40 research outputs found

    Consistency-by-Construction Techniques for Software Models and Model Transformations

    Get PDF
    A model is consistent with given specifications (specs) if and only if all the specifications are held on the model, i.e., all the specs are true (correct) for the model. Constructing consistent models (e.g., programs or artifacts) is vital during software development, especially in Model-Driven Engineering (MDE), where models are employed throughout the life cycle of software development phases (analysis, design, implementation, and testing). Models are usually written using domain-specific modeling languages (DSMLs) and specified to describe a domain problem or a system from different perspectives and at several levels of abstraction. If a model conforms to the definition of its DSML (denoted usually by a meta-model and integrity constraints), the model is consistent. Model transformations are an essential technology for manipulating models, including, e.g., refactoring and code generation in a (semi)automated way. They are often supposed to have a well-defined behavior in the sense that their resulting models are consistent with regard to a set of constraints. Inconsistent models may affect their applicability and thus the automation becomes untrustworthy and error-prone. The consistency of the models and model transformation results contribute to the quality of the overall modeled system. Although MDE has significantly progressed and become an accepted best practice in many application domains such as automotive and aerospace, there are still several significant challenges that have to be tackled to realize the MDE vision in the industry. Challenges such as handling and resolving inconsistent models (e.g., incomplete models), enabling and enforcing model consistency/correctness during the construction, fostering the trust in and use of model transformations (e.g., by ensuring the resulting models are consistent), developing efficient (automated, standardized and reliable) domain-specific modeling tools, and dealing with large models are continually making the need for more research evident. In this thesis, we contribute four automated interactive techniques for ensuring the consistency of models and model transformation results during the construction process. The first two contributions construct consistent models of a given DSML in an automated and interactive way. The construction can start at a seed model being potentially inconsistent. Since enhancing a set of transformations to satisfy a set of constraints is a tedious and error-prone task and requires high skills related to the theoretical foundation, we present the other contributions. They ensure model consistency by enhancing the behavior of model transformations through automatically constructing application conditions. The resulting application conditions control the applicability of the transformations to respect a set of constraints. Moreover, we provide several optimizing strategies. Specifically, we present the following: First, we present a model repair technique for repairing models in an automated and interactive way. Our approach guides the modeler to repair the whole model by resolving all the cardinalities violations and thereby yields a desired, consistent model. Second, we introduce a model generation technique to efficiently generate large, consistent, and diverse models. Both techniques are DSML-agnostic, i.e., they can deal with any meta-models. We present meta-techniques to instantiate both approaches to a given DSML; namely, we develop meta-tools to generate the corresponding DSML tools (model repair and generation) for a given meta-model automatically. We present the soundness of our techniques and evaluate and discuss their features such as scalability. Third, we develop a tool based on a correct-by-construction technique for translating OCL constraints into semantically equivalent graph constraints and integrating them as guaranteeing application conditions into a transformation rule in a fully automated way. A constraint-guaranteeing application condition ensures that a rule applies successfully to a model if and only if the resulting model after the rule application satisfies the constraint. Fourth, we propose an optimizing-by-construction technique for application conditions for transformation rules that need to be constraint-preserving. A constraint-preserving application condition ensures that a rule applies successfully to a consistent model (w.r.t. the constraint) if and only if the resulting model after the rule application still satisfies the constraint. We show the soundness of our techniques, develop them as ready-to-use tools, evaluate the efficiency (complexity and performance) of both works, and assess the overall approach in general as well. All our four techniques are compliant with the Eclipse Modeling Framework (EMF), which is the realization of the OMG standard specification in practice. Thus, the interoperability and the interchangeability of the techniques are ensured. Our techniques not only improve the quality of the modeled system but also increase software productivity by providing meta-tools for generating the DSML tool supports and automating the tasks

    Formal Foundations for Information-Preserving Model Synchronization Processes Based on Triple Graph Grammars

