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Abstract

A model is consistent with given specifications (specs) if and only if all the specifica-
tions are held on the model, i.e., all the specs are true (correct) for the model.

Constructing consistent models (e.g., programs or artifacts) is vital during software
development, especially in Model-Driven Engineering (MDE), where models are em-
ployed throughout the life cycle of software development phases (analysis, design,
implementation, and testing). Models are usually written using domain-specific mod-
eling languages (DSMLs) and specified to describe a domain problem or a system from
different perspectives and at several levels of abstraction. If a model conforms to the
definition of its DSML (denoted usually by a meta-model and integrity constraints),
the model is consistent.

Model transformations are an essential technology for manipulating models, including,
e.g., refactoring and code generation in a (semi)automated way. They are often
supposed to have a well-defined behavior in the sense that their resulting models are
consistent with regard to a set of constraints. Inconsistent models may affect their
applicability and thus the automation becomes untrustworthy and error-prone. The
consistency of the models and model transformation results contribute to the quality
of the overall modeled system.

Although MDE has significantly progressed and become an accepted best practice in
many application domains such as automotive and aerospace, there are still several
significant challenges that have to be tackled to realize the MDE vision in the indus-
try. Challenges such as handling and resolving inconsistent models (e.g., incomplete
models), enabling and enforcing model consistency/correctness during the construc-
tion, fostering the trust in and use of model transformations (e.g., by ensuring the
resulting models are consistent), developing efficient (automated, standardized and
reliable) domain-specific modeling tools, and dealing with large models are continually
making the need for more research evident.
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In this thesis, we contribute four automated interactive techniques for ensuring the
consistency of models and model transformation results during the construction pro-
cess. The first two contributions construct consistent models of a given DSML in an
automated and interactive way. The construction can start at a seed model being
potentially inconsistent.

Since enhancing a set of transformations to satisfy a set of constraints is a tedious
and error-prone task and requires high skills related to the theoretical foundation,
we present the other contributions. They ensure model consistency by enhancing
the behavior of model transformations through automatically constructing applica-
tion conditions. The resulting application conditions control the applicability of the
transformations to respect a set of constraints. Moreover, we provide several optimiz-
ing strategies.

Specifically, we present the following;:

First, we present a model repair technique for repairing models in an automated and
interactive way. Our approach guides the modeler to repair the whole model by re-
solving all the cardinalities violations and thereby yields a desired, consistent model.
Second, we introduce a model generation technique to efficiently generate large, con-
sistent, and diverse models. Both techniques are DSML-agnostic, i.e., they can deal
with any meta-models. We present meta-techniques to instantiate both approaches to
a given DSML; namely, we develop meta-tools to generate the corresponding DSML
tools (model repair and generation) for a given meta-model automatically. We present
the soundness of our techniques and evaluate and discuss their features such as scal-
ability.

Third, we develop a tool based on a correct-by-construction technique for translating
OCL constraints into semantically equivalent graph constraints and integrating them
as guaranteeing application conditions into a transformation rule in a fully automated
way. A constraint-guaranteeing application condition ensures that a rule applies suc-
cessfully to a model if and only if the resulting model after the rule application satisfies
the constraint. Fourth, we propose an optimizing-by-construction technique for ap-
plication conditions for transformation rules that need to be constraint-preserving.
A constraint-preserving application condition ensures that a rule applies successfully
to a consistent model (w.r.t. the constraint) if and only if the resulting model after
the rule application still satisfies the constraint. We show the soundness of our tech-
niques, develop them as ready-to-use tools, evaluate the efficiency (complexity and
performance) of both works, and assess the overall approach in general as well.

All our four techniques are compliant with the Eclipse Modeling Framework (EMF),
which is the realization of the OMG standard specification in practice. Thus, the
interoperability and the interchangeability of the techniques are ensured. Our tech-
niques not only improve the quality of the modeled system but also increase software
productivity by providing meta-tools for generating the DSML tool supports and
automating the tasks.
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Uberblick

Ein Softwaremodell ist mit gegebenen Spezifikationen (Specs) genau dann konsis-
tent, wenn alle Spezifikationen von dem Softwaremodell eingehalten werden, d.h. alle
Spezifikationen fiir das Softwaremodell wahr (korrekt) sind.

Wihrend der Softwareentwicklung ist die Konstruktion von konsistenten Soft-
waremodellen (z.B. Programmen oder Artefakten) essentiell. Dies gilt besonders
im Bereich des Model-Driven Engineering (MDE), in welchem die Softwaremod-
elle in allen Phasen des Softwareentwicklungsprozesses (Analyse, Design, Imple-
mentierung und Test) verwendet werden. Softwaremodelle werden {iblicherweise
in domé&nenspezifischen Modellierungssprachen (DSMLs) verfasst und dienen der
Beschreibung eines Doménenproblems oder eines Systems aus unterschiedlichen Per-
spektiven und auf unterschiedlichen Abstraktionsebenen. Wenn das Softwaremod-
ell mit der Definition seiner DSML (gewohnlich durch ein Meta-Modell und In-
tegritidtsbedingungen definiert) konform ist, gilt das Softwaremodell als konsistent.

Modelltransformationen sind eine essentielle Technologie zur (semi)-automatisierten
Manipulation von Softwaremodellen, inkl. z.B. des Refactorings und der Codegener-
ierung. Dabei wird oftmals ein wohldefiniertes Transformationsverhalten vorausge-
setzt, in dem Sinne, dass die resultierenden Softwaremodelle in Hinblick auf die Be-
dingungen konsistent sind. Inkonsistente Softwaremodelle beeinflussen die Anwend-
barkeit von Modelltransformationen, wodurch die automatische Ausfithrung unzu-
verldssig und fehleranfillig werden kann. Die Konsistenz von Softwaremodellen und
den Ergebnissen von Modelltransformationen tragt zur Qualitdt des gesamten mod-
ellierten Systems bei.

Obwohl MDE bemerkenswerte Fortschritte gemacht hat und ein akzeptiertes Ver-
fahren in vielen Anwendungsbereichen wie der Automobilindustrie sowie der Luft-
und Raumfahrt darstellt, so gilt es immer noch deutliche Herausforderungen zu
bewéltigen, um die MDE-Vision in der Industrie umzusetzen. Die Herausforderun-
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gen bestehen dabei in dem Umgang und der Auflésung von Inkonsistenzen in Soft-
waremodellen (z.B. unvollstindigen Softwaremodellen), der Sicherstellung und Er-
haltung von Modellkonsistenz und Korrektheit wihrend der Modellkonstruktion, der
Erhohung der Zuverlassigkeit von Modelltransformationen (z.B. durch die Sicherstel-
lung der Modellkonsistenz nach Modelltransformationen), der Entwicklung von ef-
fizienten (automatisierten, standardisierten und zuverléssigen) doménenspezifischen
Modellierungswerkzeugen und dem Umgang mit groflen Softwaremodellen, was ins-
gesamt die Notwendigkeit weiterer Forschung zeigt.

In dieser Arbeit werden vier automatisierte und interaktive Techniken zur Sicher-
stellung der Konsistenz von Softwaremodellen und Modelltransformationsergebnissen
innerhalb des Softwareentwicklungsprozesses vorgestellt. Die ersten beiden Beitrdge
erlauben die Konstruktion von konsistenten Softwaremodellen einer gegebenen DSML
in einer automatisierten und interaktiven Weise. Die Konstruktion kann dabei mit
einem potentiell inkonsistenten Softwaremodell beginnen.

Da die Erweiterung von Transformationen zur Erfiilllung von Bedingungen eine lang-
wierige und fehleranfillige Aufgabe darstellt, welche hohe Féahigkeiten in Bezug
auf die theoretischen Grundlagen voraussetzt, ergeben sich die weiteren Beitrége:
Die vorgestellten Techniken stellen die Modellkonsistenz nach einer automatischen
Erweiterung der Modelltransformation durch zusédtzliche Anwendungsbedingungen
(engl. Application Conditions - ACs) sicher. Diese resultierenden Anwendungsbe-
dingungen steuern die Anwendbarkeit der Transformationen in Bezug auf eine Menge
von Konsistenzbedingungen. Dariiber hinaus werden zusétzlich Optimierungsstrate-
gien bereitgestellt.

Im Einzelnen wird folgendes prisentiert:

Als Erstes wird eine automatische und interaktive Technik zur Reparatur von Soft-
waremodellen présentiert. Dieser Ansatz leitet Modellierer beim Reparieren des
gesamten Modells, indem alle Kardinalitdtsverletzungen aufgelost werden, und fithrt
somit zu dem gewiinschten konsistenten Softwaremodell. Zweitens wird eine Tech-
nik zur effizienten Generierung von grofien, konsistenten und heterogenen Software-
modellen eingefiihrt. Beide Techniken sind DSML-unabhéngig, d.h. sie kénnen fiir
beliebige Meta-Modelle eingesetzt werden. Es werden Meta-Techniken fiir die Anwen-
dung beider Ansétze auf einer gegebenen DSML présentiert, da mittels Meta-Tools
entsprechende DSML-Werkzeuge (Modellreparatur und Modellgeneration) auf Basis
eines gegebenen Meta-Modells automatisch generierbar sind. Es wird die Korrek-
theit dieser Techniken sowie die Auswertung und Diskussion der Eigenschaften (z.B.
Skalierbarkeit) gezeigt.

Drittens ist ein Werkzeug entwickelt worden, basierend auf einem konstruktiven
Ansatz zur Ubersetzung von OCL Bedingungen in semantisch dquivalente Graphbe-
dingungen, welches diese als gewéhrleistende Anwendungsbedingungen vollautoma-
tisch in Transformationsregeln integriert. Eine bedingungsgewéhrleistende Anwen-
dungsbedingung stellt sicher, dass eine Transformationsregel nur genau dann auf
einem beliebigen Softwaremodell ausgefiihrt werden kann, wenn das resultierende
Softwaremodell nach der Regelanwendung die Bedingung erfiillt. Viertens wurde
ein konstruktiver Ansatz zur Optimierung von Anwendungsbedingungen fiir bedin-
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gungserhaltende Transformationsregeln entwickelt. Eine bedingungserhaltende An-
wendungsbedingung stellt sicher, dass eine Regel erfolgreich auf ein konsistentes Soft-
waremodell, welches die Bedingung erfiillt, angewandt werden kann, genau dann,
wenn das resultierende Softwaremodell nach der Regelanwendung immer noch kon-
sistent mit der Bedingung ist. Es wird die Korrektheit der Techniken, die Ein-
satzfertigkeit der Werkzeuge, die Evaluation der Effizienz (Komplexitit und Leis-
tungsfiahigkeit) beider Ansétze sowie die Bewertung des gesamten Ansatzes gezeigt.

Die vier Techniken sind kompatibel zu dem Eclipse Modeling Framework (EMF),
welches die Realisierung der OMG-Standard-Spezifikation in der Praxis darstellt. Da-
her sind die Interoperabilitdt und die Austauschbarkeit der Techniken sichergestellt.
Die vorgestellten Techniken verbessern nicht nur die Qualitit des modellierten Sys-
tems, sondern erhéhen auch die Produktivitdt durch die Bereitstellung von Meta-
Tools zur Generierung von DSML-Werkzeugen, welche die Aufgabenbearbeitung
durch Automatisierung beschleunigen.
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Introduction

Software engineers are frequently confronted by continuously increasing complexity,
required higher quality, and accelerating productivity of software development. More-
over, one of the main obstacles facing software development is that developing soft-
ware applications requires a full understanding of both the domain space such as a
bank system or an automotive system and the implementation space such as a specific
programming language and platform. The growth of software complexity, the need
for better software quality and productivity, and the need for information interchange
and interoperability between tools and organizations are the main motivations behind
the use of Model-Driven Engineering (MDE) [143, 133].

