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Abstract

Performance, usability, and accessibility are critical components of high performance

computing (HPC). Usability and performance are especially important to academic re-

searchers as they generally have little time to learn a new technology and demand a certain

type of performance in order to ensure the quality and quantity of their research results. We

have observed that while not all workloads run well in the cloud, some workloads perform

well. We have also observed that although commercial cloud adoption by industry has been

growing at a rapid pace, its use by academic researchers has not grown as quickly. We aim

to help close this gap and enable researchers to utilize the commercial cloud more efficiently

and effectively.

We present our results on architecting and benchmarking an HPC environment on

Amazon Web Services (AWS) where we observe that there are particular types of applica-

tions that are and are not suited for the commercial cloud. Then, we present our results on

architecting and building a provisioning and workflow management tool (PAW), where we

developed an application that enables a user to launch an HPC environment in the cloud,

execute a customizable workflow, and after the workflow has completed delete the HPC

environment automatically. We then present our results on the scalability of PAW and the

commercial cloud for compute intensive workloads by deploying a 1.1 million vCPU cluster.

We then discuss our research into the feasibility of utilizing commercial cloud infrastruc-

ture to help tackle the large spikes and data-intensive characteristics of Transportation

Cyberphysical Systems (TCPS) workloads. Then, we present our research in utilizing the

commercial cloud for urgent HPC applications by deploying a 1.5 million vCPU cluster to
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process 211TB of traffic video data to be utilized by first responders during an evacuation

situation. Lastly, we present the contributions and conclusions drawn from this work.
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Chapter 1

Introduction

In recent years, commercial cloud providers such as Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform (GCP) have been growing and maturing

quickly. According to Forrester, in 2018 the global public cloud market will grow at a 22%

compound annual growth rate [17]. While these commercial clouds provide the “allure”

of unlimited resources, a variety of cutting edge resources, and high availability, academic

researchers have been slow to adopt commercial clouds for their workloads. There are a

number of reasons for this including, steep learning curves, funding challenges, and perfor-

mance differences [14].

Traditionally, academic researchers are accustom to executing their workloads on a

High Performance Computing (HPC) cluster. These HPC clusters are typically shared with

other academic researchers and only have a finite amount of resources and resource types to

offer the researcher. Utilizing these types of HPC resources generally requires minimal effort

by the researcher as they do not have to have a deep understanding as to how the HPC

cluster is deployed and managed. These HPC clusters are also generally highly optimized

for HPC applications and parallel workloads which can increase the performance of the

researcher’s applications.

In contrast, the commercial cloud is a more general purpose computing environment

where not all the components are specifically optimized for HPC. As a number of studies
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have shown, HPC application performance on the commercial cloud is not as good as it is

on a traditional HPC cluster [57, 36, 33, 83, 93]. There are a wide variety of configuration

options available to commercial cloud users, but since each commercial cloud is different,

users have to spend large amounts of time learning how to properly configure each cloud

to get the best performance. This is not feasible for many academic researchers as they

do not have the time to take away from their research to learn how each cloud operates.

Not only do they need to have an understanding of how the cloud works, they also must

know how to deploy an HPC cluster environment on each cloud which only complicates

the process. However, for academic researchers with certain HPC workloads the potential

impact of utilizing the cloud is large. Even though the performance may not be as good

as a local resource, an academic researcher can have full access to all the resources on

the cloud, eliminating queue wait times and allowing them to shorten the overall time-to-

science. Researchers also have the ability to scale their workloads up to a much larger scale

on the commercial cloud due to the large amount of available resources.

1.1 Problem Statement

It is the goal of this work to examine how the architecture of different commercial

clouds can affect the performance of different HPC workloads, explore how to better enable

commercial cloud access to academic researchers, and to push the limits of the scalability

of the commercial cloud.

1.2 Research Questions

We propose, evaluate, and answer the following research questions within this dis-

sertation:

• What are the limitations to scaling HPC environments within a commercial cloud?

• How do the architectures of different commercial cloud environments, such as AWS,

2



Azure, and GCP effect HPC environment performance?

• How can these architectural differences be utilized to optimize HPC environment

deployment, cost, and workload performance?

• How can certain workload and data characteristics effect the ability to utilize com-

mercial cloud resources?

1.3 Research and Contributions

Our first contribution in this area is to identify which types of HPC applications

perform well on Amazon Web Services (AWS). In this work, we observe that many non-

network intensive applications, such as High Throughput Computing applications (HTC),

perform decently on AWS compared to the local resources. We also observe that one

application in particular, MPIFFT, performs exceedingly poorly. We investigate this more

to determine if we can find a potential configuration where MPIFFT will perform closer to

that of the local resources. In performing these experiments, we find that after reaching 32

processes, in any combination of processes and nodes, the performance started to degrade

quickly.

Next, we set out to create a tool to help automate the deployment of an HPC

cluster environment in the commercial cloud. This tool could then be utilized to execute

HPC applications that can benefit from executing on the cloud. Our work on this tool,

the automated Provisioning And Workflow management tool (PAW), was presented at

MTAGS17 [75]. During the initial design phases of PAW, we find that while there are

many tools that manage either the workflow or the provisioning of the resources, there are

very few tools that perform both functions outside of a few domain specific examples. For

researchers to adopt the commercial cloud, a generalized end-to-end solution is required.

PAW is built to fill this gap by providing a single interface for resource provisioning, workflow

execution, and resource de-provisioning.

After building PAW, we look to examine and push the limits of the scalability of

3



the commercial cloud. To do this, we build a cluster containing 1,119,196 vCPUs within

AWS utilizing PAW. Our results, which were presented at the CCGRID 2018 [72], describe

a list of seven limitations to scaling and propose potential solutions to each limitation.

We utilize this environment to execute just under a half a million CPU intensive topic

modeling parameter sweep applications in just under two hours. On a traditional shared

HPC resource executing a half a million jobs would have taken multiple days or even weeks.

Next, we examine the usecase of migrating the expanding field of Transportation

Cyberphysical System (TCPS) to the commercial cloud utilizing the same Infrastructure as

Code (IaC) paradigm used in our previous work [76]. In this work, we examine in detail

the different layers of the TCPS systems and how we can utilize the IaC paradigm to

help simplify the deployment and management of TCPS in the commercial cloud. We also

discuss the feasibility of migrating the different layers of TCPS to the commercial clouds

and the cloud native options for each. We find that the most attractive candidate layer of a

traditional TCPS system to be migrated to the cloud is the batch processing layer as it has

no real-time processing requirements and the jobs are designed to run non-interactively.

After examining the data intensive nature of TCPS, we examine the performance

and scalability of a large-scale data intensive workflow in the commercial cloud in regards

to an urgent computing scenario. To do this, we utilize PAW to deploy a 1.5 million vCPU

cluster and execute our custom designed workflow in GCP to process 211TB of traffic video

data. This simulates the data processing required to monitor the evacuation of a large region

in preparation for an impending event. Our results will be presented at the Urgent HPC

2019 Workshop at SC19 [74] and describe the architecture of our workflow and how the

commercial cloud can be utilized for urgent computing tasks on-demand. We analyze the

entire 211TB of video in approximately 8 hours which includes the infrastructure creation

and deletion.
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1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 discusses the background infor-

mation related to this work. Chapter 3 covers the evaluation of the performance of different

types of workloads in the commercial cloud. Chapter 4 introduces PAW, our resource pro-

visioning and workflow management tool. Chapter 5 discusses provisioning and executing

a 1.1 million vCPU HPC environment within the cloud utilizing PAW to execute a CPU-

intensive topic modeling workload. Chapter 6 discusses the challenges of migrating different

analysis layers of data-intensive Transportation Cyberphysical Systems (TCPS) workloads

to the commercial cloud. Chapter 7 discusses our work addressing the challenges of utilizing

the commercial cloud for urgent HPC needs and describes how to execute a data intensive

traffic analysis workload utilizing 1.5 million vCPUs to process 211TB of video data. Lastly,

Chapter 8 will present our conclusions and direction for future work.
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Chapter 2

Background

In this section we discuss background information that is relevant to the completed

research and proposed research questions.

2.1 High Performance Computing (HPC) Environments

High Performance Computing (HPC) can be defined as aggregating computing

power to deliver better performance than could be achieved on a single machine. HPC

environments or clusters typically consist of clusters of computers that each have their own

operating system (typically a Linux distribution), memory, and storage. These computers

are typically connected by a high performance low-latency network to ensure the highest

performance. HPC environments are typically utilized by researchers from academia, gov-

ernment, and industry to solve large complex problems that require a lot of computational

power.

2.1.1 Terminology

In an HPC environment, each of the computers within the environment is referred

to as a node. Typically most of the nodes within an HPC environment are referred to as

compute nodes. These compute nodes are the nodes that perform all of the jobs that are
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submitted to the HPC environment. A job in the context of an HPC environment is a unit

of work to be performed. This can range from an application that executes on a single node

or an application that executes across multiple nodes. The scheduling and mapping of these

jobs to the available compute nodes in the environment is typically done by an HPC batch

scheduler.

An HPC batch scheduler is a piece of specialized software that handles the distribut-

ing of jobs along with monitoring the jobs and the handling of the job output files. Most

HPC batch schedulers accept jobs in the form of job scripts. Job scripts are simply scripts

that execute a set of shell (e.g. bash, sh, zsh) commands on the node or nodes that the

scheduler gives it. Each HPC batch scheduler has a specific set of special scheduler direc-

tives that can be included in the job script in order to instruct the HPC batch scheduler

how they would like their job executed. Example parameters are number of nodes to run

on, amount of memory, type of GPU, etc.

2.1.2 Composition

A typical HPC environment consists of a combination of a few different types of

nodes. These nodes are typically compute nodes, storage nodes, a scheduler node, and

a login nodes. As previously mentioned compute nodes are the nodes that perform the

computational tasks and typically have the most robust hardware. Storage nodes typically

host some type of shared filesystem that can be accessed by all of the other nodes within the

cluster. The type of shared filesystem will vary from environment to environment, however

typical filesystems are usually either created by utilizing the Network File System (NFS)

software or a parallel filesystem such as OrangeFS or Lustre. The scheduler node runs the

specialized HPC batch scheduling software that distributes the jobs to the compute nodes

within the environment. The login instance is the user facing instance that users will log in

to and utilize to submit their jobs.
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2.2 Computational Codes

There are a wide variety of computational codes that are in use by researchers today.

These codes range from single threaded applications that execute on only a single core at

a time all the way to parallel applications that can be spread across multiple cores and

machines. While the codes are to numerous to list, there are a few general things about

computational codes that should be noted.

While there are multiple types of computational codes that are in use today, we

want to discuss two particular types of computational codes: High Performance Computing

(HPC) Applications and High Throughput Computing (HTC) applications.

2.2.1 High Performance Computing (HPC) Applications

HPC applications are traditionally highly parallel codes that utilize the Message

Passing Interface (MPI) library to allow multiple processes to communicate with each other.

HPC applications tend to be tightly coupled and rely heavily on the network infrastructure

in order to exchange information. This is traditionally why many HPC environments utilize

a low-latency network, because the longer that the processes take to communicate, the longer

the application will take to execute. Examples of some HPC applications are LAMMPS

[71], Gromacs [12], and OpenFoam [103].

2.2.2 High Throughput Computing (HTC) Applications

In contrast to HPC applications, High Throughput Computing (HTC) applications

are typically loosely coupled and tend to only execute on one or two nodes within the

environment. HTC applications can be parallel applications as well, however typically the

parallelism is contained on a single node to enable faster processing. HTC applications

generally take in multiple parameters as input and are executed with a large number of

different input combinations. This allows researchers to determine how changes in the

parameters can affect the outcomes of the application.
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2.3 Cloud Computing

Cloud computing is referred to as the on-demand delivery of different types of IT

services through a platform via the internet with a pay-as-you-go pricing model. The

services offered vary quite a bit depending on which commercial cloud is being used. Along

with this variation in services, different commercial cloud providers also offer different types

and combinations of hardware. Commercial clouds are similar to HPC environments as they

are simply a large collection of computers that are controlled by software. However, unlike

HPC environments that are designed to execute parallel workloads, commercial clouds are

designed to be more general purpose and typically do not utilize a low-latency network.

2.3.1 Terminology

In a commercial cloud environment, each server is called an instance instead of a

node. This is due largely in part to the fact that most commercial cloud environments are

virtual machine based, that is the user is allocated a virtual machine (VM) managed by some

hypervisor software instead of having access to the bare metal like they would in an typical

HPC environment. The additional layer of the hypervisor does introduce some overhead

which can lead to a possible decrease in the performance of certain components such as

the network. Another area where the commercial cloud differs from the HPC environment

is that typically in an HPC environment the number of processes a node can execute is

referred to as the number of “cores” whereas in the cloud this is referred to as the number

of “vCPUs”. The formal definition for a vCPU is that it is a hyperthread of an Intel Xeon

core [86].

2.3.2 Major Providers

When looking for a commercial cloud provider there are many different providers

from which to choose and each one has certain strengths and weaknesses. For our research

we have chosen to focus on two of the major commercial cloud providers Amazon Web
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Services (AWS) and Google Cloud Platform (GCP).

2.3.2.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) is the largest commercial cloud computing provider

in the world [27]. AWS provides a number of services that cover all types of computing

infrastructure from databases to machine learning to IoT. The core building block of a

majority of the AWS services is their Elastic Compute Cloud (EC2) service. EC2 is a

service that provides the compute infrastructure and allows users to provision instances

(VMs) within AWS. EC2 is one of the services that is utilized by our research to construct

our experimental HPC environments.

EC2 allows users to choose from a number of pre-configured instance types when

launching their instances. There is no way to customize the amount of resources that come

with each instance type so users are limited to the options that AWS provides. However,

AWS does have a number of different instance type classes: General Purpose, Compute

Optimized, Memory Optimized, Accelerated Computing, and Storage Optimized. Each

class has different characteristics and hardware that make it more suitable for specific tasks.

EC2 also has a concept of a “Spot Market” where users can bid on unused EC2

instance capacity for discounts of up to 90% of the regular On-Demand price for an instance

type. Within AWS the special instance types are called Spot instances. For Spot instances,

the pricing per instance is based upon a bid structure that can yield discounts up to 90%

[86]. The user sets the maximum price that they are willing to pay for the instance to

run and then if the current Spot price, which is set by AWS, is below the price set by the

user the instance will launch and run. However, once the price exceeds the price set by the

user, the instance will terminate with only a two minute warning. Spot instances utilize

the same instance type structure as traditional On-demand instances, and as such users can

not customize the number of vCPUs or RAM that the instances have beyond what AWS

offers. There is no timelimit on how long a Spot instance can run and the price a user is

paying for any particular Spot instance can change over the run time of the instance. This
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dynamic pricing makes the overall cost planning more difficult as users can calculate the

maximum that they will spend but will not know the actual cost until after the execution.

2.3.2.2 Google Cloud Platform (GCP)

Google Cloud Platform (GCP) is another large cloud provider in addition to AWS

and Azure. While GCP does have a smaller marketshare than AWS and Azure, they do

have a large number of services as well. Similar to AWS, GCP has services for everything

ranging from database to IoT to machine learning but the implementation of these services

is fundamentally different between the two clouds.

GCP has a Compute Engine service that users can utilize to launch instances (VMs)

similar to AWS’s EC2. However, in GCP users are not limited to a set of instance types when

launching instances. Instead users are allowed to specify the number of vCPUs, amount of

memory, and type of GPU in any supported combination. This allows researchers to better

tailor the resources being provisioned in the cloud to more closely match their existing

resources.

GCP does not have a “Spot Market”, however they do offer a similar feature called

“Preemptible Instances”. Their functionality is similar to that of AWS’s Spot instance in

that they can be shutdown at any time with only a short notice. However, unlike Spot

instances the pricing of preemptible instances is fixed for the duration of the instance

runtime and is set by Google. This fixed discount can range up to 80% depending on

the configuration of the GCP instance and the cost will not change while the instance is

running. This makes it easier to calculate the actual cost of the execution which helps

with cost planning. GCP preemptible instances also allow users to utilize custom instance

types which can allow for even more cost savings. Users only need to request the number

of vCPUs and the amount of RAM that they need for their workflow to execute effectively.

Where Spot instances can run for an unlimited amount of time, GCP preemptible instances

can run for a maximum of 24 hours at a time [30]. GCP preemptible instances meet our

needs as they are customizable and since our workflow consists of a large number of small
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independent batch jobs it does not matter if a single instance is preempted as the other

running jobs are not affected.

2.3.2.3 Microsoft Azure

Microsoft Azure is another one of the large cloud providers in addition to AWS and

GCP. The strength of the Azure platform lies in its inherent compatibility and interfaces

with Microsoft’s other enterprise services that are already in use in many corporations.

Similarly to the other large cloud providers Azure offers a large number of services that

cover a wide spectrum of services. However, the implementation of these services vary

from the other providers, especially with the additional tie-ins to traditional Microsoft

infrastructure such as SQL Server and Microsoft Power BI.

Azure has a similar instance type to GCP’s “Preemptible Instances” instance type

called Low-Priority instances, however these instances can only be utilized as a part of

Azure VM Scale Sets or Azure Batch which limits their flexibility. This also puts Low-

Priority instances behind AWS and GCP which allow users to utilize these special instances

with their standard compute services. Low-Priority instances also have a fixed discount

that is set by Microsoft and can range from 60%-80% and the instances will only launch

when there is free capacity of the requested non-modifiable instance types [58].

2.4 Survey on Resource and Workflow Management Tools

There exists a large number of resource and workflow management tools, each of

which have different strengths and weaknesses. Here we present a survey of both resource

management and workflow management tools.

2.4.1 Resource Management Tools

There are tools that solely focus on the provisioning of HPC environment resources

on the cloud such as CloudyCluster, CfnCluster, Alces Flight, StarCluster, and CycleCloud.
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Each of these tools allows users to specify and create HPC environments that consist of a

wide variety of components that can be customized to the user’s liking. However, these

tools do not have the ability to manage or submit workflows or jobs.

2.4.1.1 CloudyCluster

CloudyCluster is a commercial available tool that provides self-service HPC in the

commercial cloud through a web-based UI [68]. CloudyCluster allows users to dynamically

provision an HPC environment that closely resembles traditional HPC environments found

at Universities and National Labs. The created HPC environments can contain a com-

bination of HPC schedulers, login instances, shared filesystems, parallel filesystems, NAT

instances, and compute instances. CloudyCluster also contains a meta-scheduler called

CloudyCluster Queue (CCQ) [67] that enables job-driven autoscaling within CloudyClus-

ter. CCQ works by parsing the submitted job script and determining the resources requested

to execute the job. This information is parsed directly from the supported HPC scheduler

specific options (cores/memory requirements) or through CCQ specific directives specified

within the job script. After determining the required resources, CCQ dynamically provi-

sions the resources of the required type (GPU, large memory, etc) and once they are running

submits the job to the HPC scheduler. Upon the completion of the job, if there are no other

jobs to execute, the provisioned resources are de-provisioned in order to save cost.

However, CloudyCluster in its current form does not support workflow management.

While it allows users to submit job scripts which themselves could contain workflows, it does

not allow a way to automate both the resource creation and workflow submission. The user

is still required to manually submit the job script to the HPC scheduler in order to start

the workflow. This means that users cannot script their full workflow from start to finish

which is not appealing for researchers with long running jobs or that have to launch and

tear down multiple HPC environments for their research.
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2.4.1.2 CfnCluster

CfnCluster or “cloud formation cluster” is a free framework that deploys and main-

tains HPC environments on AWS [87]. CfnCluster is a commandline based utility that is

driven by AWS’s CloudFormation service. CfnCluster allows users to create an HPC en-

vironment within AWS that contains a “master server” and a compute fleet. The master

server is the instance that runs the HPC scheduler software and the Network Filesystem

(NFS) software for sharing files between instances. It is also the instance where the user

will login to submit their job scripts. There is not a lot of customization that can be done

to the architecture of the system as the configuration options are limited. CfnCluster does

support dynamic autoscaling of the number of compute instances based upon the number of

jobs in the HPC scheduler queue. However, this autoscaling can only add more instances of

the same type to the environment so if a user creates an environment that utilizes non-GPU

instances and then has a job that requires a GPU instance they will have to create a new

environment in order to get a GPU instance.

Similarly to CloudyCluster, CfnCluster does not provide any workflow submission

capabilities beyond the ability for a user to submit a job script. Users still must manually

submit their job script to the HPC scheduler to start their workflow. Another possible

issue that can arise for workflow management is the probability that users will need more

than one type of resource during their workflow. CfnCluster does handle autoscaling of

single instance types, but does not handle multiple instance types. Due to many workflows

requiring different resources depending on the stage, this could be a limitation. Another

limitation of CfnCluster is that since it was developed by AWS, it is vendor specific and

users cannot utilize it on other commercial clouds.

2.4.1.3 Alces Flight

Similarly to both CfnCluster and CloudyCluster, Alces Flight is another commer-

cially available resource management tool that allows the creation of HPC environments

within the cloud [25]. Alces Flight comes in both a Community and Enterprise edition
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which each have different capabilities. The Community Edition is available to users at no

extra charge while the Enterprise edition costs extra but providers more features like the

ability to have multiple users in an HPC environment. We will focus on the Community

(Solo) edition of Alces Flight since that will be more appealing to researchers because of the

cost. In the Solo edition, similar to CfnCluster, users are provided with a login instance, a

shared filesystem, an HPC batch scheduler and a configurable number of compute instances.

Also similar to CfnCluster, Alces Flight Solo provides autoscaling of a single instance type

depending on the number of jobs in the job queue.

