

4.1 Hybrid Workflows Characteristics 77

4.2 Resource types for edge and cloud systems 78

5.1 Mathematical notations used in resource estimation modelling . . . 97

5.2 Mathematical notations used in workflow scheduling modeling . . . 99

5.3 Hybrid Workflows Characteristics 104

5.4 Resource types for edge cloud system 104

6.1 Hybrid workflow task properties . 118

6.2 95% Confidence interval validation results - execution time 125

6.3 95% Confidence interval validation results - execution cost 125

ix

Abbreviations

BoT Bag of Task

C-GDHW Constraint-based Gradient Descent search for Hybrid Workflows

CC-HWPS Cluster-based and Cooperative Hybrid Workflows

Provisioning and Scheduling

C-HWPS Cluster-based Hybrid Workflows Provisioning and Scheduling

Provisioning and Scheduling

CP Critical Path

DAG Directed Acyclic Graph

ES Evaluation Strategies

FDHEFT Fuzzy Dominance sort-based Hterogeneous Earliest-Finish-Time

FIFO First-In-First-Out

GA Genetic Algorithm

GDS Gradient Descent Search

HEFT Heterogeneous Earliest Finish-Time

HWRPO Hybrid-Workflow Resource Provisioning Optimizer

IaaS Infrastructure as a Service

IoT Internet of Things

MIPS Million Instructions Per Second

MOHEFT Multi-Objective H Earliest-Finish-Time

PaaS Platform as a Service

PCP Partial Critical Path

PSO Particle Swarm Optimization

QoS Quality of Service

SaaS Software as a Service

x

Abbreviations xi

SLA Service Level Agreement

VM Virtual Machine

Abstract

In recent years, Internet of Things (IoT) technology has been involved in a wide

range of application domains to provide real-time monitoring, tracking and anal-

ysis services. The worldwide number of IoT-connected devices is projected to

increase to 43 billion by 2023, and IoT technologies are expected to engaged in

25% of business sector. Latency-sensitive applications in scope of intelligent video

surveillance, smart home, autonomous vehicle, augmented reality, are all emergent

research directions in industry and academia. These applications are required con-

necting large number of sensing devices to attain the desired level of service qual-

ity for decision accuracy in a sensitive timely manner. Moreover, continuous data

stream imposes processing large amounts of data, which adds a huge overhead on

computing and network resources. Thus, latency-sensitive and resource-intensive

applications introduce new challenges for current computing models, i.e, batch

and stream. In this thesis, we refer to the integrated application model of stream

and batch applications as a hybrid workflow model.

The main challenge of the hybrid model is achieving the quality of service (QoS)

requirements of the two computation systems. This thesis provides a systemic and

detailed modeling for hybrid workflows which describes the internal structure of

each application type for purposes of resource estimation, model systems tuning,

and cost modeling. For optimizing the execution of hybrid workflows, this the-

sis proposes algorithms, techniques and frameworks to serve resource provisioning

and task scheduling on various computing systems including cloud, edge cloud

and cooperative edge cloud. An edge cloud is a hybrid cloud architecture which

extends the capability of cloud system closer to end user to deliver low-latency

and bandwidth-efficient services. The research work outcomes presented in this

thesis demonstrated the novelty of hybrid workflow scheduling problem through

multi-direction experimental investigation on the contribution of concepts such as

stream featuring, workflow scalability, resource utilization, edge collaboration and

QoS-aware optimization. For resource estimation, an evolutionary technique was

applied to search the space for an optimal hybrid workflow configuration setup

Abstract xiii

with stream rate, aggregation window and throughput parameters. The technique

showed considerable limitations to handle large scale workflows. Thus, a linear

optimization technique with gradient descent search was proposed to solve the

high time complexity of the previous technique. For hybrid workflow scheduling,

a group-based technique was applied on various computing systems to reduce the

execution cost and time. Experimental results show a significant credibility of co-

operative edge cloud systems in resolving the issues of hybrid workflow scheduling.

Overall, experimental results provided in this thesis demonstrated strong evidences

on the responsibility of proposing different understanding and vision on the ap-

plications of integrating stream and batch applications, and how edge computing

and other emergent technologies like 5G networks and IoT will contribute on more

sophisticated and intelligent solutions in many life disciplines for more safe, secure,

healthy, smart and sustainable society.

Chapter 1

Introduction

The Internet of Things (IoT) is a growing technology paradigm; it refers to a

large set of objects (machines, devices, etc.) that can connect and share data

without requiring human or computer intervention [3]. The IoT brings myriad

new forms of business-oriented, user-specific and human-centric applications and

its increasing adoption in many application domains generates a new need for ra-

tionalized utilization of computing resources to support computations. According

to Cisco’s market report [4], there will be 12.3 billion mobile-connected devices by

2022, operating a wide variety of IoT applications, ranging from intelligent video

surveillance, smart retail to the Internet-of-Vehicles.

Even before the advent of the IoT, massive data generation is beginning to cause

bottlenecks in traditional computing systems. For example, in business analyt-

ics, huge amounts of data is used to discover and resolve business issues, such

as predicting changes in customer behaviours and market conditions, to increase

customer satisfaction, and to provide value-added services to customers [5]. An-

other example is in healthcare, in which numerous organizations are building ap-

plications and analytical tools to help patients, physicians and other healthcare

stakeholders to measure and maintain quality and find opportunities [6]. The in-

creasingly popularity of IoT usage motivates researchers to introduce reliable and

convenient application models to overcome the challenges of processing real-time

data generated from IoT devices, as well as the huge amount of data stored during

1

Chapter 1 2

processing cycles. In 2001, META Group (now Gartner) analyst Doug Laney was

the first to define the enormous growth of data as a three-dimension model, or big

data model, citing the “3Vs” , i.e., volume, velocity and variety [7]:

“Big data is the representation of information assets described by data size (Vol-

ume), data generation speed (Velocity) and Variety to require dedicated technologies

and analytical methods for its transformation into value” [8].

High volumes of data require powerful computing systems to ensure meaningful

portions are extracted from the raw data, while high data generation speed re-

quires efficient data extraction to process data streams on the fly, because it is

time-consuming and costly to store data first and process it afterwards [9]. Veloc-

ity refers to the rate of data generation and data transfer, and also measures the

required time to process the incoming data streams [10]. The higher the data ve-

locity, the larger the size of the data sets to be processed. For many applications,

the velocity of data generation is even more critical than the volume [11]. For ex-

ample, real-time data can help researchers and businesses make valuable decisions

that provide strategic competitive advantages if they handle incoming streams effi-

ciently and within short data acquisition time. An effective system design involves

dealing with a high rate of data stream to support business process agility. High

rates of data generation are make it more challenging for classical computing mod-

els and reduce their efficiency in performing processing, analysis and computation

operations. New approaches are needed to satisfy the computation requirements

of big data , necessitating re-examination and investigation of current and new

analytic models, mathematical prediction models, and algorithms.

Hu et al. [12] defined the phases of big data value chain architecture. The data

generation phase focuses on how and what types of data is generated. Data can

be obtained from sensors, video, click streams and other digital sources. The

data acquisition phase denotes the process of capturing and pre-processing of the

data. Collected raw data requires a high transmission mechanism, and sometimes

pre-processing to extract meaningful information. This process is known as data

cleansing. The data collection depends on the type of available resources, as well

Chapter 1 3

as the objective of data analytics. Data can be collected using various methods.

The third phase is data storage, which depends on the processing paradigm.

Big data processing has two main data paradigms, batch and stream processing.

Batch processing involves storing the upcoming data prior to processing, while

stream processing is related to performing operations on data streams in a real-

time or near real-time manner. The value added during stream processing depends

on data freshness [13], and stream processing is gaining more attention than batch

processing, which remains the common [12]. Batch processing determines huge

disk-based storage, whereas stream processing is highly dependent on memory-

based hardware architecture.

Data analysis is a domain-specific process; selecting the analytics tools relies on

the type of data, which can be structured, semi-structured or unstructured. Data

analytics applications are commonly manged and executed with workflow technol-

ogy. Generally, a workflow is a systematic representation of a process as a set of

dependent tasks accordingly to a set of rules [14]. The workflow model aims to

automate and minimize the complexity of managing various types of processes,

such as human activities, business processes and scientific experiments [15]. A

data analytics workflow can be described in a directed acyclic graph (DAG), in

which nodes perform data analysis tasks and edges perform the data dependen-

cies between tasks [16]. Data analytics workflows have advantages over traditional

workflows that inspire researchers to propose techniques and algorithms to opti-

mize the increasingly high cost of running large-scale versions of these workflows

on commodity resources, such as private, public and hybrid clouds. Data analytics

workflows can also be referred to hybrid workflows.

This thesis describes the research on hybrid workflow scheduling on variety of

computing systems. The next section describes the main terms used in this thesis.

Chapter 1 4

1.1 Background

This section presents an overview of the essential concepts associated with the

research problem addressed in the thesis.

1.1.1 Computing Systems

Cloud computing is an internet-based resources delivery system, which provides

services on an on-demand and pay-per-use basis. The National Institute of Stan-

dards and Technology (NIST) [17] defines this paradigm as ”a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or

service provider interaction”. There are three types of cloud computing service:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as

Services (SaaS). In IaaS, the cloud provider delivers physical computing resources

– such as storage, servers and the network – as services. The resource virtual-

ization on clouds offers a full computing stack to end users allowing them to use

cloud resources on a pay-as-you-go basis. PaaS provides a computing platform to

build applications, and SaaS grants online-software use subscriptions with online

APIs for software integration, upgrades and patches.

The aforementioned features make cloud computing the preferred environment to

host big data applications; it can minimize monetary cost through scalability and a

pay-as-you-go model, and minimize the makespan (total execution time) based on

resource capability and availability. Hybrid workflows imply intensive processing

pipelines, in terms of resources, computation, data, latency and bandwidth. These

pipelines receive data as streams which are essentially processed in real-time or

near real-time, and mostly for data cleansing and preparation. During this stage,

stream tasks may receive a large amount of data generated by the IoT objects or

devices.

Chapter 1 5

Although cloud computing is one of the most efficient computing systems, with

massive processing and storage capabilities, but it is not the ideal computing

system for latency-sensitive applications, such as real-time gaming, augmented re-

ality and real-time streaming [18]. Because cloud resources are located close to

the core network, the round-trip latency of these applications will be high subject

to passing data through multiple gateways. Moreover, transferring large amounts

of data with latency-sensitive constraints to such a centralized environment is in-

significant in terms of the resource utilization, communication latency and energy

consumption of computation servers [19]. In 2021, data produced by IoT devices

and network access devices are expected to exceed 847ZB [4]. Rapidly rising de-

mands and growing dependence on high-response information access and efficient

data processing mean that edge-oriented computing paradigms have become a

necessity for the IoT domain.

Edge computing refers to the enabling technologies allowing computation to be

performed at the edge of the network, on downstream data on behalf of cloud

services and upstream data on behalf of IoT services [20]. Basically, an edge

is any resource type on the path from cloud to edge, which is able to provide

services including computing, storage, and routing. However, a high percentage

of processed data at the edge layer is temporary and only a small amount might

be meaningful.

Edge computing has a significant role in processing massive data and only uploads

processed data to clouds. For instance, in an autonomous vehicle, a huge amount

of data, in the form of images and video, must be processed in real time to permit

good driving decisions [21]. Sending data to the cloud not guarantee time con-

strained decisions. In contrast, edge computing is less effective in terms of network

latency and unreliability than cloud computing [22]. Another concern of sending

data to the cloud is privacy [23]. For example, in smart home applications, data

generated from sensors could report sensitive data and this should be consumed

within the scope of the private network. Edge computing is well suited for privacy

protection due to local processing within controlled and burden communication

systems.

Chapter 1 6

Edge computing is capable of overcoming many challenges of IoT applications

related to data transfer latency and cost, application responsiveness and data

privacy. However, the application of edge computing has some limitations, notably

for large-scale applications. Edge resources are limited in computation and storage

capacities. For long-term processing, edge resources are not expected to obey the

extreme data computation overheads [24]. In addition, edge nodes mostly do

not support general purpose computing, because they are pre-programmed and

tailored to handle specific types of data.

Edge collaboration is a desirable advantage of edge computing. Edges from differ-

ent providers and stakeholders can communicate and share data in a geographically

distributed manner, regardless of their physical location and network structure

[25]. According to Dastjerdi and Buyya [26], in edge cloud computing, we must

be concerned about specific resource management and scheduling techniques, in-

cluding resource distribution, load balancing, migration and consolidation. With

efficient and robust cloud edge collaboration, widespread applications in the form

of hybrid workflows, in domains like real-time monitoring, autonomous mobile

computing, traffic analysis, and crowdsensing, can benefit from the powerful capa-

bilities of cloud computing as well as the approximate computing offered by edge

computing.

The next section explains the hybrid workflow concept in terms of structure and

computation requirements.

1.1.2 Hybrid Workflows

Generally, a workflow is a systematic representation of a process as a set of depen-

dent tasks according to a set of rules, while workflow structure consists of tasks,

data elements, control sequences and task dependencies [14]. A common and effi-

cient representation of such applications is a DAG structured workflow model [16].

DAG representation is widely accepted in many data analytics domains, including

Chapter 1 7

bio-informatics, high-energy physics and astronomy. In this thesis, a hybrid work-

flow is defined as an integrated application model of stream and batch processing

models. The expansion demands of data analytics applications pose challenges for

offline and online processing, which refer to stream and batch processing systems,

respectively. A wide range of applications are obliged to combine these processing

forms [27, 28].

Workflows can be seen from two main perspectives: business and scientific. The

workflow management coalition [29] defined a business workflow as “the automa-

tion of a business process where inputs (document, information, or tasks) are

passed from one business actor to another for action according to a set of procedu-

ral rules”. Scientific workflows are used for modelling and running scientific exper-

iments. Although business workflows and scientific workflows share the concepts

of workflow representation and abstraction, they have many practical differences.

Firstly, business workflows have a lower abstraction level as they mostly follow

business-specific programming models to meet business requirements, while scien-

tific workflows employ high levels of abstraction to validate scientific hypotheses

[30]. Secondly, business workflow tasks can be processed by machines or humans,

but in scientific workflows, the scientist’s role is to monitor workflow execution and

interrupt the execution flow when needed. Finally, scientific workflows are data-

centric process flows, while business workflows are controlled by strict procedural

rules to identify the flow of business process [31].

A hybrid workflow is the integration of stream and batch data processing models

in one data processing pipeline. This thesis proposes algorithms and techniques for

hybrid workflow scheduling for different computing systems. Table 1.1 summarizes

the main challenges of data analytics workflows processing. The work provided in

this thesis handles the hybrid workflow scheduling with two high-level objectives.

The first is to illustrate the importance of understanding why and how stream and

batch tasks are communicated and collaborate with respect to differences in their

specifications, constraints and structure. This thesis provides detailed modelling

of each task form. The second objective is affiliated to determine the ability of

Chapter 1 8

the adopted computing system to overcome the challenges of hybrid workflow

scheduling.

An example of a situation where hybrid workflow scheduling is critical is anoma-

lous events detection for water distribution systems [32]. High-frequency flow

data events are collected and validated in real time. Historical events are cat-

egorized and outliers are detected offline. Another example is real-time medical

data analysis, where collected data from attached health sensors must be analyzed

continuously in real time to enable timely decisions about the patient’s care plan.

Moreover, medical data need to be aggregated from multiple patients’ profiles for

smarter disease prediction and treatment [33].

Enabling intelligent transportation systems is another significant application of

real-time data analytics. Sensing technologies are located everywhere in big cities

and crowded streets to monitor traffic conditions. Road monitoring cameras, GPS

and vehicle sensors are common examples of these technologies [34, 35]. These

technologies collect real-time data and share it via a variety of communication

protocols, like WiFi, 5G and Bluetooth, and various types of data are collected,

including vehicle locations and speeds, driving behaviours and road conditions. For

smart cities an enormous number of devices and applications must be integrated,

which makes it challenging and complicated to accommodate the heterogeneity

of these applications in an automated and collaborative paradigm [36]. An ap-

plication service in this context is finding the quickest route based on current

traffic conditions [37]. In smart cities, drivers are able to communicate with 1)

each other in real-time through ad-hoc networks, 2) roadside traffic units, and 3)

traffic authority management [38]. In more complex scenarios, such as emergency

situations requiring an ambulance, drivers also need to communicate with health

authorities. This scenario involves complex interconnected services and thus sub-

stantial service management system at different layers. Hybrid workflows support

this scenario, and accordingly many other smart city services.

Chapter 1 9

Table 1.1: Data analytics workflows challenges [2]

Issue Challenge

Scalability
Well–equipped, efficient management, and
resource utilization.

Availability and fault tolerance
Fault Detection, and timely resource
availability.

Computing complexity
Big data programming environments are
complex to configure.

Elasticity

High scalability according to system state
and changes in data processing requirements.
Stream processing is the major
challenge.

Resource requirements prediction
Understanding resource usage can provide
significant details for resource provisioning
and load balancing.

Time-sensitive applications
Resource scheduling should be convenient in
meeting user deadline expectations and
data locality.

1.2 Problem Definition: Hybrid Workflow Schedul-

ing in Cloud Systems

Stream and batch processing have different fundamental processing QoS require-

ments. Stream processing is latency-sensitive and subjects to constraints like

stream rate and throughput [39]. Moreover, for applications like data analyt-

ics workflows, stream preprocessing can be a resource-consuming process under

the constraint of real-time processing with high stream rate. Furthermore, data

stream arrival rate may change over time making it hard to estimate data stream

collection and processing intervals. Thus, is not trivial to determine the size of

these intervals in advance. If the size is too large, the accuracy of prediction

can deteriorate when the nature of the data changes, and if the size is small, the

accuracy can worsen when that is rather stationary.

For stream application provisioning, there are two common ways to scale applica-

tion performance: increasing operator parallelism and adding extra resources [40].

Parallelism can be increased via allocation of new operators on new hardware.

The new hardware resources incur more costs, so it is more sensible to employ

Chapter 1 10

more effective operator placement (“called scheduling”), which also impacts on

the application service rate. However, producing optimized schedules can be a

critical task when distributing parallel computations on heterogeneous processors

[41] and prioritizing them to ensure a shorter schedule path execution.

Achieving a high system stability is a critical challenge for real-time processing

over fluctuating big data streams. Stability takes priority over efficiency because

rescheduling may be required to be dynamically undertaken at runtime. Big data

stream is difficult to process in traditional computing systems: data is not available

at once, data stream rate is often of high speed and may vary with time, and timely

analysis of the data stream is critical. When the data rate is increasing, replicating

vertex instances can guarantee meeting workflow execution deadline. When a task

execution is parallelized on multiple instances, the input stream must be split onto

all instances.

On stream processing, the system throughput depicts the processing rate of at a

computation processor for the same data stream input [42]. On the other hand,

batch processing has a less time sensitivity processing, but with high corresponding

to data aggregation and predictive modelling function over high volume data.

Basically, batch processing is not a time-sensitive process; it is more cost-effective

than streaming processing due to the amount of resources required to handle large

chunks of data. the processing models have different service quality measurements,

which determines the efficiency of processing computation under particular QoS

requirements. Overall, both processing models are considerable for processing

quality or throughput which, determines the efficiency of processing computation

under certain user and application QoS requirements.

The processing mechanisms for stream and batch processing systems need to be

maintained to obtain a satisfactory level of application execution efficiency. Batch

processing is designed for data correctness and completeness, while stream pro-

cessing can achieve the desired level of efficiency even with a high blocking rate,

particularly at peak loads. In a hybrid workflow model, a task represents the ex-

ecution of either a stream or batch application. The integration between stream

Chapter 1 11

and batch processing models focuses attention on issues such as how to control

the execution of continuous and discrete processing? how to manage resources to

satisfy the variation in quality of service (QoS) measurements of each processing

model? what is the role of stream properties (such as rate, aggregation window

length, blocking rate, latency and throughput) on overall application performance?

Finally, how does stream processing parameters tuning empowers the performance

of resource provisioning and task scheduling?

The research outlined in this thesis focused on resolving three core issues of hybrid

workflows:

� Complex and large-scale workflows with high number of integrated appli-

cations, (this is different from the traditional model in which the border

line between stream and batch processing is clear and both can work as

standalone applications),

� Short-term stream intervals and online batch feeding. This feature implies an

iterative application processing with batch-based delivery at iteration level,

� Flexibility and parameter tuning. A hybrid model is scalable and adjustable

to its parameters.

Workflow scheduling is the process of mapping tasks to computing resources and

planning their execution in a way fulfilling dependency flow between tasks and

achieving certain QoS parameters and resource preservation goals. It is designed

to resolve the scheduling objectives and represent workflow execution performance

metrics such as deadline, throughput, energy consumption, security, reliability,

runtime, service level agreements (SLAs) and violation rate. The problem of work-

flow scheduling is composed of two sub-problems:

1. Resource provisioning. The provisioning step involves determining resource

requirements, selecting and provisioning resources. Resource provisioning

Chapter 1 12

decides which and what amount of resources to be allocated to meet schedul-

ing needs as well as QoS performance constraints. The workflow sched-

uler should determine computation server (VMs) type, number of VMs to

lease and operating interval. The provisioning policy can be static or dy-

namic. In static policy, heuristics can provide sufficient information about

task workloads and the amount of data to be passed on according to workflow

topology. However, dynamic policy is the favoured approach for auto-scaled

enabled computing systems such as cloud computing. Dynamic provision-

ing involves estimating preliminary workloads at runtime to avoid issues like

over-provisioning, under-provisioning and unbalanced workload distribution.

In hybrid workflows, data streams generated from sources like IoT devices

and sensors are passed through processing systems (tasks) to formulate het-

erogeneous workloads. The amount of data to be processed at stream level is

subject to parameters such as transmission medium quality, throughput and

distance to computation servers. However, this complexity of stream data

acquisition inherently affects the prediction of data received at batch level.

Thus, resource provisioning in the context of hybrid workflows is a dynamic

and complex task, and subject to understanding the conceptual interaction

between heterogeneous workflow tasks.

2. Task scheduling. The scheduling process refers to mapping workflow tasks to

provisioned resources and determining the sequence of executing these tasks.

Task mapping in the context of hybrid workflows extends techniques applied

on traditional workflows through consideration of the insensitivity to compu-

tation, data and bandwidth, and the sensitivity to latency and throughput.

The workflow scheduler should effectively plan the mapping with the variety

of resource types offered by computing environments. The scheduler mission

is to construct a convenient scheduling plan which accomplishes execution

QoS parameters while preserving constraints of stream and batch tasks.

In hybrid workflow scheduling, application structure and computing envi-

ronment are significant contributors to the articulation of frameworks for

resource provisioning and task scheduling. The framework needs to consider

Chapter 1 13

how application structure complexity and scale are aligned to the required

amount of resources. For example, if the workflow is highly stream oriented,

long-term provisioning will evolve. Moreover, the adopted computing envi-

ronment poses resource selection and task allocation problems. For instance,

the presence of edge computing extends the traditional systems capabilities

to support decentralized location-aware and latency-sensitive applications.

In the context of hybrid models, the evolution of emergent computing sys-

tems should be reflected on scheduling frameworks to achieve user QoS re-

quirements of low cost and high system responsiveness.

This thesis proposes algorithms and techniques to overcome the challenges of hy-

brid workflow scheduling on computing systems. The next section illustrates the

main thesis contributions.

1.3 Contributions

This thesis describes the study and proposal of solutions for hybrid workflow

scheduling two main avenues were followed. The first is an examination of the

modelling of hybrid workflows and how the proposed model can effectively meet

the requirements of integrating stream and batch tasks. The second is an inves-

tigation of efficient algorithms, techniques and computing systems which are well

suited to a hybrid model as well as achieving other desired QoS requirements,

particularly cost and time. The contributions of this thesis are as follows:

1. Hybrid workflow modelling. This thesis outlines comprehensive mod-

elling of hybrid workflows which exposes, at low level, the features of each

processing system (i.e. stream and batch). This work involved detailed con-

figuration analysis and formulation of each application system. This elab-

oration facilitates building cost and performance models to accomplish the

requirements of a resource estimation and scheduling framework. The mod-

elling illustrates the following points:

Chapter 1 14

� Provides detailed configuration for each task type. For stream tasks,

this includes data rate, data capturing period, processing throughput

and queuing system alignment. For batch tasks, this includes data

aggregation rate, processing throughput.

� Identifies the interaction between tasks and how this reflects the amount

of data generated.

� Specifies how model parameters tuning incorporates resource require-

ments and QoS constraints achievement.

2. Resource estimation techniques. We extended the traditional work-

flow scheduling framework by adding another layer to allow estimating the

amount of resources according to hybrid workflow configuration and overall

execution time. The estimation process basically aims to find the amount

of resources required to execute workflow tasks by considering the depen-

dency between tasks. The outcome of the estimation phase is a group-based

execution plan in which computation resources are minimized.

The hybrid model determines how stream and batch applications interchange

computation and data based on the dependency structure. Stream tasks

fundamentally control workflow execution and thus computation and data

handling requirements. Based on this assumption, the estimation process

targets stream tasks and searches stream configuration space to find the one

which satisfies workflow execution constraints with the least amount of re-

sources and time. Moreover, the estimation process corresponds closely to

the hybrid model though controlling the scaling of the entire workflow exe-

cution while meeting the constraints of each task. To achieve this objective,

three estimation techniques are proposed.

(a) Particle Swarm Optimization (PSO) is utilized to search stream con-

figuration space for the best configuration plan. The plan determines

the setup of all stream tasks properties, by which the total amount

of resources and time are reduced. Estimation results demonstrated

Chapter 1 15

the viability of the PSO-based technique for small- and medium-scale

workflows.

(b) For large-scale workflows, linear search optimization with gradient de-

scent search (GDS) is proposed. The linear technique aims to overcome

the complexity of large-scale workflows estimation by considering the

functional behaviour of workflow execution. To support the linear es-

timation mode, we developed an offline execution function estimation

based on profiled experimental outcomes.

(c) For more realistic estimation, we improved the GDS-based approach to

handle unprofiled workflows. An online estimation function was devel-

oped under constraints of linear optimization approach.

3. Scheduling on various computing systems. For hybrid workflow schedul-

ing purpose, we proposed a cluster-based optimization technique to provision

and schedule hybrid workflows that relies on constructed groups from esti-

mation phase. The scheduling technique considers the composition of hybrid

workflows in terms of computation and data dependencies.

The scheduling framework was applied on three computing systems, namely,

cloud, edge cloud, and cooperative edge cloud. For each computing sys-

tem, we provide an extensive analysis on how hybrid workflow concepts are

incorporated with the computation characteristics of each system in terms

of achieving QoS requirements as well as reducing over all workflows exe-

cution time and cost. The scheduling framework has the following specific

contributions:

� A group-based technique to achieve the optimized scheduling plan with

consideration to the hybrid model. A significant correlation exists be-

tween workflow scaling through controlling workflow configuration, and

scheduling optimization results.

� Proposing different versions of the group-based scheduling technique

which align the properties of each computing system. The scheduling

technique design considers the capabilities of resources, the quality of

Chapter 1 16

the networking system and the level of collaboration between compu-

tation resources.

1.4 Thesis Organization

Figure 1.1 shows the thesis structure. The chapters are described briefly below:

� Chapter 2 presents a review of the main research works related to the con-

cepts addressed in this thesis. The literature reviewed here covers resource

provisioning and task scheduling on different computing systems and for

different optimization objectives.

Figure 1.1: Thesis organization.

Chapter 1 17

� Chapter 3 (Cloud Resource Provisioning for Hybrid Stream and Batch Work-

flows) presents a PSO-based resource provisioning scheme for hybrid work-

flows in cloud systems. This work has been presented as:

– Alsurdeh, R., Calheiros, R.N., Matawie, K.M. and Javadi, B., 2018,

November. Cloud Resource Provisioning for Combined Stream and

Batch Workflows. In 2018 IEEE 37th International Performance Com-

puting and Communications Conference (IPCCC) (pp. 1-8). IEEE.

� Chapter 4 (Hybrid Workflow Scheduling on Edge Cloud Computing using

Gradient Descent Search Approach) presents GDS-based resource provision-

ing and task scheduling for hybrid workflows in edge cloud systems. This

work has been presented as:

– Alsurdeh, R., Calheiros, R.N., Matawie, K.M. and Javadi, B., 2020,

July. Hybrid Workflow Provisioning and Scheduling on Edge Cloud

Computing Using a Gradient Descent Search Approach. In 2020 IEEE

19th International Symposium on Parallel and Distributed Computing

(ISPDC). IEEE.

– Alsurdeh, R., Calheiros, R.N., Matawie, K.M. and Javadi, B., Hybrid

Workflow Provisioning and Scheduling on Edge Cloud Computing. Fu-

ture generation computer systems, in submission.

� Chapter 5 (Hybrid Workflow Provisioning and Scheduling on Cooperative

Edge Cloud Computing) presents GDS-based resource provisioning and task

scheduling for hybrid workflows in cooperative edge cloud systems. This

work to be presented as:

– Alsurdeh, R., Calheiros, R.N., Matawie, K.M. and Javadi, B., Hy-

brid Workflow Provisioning and Scheduling on Cooperative Edge Cloud

Computing. In 21th IEEE/ACM International Symposium on Cluster,

Cloud and Internet Computing (CCGrid). IEEE/ACM, in submission.

Chapter 1 18

� Chapter 6 (A framework for Hybrid Workflow Scheduling in Edge Cloud

Systems) presents the design and architecture of an edge cloud comput-

ing framework for demonstrating resource provisioning and scheduling algo-

rithms. The proposed architecture is an extension of the ‘CloudSim’ simula-

tor, and serves to simulate the hosting computing environment for applying

framework functionalities.

� Chapter 7 (Conclusions and Future Directions) concludes the thesis, sum-

marizes its findings, and suggests directions for future work.

Chapter 2

Literature review

The IoT is reforming the future of connectivity and reachability. Enormous num-

ber of objects to be online connected leading to extensive data generation that

threatens to overwhelm storage systems and cause a significant surge in applica-

tion reaction time. McKinsey [43] estimated that 1 trillion IoT devices will be

interconnected by 2025. According to this estimation, by 2025 the IoT will have

an economic impact of USD 11 trillion per year, represents 11% of the global eco-

nomic output. IoT application models formulate the integration between stream

and batch processing to achieve data analytics objectives. In this thesis, this

integration is defined as a hybrid workflow model.