MDE [119, 133] is an approach in software engineering that raises the level of ab-
straction and focuses on the domain problem rather than the underlying environ-
ment. Model-Driven Development (MDD), a field of MDE, employs the modeling
approach efficiently by introducing more automation in transforming models describ-
ing domain aspects into software implementations [46, 133]. For example, a model
can be specified to describe a domain part like a web page of a bank and then can
be translated into code (e.g., HTML) using prescribed automation. However, dur-
ing the development process, an engineer has to specify: (a) which artifacts are to
be produced (product dimension) and (b) how to process for producing the artifacts
(process dimension) [42].

In MDD, software applications are derived from software models. Therefore, soft-
ware models have to be specified precisely. Otherwise, the automation may result
in software applications full of errors. A model is a specification (formal descrip-
tion) of the structure and behavior of a system within a given context and from a
specific point of view. A software model is a model whose specification is based
on a language that has a well-defined meaning with each of its constructs [143]. A
language consists of the following main ingredients: The abstract syntax which is a
data structure that holds the core information in a model, and the concrete syntax
which defines the notation (e.g., a graphical syntax and a textual syntax) with which
users can express models [145]. Software models are written using Domain-Specific



Modeling Languages (DSMULs) [45] whose abstract syntax is usually defined by a
meta-model within a particular domain. A meta-model is a special kind of model
that describes the structure, elements, properties, and the relations between the ele-
ments of the model within a particular domain. A meta-model may contain integrity
constraints (i.e., well-formedness constraints), and these constraints may be implicitly
defined (like the multiplicity constraints of associations) or explicitly specified using
a constraint language [25]. Constraints are boolean expressions that check some
property of a model [145].

A model is consistent with a meta-model if and only if all the constraints of the
meta-model are held on the model, i.e., no constraint of the meta-model is false for the
model [25, 123]. Thus, a meta-model can also be expressed as the set of all possible
consistent models. Developers use a DSML to describe particular applications by
constructing consistent models (i.e., models conforming to the meta-model of the
DSML). In this thesis, we use the term model to refer to a software model.

A model transformation is the automatic generation of a target model from a
source model. Model transformations are the key operations for model manipulation
involving, e.g., translation, optimization, synchronization, and the (semi-)automatic
construction of the software implementation [130]. A transformation rule is a de-
scription of how a source model can be transformed into a target model [67, 84]. There
are two main kinds of model transformations: endogenous and exogenous transforma-
tions [83, 30]. The input model and the output model of an endogenous transforma-
tion are of the same modeling language. In contrast, the input model and the output
model of an exogenous transformation may be of different languages. In the scope of
this work, we consider the endogenous model transformations.

Applying a model transformation to a model may change the consistency state of
the model. We call a model transformation consistency-guaranteeing if applying
it to a model, the resulting model is consistent. We call a model transformation
consistency-preserving if applying it to a consistent model, the resulting model is
still consistent [83, 55].

Ensuring model consistency is crucial during software developments since the
consistency of the models affects the quality of the generated artifacts (e.g., code)
and the applicability of the tools. Software applications usually expect specific input
data that fulfill certain constraints or formats. Otherwise, they often fail to handle the
data correctly. For example, the C compiler demands a valid C program to execute
it, and the UML tool requires a valid XML file to import it, i.e., a model that fulfills
the language specification of UML. Importing an invalid XML file may fail [145].

Additionally, inconsistencies affect the applicability of the transformations, and
thus, the automation becomes untrustworthy, error-prone, and even impossible.
Therefore, the consistency of transformation results affects the quality of the mod-
eled system as well. For example, in safety-critical systems, model transformations
are required to fulfill or preserve specific consistency properties [48, 72]. Otherwise,
the modeled system may fail.

The ability to detect and resolve inconsistencies early during software development is



desirable to reduce the development cost, time, and improve the software quality [143].

To empower the modeling process and the interoperability between tools
and organizations, the Object Management Group (OMG) [100], which is a com-
puter industry standards consortium, provides several computer standard specifica-
tions such as the Unified Modeling Language (UML) and the Object Constraint Lan-
guage (OCL). UML [100, 133] is a standardized general-purpose modeling language
to address the modeling of architecture, objects, and the interactions between objects.
OCL [99] is a well-known language used to express and specify constraints and query
expressions on models. The modeling development is powered by OMG specifications
such as:

o the Meta object facility (MOF) [133, 98] for specifying models and meta-models,

o the XML Metadata Interchange (XMI) [101] which is a standard interchange
mechanism used between various tools, repositories and middle-ware to serialize
MOF meta-models and models into XML-based schemes, and

o the Query/View/Transformation (QVT) [102] for specifying model transforma-
tions to manipulate models.

Models are usually classified into meta-layers according to their abstraction levels [98].
Models at a layer are instances of the model at the next higher layer that represents
their meta-model. Briefly, the key modeling concepts are Class and Object, and the
ability to navigate from an object to its meta-object (Class) and vice versa.

In practice, the Eclipse Modeling Framework (EMF) [34] has evolved to a de-facto
standard technology for defining models and modeling languages in academia as well
as in industrial contexts [135]. EMF provides the Ecore meta-metamodel which im-
plements an essential subset of MOF specification. The structure of Ecore is similar to
the UML class diagram. With the help of the Ecore meta-metamodel, one can define
meta-models addressing different domains such as an automotive domain, mobile ap-
plication domain, or web page domain. By instantiating the domain meta-model, one
can specify instance models describing particular aspects of the domain, e.g., specify-
ing web pages for a bank or a university. Throughout this thesis, our techniques are
based on EMF.

Tools have played a critical role in improving software quality and productivity by
assisting tasks in software development processes, facilitating the user interaction
to design the desired content, ensuring the well-formedness of content during the
construction process and verifying critical properties of the systems [21, 60, 19].

In MDE, tools are essential since they can reduce the accidental complexities associ-
ated with understanding the problem, dealing with meta-models, and manipulating
their models. Two different kinds of tools according to stakeholders can be distin-
guished during the development process as shown in Figure 1.1 and described below:

« modeler tools (DSML tools) that are used by modelers (model owners) to,
e.g., edit or repair models of a specific domain, and



o developer tools (meta-tools) that are used to build the modeler tools for
a particular domain (DSML tools). A meta-tool usually realizes a generic ap-
proach, customizes the approach to the given domain, and builds the DSML
tool supports.

' N\
Generic Method  |<—Uses—| Developer Tool | _—USes
(Meta-Tool)
J
| Domain
builds Developer
r N\ builds
DSML-based Method
\§ J
uses
Modeler Tool uses/

DSML Tool
applies to ( oo) |~
DSML Instance [ﬁ e Application
Models Modeler

Figure 1.1: A scene of the main ingredients (stakeholders, roles, and tools) in the
modeling process.

There are already a lot of tool supports and frameworks supporting the development
of DSMLs and their tools such as the Eclipse Modeling Framework (EMF) [34] for
defining modeling languages and for building tool supports and applications based on
structured data models, and Henshin [3], ATL [64], eMoflon [76] for defining model
transformations.

1.1 Challenges and Goals

As modeled systems become more and more complex, consistency problems become
more prominent, especially if the model is developed throughout multiple phases
or iterations and from different views and concerns. In [46, 136, 69, 124], several
challenges dealing with the consistency of model and model transformations, and
with developing efficient DSML tools are identified, examples of which are discussed
below.

1.1.1 Developing Efficient Techniques for Constructing Con-
sistent Models

During software development, model inconsistency can easily occur due to several rea-
sons such as lack of information, misunderstandings, and the incremental development
of models from various aspects.



Resolving and handling incomplete and inconsistent models is a crucial challenge in
model-driven engineering (MDE) since it requires high facilities related to the do-
main. For example, it demands the understanding of the domain structure and its
constraints, detecting the inconsistencies in the given instance model, and identifying
which repair actions must or could be applied and in which order. Moreover, guiding
the modelers in repairing models in a semi-automated way is promising for building
models efficiently and getting the desired ones, especially if the models have to be
constructed throughout several iterations, at different times and from different per-
spectives. The interactive construction of models is promising for producing desired
models.

Furthermore, the need for instance models grows with the steady increase of domains
and topics to which model-driven engineering (MDE) is applied. In particular, there
is a growing need for generating large instances of a given meta-model [70, 118].
Large and diverse models are needed in various applications like model transformation
testing, benchmark model queries, or validating the suitability of MDE tools to deal
with large input models.

Additionally, the development of DSML tools is a general challenge since each DSML
needs its own set of tools, e.g., tools for repairing and generating consistent mod-
els. Although there are technologies that help developers to build tools for a given
DSML, developing and evolving them using manual techniques can be expensive.
They require high skills related to considered problems, meta-modeling, and tool de-
velopments. MDE must be supported by meta-tools (developer tools) for building or
generating tools for a given DSML [46].

The data interchangeability among tools is one of the main problems facing software
development. To enable interoperation between tools, the artifacts produced by one
tool should be at least accessible from other tools [24]. As stated in [85, 136], exporting
a diagram from one tool to another has not been accomplished yet with ease. MDE
has to be supported by compatible and standardized tools [85, 136] to guarantee the
information interchange and interoperability between tools.

Even though MDE can benefit from using generic techniques from other software
engineering domains for solving consistency problems, specific features such as inter-
activity, compatibility, and scalability cannot yet be addressed by existing solutions
from other software engineering domains because translating models from one form
to another introduces more complexity than it removes [136], for instance. Therefore,
various research approaches still need to be explored and evolved.

Goal 1: Developing techniques that construct consistent models of a given meta-
model not only automatically but also interactively so that the modeler can control
the construction process. This semi-automated model construction is promising for
producing desired models. The techniques can construct a consistent model from
a given model being potentially inconsistent. Moreover, the techniques should be
meta-model agnostic, i.e., generic and can be instantiated to any given domain meta-
model and deal with its instances. Furthermore, for a given domain (meta-model),
meta-tools for automatically generating DSML tools for constructing (repairing and



generating) models have to be developed to ease and accelerate the development
process. The tools and the tools’ outputs should be compatible and standard to
support the interchangeability between tools. Additionally, the soundness should be
presented, and the techniques should scale.

1.1.2 Developing Efficient Techniques for Ensuring the Con-
sistency of Model Transformations

Applying a model transformation to a consistent model may yield an inconsistent
result, and thus, errors may occur. Inconsistent results may affect the applicability
of the transformations. Consequently, transformation-based automation becomes un-
trustworthy, error-prone, and even impossible. For example, when defining modeling
languages and their operations (e.g., editing operations) on models, the operations
must produce results that belong to the language. Moreover, DSML users may use the
operations in a way (not thought by the developers), which leads to a transformation
crash or create inconsistent models. Further, in a concurrent and distributed system,
each state should fulfill some required invariants such as safety properties, and each
refactoring should preserve the model consistency. Making sure that all constraints
are considered (implemented) is a challenge and can be hard [145].