Alces Flight Solo does not provide any special tools for workflow management. It

provides access to the HPC scheduler where the user can log in in submit a job script to begin

the workflow similar to both CloudyCluster and CfnCluster. Similar to CfnCluster support

for heterogeneous resource types within the same environment is not supported which can

limit the effectiveness of workflow execution. Alces Flight does support more HPC scheduler

options then CloudyCluster (Torque/SLURM) and CfnCluster (Torque/SLURM/SGE) by

offering SLURM, SGE, OpenLava, Torque, and PBS Pro.

2.4.1.4 StarCluster

Another solution that provisions resources is StarCluster [61]. StarCluster is similar

to CfnCluster as it is a free commandline driven utility that launches HPC environments on

AWS. StarCluster was one of the first opensource tools for creating HPC environments in

the cloud, unfortunately there have not been any updates to StarCluster since 2016. In the

fast moving world of the commercial cloud that is an eternity and it means that StarCluster

doesn’t support many of the new advanced features that are now offered. StarCluster also

only offers one HPC scheduler, Oracle Grid Engine, whereas the other offerings all offer

at least two options. Although, StarCluster does support minimal autoscaling of a single

instance type based upon the number of jobs in the scheduler queue.

StarCluster additionally does not have any workflow management capabilities out-

side of job submissions. It also requires that the user launch a “StarCluster Amazon Machine
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Image (AMI)” which hasn’t been updated in a while. Users are able to add StarCluster

capability to other AMIs but this is generally beyond the scope of many researchers abilities

and time.

2.4.1.5 CycleCloud

CycleCloud is a tool utilized for creating, managing, operating, and optimizing

HPC compute clusters in Microsoft Azure [99]. Utilizing CycleCloud users can dynamically

provision HPC environments within Azure and orchestrate data and jobs from within a web

based application. CycleCloud allows users to monitor and submit jobs to the environments

and automatically scale the resources provisioned based upon job load, availability, and time

requirements. It also includes cost auditing functionality and alerts that can warn users

if they go over a certain billing threshold. CycleCloud requires an additional server to

operate that can be run on premise or within Azure itself. This server runs the web based

application and can deploy HPC environments into Azure utilizing templates that can be

shared between users. These HPC environments support traditional HPC schedulers such

as Grid Engine, SLURM, and HTCondor along with the Redis and Avere filesystems for

shared file access across all the compute nodes.

CycleCloud is used to support multiple cloud providers, however the company was

recently bought by Microsoft and support for the other cloud platforms was dropped.

Now, utilizing CycleCloud requires that researchers be executing their workloads on Azure.

While CycleCloud does provision resources, it does not have the ability manage workflows.

Users can create the resources and then log in to the cluster in order to submit their

jobs/workflows.

2.4.2 Workflow Management Tools

There are also a variety of tools that solely focus on the management and execution

of workflows such as Tigres, FireWorks, QDO, Swift, Pegasus, and Cluster Flow. These

tools do not provision any types of resources, but instead assume that all of the resources
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have already been created and are ready for use. There are also quite a few domain specific

workflow management tools that focus solely on one research area and are not translatable

to other domains.

2.4.2.1 Tigres

Template Interfaces for Agile Parallel Data-Intensive Science (Tigres) is designed

with the scientist in mind and utilizes concepts from the User-Centered Design (UCD)

process [77]. Tigres utilizes an application programming interface (API) approach to allow

users to construct a parallel/distributed scientific workflow in a programming language and

have it be able to be executed across multiple platforms [35]. Tigres supports the iterative

workflow development cycle of data-intensive workflows and provides a set of templates that

can be utilized to compose and execute computational and data pipelines. The currently

available templates are: sequence, parallel, split and merge and they can be combined to

form a cohesive and efficient scientific workflow. Each template is composed of individual

tasks that are the units of work from the end-user that need executed.

Tigres is designed to provide a library that will not mandate users to use a separate

stand-alone tool, but instead it allows users to utilize the Tigres library in existing pro-

gramming languages. Tigres workflows can execute scientific codes that are created in any

language which makes it flexible and applicable to a wider variety of researchers. Although

it is open-source and freely available for download, it has not been updated since 2016.

However, as with all of the tools in this category, for operation, Tigres assumes that

all the computational resources already exist and are ready to use and therefore does not

deal with the provisioning or de-provisioning of resources. This works well on traditional

HPC resources where the nodes are known ahead of time and ready to go but requires a

tool like one of the previously discussed resource provisioning tools to be effective in the

cloud. This can deter a cloud seeking user as now they have to learn two separate tools in

order to get their workflow running on the cloud.
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2.4.2.2 FireWorks

Fireworks is another free and open source workflow management tool that is designed

for defining, managing, and executing workflows [37]. Fireworks workflows consist of three

main components: FireTasks, Fireworks, and Workflows. A Firetask is defined to be an

atomic computing job such as a single shell script or a user defined Python function. A

Firework contains that Javascript Object Notation (JSON) spec that includes all of the

information required to bootstrap the job. This JSON spec can include a variety of things

including the input parameters for the workflow, or an array of Firetasks to execute in

sequence. A Workflow is simply a set of FireWorks that have dependencies between them.

An initial FireWorks installation consists of two components: a server (LaunchPad)

and one or more workers (FireWorkers). The LaunchPad is the server that manages the

workflows, from the LaunchPad users can monitor or rerun their workflows. The FireWork-

ers can be though of as the compute nodes in a traditional HPC environment as they are the

servers that are performing the computaiton. These FireWorkers request Workflows from

the LaunchPad and then simply communicate the results back to the LaunchPad when the

tasks have ended. FireWorks supports multiple HPC schedulers such as PBS/Torque, Sun

Grid Engine (SGE), SLURM, and IBM LoadLeveler which increases the odds that it will

be able to understand a researcher’s workflow.

One downfall with FireWorks is that due to its client/server nature, it takes a

user with a decent amount of system administration experience in order to configure the

FireWorks system. It also requires an additional server to run the LaunchPad processes

which can increase costs when executing in the cloud. This drastically raises the barrier

to entry for most researchers especially considering when executing in the cloud they still

have to provision the resources as well.

2.4.2.3 QDO

QDO (kew-doo) is a lightweight high-throughput queuing system for workflows that

have many small tasks to perform [6]. QDO was designed by the astrophysics community
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in order to manage queues of HTC jobs that otherwise may exceed the capacity of the

underlying batch systems. QDO can help to combine the many small tasks found in HTC

workflows into a single HPC batch job that can help to reduce the number of jobs executing

on the system at once. One of the key concepts of QDO is the flexibility. Unlike other

systems that have a more rigid structure, QDO allows users to add additional tasks to the

queue after the initial workflow has started and even after it has divided up the tasks into

larger batch jobs. It also supports the aggregate management of tasks, task dependencies,

and priorities.

However, although QDO is flexible and easy to use, it is lacking the constructs that

allow for the chaining of the generated batch jobs into a workflow which limits its usefulness

for more complex workflows that consist of more then one stage. Also, like the other tools

in this section, QDO is designed to integrate with existing resources that have already

been provisioned and are ready to execute batch jobs. It does not contain any resource

management component so if a researcher wants to execute a QDO workflow in the cloud,

they must set up all the resources manually or through another tool.

2.4.2.4 Swift

Swift is a parallel scripting language that is designed for composing application

programs into parallel applications that can be executed on parallel resources [104]. It

is designed to execute many instances of ordinary application programs concurrently on

distributed parallel resources. While Swift does have a limited set of data types, operators,

and built-in functions it does not attempt to replicate the functionality of other scripting

languages. Swift scripts utilize a C-like syntax and are written as a set of functions. Swift

also allows users to express operations on datasets in terms of their logical organization

utilizing XML Dataset Typing and Mapping (XDTM). Another advantage of Swift is that

it is portable and the same script can execute on multiple types of resources. This makes

it an excellent option for users who want to be able to execute their workflows both on

premise and on the cloud.
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However, while Swift is a powerful and flexible tool for orchestrating workflows in

order to utilize it researchers are required to learn an entirely new domain specific pro-

gramming language. Some of the programming concepts found within may be intimidating

for less technical researchers. For technically proficient researchers this may not be a large

hurdle, but for most academic researchers who know just enough about how to execute

their workloads having to learn a programming language is outside of the scope of their

research. Swift also requires that all of the resources exist before execution and does not

have a resource provisioning component. This again puts researchers at a disadvantage as

they have to learn both a new programming language and a resource provisioning system.

2.4.2.5 Pegasus

Pegasus is another workflow manager that was designed in a way that separates

the workflow description from the description of the execution environment [20]. This

separation allows workflows to be portable across multiple execution environments while also

allowing certain optimizations at both compile time and runtime which can help improve

both the reliability and performance of the workflow execution. Workflows within Pegasus

are defined based upon the Directed Acyclic Graph (DAG) representation where the tasks to

be executed are represented as nodes and the data/control flow dependencies between them

are represented as the edges. By utilizing a DAG representation, Pegasus can utilize the

wealth of research in graph algorithms to make the compile time and runtime optimizations

to the workflow execution. Pegasus workflows are composed via Directed Acyclic graph

in XML (DAX) APIs available for higher level programming languages such as Python,

Java, and Perl. Pegasus also provides users with the capabilities to track and monitor their

workflows automatically as well as the ability to automatically handle workload failures by

retrying the failed workload, checkpointing, or retrying the specific failed tasks.

Pegasus does not have any particular resource management features, however it does

integrate with HTCondor that can perform certain resource management tasks. HTCondor

will be discussed in more detail in a later section. Another possible issue that new researchers
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face when attempting to utilize Pegasus is that due to the different optimizations that

happen at compile time/runtime the DAG that gets executed may not necessarily be the

exact same as what was originally specified. Users can spend a great deal of time debugging

their workflow to ensure that the DAG is output and executed correctly.

2.4.2.6 Cluster Flow

Cluster Flow is a flexible and simple pipeline tool designed for use in the bioinfor-

matics domain [24]. Cluster Flow is a commandline based utility that is designed to work

with an HPC environment. It currently supports the LSF, SLURM, and SGE HPC sched-

ulers and utilizes them in order to submit and execute the bioinformatics pipelines. Cluster

Flow was not desgined to allow for advanced features, but instead deliberately restricted

the data flow patterns avaliable to the user to keep a simple pipeline syntax. This makes

it easier for researchers to get started executing their pipelines and allows them to get

their results faster. It comes with a large number of packaged modules and preconfigured

pipelines for common bioinformatics tools making setup even easier.

Cluster Flow does not include a resource management component and requires that

either an HPC environment is provisioned or that it executes locally on the machine. Cluster

Flow was designed to tackle the issue of creating specific bioinformatics pipelines and as

such is limited to that specific domain. Cluster Flow is not going to be able to help users

execute large machine learning workflows. Our research looks to create a tool that will

compliment domain specific tools like Cluster Flow and the other previously mentioned

tools in order to make their transition to the cloud easier and seamless for the researchers.

2.4.3 Resource And Workflow Management Tools

There are a few examples of tools that try to manage both resource and workflow

management at the same time such as AWS Batch, Galaxy CloudMan, and HTCondor.

However, these tools tend be focused on a specific domain of users or are vendor locked into

a specific resource provider. This takes some control away from the researcher by ensuring
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that if they want to move to another platform they have either re-write their workflow or

learn another tool.

2.4.3.1 AWS Batch

AWS Batch is an AWS managed service that enables users to execute batch comput-

ing workloads within AWS [86]. AWS Batch dynamically provisions the optimal quantity

and type of computing resources based on the specific resource requirements of the batch

jobs submitted. AWS Batch eliminates the need for having to manage a traditional batch

computing software or server clusters as it is all created on demand. It can take advantage of

the AWS Spot Market which helps to lessen the overall cost of computing. AWS Batch also

provides the ability for users to submit workflows and pipelines as well by enabling users to

express interdependencies that exist between the different submitted jobs. The jobs within

AWS Batch can be any job that can be executed as a Docker container. AWS Batch utilizes

the concept of a job definition which can be thought of as similar to a traditional batch

job script. It defines the jobs to execute, compute requirements, environmental variables,

parameters, and any other information required to execute the jobs.

If a researcher only wants to execute their specific workload on AWS, then AWS

Batch would be a potential solution for them. However, if a researcher wanted to take

the workflow to another cloud or even back to on premise, they would have to re-write

the workflow utilizing a different tool. This may cause issues for grant funded researchers

in performing their research, as they may need to move to other platforms depending on

the source of their funding. Another possible stumbling point when attempting to utilize

AWS Batch is that researchers will need to be able to create their own Docker containers

and upload them to AWS. This additional step requires re-installing all the libraries and

dependencies of their applications and understanding how running within a Docker container

can affect the execution of their jobs. AWS Batch also does not allow users to SSH into

their instances to troubleshoot the jobs, instead it provides the logs to users
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2.4.3.2 Galaxy CloudMan

Galaxy CloudMan enables Galaxy to be quickly configured and deployed on different

cloud resources [3]. CloudMan is heavily customized for use by researchers in the fields of

genetics and biology by enabling the dynamic provisioning of Galaxy on cloud resources.

Galaxy is a web-based platform that focuses primarily on biomedical research and each

CloudMan cluster can be optionally provisioned with the Galaxy software suite. CloudMan

currently supports the AWS, OpenStack, and OpenNebula clouds which allows researchers

to migrate their workflow between the different providers based upon availability and cost.

If the Galaxy software option is not chosen, then the cluster comes pre-configured

with the SLURM HPC scheduler, NFS storage, and interactive access. However, when

operating in this mode CloudMan does not support any workflow management as the Galaxy

software is what is utilized for the workflow management portion. So while CloudMan

works great for Galaxy based workflows, it is not really the generalized solution that most

researchers are looking for as it is mainly targeted at biology and genetic researchers.

2.4.3.3 elasticHPC

Another similar tool is elasticHPC which is designed for use in the bioinformatics

domain [23]. elasticHPC allows users to provision traditional looking HPC environments

through a configuration file and a commandline driven interface. elasticHPC also supports

the three major cloud providers: AWS, Microsoft Azure, and GCP which allows users to

chose the best cloud provider for their needs and allowing users to transfer their solutions

from one cloud to another. elasticHPC takes advantage of different cost saving techniques

on the different cloud providers such as the Spot Market on AWS and “Sustained Usage”

discounts in GCP which helps to minimize the overall costs of the workflow execution.

elasticHPC also comes pre-packaged with a number of bioinformatics packages and tools

already installed to help researchers get up and running quickly.

elasticHPC has very minimal workflow management system in that it allows users

to submit and monitor jobs through the same interface that was utilized to launch and
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create the HPC environments. While this is similar functionality to the tools that just

create resources, a user does not have to log in to the cluster in order to submit jobs so this

submission can be scripted more like a workflow management system. Unfortunately the

images utilized by elasticHPC and their documentation have not been updated since 2014

which is an eternity in the cloud computing world so many of the features are no longer

functional.

2.4.3.4 HTCondor

HTCondor is a software system that creates a high-throughput computing envi-

ronment by using the power of computers/workstations that communicate over a network

[96]. HTCondor, like other full-featured batch systems, features job queuing mechanisms,

resource monitoring, and resource management among other things. HTCondor provides

a unique framework that allows jobs to execute on workstations that are idle along with

being able to execute on more traditional HPC environments as well. Although HTCon-

dor is more similar to a batch scheduler then a workflow or resource management tool, we

include it in our list of tools because it does have multiple annexes that allow for creating

and utilizing resources in different commercial clouds.

While these annexes help increase the appeal to more researchers, they are not in-

cluded with the default HTCondor installation and take some additional configuration to

enable. Also on top of that researchers have to be able to manage and tune HTCondor

in order to obtain the best performance possible. Typically HTCondor is configured and

administered by experienced system administrators not researchers which makes the learn-

ing curve to start utilizing HTCondor steeper then some of our other tools. Also there

are certain limitations that are imposed on HTCondor jobs. These limitations include that

workflows cannot do interactive input and output, the jobs must not be multi-process, and

the jobs are not able to have interprocess communication. These limitations also rule out

HTCondor as a generalized tool for multiple types of workflows as some of those limitations

are critical to certain workload types.
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2.4.4 Jupyter

Project Jupyter is a non-profit, open-source project that was born out of the IPython

Project in 2014 as it evolved to support interactive data science and scientific computing

across all programming languages [38]. Jupyter is becoming increasingly popular in the

academic research community to do its easy to use web-based interface and the ability to

easily save and share the Jupyter Notebooks with other researchers. Jupyter Notebook is

an open-source web based application that allows users to create and share documents that

can contain equations, visualizations, and even live code. A sample of a Jupyter Notebook

is shown in Fig. 2.1. These Jupyter Notebooks are designed to be utilized by a single-user,

while JupyterHub [39] is another open-source project that allows for the hosting of multiple

Jupyter Notebook servers which can be utilized by a group of users.

Figure 2.1: Example of a Jupyter Notebook running in a web browser [38].

Due to their interactive nature and the availability of browser based access, Jupyter

Notebooks can be a valuable tool for introducing new researchers to scientific computing.

There have been a number of Universities that have already made some form of Jupyter

Notebooks available to their researchers by integrating it in various ways, these include
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but are not limited to: University of California Berkely, Clemson University, MIT and Lin-

coln Labs, Michigan State University, University of Minnesota, Texas Advanced Computing

Center (TACC)/University of Texas, and the University of Illinois [39]. Along with these

academic and research institutions, three of the major commercial cloud providers also pro-

vide guides on how to configure JupyterHub on their resources [86, 82, 81]. However, where

the academic institutions have the resources and interface pre-configured for the researchers,

all the commercial cloud providers require the user to launch resources and perform some

of the configuration manually which increases the learning curve for researchers.

The integration of Jupyter have varied quite a bit across the deployments. At the

University of Minnesota, in order to address the issue of getting Jupyter Notebooks and

JupyterHub executing on traditional HPC resources they developed a tool that would handle

the integration with batch job scheduling, control of job profiles, and a central authentication

service [60]. Through the use of this tool, the University was able to give researchers access

to their own Jupyter Notebooks that utilize the existing HPC resources already available

on campus. This tool was called BatchSpawner and by plugging into JupyterHub it allowed

a traditional HPC batch scheduling system to launch user’s notebook servers. This is

accomplished through the use of job script templating for various HPC schedulers including

Torque, SLURM, Condor, Moab, and Grid Engine style schedulers. Since its initial release

BatchSpawner has been adopted by the JupyterHub developers and is now officially a

supported component of JupyterHub.

There are also a few Jupyter deployments that are mainly focused on a particular

application/science domain. One of these implementations is by the Ohio Supercomputing

Center which developed a interactive HPC web application on an Open OnDemand deploy-

ment that can be used to launch and connect to Jupyter notebooks [66]. This application

is geared more towards the deployment and utilization of Apache Spark clusters for data

processing. When a user requests an instance of the Jupyter with Spark Interactive App,

the App submits a job on the pre-configured OnDemand deployment that launches a Spark

cluster and Jupyter Notebook server. This allows researchers to have quick and dynamic ac-

26



cess to the resources they need as well as the simplicity and Graphical User Interface (GUI)

that Jupyter Notebooks provide. This minimizes the learning curve for new researchers as

they are still able to access all the resources but are not required to know all the details.

Another domain specific implementation is CyberGIS-Jupyter (geographic informa-

tion science and systems (GIS) based on advanced cyberinfrastructure) which is an innova-

tive cyberGIS framework for achieving data-intensive, reproducible, and scalable geospatial

analytics utilizing Jupyter Notebooks [106]. These Jupyter Notebooks can then interact

with ROGER which is the first cyberGIS supercomputer for the computationally intensive

tasks. The framework consists of four different stages and is shown in Fig. 2.2. As shown

in Fig. 2.2, the first stage is where the users access the JupyterHub installation to request a

Jupyter Notebook. The second stage is where the Jupyter Notebook is launched via Docker

Swarm to a container running on the OpenStack cloud. Once the user has the Jupyter

Notebook session running, they can then utilize specialized widgets within the Jupyter

Notebooks to submit jobs to the ROGER HPC cluster. Similar to the other deployments

mentioned, this also depends on the HPC environment already being created and ready to

execute. It does support dynamic creation of more Jupyter Notebooks via adding additional

instances to the OpenStack deployment but the HPC backend and resources available for

batch processing are largely static and pre-configured.
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Figure 2.2: Architecture of the cyberGIS implementation of Jupyter. [106].

While the classic Jupyter Notebook interface is powerful and user friendly, there is

a new cleaner and more powerful user interface that is being developed called JupyterLab.

JupyterLab allows users to work with documents and activities in a flexible, integrated,

and extensible manner [40]. JupyterLab includes the ability to work on multiple documents

and activities side by side through the use of tabs and splitters where the original interface

only allowed for one task at a time. These activities and documents can include things such

as Jupyter Notebooks, text editors, terminals, and other custom components enabling the

user to multitask more effectively. This new interface is shown in Fig. 2.3.
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Figure 2.3: The new JupyterLab user interface currently in development. Eventually

JupyterLab will replace the classic Jupyter Notebook [40].

As shown in Fig. 2.3, the new JupyterLab interface looks similar to a traditional

desktop interface where a user can have multiple windows or tabs open at a time. This will

make new Jupyter users feel more comfortable with the layout and allow experienced users

to multi-task more efficiently and effectively. While JupyterLab will eventually replace the

classic Jupyter Notebook, JupyterLab is still under active, although stable, development so

the transition is not yet complete.