    Get PDF
    Zwischen verschiedenen Artefakten, die Informationen teilen, wieder Konsistenz herzustellen, nachdem eines von ihnen geändert wurde, ist ein wichtiges Problem, das in verschiedenen Bereichen der Informatik auftaucht. Mit dieser Dissertation legen wir eine Lösung für das grundlegende Modellsynchronisationsproblem vor. Bei diesem Problem ist ein Paar solcher Artefakte (Modelle) gegeben, von denen eines geändert wurde; Aufgabe ist die Wiederherstellung der Konsistenz. Tripelgraphgrammatiken (TGGs) sind ein etablierter und geeigneter Formalismus, um dieses und verwandte Probleme anzugehen. Da sie auf der algebraischen Theorie der Graphtransformation und dem (Double-)Pushout Zugang zu Ersetzungssystemen basieren, sind sie besonders geeignet, um Lösungen zu entwickeln, deren Eigenschaften formal bewiesen werden können. Doch obwohl TGG-basierte Ansätze etabliert sind, leiden viele von ihnen unter dem Problem des Informationsverlustes. Wenn ein Modell geändert wurde, können während eines Synchronisationsprozesses Informationen verloren gehen, die nur im zweiten Modell vorliegen. Das liegt daran, dass solche Synchronisationsprozesse darauf zurückfallen Konsistenz dadurch wiederherzustellen, dass sie das geänderte Modell (bzw. große Teile von ihm) neu übersetzen. Wir schlagen einen TGG-basierten Ansatz vor, der fortgeschrittene Features von TGGs unterstützt (Attribute und negative Constraints), durchgängig formalisiert ist, implementiert und inkrementell in dem Sinne ist, dass er den Informationsverlust im Vergleich mit vorherigen Ansätzen drastisch reduziert. Bisher gibt es keinen TGG-basierten Ansatz mit vergleichbaren Eigenschaften. Zentraler Beitrag dieser Dissertation ist es, diesen Ansatz formal auszuarbeiten und seine wesentlichen Eigenschaften, nämlich Korrektheit, Vollständigkeit und Termination, zu beweisen. Die entscheidende neue Idee unseres Ansatzes ist es, Reparaturregeln anzuwenden. Dies sind spezielle Regeln, die es erlauben, Änderungen an einem Modell direkt zu propagieren anstatt auf Neuübersetzung zurückzugreifen. Um diese Reparaturregeln erstellen und anwenden zu können, entwickeln wir grundlegende Beiträge zur Theorie der algebraischen Graphtransformation. Zunächst entwickeln wir eine neue Art der sequentiellen Komposition von Regeln. Im Gegensatz zur gewöhnlichen Komposition, die zu Regeln führt, die Elemente löschen und dann wieder neu erzeugen, können wir Regeln herleiten, die solche Elemente stattdessen bewahren. Technisch gesehen findet der Synchronisationsprozess, den wir entwickeln, außerdem in der Kategorie der partiellen Tripelgraphen statt und nicht in der der normalen Tripelgraphen. Daher müssen wir sicherstellen, dass die für Double-Pushout-Ersetzungssysteme ausgearbeitete Theorie immer noch gültig ist. Dazu entwickeln wir eine (kategorientheoretische) Konstruktion neuer Kategorien aus gegebenen und zeigen, dass (i) diese Konstruktion die Axiome erhält, die nötig sind, um die Theorie für Double-Pushout-Ersetzungssysteme zu entwickeln, und (ii) partielle Tripelgraphen als eine solche Kategorie konstruiert werden können. Zusammen ermöglichen diese beiden grundsätzlichen Beiträge es uns, unsere Lösung für das grundlegende Modellsynchronisationsproblem vollständig formal auszuarbeiten und ihre zentralen Eigenschaften zu beweisen.Restoring consistency between different information-sharing artifacts after one of them has been changed is an important problem that arises in several areas of computer science. In this thesis, we provide a solution to the basic model synchronization problem. There, a pair of such artifacts (models), one of which has been changed, is given and consistency shall be restored. Triple graph grammars (TGGs) are an established and suitable formalism to address this and related problems. Being based on the algebraic theory of graph transformation and (double-)pushout rewriting, they are especially suited to develop solutions whose properties can be formally proven. Despite being established, many TGG-based solutions do not satisfactorily deal with the problem of information loss. When one model is changed, in the process of restoring consistency such solutions may lose information that is only present in the second model because the synchronization process resorts to restoring consistency by re-translating (large parts of) the updated model. We introduce a TGG-based approach that supports advanced features of TGGs (attributes and negative constraints), is comprehensively formalized, implemented, and is incremental in the sense that it drastically reduces the amount of information loss compared to former approaches. Up to now, a TGG-based approach with these characteristics is not available. The central contribution of this thesis is to formally develop that approach and to prove its essential properties, namely correctness, completeness, and termination. The crucial new idea in our approach is the use of repair rules, which are special rules that allow one to directly propagate changes from one model to the other instead of resorting to re-translation. To be able to construct and apply these repair rules, we contribute more fundamentally to the theory of algebraic graph transformation. First, we develop a new kind of sequential rule composition. Whereas the conventional composition of rules leads to rules that delete and re-create elements, we can compute rules that preserve such elements instead. Furthermore, technically the setting in which the synchronization process we develop takes place is the category of partial triple graphs and not the one of ordinary triple graphs. Hence, we have to ensure that the elaborate theory of double-pushout rewriting still applies. Therefore, we develop a (category-theoretic) construction of new categories from given ones and show that (i) this construction preserves the axioms that are necessary to develop the theory of double-pushout rewriting and (ii) partial triple graphs can be constructed as such a category. Together, those two more fundamental contributions enable us to develop our solution to the basic model synchronization problem in a fully formal manner and to prove its central properties