In [136, 145], several open challenges are identified dealing with the quality of the
modeled system, namely with the consistency of model transformations such as: How
to define modeling techniques that enable and enforce model correctness by construc-
tion? Newly, the international conference of model transformations (ICMT’19) ! put
forward several challenges such as: How to ensure that model transformations produce
expected results? How to foster the trust in and use of model transformations?

Goal 2: For a given set of constraints, and a set of model transformation rules, our
goal is to develop techniques to automatically enhance the behavior of transformation
rules to respect the given set of constraints, i.e., the resulting model after applying
a model transformation rule is consistent w.r.t. the set of constraints. Moreover, to
foster trust in the use of model transformations, the soundness of the techniques has
to be ensured, and the techniques should behave efficiently.

1.2 Contributions

In this section, we present four contributions that aim at tackling the previous chal-
lenges and thus achieving our goals.

First of all, our techniques are developed to consider the Eclipse Modeling Framework
(EMF) and its constraints. Thus, the interchangeability and interoperability between

Thttp:/ /www.model-transformation.org/



tools are guaranteed. Moreover, the developed approaches are rule-based. Therefore,
they can be parameterized and configured to support user interactions.

1.2.1 Automated Interactive Techniques for Constructing
Consistent Models of DSMLs

In the first part of the thesis, we present the first two contributions (out of four):
The first one is for repairing EMF models to be consistent w.r.t. the meta-model of a
given DSML in an automated interactive way. The second one is for generating large
and consistent EMF models w.r.t the meta-model by supporting user configurations.
Meta-tools are developed to automatically customize (instantiate) the approaches to
any given domain meta-model. DSML tools are provided as ready-to-use tools for
modelers. Additionally, the soundness and the scalability of both techniques are
presented.

An overview of the first two contributions of the thesis is given in more detail as follow
and illustrated in Figure 1.2:

| Consistency Ensuring Technigues for Software Models |

| Contribution 1 | Contribution 2 |
Model Repair Model Generator
(Algorithm + Repair Rules) (Strategies + Constructing Rules)
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Figure 1.2: Contributions 1 and 2 for ensuring the consistency of software models

¢ Contribution 1-Rule-based Model Repair: In this work, we propose a
rule-based approach for repairing models. Given a model, a model repair modi-



fies this model such that it becomes consistent concerning its given meta-model.
If the model is already consistent, the model repair does nothing. Our approach
distinguishes itself from other approaches that it can repair models not only
fully automatically but also guide the modeler in repairing models in a semi-
automated (interactive) way and thus resolving all the cardinalities violations.
This interactive model repair is promising for producing desired models. Addi-
tionally, we consider the EMF constraints, i.e., the output models are consistent
instance models of meta-models with multiplicities conforming to the Eclipse
Modeling Framework (EMF).

A generic rule-based algorithm for model repair is developed to repair any in-
stance model of any given domain meta-model, and different repair rules are
specified to configure the algorithm w.r.t. the given domain. The repair rules
are defined as transformation rules. Meta-specifications (describing how the
rules are designed and under which conditions should be derived) are provided
to derive the different kinds of repair rules and to instantiate the approach to
the given DSML.

A meta-tool (developer tool), called Meta2RR is developed as an Eclipse plug-
in. It takes a domain meta-model as an input, uses the meta-specifications, and
generates the corresponding domain-specific model repair technique in a fully
automated way. Once the domain-specific model repair technique is generated,
there is no need to use the meta-tool again as long as the meta-model is not
changed.

A model repair tool (DSML tool) is developed as an Eclipse plug-in and provided
as a ready-to-use tool to repair instance models of the DSML in an automated
or interactive manner. It takes an EMF model as an input, uses the generated
domain-specific model repair technique, and returns a consistent EMF model.

The algorithm is formalized, and its correctness is presented. It is systematically
tested concerning the correctness. Additionally, we discuss the approach in a
more general setting and present its features.

Moreover, we show that the approach is scalable in repairing models up to 10 000
elements. The related work is discussed as well.

Contribution 2—Rule-based Model Generator: With the steady use of
model-driven engineering (MDE) in practice, the need for the automated gen-
eration of instance models grows. In particular, there is a growing need for
large instances of a given meta-model [70, 118]. Moreover, interactive model
generation supporting user configurations is promising for producing desired
models. Furthermore, generating models by manipulating existing models not
only supports the incremental development of models at different times but also
is promising for accelerating the generation process. In this work, we cover all
the previous characteristics.

We present a rule-based, configurable approach for generating consistent EMF
models, i.e., consistent instance models of meta-models with multiplicities con-
forming to the Eclipse Modeling Framework (EMF). The generation process
can start at a seed EMF model being potentially inconsistent, and the approach
is scalable. Since our approach is rule-based, the generation process can be
configured w.r.t. user specifications. Several parameterization strategies are
developed and presented to generate different sets of consistent EMF models.



A configurable, rule-based model generator utilizing the EMF model repair is
developed for generating consistent EMF models. Meta-specifications are pro-
vided to derive the proper generation rules, to instantiate the approach to the
given DSML, and to support user specifications.

A meta-tool, called Meta2GR, is developed as an Eclipse plug-in. It takes a
meta-model as an input, uses the meta-specifications, and returns the corre-
sponding domain-specific generation technique in a fully automated way. Once
it is generated for a given DSML, there is no need to use the meta-tool again
as long as the meta-model is not changed.

A model generator tool is developed as an Eclipse plug-in. It takes user specifi-
cations and EMF model (optional) as inputs, uses the generated domain-specific
generation technique, and generates a consistent EMF model.

The soundness of our approach is discussed. After that, we evaluate its scal-
ability by generating consistent EMF models with 10000 elements (nodes and
edges) in about a minute on average. Furthermore, we show that we can gener-
ate consistent EMF models with half a million elements efficiently. A scalabil-
ity comparison with the state-of-the-art instance generator is provided showing
that our generator is efficient for generating large and consistent EMF models
of meta-models without OCL constraints. Moreover, we show the diversity of
the generated models. The related work is discussed in detail as well.

1.2.2 Automated Consistency-by-Construction Techniques for
Model Transformations

In the second part of the thesis, we present the other two contributions (the third
and fourth one): The third contribution is a correct-by-construction tool, i.e., the tool
functionalities are formally guided by specifications. The tool enhances the behavior
of a model transformation rule to guarantee a set of OCL constraints automatically.
In the last contribution, we present a consistency-by-construction technique that en-
hances and optimizes the behavior of model transformations to preserve the model
consistency with regard to a set of constraints. The correctness of the contribution is
presented. The performance of both implemented contributions and the complexity
of the outputs are shown. The overall approach is assessed, as well.

An overview of the third and fourth contribution is given in more detail as follow and
illustrated in Figure 1.3:

e Contribution 3—Automated Construction of Guaranteeing Applica-
tion Conditions from OCL Constraints: In several application scenarios,
model transformation rules are often supposed to have a well-defined behavior
in the sense that their resulting models are consistent w.r.t. a set of constraints.
In this work, we enhance the behavior of model transformation rules by auto-
matically constructing constraint-guaranteeing application conditions from OCL
constraints. A rule with a constraint-gquaranteeing application condition applies
successfully to a model if and only if the resulting model after the rule appli-
cation satisfies the constraint. The theoretical foundations for translating OCL
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Figure 1.3: Contributions 3 and 4 for ensuring the consistency of model transfor-
mations

constraints to graph constraints, and for calculating the constraint-guaranteeing
application condition do already exist, and their correctness is shown in [114].

However, manually enhancing a set of rules to guarantee a set of constraints is
a tedious, time consuming, and error-prone task and requires high skills related
to the theoretical foundation and the environment. Since we seek to develop
reliable techniques, we have developed the solution design of realizing both
theoretical foundations [114].

Two tool supports (as Eclipse plug-ins) are developed to fully automate the
whole process: The first tool support, called OCL2GC, takes a meta-model and
a set of OCL constraints as inputs and returns a set of semantically equivalent
graph constraints as an output. The second tool support, called GC2AC takes
a Henshin rule and a graph constraint as inputs and returns the Henshin rule
with a constraint-guaranteeing application condition. Thus, the enhanced rule
applies successfully to a model if and only if the resulting model after rule
application satisfies the given constraint. To the best of our knowledge, we
provide the first ready-to-use tool.

Furthermore, we show the feasibility and efficiency of the implemented theories
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in practice by carrying out experiments to measure the performance of the
implemented approach and the complexity of the outputs for both components.
The related work is discussed as well.

e Contribution 4—Constructing Optimized Consistency-Preserving Ap-
plication Conditions: We present a new technique for constructing an opti-
mized constraint-preserving application condition from a given set of constraints
and a rule, and thus, rendering the model transformation rule consistency-
preserving. A rule is consistency preserving if all its applications to consistent
models yield consistent models, as well.

Our technique consists of several optimization strategies that simplify guar-
anteeing application conditions during the construction process. This kind of
automatic approximation is conceptually new and quite general in scope.

We formally show the correctness of our approach. Moreover, the optimizer
is implemented as an Eclipse-based tool automating the whole process. The
optimizer takes a Henshin rule and a graph constraint as inputs and returns
the Henshin rule with a constraint-preserving application condition. Thus, the
enhanced rule applies successfully to a consistent model w.r.t. the constraint
if and only if the resulting model after rule application is still consistent w.r.t.
the given constraint.

Furthermore, we experimentally compare the non-optimized application condi-
tions with the optimized ones. The results show a considerable loss in complex-
ity and better run-time performance. Additionally, we conduct a performance
experiment comparing the a-priori consistency check approach using our tech-
niques with a-posterior consistency check approach in general. An extension of
the work is discussed, and the related work is presented as well.

1.3 Methodology

The research methodology guiding this thesis is represented by taxonomies of software
engineering research proposed in [132, 96]. This work comprises techniques supported
by analytic models. Techniques are defined as inventing new ways to do some tasks,
including procedures and implementation techniques, whereas analytic models are
defined as developing structural models that permit formal analysis. All the con-
tributions provide techniques to generate DSML tools automatically or to perform
the tasks automatically. They are provided as ready-to-use tools. All contributions
provide new solutions (however, in contribution 3, we provide a design solution) and
present their feasibility and efficiency. All contributions are based on algebraic graph
transformations. In Contributions 1, 2, and 4, we give formal proofs or discuss their
soundness.

To validate the research results, we use different kinds of validation techniques.
Shaw [132] presents several kinds of validation techniques: persuasion, analysis, im-
plementation, evaluation, and experience. Throughout the thesis, persuasion is used
to motivate and explain our design choices. In Contributions 1, 2, and 4, we show the
soundness. We provide implementations as ready-to-use tools for all contributions
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(1-4). All contributions (1-4) are supported by empirical evaluations and experiments
to measure its feasibility and efficiency, e.g., performance and complexity.

1.4 Publications

This thesis originates from several years of research which is supported by the German
Research Foundation (DFG), Grants HA 2936/4-2 and TA294/13-2 (Meta-Modeling
and Graph Grammars: Generating Development Environments for Modeling Lan-

guages).