2.5 Benchmarks

In this work, we utilize a number of different benchmarking suites in order to quan-

tify and validate the performance of the HPC environments that we are creating in the

different commercial cloud environments. This section provides an overview of the different

benchmark suites that we utilize and an overview of the tools included in each one.
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2.5.1 HPC Challenge Benchmark Suite

The first benchmark suite that we will be utilizing is the HPC Challenge (HPCC)

benchmark suite developed at the University of Tennessee [49]. The HPCC suite is designed

to measure a range of memory access patterns and is an open source project. HPCC

consists of basically seven tests: HPL, DGEMM, STREAM, PTRANS, RandomAccess,

FFT, and the Communication bandwidth and latency tests. In this section we will give a

brief background on each of these tests and explain what each one is testing.

2.5.1.1 HPL

HPL or the High Performance Linpack benchmark is software that solves a (random)

dense linear matrix in 64-bits double precision arithmetic on distributed computers [70].

This package quantifies accuracy and the time taken to complete the solution utilizing an

included testing and timing program. HPL solves a system of linear equations of order n:

Ax = b; A ∈ Rn×n; x, b ∈ Rn

by first computing LU factorization with partial row pivoting of the n by n + 1 coefficient

matrix

P
[
A, b] =

[[
L,U ], y]

Then the solution can be obtained in one step solving the upper triangular system

Ux = y

[50]. HPL is utilized within the HPCC benchmark suite to evaluate the floating point rate

of execution for solving a linear system of equations. This is a “global” challenge where all

the processors are working in coordination in order to solve a singular problem.
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2.5.1.2 DGEMM

Double-precision general matrix multiplication (DGEMM) is another measure of

the floating point arithmetic performance of an HPC environment. Within the HPCC

benchmark suite, DGEMM is a level three BLAS routine that performs one of the matrix-

matrix operations

C ← αAB + βC

where

A,B,C ∈ Rn×n; α, β ∈ Rn

In this case alpha and beta are scalars while A, B, and C are matrices. A is an m by k

matrix B is a k by n matrix and C is a m by n matrix and A and B can optionally be

transposed [22, 50].

DGEMM is utilized along with HPL to measure the floating point performance

for the HPC environment though matrix-matrix multiplication and is executed in multiple

configurations. The first configuration is the “single” configuration where DGEMM is exe-

cuted on a randomly chosen processor on the system while the second configuration is the

“star” configuration where a copy of DGEMM is executed across all processors concurrently.

executing DGEMM in multiple configurations allows for a more complete view of system

performance and can showcase any issues with contention among resources when executing

concurrently.

2.5.1.3 STREAM

The STREAM benchmark is a synthetic benchmark program that measures the

sustainable memory bandwidth in GB/s along with the corresponding computation rate for

simple vector kernels [56]. The simple vector kernels utilized by STREAM are:
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COPY : c← a

SCALE : b← αc

ADD : c← a+ b

TRIAD : a← b+ αc

where:

a, b, c ∈ Rm; α ∈ R

[50]

STREAM is designed to work with datasets that are much larger then the cache

available on any given system. This helps to provide results that more closely align with

the performance of very large vector style applications. STREAM is again ran in both the

“single” and “star” configurations in order to show the differences between executing on a

single processor versus executing on all the processors concurrently.

2.5.1.4 PTRANS

PTRANS or parallel matrix transpose is a benchmark that measures the perfor-

mance of transposing a large array. By doing this, PTRANS is exercising the communi-

cations where pairs of processes have to communicate with each other simultaneously [69].

This benchmark sets a random n by n matrix to a sum of its transpose with another random

matrix:

A← AT +B

where:

A,B ∈ Rnxn
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while the data transfer rate, which is measured in Gbytes/s, is calculated by dividing

the size of n2 matrix entries by the time it took to perform the transpose [50]. This is a

“global” experiment which means that all of the processes on the system are working towards

solving a single problem which is what leads to the large amount of messages exchanged as

each processor needs to exchange information with their neighboring processes in order to

transpose the entire matrix. This is a good way to test the overall communication capacity

of the network which is one area where commercial clouds have struggled in the past. This

benchmark will be an area of focus for our experiments discussed later.

2.5.1.5 RandomAccess

The RandomAccess benchmark measures the rate of integer random updates from

memory. This is measured in Giga updates per second (GUPS) [49]. The operation being

performed on an integer array of size m is:

x← f(x)

f : x 7→ (x⊗ ai); ai − pseudo− randomsequence

where:

f(Zm)→ Zm; x ∈ Zm

[50]. The RandomAccess benchmarks focus on random memory access because as random

memory access becomes more expensive relative to processor operations there needs to be a

way to measure performance based upon the random memory access performance. Random

memory performance has been found to often be a good indicator of application performance

as even a small percentage of random memory access within an application can drastically

affect the overall performance of the application itself [45]. GUPS is calculated by identifying

the number of memory locations that can be randomly updated in one second and dividing

it by one billion. Within the HPCC benchmark suite, the RandomAccess benchmarks are
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executed in all three different configurations: “single”, “star”, and “global” in order to test

both the overall system performance and to test the subcomponents performance as well.

2.5.1.6 FFT

FFT or Fast Fouier Transform is a benchmark that is utilized by HPCC to measure

the floating point rate of execution of double precision complex one-dimensional Discrete

Fourier Transform (DFT) [49]. This one-dimensional Discrete Fourier Transform (DFT) is

of size m:

Zk ←
m∑
j

zje
−2πi jk

m ; 1 ≤ k ≤ m

where:

z, Z ∈ Cm

[50]. Where the operation count is taken to be 5mlog2m for the calculation of the com-

putational rate in Gflops/s. The FFT benchmark is also run in the three configurations:

“single”, “star”, and “global” which allows the observations about how much the network is

impacting the results to be seen in the results from each configuration. Similar to PTRANS,

the FFT benchmark also performed poorly in our testing due in large part to the amount

of communication required between processes. This will be discussed in more detail later

on.

2.5.1.7 Communication Bandwidth and Latency

The Communication Bandwidth and Latency benchmark is an MPI centric set of

tests to measure both latency and bandwidth of a number of simultaneous communication

patterns. These patterns are based on the b eff, effective bandwidth benchmark, however

they are slightly different as the operation count is linearly dependant on the number of

processors in the tested system [50]. The major results that are reported by this benchmark

are: maximal ping pong latency, average latency of parallel communication in randomly or-

dered rings, minimal ping pong bandwidth, bandwidth per process in the naturally ordered
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ring, and average bandwidth per process in randomly ordered rings. This information is

very useful when attempting to determine the network characteristics of the system which

can help determine which applications are best suited for that particular system.

2.5.2 NASA Parallel Benchmark Suite

Another benchmark suite that we will be utilizing for this work is the NASA Ad-

vanced Supercomputing (NAS) Parallel Benchmarks (NPB). The NPB are derived from

computational fluid dynamics (CFD) applications and consist of a number of benchmarks

that can be utilized to test the performance of HPC environments [5]. The suite consists of

twelve benchmarks and seven different problem classes that test different components of the

HPC environment. These benchmarks include the original eight benchmarks consisting of

five kernels: Integer Sort (IS) that utilizes random memory accesses, Embarrassingly Parallel

(EP), Conjugate Gradient (CG) that utilizes irregular memory access and communication,

Multi-Grid on a sequence of meshes (MG) a memory intensive application that utilizes

long and short distance communication, and discrete 3D fast Fourier Transform (FT) that

utilizes all-to-all communication. The original eight benchmarks also include three pseudo

applications: Block Tri-diagonal solver (BT), Scalar Penta-diagonal solver (SP), and Lower-

Upper Gauss-Seidel solver (LU). Recently there have been four new benchmarks added for

unstructured computation, parallel I/O, and data movement: Unstructured Adaptive mesh

(UA), Block Tri-diagonal solver I/O (BT-IO), Data Cube (DC), and Data Traffic (DT).

The NPB also come with a range of different benchmark classes that can be utilized

for testing. These test classes are the small starter Class S that can be utilized for small

quick tests, Class W for a workstation sized test, Classes A, B, and C which are the standard

test problems that have roughly a 4̃x increase when going from one class to the next, and

lastly Classes D, E, and F which are the large test problems and have roughly 16x increase

when going from class to class [5].
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2.6 Determining The Optimal Configuration For Parallel Com-

putation

Within an on premise or local HPC environment, there are a finite number of re-

sources and resource combinations that can be utilized for the execution of parallel com-

putation. The resources available in these environments are chosen and configured for the

researchers by the system administrators who have extensive knowledge in how all the com-

ponents fit together and which configurations will yield the desired performance level. Due

to these constraints, the researcher has a limited number of configurations of resources that

they can utilize to execute their application. Although the resources are limited in scope,

generally most of the configurations available to the researchers will yield decent perfor-

mance due to optimizations made by the system administrators. Also, due to the resources

already being provisioned, trying different resource configurations and combinations to de-

termine what performs the best is mainly limited by the availability of the resources and the

time of the researcher so if a researcher does not choose the proper configuration on the first

try it is not a large issue. However, when executing in the commercial cloud determining

the correct configuration and combination of resources to utilize on the first try is much

more important and more difficult.

There are many different resource options and configurations to consider when de-

ploying the resources to execute a particular HPC application. Each commercial cloud ven-

dor has multiple types or resources with differing hardware such as vCPUs, RAM, GPUs,

Network, and Disks and these different types of resources can greatly effect the execution of

the HPC applications. In contrast to local resources that have a finite number of resources

that researchers can choose from, the commercial cloud has an almost infinite amount of

possible resource combinations for researchers to choose from. This can lead to uncertainty

for researchers when attempting to deploy their scientific workflows on the commercial cloud

as they may not have all the information required to make an informed decision on which

resource configuration best fits their scientific workflow’s requirements. Also unlike local
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resources that are already provisioned, in order to test multiple configurations and combina-

tions, a researcher must invest time and money into provisioning the different combinations

of resources in order to find the proper configuration.

Also, just looking at the application execution times on the commercial cloud can

sometimes miss the point. There are many more variables that must be considered when

executing in the commercial cloud. While on premise many of the available configurations

are highly optimized for scientific workflows, the commercial cloud is more general purpose

and the performance tricks and tips that work on local resources might not increase perfor-

mance as a researcher would traditionally expect. This can lead to researchers dramatically

over or under provisioning commercial cloud resources which can negatively affect the per-

formance while even potentially increasing the cost. As our previous research has shown,

there are cases where adding more instances to the application can actually negatively affect

the performance of the job to the point where it is unusable [73]. Since this is different than

the traditional way of thinking, researchers may not think to try smaller configurations of

instances when evaluating different configurations.

There have been a number of studies that have looked at estimating the execution

time of different scientific applications in general as well as predicting their performance

on the commercial clouds such as [64, 54, 19, 105, 53, 31]. These studies have looked at

how researchers can profile or utilize existing profiles of applications to determine a rough

estimate of the execution time for their application. While both [105, 53] both assume that

the target architecture being studied is dedicated to the execution of the specific application

being studied. While this holds for a traditional HPC environment, this is not true for the

commercial cloud as it has a more general purpose architecture that is designed to execute

many different workloads and workflows.

In [64], the goal is to predict the runtime for each application right after it has

been submitted to the cloud. This does not help to solve the issue of what configuration to

utilize as the configuration would have already be decided. Studies such as [19, 31] attempt

to address the optimal resource configuration for different types of workloads but they still
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hold on to the assumption that the target application has already been profiled on the target

system which is an additional step for the researcher. This additional step also incurs costs

and takes time that a researcher may not have which could discourage them from trying

the commercial cloud.

Only [53, 54] analyze different workloads with varying configuration and architec-

tural parameters. However, only [54] addresses the need to be able to predict application

execution time without having to deploy the entire configuration first. This study was tested

on the OpenStack research cloud with the thought to utilize it in other clouds as well. The

study focuses mainly on CPU intensive applications and relies on the cloud provider gen-

erating the profiles for the hardware configurations in the cloud. However, getting large

cloud providers to generate the required profiles may prove difficult especially at the scale

required. Also the study only looks at the number of nodes, CPUs per node, and RAM

per node. It does not take into consideration network performance as it is fixed on the

test cloud nor do they look at the storage system as their benchmarks are not sensitive to

its performance. Within the commercial cloud such as AWS, performance can vary heav-

ily depending on a large variety of factors including placement of instances, utilization of

instances, time of day, instance class, etc. All of these factors need to be included in the

calculation as well as the number of instances, CPUs per instance, and RAM per instance

are only a small part of the configuration in the cloud.

2.7 Urgent Computing

In this section we discuss the current research that has been performed in the area

of urgent computing. We will discuss three different categories of research that have been

performed in this field. These categories include research focused on building infrastructure

and support systems, on the generation of damage prediction simulations, and research on

creating a more generalized definition of urgent computing.
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2.7.1 Building Infrastructure and Support Systems

The area of building infrastructure and support systems for urgent computing fo-

cuses on how best to take advantage of existing computational resources for urgent comput-

ing. Generally this is accomplished through some type of priority system in order to allow

for urgent computing tasks to be completed in a timely manner. One such system that was

designed to help with the urgent computing issue is the Special Priority and Urgent Com-

puting Environment (SPRUCE) [11]. SPRUCE utilizes a novel token-based authorization

system that can be used to facilitate and track urgent computation sessions by approved

users. SPRUCE is designed to work closely with existing resource providers and supercom-

puting centers to allow each resource provider to have full control regarding the policies

around which resources and parts of their system can be utilized for urgent computation.

The way that SPRUCE works is that a user or group of users is given a special generated

“token” that gives the jobs that they submit to the system special “priority”. This means

that their jobs will execute first and in a more timely manner than a standard system

user. By submitting at a higher priority than the standard users, SPRUCE users can also

preempt or cancel another standard users’ jobs. However, these preemption and priority

settings vary as SPRUCE does not provide standard rules. Instead these priority and pre-

emption settings are defined by the resource providers. This can lead to inconsistencies

between SPRUCE sites and could lead to some confusion amongst researchers attempting

to submit their urgent computing jobs as the processing delay can vary widely between

different SPRUCE sites.

Within the SPRUCE paper, the authors do make a mention of the feasibility of

possibly utilizing commercial cloud resources as part of SPRUCE. However, the majority of

the paper is targeted mainly at existing supercomputing facilities that have dedicated and

pre-configured resources. The use of commercial cloud is also discussed in [47]. This work

discusses the tradeoffs between utilizing multiple types of e-infrastructure to perform urgent

HPC tasks. The types of infrastructure discussed cover both existing HPC, Grid, and Cloud

resources. This paper discusses how usually most researchers with an urgent computation
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workflow and need typically do not have the funding for always-on and dedicated resources.

The commercial cloud is presented as a potential solution to this problem depending upon

the frequency of execution and the type of urgent computational workload.

2.7.2 Damage Simulation Generation

Another major area of research in the area of urgent computing is the generation of

simulations that can be utilized to predict when and where an impending event will happen

and how much damage it could cause. These events can be hurricanes, forest fires, torna-

does, tsunamis, or even man-made disasters such as a chemical spill. Some examples of

these types of studies that focused on simulating different flooding events in different areas

include [63, 8] and [15]. In [63] the authors utilize an existing supercomputing resource,

SX-ACE, which is located at Tohoku University. The goal of this case-study was to provide

up-to-date information about impending Tsunamis within 20 minutes of the latest earth-

quake. This would allow citizens within the affected zones time to evacuate and prepare for

the event which could help prevent loss of property and lives. In order to gain the priority

needed to run this simulation within the 20 minute window, the researchers utilized and

modified the job management system of the environment, NQS II, to support prioritizing

urgent computing tasks. This involved ensuring that all other running jobs and compu-

tations were suspended upon the submission of the tsunami prediction code. This allows

the tsunami prediction code to meet the time constraints and provide more instantaneous

results. After the tsunami prediction code has executed, all the other previously executing

jobs and computations are resumed.

In [8], the authors create a system for monitoring the levees in the Malopolska

region of Poland over a certain period of time. The authors propose a hybrid solution

that can utilize both commercial cloud resources as well as local resources to perform the

computation. The reasoning for this is that the commercial cloud provides reliability and

resiliency in the case that local resources are taken offline by the impending event. Also the

execution of these types of workloads can be characterized as “spikey” and the computation
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is not continuously needed. Hence the commercial cloud can offer on-demand infrastructure

that can be created and destroyed when needed. The workflow itself utilizes the HyperFlow

workflow management systems [7] which executes the specified jobs and returns the results

back to the users through a graphical user interface (GUI).

Another study [15] describes a workflow that is implemented to help automate the

process of lowring the flood gates in the Saint-Petersburg Barrier. The paper describes how

the workflow is implemented within the context of urgent computing. There are a large

number of steps within the workflow that the urgent computing paradigm can help increase

the efficiency of and provide additional computational power when needed. By enabling

the key decision makers to have more up-to-date information in their hands, they can make

more informed decisions which can help to limit the loss of both property and lives. This

also allows for the minimization of the period of time that the gates remained closed which

helps to regulate the flow of water and keep things moving normally and smoothly.

There is another group of simulation studies that have been done regarding simu-

lating traffic [16, 2], which deal with the simulation of evacuations ahead of an impending

event. In [16], the authors discuss an implementation of a generic incident model to show

the impact that traffic incidents have on evacuation times at large scales. The study uti-

lizes the Real-Time Evacuation Planning Model (RtePM) to model two different scenarios:

a terrorist attack in Washington D.C and a hurricane at Virginia Beach. By utilizing these

types of simulations ahead of and leading up to an impending event, key decision makers

can be more informed and prepared when it comes time to issue an evacuation order. Al-

though these types of simulations are useful on their own, when combined with additional

information such as flow rate, population, and information from previous incidents they can

become even more useful and informative. In [2], the authors discuss the implementation

of a generic traffic management framework for solving large-scale constraint optimization

problems. In the paper the system is discussed in regards to both emergency evacuation

and congestion pricing. For the implementation of this system, an HPC cluster located

at the University of Toronto was utilized to enable the parallelization of the two usecases.
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This parallelization allows for the execution of both types of simulations concurrently allow-

ing key decision makers the ability to have more information in front of them. This same

methodology can also be utilized for general traffic understanding outside of emergency

situations such as for large cities or regions over multiple day, large scale traffic studies.

2.7.3 Creating Generalized Definition of Urgent Computing

The last portion of research that we discuss in terms of urgent computing is the work

performed on creating a generalized definition of urgent computing. This research brings

together a number of different topics into a widely accepted and generalized definition of

urgent computing, as previously there were a large number of variations on the definition

of urgent computing. In [48] the authors explore the related urgent computing paradigms

and provide a comprehensive general version of the urgent computing definition and works

to clarify the differences between the different versions. The work defines an updated

definition that helps to clarify common terms, requirements, pre- and post-computation

characteristics, deadlines, and costs.
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Chapter 3

Evaluation of High Performance

Computing Workloads In The

Commercial Cloud

Our original work begins with an effort to design and architect a dynamic HPC

environment that researchers with little cloud knowledge could launch within Amazon Web

Services (AWS). During the course of this work, we find that although some applications

are not well suited to be executed on AWS, there are some that performed just as well in

the cloud as they did on premise.

3.1 Introduction

In the last few years the use of commercial clouds, such as Amazon Web Services

(AWS) and Google Cloud Platform (GCP), in industry has grown very quickly. However,

the use of these commercial clouds for high performance computing (HPC) by academic

researchers and institutions has not grown as quickly. One reason for this is that academic

researchers have a certain process that they utilize for their computational needs and tend

not to change that process unless they absolutely have to. Many researchers simply do not
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have the time to take away from their research to learn a new technology such as the cloud.

In order to help facilitate the adoption of cloud, researchers need a simple and

effective way to access an HPC environment that looks and behaves similarly to a traditional

on premise HPC environment. By giving researchers an HPC environment on the cloud that

closely resembles the traditional HPC environment they are currently utilizing, researchers

will be more open to utilizing cloud resources because they will not have to completely

change their workflows/workloads.

Another reason for this lack of adoption is due to the performance differences be-

tween on-premise and cloud resources when executing HPC applications. While on premise

HPC resources are generally engineered to utilize low latency networks, such as Infiniband,

and execute HPC applications, the cloud environment is a more generalized environment

and tends to use more traditional Ethernet based networks. However, although the cloud

may not have the same network type as on premise, the cloud does typically allow access to

a more diverse range of compute resources that may not be available to the user on premise.

Examples of some of this diverse hardware includes access to the latest Graphical Process-

ing Units (GPUs), Field Programmable Gate Arrays (FPGAs), large memory machines,

and access to newer chipsets and processors. Theoretically this means that when utilizing

certain HPC applications, researchers can decrease their application run time and produce

more results in the same period of time.

One of the main challenges that comes with this diverse range of hardware is de-

termining which configurations of hardware will yield the best results with certain types

of HPC applications. We aim to identify types of HPC applications that perform well on

the cloud as well as determining the ones that do not perform as well. For the applications

that do not perform well, we will investigate different hardware configurations and try to

determine if there is any type of hardware configuration in the cloud that will perform well.

We describe and report on our initial HPC environment setup to enable more effi-

cient access to researchers, identify which HPC applications perform well on the cloud, the

configuration experiments on poor performing applications, and finally identify the goals of
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future research in this area.

3.2 Methodology

Academic researchers are accustom to utilizing a traditional on premise HPC envi-

ronment that typically consists of a Login node, HPC Scheduler (Torque/SLURM/etc), a

shared filesystem, and compute nodes. This HPC environment is usually maintained and

configured by the University and system administrators. However, on the cloud the re-

searcher becomes responsible for deploying, managing, and maintaining this infrastructure.