In previous chapter, section 1.1.2 discussed the main concepts of hybrid workflows

and how they bring additional challenges over traditional workflows are high-

lighted. These can be summarized as complexity and high scalability due to the

high number of integrated applications, a short-term application delivery and it-

erative model, and high sensitivity to structure and configuration parameters. In

addition, section 1.2 highlights the main challenges of hybrid workflow schedul-

ing for both resource provisioning and task mapping. This chapter presents an

extensive review of research on resource provisioning and workflow scheduling for

various computing systems and optimization objectives.

19

Chapter 2 20

2.1 Resource Provisioning and Workflow Schedul-

ing

Workflow scheduling is one of the high demanding research directions in academia

and industry, and there is an extensive research body on resource provisioning

and workflow scheduling. Many algorithms and techniques have been proposed

for scheduling optimization in computing environments, including the grid [44],

cloud [45, 46], multi-cloud [47], and edge [48]. The main objective of workflow

scheduling is to generate scheduling plan(s) that maximize efficiency under cer-

tain optimization objective(s) such as makespan, execution time, monetary cost,

reliability and resource utilization. [15]. Directed acyclic graph (DAG) is com-

monly used to represent a scheduling plan; vertices denote workflow tasks, and

the arcs shows the dependencies among them [16]. Workflow and DAG are often

used interchangeably in the literature.

Hybrid workflow scheduling implies an understanding of the differences in pro-

cessing behaviour of stream and batch applications in order to propose workflow

schedulers which support maintainable integration between these applications with

consideration of user QoS constraints. In this chapter, we provide a broad analysis

of the research body on workflow scheduling, including resource provisioning and

task allocation in different computing systems.

2.1.1 Resource Provisioning in Cloud Computing

In cloud computing, resource provisioning is an adaptive process of provisioning

and deprovisioning resources according to workload changes, and accordingly meet

the requirements of service demand at a certain point in time [49]. Resource pro-

visioning is critical to control resource utilization and cost by avoiding resource

over-provisioning. Provisioning is estimated by reactive or proactive mechanisms.

Reactive mechanisms continuously track service workloads and fire scaling triggers

Chapter 2 21

in response to resource demands. However, the time needed to update and ap-

ply a new provisioning plan can be destructive, particularly for latency-sensitive

applications which involve real-time or near real-time processing.

Proactive mechanisms are efficient in incorporating timely-constrained provision-

ing by observing workloads and predicting resource demands through applying

statistical or mathematical models, such as queuing theory, reinforcement learning

and control theory [50]. The magnitude of these workloads and their arrival pat-

terns are frequently fluctuating and unpredictable according to user interactions.

Therefore, to deal with this variability and simultaneously evade performance

degradation and service level violations, dynamic and timely resources provision-

ing process needs to be considerable.

The control model is applied for parameter tuning automation of software compo-

nents that are modeled based on queuing networks. Since the iterative optimiza-

tion of the queuing models supports the accomplishment of admirable adaptability

to changing environments, it also amplifies the runtime complexity for solving op-

timization models at each step. [51]. Vozmediano et al. [52] employed machine

learning techniques on an SLA-based predictive auto-scaling mechanism that aims

to estimate the processing load and provision the required number of servers in a

cloud system to meet an application deadline and reduce energy consumption and

infrastructure costs. The results show improved forecasting accuracy compared to

other classical models. The work assumes auto-scaling on an hourly basis and does

not consider how parameters like data aggregation time and processing through-

put can affect the estimated amount of resources. Mao et al. [53] proposed two

algorithms to resolve the auto-scaling issue: scheduling-first, and scaling first. The

first algorithm applies total budget distribution to each workflow task, generates

the fastest execution plan, and finally acquires cloud resources. The second algo-

rithm estimates the required resources with regard to data size and the resource

capabilities, and finally schedules the workflow tasks.

Malawski et al. [54] resolved resources auto-scaling in a cloud system by prob-

lem prioritizing under the budget and deadline constraints. The main objective

Chapter 2 22

is to enhance workflow system throughput by adopting static and dynamic re-

source provisioning and workflow scheduling. The Dynamic Provisioning Dynamic

Scheduling algorithm applies adaptive scheduling and resource provisioning to re-

duce resources cost. A pre-allocation is established and an initial number of VMs

is calculated based on the budget and deadline. Periodically, VMs with low uti-

lization are shut down and new VMs are leased based on budget. The scheduling

phase maps tasks based on their priority on random VMs. One limitation of the

algorithm is the unrestricted resource provisioning according to budget limit; this

may result in low VM utilization due to the high idle time waiting for ready tasks.

Zhang et al. [55] applied the same fixed-term estimation strategy for cloud work-

load prediction based on stacked auto encoders. They used a canonical decom-

position format to reduce the training time by compressing the input parameters.

Nikraveshet al. [56] proposed a predictive auto-scaling system to scale the cloud re-

sources automatically for different type of workloads and fixed observation window

size. The work did not illustrate how workload features are injected on the predic-

tion model. Klinkenberg et al. [57] worked on time series data prediction based

on an adaptive sliding window. The technique is not suitable for time-sensitive

application due to the complexity of real-time windows size identification. Deypir

et al. [58] used an adjustment technique for stream arrival rate with variable

window size. Experimental evaluations showed the proposed technique efficiency

in adapting window size to improve system performance. However, the technique

involves user intervention to set window size reduction threshold.

Warneke and Kao [59] considered the dependencies between application tasks,

and determined the specifications of cloud resources needed to provide efficient

resource allocation and scheduling framework. However, application modelling

does not study how changes in workflow structure or input data are reflected

in generated schedules. Shao et la. [60] provided an energy-aware scheduling

approach for big data applications in cloud systems. The adopted workload model

only considers the number of incoming jobs in a batch mode. Li et al. [61]

presented a predictive scheduling framework for stream applications. Based on the

application graph, the proposed work aims to reduce the average processing time

Chapter 2 23

of incoming tuples. Their conclusions were that it is not trivial to determine the

characteristics of data stream applications for the purposes of resource provisioning

and allocation. Cheng et al.[62] considered the dependencies between jobs and

applied different scheduling policies. Their proposed scheduler adjusts resource

sharing and job parallelism schema by analyzing data collected from application

performance profiling for parameters such as end-to-end latency and throughput.

The discussed research body covers many aspects of resource provisioning and

scheduling for stream workflows. However, it contains the following gaps. Firstly,

stream workflow modelling is not provided in a way the expresses data behaviour

with respect to variation in stream configuration parameters of arrival rate and

throughput. Secondly, for hybrid workflows, like data analytics, resource pro-

visioning techniques do not comprise data transition between stream and batch

application, and how parameters tuning can lead to convenient provisioning and

scheduling plans. Lastly, work to date has focused on clustering-based scheduling;

grouping stream and batch tasks is not covered. To overcome these limitations,

the thesis proposed techniques and algorithms for hybrid workflows, including,

resource estimation and provisioning, and task allocation on a cloud system.

2.1.2 Workflow Scheduling in Cloud Computing

Cloud computing is a service-based computing model, which offers computation,

storage, networking and application services through a massive and interconnected

resources topology for geographically distributed and high-quality data centres

[63]. In the cloud computing environment, the pay-per-use cost model applies

dynamic and cost-based resource provisioning to accommodate the diversity of

application models and QoS requirements. The scheduling technique plays an es-

sential role in cloud computing, and it is utilized to coordinate application execu-

tion to attain sustainable resources utilization with realization of constraints like

execution deadline, budget, reliability, energy, security and throughput. Thus,

well-formed workflow scheduling or task allocation can greatly improve overall

workflow application execution performance [64, 65].

Chapter 2 24

The rest of this section discusses recent research on resource provisioning and task

scheduling in cloud computing.

Best-effort scheduling

Deadline-constrained scheduling algorithms consider monetary cost as the most

important factor for building schedules. High-performance resources are always

costly. Consequently, the workflow scheduler should be aware of the trade-off

between execution time and monetary cost when allocating resources. The sim-

plest solution for deadline constraint workflows is minimizing the critical path by

selecting low-cost resources for non-critical tasks.

The heterogeneous earliest finish-time (HEFT) [64] algorithm tries to minimizes

the overall workflow makespan through minimizing the earliest finish time for crit-

ical tasks. HEFT considers both the execution and communication time between

resources. The technique is one of the best heuristics scheduling algorithms avail-

able [66, 67]. HEFT performs task allocation in two steps: task prioritizing and

instance selection. Task prioritizing ranks tasks in a list according to the cumula-

tive execution time on each VM instance and average communication time between

VMs of dependent tasks. The unallocated task with highest rank is selected and

mapped to its best instance, which guarantees the lowest finish time. The predict

earliest-finish-time algorithm [66] proposes a lock-ahead strategy without adding

overhead-time on the overall scheduling process. The algorithm recomputes the

average execution time for unallocated tasks to priority task executions. An opti-

mistic cost table is used for calculating the time complexity.

Abrishami et al. [68] adapted the partial critical path (PCP) algorithm for

deadline-constrain. The algorithm works by generating PCPs, and for each PCP,

included tasks are allocated to the same VM instance based on heuristics. Group-

ing critical tasks can enhance resource utilization and reduce the total execution

time while meeting the deadline. The technique can reduce computation time and

cost, but the communication time and cost are not considered. In cloud comput-

ing, data transfer times can maximize the overall workflows execution time and

cost. IC-PCP overcomes the issue by grouping and scheduling dependent tasks on

Chapter 2 25

the same VM to reduce the amount of transferred data between VMs. However,

IC-PCP does not provide an accurate estimate of execution and transmission time

[69].

Zeng et al. [70] proposed a backtracking algorithm, ScaleStar, designed to generate

an optimized schedule on complex infrastructure by recomputing the makespan

and cost after each scheduling step. Sahni et al. [19] applied the grouping strategy

by constructing pipelines of interdependent tasks aiming to reduce the workflow

execution cost while meeting the deadline. However, no priority policy is applied

to select the next allocated pipeline [71]. Lin et al. [72] proposed a technique to

minimize the overall workflow execution delay considering the budget constraint.

The scheduling problem assumes a one-to-one VM allocation to each workflow task.

Fard et al. [73] proposed a bi-criteria algorithm that studies the impact of user

constraints on schedule optimization. They studied four objectives: makespan,

economic cost, energy consumption, and reliability. Bessai et al. [74] proposed

a Pareto approach based on three resource selection policies: time-based, cost-

based, and cost-time-based. Their approach differs from other works in assuming

boundary levels for time and cost constraints instead of conflicting time and cost

objectives. Verma et al. [75] suggested a Bi-Criteria Priority, Particle Swarm

Optimization (PSO) to optimize the execution time under budget and deadline

constraints. Their simulation results indicated a significant decrease in execution

cost in comparison to the standard PSO algorithm. Chen et al. [76] proposed a

novel multi-objective ACS-based (MOACS) a co-evolutionary multiple populations

to optimize optimizes both execution time and execution cost.

Quality of service-aware workflow scheduling

Quality of service-aware workflow scheduling targets optimizing some objectives

with constraints on other objectives. This is more related to real-world applica-

tions where the main aim is minimizing or maximizing an objective function while

satisfying the user’s QoS requirements [77]. A successful workflow execution is

highly related to the degree to which QoS objectives are met.

Chapter 2 26

Hen et al. [78] proposed an ant colony optimization approach to address makespan,

monetary cost and reliability. The adopted algorithm allows workflow users to

identify QoS boundaries with minimum QoS thresholds in domain-specific appli-

cations. The idea is to get the optimal user satisfaction with workflow execution

outcomes. The Pareto approach gives more flexibility to estimate QoS require-

ments by generating a set of schedules. Durillo and Prodan extended the HEFT

algorithm [64] by proposing the Multi-objective-HEFT (MOHEFT) algorithm [79].

MOHEFT is a generic multi-objective scheduling algorithm, which works by gen-

erating several scheduling solutions. The quality of a solution is assessed using

metric of crowding distance. However, complete coverage traversing is adopted in

MOHEFT to generate new solutions for assigning tasks to instances, which con-

sumes a large amount of time. Thus, the technique is not efficient for large-scale

workflows [76]. Zhou et al. [80] designed a fuzzy dominance sort-based heteroge-

neous earliest-finish-time (FDHEFT) algorithm to solve the workflow scheduling

problem in the cloud. Compared to MOHEFT, FDHEFT achieves a lower time

overhead by pruning the candidate tradeoff solutions by finding better solutions

by using fuzzy dominance sort.

Since the workflow scheduling is an NP-hard problem, traditional methods such

as dynamic programming or greedy algorithm are inapplicable to large scale work-

flow scheduling [66]. Evolutionary computation algorithms can provide better

performance on complex optimization problems. Several evolutionary and meta-

heuristics algorithms have been proposed for single and multi-objective scheduling.

Meta-heuristics algorithms have the advantage over local search-based heuristics in

generating scheduling plans in multi-dimensional searching on the problem space.

Meta-heuristic algorithms, known as “non-deterministic” algorithms, have the ob-

jective of finding an optimal schedule by searching the resource space.

The genetic algorithm (GA) for task scheduling problem has been studied inten-

sively in the literature. Wu et al. [81] proposed a novel GA scheduling algorithm

to automate GA parameters selection by adopting a dynamic technique to evolve

both solution structure and value. Wu et al. [82] proposed a PSO-based algorithm

and, A revised discrete PSO. The algorithm considers both computation cost and

Chapter 2 27

communication cost. Rodriguez et al. [83] studied VM features (booting time,

performance, etc.) and resource provisioning to determine the optimal scheduling

strategy in the public cloud. They proposed a novel PSO-based algorithm with

consideration of the aforementioned parameters which had not been considered

previously.

For cost optimization, Pandey et al. [84] proposed a PSO-based heuristic schedul-

ing algorithm. The main objective is to reduce the total data transfer and execu-

tion cost for data-intensive workflow applications in public clouds. The idea was to

effectively distribute all costs on workflow tasks, where the cost on each resource

is calculated independently. The trade-off between cost and time optimizing is a

considerable challenge for scheduling algorithms; reducing the task execution time

is mostly involved a larger investment and higher cost, while a low investment of-

ten leads to poor time efficiency. As a result, take execution time and cost should

be jointly considered by the scheduling schema. Bilgaiyan et al. [85] worked on

the same idea, but using cat swarm optimization (CSO) [84] instead of PSO-based

optimization to minimize the number of iterations [86].

Kumar et al. [87] proposed a time and cost optimization for hybrid clouds algo-

rithm to minimize the execution time and cost of multiple workflow scheduling

on hybrid resources. The algorithm helps to decide on target execution resources.

Malawski et al. [88] proposed a deadline-constrained mathematical model to op-

timizes workflow scheduling in a multi-cloud environment. To reduce communi-

cation time and cost, the method proposes global shared storage for intermediate

files. The scheduling and data placement problem is formulated as a mixed integer

optimization problem. The authors adopted a group-based scheduling technique,

in which tasks are grouped based on their computational cost and received/gener-

ated data. They assumed no resource sharing among groups, but this can degrade

resource utilization and incur higher costs for complex and large-scale workflows.

Big data workflow scheduling

Big data workflows are designed to handle huge amount of data and is emerged as

a datacentric workflow approach to analyze data with large scale, high complexity,

Chapter 2 28

and high rate of acquisition [89]. Commonly, datacentric workflows are modelled

as a DAG of data processing tasks with a set of data dependencies between the

tasks. Three main features should be considered for big data workflows. The first

is the variety of data sources and data formats. Data from different resources may

differ in data transfer rate and speed, and data processing performance. This dif-

ference intensely influences the workflow design and execution [90]. Consequently,

the datacentric workflow representation should be adapted in a way stating the

diverse types of data. The second feature is decentralized workflow scheduling.

Task execution is moved to the distributed computation node closest to the data

location resource. This is definitely reasonable when the input data sets are very

big. The decision to perform the remote execution should be undertaken in the

workflow deployment stage for better workflow execution optimization. The third

feature is data placement. Some scientific workflow execution involves intermedi-

ate data storage [91]. In big data applications, the intermediate data size can be

rapidly increased during the execution phase, thus, there is a necessity to adopt a

distributed computing environment to attain an efficient data execution [92].

Mirshekarian et al. demonstrated the statistical correlation between the datacen-

tric workflow scheduling problem and flow-shop scheduling, which is a special case

of the JobShop scheduling problem [93]. The JobShop scheduling objective is to

reduce the total execution time by varying the allocation of independent tasks

on machines. Albrecht et al. [94] proposed a makeflow framework for executing

data-centric workflows. The framework emphasizes the accuracy in representing

the correlation between the workflow task description and the scheduling plan.

The model supposes a solid relationship between obtaining sufficient information

about datasets and jobs, and effective workflow execution. In addition, the model

takes into consideration parameters including data transfer latency, communica-

tion bandwidth and processor capacity. Deng et al. [2] applied a task duplication

technique on distributed data locations. The scheduling process can rely on dif-

ferent allocation plans to minimize the data transfer cost and time. Yuan et al.

[95] built data-centric workflow based on an intermediate data dependency Graph.

Chapter 2 29

Data provenance determines the intermediate data hosts, and therefore, the sched-

uler can construct the optimized scheduling to reduce the data transfer and storage

costs. Chervenak et al. [96] suggested a resource policy which can describe the

current resource and data models based on heuristic information gathered from

previous data transfer, storage and staging processes. Ghafarian and Javadi [97]

proposed a scheduling algorithm for data-intensive workflows on distributed re-

sources under the deadline constraint. The work suggested workflow partitioning

to minimize the data dependencies, and thus minimize data transfer cost and time.

In addition to the datacentric scheduling issue in big data applications, which is

mostly related to the high volume of data to be processed or migrated between

computation machines, real-time scheduling is an issue due to high acquisition

rate as well as the hard deadline constraint to process incoming streams at run-

time. Real-time systems are becoming more and more popular; they measure the

quality of computation correctness by its logical correctness and time results [98].

Violating the time constraint might harm application correctness. The quality of

real-time scheduling algorithms directly affects application performance in terms

of throughput, response time and application correctness [99].

A highly related concept to real-time processing is stream processing. Both pro-

cessing models share the latency-sensitive feature, but with less restriction for the

stream-based model. Stream workflow is the modelling of complex and continuous

data processing through a set of connected processing tasks (operators) while for-

mulating the concept of pipeline processing. Continuous processing differentiates

stream-based workflows from traditional workflow systems in that the processing

pipeline remains active to process an infinite stream. Stream workflow scheduling

is a complex problem and hard to maintain with traditional batch-aware schedul-

ing algorithms. This is due to the wide distribution of data sources, real-time

constraints, the necessity of high-dynamicity resource management techniques to

overcome the challenges of data rate variation as well as the heterogeneity of pro-

cessing operators, and data locality, because a high volume of intermediate data

might be generated as stream processing in progresses.

Chapter 2 30

Most stream scheduling algorithms are designed and integrated with stream pro-

cessing frameworks. A sufficient strategy to reduce the total data movement is a

cluster-based approach, which implies assigning interrelated tasks in one cluster,

and then applies resource allocation at cluster-level [100]. Venkataraman et al.

[101] built a micro-batch stream processing system on top of Apache Spark. The

system considers both throughput (successful percentage of processed data) and

latency. To overcome the limitations of centralized scheduling, the system adopts

the group/cluster-based scheduling approach in which batches are combined to

enlarge computation granularity, and thus reduce the computation cost. One is-

sue is data dependencies between tasks. To resolve this, the authors proposed a

pre-scheduling technique based on local schedulers and queuing systems.

Spark’s scheduler [102] schedules jobs in first-in-first-out (FIFO) mode while con-

sidering dependencies between application jobs. The scheduler experiences high

latency for running long-term jobs. Storm’s default scheduling algorithm applies

an isolation technique to schedule typologies on static resources. An application

owner can set computation resources, which makes the scheduler inefficient in

terms of load balancing and resource availability. Peng et al.[103] built R-Storm

as an extension to Storm, the proposed scheduling is a resource-aware scheduling

approach with breadth first traversal to group jobs based on data dependency to

decease transfer time and cost. Eskandari et al. [104] designed P-Scheduler, which

implements an adaptive scheduling schema which involves weighting communi-

cation edges between graph nodes. The framework was applied in homogeneous

computation environment and demonstrated a transfer time and cost reduction of

50% compared to the Storm FIFO scheduler. Meng-meng et al. [105] implemented

a profiling technique to record workloads and data traffic between computation

nodes. They proposed a dynamic scheduler designed to reduce the data commu-

nication over topology edges.

Chapter 2 31

2.2 Workflow Scheduling in Edge Cloud Com-

puting

Cloud computing offers pay-as-you-go and powerful resources which can reduce

stream processing time and improve applications throughout. However, latency is

a bottleneck for running stream application on cloud systems. Issues like streaming

from devices over long distances with cloud resources and the unpredictable quality

of transmission networks need to be considered in stream workflow scheduling.

Computing models like edge computing and edge cloud computing are proposed

to resolve such issues [106–110].

Edge computing is a computing model which brings the computation closer to

data sources [111]. Edge computing is intended to overcome the challenges (lim-

ited bandwidth and network latency) of migrating large amounts of data for real-

time data processing. Recently, many models have been proposed to conquer the

challenges of stream workflows by adopting resource provisioning and task schedul-

ing techniques for use in an edge cloud computing environment, to improve edge

resource utilization, reduce latency by processing data-intensive tasks in nearby

edges, maximize communication stability for high-performance stream process-

ing, and provide an efficient task placement strategy to achieve reliable resource

provisioning.

In edge computing, common challenges of workflow scheduling are scalability, self-

adaptability and reliability [112]. Many scheduling techniques have been proposed

for latency-sensitive workflows on edge computing. Yin et al. [113] proposed a

streaming processing scheduling on cooperative cloud edge computing network to

reduce the end-to-end latency of applications. Skarlat et al. [112] proposed three

QoS-based workflow scheduling techniques for fog cloud resources, namely static,

online and hybrid scheduling. The work adopted the concept of fog colonies, and

assumed cooperation at colony level. The concept of fog computing is similar to

edge computing in term of moving the computation closer to data sources [25].

Chapter 2 32

However, the main difference between the two computing systems is where com-

puting power is located. Fog computing relies on network resources and adopts

computation transmission between data endpoints and network devices. Neverthe-

less, edge computing locates processing power in edge devices such as embedded

automation controllers [114].

Sun et al. [115] proposed a two-level Genetic algorithm for resource scheduling

on multi-edge clusters to reduce latency and improve system stability, Rahbari

and Nickray [116] proposed a symbiotic organisms search based on the knapsack

algorithm to reduce the delay and energy consumption in fog networks, and Deng

et al. [117] introduced an approximation solution for minimizing the communi-

cation delay for workload allocation in the edge cloud environment. Pham and

Huh [118] proposed a heuristic-based algorithm for workflow scheduling on cloud

fog computing for optimizing the balance between execution time and monetary

cost; however, the collaboration between fog nodes is not clearly stated, and only

a traditional workflow model is handled.

Madej et al. [119] proposed a fairness-based scheduler for edge cloud computing.

The paper compares four scheduling techniques, namely, FIFO, a client fair, prior-

ity fair, and a hybrid that accounts for the fairness of both clients and job priorities.

The experimental results demonstrate that the hybrid technique is the best and

that the fair scheduler is feasible to implement in edge cloud systems. Naha et

al. [120] proposed deadline-constrained resource allocation and provisioning in the

fog cloud environment. The algorithm addresses the issue of user QoS variation

and resource limitations on fog computing. Resources are allocated based on a

scoring system and considering various parameters. Zhou et al. [121] proposed

an online gradient descent technique to estimate the rate of data streams, which

reduces the cost of a cross-edge IoT data streaming system by adopting dynamic

resource provisioning fr an edge environment. Ren et al. [48] concluded that shift-

ing to real-time and context-aware IoT applications provisioning on the edge cloud

requires tailored, transparent computing architecture for IoT applications, which

can eliminate the advantages of edge computing. However, these authors made

Chapter 2 33

some effort to propose estimation, resource provisioning, and task scheduling tech-

niques in the context of hybrid workflows, such as a considering the integration

between two different computing models.

Alsaffar et al. [122] proposed a decision tree approach for learning the provision-

ing model to construct a resource allocation plan in fog cloud system in consid-

eration for computation request completion time and service complexity. Shao

et al. [123] proposed a novel data replica placement technique for processing

data-centric workflows in edge cloud system. The technique aims to reduce the

communication costs of migrating large datasets while preserving the execution

deadline. This work has many similarities with the research performed for this

thesis. However, the latency-issue of data transmission is not clearly investigated

and the data placement strategy does not apply a learning schema from heuris-

tics to optimize future data placement through estimations. In addition, the edge

cloud cooperation is not well-defined to overcome data transmission delay.

Long et al. [124] proposed a cooperative edge computing framework for delay-

sensitive multimedia processing application. A greedy algorithm proposed to im-

prove human detection accuracy under a deadline constraint. The framework only

considers the work with lightweight stream workloads. Zhang et al. [125] proposed

a game-theoretic framework for cooperative task allocation for delay-sensitive so-

cial sensing applications on edge cloud systems. The work assumed a selective

edge resources approach based on rational actors who are unwilling to collaborate

with others unless incentives are provided.

For complex workflows, such as hybrid workflows, a dynamic distributed and de-

centralized computing model, such as an edge cloud, is convenient for reliable and

scalable execution [126]. With this model, the need arises for developing schedulers

that can intelligently partition workflows and allocate the partition. According to

Dastjerdi and Buyya [26], in edge cloud computing, we must be concerned about

several resource management and scheduling techniques, including resource distri-

bution, load balancing, migration, and consolidation. In addition, understanding

data stream behaviour for stream applications is a worthwhile approach for VM

Chapter 2 34

selection on optimal resource placements [127]. Beraldi et al. [128] proposed a

general-purpose cooperative edge schema to reduce execution delay, the block-

ing percentage (improve service throughput) on edge data centres. An edge data

centre migrates a service to a nearby centre when its service buffer is full. Edge

cooperation has demonstrated a significant improvement in resource utilization for

distributed computing systems [129]. Zafari et al. [130] concluded that hetero-

geneity, and lack of storage capacity and computation capability of edge resources,

are the main drivers of edge cooperation to enhance their utilization and reduce

outsourcing to cloud data centres.

2.3 Summary

This chapter provided an extensive background research on various directions to

cover the main aspects related to this thesis, which covers the two main research

areas, which workflow scheduling and edge cloud computing environment. To il-

lustrate the interaction between these research areas, we synthesized the research

work undertaken on resource provisioning and workflow scheduling, including ap-

plication models, and the impact of adopting a certain computing system on

scheduling performance. To summarize, the literature shows a variation on imple-

menting edge cloud and cooperative edge cloud to resolve issues of latency-sensitive

and resource-intensive applications. The following conclusions can be made. First,

edge cooperation is limited to edge data centre level, and cooperation mechanisms

are not well defined or structured. Second, hybrid workflow scheduling has not

been investigated, and the integration between stream and batch processing is

not clearly associated with the scheduling process. Finally, the impact of stream

and batch processing parameter tuning has not been studied. For example, how

change in stream arrival rate or processing throughput could affect the scheduling

behaviour and optimization decisions has yet to be explained thoroughly.

Chapter 2 35

Next chapter describes the work on dynamic resource provisioning for hybrid work-

flow execution on cloud systems. The provisioning framework is designed to opti-

mize the cost of running hybrid workflows on cloud resources by considering the

hybrid structure and performing efficient workflow execution parameters’ tuning.

Chapter 3

Cloud Resource Provisioning for

Hybrid Stream and Batch

Workflows

The literature analysis provided in the previous chapter highlighted certain issues

in context of resource provisioning for running hybrid workflows. These issues

are summarized in two points: the limited work for recognizing hybrid workflow

structure when proposing and developing provisioning frameworks, and the lack

of studying the contribution of stream features’ tuning on optimizing the cost of

running hybrid workflows on cloud systems. This chapter proposes a resource esti-

mation and provisioning framework for hybrid workflows in cloud systems, which

aims to find an optimal workflow configuration plan that tries to find an optimal

join optimization for workflow monetary cost and execution time. For resource es-

timation, a meta-heuristics optimization technique, Particle Swarm Optimization

(PSO) was adopted to find the optimized workflow configuration plan which re-

quires the minimum number of computation units while achieving the constraints

of deadline and throughput. For resource provisioning in cloud systems, a group-

based technique was utilized to find the resource provisioning plan that optimize

the combination of workflow execution monetary cost and time. Results showed

36

Chapter 3 37

the framework capability of controlling the execution of hybrid workflows by ef-

ficiently tuning several parameters, including stream arrival rate and processing

throughput. For large scale workflows, the execution time and cost can be reduced

by 45% and 30% on average, respectively.

3.1 Introduction

The increasing adoption of IoT the technology in many application domains gen-

erates a new need for rationalized utilization of computing resources supporting

such computations. IoT applications can be represented as workflows in which

stream and batch applications are integrated to accomplish data analytics objec-

tives which can be referred to as a hybrid workflow model. As stated in section

1.1.2, a hybrid workflow represents an integration between stream and batch pro-

cessing models. The hybrid model satisfies the following properties: 1) complex

structure and number of interconnected applications. We assumed unconstrained

data dependency model between applications. In contrast, a traditional data ana-

lytics models enforces a coarse-grained data dependency between stream and batch

processing. 2) Fast delivery with iterative production at hybrid level. A hybrid

workflow scheduling is defined as the management of QoS optimization for short-

term and iterative application executions with hard-constrained of waiting time

and throughput. Short-term service delivery workflows allow dynamic systems

to adapt their behaviour. For example, short-term forecasting in transportation

systems allows producing alternative routes to avoid traffic congestion before grid-

lock [131]. 3) Flexibility and parameter tuning. A hybrid model is scalable and

adjustable to its parameters. Stream processing performance quality is sensitive

to stream rate and processing latency. For example, in health monitoring systems,

achieving data provenance required an immediate response to medical alerts by

retrieving related data and undertaken needed actions [132].

Most IoT-based applications are comprised of a large and complex structure of

interrelated tasks which are demanding with respect to computation, storage and

Chapter 3 38

bandwidth [133]. The hybrid approach benefits from the capabilities of batch

and real-time processing in big data application domains [134]. Hybrid work-

flow modelling is applied in many application domains, such as traffic monitoring

[135], crowdsensing and social data mining [136], and weather data analysis [137].

All mentioned applications satisfy the conditions of complexity, fast delivery and

scalability.

Research on hybrid models of stream and batch application is not new, and several

architectures have been proposed in industry and academia. For example, Apache

Beam [138] provides a unified model for both stream and batch processing to build

a processing pipeline (DAG). Apache Beam works on top of computation engines,

like Apache Flink [139], in which the optimizer enumerates different physical plans

to achieve a cost-efficient execution on physical resources. The cost optimization

incorporates network, disk and I/O usage costs. The execution cardinality per-

formance was improved by proposing advanced estimations based user-defined

functions, Flink’s optimizer can use hints provided by the programmer. However,

according to IBM researchers’ experiments [140], the framework is unable to han-

dle large variation in stream processing window size, causing processing overlap

among several computation periods.