In the following, we list the most important publications in the context of this thesis:

e Nebras Nassar, Hendrik Radke, Thorsten Arendt: Rule-based Repair of EMF
Models: An Automated Interactive Approach. In: Theory and Practice of
Model Transformation(ICMT 2017), Springer. [93].

e Nebras Nassar, Jens Kosiol and Hendrik Radke: Rule-based Repair of EMF
Models: Formalization and Correctness Proof. In: Graph Computation Models
(GCM 2017), Electronic. [92].

e Nebras Nassar, Jens Kosiol, Thorsten Arendt, Gabriele Taentzer: OCL2AC:
Automatic Translation of OCL Constraints to Graph Constraints and Applica-
tion Conditions for Transformation Rules. In: The International Conference on
Graph Transformation (ICGT 2018), Springer. [89)].

o Nebras Nassar, Jens Kosiol, Thorsten Arendt, Gabriele Taentzer: Constructing
Optimized Validity-Preserving Application Conditions for Graph Transforma-
tion Rules. In: The International Conference on Graph Transformation (ICGT
2019), Springer. [90]. (EASST Best Paper Award)

e Nebras Nassar, Jens Kosiol, Timo Kehrer, Gabriele Taentzer: Generating Large
EMF Models Efficiently: A Rule-Based, Configurable Approach. In: Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE
2020) (accepted). [88].

¢ Nebras Nassar, Jens Kosiol, Thorsten Arendt, Gabriele Taentzer: Constructing
Weakest Constraint-Preserving Application Conditions for Model Transforma-
tion Rules. In: Journal of Logical and Algebraic Methods in Programming
(JLAMP), 2020, (submitted). [91].

The following publications are relevant to the thesis but are not a part of it. In [87],
we provide a generic approach and develop a meta-tool, called NasTool, to derive
model metrics from a given meta-model automatically. The metrics can be used to
inquire about the model elements and thus aim at finding the elements which violate
a constraint such as the upper bound of a relation. In [71], we develop an approach
that updates the rule actions to satisfy a specific form of graph constraints.
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e Nebras Nassar, Thorsten Arendt, Gabriele Taentzer: Deriving Model Metrics
from Meta Models. In: The Proceedings of Modellierung 2016, Karlsruhe, Ger-
many. Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik. [87].

o Jens Kosiol, Lars Fritsche, Nebras Nassar, Andy Schiirr, Gabriele Taentzer:
Towards Establishing Consistency between Graph Transformation Rules and
Atomic Graph Constraints Using Multi-Amalgamation. In: The 24th interna-
tional workshop on algebraic development techniques (WADT 2018). [71].

We have developed the following Eclipse-based software projects 2:

e OCL2AC Project: It consists of three tool supports:

1. OCL2GC translates OCL constraints into a set of semantically equivalent
(nested) graph constraints.

2. GC2AC integrates graph constraints as guaranteeing application condi-
tions into transformation rules.

3. Optimizer constructs optimized validity-preserving application conditions
from graph constraints.

e Model Generator Project: Generating large EMF models of a given DSML
by supporting user specifications.

e Model Repair Project: Repairing EMF models of a given DSML automati-
cally or interactively.

¢ Model Metrics Project: Deriving model metrics from a given DSML.

1.5 Outline

The thesis comprises two main parts, and each part contains two chapters: (Part I)
Consistency ensuring techniques for software models and (Part IT) consistency ensur-
ing techniques for model transformations. The remainder of this thesis is structured
as follows:

e Chapter 2 presents the basic background information needed throughout
the thesis. EMF models, EMF constraints, graphs, transformation rules, and
OCL are presented. They form the basis for both parts. Additionally, graph
constraints and conditions are defined, OCL translation rules are outlined, and
the calculation of application conditions is presented. All form the basis of the
second part.

2https://www.uni-marburg.de/fb12/arbeitsgruppen /swt/nebras-nassar
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Part I composes the following two chapters presenting consistency ensuring tech-
niques for software models:

Chapter 3 introduces rule-based model repair. The work is introduced and
motivated by example, the developed rule-based algorithm, the catalog of
the different kinds of repair rules and their meta-patterns are outlined, the
approach is formalized, presented as Hoare triple and as graph automaton,
and the correctness proof of the algorithm and its features are shown, the
ready-to-use tool with its functionaries is outlined and systematically tested,
the scalability is shown, the discussion of the approach in general settings
(e.g., supporting a set of OCL constraints) is provided, and the related work is
discussed as well.

Chapter 4 presents rule-based model generator. The work is motivated and
the approach of generating consistent EMF models is presented, four particu-
larization strategies and their meta-specifications are presented using examples,
a ready-to-use tool is developed to generate consistent models starting with or
without seed models, and the scalability experiment for generating consistent
models of varying size up to half a million elements elements are presented using
8 modeling languages taken from different domains, a comparison with the
state-of-the-art solver-based tool is carried out, and diversity experiments for
generating diverse sets of consistent models are provided, the state-of-the-art
of the related work is explored and classified.

Part IT composes the following two chapters presenting consistency ensuring
techniques for model transformations:

Chapter 5 presents an automated construction of guaranteeing application
conditions from OCL constraints. The work is introduced and motivated
by example, the solution design of realizing and automating the theoretical
foundations is presented, the ready-to-use tool and its functionalities are
shown, the restriction of the technique is studied by considering the OCL
constraints of UML, the complexity and the performance of both tool supports
are presented using a realistic application case, and the related work is discussed.

Chapter 6 presents an automated construction of optimized consistency-
preserving application conditions. The approach for constructing optimized
consistency-preserving application conditions is introduced by example, two
theorems are formalized to show the correctness of our approach, the tool
is implemented and discussed, the complexity and the performance of our
approach are studied using a realistic application case, namely the MagicDraw
Statechart meta-model with 11 OCL constraints and 84 editing rules, a
performance comparison of a-priori consistency approach implemented using
our techniques with a-posteriori consistency approach realized using validators
are carried out, and the related work is presented as well.
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e Chapter 7 summarizes this thesis and gives an outline on possible future work.

e Chapters A and B provide comprehensive details used in this thesis.
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Background

In this chapter, we introduce the main required concepts for the subsequent chap-
ters. We first introduce the basic foundation needed to understand the first two
contributions and then present the ones additionally needed to follow the last two
contributions. Further helpful information is provided within the chapters to ease the
readability.

A suitable formal framework and foundation for this work is the theory of algebraic
graph transformation introduced by Ehrig et al. [39]. To use the theory of alge-
braic graph transformation, we consider EMF models and meta-models as graphs.
A meta-model can be regarded as a graph with additional structural information
like containment, inheritance, and opposite edges. Besides, a meta-model may con-
tain multiplicities and further constraints. When formalizing meta-modeling by this
means, graphs occur at two levels: the type level (meta-models) and the instance level
(models). This is reflected by the concept of typed graphs, where a fixed graph TG
serves as an abstract representation of the type structure of a meta-model. Correct
typing of instances is formalized by structure-preserving mappings of instance graphs
to type graphs.

In the following, we present EMF models, EMF constraints, and model transfor-
mations (Henshin), and introduce their formalization. This formalization has been
established in Biermann et al. [14]. Then, we introduce a short introduction to the
Object Constraint Language (OCL).

After that, we present the notions from the theory of algebraic graph transformation
needed to understand the second part of our work additionally: We recall nested
graph constraints and conditions as a means to express properties of graphs and of
morphisms in between, we roughly sketch the translation of OCL to nested graph
constraints. The formal translation of OCL constraints to graph constraints that
we are using is presented in Radke et al. [114]. Since many OCL translation rules
are defined w.r.t the OCL expressions, we present here the generic ones. Then, we
recall the calculus of an application condition of a rule as presented in Habel and
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Pennemann [55]. For more comprehensive details, please consider the works presented
in [55, 114] since they mainly form the theoretical background of the second part.

2.1 EMF Models, Constraints and Hierarchy

The Eclipse Modeling Framework (EMF) has evolved into a de-facto standard tech-
nology for defining models and modeling languages [135]. It facilities the modeling
process by providing tool supports for editing, viewing, and code generation as well
as for building tool supports (e.g., Eclipse plug-ins).

The Eclipse Modeling Framework provides an Ecore meta-metamodel to specify do-
mains (meta-models). The structure of the Ecore meta-metamodel is similar to the
structure of the UML class diagram. It supports the classification of objects and
their attributes, the relationships between the objects and constraints on those ob-
jects. In the following, we describe the main subset of the Ecore meta-metamodel for
representing meta-models as shown in Figure 2.1:

EPackage EClassifier

name:String
nsURLString |0..* eClassifiers

name:String

0..* eSuperTypes

EClass

abstract:boolean

EDataType

1..1 eReferenceType

0..* eStructuralFeatures

EStructuralFeature

name:String
lowerBound:int
upperBound:int 1..1 eAtttyibuteType

EReference J

containment:boolean

eOpposite
0..1

0..1 eOpposite

Figure 2.1: Excerpt of the Ecore meta-metamodel

e EClass: This type models classes which are represented as nodes of a graph.
A class has a name and can contain attributes and references. A class can be
abstract or interface, i.e., an instance of it cannot be created. A class can refer
to other classes as its super-types to represent an inheritance relationship. An



19

inheritance relation is depicted as an arrow with an empty triangle from a class
called a subclass to another class called a superclass.

o EReference: It models an association between two classes (nodes). An associ-
ation has a name and a type. Multiplicities are specified as lower and upper
bounds at the end of the reference. EReference can specify three kinds of asso-
ciations:

— non-containment: It is a direct association between two classes (nodes),
depicted as a regular arrow, which allows navigating from the source node
to the target node.

— containment: It is a stronger type of association representing an ownership
relation between classes (nodes) and depicted as a regular arrow with a
black diamond as a tail. It represents a part-of relationship between a
container class representing the whole and a contained class representing
the part. If an instance of a container class is deleted, all its contents have
to be eliminated as well.

— opposite: It is a bidirectional association specified by pairing an association
with its opposite and depicted as an edge without arrowheads. Instanti-
ating an opposite association means an instance of each paired association
must exist together.

o EAttribute: It models attributes for classes. An attribute has a name and a type.
Note, once a node is created in an EMF instance model, the node attributes
with their default values are created as well.

o EDataType: It models simple types that are primitive or object types defined in
Java, and they are most commonly used as attribute types.

A comprehensive description of the Ecore can be found at [34]. An EMF model
unifies three important technologies: Java, XML, and UML, i.e., an EMF model
can be created from a UML model, an XML scheme, or annotated Java interfaces.
EMF can read and write EMF models in a format that conforms to the standard
XML Metadata Interchange (XMI) serialization of the Essential Meta Object Facility
(EMOF).

2.1.1 EMF Constraints

The Eclipse Modeling Framework provides several constraints to constitute, manipu-
late, and persist valid (consistent) state for objects modeled in EMF. The constraints
needed in practice [14] are listed as follows:

o At-most-one-container: Each model node must not have more than one container.
e No-containment-cycles: Cycles of containment edges must not occur.

o No-parallel-edges: There are no two edges of the same type from the same source
to the same target node.



o All-opposite-edges: If edge types t1 and t2 are opposite to each other: For each
edge of type t1, there has to be an edge of type ¢2 linking the same nodes in
the opposite direction.

o No-lower-bound-violation: For each edge type e, the number of target model
nodes being connected to a source node via edges of type e is equal or higher
than its lower bound.

e No-upper-bound-violation: For each edge type e, the number of target model
nodes being connected to a source node via edges of type e is equal or smaller
than its upper bound.

e Rootedness: There is a node, called the root node, such that all other model
nodes are directly or transitively contained in it.