In order to get comparable benchmarks, an infrastructure for deploying these HPC envi-

ronments on the cloud was required because no matter what the performance comparisons

show, researchers will not want to have to become a system administrator to execute on

the cloud. This solution is developed utilizing Python, Botocore, and Javascript in order to

create a web based application that allows researchers to launch these HPC environments

through a simple point and click wizard [73].

After developing this tool, we are able to perform the benchmarks on both the cloud

and on premise resources. For the benchmarks we utilize the HPC Challenge benchmark

suite [49]. The HPC Challenge benchmark suite is developed out of the University of Ten-

nessee and consists of a set of seven different benchmarks that test various aspects of an HPC

environment. The seven included benchmarks are: HPL, DGEMM, STREAM, PTRANS,

RandomAccess, FFT, and Communication bandwidth and latency. These benchmarks test

the network, memory, and computational performance all from the same benchmark suite.

We conduct these HPCC experiments both on a generated HPC environment in

AWS and an on premise HPC cluster. The on premise cluster consisted of 8 nodes that

each had a 2.0Ghz Intel Xeon E5-2660v2 CPU and 128 GB of RAM. The generated HPC

environment in AWS also consisted of 8 nodes of the r3.4xlarge AWS instance type that

each contained a 2.5 Ghz Intel Xeon E5-2670 CPU and 122 GB of RAM. This is as close

as we could get for comparison purposes due to AWS having rigid instance types so we
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cannot change the amount of RAM or the CPU used by the instance type. Both clusters

ran CentOS 7, MPICH 3.0.4, BLAS, and Atlas SSE3 libraries. We also have dedicated

access to the Torque/Maui scheduler queue so we do not have any contention from other

jobs in the system.

After conducting the HPCC experiments we further analyze additional AWS con-

figurations for the MPIFFT benchmark as it was the worst performing application in the

HPCC benchmark suite. For these experiments we utilize multiple AWS instance types

and options in order to find a configuration that would increase the performance. These

experiments are executed on m4.10xlarge, c4.8xlarge, and c3.8xlarge instance types using

both dedicated and non-dedicated options.

When executing the benchmarks in AWS we utilize Clustered Placement Groups

which provide a way to control placement of instances to help minimize the latency be-

tween instances [86]. We also utilize Enhanced Networking which utilizes single root I/O

virtualization (SR-IOV) in order to provide higher performance (in packets per second),

lower latency, and lower jitter [86].

3.3 Results

To perform the experiments on each environment, we run the full HPCC benchmark

suite ten times and then take the average of the results. After obtaining these results, we

focus in on the MPIFFT benchmark to determine if there is any configuration on AWS that

allows us to match the performance that we were seeing on the on premise cluster.

3.3.1 HPCC Benchmark Results

We first evaluate the execution of the full HPCC benchmark suite on both clusters.

Fig. 3.1 illustrates the results. We find that as initially expected, most of the results

show that the local cluster did perform better. As illustrated by the Randomly Ordered

Ring Latency benchmark, much of this performance difference comes from the difference

46



in network architectures and lower latency of the on premise clusters. In general we notice

that many of the benchmarks that rely heavily on message passing such as and network

communication such as MPIFFT and PTRANS perform poorly. While the StarSTREAM

and HPL Calculated Teraflops benchmarks that do not rely as heavily on the network

perform well in the cloud.

Figure 3.1: Results of individual HPCC benchmarks performed on an AWS HPC cluster

and an on premise cluster.

The HPL benchmark is the best performing benchmark showing only a 2.1% de-

crease in performance between the two clusters. This is in stark contrast to the MPIFFT

benchmark that shows a 20 GFlops/s decrease from the on premise environment. These re-

sults confirm our hypothesis about there being certain HPC application types that perform

well in the cloud while there are other types that do not perform well. As well as con-

firming our initial hypothesis, the results also posed another question: Is there any AWS

configuration that would yield better performance for the MPIFFT benchmark?
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3.3.2 MPIFFT Configuration Testing

Due to the MPIFFT benchmark’s poor performance in the initial experiments, we

want to try and narrow down what caused the decrease in performance and determine

if there is a configuration of instances on AWS that would yield better performance. For

these experiments we try a number of different settings and combinations of AWS options in

order to attempt to determine the issues. We start off by comparing the differences between

AWS’s dedicated instances versus non-dedicated instances. The results of this experiment

are shown in Fig. 3.2. All the experiments run for this test utiliz the same AWS instance

type (m3.10xlarge) with the only difference being the AWS option of dedicated instances

being turned on for some executions and off for others.

In AWS dedicated instances are instances that run on hardware that is dedicated

to a single customer meaning that no other user’s VMs will be placed on that physical

hardware. This can help to eliminate some of the variability in AWS regarding other

VMs utilizing the network extensively. As we see in Fig. 3.2 when only utilizing one or

two process per instance the performance is almost identical even when we use multiple

instances. However, once we get to utilizing more than four processors per node we see

that the dedicated instances start to out perform their non-dedicated counter parts. This

discovery led us to investigate the use of dedicated instances more in depth.
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Figure 3.2: Results of the MPIFFT benchmark when run on a different configurations of

the m4.10xlarge AWS Instance type.

After determining that utilizing the dedicated option in AWS did seem to help

performance, we ran some more experiments utilizing multiple AWS instance types to see

which combination yielded the best performance. The results of these experiments are

shown in Fig. 3.3. As Fig. 3.3 shows, we varied the instance types, number of instances,

and processors per node for each of our experiments. When running on a single dedicated

instance type, the numbers were comparable and even a little better with that of the on

premise (Holocron) cluster. This is likely due to the slightly newer processors utilized by

the AWS instance types. A comparison of the instance types utilized in this experiment is

shown in Table 3.1.
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Figure 3.3: Results of MPIFFT benchmark performance across different configurations of

AWS dedicated instance types, number of instances, and number of processors per node.

Table 3.1: Compute Node Configuration

Instance Type Cores/vCPUs Processor Memory (GB) Network

m4.10xlarge 40 Intel Xeon E5-2676v3 160 10GB Ethernet
c4.8xlarge 36 Intel Xeon E5-2666v3 60 10GB Ethernet
c3.8xlarge 32 Intel Xeon E5-2680v3 60 10GB Ethernet
Holocron 20 Intel Xeon E5-2660v2 128 10GB Ethernet

With our single instance experiments as a baseline, we begin increasing the number

of instances utilized by the MPIFFT benchmark. The results show that the optimal config-

uration for the MPIFFT benchmark seems to be any combination of 32 processes divided

between the number of instances and the number of processors per node. Any additional

processes added above 32 causes a sharp decline in the MPIFFT performance which seems

to indicate that there is a bottleneck in the network that is holding the execution back.

This stands in contrast to the local Holocron cluster where the addition of more

processors keeps increasing the performance of the benchmark. This underscores the need

for a different way of approaching running HPC applications within the cloud as some of the
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traditional thinking on how to improve performance may actually degraded performance on

AWS. The results also show the fact that although the HPC environment on AWS is still

slower then the on premise Holocron cluster, there are configurations available on the cloud

that will perform decently.

3.4 Conclusions

Although we see that many of the HPCC benchmarks did not perform as well in

the cloud as they did on the local environment, the results indicate that the cloud is still

viable for executing certain types of workloads. Due to vast number of resources available

in the cloud and the quick availability of new hardware, the cloud provides an option

to researchers that may not have the required computational resources available to them

locally. Although the performance was not as good as locally, for a researcher being able to

execute their workload, even at a slower rate, is better than not being able to run at all. By

utilizing different configurations and optimizations available within the cloud, performance

of some HPC applications can be improved to an acceptable level.
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Chapter 4

Dynamic Resource and Workflow

Management

Our previous results have shown that it is viable to execute certain classes of HPC

applications in the commercial cloud and we discussed a tool to help researchers deploy

their own HPC environment within the AWS cloud. One issue with provisioning an HPC

environment in the cloud is that the researcher then has to monitor the status of their

jobs and ensure that the HPC environment is de-provisioned properly in order to stop

incurring charges. This poses a problem for many researchers as some of their jobs may run

for multiple hours, days, or even weeks. What researchers require is a tool that can help

automate this process.

As previously discussed are a multitude of tools that exist to help manage either

the deployment of cloud resources or the execution of workloads on resources. However,

there is a noticeable gap regarding tools that can manage both of these aspects. This means

that in order to execute workloads in the cloud, researchers either have to create their own

customized solutions or take time to learn multiple new tools. In this chapter we discuss

the design, architecture, and implementation of the automated Provisioning and Workflow

Management Tool (PAW) that was presented at MTAGS17: 10th Workshop on Many-Task

Computing on Clouds, Grids, and Supercomputers [75].
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PAW is a comprehensive resource provisioning and workflow management tool that

automates the steps of dynamically deploying a scalable HPC environment in the cloud,

executing a set of jobs or custom workflow, and de-provisioning the HPC environment after

all the jobs have completed in a single operation. The key contribution of PAW is that it

separates the provisioning of cluster resources in the cloud from the management of scientific

workflows on these resources, enabling fine-grained decisions about performance and cost

tradeoffs to be made by the researcher. The modular and open source nature of PAW

enables any user to create customizable workflow and resource plugins along with cluster

environment templates that can be shared with other researchers.

4.1 Methodology

As mentioned there are numerous tools that handle either the provisioning of re-

sources or the management of workflows but there are very few tools that do both effectively.

Our research goal is to develop a scalable, easy to use, and extensible tool that can be uti-

lized by researchers to help port their workflows to the cloud efficiently and effectively. The

following principles are identified to be the core ideals for this tool:

• Extensible - The tool must be written to allow for plugins and extensions to be

developed for other resource providers to prevent vendor lock in

• Scalable - The tool must be able to create large scale environments quickly and

efficiently

• Limited Dependencies: To expedite the installation and usage of the tool, it should

have a limited number of outside libraries and dependencies

• Customizable - Researchers must be able to customize different aspects of the tool

in order to meet their research needs

• Limited Cloud Knowledge - Researchers must be able to operate the tool with

minimal cloud knowledge
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In its initial implementation PAW utilizes CloudyCluster which supports the dy-

namic provisioning and de-provisioning of cluster environments within commercial clouds

[68]. CloudyCluster supports provisioning cluster environments that can include shared

filesystems, NAT instances, compute nodes, a parallel filesystem, login nodes, and multiple

HPC schedulers. CloudyCluster also provides a meta-scheduler called CloudyCluster Queue

(CCQ) that provides job-driven autoscaling. The job-driven autoscaling is specified either

through special directives within the job script or through parsing the CPU and memory

requirements from supported HPC scheduler directives. CCQ allows PAW to submit a job

and dynamically create the exact resource required to execute the workflow.

In order to demonstrate the ability of the tool, we present a case study that imple-

ments a PAW custom topic modeling workflow to perform a parameter sweep on the full text

NIPS conference proceedings [28], and a set of abstracts extracted from computer science

publications that were provided by Elsevier. For each of the experiments we chose to utilize

AWS as the resource provider and utilize the c4.2xlarge and c4.xlarge AWS instance types

which have 8 and 4 vCPUs respectively. These experiments ranged in size from clusters

environments of 278 compute instances up to 5,000 compute instances.

4.2 Architecture

A simplified view of PAW’s operational stages is shown in Fig. 4.1. PAW separates

the operational stages into three parts: Control, Environment, and Workflow. The first

operational stage of PAW is the Control stage. In this stage, the resources that are required

in order to provision the cluster environment are created. This stage is an optional stage

depending on the hardware provider and the provisioning software that is being utilized

by PAW. The second stage is the Environment stage where the cluster environment is

dynamically provisioned from the configuration defined in the PAW configuration file. The

third stage is the Workflow stage where the compute instances are dynamically provisioned

and the custom PAW workflows are executed on the provisioned compute instances. After
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the jobs and workflows are completed, PAW can then automatically begin to de-provision

the resources if specified. Due to the decoupling of control planes, the user can also choose

to leave the resources running so that they can execute more jobs or perform analysis if

desired.

Figure 4.1: Simplified view of PAW’s operational stages of execution

By performing the automated deployment and de-provisioning of cloud resources,

PAW beings to address some of the billing challenges as described in [14]. Since cloud

resources are billed by usage there are some inherent risks involved. If a researcher happens

to forget and leave some resources running after their workflow has been completed they

will be charged even though no research was being conducted. PAW helps to alleviate this

risk through automated de-provisioning.

PAW utilizes a human readable ini formatted configuration file to define all the

parameters required for execution. Several sample configuration files are included with PAW

so that researchers can begin executing workflows quickly. The core of PAW is designed

to provide a standardized, simplified, and pluggable interface that can be expanded to

support a variety of hardware environments, scheduling software, workflows, and scientific

applications.
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PAW is written in Python and its core architecture is built from four components:

Resources, Environments and Environment Templates, Schedulers, and Workflow Tem-

plates. Each of these components is defined by a Python base class that contains the

base methods required for each. In order to implement a new type of component a user

must create a Python class that implements the methods defined in the base class for that

component.

4.3 Resources

The Resources classes of PAW are the components that interface directly with the

underlying cloud or resource provisioner being utilized and is optional. The code within a

Resource class creates the Control Resources that are required to interface with the cluster

environment provisioning tools. However, if the cluster environment provisioning tool does

not require the creation of Control Resources, this stage can be skipped. Examples of

Resource class implementations can include commercial cloud providers such as AWS and

GCP as well as traditional on premise hardware or private clouds like CloudLab [80]. In the

initial implementation, the AWS Resource class has been defined and it creates the Control

Resources required to utilize CloudyCluster within AWS.

4.3.1 Environments and Environment Templates

The Environment classes provide an interface to the chosen cluster environment

provisioning tool and allow PAW to create, delete, and monitor cluster environments of

a specific type. A cluster environment is defined within PAW to contain all of the com-

putational resources required to execute the workflows or jobs specified by the user. This

type of environment generally consists of a combination of a shared filesystem, a sched-

uler, NAT instance, compute instances, and a login instance. These combinations of cluster

environments can be specified through the included environment template generator.

PAW includes a built-in environment template generator that allows researchers
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with little cloud knowledge to specify their computational requirements in general terms

and have them translated into the parameters that the resource provisioning tool is expect-

ing. This minimizes the knowledge that researchers need to know about the underlying

resource provisioners and cluster environment tool. The environment template generator is

built to be modular and pluggable similar to PAW and can be extended to other resource

provisioners. PAW comes bundled with a CloudyCluster environment template generator

that allows users to generate customized CloudyCluster templates to help researchers deploy

their environments faster.

4.3.2 Schedulers

The Scheduler classes allow PAW to interface with different HPC schedulers within

the created environments. Each Scheduler class provides the required commands and code

to submit, delete, monitor and modify jobs within that specific HPC scheduler. For the

current iteration of PAW, only the CCQ scheduler is fully implemented. However, CCQ

already supports two of the most common HPC schedulers, SLURM and Torque/Maui, so

PAW supports these scheduler types through CCQ.

4.3.3 Workflows

PAW also provides a way for researchers to create a custom PAW workflow that

can be shared with others. A custom PAW workflow is defined as a custom set of tasks or

actions specified by the user that can then be submitted to an HPC scheduler to perform

work. These customizable workflows are implemented as a single Python class that has

two methods that must be implemented: run and monitor. A user puts the requisite

code to generate or read a batch script file. This code will be called by PAW once the

compute resources have been created and then will execute and submit the work to the

HPC scheduler. The monitor function contains any code that is required to check for the

completion of the work submitted by the run method. For example, the monitor function

could include monitoring the number of jobs running with a certain name, or simply checking
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to see if an output file exists in a certain directory.

A PAW custom workflow is not designed to replace a stand alone workflow manage-

ment tool such as SWIFT [104] or Pegasus [20], but instead it is designed to compliment

them and make them more usable and accessible in the cloud. For example, a custom PAW

workflow could include the use of SWIFT to manage the computational workflow while

PAW manages the resource management and initial job submission. This allows researchers

to utilize the same tools that they currently using which helps to minimize the learning

curve and the changes required to their original workflows.

4.4 Case Study

To demonstrate the scalability, flexibility, and extensability of PAW we present a

case study utilizing a topic modeling workflow that performs high throughput parameter

sweeps. We choose this type of high throughput workflow because this type of workflow

does not rely on the network and the processes operate separately from one another. As

we discovered in previous work, these types of workflows tend to perform better on cloud

resources. We implement this topic modeling workflow as a custom PAW workflow class that

enables us to specify the parameters required to execute the job in the PAW configuration

file. Once the custom workflow is complete, we utilize PAW to execute the workflow with

a single command.

Our custom workflow begins with a human readable experiment descriptor file that

contains the basic information about the experiments to be conducted. This information

includes things such as the number of compute instances required, which dataset to utilize,

and which experimental parameters to test. This configuration file is specified by the user

through the PAW configuration file previously discussed.

The cluster environment is a basic cluster environment that consists of an HPC

batch scheduler, a shared filesystem, a login node, and compute instances. For these exper-

iments we utilize the c4.2xlarge and c4.xlarge AWS instance types. These instance types
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have 8 and 4 vCPUs respectively. These instance types were chosen because they fit the

computational requirements of the workload and because they were not too expensive. The

experiments ranged in size from 278 compute instances up to 5,000 compute instances in a

single environment.

The results of the case study are shown in Fig. 4.2. Fig. 4.2 consists of six graphs

of which graphs A, B, C, and D show the results from the CS Abstracts experiment while

graphs E and F show the results of the NIPS experiments. Graphs A, B, C, and D are

truncated on the right hand side for space reasons as these jobs are longer running while

graphs E and F show the full execution cycle of PAW as these jobs took less time to execute.

Figure 4.2: Experimental executions of the topic modeling workflow utilizing PAW.

Graph A shows the timeline of the number of each AWS instance type that was

launched during the CS Abstracts experiment. We utilize PAW to dynamically launch the

instances after the initial workflow had been submitted and were able to provision 5,000

instances consisting of 2,788 c4.xlarge instances and 2,222 c4.2xlarge instances in about 25

minutes. As graph B shows, during this experiment our 5,000 instances had a grand total

of 28,832 vCPUs available for computation.
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Graph C depicts a timeline of the number of batch jobs submitted by our custom

Workflow along with the total number of compute instances provisioned. As mentioned,

our custom workflow first submits a single batch job that generates and submits the rest

of the batch jobs for the experiment. Graph C shows that the first job is submitted and

begins running within 5 minutes of submitting the workflow to PAW and finishes generating

the rest of the experiments and submitting them within 8 minutes of launch. As shown, at

this point the number of pending jobs within the environment rises quickly to almost 2,000

and then starts to decrease. This is because as more instances are provisioned more jobs

start until all the generated jobs are running. Graph D shows an illustration of how quickly

instances go from initially being provisioned to being running and ready to be assigned for

computation. The first instance registers in within 5 minutes and then 95% of the rest of

the instances register within 20 minutes.

Graphs E and F illustrate PAW’s ability to not only create resources quickly but

also how it can de-provision them quickly as well after the workflow has completed. Graph

E shows a timeline of all the instances that were provisioned during these experiments. The

graph shows that within two minutes after PAW detected that the workflow had finished,

all the computational resources had been deleted. This quick recognition of completion and

resource termination is critical for managing costs when running in a cloud environment

that is charged by the second.

Graph F depicts the number of pending and running jobs in the provisioned envi-

ronment as well as the number of instances provisioned. It shows that the first job was

submitted within five minutes and that 3,000 jobs were generated and submitted in 30

minutes. The graph also shows that the 278 instances that were provisioned by PAW com-

pleted 3,210 jobs in about 30 minutes as well as the detection of workflow completion and

subsequent de-provisioning of the environment.

As with running anything in the cloud, there is a cost to execute these environments.

For these experiments we utilized the AWS Spot Market to help us obtain the lowest possible

cost. The estimated cost for the CS Abstracts workflow is about $777.80 an hour for over
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28,000 vCPUs and 5,000 instances. This equates to around $0.028 per vCPU hour, however

due to fluctuations in the Spot Market the price could be more or less depending on the

market at run time.

4.5 Conclusions

Building off of our previous work in validating and identifying that certain parallel

scientific applications can run well on the cloud, we built the Provisioning And Workflow

(PAW) Management Tool for parallel scientific workflows. PAW provides a modular base

that can be extended to other clouds or resource providers in order to add even more

capabilities in the future. We showcase the scalability of PAW by utilizing a custom topic

modeling workflow that utilizing the current version of PAW with CloudyCluster and AWS

was able to provision a workflow that utilized 5,000 instances and over 28,000 cores in 25

minutes.

PAW was designed to help enable researchers with minimal commercial cloud knowl-

edge to be able to take advantage of some of the advantages that the cloud can offer. By

utilizing PAW, researchers can run custom defined parallel scientific workflows within AWS

just as they would on a traditional HPC cluster and without any in depth knowledge of how

AWS works. Unlike a traditional HPC cluster though, researchers have exclusive access to

the cluster environment created by PAW allowing them to not have to contend for resources

with other users.
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Chapter 5

Considerations When Running At

Scale

Now that we know that executing certain parallel scientific workflows on the com-

mercial cloud is feasible and have built a tool to help automate the process, we take a deeper

look at the tradeoffs, challenges, and solutions associated with running a very large scale

cluster with commercial cloud resources. Due to size of most academic resources as well as

the contention by other users of these systems, the actual availability of these systems to

individual researchers is limited. There are times where due to other researchers utilizing

the system, a researcher’s submitted job can sit in the queue for hours or even days depend-

ing on its size. This limitation can slow down the time-to-science for researchers who have

an urgent need for access to large scale resources (e.g hurricane forecasting). It is in these

situations where the commercial cloud could be utilized to allow the researcher access to

the resources required to execute their workload.