This chapter describes research into the execution of hybrid workflows in cloud

systems. Cloud resource provisioning has received considerable research attention

in recent years, and many models have been proposed to overcome the challenge

of reducing resource usage cost while balancing other quality measurements [141–

143]. To best of our knowledge, none of the workflow resource provisioning and

scheduling techniques have advanced a detailed proposition for how to incorporate

the structure of hybrid workflows (as a integration of stream and batch applica-

tions) as well as meet the challenges of iterative system production and sensitivity

to stream configuration properties.

This chapter provides an adaptive resource estimation and provisioning framework

for hybrid workflows in cloud systems, and makes the following contributions.

Chapter 3 39

� A resource provisioning algorithm for multi-objective optimization of mon-

etary cost and execution time for hybrid workflows that considers the char-

acteristics of stream and batch applications, and the dependencies between

tasks.

� An adjustment-based resource estimation algorithm for stream applications

using PSO. The algorithm adjusts the stream arrival rate and aggregation

windows size to optimize the cost of resources while satisfying the task exe-

cution throughput.

� A group-based resource provisioning strategy on cloud resources. The strat-

egy implies grouping non-dependent tasks and performs cumulative resource

provisioning in a periodic manner which can minimize the monetary cost of

long-term workflow executions.

The rest of this chapter is structured as follows. Section 3.2, discusses related

works on workflow resource provisioning and scheduling on cloud systems. A

detailed description of hybrid workflow modeling is provided in section 3.3, the

estimation and provisioning framework is provided in section 3.4, and section 3.5

shows the experimental findings and provides insights about the main results. A

chapter summary is provided in section 3.6.

3.2 Related Work

Resource provisioning is an adaptive process of determining the resources needed

to accomplish the execution of an application based on workload changes, structure

complexity and QoS requirements. In cloud systems, it is essential to implement a

reasonable provisioning plan to avoid the cost overhead of over-provisioning or QoS

violation of under-provisioning. Experiments by Calzarossa et al. [144] demon-

strated the correlation between auto-scaling policies, performance in improving

VM utilization and the workload characteristics and patterns. Resource provi-

sioning of hybrid workflows implies the recognition of batch and stream workloads,

Chapter 3 40

which are identifiable according to their processing features and requirements [145].

Batch workloads fundamentally represent long-term computation-intensive execu-

tion cycles with minimal user intervention, while interactive-workloads, i.e, stream

workloads, in contrast, refer to live and short-term request/response computa-

tion cycles with high parallelization. Moreover, stream workloads are infrequently

deterministic, alternatively they are characterized by patterns that reflect user

behaviours and interactions.

Sections 2.1.1 and 2.1.2 provide a broad discussion of resource provisioning and

workflow scheduling in cloud computing. In the context of hybrid workflows, pre-

dictive provisioning mechanisms can handle the dynamic nature of stream work-

loads and accordingly the variation on batch processing resource demands with

respect to the computation dependency incorporated by the hybrid model. Several

predictive provisioning techniques are proposed in the literature. Some research

considered the dependency between workflow tasks and proposed techniques to

reflect the correspondence between application structure and amount of resources

[59, 61, 104]. However, the provided application models do not study how changes

in workflow structure or input data reflect on generated schedules. Cheng et al.

[62] considered the dependencies between jobs and applied various scheduling poli-

cies. Their proposed scheduler adjusts resource sharing and job parallelism schema

by analyzing collected data from application performance profiling for parameters

such as end-to-end latency and throughput.

Control theory with a sliding window technique is widely used for stream applica-

tion auto-scalling [56–58]. The adopted prediction strategies work by automating

configuration parameters at runtime and with fixed time intervals. These authors

did not illustrate how workload features are injected into the prediction model,

and also there are not visible for time-sensitive application due to the complexity

of real-time windows size identification. Recently, Vozmediano et al. [52] proposed

an SLA-based predictive auto-scaling in a cloud system to meet application dead-

lines and reduce energy consumption and infrastructure costs. The work assumed

hourly auto-scaling and did not consider how parameters like data aggregation

time and processing throughput can affect the estimated amount of resources.

Chapter 3 41

Group-based provisioning is a common strategy, particularly for batch and micro-

batch workloads. Abrishami et al. [68] adapted the PCP to group critical tasks

to enhance resource utilization and meet application deadlines. Venkataraman

et al. [101] applied group-based provisioning for stream applications on top of

Apache Spark. The system considers both throughput (successful percentage of

processed data) and latency. The work applied fixed clustering approach and does

not incorporate the dataflow structure. In this chapter, the group-based technique

is extended by considering a dynamic execution critical path (CP) in relation to

stream configuration parameters and dependency between batch and stream tasks.

3.3 Hybrid Workflow Model

A hybrid workflow w = G(T,E) is a set of tasks T = {t1, t2, . . . , tn} formulated

as a DAG, and has a dependency schema E = {e12, e13, . . . , enm} [16]. Table 3.1

presents the mathematical notations used in application modeling. Two tasks

ti and tj are connected if and only if a direct edge eij exists in E. A task ti

can represent one of two application types, stream ti
S and batch ti

B. The terms

“task” and “application” are interchangeably used in this chapter. Specifically, a

task ti is the abstraction of an application, which may include additional layers

of complexity and dependency. For example, a stream task ti
S represents a set

of processing operators in a certain stream execution pipeline [146]; meanwhile, a

batch task ti
B forms a complete flow of training for a classification model [147].

Note that the internal structure and behaviour of tasks is out of the scope of this

thesis. Figure 3.1 shows an example of a hybrid workflow structure.

3.3.1 Stream Task

A stream task ti
S has the following features:

ti
S = {λi, µi, ωi, τi, αi, di, ci} (3.1)

Chapter 3 42

Queuing system is a common technique for seamless and transparent stream ap-

plication auto-scaling [148]. Here, the execution of a stream task ti
S is modeled

as an M/G/c queuing system [149]. The main objective of the adopted queuing

modeling is to estimate the number of servers or parallelization level needed to run

the application under constraints of system utilization, waiting time, and system

throughput.

The adopted queuing system has the following aspects: a data stream arrives to

an infinite waiting queue that is served by c identical servers, the server service

time is a random variable with general distribution and mean 1/µ, the interarrival

times between element arrivals to the queue is random variable with mean 1/λ,

and all service and interarrival times are assumed independent. Arriving stream

Table 3.1: Mathematical notations

Notation Description
ti Application task, either stream or batch

λi

Stream arrival rate (msg/s),
which refers to the number of received messages (msg) per second.
The message size is an application dependent.
At workflow level, we assume a single stream data source

ωi

Stream processing aggregation window size(s)
The window size refers to the time until a stream task publishes
its output for next batch task or storage

µi

Application (task) service rate (msg/s),
which expresses the capability of a server to process incoming
messages. A server is an abstraction of a computation unit,
and it used for the purpose of resource estimation

τi

Application (task) minimum throughput,
which is the percentage of processed received messages in
a given time length

αi

Application (task) data production factor,
which determines the amount of data to be passed
to the next batch task(s)

di Amount of data generated by a task
ϑi Batch deadline(s)
ci Number of computation servers.
ρ System utilization, assumed to be < 1
Wq Waiting time in queue
σ2
s The variance of a server service time
S2 The coefficient square of a server service time variance

Chapter 3 43

elements are served in first-come first-served (FCFS) manner, and only one stream

element may receive a service from a server at a given time. Such system is often

referred to as M/G/c, following Kendall’s notation [150] (M indicates a Poisson

distribution for the interarrival rate, G indicates a general distribution for service

times, and c is the number of servers).

Modeling a stream application as a M/G/c queue helps in predicting the per-

formance measurements of an application, such as resource utilization and data

throughput. Dor et al. [151] investigated the correspondence between a relatively

simple queuing model of an FPGA-accelerated BLAST implementation and em-

pirical measurements taken from executions of the actual application. The study

shows that simple queuing networks can accurately model the performance of a

heterogeneous stream application. Li et al. [61] argued that queuing systems have

better performance under certain assumptions of a data stream application.

It is assumed that at a given moment of time, all servers c will be busy. Based on

that, Hokstad [152] proved that we can treat M/G/c with service time (S = 1/µ)

as a M/G/1 with service time (S = 1/µc). The approximation by Kleinrock [149]

is used as:

Figure 3.1: Hybrid workflow example

Chapter 3 44

ρ =
λ

µc
(3.2)

Wq =
ρ(1 + S2)

2(1− ρ)µ
(3.3)

ES2 = σ2
sµ

2 (3.4)

Based on the queuing formulation, the number of servers ci required to run task

ti under minimum system utilization ρ, is computed as:

ci =
λi
µiρ

ρ < 1 (3.5)

3.3.2 Batch Task

A batch task ti
B has the following features:

ti
B = {ϑi, τi, αi, µi, di, Li, ci} (3.6)

A batch task receives data collectively from stream and batch tasks. To estimate

the number of servers ci or the parallelization factor for a batch task ti
B, firstly,

the total amount of received data Li is computed as follows:

Li =
τi
∑n

j=1 dj

µi
(3.7)

Where dj is the amount of data generated from task tj, and then the following

formula is applied:

ci =
Li
ϑiαi

(3.8)

Chapter 3 45

3.4 Resource estimation and provisioning frame-

work

Resource estimation is a multi-objective problem of minimizing the total execution

time E and number of computation units (cores) R. The desired outcome of the

resource estimator is a group-based workflow execution plan that can simplify the

provisioning and scheduling in a computing system, particularly for complex hy-

brid workflows. It is assumed resource provisioning occurs on a group basis, which

means allocating resources for all tasks included in a period of time as a bag of task

(BoT) resource provisioning problem. Rodriguez and Buyya [153] demonstrated

that fine-grained resource provisioning for BoT applications can reduce the exe-

cution time while achieving budget constraints. Thus, in the estimation process,

the specific concern is to reduce the end-to-end execution time (critical path) E

with the minimum number of computation cores among all execution periods R.

The optimization function for the resource estimation was modelled as:

min(E.R) (3.9)

Figure 3.2: Resource estimation and provisioning framework

Chapter 3 46

This section discusses the proposed resource estimation and provisioning frame-

work for hybrid workflows. Figure 3.2 shows the main framework components and

dependencies between these components, which are explained below.

3.4.1 Queuing System Builder

The first step after receiving a user workflow is constructing and validating queuing

systems for stream tasks. This step validates the initial configuration of stream

tasks to align the constraints of the adopted queuing system in terms of maxi-

mum waiting time, minimum system utilization and minimum workflow execution

throughput.

3.4.2 Workflow Configuration Plan Generator

This is the core component of the framework in which workflow configuration plans

are generated. A configuration plan is a set of values for stream applications that

refers to properties of window size and arrival rate. Based on the dependencies

between workflow tasks, these values have direct influence on measuring execution

time and monetary cost of resources for both stream and batch applications. For

the purpose of generating configuration plans, PSO technique was adopted [154].

Particle Swarm Optimization (PSO) is a stochastic global optimization method

introduced by Eberhart and Kennedy [154] and based on simulation of social

behaviour. As in GAs and evaluation strategies (ES), PSO exploits a population of

potential solutions to prop the search space. PSO relies on exchange of information

between individuals, called particles, of the population, called the swarm. Each

particle adjusts its trajectory towards its own previous best position (local best),

and towards the best previous position attained by the entire population (global

best). This behaviour improves the converge time to get a global minimum with

a reasonably good solution. A particle movement (new position) is coordinated

by its velocity, which has both magnitude and direction. The particle velocity is

Chapter 3 47

influenced by the particle’s best position and the global best position, and also

controlled by parameters including inertia weight and acceleration coefficients.

The objective of adopting PSO is to generate adjusted workflow configuration

plans by randomizing data stream arrival rate λ and aggregation window size ω in

order to minimize the optimization objective function and meet the constraints of

throughput τ and deadline ϑ for each stream and batch application, respectively.

This kind of PSO modeling is called constrained-PSO optimization [155].

Fitting a constrained-PSO method to the proposed optimization problem will iden-

tify both the fitness function and the particle structure. The fitness function, also

called the objective function, measures the performance of a particle for the pur-

pose of comparison with the local and global optimum. To serve the objective

PSO engine for adjusting the values of arrival rate λ and window size ω, a par-

ticle is structured to hold required values for all stream tasks, and the particle

dimension equals the number of stream tasks. Thus, the particle structure is

workflow-dependent, with it is complexity derived from the number of stream

tasks as well as the workflow structure complexity. For example, Table 3.2 shows

how a 5-dimensional particle is structured for a workflow with five stream appli-

cations. Columns of arrival rate λ and window size ω values express the particle

position in a random iteration. Moreover, a particle position is the representation

of a workflow configuration plan which will feed the cost computation process to

generate values that will be applied for the objective function.

Algorithm 1 provides the steps to find the optimal configuration plan for a given

Table 3.2: An example of particle position (a configuration plan)

Task Index i Arrival Rate (λ′) (msg/s) Window Size (ω′) (s)
2 4792 275
3 4250 344
7 3989 250
8 3685 1100
12 3700 1250

Chapter 3 48

Algorithm 1 Finding an optimal workflow configuration plan

1: Load PSO Configuration
2: Initialize Particles P
3: P.pos← NULL
4: P.gbest← inf
5: for i← 1, n do
6: Randomize Pi.pos
7: Pi.velcity ← 0
8: Pi.cost← callculteCost(Pi.pos)
9: Pi.lbest← Pi.cost

10: for j ← 1,m do
11: for i← 1, n do
12: Update Pi.velcity
13: Pi.pos← Pi.pos+ Pi.velcity
14: Pi.cost← callculteCost(Pi.pos)
15: if Pi.cost ≤ Pi.lcost then
16: Pi.lbest← Pi.cost
17: if Pi.lbest ≤ P.gbest then
18: P.gbest← Pi.lbest
19: P.pos← Pi.pos

20: if P.gbest == inf then
21: return NULL
22: else
23: return P.pos

hybrid workflow. The PSO-based technique has two main steps: it generates so-

lutions (configuration plans), and evaluates the performance of these solutions.

A particle position refers to a workflow configuration plan. The algorithm per-

forms m x n iterations to find the global best configuration which has minimum

cost, where m is number of dimensions and n is number of particles. At each

iteration, the particle Pi’s position is updated based on its current position and

velocity. Next, in line 14, the new position cost is evaluated by calling the cost

evaluator in Algorithm 2. The code on lines 14-19 examines the new cost against

local and global minimums, and updates them accordingly. Finally, the workflow

configuration with minimum cost is returned.

Algorithm 2 shows the computation procedure to calculate the optimization value

of a configuration plan, which is represented as a PSO particle position. To evalu-

ate the performance for a given solution, calculate end-to-end workflow execution

time E and total number of cores R are calculated as follows.

Chapter 3 49

Algorithm 2 Calculating the optimization value of a configuration plan

1: procedure callculteCost(P , T)
2: R← 0
3: E ← 0
4: for i← 1, n do
5: if Ti.type == STREAM then
6: Ti.R← findStreamC(Pi.λ)
7: Ti.E ← Pi.ω
8: else
9: Ti.R, Ti.E ← ProcessBatchTask(Ti)

10:

11: R← R + Ti.R

12: E ← findWorflowCP (T)
13: if E 6= NULL then
14: return E ∗R
15: else
16: return inf

In line 6, number of servers ci for a stream task is calculated based on the proposed

queuing system. The number represents the level of parallelism, because each level

is equivalent to a single-core machine. The number of servers ci is derived from

Equation 3.5.

c =
λ′

µρ
(3.10)

Furthermore, it is assumed that execution time for a stream task is equivalent to

the length of aggregation window ω.

For a batch task, line 9, number of resources R and execution time E are computed

based on the deterministic model in Algorithm 3, which shows execution time and

cost calculations upon incoming computation load. According to the hybrid model,

batch tasks can receive data from stream and batch tasks. The algorithm starts by

calculating the total loaded data, lines 4-6, then estimates the total time needed

to process the data according to task execution configuration. The last step is

to incrementally adding resources until the deadline constraint ϑ, lines 8-10, is

satisfied.

Chapter 3 50

Algorithm 3 Process batch task Ti to find number of servers and execution time

1: procedure ProcessBatchTask(Ti)
2: R← 0
3: E ← 0
4: totalSLoad← ComputePredecessorStreamLoad()
5: totalBLoad← ComputePredecessorBatchLoad()
6: totalLoad← totalSLoad+ totalBLoad
7: totalBT ime← ComputeTotalProcessingT ime()
8: while totalBT ime ≥ ϑ do
9: C ← C + 1

10: R← updateET ()

11: return C,R

Back to Algorithm 2, After finding the number of servers and execution time

for each task, workflow returns to Algorithm 2, which finds the longest workflow

execution time or critical path CP .

3.4.3 Execution Time Estimator

The resource estimator is the framework component responsible for estimating the

maximum execution of a hybrid workflow based on a given workflow configura-

tion and by aggregating batch tasks in groups. Each group incorporates a set

of independent tasks which can be executed concurrently. The main feature of

grouping tasks is constructing computation periods that allow accurate resource

estimation without violating the execution deadline constraint. Stream tasks have

different behaviour because they need continuous processing. Thus, they cannot

be allocated within batch groups. Instead, they are placed in a separate group for

resource estimation. Correspondingly, the stream arrival rate contributes to group

formulation, thereby measuring the size of data passed to the next tasks.

The objective of the group-based resource estimation is to find the required number

of cores and maximum execution time for each task group based on the variation

of stream processing parameters of aggregation window size and arrival rate. This

formulates the behaviour of hybrid workflow with regard to tuning stream pro-

cessing proprieties in the resource estimation and scheduling process.

Chapter 3 51

Algorithm 4 Workflow Tasks Grouping

1: procedure CreateWorkflowGroups(T)
2: G = {}
3: for each t ∈ T do
4: CallculateExecutionTime(t)
5: g = FindClosestGroupWithRelaxation(t, G)
6: if g == NULL then
7: AddNewGroup(t,G)
8: else
9: UpdateGroup(t,g)

10: R,E = EstimateCoresAndT ime(G)
11: return R,E

Algorithm 4 presents the main steps of the group-based workflow estimation pro-

cess. The algorithm aims to assign workflow tasks and estimate resource and

execution time for each group. Firstly, for each task, the algorithm calls the func-

tion The CallculateExecutionTime (line 4) to calculate the execution time, EST

(Earliest Start Time) and LFT (Latest Finish Time). Based on the dependency

structure for the workflow. Considering these values, the FindClosestGroupWith-

Relaxation function (line 5) will try to fit the task into an existing group. Moreover,

it is assumed that adding a relaxation percentage (less than 5%) to the leading

task in a group will alleviate the grouping strategy for complex workflows, If the

algorithm fails in fitting that task, a new group will be created. Next, the al-

gorithm calls the EstimateCoresAndTime to calculate the number of cores and

execution length for each group.

For stream tasks, the number of tasks is estimated using the adopted queuing

system (Equation 3.5), and for batch tasks, the number of cores is calculated

using a deterministic model (Equation 3.8). Finally, the algorithm returns the

cumulative values for the number of cores as (R) and the execution time as (E)

for all constructed groups (G). The next section describes the resource provisioning

process for workflow groups in a cloud system.

Chapter 3 52

3.4.4 Hybrid-Workflow Resource Provisioning Optimizer

The optimizer aims to control the execution of hybrid workflows in order to op-

timize the combination of monetary cost C and execution time T . It is assumed

the two objectives are equally significant to the overall optimization decision. A

configuration plan is evaluated based on the following optimization function:

min(C.T) (3.11)

Subject to:

c1: EtiB < ϑtiB , ∀tiB ∈ T

c2: τti > τtD , ∀tiS ∈ T

Where:

Eti = Batch Task execution time

ϑti = Batch Task deadline

τti = Task throughput

τtD = Application-defined throughput

c1 = All batch tasks achieve the deadline constraint

c1 = All tasks accomplish the minimum level of processing throughput

To calculate the workflow execution cost C and time T , a group-based provisioning

technique was adopted to allocate required resources Ri for each group Gi on

a cloud system. The group-based technique works by finding the provisioning

plan with minimum cost. Algorithm 5 presents high-level steps for provisioning

workflow groups on a cloud system. The algorithm receives inputs of task groups

G as a result of the estimation process, and cloud VM configurations V . In each

iteration, lines 4-11, the algorithm searches for the group with lowest execution

time and provisioning cost. The function provisionGroupWithVMConfig finds the

number of cloud VMs under the configuration v which satisfies resource demand

of group g. Moreover, in lines 9-11, the cumulative values of time T and cost C

are updated, and provisioned group g is excluded from groups list G. The process

ends after allocating all groups.

Chapter 3 53

3.5 Performance evaluation

This section presents the experimental setup and results of the performance eval-

uation for the proposed framework.

3.5.1 Experimental setup

Shukla et al. [1] provide valuable benchmarking results for standard IoT applica-

tion dataflows for both stream and batch applications. In addition, they discussed

the standard structure of these applications by identifying the dependencies be-

tween stream and batch tasks. Figure 3.3 shows four IoT-based dataflow applica-

tion tasks. Extracting data from streams and performing predictions are stream

tasks, whereas training machine learning models and showing statistical results are

more related to batch processing. Shukla et al. [1] evaluated each application type

based on the micro-benchmarking for sub-tasks, and by running each sub-task in

a single-core machine. We used Shukla et al.’s benchmarking results to define

initial models parameters as well as build workflows for experiments. Three work-

flows were constructed: small, medium horizontal scale, and large vertical-scale.

Workflow scalability refers to the structure complexity in terms of workflow depth

(number of service layers) and number of tasks at each layer. Workflow execution

time should be more sensitive to vertical scalability because more service layers

are added to the workflow service chain. On the other hand, horizontal scalability

involves expanding the workflow by adding more input data stream inputs and

running more services in highly decomposed and flatten manner. This makes a

greater contribution to the total monetary cost refers to the additional computa-

tion overhead caused by service layer expansion (adding more tasks). Table 3.3

presents the main characteristics of these workflows.

CloudSim [157] was extended to support the execution of workflows. A single data

centre and three VM types were modelled to simulate a cloud resource provider.

The VM types have the same configurations of Amazon EC2. Table 3.4 shows the

Chapter 3 54

Algorithm 5 Group-based Resource provisioning on cloud computing environ-
ment

1: procedure HWRPO(G, V)
2: T = C = Ttemp = Ctemp = Tmin = Cmin =∞
3: while G 6= ∅ do
4: for each g ∈ G do
5: for each v ∈ V do
6: Ttemp, Ctemp = provisionGroupWithVMConfig(g, v)
7: if Ttemp ∗ Ctemp < Tmin ∗ Cmin then
8: Tmin, Cmin,= Ttemp, Ctemp

9: T = T + Tmin
10: C = C + Cmin
11: G = G− g

details about VM configurations. As dynamic provisioning is adopted, the provi-

sioner can benefit from the variety of VM configuration to generate an optimized

resource provisioning setup. Thus, the VM type has the significant contribution

on provisioner plan, instead of number of instances. T2 instances are used for their

burstable performance as they can provide a baseline level of high sustainable CPU

performance as long as a workload needs it. Moreover, t2 instances are suitable

for general-purpose workloads, which are adopted on this experiment [156].

The performance of the proposed Hybrid Workflow Resource Provisioning Op-

timizer (HWRPO) was compared with other techniques, namely, full mode and

random selection. The full mode technique implies running the workflow with a

Figure 3.3: High level stream and batch applications dependencies for data
analytics workflows [1]

Chapter 3 55

Table 3.3: Workflows Characteristics

Workflow #Stream Tasks #Batch Tasks Scale Mode
Small 3 5 Equal
Medium 15 15 Horizontal
Large 25 42 Vertical

Table 3.4: Types of VMs used in performance evaluation

Name CPU capacity (MIPS) Price per hour
t2.large 2 $0.0928
t2.xlarge 4 $0.1856
t2.2xlarge 8 $0.3712

semi-optimization process at queuing system utilization level. The random se-

lection technique is a provisioning technique without optimization efforts at any

framework execution level, either on queuing system utilization or task clustering.

3.5.2 Results and discussions

This section discusses the results of applying the resource estimation and provision-

ing framework on three different hybrid workflows. We evaluated the association

between the variation in model parameters (window size, arrival rate, and through-

put) workflow scalability (vertical and horizontal), and optimization parameters

(execution time and monetary cost). For each model parameter, simulation was

carried out 30 times, and average values were used for comparing the performance

of full mode, HWRPO, and random selection techniques. model parameter values

were varied between 25% and 175%. Relative percentages were proposed due to

the variation in parameter values among workflow tasks.

Chapter 3 56

�

� �
 ��� ��
 �
� ��

��"�#(���*����$��"&�������

�

	

�

�

�

�#
&�

 ��
)�

�'
&�#

"�
��

!
��

��
�

�

� �
 ��� ��
 �
� ��

��"�#(���*����$��"&�������

�

��

�

��

�

��

�

�#
&�

 ��
#%

&��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.4: Window size variation impact on the small workflow

�	 	� �	 ��� ��	 �	� ��	
��!�"'���)����#��!%�������

�

	

�

�

��

�"
%�
���
(�
�&
%�"
!�
��

��
��
�

�	 	� �	 ��� ��	 �	� ��	
��!�"'���)����#��!%�������

�

�	

	�

�	

���

��	

�	�

�"
%�
���
"$
%��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.5: Window size variation impact on the medium workflow

�

� �
 ��� ��
 �
� ��

�� �!&���(����"�� $�������

�

��

��

�	

�!
$�
���

'�
�%
$�!

 �
��
�
��
��
�

�

� �
 ��� ��
 �
� ��

�� �!&���(����"�� $�������

�

�

���

�
�

���

�
�

���

�!
$�
��

!#
$��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.6: Window size variation impact on the large workflow

Chapter 3 57

3.5.2.1 Window size

Window size is the time needed for processing and aggregating the incoming data

stream. Figures 3.4, 3.5 and 3.6 show the results of varying window size on execu-

tion time and monetary cost. HWRPO demonstrates high stability in controlling

the workflow execution time with increasing window size. Figures 3.5 and 3.6 show

that HWRPO produces a slight difference in execution time optimization between

horizontal scalability and vertical scalability.

With horizontal scalability, HWRPO was able to reduce cost linearly with in-

crease in window size, with about an 80% reduction compared to the full-Mode

technique. This is due to ability to HWRPO’s cluster/group a higher number

of tasks/applications and perform periodic resource provisioning more effectively

than vertical scalability, which results in a 30% maximum cost reduction. This al-

lows IoT applications to effectively produce more data either by adding more IoT

devices (horizontal scaling) or dividing the incoming data load on applications

(vertical scaling).

3.5.2.2 Arrival Rate

Results from Figures 3.7, 3.8 and 3.9 show that HWRPO exerts steady control

over the incoming arrival rate under the constraints of the queuing system and

throughput. For all simulated workflow structures, HWRPO reduced execution

time compared with other techniques. However, Figure 3.7 shows less efficiency in

execution reduction with 14% on average, compared to 25% in Figure 3.8. This

can be explained by HWRPO’s high efficiency in cost reduction, with averages

of 60% and 40% for vertical and horizontal scalability respectively. In fact the

impact of arrival rate on monetary cost is strongly related to the throughput

constraint. As the constraint is relaxed, the algorithm will try to drop as many

of the incoming stream messages as possible. This scenario is convenient for IoT

application models, where performance is not aligned with generated data volume

(e.g. in modeling of rare phenomena such as earthquakes and floods).

Chapter 3 58

�	 	� �	 ��� ��	 �	� ��	
��""�&�����$����"�� $�������

	�	

��

�	

���

�!
$�
���

'�
�%
$�!

 �
��
�
��
��
�

�	 	� �	 ��� ��	 �	� ��	
��""�&�����$����"�� $�������

	

��

�	

�!
$�
��

!#
$��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.7: Arrival rate variation impact on the Small workflow

�

� �
 ��� ��
 �
� ��

��$$�(� ���&����$��"&�������

��

���

��

��

�#
&�

 ��
)�

�'
&�#

"�
��

!
��

��
�

�

� �
 ��� ��
 �
� ��

��$$�(� ���&����$��"&�������

��

	�

��

�

���

�#
&�

 ��
#%

&��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.8: Arrival rate variation impact on the Medium workflow

�	 	�
	 ��� ��	 �	� �
	
��""�&�����$����"�� $�������

��	

����

���	

����

���	

�!
$�
���

'�
�%
$�!

 �
��
�
��
��
�

�	 	�
	 ��� ��	 �	� �
	
��""�&�����$����"�� $�������

�	

	�

	

���

��	

�	�

�!
$�
��

!#
$��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.9: Arrival rate variation impact on the Large workflow

Chapter 3 59

	� 	

�

 �� �
 ��
��#!&��"&%���#�� %�������

��

�

���

��

���

�!
%�
���

'�
�&
%�!

 �
��
�
��
��
�

	� 	

�

 �� �
 ��
��#!&��"&%���#�� %�������

��

��

��

����

���

�
��

�!
%�
��

!$
%��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.10: Throughput variation impact on the Small workflow

�� �	 	� 		
�
	 ��
��#!&��"&%���#�� %�������

��

�	

���

��	

���

�!
%�
���

'�
�&
%�!

 �
��
�
��
��
�

�� �	 	� 		
�
	 ��
��#!&��"&%���#�� %�������

��

��

�

��
�!

%�
��

!$
%��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.11: Throughput variation impact on the Medium workflow

	� 	

�

 �� �
 ��
��%#(��$('���%��"'�������

���

��

����

���

����

���

�#
'�

 ��
)�

�(
'�#

"�
��

!
��

��
�

	� 	

�

 �� �
 ��
��%#(��$('���%��"'�������

��

	�

��

�

���

���

�	�

�#
'�

 ��
#&

'��
��

HWRPO
Random Selection
Full Mode

HWRPO
Random Selection
Full Mode

Figure 3.12: Throughput variation impact on the Large workflow

3.5.2.3 Throughput

The throughput constraint was varied in the range 40-70%. Figures 3.10, 3.11 and

3.12 show that monetary cost increases exponentially while throughput is moving

Chapter 3 60

to its peak value. In complex workflows, shown in Figures 3.11 and 3.12, the

increase in throughput value drives HWRPO to add more resources to allow the

processing of more data. For example, in the vertical scaling example (Figure

3.12), cost increases by 400% when moving from 40% to 70% throughput. Setting

up the throughput constraint is application and performance dependent; advanced

heuristics algorithms and tuning techniques can produce significant cost reduction

with complex and long-term hybrid workflow execution.