¢ Dangling condition: All adjacent edges of a node to be deleted have to be deleted
as well.

2.1.2 EMF Modeling Hierarchy

(i.e., Ecore meta-model)
EPackage EClassifier
name:String String
nsURLString  |0..* eClassifiers| "*™M¢>"18
instanceOf
mm————— \ 0..* eSuperTypes
v 1
, [ o=
Ecore L 2277 bsmactbocienn
Meta-metamodel 1.1 :}ngeﬁnre’[ype
-
,I‘ e g 0..* eStructuralFeatures
”
H -
1 g EStructuralFeature
1 .
1 Vd name:String
1 / lowerBound:int
: I, upperBound:int 1..1 eAtttijibuteType
1
]
1
1
S \ /T
| \ EReference - _
3 \ i oz L,
s | . \ containment:boolean 1
‘g : instanceOf N eOpposite l|
£ | \ 0.1
; \\ 0..1 eOpposite instanceOf |
1
L K ‘\ ]
Domain (e.g., Webpage domain) !
Meta-models :EClass :EAttribute
- :eStructuralFeatures
'?\ name="Webpage” namei7 "home”
5 x ,
Q! P 1
g1 ' /
S} S /
€ h f a bank R “
I (e.g. a home page of a bank) ) oo " instanceof
D " instanceOf S« s
omain 2
:Webpage(hoime)
Instance Models

Figure 2.2: EMF modeling hierarchy: An example

The modeling hierarchy in EMF is categorized into meta-layers representing models
for describing a system w.r.t different abstraction levels. Figure 2.2 illustrates and
describes the layers using an example as follows:
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o Meta-metamodel: It is the highest level of abstraction represented by Ecore.
The Ecore meta-metamodel is also called the Ecore meta-model because it can
describe itself.

e Meta-model: It describes a particular domain, e.g., a webpage meta-model
describing a general structure of web pages. Ecore describes the webpage
meta-model, i.e., the webpage meta-model is an instance of the Ecore meta-
metamodel.

o Instance model: It represents a concrete instance, e.g., an instance model de-
scribing the home web page of a bank or a university, or the address web page
of a hospital.

Similar examples are already mentioned in several works of literature, e.g., in [16].
Briefly, the main idea is that one can define meta-models addressing different domains
such as a web page domain by instantiating the Ecore meta-metamodel. Likewise,
by instantiating the domain meta-model, one can specify instance models describing
concrete aspects of the domain, e.g., specifying web pages for a bank or a university.

2.2 Graphs and EMF Graphs

This section recalls the background information needed to design consistent EMF
graphs and to change them in a consistency-preserving way. It is based on [14].

Definition 1 (Graph and graph morphism). A graph G = (Vg, Eg, sa, tc)
consists of a set Vg of nodes (or vertices), a set Eq of edges, and source and target
functions sg,tg : Eq — Vg.

For graphs G and H, a graph morphism f = (fv, fr) is a pair of functions fy : Vg —
Vg and fg : Eq — Epg such that fyyosqg = sgo fg and fyyotg =tgo fg. If fyy and
fE are inclusions, then G is a subgraph of H, short G € H.

Definition 2 (Type graph). A type graph TG = (T,1, A,C,OFE, mult) consists
of a graph T' = (Vip, Ep, sp,tr), an inheritance relation I € Vi x Vp, a set A € Vp
of abstract nodes, a set C' € Er of containment edges, a relation OF € Er x Ep of
opposite edges, and a function mult : Ep — N x (N U {*}) subject to the following
conditions: The inheritance relation [ is a partial order. The relation OF obeys the
axioms: (i) for all (e1,e2) € OF : sp(e1) = tr(ez2) and sp(ez) = tr(e1) (opposite
directions), (ii) for all e € Er : (e,e) ¢ OF (anti-reflexivity), (iii) for all (e1,e2) €
OFE : (eg,e1) € OF (symmetry), and (iv) for all (ej,ez),(e1,e3) € OE : ez = e3
(functionality). For each (i,7) € mult(Er) it holds that i < j and j # 0 (where < is
the standard order of natural numbers supplemented by i < = for all € /).

The following concepts and notations will be used throughout the work and further
clarify the correspondence between type graphs and EMF models: For e € OF we
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denote its opposite edge by e~!. The inheritance clan of a node n € Vr is defined by
clany(n) = {m | (m,n) € I}. We write m < n for m € clany(n). We use the set of
containment edges C to define a containment relation contrg € Vi x Vi, which is given
as the transitive closure of the relation {(n,m) |3ce C :n < s(c) A m < t(c)} and
write n 2 m for (n,m) € contrg. In the following, by NC := Er\C we refer to the
non-containment edges. The function mult maps each edge of Er to a multiplicity.
A value of * indicates an unconstrained number of edges. For mult(e) = (i,7), i
is called the lower bound, j is called the upper bound of e, and we define functions
low: Er — N,upp : Ey — N U = which assign the respective bounds to each edge.

Structure preserving maps establish the relationship between T'G and instances:

Definition 3 (Typed graphs, typed morphisms). A graph G is called typed
over TG if there exists a graph morphism typeg = (typev.,typer,) : G — TG s.t.

typev, (sa(e)) < sr(typer,(e)) and typey, (tg(e)) < tr(typeg,(e)) for all e € Eg;
typeq is called typing morphism. A typed graph morphism between graphs G and H,
which are both typed over T'G, is a graph morphism f = (fy, fg) : G — H such that

typey,, o fv(n) < typey,(n) for all n € Vi and typeg,, o fg = typer,.

The typing of a graph G over T'G with types induces a containment relation on G.
We write Cq := {e € E¢ | typeg.(e) € C} and contg is the transitive closure of the
relation {(sg(c),ta(c)) | ¢ € Cg}. As above, we denote (n,m) € contg by writing
n =2 m. Analogously, we introduce the sets NCg and OEg.

Definition 4 (EMF constraints). To define typed graphs, which also respect
the constraints of EMF and to later present our repair and generation algorithms,
we now give a list of certain properties typed graphs can possess and express these
properties as logical formulas. Let G be a graph typed over TG by typing morphism

typeg:

e At-most-one-container: No node of G has more than one container:

Ve, € Catgler) =tg(ea) = ¢ =co -
o No-containment-cycle: No cycles of containment edges occur in G:

VneVgndn .

o No-parallel-edges: No parallel edges exist, i.e., there are no two edges of the same
type from the same source to the same target node:

Ve,e' € Eg ((tyPGEG (e) = typepg (€)

nsale) = sa(e) A tale) = ta(e)) = e = e') .
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o All-opposite-edges: Each edge of opposite edge type has its inverse edge:
Vee OEg.3¢' € OEqg (Sg(e) =ta(e)

Arta(e) = sq(€') A typep,(€e) = typeg,, (e')_l) .

o Concreteness: It instantiates no node of abstract type:

Vn € Vg.typey,(n) ¢ A .

o Rootedness: There exists a node r in Vi, called root node, such that all nodes
of GG, except for r, are transitively contained in 7:

VneVg(n;ér:»rQn) .

¢ No-bound-violation: For every node n € Viz and every edge type er € Ep, for
which n can serve as source node, the number of outgoing edges of type er from
n is between ep’s lower and upper bound:

Vn e VgNer € Er (typeVG (n) < sy(er) =

low(er) < #{e € Eg |typep, (€) = er A sa(e) = n} < upp(er)) .

Definition 5 (EMF model graph). A graph G typed over TG = (T, I, A, C,
OFE, mult) with typing morphism typeq is an EMF-model graph over TG (or w.r.t.
TG) if the conditions At-most-one-container, No-containment-cycle, No-parallel-edges,
and All-opposite-edges hold.

2.3 Model Transformations: Henshin

When formalizing transformations of EMF models [34] by the means of the theory of
algebraic graph transformation [39, 14], they are specified by transformation rules.

Definition 6 (Transformation rule). A rule p = (p, lac, rac) consists of a plain
rule p and left and right application conditions lac and rac. The plain rule p consists
of three graphs L, K, and R, called left-hand side (LHS), interface, and right-hand side
(RHS) with two inclusion morphisms [ : K — L,r : K < R. p is monotonic if
l: K — L is an isomorphism. p only deletes if r : K — R is an isomorphism. The
application conditions lac and rac are graph conditions over L and R, respectively.

Given a rule p = ((L L KD R), lac, rac) and an injective morphism m : L — G
with m = lac, called match, a (direct) transformation G =, , H from G to H via p
at match m is given by the diagram to the right where both squares are pushouts.
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A rule p is applicable at match m if the first pushout square above exists, i.e., if
m ol has a pushout complement D, and, moreover, the match morphism m satisfies
lac and the co-match n satisfies rac.

Note that the first pushout square exists iff the match m fulfills the dangling edge
check ensuring that a rule application at this match would not let an edge dangle.
Applying the rule, the elements of m(L\K) are deleted. Then, at the chosen image
of K in G, a copy of R\K is created. Afterwards, the resulting mapping of the graph
R into the new graph is checked to fulfill the right application condition of the rule.
In that case, the new graph is the result of the rule application.

Henshin Transformation Language

In our work, we use Henshin [3] due to its formal background, which can be advan-
tageously used to argue for correctness. Henshin is an in-place model transformation
language based on graph transformation concepts. In Henshin, transformations of
EMF models can be defined by transformation rules. Each rule consists of a left-hand
side (LHS), a right-hand side (RHS), and a partial mapping between these object
structures specifying which elements are deleted, created or just preserved. Besides,
there may be positive application conditions (PACs) or negative application condi-
tions (NACs) requiring or forbidding certain model patterns. The left-hand side of a
rule and its application conditions formulate the structural preconditions that must
be fulfilled for applying the rule. Accordingly, its right-hand side describes the re-
sult (or postconditions). In Henshin specifications, several rule actions (stereotypes),
namely, preserve, delete, create, forbid and require are specified to distinguish among
elements that should be matched, deleted, created, forbade and required, respectively.
Moreover, a Henshin rule may have an arbitrary number of parameters which control
the rule application w.r.t. the variable data.

Furthermore, several kinds of transformation units are specified to control the order
of rule applications. A transformation unit may compose sub-units and rules. There
are different kinds of units, such as:

¢ Independent unit: It comprises an arbitrary number of sub-units that are checked
in a non-deterministic order for applicability. It executes one applicable unit.

e Loop unit: It comprises one sub-unit and executes this as often as possible.

e Conditional unit: It comprises either two or three sub-units specifying the if-
unit, the then-unit, and the else-unit. If the if-unit is executed successfully, the
then-unit is executed. Otherwise the else-unit is executed.
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e Sequential unit: It comprises an arbitrary number of sub-units that are executed
in the given order. If a sub-unit is not applicable, it is skipped.

e Priority unit: It comprises an arbitrary number of sub-units that are checked
for applicability. It tries to execute the first sub-unit. If this failed, it executes
the next one and so on. If a sub-unit is executed successfully, the check and
execution of the following sub-units are skipped.

2.4 Object Constraint Language (OCL)

The Object Constraint Language (OCL) [99] is a constraint language used to supple-
ment the specification of object-oriented models. It is equipped with different kinds
of models being consistent with the Meta Object Facility (MOF) [103], UML [100],
or EMF. OCL can be used to specify invariants, operation contracts, guards of state
transitions, or queries on object structures. OCL is a typed language, i.e., each OCL
expression evaluates to a type.