An example of this is a high throughput computational (HTC) workload which

generally consists of independent programs that rely less on low-latency messaging that our

previous research has shown can be a bottleneck for HPC applications. HTC workflows can

contain a large number of individual jobs which can make acquiring the resources to execute

them in a fixed turn-around time on traditional HPC resources difficult. Limitations for
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this could be the physical size or availability of the networking, computational, and storage

resources on site or how many jobs a user can submit to the system at once. When there

are not enough resources available, the number of HTC jobs that can run simultaneously is

decreased which increases the amount of time required to execute the entire suite of jobs. If

the HTC suite is massive, say consisting of tens of thousands of jobs, researchers may have

to wait for weeks to get enough jobs to execute for a usable results.

The commercial cloud has the allure of “unlimited” resources, the ability to have

complete control over administrative policies of the environment, and an increasing variety

of hardware that can help solve many of the issues faced when attempting to run a massive

HTC workflow. However the challenges with dynamically provisioning traditional HPC-

type environments at a massive scale on the commercial cloud is not well studied. There

have been a number of studies that have looked at optimizing various HPC applications in

the cloud, HPC application performance studies, and studies about which applications and

programming models are best suited for cloud [83, 36, 93, 32, 34, 52, 29]. However, the

scale of these experiments has been modest by our scale ranging from a few nodes to a few

thousand instances in total.

At the time of this research, the largest scale HTC or HPC job that had been

executed on a commercial cloud and publicized was an HTC job that was designed to execute

a single workflow on GCP [10]. At its peak, the job utilized 580,000 cores simultaneously.

However, this suite of jobs executed utilizing a work queue model in which compute resources

receive work from a queue master similar to [84]. All of the instances utilized operated as

separate entities and were spread over multiple GCP regions and the submission tools were

a different from those utilized by traditional scientific computing environments as there was

no HPC batch scheduler utilized.

Our goals for this research are the following:

• Identify the challenges that come with provisioning a massive scale HPC environment

on the commercial cloud
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• Propose potential solutions to these challenges

• Design an architecture that will allow us to execute an environment consisting of at

least 1,000,000 cores

• Deploy a Topic Modeling Parameter HTC workflow on the massive scale environment

5.1 Methodology

For this study we consider the three largest commercial cloud providers, Amazon

Web Services (AWS), Google Cloud Platform (GCP) and Microsoft Azure which each offer

a number of different services and each have their own advantages and disadvantages. But

after doing to the comparison, we chose to utilize AWS as it offered the most effective cost

saving options via the AWS Spot Market and also provides the largest selection of off-the-

shelf provisioning tools. We also had previously developed an automated Provisioning And

Workflow management tool [75] to help deploy HPC environments on AWS which we utilize

for this experiment.

AWS also has a concept called an AWS Spot Fleet which can utilize multiple AWS

Instance Types within a single Autoscaling group based upon a specified “weight”. This is

important because in order to reach our goal of provisioning over 1,000,000 cores we need

to ensure that if a single instance type has a price spike during the experiment we have

another instance type that can be launched instead.

In order to test our scaling limitations we develop a test plan that calls for exper-

imental testing at increasingly larger scales. We first start out with a modest test of just

10,000 vCPU or about 1% of the goal and then move to a medium sized test of about

5,000 instances which is designed to test the scheduler software and provisioning software

limitations as well. Successful resolution of these limitations within a single 5,000 instance

environment laid the groundwork for executing multiple of these environments in our final

execution. It should be noted our medium sized cluster is comparable to many campus-scale

computing clusters.
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Table 5.1: Scaling Limitations And Solutions
Limitation Solution

Shared Filesystem Scaling Build a tar file with the dataset and experiment files and
upload it to Amazon S3.

NAT Limitations Put the data on the image to reduce traffic to the NAT
Instance.

Dynamic Pricing Effects On Spot
Prices

Utilize the Diversified Spot Fleet allocation

Heterogeneous Instance Types
With Spot

Create “classes” of Spot Fleets to launch containing in-
stances with similar characteristics

Scheduler Scalability Eliminated unnecessary reboots of the SLURM scheduler
when adding compute instances.

User Limits Request limit increases
API Limits Slow down the launching of new Spot Fleets and turn off

unnecessary monitoring

5.2 Limitations To Scaling

This research identifies and resolves a number of different limitations to massive

scaling on the commercial cloud. Of these limitations, several of these are common to

execution on all commercial clouds, including those of a shared filesystem, network limi-

tations such as a NAT instance, launching heterogeneous instance types to control costs,

HPC scheduler stability, and cloud vender user and API limits. While some limitations

such as the dynamic pricing effect on the Spot Market are specific to AWS. Table 5.1 lists

a summary of the limitations we identified during this research and our proposed solutions

for each limitation.

5.2.1 Shared Filesystem

The scientific HTC workflow we are utilzing was originally designed to generate

the analysis jobs based on a specified configuration file, and each of these generated jobs

required specific data that was located on a shared filesystem. Without access to this data

on the shared filesystem, the workflow could not execute successfully. However, our massive

scale environment will contain tens of thousands of instances and it is known that globally

shared filesystems, both in the cloud and on premise do not scale well in general [4]. Even

a robust shared filesystem would have issues when all jobs require access to the filesystem
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at the same time.

To address this issue we attempt a few different solutions. The first solution is to

create a version of the workflow that submits a parent job that copies the dataset to a local

scratch filesystem, generates the jobs for execution, and uploads a tar file of the generated

jobs to Amazon S3. Amazon S3 is an object store service that is designed to be highly

scalable and available globally.

In this scenario, when each compute instance is assigned a job, it will download the

tar file from S3 to the local instance, extract it, and then execute the application. This

avoids using a shared filesystem but still allows each instance to have access to the data it

requires to execute and maintains the dynamic and flexible nature of the workflow. This

solution worked well for the small tests, but issues accessing the same file began to occur

during our medium sized tests. As multiple thousands of instances attempted to download

the same file we began to see timeouts and the jobs would fail. In order to combat this,

we attempt a second solution which involves uploading multiple copies of the tar file to S3

in order to decrease the load on a single object. This solution decreased the number of

timeouts but did not eliminate them, which led us to another limitation within the network

infrastructure utilized to access S3 at a massive scale.

5.2.2 NAT Instance

Our cluster environments utilize a Network Address Translation (NAT) instance in

order to allow compute instances to download files and communicate with particular AWS

APIs. This is required because the networks that AWS utilizes for EC2 instances, Virtual

Private Clouds (VPCs), are private by default. In order to communicate with servers

outside of the VPC or other AWS APIs the NAT process must be utilized. By utilizing

PAW we were automatically provisioning a NAT instance, however, we were exceeding the

throughput of our provisioned instance which was causing the timeouts we were seeing when

downloading the dataset.

To solve this problem, we identify two potential solutions: NAT Gateways or VPC
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Endpoints. A NAT Gateway is a managed AWS service that handles NAT operations,

however you are charged for the amount of data processed by the NAT Gateway which can

add up quickly if you are downloading and uploading lots of data. So in order to avoid

this extra charge, we instead utilize VPC Endpoints which allow instances inside a VPC

to communicate directly with supported AWS services, such as S3, without having to go

through the NAT process. However, due to time constraints we did not have time to fully

test the VPC Endpoint solution so we attempt one final solution. For the final execution

we pre-generate the required datasets and experiment files and build them into the machine

images that the compute instances utilize. This solved the network limitation of the copy

and reduces the chance of failure when running at a massive scale. However, this does

drastically limit the flexibility and dynamic nature of the workflow.

5.2.3 Dynamic Pricing Effects On The Spot Market

When conducting our initial medium scale experiments, we utilize the AWS default

Lowest Price allocation strategy. In this mode, an AWS Spot Fleet (collection of compute

instances) launches Spot Instances into the Spot Pool with the lowest Spot Price [86]. But

during testing we observed long periods where the launching of instances leveled off for long

periods before beginning to launch more instances. Further investigation into this issue

revealed the cause.

Amazon Spot pricing changes based upon the supply and demand for different in-

stance types and by requesting all of our Spot Instances in the same Spot Pool we were

actually driving up the price for the instances we wanted to use. Once the Spot Price reached

our maximum bid price (i.e., the max amount we are willing to pay for a Spot Instance), the

new launches would fail. However, utilizing the Lowest Price allocation strategy the Spot

Fleet would continue to attempt to launch instances into that Spot Pool for a few minutes

before it reached a maximum number of failures and moved to the next Spot Pool.

To remove this delay, we utilize the Diversified allocation method. This allocation

method attempts to spread out the launching of the requested Spot Instances between
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multiple Spot Pools which prevents the price from spiking in a single Spot Pool. This

also decreased the cost of the experiment as instead of paying the maximum amount in

particular Spot Pool now the prices would be more consistent.

5.2.4 Heterogeneous Instance Types With Spot Allocations

An Amazon Spot Fleet is defined by a target capacity that is the total number of

capacity units desired. The provisioning of one million vCPUs requires tens of thousands

of compute instances, however a limit on Spot Fleet requests limits the target capacity for

each Spot Fleet Group to no more than 3,000. This posed a problem as this limitation

requires the management of an excessive number of Spot Fleets to obtain the desired size

and is a limitation to scalability.

Spot Weight parameters define the number of capacity units represented by a single

Spot Instance type [86]. There are two default modes for specifying the Spot Weight

parameters for each Spot Instance type: Instance mode and vCPU mode. In Instance

mode, each Spot Instance counts as a single instance so the Spot Weight is set to 1 whereas

in vCPU mode the Spot Weight is set to the number of vCPUs each Spot Instance has. This

is useful because since different Spot Instance types have different numbers of vCPUs some

instances should count for more then other instances. However, neither of these solutions

fit our needs exactly.

A key observation is that the Spot Weight parameter can be a fractional value less

than 1.0, the effects of this is shown in Table 5.2. As Table 5.2 shows, using vCPU mode

and a capacity of 3,000 the total instances per fleet is only 83. However, a Spot Fleet Weight

of 0.05 provides 20 instances for each capacity unit yielding a total of 60,000 instances with

a capacity set to 3,000. This is how we accomplish launching more than 3,000 instances in

a single Spot Fleet.

Determining the optimal values for these Spot Weights is a process of trial and

error because as the Spot Weights are modified so are the types of instances that will be

launched. The adjustments that we make centered on attempting to ensure that the Spot
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Table 5.2: Example of Effect of Custom Fractional Spot Fleet System Limits with c4.8xlarge
Instance Type

Instance Type
(vCPU=36)

Capacity Units Spot Weight Total Instances
Per Fleet

Spot Weight
Type

c4.8xlarge 1 1 1 Instances
c4.8xlarge 3,000 36 83 vCPU

c4.8xlarge 1 0.05 20 Custom
c4.8xlarge 3,000 0.05 60,000 Custom

Table 5.3: Spot Fleet Details by Workflow Class
Workflow
Class

Instance
Types

Max Spot
Bid Price

Spot Fleet
Weights

Capacity
Units

Number
Used in 1M
Run

Huge x1.16xlarge
m4.16xlarge

$1.570
$1.670

0.064
0.064

320 1

Large c4.8xlarge
c3.8xlarge
r4.8xlarge

$0.800
$0.876
$0.700

0.036
0.032
0.032

160 4

Medium c4.4xlarge
hi1.4xlarge
i3.4xlarge
r4.4xlarge
m4.4xlarge

$0.370
$0.370
$0.418
$0.470
$0.514

0.014
0.014
0.015
0.015
0.015

70 3

Small m4.2xlarge
m3.2xlarge
c4.2xlarge

$0.258
$0.236
$0.190

0.007
0.007
0.006

32 5

Tiny c4.xlarge $0.100 0.025 100 1

Fleets launch instances with higher vCPU counts over small vCPU instances. This type of

adjustment is required at the massive scale we are running at because if all the instances

launched were smaller 4 vCPU machines we would need 250,000 instances in order to reach

our goal of one million vCPUs whereas if we launched all 36 vCPU machines we would only

need 27,778 instances total to reach our goal.

After experimenting with the different configurations, we find that we need to create

“workflow classes” that only contain instances that have similar characteristics due to the

difficulty in getting a Spot Fleet to launch larger expensive instances over smaller cheaper

instances. By creating these workflow classes we ensure that each Spot Fleet will launch

the proper combination of instances and we will get a certain amount of capacity from each

Spot Fleet. The workflow classes are detailed in Table 5.3.
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5.2.5 Scheduler Scalability

Another bottleneck is revealed by the medium scale tests of a few thousand compute

instances: the scalabilty of Salt-Stack and SLURM. SLURM is an HPC batch scheduler

through which users submit batch jobs for processing. SLURM schedules the batch jobs on

the available resources and according to the SLURM website, the largest SLURM cluster

contained 98,304 nodes which is way less than our theoretical maximum of 250,000 [85].

This is our first limit, keep the size of the environment under 98,304 instances to avoid

issues.

SLURM, like most HPC schedulers, is built to be statically configured where the

node configurations are known ahead of time and are coded into the SLURM configuration

file. This works well in a traditional cluster environment where the IP addresses, hardware

configurations, and total number of nodes is know but in the cloud all of this information

isn’t decided until execution which makes configuring the scheduler more difficult. All

of the configuration information has to be added to the configuration file and then the

configuration file has to be pushed to all the instances.

Within PAW, CloudyCluster utilizes SaltStack to push out the configuration file

to each of the compute instances from a single Salt Master. In our massive configuration,

this becomes a bottleneck in our deployment. Although there is no technical limit to the

number of Salt Minions (i.e. compute instances) supported by a single Salt Master, the

amount of resources required to operate the Salt Master increase with the number of Salt

Minions. Typically this bottleneck is solved by utilizing salt-syndic but that feature is

not yet implemented in CloudyCluster. To avoid this bottleneck we decide that instead

of creating one massive environment we will create multiple environments that each will

contain a maximum of 5,000 instances in order to ensure we can stay within the limits of

SLURM and SaltStack.

The creation of multiple cluster environments is also a strategic optimization of the

management of of the massive number of resources while not detracting from the execution

of our HTC workload. By creating multiple environments we are able to minimize the effects
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from a failure, stay within the scaling limits of SLURM and SaltStack, and maintain the

dynamic nature of our workflow. In the case of a catastrophic failure in a single environment

the experiments executing in the other environments will remain unaffected ensuring that

we get some usable results. This also allows us to partition the workflow and run different

analysis on different environments.

5.2.6 User Limits

As is standard practice with all commercial cloud providers, AWS imposes certain

limits on the number of resources that a user can create. This is a safety feature for the user

and the cloud provider as it ensures that the cloud provider can support the requests of all

users and it prevents users from having an unexpectedly large bill. There are mechanisms

provided in order to increase these limits which at the scale that we want to run at will be

required.

The first limits that we need to raised are the EC2 On-Demand Instances, VPC,

VPC Endpoints, and EC2 Spot Instance limits. These limits prevent the launching of a

large number of instances and a large number of networks which we will be requiring for

our multiple environment setup. Typically this is done by filling out a request form, but

for the large requests that we required we worked directly with AWS associates to help get

these limits raised.

Another limit that was crucial to the execution of the experiment is the Amazon

Elastic Block Storage (EBS) limits. All of the instances that we launch will utilize an EBS

volume to store the OS and other data for the machine. A default AWS account is limited

to 20TB of EBS storage, but each compute instance in our experiment requires a 40GB EBS

volume which means that 20TB would only get us to 500 instances. In the most extreme

case utilizing 250,000 4 vCPU instances would require 10PB of EBS storage. We were able

to get our limit raised to 8PB as we took precautions to make sure we did not end up with

the worst case.
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5.2.7 API Limits

Cloud Providers also implement limits on the number of API calls that can be issued

by a certain account within a certain period of time. This helps to mitigate API misuse and

abuse while helping to keep the system from becoming overloaded. This API throttling is

also a preventative measure to make sure one rouge customer doesn’t affect other customers.

While running at a massive scale with tens of thousands of instances making API calls at

the same time from the same account generates a large number of legitimate API requests

in a short amount of time which can look similar to a denial of service attack.

This is an issue that we encountered during our execution. As shown in Fig. 5.1,

around the 600,000 vCPU mark the graph slows down and doesn’t increase as quickly.

At this point in the experiment we noticed that our calls to launch new instances were

consistently failing, this was due to the large number of API calls generated in a short

period of time. So in order to reduce the throttling, certain monitoring tools were turned

off and we decreased the launch rate of new Spot Fleets.

Figure 5.1: Timeline of vCPU count from beginning to peak vCPU use count.
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It was later determined during post execution analysis that the throttling came from

our use of the describeInstances API call. This call is utilized to obtain statistics about our

AWS account, the running instances, and how we observe the execution progress. Another

solution that was discussed to replace this call in future experiments was using Amazon

Cloud Watch which provides similar information but requires less API calls.

5.3 Execution and Evaluation

The HTC workload of choice for the experiment is a topic modeling application

based on Latent Dirichlet Allocation. While these models are widely used, the evaluation

of their outputs and sensitivity to the various input parameters is an active area of research

[13].

This scientific workload examines the impact of the alpha, beta, and topic count pa-

rameters which are required input by the topic modeling algorithm. This workflow examines

two different datasets and performs a wide sweep of hundreds of thousands of parameter

combinations with each job within the workflow executes Parallel Latent Dirichlet Alloca-

tion (PLDA) [102]. The two datasets are the full text conference proceedings from Advances

in Neural Information Processing Systems (NIPS) [28] and seventeen years of abstracts from

a wide variety of computer science publications provided by Elsevier Scopus.

5.3.1 Execution

The workload executed across a number of identically configured environments with

the only differences being the selection of instance types utilized for the compute instances.

In preparation for the launching of the compute instances, we launched the core compo-

nents only of forty cluster environments, which provided us with extra environments in

case that some failed during deployment. The environments were launched in two different

stages: minimal set of cluster environmental components and the launching of the compute

instances. During the first phase, PAW launched the Control, Scheduler, NAT, and Lo-
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gin instances along with creating the VPC and other network components required. The

configurations were all defined via a customized PAW environment template.

The second phase involved the launching of all the compute instances within the

different created environments. This was accomplished through a customized PAW workflow

class that allowed PAW to process the topic modeling workflows and automatically submit

the jobs to the local environments utilizing CCQ which then handles the provisioning of

the compute instances utilizing AWS Spot Fleet instances. A single “workflow class” was

launched on each created environment, these workflow classes are described in Table 5.3.

The first workflow class was launched 3:43PM EST and during the next two hours

we successfully launched 1 Huge, 4 Large, 3 Medium, 5 Small, and 1 Tiny workflow classes

for a total of 14 workflow classes total. Although we had 40 environments launched and

ready, we only ended up requiring 14 of them to reach our goal of one million vCPUs.

Due to the previously mentioned API throttling, we had to slow down the launching of our

workflow classes around the 600,000 vCPU mark.

At 5:39PM EST, we reached the peak vCPU count of 1,119,196 vCPUs running

within 49,925 Spot Instances spread across 12 different AWS Instance types. A breakdown

of the toal number of vCPUs per instance type at the peak time is show in Fig. 5.2. In

total we were able to fully execute, from start to finish, just under a half a million jobs

submitted by our topic modeling workflow in under two hours. On a local shared cluster

resource, running half a million jobs would have taken several days or even weeks.
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Figure 5.2: Distribution of vCPUs among the instance types utilized at peak.

5.3.2 Cost

When utilizing commercial cloud resources one important factor is always cost.

However, the cost comparisons between local resources and commercial clouds are complex

and depend on a variety of factors such as size, maintenance costs, characteristics of the

workflow, and the utilization of the resources. Cost estimation done at a representative

university shows on premise computational costs to be well under US $0.02 per core hour

regardless of job type. This estimate includes costs for hardware, software, space, power,

cooling, labor, network, etc but does not include the user-facing services such as user support

and research computing facilitation [65].

We set our maximum Spot Bid Price per instance type at the price that would keep

us close to the $0.02 per vCPU hour. This helped us to narrow down the instance types
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to use for the experiment and keep costs low. We also utilized the Spot Weight feature to

drive our Spot Fleets to launch certain more desirable instances instead of the less desirable

instances. A breakdown of our Spot Fleet Weights per instance type is shown in Table 5.3.

Another issue encountered when executing at scale is that when running a massive

number of resources users start to compete against themselves which drives up the Spot

Price and the overall costs. We find that launching many instances of the same type quickly

raised the Spot Price up to our maximum bid price. This fluctuation in the Spot Price is

illustrated in Fig. 5.3. As shown in the figure, at the beginning of the experiment, the

prices were near US $0.40 for all Availability Zones and that the prices rose by as much as

a factor of two during the experiment.

Figure 5.3: The effect on the Spot Prices of the c4.8xlarge instances in each Availability

Zone.

During the experiment we utilized a total of 1,832,923 vCPU hours at an average

cost of US $0.0172 per core hour. While there are other costs that need to be considered

when running workflows in the AWS cloud, the costs for network egress and data storage

were negligible. The total cost of our computational resources for the two hour experiment

was US $32,423. A summary of the cost per vCPU hour broken down by instance type and

workflow class is shown in Fig. 5.4 while a graph showing the cost per vCPU hour, target

price, and average price for all instance types is shown in Table 5.4.
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Table 5.4: Instance Type Classes and Average vCPU hour Costs
Workflow Class Instance Type vCPUs vCPU hour Cost

Huge x1.16xlarge
m4.16xlarge

64
64

$0.0242
$0.0193

Large c4.8xlarge
c3.8xlarge
r4.8xlarge

36
32
32

$0.0150
$0.0188
$0.0186

Medium i3.4xlarge
r4.4xlarge
m4.4xlarge
hi1.4xlarge
c4.4xlarge

16
16
16
16
16

$0.0257
$0.0218
$0.0197
$0.0187
$0.0131

Small m4.2xlarge
m3.2xlarge
c4.2xlarge

8
8
8

$0.0213
$0.0204
$0.0132

Tiny c4.xlarge 4 $0.0128

Figure 5.4: Costs per vCPU hour of each AWS Instance Type used in the experiments. The

solid black line is the average price per vCPU hour across all instance types and the red

dotted line is the target price per vCPU hour.
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5.4 Analysis

This research identifies and resolves a number of limitations to massive scaling on

the commercial cloud. Several of the limitations that are identified and resolved are common

to execution on all commercial clouds including those of a shared filesystem, network limi-

tations, launching heterogeneous instance types to control costs, HPC scheduler scalability,

user limits, and API limits. We also provide a detailed cost analysis for running on AWS

and discuss how costs may be lower with smaller workflows utilizing the same technologies.