3.6 Summary

This chapter presented a resource estimation and provisioning framework, HWRPO,

for hybrid workflow, which aims to generate an optimized workflow configuration

plan in which the workflow execution time and monetary cost can be reduced. We

developed a simulation environment to evaluate the influence of resource provi-

sioning model parameters, namely, arrival rate, window size and throughput, on

the optimization objective. In addition, the framework was applied to multiple

workflow structures with various scalability factors.

The HWRPO technique was compared with baseline (random selection) and full

mode techniques. Overall, HWRPO demonstrates promising execution time and

cost reduction with most parameter variations for the three workflow cases. Win-

dow size has a powerful influence on both execution time and cost. The results

showed that HWRPO was able to control execution time and cost through the

efficient adoption of task clustering and periodic resource provisioning techniques.

In addition, the results showed a correlation between arrival rate and through-

put. IoT-based workflows can reduce cost efficiently with minimized throughput

constraints. Furthermore, the analysis highlighted the sensitivity of the optimiza-

tion objective to the throughput constraint, and the necessity of building efficient

tuning techniques to guarantee a reasonable margin of workflow execution opti-

mization.

Chapter 3 61

For large-scale workflows, adopting a PSO technique to search the space with mas-

sive configuration plans can increase time complexity and affect overall framework

performance. In addition, the work described in this chapter did not consider

the transmission network quality for migrating stream data to the cloud. The

next chapter presents more advanced optimization methods which can support re-

source provisioning and scheduling for complex hybrid workflows in an edge cloud

system.

Chapter 4

Hybrid Workflow Scheduling on

Edge Cloud Computing

In chapter 3, a resource provisioning framework for hybrid workflows on cloud

systems was proposed. Two limitations were observed. The former is related

to search time complexity for large-scale workflows, while the latter is related to

handling data migration latency to the cloud computing layer. This chapter pro-

poses two-stage hybrid workflow scheduling framework for edge cloud computing.

In the first stage, a resource estimation algorithm based on a linear optimization

approach is proposed, and in the second stage a cluster-based provisioning and

scheduling technique for hybrid workflows on heterogeneous edge cloud resources

is proposed. This chapter also provides a multi-objective optimization model for

execution time and monetary cost under constraints of deadline and throughput.

The results demonstrate the framework’s excellent performance in controlling the

execution of hybrid workflows by efficient tuning for stream processing parame-

ters, such as arrival rate and processing throughput. Under working constraints,

the proposed scheduler provides significant improvements for large hybrid work-

flows in terms of execution time and monetary cost, an average of 8% and 35%

respectively.

62

Chapter 4 63

4.1 Introduction

Cloud and edge computing are likely to be the core techniques of future computing

facilities and are already adopted in most data processing scenarios [158]. While

cloud computing offers a robust and scalable computation model, a continuous

data stream from a large number of IoT devices creates bottlenecks with respect

to latency and cost constraints. Cloud computing is not the ideal computing

system for latency-sensitive applications, such as real-time gaming, augmented

reality and real-time streaming [18]. Because cloud resources are located closer

to the core network, the round-trip latency of these application will be high due

to passing data through multiple gateways. Moreover, transferring large amounts

of data with latency-sensitive constraints to such a centralized environment is

insignificant in terms of resource utilization, communication latency and the energy

consumption of computation servers [19]. On the other hand, processing streams

in nearby resources, at the edge layer, promises to avoid cloud limitations [20].

Edge computing refers to technologies that permit the computation at the network

edges, and act as an intermediate layer to transmit streams to cloud services on

behalf of IoT devices [20]. However, a high percentage of this data is temporary

and only a small amount might contain meaningful data. Edge computing has

a significant role in processing massive data and only uploads processed data to

clouds. For instance, an autonomous vehicle requires a huge amount of data, in

forms of images and video, to be processed in real-time to produce good driving

decisions. However, the availability and low efficiency of edge servers are decisive

factors in quality achievement [121]. Hybrid workflow specifications require the

development of efficient resource provisioning and scheduling techniques which

coordinate the execution of hybrid workflows on edge cloud systems.

In this chapter, we proposed a hybrid workflow scheduling framework for edge

cloud computing which considers the integration requirements of hybrid workflows

while optimizing the execution time and monetary cost. The framework involves

algorithms for resource estimation, provisioning and task scheduling. The terms

Chapter 4 64

task and application are used interchangeably in this work. This chapter makes

the following contributions.

� A hybrid workflow resource estimation algorithm based on the gradient de-

scent search (GDS) technique. The algorithm reduces the workflow execution

time and the number of computation units based on the characteristics of

stream and batch applications and dependencies between them.

� A cluster-based resource provisioning and scheduling algorithm for a hybrid

workflow in an edge cloud computing environment. The algorithm optimizes

overall workflow execution time and cost with respect to data communication

between workflow tasks.

� A comprehensive performance analysis of estimation and scheduling algo-

rithms, including scheduling adaptability, edge capability and optimization

time.

The rest of the chapter is structured as follows. Section 4.2 discusses related work

on workflow resource estimation, provisioning, and task scheduling. A detailed de-

scription of resource and application modelling is provided in Section 4.3. Section

4.4 provides a detailed description of the hybrid workflow estimation and schedul-

ing. Section 4.5 presents the experimental findings and provides insights into the

main results. Conclusions and suggestions for future work are provided in Section

4.6.

4.2 Related Work

Workflow scheduling became one of the major problems in cloud computing due

to the rapid growth of on-demand requests and the heterogeneous nature of cloud

resources [159]. The literature contains extensive research on provisioning and

scheduling in the context of grid and cloud computing, involving various opti-

mization techniques and QoS constraints [45, 46, 160]. Most existing techniques

Chapter 4 65

have contributed to the optimization of workflow execution to achieve objectives of

time, cost, energy, scalability, and reliability in a single or multi-cloud computing

environment. However, few researchers have proposed models which are efficient

and relevant to hybrid workflows.

Hybrid workflows are integrated computation models of stream and batch data

processing pipelines with varying QoS requirements [161]. Stream processing

is latency-sensitive and subject to constraints like stream rate and throughput

[39]. On the other hand, batch processing involves less time-sensitive processing,

but with high corresponding to intensive computation such as data aggregation

and model prediction. There is a large body of research body on the scope of

computation-centric workflow scheduling [141–143], which is perfectly meet the

requirements of batch processing in terms of computation complexity and data

size.

Many techniques have been proposed to conquer the challenges of stream workflow

scheduling [110]. As noted in earlier chapters, Zhou et al. [121] proposed an online

gradient descent (OGD) technique to estimate the rate of data streams for applying

dynamic resource provisioning in an edge environment. Ren et al. [48] concluded

that shifting to real-time and context-aware IoT application provisioning on the

edge cloud imposes a transparent computing architecture for IoT applications,

which can take advantage of edge computing. Long et al. [124] proposed an

edge computing framework for delay-sensitive multimedia processing application.

These authors proposed a greedy algorithm to improve human detection accuracy

under deadline constraint, but their framework only considers lightweight stream

workloads. Zhang et al. [125] proposed a game-theoretic framework for cooperative

task allocation for delay-sensitive social sensing applications in edge cloud systems.

However, as outlined above, most stream workflow scheduling is latency-sensitive,

and issues like handling large intermediate/temporary data and integration with

data-intensive systems, mostly at batch level, are not considered.

There has been relatively little published work on problems associated with hy-

brid workflows, such as how the dependency and integration between stream and

Chapter 4 66

batch affects resource provisioning and task scheduling techniques. Moreover, few

researchers have explored the opportunities of combining edge and cloud com-

puting for the purposes of hybrid workflow scheduling, or the challenges of this

combination with respect to load balancing, edge capacity limitations and data

communication between edge and cloud resources.

This chapter outlines an end-to-end hybrid workflow scheduling framework for

an edge cloud computing environment. The framework considers the challenges of

combining two computation paradigms, and provides solutions for resource estima-

tion and provisioning and task allocation in an edge cloud computing environment.

4.3 Edge Cloud Computing System Model

In this chapter, we adopted an edge cloud computing model to meet the compu-

tation requirements of hybrid workflows. The edge cloud model is convenient for

hybrid workflows, because the stream tasks with latency sensitivity can benefit

from the availability of edge resources, whereas batch tasks with heavy workloads

can be processed at powerful computation nodes in the public cloud. Figure 4.1

shows the adopted edge cloud system model.

This chapter concentrates on a three-layer resource model composed of IoT, edge

and multi-cloud, as can be seen in Figure 4.1. The three layers are explained as

follows.

� Layer 1 (IoT). The layer represents the user interaction layer, in which IoT

devices (sensors, smartphones, relays, etc.) are responsible for collecting

information and performing operations that involve the use of limited re-

sources. IoT devices can send workloads to closer edge nodes or cloud VMs.

� Layer 2 (edge layer): This layer represents all devices on the path between

the IoT layer and cloud layer. An edge node can be a non-stationary com-

putation device, such as mobile devices or a Raspberry Pi, or a stationary

Chapter 4 67

device, such as a personal desktop, company server or a cloudlet. In this

thesis, it is assumed that edge devices are limited in computation and stor-

age capabilities, but able to handle some pre-processing tasks on the stream

processing pipeline. Overall, the edge layer offers computation close to data

sources (IoT devices and sensors) to reduce data transfer time, and performs

pre-processing in a timely manner constraint [20].

� Layer 3 (multi-cloud services): The third layer includes cloud VMs that have

high computational and storage capabilities, and are able to handle heavy

weight computations such as predictive analysis, machine learning, business

intelligence, big data analytics, and complex visualization.

At the edge and cloud layers, the work assumes various machine configurations

Ri = {VMi,1, V Mi,2,, V Mi,n}, where n is the number of VM configurations

Figure 4.1: Edge cloud computing system model

Chapter 4 68

in a data center, and a VM configuration refers to the VM characteristics of

computation power, memory and processing cost.

4.4 Hybrid Workflow Scheduling in Edge Cloud

Resources

Workflow scheduling is utilized to plan resource allocation for tasks based on

the required QoS parameters, and it is responsible for selecting optimal virtual

machines for workflow execution using a preferred scheduling algorithm. In this

chapter, a hybrid workflow scheduling framework for edge cloud computing was

proposed. The framework is designed to meet the requirements of hybrid workflow

computation as a combination of stream and batch processing models. Moreover,

offline scheduling is assumed because information about incoming jobs is known

in advance [162]. Without loss of generality, Figure 4.2 shows the main framework

steps for hybrid workflow resource estimation and scheduling.

The input workflow is an example of a hybrid workflow that shows the dependency

flow between stream and batch tasks. Start and end tasks are dummy tasks and do

not contribute to the hybrid workflow execution. The framework specifies a multi-

level optimization technique for resource estimation and workflow scheduling. For

resource estimation, a Constraint-based Gradient Descent search for Hybrid Work-

flows (C-GDHW) is proposed, which aims to minimize workflow execution time

with the optimal number of processing cores by finding the optimal task grouping

formulation. Next, for provisioning and scheduling, a cluster-based hybrid work-

flow provisioning and scheduling (C-HWPS) algorithm was adopted. It is based

on an improved clustering technique and aims to optimize the execution of hybrid

workflows in edge cloud computing in terms of execution time and monetary cost.

The framework is explained in the rest of this section.

Chapter 4 69

Figure 4.2: A high-level abstraction of hybrid workflow estimation and
scheduling

4.4.1 Resource Estimation with Gradient Descent Search

Approach

Resource estimation is a multi-objective problem of minimizing the total execution

time E and number of computation units (cores) R. The desired outcome of the

resource estimator is a group-based workflow execution plan, which can simplify

provisioning and scheduling in an edge cloud computing environment, particularly

for complex hybrid workflows. Thus, in the estimation process, the specific concern

is to reduce the end-to-end execution time (critical path) E with the minimum

number of computation cores among all execution periods R. The optimization

Chapter 4 70

function for the resource estimation was modelled as:

min(E.R) (4.1)

4.4.1.1 Resource Estimation Problem Formulation

Gradient descent (GD) is an iterative optimization method to find a local minimum

for linear and non-linear functions [163]. It is computationally easy and requires

no memory, since the only input to its decision comes from the previous step.

GDS was adopted in this work to find the optimal combination of problem input

parameters (i.e., arrival rate λ , aggregation window size ω, and minimum work-

flow throughput τ) that minimizes the problem cost function under constraints

of maximum batch task deadline ϑ , maximum stream processing waiting time in

queue, and minimum workflow throughput τ . Therefore, the estimation process is

a constrained GDS search problem.

Gradient descent is founded on the observation that if the multi-variable function

F(x) is distinct and differentiable in a neighborhood of a point xi, then F(x)

decreases fastest if one goes from xi in the direction of the negative gradient of F,

∆F (xi−1) at xi. The function position is calculated as follows:

xi = xi−1 − γi∆F (xi−1), n > 1 (4.2)

where xi−1 is the current position, xi is the next position, γi is the weight factor

(or the step size), and ∆F (xi−1) is the direction of the steepest ascent. For minor

and sufficient value of γi, F (xi−1) ≥ F (xi). The search problem starts with an

initial guess x(0) for a local minimum of F, and considers the sequence x1, x2, ...

such that:

F (x0) ≥ F (x1) ≥ F (x2)... (4.3)

However, the value of step size γ can be changed with each iteration.

Chapter 4 71

4.4.1.2 Resource Estimation Algorithm

The estimation algorithm includes a set of steps to find the optimized estimation

cost (number of cores) with minimum execution time (Equation 4.1). Resource

estimation implies searching for the best possible workflow configuration (in terms

of stream arrival rate and aggregation window size) that ensures an optimized

combination of execution time and the number of cores. The steps of exploiting

the GDS algorithm for resource estimation are explained next. Figure 4.3 shows

a visual presentation of the estimation process using a GDS technique.

The estimation process starts with an initial guess X0 for the workflow execution

configuration. A workflow configuration determines the execution behaviour of

the hybrid workflow, which reflects how the change in stream task configuration

(arrival rate, windows size and throughput) affects workflow execution time and

cost based on the dependency between these tasks. Hybrid workflow modelling

allows seamless cooperation between the two computing models. The estimation

algorithm will iteratively produce a new stream configuration by calculating the

function gradient value. In addition, the estimation process includes steps to

validate and compute the optimality for each new configuration. A detailed de-

scription of the estimation algorithm C-GDHW is as follows.

Step 1: Initialize Problem The algorithm starts with an initial configuration

input x(0). The input is a 3× d matrix, where 3 refers to the number of problem

parameters (λ, ω, τ) and d refers to the number of workflow stream tasks. The

algorithm will iteratively update the solution (at each step) until it converges and

no-cost improvement is progressed. At each iteration, the algorithm will compute

the gradient and find the next position (configuration plan) xi, see Equation 4.2.

Step 2: Validate Workflow Configuration

A workflow configuration is a set of values for the three workflow execution pa-

rameters, namely, stream arrival rate λ, aggregation window size ω, and workflow

throughput τ . For each stream task ti
S, find the number of servers which satisfies

Chapter 4 72

Figure 4.3: Resource estimation formulation with GDS technique

the following constraints:

ωi ≥ ωi′ ≥
ρ.µi.si
τi

(4.4)

λi−1 ≥ λi′ ≥ ρ.µi.si (4.5)

where ωi′ and λi′ are minimum values of window size and arrival time, respectively.

However, these values can be any within the defined range. For each batch task

ti
B, find the number of servers which satisfies the following constraint:

ϑi ≥ Ei ≥
ETi
si

(4.6)

where ETi and Ei are processing time, and task execution time, respectively.

Step 3: Formulate Task Groups and Calculate Estimation Values

section 3.4.3 provided a complete description of how to evaluate the cost of a

workflow configuration in terms of execution time E and total number of required

computation cores R based on task-grouping technique. Figure 4.2 shows an ex-

ample of task grouping. Based on the input workflow, the estimator grouped

Chapter 4 73

the tasks into five groups {G1, G2, G3, G4, G5}. For instance, batch tasks t2
B and

t3
B are in the same group, thus, the scheduler will handle them as a group for

provisioning and scheduling purposes.

4.4.2 Hybrid Workflow Provisioning and Scheduling on

Edge Cloud Computing Environment

In the estimation stage, the optimizer tries to group workflow tasks to minimize

the overall workflow execution time with the least number of cores. However, it

is worth noting that a core represents a VM with a single core use mostly for

application benchmarking [1]. The next step is to allocate resources and schedule

workflow tasks in the edge cloud computing environment. The process aims to

optimize the workflow with respect to execution time T and monetary cost C. At

this stage, the provisioner will consider both data transfer and computation while

computing T and C. The hybrid workflow optimization in the edge cloud system

needs to achieve the following objective function:

min(T.C) (4.7)

A C-HWPS algorithm was adopted to provision demanded resources and schedule

the tasks in edge cloud computing environment. The clustering technique works

by constructing execution paths from the starting task to the last task while

considering task dependencies along any execution route. Figure 4.2 provides an

example of the execution of three paths based on the input workflow. Three

execution paths are constructed {P1, P2, P3}. The first path includes all stream

tasks, because continues stream processing is assumed. The other two paths show

the execution sequence from the first batch to the last batch task. The provisioning

and scheduling process is an iterative process over execution paths, such that,

in each iteration, the scheduler decides on the next scheduling target path with

minimum execution time T (processing and data transfer) and cost C (processing

Chapter 4 74

Algorithm 6 Cluster-based Hybrid Workflow Provisioning and Scheduling

1: procedure C-HWPS(G,D)
2: P = A = {}
3: T = C = Ttemp = Ctemp = Tmin = Cmin =∞
4: ptarget = null
5: Starget = null
6: P = findExecutionPaths(G)
7: while P 6= ∅ do
8: U = getUnScheduledPaths(P)
9: for each p ∈ U do

10: Ttemp, Ctemp, S = computePathInEC([p− A], D)
11: if Ttemp.Ctemp < Tmin.Cmin then
12: Tmin, Cmin,= Ttemp, Ctemp
13: ptarget, Starget = p, S

14: schedulePathInEC([p− A], Starget)
15: A = A + [p− A]
16: P = P - ptarget
17: T = T + Ttemp
18: C = C + Ctemp
19: Ttemp = Ctemp = Tmin = Cmin =∞
20: ptarget = null

21: return A, T, C

and data transfer) on edge cloud resources. The processing will continue by adding

paths and optimize time T and cost C.

Algorithm 6 presents the steps for resource provisioning and workflow scheduling.

The algorithm receives inputs from task groups G as a result of the estimation

process, and available computation resources D of clouds and edges. Infinite values

for time T and cost C are assumed because a minimization problem is being

approached. The scheduling algorithm can be expressed as follows. In line 6, the

function findExecutionPaths constructs workflow execution paths P based on the

tasks dependencies structure; each path should include all tasks needed to reach

the end of workflow execution (i.e., the last task). Next, the algorithm will iterate

over all execution paths to find the one with minimum execution time T and cost

C on edge cloud system D.

The algorithm starts with the first unallocated path p which has at least one

unscheduled task, in other words, [p − A] 6= ∅. Remaining tasks [p − A], if any,

Chapter 4 75

are computed in the edge cloud system D using the function computePathInEC,

line 10, which is represented in Algorithm 7. The path with minimum time and

cost ptarget will be selected and scheduled based on the scheduling strategy Starget.

Next, selected path ptarget is removed from the list, and total time T and cost C

are updated. Finally, the algorithm returns scheduled tasks A and optimization

object variables T and C.

Algorithm 7 describes the steps of computing the optimized provisioning plan for

an execution path p. No collaboration between edge and cloud resources is as-

sumed, thus path tasks can only provision at one layer. The algorithm provides

two main functions. The first is to schedule tasks in either edge or cloud, lines

4 and 7. Execution time and cost are calculated based on the available resource

configuration. The second function computeTransferTimeAndCost, lines 5 and 8,

calculates the amount of time and cost to migrate data considering the target pro-

visioning environment (edge or cloud) and computing nodes which host already

processioned dependent tasks. Time, cost and provisioning are returned. Accord-

ingly, the capacity of the edge nodes as well as the quality of bandwidth between

edge and cloud nodes have significant impact on provisioning and scheduling de-

cisions.

4.5 Performance Evaluation

This section presents the performance evaluation of the proposed hybrid workflow

scheduling techniques. It begins with a discussion of the experimental setup,

including a hybrid workflow design from existing IoT application benchmarking,

and edge cloud resource configuration setup. Then, the experimental results are

discussed and insights from different analysis perspectives are provided.

Chapter 4 76

Algorithm 7 Compute Execution Path in Edge Cloud System

1: procedure computePathInEC(T,D)
2: T = C =∞
3: S = null
4: ETe, ECe, Se = scheduleInEdge(T,D)
5: TTe, TCe = computeTransferTimeAndCost()
6: OptimCoste = (ETe + TTe).(ECe + TCe)
7: ETc, ECc, Sc = scheduleInCloud(T,D)
8: TTc, TCc = computeTransferTimeAndCost()
9: OptimCostc = (ETc + TTc).(ECc + TCc)

10: if OptimCoste < OptimCostc then
11: T = ETe + TTe
12: C = ECe + TCe
13: S = Se
14: else
15: T = ETc + TTc
16: C = ECc + TCc
17: S = Sc
18: return T,C, S

4.5.1 Experimental Setup

For experimentation, we adopted a state-of-the-art IoT benchmarking tool to con-

struct multiple hybrid workflow structures. Shukla et al. [1] proposed an IoT-

based benchmark to formulate an application structure and dependencies between

stream and batch tasks. They evaluated dataflow tasks by constructing them

into sub-tasks and performed micro-benchmarking by running each sub-task in

a single-core machine. In this thesis, we used Shukla et al.’s benchmarking re-

sults to define initial model parameters as well as build workflows for experiments.

Three workflows were constructed: small, medium (horizontal-scale) and large

(vertical-scale). A scalability factor was included to enable the study of the re-

lationship between workflow structure and optimization parameters. Scalability

means adding more stream tasks to allow more data stream inputs. In horizontal

scaling, more batch tasks are added at each processing level, whereas in vertical

scaling more processing levels are added to increase the workflow depth. Table 4.1

presents the main characteristics of these workflows.

For each model parameter, simulation was carried out 30 times, and average values

Chapter 4 77

were used for comparing the performance of the C-GDHW, PSO-based and full-

mode techniques. Model parameter values were varied in a range of 20% to 180%

for windows size and arrival rate, and in a range of 10% to 90% for throughput.

Relative percentages for the default workflow configuration were proposed due to

the variation in parameter values among workflow tasks.

We extended CloudSim [157] simulator to reflect the adopted resource model as an

edge cloud computing environment. Three data centers were added for two cloud

providers and edge resource layer. At each data center, different VM configura-

tions, including processing power and cost were assumed. VM configurations were

applied for CloudA and CloudB, based on configurations provided by AWS and

Microsoft Azure, respectively. Table 4.2 provides the resource model configuration

setup for the experiments. We used two edge resource setups, high and low capa-

bility. The former was used for resource estimation evaluation, while the latter was

used for edge capability analysis in the context of hybrid workflow computation.

Furthermore, we considered a stable data transfer rate between edge and cloud

servers as 50 MB/s, and between cloud servers as 100 MB/s.

In this chapter, the performance of the proposed gradient-based resource esti-

mation technique, C-GDHW is evaluated in comparison to other two existing

techniques, namely, PSO-based and full-mode. To achieve a fair and stable com-

parison, the cluster-based technique, C-HWPS, is applied for provisioning and

scheduling hybrid workflows based on the outcomes of the estimation stage. The

first existing technique is our previous work using the PSO technique for resource

estimation [164]. PSO was utilized to search workflow configuration space to find

an optimized solution. The second existing technique is the full-mode technique, in

Table 4.1: Hybrid Workflows Characteristics

Workflow #Stream Tasks #Batch Tasks Scale Mode
Small 12 17 Equal
Medium 20 45 Horizontal
Large 36 73 Vertical

Chapter 4 78

Table 4.2: Resource types for edge and cloud systems

Provider Type CPU Cores Price per hour ($)

CloudA, CloudB
large
xlarge
2xlarge

2
4
8

[0.093, 0.117]
[0.186, 0.232]
[0.371, 0.465]

Edge (Low capability)
small

medium
1
2

$0.002
$0.070

Edge (High capability)
large
xlarge

4
8

$0.090
$0.103

which resource estimation is performed with a semi-optimization process at queu-

ing system utilization level. In contrast to C-GDHW and PSO-based techniques,

the full-mode technique does not apply arrival rate and window size reductions for

stream tasks. Thus, resource estimation is performed to a hybrid workflow with

maximum execution mode.

We proposed the semi-optimization model to evaluate the performance of the

other two techniques in tuning stream execution parameters to optimize workflow

execution time and cost. To the best of our knowledge, there is no model in the

literature in the scope of hybrid workflow scheduling that is compatible with the

proposed workload model or the proposed workflow structure.

Three experiments were conducted. The first one compared the performance of

the C-GDHW estimation and scheduling technique with those of the nominated

techniques (PSO-based and full-mode). The second experiment was designed to

examine the stability of the proposed optimizer in maintaining workflow execution

cost with workflow complexity regarding the percentages of windows size and ar-

rival reductions. The third experiment sought to identify the contribution of edge

resource capability to optimization objectives (time T and cost C).

4.5.2 Results and Discussions

This section presents and discusses the results of applying the resource estimation

and scheduling framework to three different hybrid workflow structures.

Chapter 4 79

4.5.2.1 Resource Estimation Evaluation

This section describes an evaluation of the efficiency of C-GDHW in optimizing

hybrid workflow execution time T and cost C based on the variation in model

parameters (stream window size ω, stream arrival rate λ, and execution throughput

τ) and workflow scalability (vertical and horizontal). Next, each optimization case

based on each parameter variation is discussed in turn.

The window size is the time needed for processing and aggregating the incoming

data stream. Figures 4.4, 4.5 and 4.6 show the results of varying window size

on execution time and monetary cost. The C-GDHW model demonstrates high

stability and improved control over the workflow execution time with the increase

in window size length for both horizontal and vertical scalability.

For large workflows, in Figure 4.6, the optimizer demonstrates potential cost saving

for adding more resources to confront the increase in data processed by stream

tasks in lengthy windows intervals. With the longest window interval, cost is

reduced by reaches a maximum of 37% compared to the PSO technique. This is

due to C-GDHW’s ability to group a larger number of tasks and effectively perform

periodic resource provisioning effectively. This feature allows IoT applications to

produce more data by adding more IoT devices (horizontal scaling) or dividing

the incoming data load on applications (vertical scaling).

The arrival rate refers to the number of stream inputs in a given time interval.

Figures 4.7, 4.8 and 4.9 show the results of comparing the responsiveness of the

three models to the variation in stream arrival rate. The C-GDHW optimizer

determines steady control over the incoming arrival rate under the constraints of

the queuing system and throughput. For all workflow scenarios, the optimizer

was adequate to preserve the execution time at a steady level. In contrast, the

PSO optimizer’s behaviour shows fluctuation in optimizing the execution time,

particularly with long-term execution workflow, as shown in Figure 4.9.

An additional advantage of the proposed optimizer is the linearity behaviour in

provision more VMs (related to the monetary cost) to overcome high rate streams.

Chapter 4 80

	� �� � �� ��� �	� ��� �� ���
�!$�%*��!,����&��$(�������

���

���

���

	��

	��

�%
(�
"��

+�
�)
(!%
$�
�!
#
��
�
�

������
���
�)""��%��

	� �� � �� ��� �	� ��� �� ���
�!$�%*��!,����&��$(�������

�

��

	�

�

��

�%
(�
"��

%'
(��
��

������
���
�)""��%��

Figure 4.4: Window size variation impact on the small workflow

	� �� � �� ��� �	� ��� �� ���
�"%�&+��"-����'��%)� �����

���

���

	��

	��

��

��

���

�&
)�
#��

,�
�*
)"&

%�
�"
$
��
�!
�

������
���
�*##��&��

	� �� � �� ��� �	� ��� �� ���
�"%�&+��"-����'��%)� �����

�

��

	�

�

��

��

�

��

�&
)�
#��

&(
)��
��

������
���
�*##��&��

Figure 4.5: Window size variation impact on the medium workflow

��
� �� � ��� ��� �
� ��� ��
� #�$)�� +����%��#'�������

�

	

�

�

�$
'�

!��
*�

�(
' $

#�
�

"
��

��
�

������
���
�(!!��$��

��
� �� � ��� ��� �
� ��� ��
� #�$)�� +����%��#'�������

�

��

�

��

�

���

�$
'�

!��
$&

'��
��

������
���
�(!!��$��

Figure 4.6: Window size variation impact on the large workflow

This behaviour can be interpreted with the efficiency to utilize the throughput

relaxation to allocate stream tasks in nearby edge nodes.

One important conclusion is that the C-GDHW optimizer reduces cost as the

number of stream tasks increases. This can be shown by comparing the perfor-

mance of the proposed optimizer and the PSO technique. For small workflow with

12 stream tasks, Figure 4.7 shows that both optimizers demonstrate relatively

similar cost-saving.

Chapter 4 81

	�
� �� �� ��� �	� �
� ��� ���
�))$-�%���+!��!)�!'+�"!����

���

���

����

����

����

����

�(
+�
%��

.!
�,
+$(
'�
�$
&
!�
�#
�

������
���
�,%%��(!

	�
� �� �� ��� �	� �
� ��� ���
�))$-�%���+!��!)�!'+�"!����

�

�

��

��

	�

�(
+�
%��

(*
+��
��

������
���
�,%%��(!

Figure 4.7: Arrival variation impact on the small workflow

	� �� � �� ��� �	� ��� �� ���
�**%.�&���,"��"* "(,�#"����

	�

	��

	��

	��

�)
,�
&��

/"
 -

,%)
(�
�%

'
"�
�$

�

������
���
�-&&��)!"

	� �� � �� ��� �	� ��� �� ���
�**%.�&���,"��"* "(,�#"����

�

�

��

��

	�

	�

�

�

�)
,�
&��

)+
,��

��

������
���
�-&&��)!"

Figure 4.8: Arrival variation impact on the medium workflow

	� �� � �� ��� �	� ��� �� ���
�((#,�$���* �� (� &*�! ����

���

���

��	

��

���

���

��

�'
*�
$��

-
�+

*#'
&�
�#

%
 �
�"

�

������
���
�+$$��'�

	� �� � �� ��� �	� ��� �� ���
�((#,�$���* �� (� &*�! ����

�

��

	�

�

��

��

�

�'
*�
$��

')
*��

��

������
���
�+$$��'�

Figure 4.9: Arrival variation impact on the large workflow

In contrast, with 36 stream tasks for a large workflow in Figure 4.9, the propor-

tional difference in cost reduction increase as the arrival rate rises. The reduction

increased from 35% to 70% in the case of 40% and 180% arrival rate percentages

respectively.