The OCL type system supports user-defined types (classes and enumerations), primitive
data types (Integer, Real, String and Boolean), and two template types (Tuple and
Collection). The type Collection has subtypes Set, Bag, and Sequence to support
specific kinds of collections. OCL provides logical operators such as and, or, not and
implies, and a universal quantifier forall and an existential quantifier exists. OCL
supports navigation along references to objects and attribute values using the dot
notation. Navigation results may be single-valued, i.e., an object or data value, or
Collections.

All predefined types come along with operations such as collection operations union,
size, and select. The operations are called by the arrow notation. An important
sublanguage of OCL is Essential OCL which is “the minimal OCL required to work
with EMOF” [99]. In this work, we deal with OCL invariants (constraints) that must
hold for the system being modeled. An OCL invariant is specified in a particular type
called the context type. The body of an invariant is a boolean expression (condition).
The evaluation of an invariant returns true if all instances of the context type satisfy
the body expression.

2.5 Graph Constraints and Conditions

Nested graph constraints formulate properties of graphs whereas nested graph condi-
tions express properties of graph morphisms [55], i.e., type and structure-preserving
mappings between graphs. Graph conditions are mainly used to restrict the applica-
bility of rules. Constraints and conditions are defined recursively as trees of injective
morphisms.
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Definition 7 (Graph condition and constraint). Given a graph P, a (nested)
graph condition over P is defined recursively as follows: true is a graph condition over
P and 3(a: P — C,¢), where a is an injective morphism and c is a graph condition
over C, is one, again. Moreover, Boolean combinations of graph conditions over P are
graph conditions over P. A (nested) graph constraint is a condition over the empty

graph .

Satisfaction of a graph condition d over P for a morphism p : P — G, denoted as
p k= d, is defined as follows: Every morphism satisfies true. The morphism p satisfies
a condition of the form d = 3(a : P — C,¢) if there exists an injective morphism
q : C'— G such that p = goa and ¢ satisfies ¢. For Boolean operators, satisfaction is
defined as usual. A graph G satisfies a graph constraint d, denoted as G k= d, if the
empty morphism to G does so.

i P ¢ c <

Graph constraints are expressively equivalent to a first-order logic on graphs [55, 115].
To ease notation, we use the compact form, i.e., we drop the domain of morphisms in
constraints and conditions whenever they may be unambiguously inferred and indicate
the mapping by the names of nodes. We call constraints of the form 3 C' positive and
of the form —3C negative constraints.

2.6 OCL Translation Rules

The translation of EssentialOCL invariants to nested constraints is formally presented
in [112]. The correctness and completeness of the translation approach are proven.
Since a lot of OCL translation rules are specified concerning different OCL expressions,
we present here their classifications according to the kind of the OCL expressions as
follows:

o Invariant translation (tr;): Translation for OCL invariants.

o Expression translation (trg): Translation for OCL expressions yielding a Boolean
value (trg).

« Navigation translation (¢ry): Translation for OCL expressions yielding single
objects.

o Set translation (trg): Translation for OCL expressions yielding collections of
objects.
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For each translation kind, several concrete translations are specified. For examples,
the expression translation (trg) composes translations for OCL expressions such as
exists(exp), forall(exp), includesAll(exp), excludesAll(exp), notEmpty(), comparison oper-
ator {<, >, <, =, =, <>}, ocllsKindOf(T) and OCLIsTypeOf(T) and the set translation
(trg) includes translations for OCL expressions such as select(exp), union(exp), re-
ject(exp), intersect(exp), collect(exp) and alllnstances().

Table 2.1: Excerpt of OCL translation where T'(...) indicates a recursive call of the
translation

OCL constraint (snippet) Graph pattern (snippet)

context T inv: V
v:T
v.b {op) ¢ b {opy ¢

v.role HWILT’,
{navy->exists(v | {expr)) 3(,T(<ncw>) A T (lexpr)))
{navy->forall(v | {expr)) V(,T((ncw>) = T'({expr)))
{(navl)->union({nav2)) T((navly) v T({(nav2))

{navy->size() >= n 3 ( , /\?:1 T ((nav(v;))))

Table 2.1 points out the translation of the main constructs. The translation pro-
cess works recursively along with the abstract syntax structure of OCL expressions.
Classes and their attributes are translated to nodes of their respective types, the nav-
igation expressions to edges. Logical operators are translated to their counterparts.
Sets are the only kind of collections this translation process can handle. The most
important idea for translating set expressions is as follows: A single node can be
matched by any object of a set; by further nesting of the condition, this matching
can be restricted in such a way that exactly the nodes of the defined set do match:
Set operations are translated with their characteristic functions in mind. The whole
specification of the translations can be found in Radke [112].

2.7 The Calculus of Application Conditions

Given a transformation rule r and a graph constraint ¢, a constraint-guaranteeing
application condition of this rule with respect to the constraint always exists and can
be calculated explicitly [55].

The calculation is done in two steps: First, ¢ is integrated into r as right application
condition in such a way that r is applicable if and only if the result satisfies the
constraint. This procedure is called shifting (as it is formalized as a shift of the
constraint along a morphism). The main idea is to consider all possible ways in which
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c could be satisfied after the rule application. This is done by overlapping the elements
of the RHS of the rule r» with each graph of ¢ in every possible way. This overlapping
is done iteratively along with the nesting structure of c¢. Since for each graph of ¢ there
may exist several different ways to overlap with the RHS of the rule, the resulting
right application condition rac can consist of considerably more graphs. However, the
structure of ¢ is preserved. The result of this calculation is yet impractical as one
would need to first apply the rule r» and then check the right application condition to
be fulfilled. Therefore, the second step is needed in which we construct an equivalent
left application condition from the originated right application condition rac. The
idea behind this construction is to apply the rule reversely to the constraint ¢, again
along with the nesting structure. If the inverse rule of r is applicable, the resulting
condition is the new left application condition ac. If not, r gets equipped with the
application condition false, as it is not possible to apply r at any instance without
violating c. The rule r with its new application condition ac has the property that it is
applicable at a chosen match if and only if the resulting instance fulfills the integrated
constraint ¢ (and the rule without application condition was applicable at all). It is
interesting to note that this procedure calculates a graph condition, i.e., a property
that each rule match has to satisfy, in contrast to a graph constraint, i.e., a property
an instance graph has to satisfy. Moreover, this procedure calculates a so-called c-
guaranteeing application condition, i.e., an application condition that ensures that
the original constraint is satisfied after rule application. However, the information
that the rule will only be applied in situations where the constraint ¢ already holds,
i.e., where the constraint only needs to be preserved and not guaranteed, frequently
allows for way simpler conditions. Adding the premise that the constraint was already
valid before rule application yields the preserving application condition. We elaborate
on this in Chapter 6.

Fact 1 (Habel and Pennemann [55]). Given a plain rule p = (L <« K — R) and
a graph constraint ¢ there are constructions Gua(p, ¢) and Pres(p, ¢) equipping p with
an application condition ac such that H k& c for every transformation G' = gya(p,c) H
and H k= c for every transformation G = pyes(p,) H where G = c.
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Part 1

Consistency Ensuring Techniques for Software
Models

Models are usually developed incrementally, from different perspectives, and at different
times. Thus, inconsistencies can easily occur due to misunderstandings and lack of
information. For example, edit operations may temporarily create an inconsistent model
that must eventually be handled. Automatically resolving inconsistencies and additionally
allowing user interactions during the repair process is promising to increase productivity
and improve the quality of software development.

Moreover, constructing a large and diverse set of models are needed in various appli-
cation scenarios like testing and validating the suitability of MDE technologies to deal with
large input models.

In this part, we present two works: model repair (see Chapter 3) and model genera-
tion (see Chapter 4). Our developed techniques construct consistent models of a given
meta-model not only automatically but also interactively. The construction can also
start at a seed model being potentially inconsistent. The techniques are meta-model
agnostic, i.e., they can deal with any domain meta-model and its instances. We present
meta-specifications to specialize them in a given DSML and develop meta-tools (Meta2RR
and Meta2GR) to build the corresponding DSML tools (model repair and generation)
automatically. They are designed to be compatible with the Eclipse Modeling Framework
(EMF), which is an implementation of the OMG standard specification in practice.

We present and discuss the soundness of our techniques, develop them as ready-to-
use tools, show their scalability and characteristics, and discuss the related work as
well.
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Rule-based Repair of EMF Models

This chapter shares material with the ICMT 17 paper “Rule-Based Repair of EMF
Models: An Automated Interactive Approach” Nassar et al.[93] and the GCM’17 paper
“Rule-based Repair of EMF Models: Formalization and Correctness Proof” Nassar et
al.[92].

Managing and resolving inconsistencies in models is crucial in model-driven engineer-
ing (MDE). One form of inconsistency resolution is model repair. In this work, we
consider models that are based on the Eclipse Modeling Framework (EMF). We pro-
pose a rule-based approach to support the modeler in automatically trimming and
completing EMF models and thereby resolving their cardinality violations. Although
being under repair, the model may be viewed and changed interactively during this
repair process. Different kinds of repair rules are designed. Based on the theory of
graph transformation, we use transformation rules to declare different repair actions
executed during the particular steps of the algorithm. This formal background is
used to reason for the correctness of the algorithm and to present conditions under
which it always terminates. Possible adaptions of and more general use cases for the
algorithm such as supporting a set of OCL constraints are discussed. A meta-tool
(Meta2RR) for automatically customizing the approach to a given meta-model and a
DSML tool (EMF Model Repair) for repairing EMF models automatically or interac-
tively are developed based on EMF and the model transformation language Henshin.
Additionally, the approach is systematically tested and its scalability of repairing a
large number of violations is reported.

3.1 Introduction

Model-driven engineering (MDE) has become increasingly popular in various engineer-
ing disciplines and has been accepted as a best practice in many application domains
such as automotive and aerospace domains [77]. Domain-specific modeling languages
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(DSMLs) promise to increase the productivity and quality of software developments.
In MDE, models are the primary artifacts, whereas model transformations are the
key operations for model manipulation.

Although model editors are mostly adapted to their underlying DSML, they usually
allow editing inconsistent models. The violation of lower and upper bounds and fur-
ther constraints requiring the existence of model patterns is usually tolerated during
editing. This means that model editors often use a relaxed meta-model with fewer
constraints than the original language meta-model [66]. The result of an editing
process may be an inconsistent model that has to be repaired.

There are a number of model repair approaches in the literature which, however, are
either purely interactive or fully automated. Syntactic and rule-based approaches
such as [95, 94, 38] usually offer repair rules or repair plans that may be interactively
selected. It is up to the user to find a way to a consistent model if there is any. On
the contrary, search-based approaches as e.g., [129, 2, 59, 78] run fully automatically
yielding consistent models if possible. The resulting model of a search-based repair
process, however, might not always be the desired one.

We intend to integrate automatic model repair as seamlessly as possible into the
editing process allowing user interaction during the repair. Our approach does not
leave the resolution strategy completely to the modeler as in pure rule-based ap-
proaches. Instead, it is an automatic and semi-interactive approach that guides the
modeler to repair the whole model and thereby yields a meaningful, consistent model.
Our approach is designed to repairs models in two modes: (a) randomly, i.e., fully
automatically without user interactions, or (b) semi-automatically, i.e., guiding the
modeler to repair the whole model by resolving all the cardinalities violations and
thus all inconsistencies are resolved. The modeler can make decisions from the sug-
gested repair options (if possible) during the repair process. Furthermore, the repair
process can be stopped and the resulting intermediate model is an EMF model which
can be, e.g., displayed by the model editor.