We are able to utilize the automated Provision And Workflow management tool

(PAW) [75] for the lifecycle tasks of cluster provisioning, workflow execution, and cluster

de-provisioning. By utilizing PAW, we are able to execute our custom topic modeling work-

flow on 1,119,196 vCPUs simultaneously with minimal user input at an average cost of US

$0.0172. Utilizing these resources we are able to execute just under a half a million jobs in

two hours which would have taken days or even weeks on a shared local resource. The exe-

cution of a massive HTC application in the commercial cloud is a promising demonstration

of how the commercial cloud can be utilized for scientific applications.
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Chapter 6

Commercial Cloud Infrastructure

for Transportation Cyber Physical

Systems

We have shown in our previous work that the commercial cloud has clear benefits for

dynamically deploying HPC environments and workloads on-demand. We now dive deeper

into how these same deployment patterns, constructs, and tools utilized for our previous

work can be applied to the infrastructure supporting Transportation Cyber Physical Sys-

tems (TCPS). We will discuss the current state of TCPS and what unique challenges these

types of systems face. One of the major patterns that we will discuss is how utilizing the

infrastructure as code (IaC) paradigm within the commercial cloud can help simplify the

creation and maintenance tasks of deploying TCPS infrastructure within the cloud.

6.1 Introduction

Transportation Cyber Physical Systems are systems that tie together both the phys-

ical transportation system (including automotive, aviation, and rail systems) with the cyber

systems that help to detect accidents and other malfunctions within the physical transporta-
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tion systems. TCPS systems collect data from a wide variety of sources including multiple

transportation modes and a wide variety of data collection devices. The data within these

systems can be described utilizing the “5Vs of Big Data”: (1) volume, (2) variety, (3)

velocity, and (5) value [21].

In this context, volume refers to the amount of raw data that needs to be stored.

Velocity refers to the rate at which data is being collected, transferred to the storage infras-

tructure, and how quickly the back-end services are expected to process the data. Variety

refers to the numerous types of data that come from a large number of datasources and data

formats that will be utilized and processed by the system. The veracity aspect comes from

the reduced reliability of the data after all of the data transformation has been completed.

While value refers to the desired outcome for the processing of the TCPS data.

These characteristics make traditional data processing and delivery systems inad-

equate for many types of TCPS data analysis and decision support tasks as within these

traditional systems large amounts of heterogeneous data cannot be processed in real-time.

In our work, we introduce modern data infrastructures that are needed to support TCPS.

We also discuss the leveraging of the infrastructure as code paradigm that can utilize com-

mercial cloud facilities. Utilizing infrastructure as code (IaC), system administrators can

better track changes to their infrastructure allowing them to quickly and efficiently rollback

or upgrade their systems via traditional version management systems [76].

6.2 TCPS Infrastructure

In this section we discuss the overall TCPS infrastructure which includes both the

networking challenges as well as two different data processing architectures: the LAMP

architecture and the Lambda architecture. We discuss how the different types of network

capabilities available can influence the overall design of the TCPS as well as which compo-

nents are located at the edge or in the commercial cloud. We also discuss how the traditional

LAMP architecture does not fit the profile of the TCPS data and how the proposed Lambda
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architecture addresses some of the gaps within the LAMP architecture that make it more

suitable for TCPS data.

6.2.1 TCPS Networking

In a TCPS there are a large number of actors within the system that all need

to cooperate and communicate with each other quickly and efficiently. Within TCPS in-

frastructure, people, and vehicles all have to collaborate and coordinate to support the

application requirements of both end-users and other stakeholders such as motorists and

automotive-related industries. The architecture for the data infrastructure of TCPS can

be either centralized, distributed, or centralized-distributed. However, regardless of the

architecture the data infrastructure must be able to communicate with data senders, data

receivers, and other data infrastructure components. Typically these communications will

take place through either a wireless or wired mediums. However the exact medium to utilize

for communication will depend on a number of factors such as the application requirements

and the availability, range, delay, and bandwidth of the medium itself. Depending upon

the application, there may be multiple layers of data storage and processors that all need

to communicate with each other. The number of data infrastructure layers will be selected

based upon how many are needed to reduce data delivery delay, bandwidth, and data loss

rate [79]. When deciding on whether not to utilize the commercial cloud for these applica-

tions one must take these factors into consideration.

Although the processing power that is available within the commercial cloud makes

it great for scalability, there are certain aspects such as data movement and network band-

width that can hinder its usefulness in certain scenarios. This is especially true for safety

critical information that has specific real-time processing requirements. For these types

of applications, the commercial cloud may not be the best solution as the latency intro-

duced when sending the data to the cloud and back to the device or person could exceed

the required threshold. However, for an analysis that takes into account historical data

or for running simulations based upon the collected data without real-time constraints the
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commercial cloud could be a useful tool within a TCPS system.

6.2.2 LAMP Architecture

Traditional data processing or web service environments typically rely on standard

web service stacks, which typically rely on a LAMP architecture [46]. The LAMP acronym

stands for the Linux operating system, Apache HTTP Server, MySQL relational database

management systems (RDBMS), and the Php programming language. A typical LAMP

architecture deployment is shown in Fig. 6.1.

Figure 6.1: Overview of LAMP architecture for traditional data processing or web service

environments.

In this architecture each layer serves a specific and integral purpose. Linux is re-

sponsible for providing a reliable and open source operating system running on top of the

hardware resources. The RDBMS system is where all of the data is stored and accessed and

is thus the core data infrastructure. The Apache HTTP server provides users and interface

through which users can access applications that have been written using PHP or other pro-

gramming languages. In the LAMP architecture, the RDBMS and the applications running

on the Apache HTTP server are typically responsible for all the data collection, insertion,
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and presentation. The LAMP architecture works well for smaller web based services and

small scale data processing but when scaling up to larger datasets with multiple sources the

architecture can be strained which can limit the ability to analyze and access the data

6.2.3 Lambda Architecture

While the LAMP architecture works well for many scenarios, TCPS have a unique

set of complex data challenges that do not fit well into this architecture and therefore a new

architecture is required. This new architecture must be able to accommodate the “5vs of Big

Data” that we have previously discussed. One architecture that has been proposed to help

tackle this characteristics is the Lambda Architecture (LA) [55]. The Lambda architecture

is broken down into four primary components: the data layer, the batch layer, the stream

layer, and the serving layer. These four primary components of the LA architecture are

shown in Fig. 6.2

Figure 6.2: Overview of the proposed Lambda (LA) architecture for data infrastructure.

In the following subsections we will discuss each primary component in detail along

with how it fits within a TCPS. We will also discuss how each of these components could
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possibly be implemented or migrated to the commercial cloud to improve the scalability

and flexibility of the architecture and TCPS.

6.2.3.1 Data Layer: Collection and Brokering

One of the major challenges of TCPS data is that it is coming from a wide variety

of data sources. These sources can include devices such as sensors and cameras connected

to traffic lights, connected vehicles, satellites, and even motorists. Each individual source

produces different types of data that can pertain to different aspects of the TCPS such

as location, weather, route of travel, accident avoidance, and overall infrastructure perfor-

mance. Most of the time this data is being sent in a variety of different formats which all

require a different type of processing to make use of the data. Some of the data requires

no processing, such as the count of vehicles that pass a specific point over a period of time.

While other types of data need additional processing before it can be utilized, for example a

video feed from a CCTV camera. This wide variety of data and processing power required

greatly shapes the type of data infrastructure that a TCPS utilizes.

The data layer is responsible for the storage of this wide variety of data which

for TCPS can be on the scale of petabytes. This scale can be problematic for traditional

data storage systems such as those found within the LAMP architecture. There are also

additional unique requirements that are placed on TCPS data from the users of the data.

For instance, a connected vehicle needs to be able to make real-time decisions based upon

data coming from various sensors to determine if it needs to apply the brakes or not. If the

data infrastructure cannot handle the volume of data or becomes unavailable the vehicle

could crash and cause both physical and monetary damages. This also leads to the issue

that the data layer needs to be not only fast and reliable but also secure and scalable as well.

As the number of connected vehicles grows the data infrastructure must scale accordingly.

Another unique aspect of TCPS data and the corresponding data layer is the way

that the data is transmitted to the data layer. Some of the data that is collected by TCPS

comes from sensors and other devices that are mounted on moving vehicles which poses
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another unique challenge. Due to the constant movement of the vehicles maintaining a

constant connection that can be used to transmit the data can be difficult. This means

that generally some of the data will end up lost in transit due to the constant movement.

This requires a robust data ingestion system that can handle this scenario. This also leads

to the question of where to host the data infrastructure: locally or in the cloud? There are

different advantages to each solution. Keeping the data infrastructure local will help to cut

down on latency in the transmission of the data and can allow for more real-time decision

making but at the expense of maintainability and scalability. Whereas locating the data

processing infrastructure in the cloud allows for greater scalability and maintainability as

the infrastructure can grow and shrink on-demand but will add additional latency to the

collection of the data.

Within the data layer, the data brokering component ties both the batch and stream

layers together. The data brokering component provides several critical services to the en-

tire infrastructure such as improving data stream accessibility by duplicating and partition-

ing the data as well as reducing the risk of data loss when services within the batch and

streaming layers fail. With these additional services, a TCPS data infrastructure resembles

a large-scale distributed system. This means that a TCPS data infrastructure faces similar

challenges as a large-scale distributed system such as complex environments, heterogeneity

in hardware and software components, dynamic flexible deployment, and high reliability,

throughput and resiliency [18]. However, this also means that TCPS data infrastructures

can utilize the same solution employed by these large scale distributed systems. This solu-

tion is to implement a message-orientated middleware (MOM) solution.

In this solution, messages are data elements being transferred from data sources to

various data storage and processing components. Inside of this MOM architecture data

is sent from producers (sources) to a broker (queue) the data can then be pulled by the

consumers (destination processing entities) or pushed to the consumers by the broker. An

acknowledgement may be sent back to the broker by the consumer which can then be pulled

or pushed by the producers.
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There are a number of MOM software frameworks that are able to provide data

brokering services. Among these software frameworks is Apache Kafka which is the latest

framework designed for use within an enterprise production environment [101].In Kafka,

producers sent their data to the broker layer and data that is expected to be consumed by

the same consumers is directed towards a specific and unique topic. Multiple producers and

consumers can publish and retrieve data from the same topic or from different topics at the

same time. The number of topic partitions and brokers can be scaled dynamically to cope

with changing data demands. Kafka demonstrated a significant improvements in overall

data throughputs over ActiveMQ and RabbitMQ, two other popular MOM frameworks

[101].

An important and critical requirement of the TCPS data infrastructure is that it has

to be setup so that processes from both the batch and streaming layers can have concurrent

access to the data. This way the TCPS data infrastructure only has to ingest the data

once and then both the batch and streaming consumers can pull the data at the same

time. Kafka is built to handle receiving data streams from external sources and it allows

for concurrent data access by multiple consumers making it a good choice for TCPS.

Due to the large-scale storage requirements and the requirement to scale up and

down based on data volume, it would seem that the data layer would be a perfect candidate

to move to the cloud. To make this prospect even more enticing all three major commercial

cloud providers offer their own managed Kafta solutions. AWS has Managed Streaming for

Apache Kafka (Amazon MSK) [86], GCP has Confluent Cloud on GCP [92], and Azure has

Apache Kafka in Azure HDInsight [26]. These manage services allow users to dynamically

scale and rollout their Kafka solutions easily and efficiently. However, depending on the

source of the data and the processing requirements utilizing the commercial cloud may not

always be possible. If there are real-time processing constraints on the data the latency

added by sending the data to the cloud may not meet the requirements. In this case it

makes more sense to have the data layer closer to the data. However, that doesn’t mean

other layers couldn’t be located in the cloud.
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6.2.3.2 Batch and Streaming Layer: Data Processing Engines

Once the data has been ingested and stored by the data layer, the next step is to

utilize the data to perform analytics to get the required information utilized by TCPS. In

this section we will discuss two different general processing engines that TCPS utilizes for

data processing: batch processing engines and stream processing engines. Each of these

classes perform different types of analysis with different time constraints and are critical for

the functioning of the TCPS.

The batch layer consists of multiple components to assist in storing and processing

massive amounts of data that do not have any real-time processing restrictions. Although

the storage functionality is similar to that of the RDBMS systems found in the LAMP

architecture, in addition to storage the batch layer must also support data access via query

languages along with the ability to support complex manipulation and computational tasks

on the data. Due to the network overhead of having to move large amounts of data around

for processing, splitting up the storage and computation portions of the batch layer is

not advisable. Therefore a software ecosystem that can handle both the data storage and

processing must be utilized within the batch layer. One of the most popular software ecosys-

tems being utilized by the batch layer is the Hadoop ecosystem. The Hadoop ecosystem

includes both the Hadoop Distributed File System (HDFS) [88] for large-scale storage and

the Hadoop MapReduce framework [91] for scalable data processing.

The Hadoop MapReduce framework and HDFS integrate seamlessly to abstract

away all the underlying computing mechanisms so that all the users need to worry about is

the implementation of Map and Reduce phases of the data operation. HDFS was designed to

automatically handle hardware failure, provide support for large datasets, and be portable

amongst systems. The Hadoop MapReduce framework meanwhile takes care of supporting

parallelization and the automatic recovery of Map tasks due to hardware or system failures.

These features make the Hadoop framework one of the most popular systems for use within

the batch layer of the Lambda architecture.

The batch layer is meant to process data that does not have any real-time processing
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constraints. Usually this involves performing trend analysis or other historical analysis

utilizing large amounts of data. Not having any real-time processing constraints makes this

layer a great candidate to be moved into the commercial cloud. The reasons for this are

two-fold, first the commercial cloud allows users to dynamically scale their storage capacity

depending upon the amount of data that they have collected. When dealing with historical

data, this could be quite a large amount of data that will only grow over time making the

scalability of the cloud a major advantage. Secondly, all three of the main commercial cloud

providers offer a managed Hadoop ecosystem as a service. AWS offers Hadoop running on

their managed Elastic Map Reduce (EMR) service [86], GCP offers Cloud Dataproc [30],

and Azure offers HDInsight [78]. Each of these services helps user to take advantage of

the cloud specific features offered by each provider and enables users to get started and

setup quickly. Utilizing these managed services also can allow for the management of the

infrastructure as code which we will discuss in a later section.

In contrast to the batch layer, the streaming layer is meant to handle small to

medium data sizes and to provide output and results in real-time or near-real-time. The

streaming layer does not have any persistent storage components but instead relies on

streaming data processing infrastructure that can ingest and process the data in real-time.

Stream processing has been around since the the 1960s [89], but there are a few modern

frameworks that work to support the level of data volume and velocity required for big

data. Among these frameworks are Spark [107], Flink [44], and Storm [94] which are the

most well-known and widely adopted streaming frameworks. Amongst these three, Spark

stands out as the most widely adopted framework for the streaming layer amongst both

academia and industry. The Apache Spark framework has been developed to address the

shortcomings of the Hadoop MapReduce framework [107]. However, it should be noted that

Apache Spark actually still utilizes the MapReduce programming paradigm. This means

that many of the of the core data operations in Spark are based upon mapping and reducing.

Spark however is designed to hold all data is maintained in memory and reusable/accessible

across different stages of interactive jobs. With the introduction of the resource manager:
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YARN (Yet Another Resource Negotiator) [97] in Hadoop 2.0, dynamic Spark clusters can

be deployed and executed on the same hardware infrastructure that also supports HDFS

and Hadoop MapReduce. The architecture of a Spark environment running on top of a

traditional Hadoop infrastructure is shown in Fig. 6.3.

Figure 6.3: Spark deployment inside Hadoop infrastructure.

In Spark, the data is loaded into the system as resilient distributed datasets (RDD).

This means that Spark will automatically read in the data files and convert them into

read-only partitioned collection of records which by default one record is one line in the

data files. Spark can support real-time streaming analytics by utilizing a StreamingContext

that allows data to be continuously inserted into the Spark cluster’s RDD environment

over time. As Spark operates in memory space and reuses intermediate data, Spark can

achieve a performance increase of up to two orders of magnitude over the traditional Hadoop

MapReduce [107].

While the batch layer is a good candidate to move to the commercial cloud due

to not having restrictions on latency and processing time, the candidacy of the streaming

layer is a bit more muddled. There are good arguments to move the streaming layer to
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the cloud such as the scalability aspect, the ability to utilize the infrastructure as code

principle, and the ability to utilize the same infrastructure for both the batch and streaming

layers. However, there are also strong arguments against moving the streaming layer to the

cloud. These arguments include the need real-time/near-real-time analytics and response,

increased latency, and having to have duplicate infrastructure if the batch layer is located

in the cloud. In the end the decision will be dependant on the characteristics of the data

itself. If there is a high volume of data and very strict real-time processing requirements it

may make sense to keep the streaming layer located locally and closer to the data sources.

If this is the case it may be more cost-efficient to keep the batch layer local as well to

eliminate the costs of additional infrastructure. However, if the streaming data has more

relaxed time constraints the cloud can be a viable option especially if there are plans to

scale up the infrastructure in the future.

6.2.3.3 Serving Layer

Within the Lambda architecture, the serving layer is where the end users can interact

with the data and analytical results that are stored within the system. This interaction is

accomplished through applications that can be written in different programming languages

similar to the PHP layer in the LAMP architecture previously described. Many of these

applications contained within this layer allow users to interact with them through a web

browser, but there are additional applications that support direct interactions with the data

at lower levels that are also included within this layer.

All of the tools that we have discussed in this chapter are based upon the Java

programming language, although it should be noted that Spark’s native language is Scala

but it also runs within the Java Virtual Machine). However, there are additional Application

Programming Interfaces (APIs) that can interact with the underlying frameworks utilizing

various other programming languages such as Python and R. The way that these various

applications interact with the underlying system depends on the layer that they are working

at.
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At the batch layer, the Hadoop MapReduce framework supports execution of both

native Python and R codes that are driven by the map and reduce tasks. utilizing the

HadoopStreaming library, Python and R programs can utilize Linux’s standard I/O to read

from HDFS’s data blocks. There are also additional APIs and packages within Python

and R that provide access to many more features of the Hadoop ecosystem. There are

also database management systems that can be deployed as part of the batch layer. These

database management systems include HBase [98], Cassandra [100], and MongoDB [9].

These database management systems are accessible via semantics that are similar to the

Structured Query Language (SQL) which is the default syntax for all traditional relational

database management systems. However, generally the semantics available for interfacing

with the batch layer are not as expressive as those of traditional database management

systems. Once the data has been transferred into a database management system, a number

of third-party visualization software packages, such as Tableau [90] or PowerBI [59] can be

utilized to help analyze and visualize the data produced by the batch layer.

Due to the batch layer favoring large-scale non-interactive jobs, many of the TCPS

data tasks are often performed in the streaming layer. At the streaming layer the Spark

framework is typically interfaced most often by the TCPS in order to provide end users with

real-time/near-real-time insights. Although the native language of Spark is Scala, there are

also up-to-date libraries that support most/all of Spark’s features for the Java, Python, and

R programming languages. This means that similarly to the batch layer, applications can

be written in different languages depending on the analysis and data processing required

and still take advantage of the features of Spark.

The migration of the serving layer to the cloud, as with the other layers of the

Lambda Architecture, depends upon the location of the data and how the application

is interacting with the data. If the serving layer is accessing large amounts of data to

display then having the server and the data co-located would provide the most efficiency

and least latency providing a better overall user experience. However, if the amount of

data being exchanged is smaller, such as a JSON document with some result values, than
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having the serving layer located in the cloud is feasible. One benefit of having the serving

layer be located in the cloud is that there are a large number of vendor provided solutions

and images that are already pre-configured and ready to run out of the box on all the

commercial clouds. This can limit the ramp-up and development time for the system

administrators while allowing end users a wider variety of applications to analyze and view

the data captured by the TCPS.

6.3 Infrastructure as Code (IaC)

The TCPS data infrastructure that is required to collect, store, distribute, and

process the large volumes of data generated by TCPS can be quite complex. There are

typically a large number of physical resources and software packages to be maintained and

configured properly. Not to mention the tuning of the resources and infrastructure to ensure

that it is working at maximum efficiency and effectiveness. Combine all of these factors and

system administrators of TCPS systems face a very daunting and time-consuming task

that may require many configuration changes, debugging, and architecture iterations to get

things running perfectly. Just keeping track of all of the configuration and architecture

iterations can be a full time job and if something is not documented properly the entire

system can crash. Unfortunately, with the traditional method of creating infrastructure

there is not a good way to keep track of these changes. However, the Infrastructure as

Code (IaC) paradigm aims to change this by allowing users to create, modify, and remove

infrastructure through code. IaC is an approach to utilizing cloud era technologies to

dynamically build and manage infrastructure by treating infrastructure and the tools and

services that manage the infrastructure itself as a software system and adapts software

engineering practices to manage changes to the system in a structured and safe manner

[62].