The Throughput determines the percentage of data to be processed to accom-

plish a workflow execution objective. This parameter is a real business-related

selection, and differs from one application to another. In this work, we studied

Chapter 4 82

the influence of application throughput on execution time and cost. The proposed

optimizer was capable of reducing the influence of high throughput, particularly

for the monetary cost parameter.

For instance, Figure 4.12 shows that with large workflow, the C-GDHW optimizer

provides a near-linear execution time increase. Likewise, in the same figure, the

optimizer produced a potential cost saving compared to PSO of 46% with the

highest throughput of 90%. Hence, the proposed technique is able to handle the

increase in throughput while reducing the time and cost. Some scientific workflows

do not require collecting huge data for developing accurate predictive models. For

instance, modeling of rare phenomena prediction such as Earthquakes and floods.

4.5.2.2 Adaptability Analysis

We studied the C-GDHW optimizer’s performance in reducing stream task arrival

rate and window size to optimize workflow execution cost. The reduction level has

a direct impact on the workflow execution outcome from an application perspec-

tive. For example, in predictive analysis, the amount of data plays a vital role in

training prediction models and producing highly accurate results. On the other

hand, processing more data imposes an additional overhead in terms of compu-

tation cost. Thus, it is essential to provide a balanced estimation to handle the

trade-off between execution performance and cost.

Figure 4.13 demonstrates the optimizer’s adaptability in providing a stable arrival

rate and window size reduction for a large hybrid workflow. For example, with

variation in throughput, the optimizer to preserves a stable reduction for the arrival

rate and linear reduction for the windows size in response to the exponential cost

increase.

4.5.2.3 Edge Capability Analysis

Figure 4.14 shows the correlation between the capability of edge resources, and

workflow execution time and cost with the variation in stream arrival rate. Edge

Chapter 4 83

�� 	�
� �� �� � �� �� ��
�")',!"(,+��)� &+�! ����

���

���

��	

���

��

���

	��

�'
+�
$��

-
�,

+#'
&�
�#

%
 �
�"

�

������
���
�,$$��'�

�� 	�
� �� �� � �� �� ��
�")',!"(,+��)� &+�! ����

�

�

��

��

	�

�'
+�
$��

'*
+��

��

������
���
�,$$��'�

Figure 4.10: Throughput variation impact on the small workflow

�� 	�
� �� �� � �� �� ��
�")',!"(,+��)� &+�! ����

���

��

���

	��

	�	

	��

	�

	��

�'
+�
$��

-
�,

+#'
&�
�#

%
 �
�"

�

������
���
�,$$��'�

�� 	�
� �� �� � �� �� ��
�")',!"(,+��)� &+�! ����

�

�

��

��

	�

	�

�

�

�'
+�
$��

'*
+��

��

������
���
�,$$��'�

Figure 4.11: Throughput variation impact on the medium workflow

�� 	�
� �� �� � �� �� ��
�")',!"(,+��)� &+�! ����

	��

��

��

���

�'
+�
$��

-
�,

+#'
&�
�#

%
 �
�"

�

������
���
�,$$��'�

�� 	�
� �� �� � �� �� ��
�")',!"(,+��)� &+�! ����

�

��

	�

�

��

��

�

�'
+�
$��

'*
+��

��

������
���
�,$$��'�

Figure 4.12: Throughput variation impact on the large workflow

capability indicates the computation performance of edge resources. Table 4.2

provides details about low and high edge resource configuration (low capability

refers to the small and medium VM types, and high capability refers to large

and xlarge VM types). Despite variation in stream arrival rate, results indicate

a steady workflow execution time with low and high edge capability, with 15%

average difference and minimal contribution of the workflow complexity.

Chapter 4 84

�� �� ��
� ��� ��� ��� ��� �
�
�����$���%�

���

���

���

���

��

���

�
��

"�
!��

��
��

��
��

!�
��

����#�����!�
�����$���%�
� !

�� �� ��
� ��� ��� ��� ��� �
�
����#������!�

���

���

���

���

��

���

�
��

"�
!��

��
��

��
��

!�
��

����#�����!�
�����$���%�
� !

�� �� �� �� �� �� 	�
� ��
����"���"!

���

���

���

���

��

���

�
��

"�
!��

��
��

��
��

!�
��

����#�����!�
�����$���%�
� !

Figure 4.13: Arrival rate and window size reduction with cost increase: large
workflow

On the other hand, the figure implies a linear increase in monetary cost, partic-

ularly for the large hybrid workflow scenario. The cost increases gradually from

56% (lowest arrival rate) to 8% (highest arrival rate). Overall, the graph shows

clearly that as stream arrival rate increases, dependence on high-performance edge

machines becomes costly compared to low-performance machines. This conclusion

will motivate researchers to move toward commodity edge computing.

��
� �� � ��� ��� �
� ��� ��
�'' +�"���)����'��$)�������

���

���

	��

	��

��

��

�-
��

*)
 %

$�
�

#
��

��
%*

'�

�#�""��%'!�"%,���%,���&�� ").
�#�""��%'!�"%,��� �����&�� ").
��'����%'!�"%,���%,���&�� ").
��'����%'!�"%,��� �����&�� ").

��
� �� � ��� ��� �
� ��� ��
�'' +�"���)����'��$)�������

�

��

��

	�

�

��

��

�-
��

*)
 %

$�
�

%(
)��

��

�#�""��%'!�"%,���%,���&�� ").
�#�""��%'!�"%,��� �����&�� ").
��'����%'!�"%,���%,���&�� ").
��'����%'!�"%,��� �����&�� ").

Figure 4.14: Compare the variation of execution time for small and large
workflows based on edge capability and change in arrival rate

Chapter 4 85

�������� ����$ ����#���� ����$ � ����� ����$���

���

���

���

���

�
�"

��
�%
�"
��
��
��

�
��
�!
�

	��
��
���

Figure 4.15: Optimization time of PSO and C-GDHW for different hybrid
workflows (Log Scale)

4.5.2.4 Optimization Time Analysis

The increase in optimization time can have a significant impact on the scheduling

process, particularly for large workflows. In a more complex scenario, the schedul-

ing process could be repeated at short intervals, to provide accurate decisions

about model parameters, such as arrival rate and window size. Figure 4.15 shows

the advantage of the proposed estimation algorithm, over those from our previous

work using the PSO algorithm, in sustaining the optimization time with variation

in workflow complexity and number of tasks.

The optimization time complexity increases by 45%, 55% and 60% for small,

medium and large workflows respectively. The low optimization complexity time

of the GDS-based optimizer suggests that linear optimization models should be

adopted to solve complex workflow estimation and scheduling problems.

Chapter 4 86

4.6 Summary

This chapter presented hybrid workflow scheduling framework for an edge cloud

computing resource model. The framework includes two stages. In the first

stage, we propose a resource estimation algorithm based on a linear optimiza-

tion approach with GDS, and in the second stage, a cluster-based provisioning

and scheduling technique for hybrid workflows in heterogeneous edge cloud re-

sources was introduced. The aim was to achieve a multi-objective optimization

of execution time and monetary cost under constraints of deadline and through-

put. In comparison to two nominated scheduling techniques, namely, PSO and

full-mode, the proposed technique was able to control the execution of hybrid

workflows by efficiently tuning several parameters, including stream arrival rate,

processing throughput and workflow complexity. The proposed scheduler reduced

cost and time by a minimum of 35% and a maximum of 70% compared to the other

nominated techniques. Moreover, the GDS-based technique significantly reduced

the optimization complexity compared to the PSO technique, by 50% on average.

This chapter proposal provided limited effort to utilize the capability of edge com-

puting. We assumed workload migration to the cloud in the case of edge failure.

The next chapter describes experiments with hybrid workflow provisioning and

scheduling in cooperative edge cloud computing. It includes an improvement to

the GDS technique to handle online resource estimation without prior knowledge

about the input workflow structure and constraints. The current version of the

GDS technique does not support online estimation for unknown workflow struc-

tures.

Chapter 5

Hybrid Workflow Provisioning

and Scheduling on Cooperative

Edge Cloud Computing

This chapter extended the work presented in chapter 4 and presents a hybrid

workflow scheduling framework for cooperative edge cloud systems. A cooperative

model was adopted to resolve the issues of latency-sensitive application as well

as to improve resource utilization at the edge layer. In addition, the GDS-based

resource estimation technique was extended to meet the requirements of unpre-

dictable workflow structures. In experimental evaluation, the cooperative model

reduced cost by 40% compared to the non-cooperative model. In addition, the

results demonstrated the cooperative model’s ability to maximize data migration

within the edge layer, and accordingly reduce data transfer to the cloud layer.

5.1 Introduction

For decades, cloud computing has proved stable solutions for applications at differ-

ent scale, robustness, and cost levels. Nevertheless, and despite cloud computing

being the most convenient paradigm for resource-intensive applications, achieving

87

Chapter 5 88

latency constraint has become a significant challenge. Pushing continuous data

streams from a large number of IoT devices to cloud servers raises substantial

latency and timely processing concerns. By 2021, the volume of data generated

from IoT devices that needs to be processed will far exceed the capacity of central

clouds [165]. Thus, it is vital to perform computation closer to end users, for

example, in radio base stations and other systems on the edge of access networks

a style of computing known as edge computing. Results provided in Chapter 4

demonstrate that edge resources can be involved in executing hybrid workflows.

The ultimate advantage of edge computing is to bring computation closer to data

sources. Thus avoiding large data transfers to the cloud to reduce transfer time

and cost.

However, the availability and low efficiency of edges servers are decisive factors in

quality achievement [121]. Moreover, the collaboration between edge and cloud

computing models allows reliable integration between stream and batch applica-

tions in the context of IoT processing. However, in comparison to cloud resources,

edges are often limited in terms of computation and storage capability, and avail-

ability (subjects to power and network connectivity). In addition, edge nodes are

heterogeneous in both storage and computation capacities. Workload balancing to

align the heterogeneity of edge node, causes exponential computation complexity

for resource allocation and scheduling algorithms [166]. To improve the perfor-

mance of edge resources, a collaborative schema can be adopted.

The main question addressed in this chapter is ”how integration between col-

laborative edges and the cloud can resolve the issues of hybrid workflows, and

resources utilization without increasing the complexity of resource allocation and

task scheduling algorithms”. This chapter provides the answer in two ways. The

first is modeling the integration between stream and task applications at a low-level

to accomplish the QoS requirements for each application model, and the second

is proposing a scheduling framework to execute hybrid workflows on cooperative

edge cloud computing.

Chapter 5 89

The rest of the chapter is structured as follows. Section 5.2 discusses the related

work on workflow resource estimation, provisioning, and task scheduling. A de-

tailed description of cooperative edge cloud system model is provided in Section

5.3. Section 5.4 presents a detailed description about hybrid workflow scheduling

in a cooperative edge cloud system. Section 5.5 reveals the experimental findings

and provides insights into the main results followed by chapter summary in Section

5.6.

5.2 Related Work

This section contains a review of related research disciplines of resource estima-

tion and provisioning, workflow scheduling in edge cloud and cooperative edge

cloud systems. Workflow scheduling major research directions in academia and

telecommunication industry, and therefore there is an extensive body of related

research body. Many algorithms and techniques have been proposed for schedul-

ing optimization on computing environments, including grid [44], cloud [45, 46],

multi-cloud [47], and edge [48]. Common challenges of adopting edge comput-

ing in workflow scheduling are scalability, self-adaptively, and reliability [112]. In

IoT platforms, it’s challenging to extend the functionalities of IoT devices [48],

and techniques of service replication and migration [167] are needed to achieve

resource/service reliability. Edge computing is a means of overloading nodes with

computationally intensive workloads.

Many works have adopted scheduling techniques for latency-sensitive workflows on

edge computing. The literature review presented in Chapter 2 discussed various

techniques of adopting cooperative edge systems to overcome issues like applica-

tion and service latency [113, 115, 117], low system stability [115], edge resources

utilization [122], application responsiveness and accuracy [124, 128], energy con-

sumption [116] and reliability [126]. For complex workflows, such as hybrid work-

flows, dynamic distributed and decentralized computing model, such as edge cloud,

is convenient for reliable and scalable execution [126]. With this model, the need

Chapter 5 90

arises for developing schedulers that can intelligently partition workflows and al-

locate the partition.

To summarize, the literature contains various methods of implementing edge cloud

and cooperative edge cloud computing to resolve issues of latency-sensitive and

resource-intensive applications. The following points can be concluded. First,

edge cooperation is limited to edge data center level, and cooperation mechanisms

are not well defined or structured. Second, hybrid workflow scheduling is not a

feature of the literature, and the integration between stream and batch process-

ing is not clearly associated with the scheduling process. Finally, the impact of

stream and batch processing parameters tuning (e.g., how change in stream arrival

rate or processing throughput could affect scheduling behaviour and optimization

decisions) has not been studied.

5.3 A Cooperative Edge Cloud Computing Sys-

tem

The cooperative edge cloud is an integrated computing model utilized to run

complex applications such as real-time data analytics [168], visual guiding ser-

vices using a wearable cameras [169], on-demand gaming [170] and real-time video

streaming [171]. The cooperative model extends the edge cloud resource model

presented in Section 4.3, and incorporates three main layers, IoT, cooperative

edge, and multi-cloud. The work outlined here assumes that at a certain level,

resources among all layers are accessible to each other. Figure 5.1 presents the

system model of cooperative edge cloud computing.

� Layer 1 (IoT). An IoT device is sensing hardware capable of transmitting

data streams over the Internet via a variety of network interfaces like WiFi,

Long Term Evolution (LTE), 4G and 5G. IoT devices include wireless sen-

sors, software, actuators, and computer devices. They can be embedded

Chapter 5 91

Figure 5.1: Cooperative Edge Cloud Computing System Model

into mobile devices, industrial equipment, environmental sensors, medical

devices, and more.

� Layer 2 (Cooperative Edge Nodes). This layer is composed of two resource

components, namely, edge devices and edge data centers. Edge devices are

non-stationary computation nodes perform the closest layer to IoT data

sources. These devices are limited in computation and storage capabili-

ties, but able to handle some pre-processing tasks in the stream processing

pipeline. On the other hand, edge data centers are powerful and inter-

connected edge nodes, that can undertake resource-intensive tasks, and are

able to communicate with other data centers for sharing data and computa-

tion. Overall, the edge layer offers computation closest to data sources (IoT

devices and sensors), thereby reducing data transfer time, and performing

pre-processing in a timely-manner constraint [20].

Chapter 5 92

The edge cooperation schema is applied when task waiting time is high;

the computation queue buffer is full, the task is computation-intensive and

exceeds edge capacity, and cumulative generated data is large and needs

to be migrated to a capable edge. Edge data centers can be operated by

individuals, organizations or cloud service providers.

� Layer 3 (Multi-cloud Services):. The third layer consists of powerful re-

sources which are adequate to carry out complex services in domains like

machine learning, business intelligence, and interactive visualization.

5.4 Hybrid Workflow Scheduling on Coopera-

tive Edge Cloud Computing

Hybrid workflow scheduling is utilized to estimate resources and plan resource

allocation for tasks based on the required (QoS) parameters, and is responsible

for selecting optimal virtual machines for workflow execution using a preferred

scheduling algorithm. Section 3.3 provides detailed modeling needed for hybrid

workflows, which includes the mathematical modeling to estimate the number of

servers for stream and batch tasks. Figure 5.2 presents a high-level abstraction

for a scheduling framework in a cooperative edge cloud system. The framework is

described as follows.

1. Workflow submission. A user submits a hybrid workflow to the workflow

manager with sufficient configuration of structure, data sources, and pre-

ferred QoS constraints, which may include minimum throughput and max-

imum execution deadline. It is assumed that the workflow manager has no

prior knowledge about the incoming workflow.

2. Workflow Profiling. In the work presented in Chapter 4, the availability of

a submitted workflow usage function was assumed. This function describes

the relation between resource estimation parameters (arrival rate λ, win-

dow size ω, and throughput τ), and total number of cores R and workflow

Chapter 5 93

Figure 5.2: Workflow Scheduling Framework on Cooperative Edge Cloud
Computing

execution time E. However, this assumption is not realistic with high vari-

ation on hybrid workflow application models, in IoT and data analytics as

examples. Thus, the workflow manager will perform an online profiling pro-

cess to understand the workflow behaviour corresponding to the mentioned

parameters.

3. Resource estimation. In previous chapter , we proposed a multi-objective

optimization technique to reduce number of computation units (cores) R

and workflow execution time E. The Gradient Descent technique [172] (C-

GDHW) performs a linear search for tuning stream parameters considering

constraints of throughput, waiting time and deadline. Specifically, the aim is

to find the optimal combination of problem input parameters, that is, arrival

rate λ, aggregation window size ω, and workflow throughput τ .

In this chapter, an online resource estimation based on the workflow profiling

is adopted. The main challenge in applying the C-GDHW algorithm is the

unavailability of an exact approximation for the workflow usage function, and

thus, calculate the gradient at a given point. The estimation process yields

Chapter 5 94

two outcomes. The first is a workflow execution groups G which formulates

the dependencies among workflow tasks, and the second is the estimated

number of cores R at group level. The technique adopted to handle the

challenge is illustrated in next section.

4. Resource discovery and allocation. The next step is to allocate resources in

the cooperative edge cloud environment. The estimation process determines

resources required to execute the workflow and satisfy user QoS require-

ments. The edge cloud cooperative model unites heterogeneous resources

with different computation capability, storage capacity, and communication

protocols. The resource discovery implies investigating the current status of

resources at the edge layer. For edge devices, the framework collects details

about computation capability (number of available cores) and network qual-

ity. For edge data centers, the framework communicates with the resource

manager to fetch resource details.

Data collected during the discovery process allows the framework to build

resource allocation plans P . Each plan represents an allocation strategy to

combine resources from different resources layers, that is, edge devices and

data centers, and multi-cloud providers, to accomplish estimation outcomes.

The point of constructing alternative allocation strategies is to reduce the

complexity of the scheduling process in optimizing the computation time and

cost.

5. Task scheduling. We adopted a cluster-based technique to schedule workflow

tasks, which relies on constructed groups G. The technique aims to select

the best strategy from resource allocation strategies P from the previous step

by performing a multi-objective optimization process to reduce the workflow

execution time T and monetary cost C. The scheduling process is discussed

later in this section.

Chapter 5 95

5.4.1 Hybrid Workflow Resource Estimation with a Gra-

dient Descent Approximation Technique

Resource estimation using a gradient descent technique is explained in Chapter 4.

To summarize, the process aims to find the configuration tuple [λ, ω, τ] for each

stream task, by which, the optimum number of cores R and maximum execution

time E is achieved. The gradient-based technique applies an iterative process of

finding a local minimum (descent) of a differentiable function F (x). Each step

involves a proportional movement to the negative of the gradient of the function

at the current point. The movement generates a new point, which represents an

updated version of the stream configuration. Next, the cost of estimation function

is calculated, and the process is stopped when no improvement is achieved.

To apply the gradient-based technique, a workflow estimation function F (x), to

calculate the joint value of the number of cores R and the maximum execution time

E, must satisfy two conditions: differentiability and convexity. Differentiability is

mandatory to accomplish the line search, while convexity guarantees the existence

of a function global minimum. In previous work, we assumed prior knowledge of

the cost estimation function F (x), and thus, it can be evaluated in offline mode.

The assumption of prior knowledge of the cost estimation function F (x) is not

achievable for all workflow structures. To attain a generic estimation approach

for hybrid workflows, the previous technique was extended to address the online

estimation mode. The proposed technique is referred to Adaptive Constraint-based

Gradient Descent search for Hybrid Workflows (AC-GDHW). The applicability of

online gradient approximation is subjected to two observations:

� The cost estimation function F (x) is differentiable on each estimation pa-

rameter domain. The function derivative exists at each point in its domain.

All combinations of estimation parameters have estimation values, thus, the

function never has a jump discontinuity.

Chapter 5 96

� According to differentiability, the estimation function can be approximated

locally by linear functions. Having this fact, the function derivative (gradi-

ent) at a certain point xi can be approximated locally.

Algorithm 8 shows the steps to find an approximation of the function F (x) gradi-

ent at point x. The approximation function ApproximateGradient receives three

parameters, namely, the cost estimation profiling space S, target point x, and tar-

get estimation parameter var. The algorithm starts with finding the point that

best fits to the target point x on the profiling space S. We used the Euclidean

distance to find the closest point in a 3-dimensional space S. Moving to the var di-

mension, the algorithm locates the closest two points on the same dimension from

left and right directions, xL and xR, respectively. The next step is calculating

the function F (x) derivative at point x by finding the slope in the two directions

using the function CallculateDerivative. The derivative value of x is the average

of slope values from left and right, DerivativeL and DerivativeR, respectively.

The algorithm is applied in all workflow stream tasks to construct the optimized

configuration tuple.

After setting stream configurations, the estimation technique is applied to find the

number of cores c required to execute each workflow task. The last step at this

stage is constructing the workflow execution groups G = {G1, G2, ..., Gn}. Each

group Gi includes all tasks which can executed concurrently, Gi = {ti,1, ti,2, ..., ti,n}

where ti,j is a stream or batch task, and n is the number of group tasks. Math-

ematical notations used in the estimation modelling is presented in Table 5.1. A

group Gi has the following properties.

Algorithm 8 Find Function Gradient from Profiling Space

1: procedure ApproximateGradient (S, x, var)
2: x0 = FindClosestPoint(S,X)
3: xL, xR = FindPointsLeftRight(S, x)
4: DerivativeR = CallculateDerivative(x0, xR, var)
5: DerivativeL = CallculateDerivative(x0, xL, var)
6: Derivativex = (DerivativeL +DerivativeR)/2
7: return Derivativex

Chapter 5 97

Table 5.1: Mathematical notations used in resource estimation modelling

Notation Description
G A set of all constructed groups.
Gi A group of concurrent tasks.
ESTi Earliest start time of a task ti
EFTi Earliest finish time of a task ti
Di Total data generated by group Gi.

Gi = {Ri, ESTi, EFTi, Di} (5.1)

Ri =
n∑
j=1

cj (5.2)

R =
n∑
i=1

Ri (5.3)

Ei = EFTi − ESTi (5.4)

E =
n∑
i=1

Ei (5.5)

Di =
n∑
j=1

dj (5.6)

min (R.E) (5.7)

5.4.2 Hybrid Workflow Provisioning and Scheduling Frame-

work on Cooperative Edge Cloud Computing Envi-

ronment

In previous chapter, C-HWPS framework is adopted to provision demanded re-

sources and schedule tasks on edge cloud computing environment. The cluster-

based approach aims to perform resource allocations and scheduling for workflow

groupsG from the previous stage. In this chapter, C-HWPS is extended as Cluster-

based and Cooperative Hybrid Workflow Provisioning and Scheduling Cooperative

Chapter 5 98

(CC-HWPS), to allow provisioning and scheduling in a cooperative edge cloud

computing system, which includes three types of computation resources: edge de-

vices, edge data centers, and cloud resources. The provisioning and scheduling

framework CC-HWPS is described as follows.

1. Resource Discovery. The first step is fetching the current status of edge

nodes. For edge devices Edv, the profiler keeps track of details including,

available number of cores, network interface, and connectivity with edge data

centers and cloud. For edge data centers Edc, the profiler collects details

about number of offered computation nodes, maximum storage, and the

communication mechanism with other edge data centers and cloud.

2. Resource Provisioning. One critical issue to consider when scheduling in a

cooperative edge cloud environment is edge resources heterogeneity and load

balancing [130]. The cooperative model illustrates two objectives: increased

edge resources utilization and reduced the data communication between edge

devices and data centers. To achieve and balance these objectives, the sched-

uler should distribute task groups over edge and cloud resources. In this

step, the resource provisioner will produce potential group’ execution strate-

gies P = {P1, P2, ..., Pk}. A strategy Pi includes three types of computation

nodes: edge devices Edv; an arrangement of edge data centers Edc in which

an edge data center Edci can communicate with at least another data center

Edcj or a cloud data center Cdci ; and cloud data center Cdc. Mathemati-

cal notations used in the resource provisioning and scheduling modelling is

presented in Table 5.2.

A computation node Ni is modeled as:

Ni = {βi,Υi,Γi, ζβi , ζΥi
, ζΓi
} (5.8)

3. Group Scheduling. Tasks within a group Gi are independent and can be

executed concurrently; each group can be referred as a cluster of tasks. The

cluster-based technique increases resource utilization and efficiency because

Chapter 5 99

Table 5.2: Mathematical notations used in workflow scheduling modeling

Notation Description

βi
Communication bandwidth between computation
data centers/servers.

Υi Computation power of a server.
Γi Storage capacity of a data center/server.

ζβi
Bandwidth cost between computation
data centers/servers.

ζΥi
Processing cost a server.

ζΓi
Storage cost a data center/server.

PT Processing time for a group Gi.
PC. Processing cost for a group Gi.

TT
Total transfer time to send data between
two data centers/servers.

TC.
Total transfer cost to send data between
two data centers/servers.

it facilitates the usage of powerful and high-capacity machines. The sched-

uler’s mission is to find the execution strategy that jointly optimizes the

execution time T and monetary cost C of running all workflow groups G.

The optimization function of the scheduling problem is provided as follows.

min (T.C) (5.9)

The formulas calculating the total execution time T and cost C are s follows.

PTi =
n∑
j=1

ComputeT ime(Θj) (5.10)

PCi =
n∑
j=1

ComputeCost(Θj, ζΥj
, ζΓj

) (5.11)

TT =
n∑
j=1

n∑
k=1

δj,k
βk

+ εj,k (5.12)

TC =
n∑
j=1

n∑
k=1

δj,k
βk
∗ ζβ j 6= k (5.13)

Chapter 5 100

T =
n∑
i=1

PTi + TT (5.14)

C =
n∑
i=1

PCi + TC (5.15)

In details, the formulation is described as:

� A groupGi is partitioned into a set of subgroups {Θ1,Θ2, ...,Θn} according to

strategy Pk. The notation Θj refers to the list of tasks that can be executed

in computation node Nj. The ComputeT ime function is responsible for

provisioning the computation node Nj if the node represents an edge Edc

or cloud data center Cdc. The function returns the execution time for the

longest task.

� Based on the provisioning plan provided in the first step, the function ComputCost

calculates the cost of executing a subgroup Θj in computation node Nj with

respect to processing cost ζΥj
and storage cost ζΓj

.

� The data transfer time TT is the sum of all data transfer processes between

computation nodes Nj and Nk to transfer amount of data δj,k with latency

εj,k. The data transfer cost TC is calculated in the same manner. The cost

of moving data within the same computation node/cluster is neglected.

� The total time T to run a hybrid workflow is the sum of processing time

for all groups and the time to exchange data between computation nodes.

Similarly, the total cost C to run a hybrid workflow is the sum of processing

costs for all groups and the cost of the exchanging data between computation

nodes.

Algorithm 9 performs workflow scheduling. It receives inputs of task groups G as

a result of the estimation process, and resource allocation strategies S from the

resource provisioning step. Scheduling algorithm can be expressed as follows. In

step 1, lines 2-6, the algorithm initializes objective variables, T and C. In step

Chapter 5 101

Algorithm 9 Cluster-based and Cooperative Hybrid Workflow Scheduling on
Cooperative Edge Cloud (CC-HWPS)

1: procedure CC-HWPS(G,S)
2: R = {}
3: T = C =∞
4: Ttemp = Ctemp =∞
5: Gtarget = null
6: for s in S do
7: for g in G do
8: PT, PC = computeGroupTimeCostWithStrategy(g, s)
9: Ttemp = Ttemp + PT

10: Ctemp = Ctemp + PC

11: TT, TC = computeDataTransferTimeCost(s)
12: Ttemp = Ttemp + TT
13: Ctemp = Ctemp + TC
14: if Ttemp.Ctemp < T.C then
15: T = Ttemp
16: C = Ctemp
17: starget = s

18: Ttemp = Ctemp =∞
19: return R, T, C

2, lines 6-18, the algorithm iteratively examines the provisioning and scheduling

of workflow groups based on allocation strategies S, the group with minimum

Ttemp.Ctemp is selected. Ttemp is the processing time of group g with strategy s and

Ctemp is the processing cost with the same strategy.

The function computeGroupT imeCostWithStrategy, line 8, calculates the pro-

cessing time and cost of executing group g within strategy s in the context of the

cooperative edge cloud. Algorithm 10 shows the steps of this computation logic.

After calculating the computation time and cost with the given strategy s, the

next step is calculating the communication time TT and cost TC based on the

amount of data transferred between computation and storage servers, in which

task predecessors to group g tasks are located, line 12. It is worthwhile men-

tioning that each iteration progresses a sup-optimization problem to approach the

clustering optimization behaviour. Next, lines 14-17, the strategy s is selected if it

provides total time T and cost C reduction. The algorithm stops after examining

all allocation strategies S. Finally, the algorithm returns scheduled tasks G, and

Chapter 5 102

Algorithm 10 Compute the time and cost of executing workflow group with a
resource allocation strategy

1: procedure computeGroupWithStrategy(g, s)
2: T = C = 0
3: V = getGroupTasks(g)
4: while V 6= ∅ do
5: for r in s do
6: AvaillMIPS = getResourceMIPS(r)
7: A = ∅
8: v = getNextUnallocatedTask(V)
9: ToAllocateMIPS = getTaskMIPS(v)

10: while ToAllocateMIPS < AvaillMIPS do
11: v = getNextUnallocatedTask(V)
12: ToAllocateMIPS = ToAllocateMIPS + getTaskMIPS(v)
13: A = A ∪ v
14: V = V − v
15: if V = ∅ then
16: Break
17: if A 6= ∅ then
18: provisionAndAllocateTasks(A, r)
19: T = T + computeT ime(A,R)
20: C = C + computeCost(A,R)

21: return T,C

optimization object variables, T and C.

Algorithm 10 shows, in a high-level abstraction, the steps in allocating task group

g with a strategy allocation s in a cooperative edge cloud model. The first step is

allocating group tasks V . While there are unallocated tasks, the algorithm tries

to find a computation node r which accomplishes the computation requirements

of a task v. To attain high resources utilization, computation nodes in strategy s

are ordered by their processing power (MIPS).

5.5 Performance Evaluation

This section presents the performance evaluation hybrid workflow scheduling on

a cooperative edge cloud system . It firstly provides details about the experimen-

tal setup, including structuring and constructing hybrid workflows from existing

IoT application benchmarking, and setting-up the cooperative edge cloud system.