In this work, we consider modeling languages being defined by meta-models based
on the Eclipse Modeling Framework (EMF). EMF has evolved to a de-facto standard
technology for defining models and modeling languages [135]. We present an approach
to model repair that consists of two main tasks, as shown in Figure 3.1:

1. The meta-model of a given language is translated into a rule-based model trans-
formation system containing repair rules that specify different repair actions.
These derived repair actions are used to configure a rule-based algorithm devel-
oped for repairing models. The domain developer is responsible for performing
this task.

2. A potentially inconsistent model is fully repaired in an automated and inter-
active manner using the generated transformation system which configures the
model repair tool according to the given language. An ordered list of rules’ ap-
plications being used to repair the model is reported as a second output. This
task is performed by the modeler using the model repair tool.
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Figure 3.1: Our approach for model repair

The contributions of this work are the following:

. A rule-based algorithm for model repair and a catalog of different repair rules.
. Meta-specifications for deriving the proper rules from any given meta-model.

. The approach is formalized using the theory of algebraic graph transformation,
and its soundness is presented: Two theorems state under which conditions
the algorithm terminates and yields consistent models. Two corollaries present
explicitly further features, namely, the hippocraticness of algorithm and the
validity of the output.

. An Eclipse-based tool (a meta-tool), called Meta2RR, is developed. The domain
developer uses this tool to automate the derivation of the model transformation
repair system from any given meta-model, i.e., to generate the domain-specific
repair technique.

. A model repair tool (a DSML tool), called EMF Model Repair, is developed as
an Eclipse plug-in. It uses the generated domain-specific repair technique. Fur-
thermore, the repair process can be stopped anytime, and the resulting models
are EMF models. The application modeler uses this tool to repair EMF models
randomly (fully automatically) or semi-automatically (interactively).

. The algorithm is systematically tested concerning correctness, and a scalability
experiment is reported. Possible adaptions of the algorithm and its usefulness
in more general cases such as supporting a set of OCL constraints are discussed.
The related work is presented as well.
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In Section 3.3, we present our rule-based repair algorithm, apply it at an example, and
give an overview of how a meta-model is translated into a rule-based transformation
system with the help of meta-patterns. Additionally, we present and discuss the
design of the different kinds of repair rules and transformation units. In Section 3.4.4,
the algorithm is formalized and represented with the help of Hoare triples and graph
automaton, and its correctness is shown. The developed Eclipse-based tools with their
features are shortly presented in Section 3.5. Additionally, we present the correctness
test of the technique. In Section 3.6, we report about the scalability experiments.
After that, we discuss our approach in more general settings, e.g., supporting OCL
constraints in Section 3.7. An overview of related work is given in Section 3.8 while
Section 3.9 concludes the work and provides an overview of the future work.

3.2 Running Example

The running example is a simple Webpage modeling language for specifying a specific
kind of web pages. We present the underlying meta-model first and show an invalid
(inconsistent) Webpage model in its abstract syntax representation. Thereafter, we
discuss briefly how this model is repaired such that it becomes fully consistent.

[1..*] navbars 2 NavBar [1..*] anchors 2 Anchor
= color : EString = pink < label : EString = morelnfo

“ Layout
- ToP

[1..1] header 2 Header

o title : EString

= BUTTOM

B WebPage = color : EString = white [0.*] subSections [0.] linked [0.1] eanchor - LEFT
< name : EString = page [1.1] target - N - F:LGLTT
5 Body [0.] sections g Section [2.#] elements | E DisplayElement

[1.1] body = color - estring - white - B N —
S location : Layout = FULL X

[0..2] footers

- g & TextBox
oo 0.1 1abels [ E ryperionel |, 0.1 BR[| ETereoc |
= label : EString ' text: EString = label [0“1] active  url : EString = border : Eint = 1

= color : EString = gray

= name : EString
@ size : Eint = 10
S src: EString = homepath

Figure 3.2: Webpage meta-model

Our Webpage modeling language is defined by the meta-model shown in Figure 3.2;
its purpose is to generate web pages, e.g., in PHP. The meta-model elements are
explained from left to right: Each web page has a name which requires a value (being
page by default). A web page contains a Header, up to two Footers, and a Body. A
header includes at least one navigator bar NavBar which contains at least one Anchor.
A header has a title and a color (being white by default), whereas a navigator bar has a
color (being pink by default). A body has a color (being white by default) and includes
an arbitrary number of Sections. A section has a location (being Full by default)
and may contain subsections. A section is designed to contain at least two arbitrary
DisplayElements of type Image or a TextBox. A text box has a text (being Description
by default) and a border (being 1 by default), whereas an image has a name, a size
(being 10 by default) and a src which requires a value (being homepath by default).
Each display element may contain an Anchor. An anchor has a label which requires
a value (being morelnfo by default) and must be connected to one display element. A
web page must not contain more than two Footers. A footer has a label and a color
(being gray by default); it may include an arbitrary number of HyperLabels. A hyper
label has a text which requires a value (being label by default) and may contain one
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URL. A url node has a name and a url which requires a value. A hyper label may be
connected to one url node. Note that the lower- and upper-bound invariants of several
edge types are restricted just for presenting the power of our developed algorithm.

Figure 3.3 presents the corresponding abstract syntax representation of an invalid
Webpage model repaired to a valid (consistent) one. The solid-line elements represent
the invalid web page model. It consists of a blue header containing a pink navigator
bar and three footers: footer Appointment contains a hyper label with text calendar
including a url node with name calurl and a url attribute with empty value; the label
calendar is activated. Footer Address contains a hyper label with text floor 2, and
footer Location contains a hyper label with text label? including a url node with name
url3 and a url attribute with empty value. The label label3 is activated.

s N d N\
:‘WebPage ) :header ‘Header :navbars[ :NavBar
title=Profile .
. : :footers = =
|@_footer5 | :footers | | name pageX) callerliie color=pink
( @:Footer } ( :Footer \( :Footer \ ! 1
label=Location label=Address | | label=Appointment 1 ‘body 0 “lmage _\] -anchors|
color=gray color=gray color=gray ~ TBody ) :elements; name=img | 1.1
~ I:Iabels [ _Body =771 ize=10 " Anchor
@:labels ‘labels pry—r— ( color=white 142 ¢ - Lsrc:homepathjl ’—<
[ @:HyperLabel ‘HyperLabel SEVREITAUe —F— " ( Section _——— \Jabel=moreinfo;
text=label3 text=calendar T \ocat'\on:FULLj 1 11 IHinked
@ZUI" active wurl active secions N _’_ N { TextBox \ .
:URL | .] — :targetJ
— — — ~text=Description| — —
name=calur/ elements | g
nam;e=url3 url="“->myurt \— E E—_ _]
url="« R

A valid web page model

Figure 3.3: The abstract syntax of the invalid Webpage being repaired

To repair this invalid Webpage model, it is first trimmed and then completed: Since
there are too many footers, one Footer-node, and its children have to be deleted. The
selection of the footer can be done automatically in a non-deterministic way or deter-
mined by the user. We select the footer annotated with @. Then, the trimmed web
page still contains all solid-line elements shown in Figure 3.3 without those annotated
with @. To complete this Webpage model, at least the following missing elements
(represented as dashed elements in Figure 3.3) have to be created: A Body-node and
an Anchor-node are needed to fulfill the lower bounds of containment types body and
anchors, respectively. An edge of type target-linked is needed to fulfill the lower bound
of non-containment type target. Therefore, a Section-node containing two nodes of
type DisplayFElement (e.g., an image and a text box) are demanded to fulfill the lower
bounds of containment type elements and non-containment type target. The url-
attribute value of the URL-node calurl has to be set (to, e.g., myurl). The user may
give suitable information during completion such as the types of DisplayElements as
well as attribute values of new elements.

3.3 Rule-based Model Repair

Our approach to model repair consists of two main processes:
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1. Translation: The meta-model of a given language is translated into a rule-based
model transformation system (repair rules). The domain developer uses the
translation to provide a domain-specific model repair technique.

2. Model repair: A potentially invalid (inconsistent) model is repaired yielding a
valid (consistent) model. The repair algorithm is automatically configured to
use the generated transformation system. The application modeler uses the
repair tool to repair application models.

We start with process (2) presenting our repair algorithm in general and at an exam-
ple. After that, we show how to translate a meta-model to a rule-based transformation
system using several meta-patterns. The meta-patterns describe different repair rules,
their schemes, and when they have to be generated. Furthermore, we represent the
algorithm as transformation units.

3.3.1 A Rule-based Algorithm for Model Repair

As a pre-requisite for our approach to rule-based model repair, there is an instan-
tiable meta-model without OCL constraints. Given a potentially invalid (inconsistent)
model, i.e., a model over the given meta-model that may not fulfill all its multiplic-
ities, our repair algorithm is able to produce a valid (consistent) one. The repair
process is automatic but may be interrupted and interactively guided by the modeler.

The activity diagram in Figure 3.4 illustrates the overall control flow of our algorithm,
which consists of two main parts:

o The left part performs model trimming eliminating supernumerous model ele-
ments.

e The right part performs model completion adding required model elements.

Model trimming: Step (a) in Figure 3.4 removes all supernumerous edges, i.e.,
edges that exceed the upper-bound invariants of each non-containment edge type.
Step (b) checks if there is a supernumerous node, i.e., a node which exceeds the
upper-bound invariants of a containment edge type. If there is none, the model is
ready to be completed (Step (e)). Otherwise, this node and its content have to be
deleted; this is done in Step (c). It deletes all the incoming and outgoing edges of
this node and its content nodes, and then deletes the content nodes in a bottom-up
way (Step (cl)); thereafter, it deletes the node itself (Step (c2)). This bottom-up
deletion process starts at all the leaves and continues with their containers. Step (d)
calls again Step (b) to check if there is another supernumerous node.

Model completion: Once there is no further supernumerous element in the input
model, the model can be completed: Step (1) creates all missing required nodes, i.e.,
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Figure 3.4: Model trimming and completion algorithm

nodes that are needed to fulfill the lower-bound invariant of each containment edge
type. Thereafter, we have a skeleton model that contains at least all the required
nodes. It may contain additional nodes and edges which have been in the model
before.

At this stage, the model may have nodes which are not correlated by required edges.
Step (2) tries to insert all missing required edges by connecting the existing cor-
related nodes. These edges are needed to fulfill the lower-bound invariant of each
non-containment edge type. This step may stop without having inserted all required
edges due to potentially missing correlated nodes, i.e., it may happen that there is no
further free node to correlate with.

Step (3) checks the validity of all required non-containment edge types. If all the
required edges are already inserted, then we have a valid model w.r.t. all multiplic-
ities of edge types. This also means that all the required nodes have been created.
Otherwise, there is still at least one required edge missing.

In this situation, Step (4) tries to add one missing node to fulfill the lower bound of
a non-containment edge type. Although the number of missing nodes may be more
than one, only one missing node is added in Step (4). If a missing node cannot be
created directly, a (transitive) container node of a missing one is created. The added
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node may function as, e.g., target node for missing required edges. Hence, it may
help to solve other inconsistencies in the model. The design decision of adding just
one node in Step (4) helps to find a small completion.