In addition to allowing better documentation of infrastructure and software changes,

the IaC paradigm also enables the ability to iterate and change infrastructure more quickly
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and more efficiently. When utilizing the IaC paradigm, the infrastructure creation and

configuration is all defined in code instead of being written down in user manuals or other

documents. This means that any changes to the infrastructure or the software configuration

can be tracked within standard software version control systems. This enables system

administrators to ensure that the infrastructure is up to date and that all changes have

been applied while also making it easier to debug the infrastructure if something is working

properly as there is a well-defined history recorded in the version control system. This

speed and agility is crucial for TCPS as the requirements and scale for the data storage and

computation are rapidly changing and the infrastructure and system administrators need

to be able to keep up. All three of the major cloud providers offer their own deployment

engines that make utilizing the IaC paradigm easy to get started with.

6.3.1 Cloud IaC

As previously discussed the use of cloud computing has been increasing over the

past few years due in part to its flexibility and scalability. By enabling users to scale their

infrastructure depending upon an increase or decrease in demand users can save cost and

create an overall better experience for their customers. It is this type of scaling that makes

the cloud particularly useful and interesting in respect to TCPS as there are peak times

where there is a lot of data processing to be done (ex: rush hour) and then off times where

very little processing is required (ex: 2:00am). However, in order to take advantage of these

scaling features some additional automation has to be performed during the processes of

creating, provisioning, and removing the infrastructure to ensure the actions are performed

correctly and in a consistent and trackable manner. This is where the IaC paradigm can be

utilized to increase effectiveness and efficiency.

All three of the major cloud providers have their own IaC solutions that are de-

signed to help tackle this exact problem within the cloud environment. These solutions are

designed to help users create, modify, and delete their infrastructure within the cloud while

maintaining a papertrail of the changes that have been made to the infrastructure. AWS has
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a service called Cloud Formation that allows users to use a simple JSON or YAML format-

ted file to model and provision all the infrastructure resources in a secure and automated

manner. This file serves as the single source of truth for the user’s cloud infrastructure

making it easy to track and keep within standard version control systems [86]. A sample

Cloud Formation Template (CFT) that launches a single EC2 instance is shown in Fig. 6.4

Figure 6.4: Sample CloudFormation Template to launch an AWS EC2 Instance [86]

Microsoft Azure has its own IaC solution as well that is similar to AWS’s Cloud-

Formation concept called Azure Resource Management Templates. These templates are

written in JSON formatted text files and define the infrastructure and configuration of the

specified Azure infrastructure [58]. GCP also has a similar IaC solution available to users

that is called the Cloud Deployment Manager that allows GCP infrastructure to be de-

ployed utilizing a YAML or Python template file [30]. These tools are the cornerstones of a

total IaC infrastructure in the cloud, but they are still just beginning to scratch the surface

of the IaC paradigm.

As previously mentioned, utilizing IaC for TCPS has a number of advantages. We

briefly mentioned the scalability of these solutions which can be extremely useful in TCPS.
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With TCPS there are peak times, such as rush hour and during the holidays where additional

processing power is required to handle all of the data that is being generated and sent to

the system. By using IaC, system administrators can create policies that can have the

infrastructure automatically create new infrastructure resources based upon the demand

and then remove them when the demand decreases all without any intervention by the

system administrator. These polices can be defined in code and therefore are easy to track

and explain to other admins. This helps to minimize the number of configuration errors

that can be caused by having a human in the process who can hit a wrong key or forget

a critical step. This automation can also help ensure that servers are patched in a timely

fashion which can minimize the attack surface for TCPS.

Another advantage offered by IaC is the ability to iterate and change infrastructure

much quicker than utilizing traditional methods. By enabling the tracking of changes to

the infrastructure through traditional version control systems, it is easier to ensure that

the proper changes have been applied to the infrastructure. This also makes it easier

to debug the infrastructure and even possibly rollback any changes that have unintended

consequences as the previous configuration is located in the version control system. This

speed and agility is crucial for TCPS as the requirements are always changing and the

amount of downtime must be minimized in order to ensure the saftey of the end users.

6.3.2 Internet of Things (IoT) IaC

Along with having the ability to have the lower level compute infrastructure as code,

the cloud also allows for Internet of Things (IoT) devices and sensor infrastructure to be

created, modified, and removed through code. Although similar in concept, this process is

a little different than the compute infrastructure process as this process does not involve

deploying hardware resources, such as sensors, but rather refers to the ability to manage

and update the infrastructure. One such cloud based solution for this type of process is

Amazon Greengrass. Greengrass is a software that enables users to run local compute,

messaging, data caching, sync, and ML inference capabilities on connected devices in a
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secure way. By utilizing familiar languages and programming models, users can create and

test device software in the cloud and then deploy it directly to the physical devices [86]. This

enables quick and efficient code and device prototyping which is critical within TCPS as

there are always new devices and sensors that need to be integrated into the infrastructure.

Greengrass also helps with helping to keep track of any changes to the software running on

the sensors and devices deployed out in the field. These types of IaC services are still in

their infancy but they are already starting to cause a shift in the traditional way of thinking

how both datacenters and field devices are deployed. As the technology matures these types

of solutions will become more prevalent as users begin to realize the power that they have

and the additional benefits they provide.

6.4 Conclusions

In this chapter we have discussed the components and architectures associated with

TCPS. We discussed in detail the four different layers of the Lambda architecture: data,

batch, streaming, and serving layers. For each one we discussed the available software

framework and infrastructure requirements along with the arguments for and against mi-

grating the layers to the cloud. Our analysis shows that although it is possible to migrate

all the layers to the cloud this may not be feasible as the data volume or real-time/near-

real-time data processing requirements may be unable to be met. We also discussed the

cloud native solutions for each layer and how they could be integrated into the layers to

increase performance within each commercial cloud.

We note that of all the layers within Lambda architecture for TCPS, the batch layer

is the most promising layer to migrate to the commercial cloud as there are no real-time

processing constraints and it is designed for non-interactive jobs. However as the batch

and streaming layers can execute on the same hardware infrastructure if the streaming

layer cannot be moved to cloud the user may end up with duplicate infrastructure. This

increases the operating cost and may not be an ideal solution.
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Lastly we discussed the Infrastructure as Code (IaC) paradigm and how it can pro-

vide better change tracking and easier maintenance for TCPS infrastructure. By beginning

to migrate and utilize the IaC paradigm the complex TCPS infrastructure can be tracked

by traditional version control systems making documentation, maintenance, and changes to

the infrastructure simpler and more efficient. This allows TCPS to be more flexible as the

infrastructure can be upgraded and rolled back faster as the changes are well documented

in a version control system. The IaC paradigm can also help to assist TCPS in being more

efficient and effective by allowing the systems to automatically adapt to changes in demand

by dynamically creating and removing resources. With the IaC paradigm only in its infancy,

the power and scale of the available IaC tools will only get better with time. When looking

to migrate portions of TCPS infrastructure to the cloud, IaC should be utilized as much as

possible to ensure the reliability and flexibility of the system.
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Chapter 7

On-Demand Urgent High

Performance Computing Utilizing

the Google Cloud Platform

We have previously presented our work on identifying how the commercial cloud

could help provide additional architecture options and capabilities for data intensive work-

flows found within Transportation Cyber Physical Systems. We now showcase the large

scale execution of a data intensive workload on the Google Cloud Platform. This workload

utilizes the traffic monitoring software TrafficVision to process 211TB of video with 1.5

million vCPUs. The execution spanned 6,227,593 core hours and was executed from initial

infrastructure provisioning to de-provisioning in a span of just 8 hours. By being able to

provision infrastructure through code quickly and efficiently, these types of environments

can be created on-demand to help prepare for an incoming disaster such as a hurricane.

7.1 Introduction

Evacuations of major cities before an impending natural disaster such as a hurricane

can be complicated and even deadly. Although evacuation warnings are usually put out well
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in advanced, many residents do not evacuate until the last minute. This can cause severe

gridlock and leave many motorists stranded due to running out of gasoline. Combined with

excessive heat or flash flooding this situation can lead to a large number of fatalities even

before the natural disaster hits. Such a situation occurred in 2005 in Houston, TX where

more than 100 people died during the evacuation from Hurricane Rita. In our research

we demonstrate how high performance computing (HPC) in the commercial cloud can be

utilized in these types of situations to help aid with the disaster management efforts.

Utilizing HPC on the commercial cloud, first responders and disaster management

coordinators can process large amounts of traffic data efficiently and on demand which can

aid them make quicker decisions and monitor the situations in real-time. Our solution uses

Google Cloud Platform (GCP) to launch a massive parallel processing environment that

is the size of a Top 5 supercomputer [1]. Our approach to utilizing the commercial cloud

for urgent computation has wide applicability. For example, many cities in the southeast

region of the US and Texas are regularly evacuated during hurricane seasons.

One of the main hurdles to efficient emergency evacuations is traffic management.

Traffic can begin to back up days before a hurricane is scheduled to make landfall which

can drastically limit the number of people that can be moved in a timely manner. By

utilizing the commercial cloud, emergency planners can dynamically and efficiently create

a temporary large scale environment to help evaluate when and how to begin evacuations.

By recording and capturing the traffic data during a hurricane, emergency planners can run

models to evaluate certain what-if scenarios as the projected path of the oncoming hurricane

changes.

The amount of data required to manage a region as the projected hurricane path

changes is quite large. An evacuation that includes evacuation, clean up, and return taking

up to 10 days and utilizing 8500 cameras across an evacuation region generates around 2M

hours of recorded video and requires 2M hours of compute time to process. Along with this

processing time, the same algorithms utilized to monitor emergency evacuations and give

real time status can also utilize models built from previous evacuation studies which adds
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additional computational complexity and time. We utilize GCP to process 211TB of video

in 2,005,170 compute hours. In our execution, each process reads its own input file and

writes its own output data which causes a large strain to the storage, network, compute,

HPC scheduling subsystems, and the cloud management infrastructure.

7.2 User Application Requirements

For this research, there were a number of different requirements that we take into

consideration. The characteristics of the traffic monitoring application constrained the

available options and form the basis for the workflow specifications. Here we will define the

traffic monitoring application and its requirements and the considerations that went into

our decisions.

7.2.1 Definition

The monitoring of different evacuation routes for accidents and tracking the move-

ment of vehicles along the route requires a specialized software. This software must interface

with video recorded from existing traditional cameras that have already been placed along

different public evacuation routes. The application that we utilize for our execution is a com-

mercial traffic analytics software, TrafficVision [95, 43, 41, 42]. The TrafficVision software

package provides incident and anomaly detection in traffic patterns from existing highway

camera infrastructure. The low-resolution of cameras preserves the privacy of the motorists

while still providing the level of detail required for the monitoring of the overall traffic flow.

TrafficVision’s AutoLearn feature helps to handle the size and scale of this project as it

helps to handle the real-world environmental/operational factors such as camera motion,

varying light levels, or vision compression artifacts. TrafficVision also offers the flexibility

to process real time video streams as well as batch processing of pre-recorded video data.

The processing of the video streams is an embarrassingly parallel task meaning that

the processing can be scaled up to an extreme scale while still being able to process the
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clips simultaneously. In our execution, each vCPU or core can process a single 15FPS video

stream, perform the required detection and issue alerts to the user. TrafficVision is a CPU

bound application that does not have a large memory footprint. This is a key feature for

scaling the application as our VMs can have a large CPU to memory ratio allowing us to

select technologies that will save costs during execution.

7.2.2 Requirements

The user requirements that guide our design and selection of tools are the ability to

execute at a large scale and to control the costs. Controlling costs is an important part of

any experiment, however when working at the large scale that we are it becomes even more

important. The two major decisions that we have to make to execute our TrafficVision

workflow are what commercial cloud and what type of instance (VM) to utilize.

The features and aspects of the different commercial cloud providers are changing

rapidly and as such there are always new features and services being released. At the time

of this study there were three main commercial cloud providers that could handle such a

large scale execution: Amazon Web Services (AWS), Google Cloud Platform (GCP), and

Microsoft Azure. Each provider offers a wide range of specialized services that can be

utilized by end users. All of these providers offer a set of “core” services such as compute,

database, and object storage but differentiate themselves on the additional services that

are built on top these “core” services. For example, all three commercial cloud providers

give users a list of predefined instance types for them to utilize. An instance type is simply

a combination of CPU, memory, and GPU. Within AWS and Azure these instance types

are defined by the provider and cannot be customized by the end user [86, 58]. However,

GCP allows users to specify a custom instance type that can be tailored to fit a specific

workload helping to keep costs down [30]. GCP custom instance types allow users to specify

the number of vCPUs and the amount of RAM allocated with their instances. This aspect

is useful for our TrafficVision workload as it does not have a large memory footprint and

therefore we can allocate an instance with a minimum amount of RAM and a large number
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Table 7.1: Comparison of “Spare Capacity” Instance Functionality as of August 23, 2019
AWS GCP Azure

Reference [86] [30] [58]

Unlimited Run Time X - X
Fixed Discount - X X
User Bidding X - -

Available Within Standard Compute Service X X -

Custom Instance Types - X -

Maximum Discount 90% 80% 80%

of vCPUs.

All three cloud providers also allow users to access their “spare” capacity in the form

of a specialized instance type. These specialized instance types provide users with discounts

off the regular instance pricing with the caveat that they can be shutdown with only a short

notice. A summary of each commercial cloud provider’s “spare” capacity instance types

can be found in Table 7.1.

For our execution, we choose to utilize GCP as the capabilities and pricing are a

good match for our TrafficVision based workflow. By utilizing the custom instance types

that GCP offered we are able to provision instances with a large number of vCPUs and

a minimum amount of RAM for the TrafficVision software to run effectively. Combined

with the fixed preemptible pricing and discounts, the custom instance types allow us to

have more control over the costs by having them be more stable and predictable during the

execution of the workflow.

While preemptible instances will work well for the application instances, this is

not the case for the rest of the supporting HPC environment. The HPC scheduler, Login

instance, Control instance, and NAT instance all need to be available all the time as without

these instances the compute instances will not be able to get new jobs. For these instances

we utilized a standard on-demand instance types to ensure availability during the execution

of our workflow. In addition to the different instance pricing, utilizing a custom instance

type will also help further manage our costs while also ensuring that the entire resource is

being utilized and we are not wasting CPU cycles or having unused RAM sitting idle.
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7.3 System Design Considerations

After the initial determination of which commercial cloud and which instance types

to utilize, we are able to start to designing the system and the way to execute the workflow

the most efficiently. Here we discuss why we selected the technologies that we did for our

execution.

7.3.1 HPC Lifecycle Technology Selection

There are several software infrastructure components that are required for the man-

agement of a large scale HPC environment and to keep the jobs running smoothly within

it. We evaluate two different software options for this component: an off-the-shelf solution

provided by GCP as well as our previous work the Provisioning And Workflow Management

Tool (PAW). In our previous work we discuss in detail the alternative resources and work-

flow management tools for the cloud and developed a comprehensive tool to accomplish

both tasks: PAW [75].

The off-the-shelf GCP tool was recently published by GCP and provides a standard

HPC deployment solution that was developed in collaboration with SchedMD. This HPC

deployment provisions a traditional looking HPC environment that utilizes the Slurm HPC

scheduler [51]. This traditional looking HPC environment consists of a Login instance,

an shared NFS filesystem, Scheduler instance, and Compute instances within either an

existing or new Virtual Private Cloud (VPC) network. Many of the previously mentioned

GCP features such as custom instances and preemptible instances are supported by this

deployment. This solution also allows users to provision their environments from Google-

provided disk images which can significantly help speed up the launching process of the

environment as the user can pre-configure and install all the required packages for their

workflow before launching the environment. Utilizing these images, the solution is able to

launch a new environment of 5000 instances within 7 minutes [51].

As with any solution however, amongst all the positives there are some drawbacks.
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One of these drawbacks is that users are only allowed to provision a single instance type

for their Slurm environment. This leads users to over-provision their environments as they

have to cater to the most resource intensive workloads. This can result in excess costs if

the created resources are not properly utilized for all workload execution. Another draw-

back to this solution is that it is a vendor specific solution and the configuration does not

easily transfer to another cloud provider. For the area of urgent HPC, this can be a major

limitation as the computation needs to be able to be completed utilizing all of the resources

possible regardless of which cloud provider the resources are located in. Without interoper-

ability between clouds, users with a need for urgent HPC could be left without any means

of computing if the cloud provider that they rely on suffers an outage when the processing

needs to be completed. Also, although this solution does provide an HPC scheduler it does

not provide any means of workflow management as that is left up to the user to decide how

to implement. This means that users are expected to manage and submit their jobs either

with a customized script, third party workflow management tool, or manually. While this

tends to work in smaller HPC environments, submitting and tracking hundreds of thousands

of jobs can be frustrating and difficult.

PAW on the other hand is designed to be cloud provider agnostic and manage both

the resources and the workflows in the same interface. PAW automates the dynamic resource

provisioning for the cluster, executing user defined workflows, and then de-provisioning the

cluster when the workflows have completed. In addition, PAW is built to automate all of

the key management tasks that are typically the pain points when managing these large

scale environments with a single command. PAW is not built to replace traditional workflow

management tools, but rather to compliment and work in conjunction with them. PAW does

not attempt to replicate the functionality of traditional off-the-shelf workflow management

tools such as SWIFT [104], Tigres [35], and Pegasus [20] but instead provides an interface

for users to create a custom workflow that can feed information to and from these tools.

The current iteration of PAW utilizes CloudyCluster [73, 68] APIs and included

metascheduler CCQ [67] to perform the key management tasks for the HPC environment.
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This provides PAW with the ability to execute the same workflows across multiple com-

mercial clouds through the same interface. PAW has also already been tested at a massive

scale. In our previous work, we utilized PAW to create a 1.1M vCPU HPC cluster on AWS

to perform topic modeling research [72]. By utilizing a solution that has already been tested

at a massive scale on another commercial cloud provider gives us the additional benefit of

unlocking more resources for use in urgent computing scenarios and limits the amount of

additional testing stress testing required.

For this experiment, we chose to update and extend PAW to accommodate our

application’s requirements as we were already familiar with the solution and it provided us

with the most flexibility.

7.3.2 System Design

The design of our virtual HPC environment resembles that of a traditional HPC

environment, however instead of the resources being provisioned ahead of time they are

provisioned on demand and when the workflow is submitted to PAW. This deployment is

done with the specification of a single PAW configuration file that contains all the spec-

ifications for both the HPC environment and the workflow to be processed. More detail

about the composition of this configuration file and the provisioning/de-provisioning pro-

cess is describe in [75]. Once this configuration file is submitted to PAW the creation of

the resources begins. The first stage of this process creates what is referred to as a “base

environment” which simply contains the minimum resources that are required for the HPC

environment to operate. For most workflows these minimum resources include a Login,

NAT, and Scheduler instance but depending on the workflow some of these may not be

required.
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Figure 7.1: Overview of the TrafficVision application workflow.

For our experiment, our “base environment” consists of a Login instance, NAT,

and HPC scheduler. Our TrafficVision workflow does not require a shared filesystem as

we choose to utilize Google Cloud Storage (GCS) for both downloading our input files as

well as writing out the output files after processing. Fig 7.1 illustrates the TrafficVision

application workflow.

In order to achieve the processing scale required to manage vehicle evacuation at

hurricane proportions, we utilize multiple of these “base environments” that, in aggregate,

provide a massive scale parallel processing environment. There are a number reasons for

utilizing multiple “base environments”. One reason is that the utilization of multiple en-

vironments prevents a single point of failure within a single environment from causing the

entire application and workflow to fail catastrophically. For example, if the HPC scheduler

were to fail during the execution then any submitted jobs would fail to execute and we

would be paying for compute power that we are not utilizing. By creating multiple smaller

environments, if one environment goes down, the other environments can continue process-

ing. Another reason for having multiple smaller environments is that these environments

can be spread across different geographical regions to handle the processing. This ensures
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that if a particular cloud region fails that the other regions can continue computation. Al-

though it may seem far-fetched that an entire processing region goes down, it is very much

a possibility in the face of an impending natural disaster such as a hurricane.

Once these “base environments” are in place, PAW submits the user-defined work-

flow to the execution for processing. During this phase, PAW performs any actions defined

by the configuration file and then submits the corresponding jobs to the HPC scheduler just

like a traditional job would be submitted. PAW then monitors the scheduler queue for job

completion and when there are no more jobs executing, PAW de-provisions the environment

so that the user is no longer charged for the resources. This deletion is optional and not

required if the user wants to maintain the data on a shared filesystem.

We have two options when designing the application in regards to accessing the

traffic data required. The first option is to receive the live video feeds from a number of

cameras to process the data in real time to showcase the ability of the system. However, as

ordinary citizens we do not have access to the full scale of cameras or the proper network

access for the live video feeds that may be utilized in a real hurricane scenario. The second

option is to record a number of publicly available video feeds for a few weeks and store

this data in Google Cloud Storage (GCS). This ensures that we have access to all the data

that we need during the execution of the experiment and that we can emulate the size of

a real life hurricane scenario and would not get blocked by trying to access a large number

of camera feeds simultaneously. While we performed the experiment on recorded video,

switching to live video requires just a simple changing of arguments within our script.