Chapter 5 103

Then, the experimental results are discussed and insights about edge cooperation

performance are highlighted.

5.5.1 Experimental Setup

In the previous sections of this chapter, an online scheduling framework for hybrid

workflow in cooperative edge cloud system was proposed. The online scheduling

involves no pre-knowledge about the current status of the edge resources, which

are obtained at the time of scheduling by the resource discovery system. The

edge status includes details about resource availability, capacity and cooperation

between edge resources is considered. At application level, the variation in model

parameters, and how this variation contributes to the optimization behavior. A

hybrid workflow is an integration of stream and batch tasks in the form of a DAG

structure. An IoT dataflow is an example of a hybrid workflow. To construct

hybrid workflow structures, we followed the setup described in Chapter 4. Small,

medium horizontal-scale, and large vertical-scale were constructed. A scalability

factor was included to enable the study of relationship between workflow structure

and optimization parameters. Table 5.3 presents the main characteristics of these

workflows.

For each model parameter, simulation was carried out 30 times, and average val-

ues were used for comparing the performance of running hybrid workflows on

three computing systems: cooperative edge cloud, non-cooperative edge cloud,

and cloud-only. Following is the description and assumptions related to each com-

puting system.

� Cooperative edge cloud. In the cooperative model, edge resources work

collaboratively by sharing and exchanging computation and data workloads.

An edge device or data center can pass allocated task(s) to nieghbours in

case of computation or storage shortcomings.

Chapter 5 104

� Non-cooperative edge cloud. In the non-cooperative model, computation

or storage collaboration is not assumed. Unhanded computation and data

workloads are sent directly to the cloud.

� Public Cloud or Cloud-only. In this model, all actions related to workflow

execution are undertaken by a cloud provider without usage of any edge

devices.

We extended CloudSim [157] to reflect the adopted resource model as an cooper-

ative edge cloud computation environment. Three types of resources were mod-

elled: cloud, edge data centers and edge devices. This modeling is aligned with

the system model provided in Figure 5.1. Table 5.4 provides the resource model

configuration setup of the experiment. In addition, the edge cooperation status is

simulated to reflect the resource discovery service which includes the computation

capability of edges, accessibility and communication quality between edges. The

the edge cooperation status is examined in prior of workflow execution.

Table 5.3: Hybrid Workflows Characteristics

Workflow #Stream Tasks #Batch Tasks Scale Mode
Small 12 17 Equal
Medium 20 45 Horizontal
Large 36 73 Vertical

Table 5.4: Resource types for edge cloud system

Provider #Cores
Processing

Cost ($/Hour)
Bandwidth

(MB/s)
Bandwidth

Cost ($/GB)

Cloud DC
2
4
8

[0.80, 0.90] [60.0, 80.0] [0.14, 0.20]

Edge DC
2
4
8

[0.30, 0.35] [20.0, 40.0] [0.07, 0.08]

Edge Devices
2
4

[0.20, 0.25] [20.0, 25.0] [0.03, 0.04]

Chapter 5 105

In this chapter, the proposed resource estimation technique, the adaptive gradient-

based, AC-GDHW, and the provisioning and scheduling technique, CC-HWPS are

used to evaluate the performance of three computing environments; cooperative

edge cloud, non-cooperative edge cloud, and cloud-only to run hybrid workflows.

Technically, schedulers proposed in chapters 3 and 4, HWRPO and C-HWPS,

respectively, are special cases from CC-HWPS to schedule hybrid workflows on

cloud-only and non-cooperative edge cloud systems, respectively. The experiment

was performed to determine the contribution of edge cooperation on reducing the

execution time T and monetary cost C to executing hybrid workflows.

5.5.2 Results and Discussions

This section discusses the results of applying the resource estimation and schedul-

ing framework to three hybrid workflow structures.

5.5.2.1 Edge Cooperation Evaluation

This section evaluates the efficiency of CC-GDHW in optimizing hybrid workflow

execution time T and cost C based on the variation of model parameters (stream

window size ω, stream arrival rate λ, and execution throughput τ) and workflow

scalability (vertical and horizontal). Since an online scheduling mode was adopted,

each data point for execution time and cost is an average of multi-iterations work-

flow execution.

The window size is the time needed for processing and aggregating the incoming

data stream. Figures 5.3, 5.4 and 5.5 show the results of varying window size on

execution time and monetary cost for the three workflow structures. As window

size increases, the time to capture data streams increases. This challenges the

scheduler to handle the cumulative collected data from IoT devices. Here it is

we assumed that stream processing is basically allocated to edge devices for the

sake of reducing streams collection delay from IoT devices, and to benefit from

the non-stationarity advantage for high data collection coverage. However, edge

Chapter 5 106

�� �� � ��� ��� ��� ��
�� �!(���)�����

���

���

��

���

���

���

���

�!
%�
���

��
��
��

�
&%
��

�!!"�#�%�'���������!&�
�! ��!!"�#�%�'���������!&�
�&�������!&�

�� �� � ��� ��� ��� ��
�� �!(���)�����

�����

�����

�����

�����

�����

�����

���	�

�!
%�
���

!$
%��
��

�!!"�#�%�'���������!&�
�! ��!!"�#�%�'���������!&�
�&�������!&�

Figure 5.3: Window size variation impact on small hybrid workflow scheduling

�� �� � ��� ��� ��� ��
�� �!(���)�����

�

�

�

	

�!
%�
���

��
��
��

�
&%
��

�!!"�#�%�'���������!&�
�! ��!!"�#�%�'���������!&�
�&�������!&�

�� �� � ��� ��� ��� ��
�� �!(���)�����

����

����

���

����

����

����

�!
%�
���

!$
%��
��

�!!"�#�%�'���������!&�
�! ��!!"�#�%�'���������!&�
�&�������!&�

Figure 5.4: Window size variation impact on medium hybrid workflow
scheduling

�

� �
 ��� ��
 �
� ��

���� '���(�����

��

��

��

����

���

�
��

���

����

�
$�
���

��
��
��

��
%$
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

�

� �
 ��� ��
 �
� ��

���� '���(�����

���

���

��	

���

��

���

���

��	

�
$�
���

 #
$��
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

Figure 5.5: Window size variation impact on large hybrid workflow scheduling

devices are limited in the computation and storage capabilities. The cooperative

model allows them to pass computation and data loads to more powerful resources

with reduced overhead on communication networks, particularly, with non-free

network interfaces. The advantage of the cooperative scenario is clear for complex

workflow structure (Figure 5.5). In comparison to the non-cooperative scenario,

the cooperative scenario produced a significant time and cost savings of 50% and

85% compared with the non-cooperative scenario, respectively.

Chapter 5 107

�

� �
 ��� ��
 �
� ��

�%#�����##�'�����%�����

���

��	

���

��

���

�!
%�
���

��
��
��

�
&%
��

�!!"�#�%�'���������!&�
�! ��!!"�#�%�'���������!&�
�&�������!&�

�

� �
 ��� ��
 �
� ��

�%#�����##�'�����%�����

����

�����

����

�����

����

�!
%�
���

!$
%��
��

�!!"�#�%�'���������!&�
�! ��!!"�#�%�'���������!&�
�&�������!&�

Figure 5.6: Arrival rate variation impact on small hybrid workflow scheduling

�� �� � ��� ��� ��� ��
�&$�� ��$$�(�����&�����

���

���

���

���

���

	��

	��

��

�"
&�
���
�
��
��
�!
'&
��

�""#�$�&�(���������"'�
�"!��""#�$�&�(���������"'�
�'�������"'�

�� �� � ��� ��� ��� ��
�&$�� ��$$�(�����&�����

����

���

����

����

�"
&�
���
"%
&��
��

�""#�$�&�(���������"'�
�"!��""#�$�&�(���������"'�
�'�������"'�

Figure 5.7: Arrival rate variation impact on medium hybrid workflow schedul-
ing

�� �� �� ��� ��� ��� ���
�$"����""�&�����$�����

���

���

���

����

����

����

����

�
$�
���

��
��
��

��
%$
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

�� �� �� ��� ��� ��� ���
�$"����""�&�����$�����

���

���

��	

��

���

�
$�
���

 #
$��
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

Figure 5.8: Arrival rate variation impact on large hybrid workflow scheduling

The impact of network overheads with large data transfers explains the poor per-

formance of the non-cooperative scenario in optimizing hybrid workflow execu-

tion. With a non-complex workflow structure, Figure 5.3 shows that the scenario

reduced time and cost by 10% compared to the public cloud scenario. The reduc-

tion percentage decreases as the workflow application becomes more complicated.

The arrival rate refers to the number of stream inputs in a given time inter-

val. Figures 5.6, 5.7 and 5.8 show the results of comparing the responsiveness

Chapter 5 108

of the three models to the variation in stream arrival rate for the three workflow

structures. The increase in stream rate involves receiving more data within the

aggregation window time while preserving the throughput level, set at 60% for

this experiment. In addition, the arrival rate λ has direct correspondence to the

number of servers (cores) in a queuing system to keep system utilization at accept-

able level. For an arrival rate of less than 100%, the scheduler was able to control

the execution time and cost because stream tasks are provisioned as a group.

However, for public cloud and non-cooperative computing systems, handling high

speed streams is challenging. For example, with a large workflow, Figure 5.8 shows

the execution cost increased by a maximum of 500% and 200%, for public cloud

and non-cooperative edge systems, respectively. On the other hand, the coop-

erative edge system distributes the workload overhead with a 50% cost increase.

This demonstrates the cooperative model’s ability to utilize edge resources without

migrating computation and data workloads to the cloud.

The throughput determines the percentage of data to be processed to accomplish

a workflow execution objective. This parameter is a real business-related selec-

tion, and differs from one application to another. In this work, the influence of

application throughput on execution time and cost was assessed. Figures 5.9, 5.10

and 5.11 show the impact of throughput variation on the three workflow struc-

tures. One conclusion is that the scheduler must adjust arrival rate and window

size parameters to achieve minimum throughput. Meanwhile, a high throughput

incurs additional time and cost with the cloud-only system; edge-based systems

are more efficient at processing more data streams.

5.5.2.2 Analysis of Edge Cooperation Impact on Data transfer time

and cost

The main motivation for using cooperative edges is to allow maximum cooperation

between edge resources to reduce the amount of data and computation workloads

sent to the cloud. This section outlines the results of analyzing the contribution

of edge cooperation to data transfer time and cost.

Chapter 5 109

�� 	�
� �� �� � ��
��" %��!%$����

���

��	

��

���
�

$�
���

��
��
��

��
%$
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

�� 	�
� �� �� � ��
��" %��!%$����

����

�����

����

�����

�����

�
$�
���

 #
$��
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

Figure 5.9: Throughput variation impact on small hybrid workflow scheduling

�� 	�
� �� �� � ��
��" %��!%$����

���

��

���

���

��

���

��

���

�
$�
���

��
��
��

��
%$
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

�� 	�
� �� �� � ��
��" %��!%$����

�����

�����

�����

�����

���	�

���	�

���
�

�
$�
���

 #
$��
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

Figure 5.10: Throughput variation impact on medium hybrid workflow
scheduling

�� 	�
� �� �� � ��
��" %��!%$����

�

��

��

��

��

�
$�
���

��
��
��

��
%$
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

�� 	�
� �� �� � ��
��" %��!%$����

���

���

��	

��

���

�
$�
���

 #
$��
��

� !�"�$�&��������� %�
� ��� !�"�$�&��������� %�
�%������� %�

Figure 5.11: Throughput variation impact on large hybrid workflow schedul-
ing

Figure 5.12 shows the results of running a large hybrid workflow with varying of

window size in cooperative and non-cooperative edge cloud systems with respect to

data transfer time and cost. We selected the window size parameter because it is

closely related to the amount of data generated during workflow execution. Results

show that the cooperative model demonstrates significantly reduces data transfer

time and cost as the window size increases. Figure 5.13 gives a clear quantitative

Chapter 5 110

�

� �
 ��� ��
 �
� ��

�����&���'��%�!��#����������!���&�!����&

�

�

�

�

	

�

��
#�
���

!�
�"
��
!��

��
��
��

��
$#
��

��� �!�#�%����������$�
������� �!�#�%����������$�

�

� �
 ��� ��
 �
� ��

�����&���'��%�!��#����������!���&�!����&

�

�

�

�

	

�

��
#�
���

!�
�"
��
!��

�"
#��
��

��� �!�#�%����������$�
������� �!�#�%����������$�

Figure 5.12: Edge cooperation impact on data transfer time and cost

�	 	�
	 ��� ��	 �	� �
	
��������� �"�$�����������#"����%�"��%����%���'��$� ��"�������

�

	

��

�	

��

�	

��

�	

�
�"

��
�

�
�#

�"
���

��

��"�����#�"�%�"�����������&�
��"��" ��!�� ���"����#��

�	 	�
	 ��� ��	 �	� �
	
���� �"�$�����������#"����%�"��%����%���'��$� ��"�������

�

	

��

�	

��

�	

��

�	

�
�"

��
�

�
�#

�"
���

��

��"�����#�"�%�"�����������&�
��"��" ��!�� ���"����#�

Figure 5.13: Edge cooperation impact on amount of data migrated

illustration of this behaviour. In the case of the non-cooperative model, the amount

of data sent to the cloud increases exponentially, whereas the cooperative model

and as the amount of generated data is increased, the cooperative edge layer is

able to process a larger proportion of the data and reduces the communication

with the cloud.

This scenario can support many applications, particularly with the engagement of

massive number of data sources. Applications in smart cities, traffic monitoring

and social sensing can benefit from adopting cooperative computing systems by

integrating and enabling communication among resources at the edge layer to

reduce dependency on public clouds, and thus achieved improved service quality,

cost savings and greater data privacy.

Chapter 5 111

5.6 Summary

We presented a hybrid workflow scheduling framework on cooperative edge cloud

computing resource model. The cooperation implies communication between edge

resources for computation and data migration under constraints of resource capa-

bility and data dependency. In this chapter, we compared the cooperative edge-

cloud model with other two resource models, namely, non-cooperative edge-cloud

and cloud-only models. The cooperative model reduces cost by 40% compared

to the non-cooperative model. In addition, results demonstrated the cooperative

model’s ability to maximize the data migration within the layer, and accordingly

reduce data transfer to the cloud layer. Furthermore, this chapter shows how the

optimization approach, GDS, could be improved such that, it is able to perform

online estimation regardless of workflow structure.

This chapter and the previous two chapters provided algorithms, techniques and

frameworks to handle resource estimation and provisioning, and task mapping in

the context of hybrid workflows. This simulation-based experimental work relies

on verified data profiling for hybrid workflow task types. The next chapter provides

a detailed description of the simulation environment.

Chapter 6

Implementation and Simulation

Environment

This chapter provides a detailed description of the proposed framework for hybrid

workflow scheduling in cooperative edge cloud computing systems. The framework

of a cooperative edge cloud computing deployment architecture and its prototype,

’CoopEdgeCloudSim’ is implemented by extending the classes of the CloudSim

simulator in order to simulate resource provisioning and hybrid workflow schedul-

ing framework in an edge cloud system.

6.1 Introduction

Internet of Things technology has been deployed to enable real-time tracking and

monitoring services in many application domains, including e-healthcare, smart

cities, social collaboration and interactive learning. According to McKinsey, 43

billion IoT devices will be connected by 2023, and will be vital components of 25%

of the global economy [173]. As the increase in number of connected IoT devices

increases, the amount of data generated by IoT devices will grow. Collected data

can be small, such as a single metric of a machine’s health, or large datasets

generated by video surveillance cameras. IDC estimates that the amount of data

112

Chapter 6 113

created by these connected IoT devices will grow at a annual growth rate of 28.7%

over 2018-2025 [174].

The huge and rapidly growing number of sensing devices leads the transformation

of traditional business models into automated digital platforms via emerging real-

time connectivity, geographic data collection, and analytics capabilities. As high-

lighted already in this thesis, the adoption of IoT technology introduced emergent

challenges for integrating hybrid application models of stream and batch applica-

tions. Stream processing enforces timely sensitive handling for incoming data with

reasonable throughput, while batch processing involves the incorporation of large

amounts of resources to meet deadline and service quality. According to Cisco,

the growth rate of data generated from IoT devices requiring processing will far

exceed the capacity of central clouds in 2021 [165].

Chapter 1 contains a discussion of the challenges of scheduling hybrid workflows,

and how features like complexity, dynamicity and QoS variation are critical for

obtaining resource provisioning and workflow scheduling plans. In chapter 5, we

provided an efficient scheduling framework on cooperative edge cloud to align

the demands of powerful computation and timely processing with a high system

utilization computing system. The framework provides three core services. The

first service is to provide an estimation for the required amount of resources to run

a workflow under constraints of throughput and deadline. The second service is to

provision these resources on edge cloud system, and the third is to map workflow

tasks to provisioned resources.

The best way to evaluate the framework is to implement and test services in a

real environment. However, the adopted resource model presents difficulties for

real environment evaluation due to the complexity of configuring a stable compu-

tation environment at a large scale and sufficient resource variation. Moreover,

scheduling optimization outcomes can be affected by communication performance

between resources at all layers (cloud, edge and IoT), making it hard to produce

evaluation results that meet the core research objective of studying hybrid work-

flow scheduling on an edge cloud system. In addition, the real environment setup

Chapter 6 114

is expensive in terms of time and cost. All these challenges prevented the evalua-

tion in a real environment; instead, a simulation framework is provided to provide

more control over the environment setup and the application of related resource

provisioning and scheduling policies.

To provide more realistic awareness to the simulation and modelling of IoT-enabled

applications on edge cloud environment, we performed a low-level configuration

modelling to convey high abstraction of computation and data communication

behaviour for environment elements. The simulation in the context of edge cloud

computing incorporates (i) resource capabilities of computation and storage; (ii)

networking interfaces to model communication for stationary and non-stationary

devices; (iii) resource availability in terms of capability and accessibility; and (iv)

resource collaboration based on pre-defined schema and policies. In this thesis, we

adopted a simulation-based experimental methodology to implement the frame-

work services by extending the CloudSim [157] framework and adding correspond-

ing components. This involves designing and building CoopEdgeCloudSim to sim-

ulate scheduling and execution of hybrid workflows in a cooperative edge cloud

system.

This chapter describes the design and implementation aspects of the simulator,

and is organized as follows. Section 6.2 discusses the workflow management system

and its components and services. Section 6.3 provides details about the scheduling

framework simulation and highlights the main simulator components. Framework

validation is in Section 6.4 and a chapter summary is presented in Section 6.5.

6.2 Workflow Management System

Figure 6.1 presents a high level architecture of the proposed workflow manage-

ment system, which includes all service layers for communicating with end users,

submitting workflow applications for scheduling, and interacting with resources.

Chapter 6 115

User Management

Desktop

Web

Clients

SOAP

Web API

Submission Protocols

Web Tools

Others

Workflow CompositionVisualization

Visual Tracking

Enquiry System

Workflow Monitoring

Submission API

Workflow Manager

Workflow

Task SchedulerResource Provisioner

Resource Estimator

Workflow Engin

Workflow DB

Report Manager

Notifications

Logs

Resource API

Distributed Resourcs

CloudEdge Data CenterEdge DevicePersonal Computer Private Data Center

Sensing API

IoT Devices

Figure 6.1: Hybrid Workflow Scheduling Management Architecture

6.2.1 User Management

The workflow scheduling process starts with a client submitting a scheduling re-

quest. The user management interface provides APIs to facilitate user interaction

with the system in an abstract view.

Chapter 6 116

Submission Service

Hybrid workflows have marginally complex structures of interactions and depen-

dencies between stream and batch tasks. For stream applications, the user needs to

identify the data sources, data rate, aggregation time interval, minimum through-

put and application type. For both applications, the user should set the deadline

and application type. The submission service provides desktop and web user in-

terfaces (UIs) to accelerate the workflow creation process through offering config-

urable templates. For advanced users, the submission service enables writing the

workflow configuration in JSON format. Figure 6.2 shows an example of stream

and batch tasks definitions.

In addition, the user can compose and integrate multiple workflow applications

in one submission. After submitting the workflow submission. setting-up the

Figure 6.2: Task definition in JSON format

Chapter 6 117

workflow configuration, the user can send it to the workflow execution engine for

execution.

Resource Services

System manager monitors and tracks system resources. Based on the current

usage level, the manager can set-up resource provisioning to reduce upfront costs.

In addition, the system enables the manager to communicate with private resource

owners (at the edge layer) to update the cooperation status by adding or releasing

edge data centers and devices.

Workflow Monitoring Service

The system affords the client live monitoring of workflow execution. The monitor-

ing service offers data about the ongoing cost of running the workflow, execution

output status and data collection reports from input devices. Based on this data,

the client can request updates to the workflow submission to reduce the cost,

add additional data sources to improve output quality, or increase the number of

execution iterations, etc.

6.2.2 Workflow Engine

The workflow engine provides the core workflow scheduling services, including

managing workflows and performing initial compilation, estimating required re-

sources based on client configuration, resource provisioning and allocation at cloud

and edge layers, task scheduling by mapping tasks to resources, and finally running

workflows.

Workflow Manager

The workflow manager receives the client workflow in XML file format and converts

it to a workflow object. The conversion involves the following:

1. Building the workflow and set-up data dependencies through parsing the

XML file according to the workflow template. Table 6.1 provides a descrip-

tion for main stream and batch properties.

Chapter 6 118

Table 6.1: Hybrid workflow task properties

Property Description Task Type
Type Task type Stream and Batch
Arrival Rate Stream rate at receiver Stream
Service Time Processing rate Stream and Batch
Throughput Percentage of processed data Stream and Batch
Window size Time length to collect streams Stream
Deadline Maximum execution time Batch

Aggregation Factor
Number of data units to produce
an output

Batch

Pre Tasks Preceding tasks Stream and Batch
Post Tasks Succeeding tasks Stream and Batch

2. Running and validating the queuing system for each stream task. In this the-

sis the execution of a stream was modelled as a M/G/c queuing system [149],

in which the arrivals are Markovian (modeled as a Poisson process), service

times have a general distribution and there are multiple servers. Queu-

ing system validation implies satisfying the minimum system utilization and

maximum stream waiting time in the queue.

3. Workflow profiling. The workflow engine applies the GDS technique to esti-

mate the amount of resources required and the maximum workflow execution

time. The profiling process works iteratively to log workflow execution re-

sults, which include, total cost, allocated resources, execution time and a

workflow configuration file. The workflow manager uses data profiles to ap-

proximate the workflow execution function, which will be used later by the

resource estimator.

Resource Estimator

The resource estimator implements functions to predict the amount of resources

run a hybrid workflow. Algorithm 11 shows the high-level GDS-based estimation

process. The process is considered valid when every task is allocated to a group.

For complex hybrid workflows, a group relaxation strategy was applied to allow

adding tasks that go beyond group boundaries at a certain threshold within the

interval [0.01, 0.05]. For each task, the gradient value is calculated and configura-

tion is updated for resource estimation. Section 5.4 provides more details about

Chapter 6 119

GDS-based resource estimation.

Resource Provisioner

The resource provisioner is responsible for managing computation environment

resources. In this thesis we adopted a dynamic provisioning strategy to allocate

required resources based on resource estimation outcomes. The edge cloud system

offers three types of resources: cloud data centers, edge data centers and edge

devices. The provisioner’s mission is to prepare resource allocation plans based on

the current status of system resources. The following functions are associated to

the provisioner:

1. Resource discovery. This function is about invigilating the availability and

the capacity of system resources. The discovery process can be described as

follows.

(a) An edge device can be stationary or non-stationary and it is considered

available if it has: i) the minimum computation capacity in terms of

free cores and memory (depending on the type of application); ii) the

minimum battery energy (in the case of a non-stationary device); and

iii) the minimum connectivity threshold to access edge data centers.

(b) The provisioner communicates with the edge center gateway to collect

information about data center resource availability and connectivity

status with other data centers (edge and cloud) and edge devices.

Algorithm 11 GDS-based resource estimator

1: procedure RunEstimator
2: while !AllTasksGrouped do
3: IncreaseGroupRelaxation()
4: for each Task ∈ StreamTasks do
5: TConfig = LoadTaskConfiguration()
6: CalculateGradient(TConfig)
7: UpdateTaskConfig(TConfig , Task)
8: UpdateEstimation()

9: AllTasksGrouped = GroupTasks(StreamTasks)

Chapter 6 120

(c) The discovery process is only performed on authenticated devices.

2. Resource allocation planning. Various parameters determine the overall

time and cost of running a workflow based on a resource provisioning plan:

resource capability, network type and quality, and execution trustworthy.

Thus, the provisioner will construct alternative execution plans based upon

the connectivity status between edge data centers and devices.

3. Cloud resource provisioning. Along with resource allocation plans, the pro-

visioner also provides details about cloud VMs to guide the scheduler in

mapping tasks to public clouds. After deciding on mapping some tasks to

the cloud, it is the provisioner’s mission to allocate cloud VMs.

Task Scheduler

The task scheduler receives task groups from the resource estimator and allocation

plans from the resource provisioner. Subsequently, the scheduler needs to find

the optimized mapping strategy which provides the minimum of execution time

and cost in a joint optimization manner. The mapping is a group-based process

in which group tasks are enclosed in a bounded execution interval. This allows

the scheduler to control the execution scale at group level and apply relaxation

strategies.

6.3 Implementation and Prototyping

To implement the prototype of the proposed workflow management architecture,

we built a simulation environment to implement all the services and functions

required to achieve the desired functionalities of resource management, user com-

munication, resource scheduling and task mapping. The environment allows the

evaluation of hybrid workflow scheduling techniques and frameworks in edge cloud

systems. In that matter, the CoopEdgeCloudSim is developed on the top of the

CloudSim simulator [157], which is the most well-known simulator for building

customized distributed systems in an event-based simulation execution.

Chapter 6 121

WorkflowEstimator EdgeDCWorkflowManager

Process()

CallScheduler()

Task Groups

CoopEdgeBroker

CooprationStatus

PerformDiscovery()

Submit()

User

Scheduling Report

Time and Cost

Approval

StartProvisioning()

StartProvisioningRequest()

Approved

SendCloudlets()

Confirmed

Provisioning Approved

SubmitCloudlets()

AllCloudletsApproved

WorkflowSentForExecution

Figure 6.3: The sequence diagram for running a workflow

For the implementation of CoopEdgeCloudSim, we extended some of the CloudSim

classes, as presented in Figure 6.4. Entities that extend the SimEntity class can

exchange messages, and schedule events (SimEvent) based on pre-defined com-

mand/event tags. The class diagram hierarchy for the CoopEdgeCloudSim simu-

lator is shown in Figure 6.5. The following section outlines the extended classes.

Workflow Manager

As mentioned earlier, the scheduling process is handled online and is started once

the workflow execution request is received. The workflow manager extends the

SimEntity class to allow event messaging with the resource broker (CoopEdge-

DatacenterBroker) entity. The broker sends a message with ”process workflow

acknowledgment” tag indicating that resource discovery is finished. Once the ac-

knowledgment is received, the workflow manager pulls the waiting workflow and

Chapter 6 122

Datacenter CloudDC

EdgeDC

extends

extends

WorkflowManager

SimEntity

extends

DatacenterBroker CoopEdgeDatacenterBrokerextends

Vm

EdgeDeviceextends

Mobileextends

VmAllocationPolicy EdgeAllocationPolicyStrictextends

CloudletSchedulerSpaceShared extends

Cloudlet

Host

CloudletSchedulerSpaceSharedExtended

CloudSim entity

CoopEdgeCloudSim entity

extends

EdgeVmextends

extends

Figure 6.4: CoopEdgeCloudSim simulator entities

fires the estimation process to produce execution groups under constraints of queu-

ing system validity for all stream tasks and ability to construct the critical path

(CP) that encloses all tasks. Next, an allocation request is sent to the broker.

Figure 6.3 shows a typical workflow execution request scenario.

CoopEdgeDatacenterBroker

The CoopEdgeDatacenterBroker class represents the user (the workflow manager)

proxy needed to access the computing system services. It has a range of re-

sponsibilities to perform, including i) preparing provisioning groups and execution

paths; ii) performing resource discovery and preparing execution plans; iii) call-

ing the workflow scheduler; iv) sending the scheduling plan and the estimated

cost and time to the workflow manager for user confirmation; and v) sending VM

provisioning and cloudlet execution requests to data centers.

Chapter 6 123

WorkflowManager

CoopEdgeDatacenterBroker

EdgeDC
Host

Mobile

EdgeDevice

1

0..*

0..*

1

DatacenterISA

ISA

1..*

1..*

0..*

1..*

EdgeVm

Vm

ISA

1

1

ISA

WorkflowTaskGroupProvisionPlanner
0..*

1

1 0..*

TaskScheduler

0..*

1

0..*

1

EdgeDCConfig

0..*

1..*

IoT Device

0..*

Figure 6.5: The class diagram hierarchy for CoopEdgeCloudSim

EdegDC

The EdgeDC class manages the functionality of the edge datacenter system. The

class includes functions to handle the services for two edge datacenter types, that

Chapter 6 124

is, interconnected (stationary with LAN networking) and distributed (of station-

ary and non-stationary) edge devices. The class provides services for resource

provisioning with various allocation strategies, resource usage monitoring, facili-

tating access to internal assets by defining accessible service proxies and allowing

tracking and monitoring for non-stationary devices (mobiles and IoT sensors) in

terms of accessibility, power and energy, networking quality and location.

The EdgeDC class includes continues monitoring the connectivity status of the

edge devices. This supports the resource discovery service provided by the resource

broker class. To simulate the discovery process, we created ”EdgeDCConfig” class

that resembles the behaviour of edge resources in terms of capability, availability

and cooperation with other devices.

EdgeDevice

An EdgeDevice is any accessible and verified device capable collecting and pro-

cessing data streams from IoT devices and also communicating with an EdgeDC

for the purposes of workload migration and data storage. The EdgeDevice class

extends the Host class to allow the tracking of features like mobility, location,

energy, connectivity and the cooperation network. In addition, an EdgeAlloca-

tionPolicyStrict allocation policy is applied on edge devices in a way that each

device is only associated with one VM (EdgeVm).

IoTDevice

The IoTdevice class models the core features of IoT devices, and it senses, gener-

ates and sends data to the next network hop. An IoT device has the features of

type (based on generated data type), communication interface and network type,

stream generation rate and connectivity status.

6.4 Framework Evaluation

This section provides the validation for the simulation framework accuracy. The

validation process aims to determine the framework stability in estimating the

Chapter 6 125

optimization parameters, that is, the execution time and cost. For stability as-

sessment, the validation experimentation was undertaken using a medium-scale

workflow. Figure 6.6 shows the workflow structure, which consists of 20 stream

and 45 batch tasks. In addition, we adopted the edge cloud resource model pro-

vided in Table 5.4. One cloud datacenter, three edge data centers and number of

(application-defined) edge devices articulated were compound to form the cooper-

ative edge cloud system.