    Diversity of graph models and graph generators in mutation testing

    Get PDF
    When custom modeling tools are used for designing complex safety-critical systems (e.g., critical cyber-physical systems), the tools themselves need to be validated by systematic testing to prevent tool-specific bugs reaching the system. Testing of such modeling tools relies upon an automatically generated set of models as a test suite. While many software testing practices recommend that this test suite should be diverse, model diversity has not been studied systematically for graph models. In the paper, we propose different diversity metrics for models by generalizing and exploiting neighborhood and predicate shapes as abstraction. We evaluate such shape-based diversity metrics using various distance functions in the context of mutation testing of graph constraints and access policies for two separate industrial DSLs. Furthermore, we evaluate the quality (i.e., bug detection capability) of different (random and consistent) model generation techniques for mutation testing purposes

    Engineering bidirectional transformations

    Get PDF
    Bidirectional transformations, like software, need to be carefully engineered in order to provide guarantees about their correctness, completeness, acceptability and usability. This paper summarises a collection of lectures pertaining to engineering bidirectional transformations using Model-Driven Engineering techniques and technologies. It focuses on stages of a typical engineering lifecycle, starting with requirements and progressing to implementation and verification. It summarises Model-Driven Engineering approaches to capturing requirements, architectures and designs for bidirectional transformations, and suggests an approach for verification as well. It concludes by describing some challenges for future research into engineering bidirectional transformations

    The Future of Programming and Modelling: A Vision

    Get PDF

    Efficient execution of ATL model transformations using static analysis and parallelism

    Get PDF
    Although model transformations are considered to be the heart and soul of Model Driven Engineering (MDE), there are still several challenges that need to be addressed to unleash their full potential in industrial settings. Among other shortcomings, their performance and scalability remain unsatisfactory for dealing with large models, making their wide adoption difficult in practice. This paper presents A2L, a compiler for the parallel execution of ATL model transformations, which produces efficient code that can use existing multicore computer architectures, and applies effective optimizations at the transformation level using static analysis. We have evaluated its performance in both sequential and multi-threaded modes obtaining significant speedups with respect to current ATL implementations. In particular, we obtain speedups between 2.32x and 38.28x for the A2L sequential version, and between 2.40x and 245.83x when A2L is executed in parallel, with expected average speedups of 8.59x and 22.42x, respectively.Spanish Research Projects PGC2018-094905-B-I00, TIN2015-73968-JIN (AEI/FEDER/UE), Ramón y Cajal 2017 research grant, TIN2016-75944-R. Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development, and by the FWF under the Grant Numbers P28519-N31 and P30525-N31
    corecore