The workflow is implemented as a PAW user-defined workflow which simply gen-

erated a batch script for PAW to submit to the HPC scheduler. This batch script creates

a simple work queue on each of the compute instances within the HPC environment. The

required pre-recorded video clip is then copied from GCS to local storage for processing

and each vidoe clip is processed as a single “job” on each instance. When that “job” has

been processed the next clip is pulled from GCS and the process begins again. Our clips are

formatted into one hour chunks and each clip is processed as though it is in real-time and
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as such takes about an hour to process. In the case of switching to real-time video instead

of recorded a URL pointing to the video stream would be utilized instead of a path to a

clip on GCS and the same video stream would be processed by a single vCPU until some

stopping criteria is reached.

7.4 Implementation and Scalability Evaluation

Overall we did not experience a large number of unexpected challenges as in our

previous work we have already identified a number of challenges and made sure to avoid

the same pitfalls during this experiment. However, as expected we did find and identify

two challenges that still surprised us during the execution. One of these challenges was an

API rate limit per GCP Project while the second challenge was the very rapid provisioning

of instances on GCP that created some additional complications with the infrastructure

provisioning software.

We identified and resolved these issues utilzing a testing plan that allowed us to

evaluate our workflow and design at different scales ranging from around 100 instances and

15,000 vCPUs to 5,000 instances and 80,000 vCPUs per environment. This medium scale

limit tests the scalability of the HPC scheduler and underlying infrastructure provisioning

software. Achieving success with a single 5,000 instance environment allowed us to move

forward with the execution of multiple 5,000 instance environments that were utilized in

our final run.

7.4.1 API Limitations Per Project

All commercial cloud providers have certain limitations placed upon a user’s account

to ensure the availability of the service for everyone and that a single person does not abuse

the system. The first challenge that we encountered during the execution was a limitation

on the number of certain API calls within a single GCP Project. A GCP Project can be

thought of as an overarching “container” for all of a user’s resources. Resources within a
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single GCP Project can be launched within any GCP regions as one of the features of GCP

is that their VPC networks are global and can contain resources running in multiple regions.

This is in contrast to both AWS and Azure where resources within a VPC are limited to

a single region. We originally thought that we could utilize this feature to launch multiple

environments in different regions utilizing the same GCP Project. However this turned out

not to be the case.

Within a GCP Project there are a number of quotas (limits) on how many resources

and API calls that a user can make within a certain time period within that project. Some of

the quotas are regional while others are global and apply to all resources and regions within

the same project. This is where we encountered our challenge. When we started to spin up

multiple environments within a single GCP Project we found that we were hitting a number

of GCP Compute Engine quotas with only one or two environments. The quotas that we

were hitting included: List requests per 100 seconds, Read requests per 100 seconds, and

Heavy-weight read requests per 100 seconds. These are the API calls that we are utilizing to

create, monitor, and delete instances during the execution and upon scaling up we quickly

hit these quotas which cause throttling from GCP and not allow us to get to our target

threshold.

We identify a two-fold solution to this challenge. First we attempt the easy way:

submit a request to have these quota limits increased to allow for more API calls to be

made. We were granted an increase from 2,000 to 6,000 API calls per 100 seconds for all

of these quotas. However we still needed to launch 93,750 instances in order to get the

scale we required and by only allowing for 6,000 API calls per 100 seconds it would take

26 minutes of just launching instances to get us to our target. This does not even take

into account any additional API calls that may be made during that 26 minute period for

monitoring of the instances that had already been launched. Since these limits are global

for the entire project, they would negatively impact all of our environments even if they

were in a different region.

The second part of the solution is to move to a multiple GCP Project setup where
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we have a single GCP project for each region that we want to utilize during execution.

This way we can spread the API calls across multiple projects and increase the quotas for

each one. An additional benefit of moving to the multiple projects is that we are able to

launch more environments simultaneously instead of having to wait a period for the quotas

to clear.

During the execution we attempted to launch environments located in different

regions within a single project. However, we find that by doing this we are limiting the

number of environments that we can run simultaneously. Since we are utilizing preemptible

instances which utilize GCP’s spare capacity, the availability can vary greatly between the

different GCP zones and regions. This variability means that we have to be flexible as

to when and where we can launch instances as if we depend on just a single zone/region

it may run out of capacity and we could not meet our target. By attempting to launch

environments in different regions from the same project we find that our flexibility to utilize

the available capacity is limited as sometimes the most capacity is be in a region that we

set up in a project that has already maxed out the API quota. To fix this issue, we end up

limiting to a single region per GCP project to ensure that we can always take advantage of

available capacity.

Another similar API quota issue that we encountered was getting throttled when

we attempted to shut down the instances after execution. As GCP is a “pay-as-you-go”

cloud provider meaning that as soon as the instances are no longer doing work the instances

should be shutdown as soon as possible to avoid extra charges. However, we find that we

were still maxing out the API calls because we are attempting to delete all the instances

at the same time. We do not want to have wait for the 100 second period for the quotas

to clear as we do not want to pay for the instances during that time. Our solution to

this is to utilize the pre-existing Salt master-minion setup within CloudyCluster to issue

the “shutdown” command to all the instances within the environment. This will put the

instances into a “Stopped” state within GCP where we are no longer paying for the run

time, just the storage costs. This reduces the cost for the instances while we wait for the
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delete calls to cycle through.

7.4.2 Rapid Provisioning of Instances

The second unexpected challenge dealt with the rapid provisioning of instances by

GCP. We also thought that this would be a feature that would help us get to processing

faster, however that turns out not to be the case. This works at smaller scales, but when

moving to a larger number of instances the large number of instances launching at the same

time can cause issues. When the compute instances come up for the first time, they attempt

to communicate with the HPC scheduler to register and start obtaining jobs. However if

there is a large number of instances coming up at the same time and they all attempt to

communicate with the HPC scheduler at the same time it starts to look like a denial of

service attack on the HPC scheduler.

We encountered this issue when moving up to the 5,000 instance test. Things worked

perfectly as the first few instances came up but as more and more instances were launched

the scheduler quickly got less responsive until it crashed. This was not something that we

expected and it took us a while to figure out that the rapid provisioning of instances was

the cause. Once we identified the issue, we developed a solution to reduce the number of

instances launched at a time by utilizing the GCP Batch request API to stagger the instance

launches. This allows us to launch instances in more manageable batches with randomized

amounts of time in-between. Although this did help to shrink the problem, it did not solve

it.

We find that although the instances are registering with the scheduler, it is still

taking a large amount of time for them to begin work. We find out that this is due to

the configuration of Salt and the Slurm HPC scheduler within the CloudyCluster provi-

sioning software utilized by PAW. Although we mitigated the denial of service attack on

the scheduler, both Salt and Slurm were having issues trying to add and authenticate the

larger number of instances. To fix this we look into two solutions. The first one is provided

by the GCP SchedMD collaboration and involves putting the Slurm configuration file on a
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shared filesystem that all the instances could access. This eliminates the need to push the

file to each instance as was the case with the CloudyCluster software it is not really scalable

as there are known limitations to the scalability of shared filesystems [4]. This also adds

complexity to our environment as we now need to create and maintain a shared filesytem.

The second solution involves modifying the actual configurations of Slurm and Salt

to limit the number of instances that can authenticate at a time. This approach does not

yield the same drastic drop in registration times as the first solution as the configuration

file still needs to be pushed, however it does keep the underlying architecture scalable and

eliminates the need for a shared filesytem. By performing some minor configuration edits,

we are able to drop the instance registration time from 40 minutes to 20 minutes for all

instances to be registered and computing.

7.5 Integration and System Evaluation

We executed our workflow across a set of HPC environments that were launched

within different regions and GCP projects. We utilized a total of 4 different GCP projects

and 6 different GCP regions for the execution of our TrafficVision workflow. Each GCP

project was based in a different region depending upon which regions had the most spare

capacity at the time of execution. We worked with our Google colleagues for guidence

about which regions to utilize and ended up utilizing: us-central1, europe-west4, us-east1,

asia-east1, us-west1, and europe-west1.

Our workflow utilizes a single custom GCP instance type: custom-16-16384 which

has 16vCPUs and 16GB of RAM. This custom instance type allows us to pay for the

minimum amount of RAM which helps keep costs down significantly. This instance size

is also chosen due to the fact that smaller to medium instance types are less likely to

be preempted due to their ability to “fit” into more slots. The more resources that a

preemptible instance requests, the more likely it is to get preempted. In order to reach our

proposed goal, we need to launch a minimum of 93,750 instances so we wanted our instances

112



Figure 7.2: The overall view of workflow execution. In graphs B and D each line represents a
single GCP Zone, names are not shown for space reasons. A) A timeline of the total number
of instances in all regions/zones launched during workflow execution. B) A timeline of the
total number of instances launched per Zone during workflow execution. C) A timeline of
the total number of vCPUs launched in all regions/zones during workflow execution. D) A
timeline of the total number of vCPUs per Zone during workflow execution.

to be able to “fit” in as many places as possible.

Fig. 7.2 showcases the ramp summary of the total number of instances and vCPUs.

During the execution of the workflow, at our peak around 9:30 PM EST we had 93,905

instances running across 30 HPC environments totaling 1,502,480 vCPUs executing concur-

rently. A breakdown of the instance distribution by GCP region and zone is shown in Table

7.2. Although we launched almost 100,000 instances, our overall preemption rate during the

execution remained relatively stable and low throughout with the highest peaks being 300

instances which is less than 1% of our total instances. A majority of the instances remained

running until we shut them down at the end of the workflow. The overall preemption rate

is shown in Fig. 7.3.

We did encounter some API throttling during the experiment. The effects of this can

be seen in the graphs in Fig. 7.2 around the 6:00-7:30pm mark during creation along with

the 10:00-11:00pm mark during deletion. During these periods the number of instances that

were being launched or deleted slowed down or stopped. During these periods we created

more HPC environments and utilized other projects to limit the number of API calls being

113



Table 7.2: Breakdown of the number of instances provisioned per GCP Region/Zone at
peak

Region Zone

A B C D F

us-central1 2,661 3,464 4,155 - 4,904

us-east1 - 6,708 1,915 3,066 -

us-west1 4,853 4,846 4,177 - -

europe-west1 - 10,803 1,462 8,898 -

europe-west4 6,477 8,324 3,917 - -

asia-east1 6,509 2,780 3,904 - -

Figure 7.3: A timeline of the rate of instance preemption throughout the execution of the
workload. Each line represents a single GCP Zone, names are not shown for space reasons.

used in each project.

We also note the performance of GCS during our experiment. To increase the

throughput to GCS, we implement the concept of GCP Private Routes which allows GCS

traffic to bypass the NAT instance eliminating a potential bottleneck. By utilizing this

solution, we did not hit any throttling or performance issues with accessing the pre-recorded

video clips or uploading the results. We hit a maximum rate of 52GiB/s read and 768MiB/s

write to GCS during our execution. The overall throughput rates to GCS are shown in Fig.

7.4 A and B.

Over the 8 hours that our workflow executed we processed 2,006,170 hours ( 211TB)

of video. The processing rate of completion is shown in Fig. 7.5. We note that there are not

a large number of completions in the first hour because our pre-recorded video is segmented

into one hour chunks and the results are not uploaded until the full clip has been processed.

When running in real-time with a standard video stream the results would be uploaded in
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Figure 7.4: The overall view of GCS performance throughout workflow execution. In both
graphs each line represents a single GCS Bucket, the names are not shown for space reasons.
A) A timeline of the throughput of data sent to the running instances during the workflow
execution. B) A timeline of the throughput of the data sent back to GCS after being
processed by our workflow.

real time.

Another important evaluation factor for our workflow is the overall cost. By utilizing

our custom machine type, we are able to help minimize our costs. At the time of the

experiment a standard instance type comes with 16 vCPUs and 64GB RAM and costs

$0.1600 USD per hour with preemptible pricing while our custom instance type costs $0.1264

USD per hour. This gives us a cost savings of $0.0336 USD per instance per hour which when

multiplied with the roughly 94,000 instances required provides a cost savings of $3,158.40

USD per hour. This cost savings can be significant especially if the workflow needs to

execute for an extended period of time.

We executed the workflow for approximately eight hours and utilized a total of
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Figure 7.5: A timeline view of the video clips analyzed during the execution of our workflow.
Each line represents a different GCP Region, the names are not shown for space reasons.

6,227,593 core hours with a total cost of $55,044.95. This gives us an overall cost per

core hour of approximately $0.008 USD which aligns well with the cost estimation for local

resources which is typically between $0.02-$0.01 USD per core hour.

7.6 Conclusions

We present a proof of concept that commercial clouds can handle urgent HPC

processing of massive data by provisioning, utilizing, and de-provisioning an HPC cluster

with more than 1.5M vCPUs in about 8 hours. Our application ran on top of the Google

Cloud Platform and demonstrates how urgent HPC can assist with evacuations in the event

of an impending disaster. We have discussed how the different features offered by each

commercial cloud provider can provide users with a cost-effective on-demand infrastructure

for urgent HPC and computing in general.

We utilize the cloud-agnostic Automated Provisioning And Workflow Management

tool (PAW) to build the HPC environments utilized to execute our worflow. Utilizing PAW

and the underlying CloudyCluster APIs we were able to analyze 2,006,170 hours ( 211TB)

of video with an average cost of $0.008 per vCPU hour. We also discuss the challenges that

we ran into when executing this workflow and provided solutions for each of them.

The execution of this massive scale on-demand HPC environment across multiple
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geographic regions showcases the flexibility and redundancy offered by the commercial cloud

along with providing a starting point for others to get started building their own workflows.
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Chapter 8

Summary

8.1 Summary of Contributions

In this dissertation we have examined how the architecture of different commercial

clouds can affect the performance and viability of different HPC workloads, explored how to

better enable commercial cloud access to academic researchers, and pushed the scalability

limits of the commercial cloud. In this chapter we provide a summary of the contributions

of this dissertation.

8.1.1 HPC Workload Performance Evaluation

First, we evaluate the viability of executing certain types of HPC workloads within

the commercial cloud. We execute the benchmarks found in the HPC Challenge benchmark

suite on different configurations within the commercial cloud to determine which types of

workloads may be best suited for execution on the commercial cloud. The benchmarks

executed include HPL, DGEMM, STREAM, PTRANS, RandomAccess, FFT, and Com-

munication bandwidth and latency. Each of these benchmarks stresses a different part of

the cloud resources and represents a different class of workload. We find that although

the results of the benchmark are not as good as they are on similar local hardware, there

are certain classes that still perform at an acceptable level. These benchmarks were those
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that were CPU intensive and did not require a lot of network communication in order to

execute. However, we also find that although the performance may not be as high, the

“on-demand” nature of the resources can outweigh the wait time required for traditional

on-premise resources.

8.1.2 Dynamic Resource and Workflow Management

Secondly in this dissertation, we find that although there are a number of tools

that exist to either provision commercial cloud resources or handle the execution of user

workflows, there are very few tools that exist that can handle both tasks. This can be a

major limitation to researcher adoption as they have to learn an additional tool to manage

the resources required for their workflow and integrate it with their existing workflow man-

ually. To help address this issue, we developed the Automated Provisioning And Workflow

Management Tool (PAW) for parallel scientific workflows.

PAW provides a modular base that can be extended to multiple commercial clouds

and other types of resource providers in the future. The initial implementation of PAW is

built utilizing AWS and CloudyCluster to help allow researchers with minimal commercial

cloud knowledge to take advantage of some of the new technologies and scale the cloud can

offer. Through PAW, researchers can execute custom defined parallel scientific workloads

within AWS just as they would on traditional HPC clusters by utilizing a user-defined PAW

workflow. A PAW created environment also allows researchers to have exclusive access to

the created cloud based HPC environment which eliminates contention for resources.

We showcase the scalability of PAW by executing a custom user-defined PAW work-

flow to execute a large scale topic modeling experiment. This experiment studied how the

variations in different variables affected the topic model output. Utilizing the CloudyClus-

ter and AWS version of PAW we executed a workflow that utilized 28,000 vCPUs over 5,000

instances in only 25 minutes.
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8.1.3 Considerations When Executing At Scale In The Commercial Cloud

The previous contributions of this dissertation show that executing on the commer-

cial cloud is possible and provide a tool to help automate the deployment of cloud resources.

Our next contributions for this dissertation is to push the limitations of scalability within the

commercial cloud. In this work we identify and resolve seven different limitations to mas-

sive scaling on the commercial cloud. These limitations include: Shared Filesystem Scaling,

NAT Limitations, Dynamic Pricing Effects On Spot Prices, Heterogeneous Instance Types

With Spot, Scheduler Scalability, User Limits, and API Limits. Several of these limitations

are common to execution on all commercial cloud providers including shared filesytem and

network limitations, launching heterogeneous instance types to control costs, HPC scheduler

scalability, user limits, and API limits.

We also provide a detailed cost analysis for executing at a large scale on AWS and

how costs can be lower for smaller workloads by utilizing the same technologies that we

utilize at scale. We find that the cost of executing a massive scale workload on AWS is

comparable to the cost of execution on local resources.

We utilize PAW to execute a topic modeling CPU intensive workload on 1,119,196

vCPUs simultaneously with minimal user input. The average cost per vCPU-hour for the

execution was US $0.0172 which is comparable to the typical target cost of US $0.02 per

core-hour for local HPC resources. By utilizing this massive HPC environment within the

commercial cloud we are able to execute just under a half a million jobs in just two hours.

If we had attempted to execute this many jobs on a shared local resource, it would have

taken days or even weeks. The execution of this massive CPU intensive HPC application

in the commercial clodu is a promising demonstration of how the commercial cloud can be

utilized for the execution of scientific applications by researchers.
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8.1.4 Commercial Cloud Infrastructure Within Transportation Cyber Phys-

ical Systems

After focusing on CPU intensive workloads in our previous work, we shifted to look-

ing into data intensive environments and workloads. We investigate how the commercial

cloud and the paradigms that it has introduced can be utilized within data intensive Trans-

portation Cyber Physical Systems (TCPS). We investigate and dissect each layer of the

traditional TCPS architecture and the arguments for and against moving each layer to the

commercial cloud. We also showcase and present cloud native solutions for each layer and

how they can be integrated into the layers to increase performance within the three major

commercial clouds.

Our analysis shows that although it is possible to migrate all of the layers within

TCPS to the commercial cloud, this may not be feasible due to the real-time constraints

or data volume requirements for the different layers. We find that out of all the layers

with TCPS, the batch layer is the most promising layer to migrate to the commercial

cloud. Within the batch layer, there are no real-time constraints and it is designed for non-

interactive jobs. However, due to the typical co-location of the streaming and batch layers

if the streaming layer cannot be migrated to cloud it may create duplicate infrastructure

and may not be the ideal solution.

We also find that the Infrastructure as Code (IaC) paradigm has the potential to

dramatically change how TCPS infrastructure is maintained and managed. By utilizing the

IaC paradigm, TCPS infrastructure changes can be tracked within version control which

makes documenting, maintaining, and changing the TCPS infrastructure simpler and more

efficient. Utilizing IaC allows for TCPS systems to become more agile and be more adaptive

to the ever changing conditions that they are constantly facing. As the IaC paradigm is still

in it’s infancy, the power and scale of the IaC tools will only get better with time. The use

of the IaC paradigm should be utilized when migrating any portion of TCPS infrastructure

to ensure the reliability and flexibility of the system.
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8.1.5 Utilizing Commercial Clouds For Urgent HPC

Finally, in this dissertation we explore the scalability of data intensive workloads

and how commercial clouds can be utilized for urgent HPC. Our work provides a proof-

of-concept workflow that showcases how commercial clouds can handle urgent HPC tasks

that require the processing of a massive amount of data. We accomplish this through the

provisioning, utilization, and de-provisioning of an HPC cluster with more than 1.5M vCPUs

in about 8 hours. For this experiment we utilized the Google Cloud Platform and PAW for

the execution of the experiment. The experiment showcased how urgent HPC can assist

with evacuations in the event of an impending disaster and how the different features offered

by each commercial cloud provider can provide researchers with a cost-effective on-demand

infrastructure for their urgent HPC computing needs.

The workload studied was a data intensive workload that processed traffic video

data to detect incidents and other traffic patterns from a collection of pre-recorded video

data. Utilizing our massive scale environment, we were able to analyze 2,006,170 hours

(2̃11TB) of video data with an average cost of US $0.008 per vCPU hour. In addition to

the seven previous limitations to scaling that we have discussed in this dissertation, we

identified and solved two more limitations that were GCP specific: rapid provisioning of

instances and API limitations per GCP project.

We also showcased how the commercial cloud allows researchers to execute their

workflows across multiple geographic regions. This shows the flexibility and redundancy

that the commercial cloud offers researchers. This is extremely useful for urgent HPC

workloads as there is some type of impending disaster that could wipe out the computing

power in the immediate area. By being able to spread the workload out across multiple

geographic regions, the likelihood of total loss/failure decreases.

8.1.6 Future Work

The ever evolving nature of the commercial cloud lends itself well to the extension

and continuation of this work. The re-execution and evaluation of the HPCC benchmark
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suite or similar types of workloads would make for a good comparison with how far the

commercial cloud has come since the beginning of this work. As the services and resources

change so do the characteristics of the clouds and their capabilities. It would be an inter-

esting comparison study to see how far the cloud has come and to predict where it could

be heading in the future.

Another natural extension of this work would be to natively integrate Microsoft

Azure into PAW and deploy and evaluate a massive scale environment. This would allow

for a more in-depth comparison between the three major commercial cloud providers and

may uncover some additional limitations to scaling.

Another possible extension of this work would be to migrate the different layers of

the TCPS infrastructure to the commercial cloud. This would allow for an evaluation study

to determine the performance of the system and what different bottlenecks are encoun-

tered. Through the use of the IaC paradigm, this could provide researchers with a reference

architecture and deployment model for further study.
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