The cooperative system is controlled by the connectivity and trustworthy among

computation nodes at the edge layer. To simulate edge cooperation, a set of pa-

rameters was randomized to indicate the allowance for these nodes to migrate

computation and data. Various parameters were used, such as number of edge

devices, local connection, local bandwidth, enabled-network interfaces, battery-

level and level of connectivity trust. This mechanism imitates the real behaviour

of the collaborative edge cloud system and allows the assessment of framework

stability with different cooperation states. Tables 6.2 and 6.3 present the results

of running the medium-scale workflow on three computing systems and recording

execution time and cost, respectively. With 95% confidence interval (CI), results

demonstrate the scheduling framework stability as stated by the low measurement

variance and low standard error. Furthermore, the cooperative system required

higher number of iterations to attain a satisfactory level of stability. The Boxplots

in Figures 6.7 and 6.8 shows how it was more difficult to produce stable estimation

Table 6.2: 95% Confidence interval validation results - execution time

Computing System 95% CI (Minutes) Std. Error #Iterations
Cooperative Edge cloud 3.04 - 3.73 0.167 28
Edge cloud 3.14 - 3.82 0.164 22
Cloud only 10.11 - 14.29 1.020 18

Table 6.3: 95% Confidence interval validation results - execution cost

Computing System 95% CI ($) Std. Error #Iterations
Cooperative Edge cloud 1.68 - 2.58 0.22 28
Edge cloud 1.91 - 2.78 0.21 22
Cloud only 9.03 - 12.11 0.68 18

Chapter 6 126

Figure 6.6: The sequence diagram for running a workflow

�����
������������� ���������
����������	��
���

�

�

�

�

��
�
��
��
��
���

�
��

��
��
�
�

Figure 6.7: Execution time variation - window size scenario

������������	������� 	�������
����������
�������

�

�

�

�

	�
��
��
��
��
��
���
��
�

Figure 6.8: Execution cost variation - window size scenario

Chapter 6 127

over mean values compared to uncooperative model. In conclusion, the evalua-

tion results demonstrated a reasonable framework stability for executing hybrid

workflows.

6.5 Summary

This chapter described the architecture of the proposed hybrid workflow scheduling

scheduling framework. Firstly, the main components and services of the high-level

scheduling management system are described. The system provides services in four

levels: user interaction, workflow engine, computation resource and IoT devices.

The workflow engine performs the core system services of resource estimation, re-

source discovery, resource provisioning and task mapping. The engine architecture

is implemented as CoopEdgeCloudSim, an extension of the well-known CloudSim

simulator to simulate the hybrid workflow scheduling on cloud and edge cloud en-

vironments. The CoopEdgeCloudSim simulator allows the evaluation of a variety

of resource management policies (for estimation, discovery and provisioning) and

task mapping techniques on different computing environments.

The framework evaluation shows stable framework behaviour with low estimation

error. However, research on cooperative edge systems is still at an early stage, and

there is considerable room for further improvements to enhance user satisfaction

and achieve accepted levels of edge usage utilization. The next chapter outlines

the main findings of the research, insights into future directions related to hybrid

workflows and edge environments, and concludes the thesis.

Chapter 7

Discussion and Conclusions

This chapter discusses the main findings of research on hybrid workflow scheduling

for edge cloud computing systems. The key future research directions and open

research challenges are highlighted and elaborated.

7.1 Discussion

The emergent of Internet of Things is driving a search for new and sophisticated

forms of service models to benefit from the engagement of a large set of objects

(machines, devices, etc.) which are capable of connecting and share data with min-

imal human interference. Intelligent solutions are needed autonomous and reliable

applications on many domains such as intelligent video surveillance, crowdsensing,

health monitoring and the Internet-of-Vehicles [4]. Certainly, at large-scale and

over the long term, data generated from IoT devices creates critical challenges

for traditional computing systems. This data mostly feeds iterative and cyclic

application services that, in turn, represent a complex structure of processing

paradigms that rely on a concrete integration between real-time, near real-time

and batch processing models. This thesis refers to this processing structure as a

hybrid workflow. A hybrid workflow is the integration of stream and batch data

processing models in one data processing pipeline. Algorithms and techniques are

128

Chapter 7 129

proposed for hybrid workflow scheduling in different computing systems to answer

two main questions: how to model an application structure that illustrates how

batch tasks are communicated and collaborated respect to differences on their

specifications, constraints, and structure?, and what is the contribution of the

computing environment to conquer the challenges of hybrid workflow scheduling?

In chapter 1, we discussed the concept of hybrid workflows and showed the di-

vergence between stream and batch processing with respect to service quality

measurements and techniques used to achieve the satisfactory level of service.

Batch processing is eager for data correctness and completeness, while stream

processing can achieve the desired level of efficiency even with a high blocking

rate, particularly at peak loads. To contextualize the problem of hybrid workflow

scheduling, the chapter identified three core principles for the implementation of

adequate resource provisioning and task scheduling frameworks and strategies: 1)

controlling the flooding data generated at IoT infrastructure level, 2) proposing

application-aligned resource management polices to augment the efficient usage of

layered-resource models in resolving the issues of QoS measurement variation of

integrated models, and 3) designing for improved stream processing performance

through adopting fine-grained modelling with the emphasis on maximizing perfor-

mance via tuning and controlling mechanisms.

Based on these principles, the chapter generalized the concept of hybrid workflows

for applications which are: complex and large-scale with high number of integrated

applications, iterative and batch-based delivery with short-term stream processing

intervals, and flexible and adaptable for parameter tuning. However, research

on the seamless interaction between stream and batch processing has advanced

rapidly by virtue of the accelerated evolution of interactive systems and mobility-

based services.

In chapter 2, a wide range of research on resource provisioning and task scheduling

in cloud and edge computing systems was examined. For resource provisioning,

the literature review that concluded an extensive research has been conducted

on proactive resource estimation mechanisms, with most focused on achieving

Chapter 7 130

cost-effective resource allocation planning strategies, particularly for interactive

and unpredictable workloads. Researchers have begun to employ statistical and

mathematical models for workload prediction and provisioning patterns recog-

nition has emerged to provide more controlled resource estimation and reduce

the overall service performance degradations and service level violations, decisions

about resources provisioning must be taken automatically and in a timely manner.

Moreover, the literature review demonstrated the high convergence of resource

auto-scaling on cloud systems and how application-based approaches of service

parallelization and decomposition are effective in accomplishing the monetary and

responsive application execution constraints. On the other hand, resource provi-

sioning on edge-wise systems is still in its infancy. Researchers need to propose

adapted provisioning schemes that are convenient with respect to edge computing

concerns of localization, data privacy and by-pass control, scalability and physical

implications.

In addition, the literature review presented in chapter 2 provides a discussion of the

chronological development of workflow scheduling on cloud computing. The liter-

ature includes a large number of scheduling techniques and algorithms offered as

optimization solutions in contexts of best-effort, constraint-aware and QoS-based

optimization aspects. The proposed techniques provide solutions for scheduling

problems with majority and minority illustration for both batch and stream ap-

plication workflows, and some researchers have extended the work to emerge edge

computing to settle latency and data privacy issues of scheduling user-centric and

data-intensive applications that enforce the engagement of IoT and user devices

at large scale. Despite the successful implementation of edge computing to work

closer to user and data layers, some key challenges hybrid workflow scheduling

are not well addressed, and these are 1) the edge cooperation is limited to the

edge data center level, and cooperation mechanisms are not well defined or struc-

tured, 2) hybrid workflow scheduling is not illustrated, and the integration between

stream and batch processing is not clearly associated with the scheduling process,

and 3) the impact of stream and batch processing parameters tuning has not been

Chapter 7 131

studied. The thesis describes experimental work overcomes these issues on three

computing systems: cloud, edge cloud, and cooperative edge cloud.

In chapter 3, a resource estimation and provisioning framework for hybrid work-

flows on cloud systems was proposed. The work described in the chapter was

to investigate hybrid workflow modelling and its correspondence to enact opti-

mized execution on cloud system. The idea is to construct an optimal workflow

configuration plan through tuning stream task parameters. To find such a configu-

ration, a meta-heuristics optimization technique, PSO, is adopted. The technique

searches the space for a global solution that guarantees the optimal (minimum)

function value with respect to number of processing cores and execution time. For

resource provisioning, a group-based technique is utilized to reduce execution time

and cost. The grouping approach is convenient for hybrid workflows because it

is capable for controlling the execution of hybrid workflows by efficiently tuning

several parameters, including stream arrival rate and processing throughput.

Evaluation results determined the technique’s efficiency for adaptive task clus-

tering and periodic resource provisioning to respond to the variation on problem

variables, particularly, data generation rate, stream processing interval length and

processing throughput. Furthermore, the analysis highlighted the sensitivity of the

optimization objective to throughput constraints, and the necessity of building ef-

ficient tuning techniques to guarantee a reasonable margin of workflow execution

optimization. Even though it has the advantage of attaining a global optimal so-

lution, the adopted evolutionary technique has a limitation of high optimization

time complexity with large-scale workflows that carry out a massive number of

configuration plans, and accordingly may cause overall framework performance

degradation. Moreover, although the chapter provides a proof-of-concept hybrid

workflow provisioning framework, and some critical parameters were not perfectly

studied thoroughly; network quality for migrating stream data to the cloud is

an example. The work in chapter 4 handled these limitations through providing

more advanced optimization methods which can support resource provisioning and

scheduling for complex hybrid workflows in an edge cloud system.

Chapter 7 132

In chapter 4, a two-stage hybrid workflow scheduling framework for edge cloud

computing was proposed. The first stage is to estimate the amount of resources

needed to run a hybrid workflow based on a linear optimization approach, the

GDS, which maintains the same optimization objective of reducing the number

of processing units in a bounded execution time limit. The linear search tech-

nique was applied for a three-dimensional workflow execution function in which

each dimension represents a tuple of all workflow configuration parameter values

among all stream tasks. The main challenge of applying the GDS approach was

constructing the workflow execution function and confirming the usage of GDS on

the function. For the purpose of technique evaluation, an offline approximation

process was applied based on workflow execution profiling with consideration of

variation on a range of configuration parameters.

On the second stage, the work on the chapter proposed a cluster-based provision-

ing and scheduling technique for hybrid workflows in heterogeneous edge cloud

resources, which aims to achieve a multi-objective optimization of execution time

and monetary cost under constraints of deadline and throughput. The chapter

highlighted the role of edge computing in processing latency-sensitive workloads

(stream tasks) closer to data sources and reduce the traffic to the cloud. To

boost the efficiency of the scheduling framework, the task mapping process was

conducted at group level can reduce the cumulative data migration between com-

putation nodes, which is mostly subjects to the ability to maximize the number of

tasks within a certain group. The scheduling optimizer considers the issues of load

balancing, edge capacity and the data communication quality among the three re-

source layers (IoT, edge and cloud). The chapter provided a comparison between

GDS-based (linear search optimization) and the PSO-based (metaheuristic opti-

mization) techniques. Results demonstrate the ability of GDS to control the execu-

tion of hybrid workflows by efficiently tuning several parameters, including stream

arrival rate, processing throughput and workflow complexity. The proposed sched-

uler shows a minimum of 35% and a maximum of 70% cost and time reduction

compared to other nominated techniques. Moreover, the GDS-based technique

Chapter 7 133

shows a significant reduction (50% on average) in the optimization complexity

compared to the PSO technique.

The work described in this chapter had two limitations. The first is the offline ex-

amination of the workflow execution function. This is impractical for generalizing

the optimization framework due to the diversity of hybrid workflow applications.

The other limitation was the limited effort to utilize the capability of edge com-

puting based on the assumption of workload migration to the cloud in case of

edge failure. Thus, chapter 5 described the experimental work on hybrid work-

flow provisioning and scheduling for cooperative edge cloud computing, and also

provides an improvement to the GDS technique to handle online resource estima-

tion without prior knowledge about the input workflow structure and constraints.

The current version of the GDS technique does not support online estimation for

unknown workflow structures.

Chapter 5 described the adoption of cooperative edge cloud model to resolve the

issues of latency-sensitive application as well as to improve the resource utilization

at the edge layer. In addition, the chapter introduced an extended GDS-based re-

source estimation technique to align the requirements of unpredictable workflow

structures. Research outcomes on cooperative edge computing concluded the com-

plexity of building a resilient task scheduler that achieves a satisfactory level of fair

load balancing and cost-efficient workload distribution for the cooperative model.

This chapter presented a hybrid workflow scheduling framework on a cooperative

edge cloud computing resource model. The cooperation implies communication

between edge resources for computation and data migration under constraints of

resource capability and data dependency.

The chapter provided comparison of the cooperative edge-cloud model with other

two resource models, namely, non-cooperative edge-cloud and cloud-only. The

cooperative model showed a significant cost reduction of 40% compared to the

non-cooperative model. In addition, results demonstrated the cooperative model’s

capability to maximize data migration within the layer, and accordingly reduce

data transfer to the cloud layer. Furthermore, in this chapter we improved the

Chapter 7 134

optimization approach, GDS, such that it is able to perform online estimation

regardless of workflow structure.

In chapters 3, 4 and 5, the thesis provides different algorithms, techniques, frame-

works to handle resource estimation and provisioning, and task mapping in con-

text of hybrid workflows. As we stated, this is a simulation-based experimental

which relies on verified data profiling for hybrid workflow task types. According

to results, the cooperative model showed a significant cost reduction with 40%

compared to the non-cooperative model. In addition, results demonstrated the

cooperative model capability to maximize the data migration within the layer,

and accordingly reduce data transfer to cloud layer.

Chapter 6 provided a detailed description of the proposed framework for hybrid

workflow scheduling in edge cloud computing systems. The framework of an edge

cloud computing deployment architecture and its prototype, ’CoopEdgeCloudSim’

which is implemented by extending the classes of CloudSim simulator in order to

simulate resource provisioning and hybrid workflow scheduling framework in edge

cloud system. To provide more realistic awareness to the simulation and modelling

of IoT-enabled applications on edge cloud environment.

7.2 Future Directions

The research in this thesis addressed the problem of hybrid workflow scheduling

on various computing systems. However, there are still some research challenges

and open research areas that need further exploration.

7.2.1 Statistical approaches for Gradient Descent Search

optimization for hybrid workflows

Hybrid workflows are applied in a wide range of applications that mostly involve

the integration of complex structure of applications and services. In this thesis,

Chapter 7 135

we experimented with the application of a GDS technique to reduce the com-

plexity of searching workflow execution plans at large-scale. The main issue is to

guarantee the best convergence and correctness of the quantized algorithm with

variable workflow topologies [175]. Online resource estimation performance may

suffer from variation in workflow models and the effects of unpredictable user be-

haviour on setting QoS measurements. The solution provided in this thesis is to

perform an online workflow execution profiling to get the best execution func-

tion approximation. This does not seem a practical way to meet the mentioned

challenges.

Utilizing statistical methods and learning algorithms could help future researchers

to train estimation models for predicting workflow execution behaviour, and ac-

cordingly improves the estimations. For example, using Stochastic Gradient De-

scent [176] as a lightweight optimizer is likely to be a promising research direction

for reducing online resource estimation complexity.

7.2.2 SLA-based optimization solutions in cooperative edge

context

The cooperative edge system is a computing environment in which local devices

can participate to benefit from the access to collaborative system services in terms

of privacy preservation through edge-controlled user sensitive data processing, ser-

vice reliability for critical applications like self-driving and health monitoring, and

tailored context-aware services upon user location and data usage preferences.

The management of user SLA should ensure a satisfactory level of user acceptance

for data usage and context-awareness without violating the overall system per-

formance. For example, Social Sensing based Edge Computing (SSEC) involves

processing data collected from privately owned devices. SSEC manages privacy

without a tradeoff with service performance or accuracy [177].

Chapter 7 136

7.2.3 Towards decentralized service management solutions

in edge cloud systems

Edge cloud computing enables communication/integration between centralized

cloud systems and highly distributed edge devices which are used for computa-

tion and data storage to address the data’s wide dispersion. Edge resources are

heterogeneous, highly dispersed, and loosely coupled. Edge cloud computing is

resource-decentralized computing where large data centers distribute computation

and workloads towards the edge of the network closer to the end-users and sensors

[178]. Research on data-based edge cloud architectures for workload distribution

is still in its infancy. Further research is required to propose control architectures

to manage how edge resources are controlled in the computing ecosystem. A dis-

tributed control approach with multi-service controllers is a promising research di-

rection for more secure and reliable localized edge-based services. Localized-service

controllers have many real-world applications in object-detection and geolocation

tracking services [179, 180]. This thesis adopted a single and centralized service

controller to manage and coordinate the communication between edge devices in

the computing system. The massive and growing number of edge devices means

their the coordination a bottleneck for service automation and resource collabora-

tion. A future research direction is to develop techniques that provide dynamic,

progressive and localized edge cloud control management to reduce communication

costs and improve system repressiveness.

7.2.4 Reliable computing in edge cloud systems: a service-

oriented approach

In this thesis, a hybrid workflow scheduling is defined as the management of

QoS optimization for short-term and iterative application executions with hard-

constrained of waiting time and throughput. Short-term service delivery workflows

allow dynamic systems to adapt their behaviour. For example, short-term forecast-

ing in transportation systems allows producing alternative routes to avoid traffic

Chapter 7 137

congestion before gridlock. Practically, the realtime application processing, like

online forecasting, is prone to failure for several reasons such as communication

failure and insufficient resource capability. Considering heterogeneous resources is

essential to achieve reliable stream processing in the edge cloud system. Reliable

resource management for heterogeneous service-oriented systems has been widely

identified as a critical research challenge in reference to the devastating contri-

bution on violating user SLA caused by respect to processor and communication

failures. In a nutshell, reliability indicates the likelihood of successfully completing

of workflow execution [181]. Recently, many approaches have proposed to enhance

service-based reliability by reducing application recovery time after failure. The

work on chapter 5 involved the adoption of resource discovery mechanism to rank

and select edge resources to be engaged in the cooperative edge cloud computing

system based on computing capability and connectivity quality.

Reliable-based hybrid workflow scheduling is not addressed in this thesis. To

ensure the quality of edge collaboration services and trusted behavior of involved

devices, a trust mechanism can be developed to assess the trustworthy and the

reliability assurance at service and device levels [182]. In addition, a reliable-based

resource discovery strategy can be further investigated to traverse and predict

possible failure cases of workflow task execution on edge nodes, this is refereed to

designing node selection algorithm [183].

7.3 Summary

This chapter concluded the work on this thesis and provided insights on the main

outcomes of research and development of techniques and algorithms for hybrid

workflow scheduling on various computing systems. This thesis highlighted the

foundation of hybrid workflow concept as a high level abstraction of combining

heterogeneous application models, i.e., stream and batch, which are different in

Chapter 7 138

computation constraints and service quality measurements. The chapter summa-

rized the research work of proposing resource estimation and provisioning tech-

niques that consider the complexity of hybrid workflow models and how the cost of

resources usage can be reduced. In addition, the chapter highlighted the research

provided to build scheduling techniques that benefit from the availability of sophis-

ticated computing systems like edge cloud and cooperative edge cloud to optimize

workflow execution and meet user expectations for low cost and high throughput

execution outcomes. Moreover, the simulation framework which was developed to

host the scheduling engine was described. Finally, this chapter highlighted and

suggested some future research directions towards hybrid workflow scheduling and

edge computing.

Bibliography

[1] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. Riotbench: An

iot benchmark for distributed stream processing systems. Concurrency and

Computation: Practice and Experience, 29(21):e4257, 2017.

[2] Marcos D Assunção, Rodrigo N Calheiros, Silvia Bianchi, Marco AS Netto,

and Rajkumar Buyya. Big data computing and clouds: Trends and future

directions. Journal of Parallel and Distributed Computing, 79:3–15, 2015.

[3] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements,

and future directions. Future generation computer systems, 29(7):1645–1660,

2013.

[4] Cisco Visual Networking Index. global mobile data traffic forecast update,

2017–2022. Cisco White paper, 2019.

[5] Hsinchun Chen, Roger HL Chiang, and Veda C Storey. Business intelligence

and analytics: From big data to big impact. MIS quarterly, pages 1165–1188,

2012.

[6] Wullianallur Raghupathi and Viju Raghupathi. Big data analytics in health-

care: promise and potential. Health information science and systems, 2(1):

3, 2014.

[7] Doug Laney. 3d data management: Controlling data volume, velocity and

variety. META group research note, 6(70):1, 2001.

139

Bibliography 140

[8] Andrea De Mauro, Marco Greco, and Michele Grimaldi. A formal definition

of big data based on its essential features. Library Review, 2016.

[9] Xiaolong Jin, Benjamin W Wah, Xueqi Cheng, and Yuanzhuo Wang. Signif-

icance and challenges of big data research. Big Data Research, 2(2):59–64,

2015.

[10] James Manyika. Big data: The next frontier for innovation, competition, and

productivity. http://www. mckinsey. com/Insights/MGI/Research/Technol-

ogy and Innovation/Big data The next frontier for innovation, 2011.

[11] Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and

Dominic Barton. Big data: the management revolution. Harvard business

review, 90(10):60–68, 2012.

[12] Han Hu, Yonggang Wen, Tat-Seng Chua, and Xuelong Li. Toward scalable

systems for big data analytics: A technology tutorial. IEEE access, 2:652–

687, 2014.

[13] Nesime Tatbul. Streaming data integration: Challenges and opportunities.

In 2010 IEEE 26th International Conference on Data Engineering Work-

shops (ICDEW 2010), pages 155–158. IEEE, 2010.

[14] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview

of workflow management: From process modeling to workflow automation

infrastructure. Distributed and parallel Databases, 3(2):119–153, 1995.

[15] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of

data-intensive scientific workflow management. Journal of Grid Computing,

13(4):457–493, 2015.

[16] Yan Yao, Jian Cao, Shiyou Qian, and Shanshan Feng. Decentralized execu-

tions of privacy awareness data analytics workflows in the cloud. Concur-

rency and Computation: Practice and Experience, 31(15):e5063, 2019.

[17] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.(2011).

NIST special publication, 800:145, 2011.

Bibliography 141

[18] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Plat-

form and applications. In 2015 Third IEEE Workshop on Hot Topics in Web

Systems and Technologies (HotWeb), pages 73–78. IEEE, 2015.

[19] Jyoti Sahni and Deo Prakash Vidyarthi. A cost-effective deadline-

constrained dynamic scheduling algorithm for scientific workflows in a cloud

environment. IEEE Transactions on Cloud Computing, 6(1):2–18, 2015.

[20] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge

computing: Vision and challenges. IEEE Internet of Things Journal, 3(5):

637–646, 2016.

[21] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong

Shi. Edge computing for autonomous driving: Opportunities and challenges.

Proceedings of the IEEE, 107(8):1697–1716, 2019.

[22] Weisong Shi, Hui Sun, Jie Cao, Quan Zhang, and Wei Liu. Edge computing-

an emerging computing model for the internet of everything era. Journal of

Computer Research and Development, 54(5):907–924, 2017.

[23] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A

survey on internet of things: Architecture, enabling technologies, security

and privacy, and applications. IEEE Internet of Things Journal, 4(5):1125–

1142, 2017.

[24] Bing Lin, Fangning Zhu, Jianshan Zhang, Jiaqing Chen, Xing Chen,

Naixue N Xiong, and Jaime Lloret Mauri. A time-driven data placement

strategy for a scientific workflow combining edge computing and cloud com-

puting. IEEE Transactions on Industrial Informatics, 15(7):4254–4265,

2019.

[25] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog

computing and its role in the internet of things. In Proceedings of the first

edition of the MCC workshop on Mobile cloud computing, pages 13–16. ACM,

2012.

Bibliography 142

[26] Amir Vahid Dastjerdi and Rajkumar Buyya. Fog computing: Helping the

internet of things realize its potential. Computer, 49(8):112–116, 2016.

[27] Matú Harvan, Thomas Locher, and Ana Claudia Sima. Cyclone: Unified

stream and batch processing. In 2016 45th International Conference on

Parallel Processing Workshops (ICPPW), pages 220–229. Ieee, 2016.

[28] Nader Mohamed and Jameela Al-Jaroodi. Real-time big data analytics:

Applications and challenges. In 2014 international conference on high per-

formance computing & simulation (HPCS), pages 305–310. IEEE, 2014.

[29] David Hollingsworth et al. The workflow reference model: 10 years on. In

Fujitsu Services, UK; Technical Committee Chair of WfMC. Citeseer, 2004.

[30] Adam Barker and Jano Van Hemert. Scientific workflow: a survey and

research directions. In International Conference on Parallel Processing and

Applied Mathematics, pages 746–753. Springer, 2007.

[31] Ustun Yildiz, Adnene Guabtni, and Anne HH Ngu. Business versus scientific

workflows: A comparative study. In 2009 Congress on Services-I, pages 340–

343. IEEE, 2009.

[32] Dália Loureiro, Conceição Amado, André Martins, Diogo Vitorino, Aisha

Mamade, and Sérgio Teixeira Coelho. Water distribution systems flow mon-

itoring and anomalous event detection: A practical approach. Urban Water

Journal, 13(3):242–252, 2016.

[33] Nada Chendeb Taher, Imane Mallat, Nazim Agoulmine, and Nour El-

Mawass. An iot-cloud based solution for real-time and batch processing

of big data: Application in healthcare. In 2019 3rd International Confer-

ence on Bio-engineering for Smart Technologies (BioSMART), pages 1–8.

IEEE, 2019.

[34] RM Tyburski. A review of road sensor technology for monitoring vehicle

traffic. ITE (Institute of Transportation Engineers) Journal;(USA), 59(8),

1988.

Bibliography 143

[35] Michel Ferreira, Ricardo Fernandes, Hugo Conceiçao, Pedro Gomes, Pedro M

d’Orey, Lúıs Moreira-Matias, Joao Gama, Fernanda Lima, and Lúıs Damas.

Vehicular sensing: Emergence of a massive urban scanner. In International

Conference on Sensor Systems and Software, pages 1–14. Springer, 2012.

[36] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and

Michele Zorzi. Internet of things for smart cities. IEEE Internet of Things

journal, 1(1):22–32, 2014.

[37] Alain Biem, Eric Bouillet, Hanhua Feng, Anand Ranganathan, Anton Ri-

abov, Olivier Verscheure, Haris Koutsopoulos, and Carlos Moran. Ibm info-

sphere streams for scalable, real-time, intelligent transportation services. In

Proceedings of the 2010 ACM SIGMOD International Conference on Man-

agement of data, pages 1093–1104, 2010.

[38] Zhiyi Li, Reida Al Hassan, Mohammad Shahidehpour, Shay Bahramirad,

and Amin Khodaei. A hierarchical framework for intelligent traffic man-

agement in smart cities. IEEE Transactions on Smart Grid, 10(1):691–701,

2017.

[39] Itorobong S Udoh and Gerald Kotonya. Developing iot applications: chal-

lenges and frameworks. IET Cyber-Physical Systems: Theory & Applica-

tions, 3(2):65–72, 2018.

[40] Kanwardeep Singh Ahluwalia. Scalability design patterns. In Proceedings of

the 14th Conference on Pattern Languages of Programs, pages 1–8, 2007.

[41] Marcos Dias de Assuncao, Alexandre da Silva Veith, and Rajkumar Buyya.

Distributed data stream processing and edge computing: A survey on re-

source elasticity and future directions. Journal of Network and Computer

Applications, 103:1–17, 2018.

[42] Dawei Sun and Rui Huang. A stable online scheduling strategy for real-

time stream computing over fluctuating big data streams. IEEE Access, 4:

8593–8607, 2016.

Bibliography 144

[43] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard

Dobbs, Jacques Bughin, and Dan Aharon. Unlocking the potential of the

internet of things. McKinsey Global Institute, 2015.

[44] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. Workflow schedul-

ing algorithms for grid computing. In Metaheuristics for scheduling in dis-

tributed computing environments, pages 173–214. Springer, 2008.

[45] AR Arunarani, D Manjula, and Vijayan Sugumaran. Task scheduling tech-

niques in cloud computing: A literature survey. Future Generation Computer

Systems, 91:407–415, 2019.

[46] Mohit Kumar, SC Sharma, Anubhav Goel, and SP Singh. A comprehensive

survey for scheduling techniques in cloud computing. Journal of Network

and Computer Applications, 2019.

[47] C Nandhakumar and K Ranjithprabhu. Heuristic and meta-heuristic work-

flow scheduling algorithms in multi-cloud environments—a survey. In 2015

International Conference on Advanced Computing and Communication Sys-

tems, pages 1–5. IEEE, 2015.

[48] Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge: A

scalable iot architecture based on transparent computing. IEEE Network,

31(5):96–105, 2017.

[49] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in

cloud computing: What it is, and what it is not. In Proceedings of the 10th

International Conference on Autonomic Computing ({ICAC} 13), pages 23–

27, 2013.

[50] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review

of auto-scaling techniques for elastic applications in cloud environments.

Journal of grid computing, 12(4):559–592, 2014.

Bibliography 145

[51] Sara Kardani Moghaddam, Rajkumar Buyya, and Kotagiri Ramamoha-

narao. Performance-aware management of cloud resources: A taxonomy

and future directions. ACM Computing Surveys (CSUR), 52(4):1–37, 2019.

[52] Rafael Moreno-Vozmediano, Rubén S Montero, Eduardo Huedo, and Igna-

cio M Llorente. Efficient resource provisioning for elastic cloud services based

on machine learning techniques. Journal of Cloud Computing, 8(1):5, 2019.

[53] Ming Mao and Marty Humphrey. Scaling and scheduling to maximize ap-

plication performance within budget constraints in cloud workflows. In 2013

IEEE 27th International Symposium on Parallel and Distributed Processing,

pages 67–78. IEEE, 2013.

[54] Malawski Maciej. Cost-and deadline-constrained provisioning for scientific

workflow ensembles in iaas clouds. In Proceedings of the International Con-

ference on High Performance Computing, Networking, Storage and Analysis.

IEEE Computer Society Press, 2012.

[55] Qingchen Zhang, Laurence T Yang, Zheng Yan, Zhikui Chen, and Peng

Li. An efficient deep learning model to predict cloud workload for industry

informatics. IEEE transactions on industrial informatics, 14(7):3170–3178,

2018.

[56] Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng Lung. Towards

an autonomic auto-scaling prediction system for cloud resource provisioning.

In 2015 IEEE/ACM 10th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, pages 35–45. IEEE, 2015.

[57] Neal Wagner and Zbigniew Michalewicz. An analysis of adaptive windowing

for time series forecasting in dynamic environments: further tests of the

dyfor gp model. In Proceedings of the 10th annual conference on Genetic

and evolutionary computation, pages 1657–1664, 2008.

[58] Mahmood Deypir, Mohammad Hadi Sadreddini, and Sattar Hashemi. To-

wards a variable size sliding window model for frequent itemset mining over

data streams. Computers & industrial engineering, 63(1):161–172, 2012.

Bibliography 146

[59] Daniel Warneke and Odej Kao. Exploiting dynamic resource allocation for

efficient parallel data processing in the cloud. IEEE transactions on parallel

and distributed systems, 22(6):985–997, 2011.

[60] Yanling Shao, Chunlin Li, Jinguang Gu, Jing Zhang, and Youlong Luo.

Efficient jobs scheduling approach for big data applications. Computers &

Industrial Engineering, 117:249–261, 2018.

[61] Teng Li, Jian Tang, and Jielong Xu. A predictive scheduling framework for

fast and distributed stream data processing. In Big Data (Big Data), 2015

IEEE International Conference on, pages 333–338. IEEE, 2015.

[62] Dazhao Cheng, Yuan Chen, Xiaobo Zhou, Daniel Gmach, and Dejan Milo-

jicic. Adaptive scheduling of parallel jobs in spark streaming. In IEEE IN-

FOCOM 2017-IEEE Conference on Computer Communications, pages 1–9.

IEEE, 2017.

[63] Kaiyue Wu, Ping Lu, and Zuqing Zhu. Distributed online scheduling and

routing of multicast-oriented tasks for profit-driven cloud computing. IEEE

Communications Letters, 20(4):684–687, 2016.

[64] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective

and low-complexity task scheduling for heterogeneous computing. IEEE

transactions on parallel and distributed systems, 13(3):260–274, 2002.

[65] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An

effective technique for allocating task graphs to multiprocessors. IEEE trans-

actions on parallel and distributed systems, 7(5):506–521, 1996.

[66] Hamid Arabnejad and Jorge G Barbosa. List scheduling algorithm for het-

erogeneous systems by an optimistic cost table. IEEE Transactions on Par-

allel and Distributed Systems, 25(3):682–694, 2013.

[67] Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira. Dag

scheduling using a lookahead variant of the heterogeneous earliest finish time

Bibliography 147

algorithm. In 2010 18th Euromicro Conference on Parallel, Distributed and

Network-based Processing, pages 27–34. IEEE, 2010.

[68] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick HJ Epema. Deadline-

constrained workflow scheduling algorithms for infrastructure as a service

clouds. Future Generation Computer Systems, 29(1):158–169, 2013.

[69] Sukhpal Singh and Inderveer Chana. A survey on resource scheduling in

cloud computing: Issues and challenges. Journal of grid computing, 14(2):

217–264, 2016.

[70] Lingfang Zeng, Bharadwaj Veeravalli, and Xiaorong Li. Scalestar: Budget

conscious scheduling precedence-constrained many-task workflow applica-

tions in cloud. In 2012 IEEE 26th International Conference on Advanced

Information Networking and Applications, pages 534–541. IEEE, 2012.

[71] Vahid Arabnejad, Kris Bubendorfer, and Bryan Ng. Scheduling deadline

constrained scientific workflows on dynamically provisioned cloud resources.

Future Generation Computer Systems, 75:348–364, 2017.

[72] Xiangyu Lin and Chase Qishi Wu. On scientific workflow scheduling in

clouds under budget constraint. In 2013 42nd International Conference on

Parallel Processing, pages 90–99. IEEE, 2013.

[73] Hamid Mohammadi Fard, Radu Prodan, Juan Jose Durillo Barrionuevo, and

Thomas Fahringer. A multi-objective approach for workflow scheduling in

heterogeneous environments. In 2012 12th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 300–309.

IEEE, 2012.

[74] Kahina Bessai, Samir Youcef, Ammar Oulamara, Claude Godart, and Selmin

Nurcan. Bi-criteria workflow tasks allocation and scheduling in cloud com-

puting environments. In 2012 IEEE Fifth International Conference on Cloud

Computing, pages 638–645. IEEE, 2012.

Bibliography 148

[75] Amandeep Verma and Sakshi Kaushal. Bi-criteria priority based particle

swarm optimization workflow scheduling algorithm for cloud. In 2014 Recent

Advances in Engineering and Computational Sciences (RAECS), pages 1–6.

IEEE, 2014.

[76] Zong-Gan Chen, Zhi-Hui Zhan, Ying Lin, Yue-Jiao Gong, Tian-Long Gu,

Feng Zhao, Hua-Qiang Yuan, Xiaofeng Chen, Qing Li, and Jun Zhang. Mul-

tiobjective cloud workflow scheduling: A multiple populations ant colony

system approach. IEEE transactions on cybernetics, 49(8):2912–2926, 2018.

[77] Fuhui Wu, Qingbo Wu, and Yusong Tan. Workflow scheduling in cloud: a

survey. The Journal of Supercomputing, 71(9):3373–3418, 2015.

[78] Wei-Neng Chen and Jun Zhang. An ant colony optimization approach to

a grid workflow scheduling problem with various qos requirements. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 39(1):29–43, 2008.

[79] Juan J Durillo, Hamid Mohammadi Fard, and Radu Prodan. Moheft: A

multi-objective list-based method for workflow scheduling. In 4th IEEE

International Conference on Cloud Computing Technology and Science Pro-

ceedings, pages 185–192. IEEE, 2012.

[80] Xiumin Zhou, Gongxuan Zhang, Jin Sun, Junlong Zhou, Tongquan Wei,

and Shiyan Hu. Minimizing cost and makespan for workflow scheduling in

cloud using fuzzy dominance sort based heft. Future Generation Computer

Systems, 93:278–289, 2019.

[81] Annie S Wu, Han Yu, Shiyuan Jin, K-C Lin, and Guy Schiavone. An in-

cremental genetic algorithm approach to multiprocessor scheduling. IEEE

Transactions on parallel and distributed systems, 15(9):824–834, 2004.

[82] Zhangjun Wu, Zhiwei Ni, Lichuan Gu, and Xiao Liu. A revised discrete

particle swarm optimization for cloud workflow scheduling. In 2010 In-

ternational Conference on Computational Intelligence and Security, pages

184–188. IEEE, 2010.

Bibliography 149

[83] Maria Alejandra Rodriguez and Rajkumar Buyya. Deadline based resource

provisioningand scheduling algorithm for scientific workflows on clouds.

IEEE transactions on cloud computing, 2(2):222–235, 2014.

[84] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya.

A particle swarm optimization-based heuristic for scheduling workflow appli-

cations in cloud computing environments. In 2010 24th IEEE international

conference on advanced information networking and applications, pages 400–

407. IEEE, 2010.

[85] Saurabh Bilgaiyan, Santwana Sagnika, and Madhabananda Das. Workflow

scheduling in cloud computing environment using cat swarm optimization.

In 2014 IEEE International Advance Computing Conference (IACC), pages

680–685. IEEE, 2014.

[86] Shu-Chuan Chu, Pei-Wei Tsai, et al. Computational intelligence based on

the behavior of cats. International Journal of Innovative Computing, Infor-

mation and Control, 3(1):163–173, 2007.

[87] B Arun Kumar and T Ravichandran. Time and cost optimization algorithm

for scheduling multiple workflows in hybrid clouds. European Journal of

Scientific Research, 89(2):265–275, 2012.

[88] Maciej Malawski, Kamil Figiela, Marian Bubak, Ewa Deelman, and Jarek

Nabrzyski. Scheduling multilevel deadline-constrained scientific workflows

on clouds based on cost optimization. Scientific Programming, 2015, 2015.

[89] Andrey Kashlev and Shiyong Lu. A system architecture for running big data

workflows in the cloud. In 2014 IEEE International Conference on Services

Computing, pages 51–58. IEEE, 2014.

[90] Li Liu, Miao Zhang, Yuqing Lin, and Liangjuan Qin. A survey on workflow

management and scheduling in cloud computing. In 2014 14th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pages 837–

846. IEEE, 2014.

Bibliography 150

[91] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl

Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good,

et al. Pegasus: A framework for mapping complex scientific workflows onto

distributed systems. Scientific Programming, 13(3):219–237, 2005.

[92] Aravind Mohan, Mahdi Ebrahimi, Shiyong Lu, and Alexander Kotov.

Scheduling big data workflows in the cloud under budget constraints. In

2016 IEEE International Conference on Big Data (Big Data), pages 2775–

2784. IEEE, 2016.

[93] Sadegh Mirshekarian and Dušan N Šormaz. Correlation of job-shop schedul-

ing problem features with scheduling efficiency. Expert Systems with Appli-

cations, 62:131–147, 2016.

[94] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. Make-

flow: A portable abstraction for data intensive computing on clusters, clouds,

and grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable

Workflow Execution Engines and Technologies, pages 1–13, 2012.

[95] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A cost-effective strategy

for intermediate data storage in scientific cloud workflow systems. In 2010

IEEE international symposium on parallel & distributed processing (IPDPS),

pages 1–12. IEEE, 2010.

[96] Ann L Chervenak, David E Smith, Weiwei Chen, and Ewa Deelman. Inte-

grating policy with scientific workflow management for data-intensive appli-

cations. In 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis, pages 140–149. IEEE, 2012.

[97] Toktam Ghafarian and Bahman Javadi. Cloud-aware data intensive workflow

scheduling on volunteer computing systems. Future Generation Computer

Systems, 51:87–97, 2015.

[98] Nimal Nissanke. Realtime systems. Prentice-Hall, Inc., 1997.

Bibliography 151

[99] Chung Laung Liu and James W Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM),

20(1):46–61, 1973.

[100] Klavdiya Bochenina, Nikolay Butakov, Alexey Dukhanov, and Denis Na-

sonov. A clustering-based approach to static scheduling of multiple work-

flows with soft deadlines in heterogeneous distributed systems. Procedia

Computer Science, 51:2827–2831, 2015.

[101] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Arm-

brust, Ali Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica.

Drizzle: Fast and adaptable stream processing at scale. In Proceedings of

the 26th Symposium on Operating Systems Principles, pages 374–389, 2017.

[102] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Sto-

ica. Discretized streams: an efficient and fault-tolerant model for stream

processing on large clusters. In Presented as part of the, 2012.

[103] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy

Campbell. R-storm: Resource-aware scheduling in storm. In Proceedings of

the 16th Annual Middleware Conference, pages 149–161, 2015.

[104] Leila Eskandari, Zhiyi Huang, and David Eyers. P-scheduler: adaptive hi-

erarchical scheduling in apache storm. In Proceedings of the Australasian

Computer Science Week Multiconference, pages 1–10, 2016.

[105] Chen Meng-Meng, Zhuang Chuang, Li Zhao, and Xu Ke-Fu. A task schedul-

ing approach for real-time stream processing. In 2014 International Confer-

ence on Cloud Computing and Big Data, pages 160–167. IEEE, 2014.

[106] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dim-

itrios S Nikolopoulos. Challenges and opportunities in edge computing. In

2016 IEEE International Conference on Smart Cloud (SmartCloud), pages

20–26. IEEE, 2016.

Bibliography 152

[107] Jie Cao, Quan Zhang, and Weisong Shi. Challenges and opportunities in

edge computing. In Edge Computing: A Primer, pages 59–70. Springer,

2018.

[108] Karim Kanoun, Martino Ruggiero, David Atienza, and Mihaela Van

Der Schaar. Low power and scalable many-core architecture for big-data

stream computing. In 2014 IEEE Computer Society Annual Symposium on

VLSI, pages 468–473. IEEE, 2014.

[109] Per-Olov Östberg, James Byrne, Paolo Casari, Philip Eardley, Antonio Fer-

nandez Anta, Johan Forsman, John Kennedy, Thang Le Duc, Manuel Noya

Marino, Radhika Loomba, et al. Reliable capacity provisioning for dis-

tributed cloud/edge/fog computing applications. In 2017 European con-

ference on networks and communications (EuCNC), pages 1–6. IEEE, 2017.

[110] Vincenzo Scoca, Atakan Aral, Ivona Brandic, Rocco De Nicola, and

Rafael Brundo Uriarte. Scheduling latency-sensitive applications in edge

computing. In Closer, pages 158–168, 2018.

[111] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang

Richter, and Padmanabhan Pillai. Cloudlets: at the leading edge of mobile-

cloud convergence. In 6th International Conference on Mobile Computing,

Applications and Services, pages 1–9. IEEE, 2014.

[112] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. Resource

management approaches in fog computing: a comprehensive review. Journal

of Grid Computing, pages 1–42, 2019.

[113] Fei Yin, Xinjia Li, Xin Li, and Yize Li. Task scheduling for streaming

applications in a cloud-edge system. In International Conference on Security,

Privacy and Anonymity in Computation, Communication and Storage, pages

105–114. Springer, 2019.

[114] Koustabh Dolui and Soumya Kanti Datta. Comparison of edge computing

implementations: Fog computing, cloudlet and mobile edge computing. In

2017 Global Internet of Things Summit (GIoTS), pages 1–6. IEEE, 2017.

Bibliography 153

[115] Yan Sun, Fuhong Lin, and Haitao Xu. Multi-objective optimization of re-

source scheduling in fog computing using an improved nsga-ii. Wireless

Personal Communications, 102(2):1369–1385, 2018.

[116] Dadmehr Rahbari and Mohsen Nickray. Scheduling of fog networks with

optimized knapsack by symbiotic organisms search. In 2017 21st Conference

of Open Innovations Association (FRUCT), pages 278–283. IEEE, 2017.

[117] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H Luan, and Hao Liang.

Optimal workload allocation in fog-cloud computing toward balanced delay

and power consumption. IEEE Internet of Things Journal, 3(6):1171–1181,

2016.

[118] Xuan-Qui Pham and Eui-Nam Huh. Towards task scheduling in a cloud-

fog computing system. In 2016 18th Asia-Pacific network operations and

management symposium (APNOMS), pages 1–4. IEEE, 2016.

[119] Arkadiusz Madej, Nan Wang, Nikolaos Athanasopoulos, Rajiv Ranjan, and

Blesson Varghese. Priority-based fair scheduling in edge computing. arXiv

preprint arXiv:2001.09070, 2020.

[120] Ranesh Kumar Naha, Saurabh Garg, Andrew Chan, and Sudheer Kumar

Battula. Deadline-based dynamic resource allocation and provisioning al-

gorithms in fog-cloud environment. Future Generation Computer Systems,

104:131–141, 2020.

[121] Zhi Zhou, Xu Chen, Weigang Wu, Di Wu, and Junshan Zhang. Predictive

online server provisioning for cost-efficient iot data streaming across collabo-

rative edges. In Proceedings of the Twentieth ACM International Symposium

on Mobile Ad Hoc Networking and Computing, pages 321–330. ACM, 2019.

[122] Aymen Abdullah Alsaffar, Hung Phuoc Pham, Choong-Seon Hong, Eui-Nam

Huh, and Mohammad Aazam. An architecture of iot service delegation and

resource allocation based on collaboration between fog and cloud computing.

Mobile Information Systems, 2016, 2016.

Bibliography 154

[123] Yanling Shao, Chunlin Li, and Hengliang Tang. A data replica placement

strategy for iot workflows in collaborative edge and cloud environments.

Computer Networks, 148:46–59, 2019.

[124] Changchun Long, Yang Cao, Tao Jiang, and Qian Zhang. Edge computing

framework for cooperative video processing in multimedia iot systems. IEEE

Transactions on Multimedia, 20(5):1126–1139, 2017.

[125] Daniel Zhang, Yue Ma, Chao Zheng, Yang Zhang, X Sharon Hu, and Dong

Wang. Cooperative-competitive task allocation in edge computing for delay-

sensitive social sensing. In 2018 IEEE/ACM Symposium on Edge Computing

(SEC), pages 243–259. IEEE, 2018.

[126] Weiwei Chen and Ewa Deelman. Integration of workflow partitioning and

resource provisioning. In 2012 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 764–768. IEEE,

2012.

[127] Sergej Svorobej, Patricia Takako Endo, Malika Bendechache, Christos

Filelis-Papadopoulos, Konstantinos M Giannoutakis, George A Gravvanis,

Dimitrios Tzovaras, James Byrne, and Theo Lynn. Simulating fog and edge

computing scenarios: An overview and research challenges. Future Internet,

11(3):55, 2019.

[128] Roberto Beraldi, Abderrahmen Mtibaa, and Hussein Alnuweiri. Cooperative

load balancing scheme for edge computing resources. In 2017 Second Inter-

national Conference on Fog and Mobile Edge Computing (FMEC), pages

94–100. IEEE, 2017.

[129] Lixing Chen, Sheng Zhou, and Jie Xu. Computation peer offload-

ing for energy-constrained mobile edge computing in small-cell networks.

IEEE/ACM Transactions on Networking, 26(4):1619–1632, 2018.

[130] Faheem Zafari, Prithwish Basu, Kin K Leung, Jian Li, Ananthram Swami,

and Don Towsley. Resource sharing in the edge: A distributed bargaining-

theoretic approach. arXiv preprint arXiv:2001.04229, 2020.

Bibliography 155

[131] Gary White and Siobhan Clarke. Short-term qos forecasting at the edge

for reliable service applications. IEEE Transactions on Services Computing,

2020.

[132] Archan Misra, Marion Blount, Anastasios Kementsietsidis, Daby Sow, and

Min Wang. Advances and challenges for scalable provenance in stream pro-

cessing systems. In International Provenance and Annotation Workshop,

pages 253–265. Springer, 2008.

[133] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In Collaboration

Technologies and Systems (CTS), 2013 International Conference on, pages

42–47. IEEE, 2013.

[134] Rubén Casado and Muhammad Younas. Emerging trends and technolo-

gies in big data processing. Concurrency and Computation: Practice and

Experience, 27(8):2078–2091, 2015.

[135] Altti Ilari Maarala, Mika Rautiainen, Miikka Salmi, Susanna Pirttikangas,

and Jukka Riekki. Low latency analytics for streaming traffic data with

apache spark. In 2015 IEEE International Conference on Big Data (Big

Data), pages 2855–2858. IEEE, 2015.

[136] Stefan Bosse and Uwe Engel. Augmented virtual reality: Combining crowd

sensing and social data mining with large-scale simulation using mobile

agents for future smart cities. In Multidisciplinary Digital Publishing In-

stitute Proceedings, volume 4, page 5762, 2019.

[137] D Jayanthi and G Sumathi. Weather data analysis using spark—an in-

memory computing framework. In 2017 Innovations in Power and Advanced

Computing Technologies (i-PACT), pages 1–5. IEEE, 2017.

[138] Apache Beam. An advanced unified programming model, 2018.

[139] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif

Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing in

Bibliography 156

a single engine. Bulletin of the IEEE Computer Society Technical Committee

on Data Engineering, 36(4), 2015.

[140] Shen Li, Paul Gerver, John MacMillan, Daniel Debrunner, William Mar-

shall, and Kun-Lung Wu. Challenges and experiences in building an efficient

apache beam runner for ibm streams. Proceedings of the VLDB Endowment,

11(12):1742–1754, 2018.

[141] Sukhpal Singh and Inderveer Chana. Cloud resource provisioning: survey,

status and future research directions. Knowledge and Information Systems,

49(3):1005–1069, 2016.

[142] Sunilkumar S Manvi and Gopal Krishna Shyam. Resource management for

infrastructure as a service (iaas) in cloud computing: A survey. Journal of

Network and Computer Applications, 41:424–440, 2014.

[143] Abdul Hameed, Alireza Khoshkbarforoushha, Rajiv Ranjan, Prem Prakash

Jayaraman, Joanna Kolodziej, Pavan Balaji, Sherali Zeadally,

Qutaibah Marwan Malluhi, Nikos Tziritas, Abhinav Vishnu, et al. A

survey and taxonomy on energy efficient resource allocation techniques for

cloud computing systems. Computing, 98(7):751–774, 2016.

[144] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. Evaluation

of cloud autoscaling strategies under different incoming workload patterns.

Concurrency and Computation: Practice and Experience, page e5667.

[145] Harold W Cain, Ravi Rajwar, Morris Marden, and Mikko H Lipasti. An

architectural evaluation of java tpc-w. In Proceedings HPCA Seventh In-

ternational Symposium on High-Performance Computer Architecture, pages

229–240. IEEE, 2001.

[146] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-

nesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong

Fu, Jake Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pages 147–156,

2014.

Bibliography 157

[147] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing

on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[148] Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu. Auto-

parallelizing stateful distributed streaming applications. In Proceedings of

the 21st international conference on Parallel architectures and compilation

techniques, pages 53–64. ACM, 2012.

[149] Leonard Kleinrock. Queueing systems, volume 2: Computer applications,

volume 66. wiley New York, 1976.

[150] David G Kendall. Some problems in the theory of queues. Journal of the

Royal Statistical Society. Series B (Methodological), pages 151–185, 1951.

[151] Rahav Dor, Joseph M Lancaster, Mark A Franklin, Jeremy Buhler, and

Roger D Chamberlain. Using queuing theory to model streaming applica-

tions. In Symp. on Application Accelerators in High Perf. Computing, 2010.

[152] Per Hokstad. On the steady-state solution of the m/g/2 queue. Advances

in Applied Probability, 11(1):240–255, 1979.

[153] Maria A Rodriguez and Rajkumar Buyya. Budget-driven resource provi-

sioning and scheduling of scientific workflow in iaas clouds with fine-grained

billing periods. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), 9(4), 2015.

[154] Russell Eberhart and James Kennedy. A new optimizer using particle swarm

theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings

of the Sixth International Symposium on, pages 39–43. IEEE, 1995.

[155] Konstantinos E Parsopoulos, Michael N Vrahatis, et al. Particle swarm

optimization method for constrained optimization problems. Intelligent

Technologies–Theory and Application: New Trends in Intelligent Technolo-

gies, 76(1):214–220, 2002.

[156] AWS. Amazon ec2 instance types, 2020. URL https://aws.amazon.com/

ec2/instance-types/.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Bibliography 158

[157] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,

and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation

of cloud computing environments and evaluation of resource provisioning

algorithms. Software: Practice and experience, 41(1):23–50, 2011.

[158] Anthony D JoSEP, RAnDy KAtz, AnDy KonWinSKi, LEE Gunho, DAViD

PAttERSon, and ARiEL RABKin. A view of cloud computing. Communi-

cations of the ACM, 53(4), 2010.

[159] Mohammad Masdari, Sima ValiKardan, Zahra Shahi, and Sonay Imani Azar.

Towards workflow scheduling in cloud computing: a comprehensive analysis.

Journal of Network and Computer Applications, 66:64–82, 2016.

[160] Shubham Jain and Jasraj Meena. Workflow scheduling algorithms in cloud

computing: An analysis, analogy, and provocations. In Innovations in Com-

puter Science and Engineering, pages 499–508. Springer, 2019.

[161] Hyeong S Kim, In Soon Cho, and Heon Y Yeom. A task pipelining frame-

work for e-science workflow management systems. In 2008 Eighth IEEE

International Symposium on Cluster Computing and the Grid (CCGRID),

pages 657–662. IEEE, 2008.

[162] Luiz F Bittencourt, Alfredo Goldman, Edmundo RM Madeira, Nelson LS

da Fonseca, and Rizos Sakellariou. Scheduling in distributed systems: A

cloud computing perspective. Computer Science Review, 30:31–54, 2018.

[163] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[164] Raed Alsurdeh, Rodrigo N Calheiros, Kenan M Matawie, and Bahman

Javadi. Cloud resource provisioning for combined stream and batch work-

flows. In 2018 IEEE 37th International Performance Computing and Com-

munications Conference (IPCCC), pages 1–8. IEEE, 2018.

[165] Cisco Global Cloud Index. Forecast and methodology, 2016–2021 white

paper. Updated: February, 1, 2018.

Bibliography 159

[166] Xiao Ma, Ao Zhou, Shan Zhang, and Shangguang Wang. Cooperative service

caching and workload scheduling in mobile edge computing. arXiv preprint

arXiv:2002.01358, 2020.

[167] Cihat Baktir, Cagatay Sonmez, Cem Ersoy, Atay Ozgovde, and Blesson

Varghese. Addressing the challenges in federating edge resources. Fog and

Edge Computing: Principles and Paradigms, pages 25–49, 2019.

[168] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan

Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ris-

tov, and Radu Prodan. A serverless real-time data analytics platform for

edge computing. IEEE Internet Computing, 21(4):64–71, 2017.

[169] Sharad Agarwal, Matthai Philipose, and Paramvir Bahl. Vision: The case

for cellular small cells for cloudlets. In Proceedings of the fifth international

workshop on Mobile cloud computing & services, pages 1–5. ACM, 2014.

[170] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg.

The brewing storm in cloud gaming: A measurement study on cloud to end-

user latency. In Proceedings of the 11th annual workshop on network and

systems support for games, page 2. IEEE Press, 2012.

[171] Ahmed Sammoud, Ashok Kumar, Magdy Bayoumi, and Tarek Elarabi. Real-

time streaming challenges in internet of video things (iovt). In 2017 IEEE In-

ternational Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE,

2017.

[172] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[173] Markus Löffler and Andreas Tschiesner. The internet of things and the

future of manufacturing. McKinsey & Company, page 4, 2013.

[174] IDC. The growth in connected iot devices is expected to generate 79.4 zb of

data in 2025, according to a new idc forecast. 2019.

Bibliography 160

[175] Hongbing Zhou, Weiyong Yu, Peng Yi, and Yiguang Hong. Quantized

gradient-descent algorithm for distributed resource allocation. Unmanned

Systems, 7(02):119–136, 2019.

[176] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using

predictive variance reduction. In Advances in neural information processing

systems, pages 315–323, 2013.

[177] Nathan Vance, Daniel Yue Zhang, Yang Zhang, and Dong Wang. Privacy-

aware edge computing in social sensing applications using ring signatures.

In 2018 IEEE 24th International Conference on Parallel and Distributed

Systems (ICPADS), pages 755–762. IEEE, 2018.

[178] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. Decentralized

edge clouds. IEEE Internet Computing, 17(5):70–73, 2013.

[179] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of wireless

indoor positioning techniques and systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 37(6):1067–1080,

2007.

[180] Arnab Barua, Chunxi Dong, Fadi Al-Turjman, and Xiaoong Yang. Edge

computing-based localization technique to detecting behavior of dementia.

IEEE Access, 8:82108–82119, 2020.

[181] Laiping Zhao, Yizhi Ren, and Kouichi Sakurai. Reliable workflow scheduling

with less resource redundancy. Parallel Computing, 39(10):567–585, 2013.

[182] Xumin Huang, Rong Yu, Jiawen Kang, and Yan Zhang. Distributed rep-

utation management for secure and efficient vehicular edge computing and

networks. IEEE Access, 5:25408–25420, 2017.

[183] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,

Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading

for edge computing-enabled software-defined iov. IEEE Internet of Things

Journal, 2020.

	Dedication
	Acknowledgements
	Declaration of Authorship
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	1 Introduction
	1.1 Background
	1.1.1 Computing Systems
	1.1.2 Hybrid Workflows

	1.2 Problem Definition: Hybrid Workflow Scheduling in Cloud Systems
	1.3 Contributions
	1.4 Thesis Organization

	2 Literature review
	2.1 Resource Provisioning and Workflow Scheduling
	2.1.1 Resource Provisioning in Cloud Computing
	2.1.2 Workflow Scheduling in Cloud Computing

	2.2 Workflow Scheduling in Edge Cloud Computing
	2.3 Summary

	3 Cloud Resource Provisioning for Hybrid Stream and Batch Workflows
	3.1 Introduction
	3.2 Related Work
	3.3 Hybrid Workflow Model
	3.3.1 Stream Task
	3.3.2 Batch Task

	3.4 Resource estimation and provisioning framework
	3.4.1 Queuing System Builder
	3.4.2 Workflow Configuration Plan Generator
	3.4.3 Execution Time Estimator
	3.4.4 Hybrid-Workflow Resource Provisioning Optimizer

	3.5 Performance evaluation
	3.5.1 Experimental setup
	3.5.2 Results and discussions
	3.5.2.1 Window size
	3.5.2.2 Arrival Rate
	3.5.2.3 Throughput

	3.6 Summary

	4 Hybrid Workflow Scheduling on Edge Cloud Computing
	4.1 Introduction
	4.2 Related Work
	4.3 Edge Cloud Computing System Model
	4.4 Hybrid Workflow Scheduling in Edge Cloud Resources
	4.4.1 Resource Estimation with Gradient Descent Search Approach
	4.4.1.1 Resource Estimation Problem Formulation
	4.4.1.2 Resource Estimation Algorithm

	4.4.2 Hybrid Workflow Provisioning and Scheduling on Edge Cloud Computing Environment

	4.5 Performance Evaluation
	4.5.1 Experimental Setup
	4.5.2 Results and Discussions
	4.5.2.1 Resource Estimation Evaluation
	4.5.2.2 Adaptability Analysis
	4.5.2.3 Edge Capability Analysis
	4.5.2.4 Optimization Time Analysis

	4.6 Summary

	5 Hybrid Workflow Provisioning and Scheduling on Cooperative Edge Cloud Computing
	5.1 Introduction
	5.2 Related Work
	5.3 A Cooperative Edge Cloud Computing System
	5.4 Hybrid Workflow Scheduling on Cooperative Edge Cloud Computing
	5.4.1 Hybrid Workflow Resource Estimation with a Gradient Descent Approximation Technique
	5.4.2 Hybrid Workflow Provisioning and Scheduling Framework on Cooperative Edge Cloud Computing Environment

	5.5 Performance Evaluation
	5.5.1 Experimental Setup
	5.5.2 Results and Discussions
	5.5.2.1 Edge Cooperation Evaluation
	5.5.2.2 Analysis of Edge Cooperation Impact on Data transfer time and cost

	5.6 Summary

	6 Implementation and Simulation Environment
	6.1 Introduction
	6.2 Workflow Management System
	6.2.1 User Management
	6.2.2 Workflow Engine

	6.3 Implementation and Prototyping
	6.4 Framework Evaluation
	6.5 Summary

	7 Discussion and Conclusions
	7.1 Discussion
	7.2 Future Directions
	7.2.1 Statistical approaches for Gradient Descent Search optimization for hybrid workflows
	7.2.2 SLA-based optimization solutions in cooperative edge context
	7.2.3 Towards decentralized service management solutions in edge cloud systems
	7.2.4 Reliable computing in edge cloud systems: a service-oriented approach

	7.3 Summary

	Bibliography