Note that the type of a missing node may have several subtypes. In this case, there
may be several possibilities to create a missing node choosing one of these subtypes. A
further variation point is node types with several containers. This non-determinism
may be solved by the user interaction or automatically by randomly picking one.
Thereafter, the next iteration of model completion starts with Step (5). Adding a
node to the model may require adding further required nodes and edges. Starting a
new iteration ensures that all those model elements are generated and that all missing
nodes and edges will be created in the end. Once the instance model is valid w.r.t.
edge type multiplicities, the values of all the empty required attributes are set in Step
(6). In Step (7), the algorithm stops.

An Example Repair Process

We illustrate our algorithm by applying it to the invalid Webpage model in Figure 3.3.
The invalid model is first trimmed and then completed. This process is described
below and illustrated in Figure 3.3. The annotations at the model elements refer to
the corresponding iteration and step numbers.

Model trimming: Since the model does not have supernumerous edges, we go
directly to Step (b). Here, a supernumerous Footer-node is found. Assuming that the
Footer-node location is selected for deletion. In Step (c1), the edge active is removed
between the nodes label3 and url3. Then, node url? itself is deleted. Thereafter, node
label3 can be deleted. Finally, Step (c2) deletes the selected Footer-node Location.
Step (d) calls again Step (b) but there is no further supernumerous node. Hence, the
process of model trimming is finished and the output model is ready to be completed

(Step (e))-

Model completion: Completion is done in two iterations:

Iteration I: In Step (1), an Anchor-node and a Body-node are created to fulfill
the lower-bound invariants of containment types anchors and body. In Step (2), a
target-edge from the created Anchor-node is required but cannot be inserted. (3)
The required non-containment edge type target has not been fulfilled yet. I.e., the
node of type Anchor has to be connected to a node of type DisplayFElement but there
is none. Step (4.1) tries to create the missing correlated node directly: The creation of
a DisplayFElement-node fails since there is no available Section-node (used as container
node). Consequently, Step (4.2) is required which creates a Section-node inside of the
existing Body-node. In Step (5), the completion is continued. IL.e., a second iteration
is required.
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Iteration II: In Step (1), two DisplayElement-nodes are created inside of the Section-
node to fulfill the lower-bound invariant of the containment type elements. As an
example, a node of type TextBox and a node of type Image are created. In Step (2),
a non-containment edge of type target is inserted between the existing Anchor-node
and one of the existing nodes of type DisplayElement, e.g., the TextBoz-node. Step
(3) finds out that all the required non-containment edge types are available now. In
Step (6) all remaining values for the all required attributes are set. Here, the url-
attribute value of the URL-node calurl is set to myurl. A valid instance model is
produced now (Step (7)).

3.3.2 Deriving a Model Transformation Repair System from a
Meta-Model

A pre-requisite of our repair algorithm is the existence of a model transformation
system which configures the algorithm w.r.t. a given modeling language. The algo-
rithm is configured with different sets of repair rules in a way that at any point of the
algorithm where choices have to be made, they can be random, or interactive. This
applies to choices of rules (repair actions), matches (model locations or targets), and
attribute values. In other words, identifying the applicable rules and their matches
aim at finding the proper repair actions and matches w.r.t the algorithm steps and
the given model state. For example, Step 1 uses a kind of rules which creates a node
with its containment edge in an existing node if the lower bound of its containment
type is not yet reached. Step 1 executes the rules as much as possible and stops once
there is no applicable rule. At this end, all the required nodes with all their required
child nodes are created. Please note that the different kinds of repair rules are defined
to be generic in the sense that they can be used to manage (fulfill) any lower or upper
bound. Additionally, they consider the EMF model constraints. In other words, each
successful application of a rule enhances (or at least preserves) the model consistency.

In the following, we present the different kinds of repair rules. Since these rules have
to be derived from each given meta-model, we present their meta-patterns and how
to derive them. Thereafter, we present the algorithm steps as transformation units
being configured with the derived repair rules.

Repair Rules, their Meta-Patterns, and their Design

This section presents the design of different kinds of repair rules used to configure
the algorithm steps. Since the number, the type and the design of these kinds of
rules should be defined for each given meta-model, we provide the specifications of
their meta-patterns. Based on [14], the schemes of the repair rules are designed
to consider the EMF constraints, e.g., rules which insert edges are enhanced with
application conditions to prevent the creation of parallel edges. However, not all
the EMF constraints can be considered as graph application conditions such as the
constraints no-containment-cycle and rootedness (non first-order logic), we, therefore,
made the following design decisions:
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e The rules do not insert containment edges between existing nodes to avoid the
creation of containment cycles.

e The rules add a node with its incoming containment edge in an existing node to
prevent producing more than one root, to build the tree-structure of the model
and to not violate the constraint at-most-one-container. Furthermore, there is
no rule which creates a free node, i.e., a node without an incoming containment
edge.

e The algorithm deletes a node and its content in a bottom-up way to avoid
violating the dangling condition.

e We require that the rules are executed at injactive matches only. Moreover, no
rule will be executed if its application could violate the dangling condition.

Additionally, the application conditions of the rules are designed to be generic in the
sense that the derived rule sets can be used to manage (fulfill) any lower or upper
bounds. In other words, the different kinds of repair rules and their generic application
conditions are designed to enhance the consistency of any given instance models w.r.t.
multiplicities and to preserve the EMF constraints as well. Fach successful application
of a rule enhances (or at least preserves) the model consistency and avoids violating
other constraints, namely, the upper bounds and the EMF constraints.

Table 3.1 gives an overview over the different kinds of rules and in which algorithm
steps are used. Each algorithm step is configured with the proper kinds of rules, e.g.,
Step (1) is configured with the rules of kind Required-node-creation. In the following,
we present a selection of the meta-patterns for deriving different kinds of rules for a
given meta-model. All further rules kinds and their meta patterns with examples can
be found as a catalog in Section A.1. Note, once a node is created in an EMF instance
model, the node attributes with their default values are created as well. Thus, no
need to specify them.

Our rules can also be used for different purposes, such as model editing. Recently,
the catalog of the rules is already used for generating search operators in the field of
search-based model engineering as presented in [22, 23].

e Set of required-node-creation rules: For each containment type with lower
bound > 0, a rule is derived which creates a node with its containment edge
if the lower-bound invariant of the corresponding containment type is not yet
reached. The container is determined by the input parameter p. The user gets
the possibility to select the right container. Otherwise, it is selected randomly
by the algorithm. Figure 3.5 illustrates the rule scheme used to derive this kind
of rules. Note that for each non-abstract class type B’ in clan(B) such a rule is
derived.

Figure 3.6 presents an example rule; it creates a required Body-node being
contained in a WebPage-node if there is not already a Body-node contained.
This concrete rule is created with the help of the information of the domain
match, namely the one presented in Figure 3.19.
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Table 3.1: Kinds of rules

Kind of the rule

Description

Required-node-creation

Required-edge-insertion

Required-edge-checking
Additional-node-creation
Exceeding-edge-removing
Exceeding-node-finding
Node-content-deleting

Element-deleting

Create a node with its containment edge if the lower bound
of its containment type is not yet reached (Step (1))

Insert a non-containment edge if the lower bound of the
corresponding non-containment type is not yet reached and
there is no parallel edge (Step (2))

Check if a required non-containment edge is missing
(Step (3))

Add a node with its containment edge if the upper bound
of its containment type is not yet reached (Step (4))
Remove a non-containment edge if the upper bound of the
corresponding non-containment type is exceeded (Step (a))
Find a node that exceeds the upper bound of the corre-
sponding containment type (Step (b))

Delete a (transitively) contained leaf node with its contain-
ment edge from a given node (Step (c))

Delete a given element (i.e., a non-containment edge or a
leaf node with its containment edge) directly (Step (c))

Meta Pattern Rule Negative Application Condition
A p:A p:A
opri 1 opr
opr opr
—>
_____ m-
con [m..n con con con
B :B’ :B :B
with m>0 CreatingRequiredNode(p) NACm

Figure 3.5: Rule scheme for creating a required B-node

=* Rule create_RequiredNode_Body._in_WebPage(container)

«preserve» body |«create»
container:WebPage :Body
«create»

\body

«forbid#lowerBoundNotReached»
:Body

«forbid#lowerBoundNotReached»

Figure 3.6: An example rule for creating a required Body-node

e Set of required-edge-insertion rules: For each non-containment edge type
with one of its lower bounds m or k being > 0, a rule is generated which inserts
a corresponding edge if the composite application condition NAC at the bottom



of Figure 3.7 is satisfied. Condition NACp forbids to insert an edge between
two nodes if there is already one of that type. Conditions NACm and NACI
check if lower bound m has not been reached and the upper bound [ has not
been exceeded. Then, an edge has to be inserted between the given nodes and
this is possible. Similarly, conditions NACk and NACn may be fulfilled; i.e.,
the lower bound k has not been reached and the upper bound n has not been
exceeded. Note, the NAC in Figure 3.7 is generated in case that there is an
opposite non-containment edge type and 0 < k,l,m,n < #. For all other cases
the NAC is adapted correspondingly.

Meta Pattern Rule Negative Application Condition
A |p1:A| |p1:A||p1:A||p1:A| |p1:A||:A||:A||:A||:A|
opr | k.| opr opr opr k7 O opr\./ opr
" : ref ref ref f-m-\ref ref "N\ ref
rei m..n
B |p2:B| |p2:B||p2:B|:B||:B| :B||:B||p2:B|
with m>0 NACp NACm NACn NACk NACI
or k>0

InsertingRequiredEdge(p1,p2) | NAC = NACp and ((NACm and NACI) or (NACn and NACk)) |

Figure 3.7: Rule scheme for inserting a required non-containment edge

In our example, there is only one required edge type which is the required
opposite non-containment type target. Figure 3.8 presents the derived rule for
inserting an edge of type target between two existing nodes: from an Anchor-
node to a DisplayElement-node assuming that the source node is not already
connected to a node of type DisplayFElement by a target-edge. The opposite
linked-edge is automatically inserted in EMF as well.

[:} Rule insert_RequiredEdge_Anchor_to_DisplayElement(source, target) ]
«forbid#B» target «preserver «forbid#A» target «preserver
:DisplayElement source:Anchor target:DisplayElement

«forbid#B» «Create» target

Figure 3.8: A rule for inserting a required non-containment edge of type target

e Set of required-edge-checking rules: This rule scheme checks if a required
edge is missing. If a rule of this scheme can be successfully applied, there is at
least one missing required edge. Such a rule scheme is generated for each non-
containment edge type with m > 0. This meta-pattern, as well as the resulting
rule scheme are shown in Figure 3.9. If the required non-containment edge type
is a loop, another rule scheme is derived (see Sections A.1 and A.2).

Figure 3.10 presents the rule which checks if a given Anchor-node is connected
to a node of type DisplayElement by a target-edge. If this rule is applicable to
a given instance model, there is a missing required edge of type target.

¢ Set of additional-node-creation rules: For each containment type of the
given meta-model, a rule is generated which creates one node if the upper-
bound of its containment type is mot exceeded. These rules are used to add
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Meta Pattern Rule Negative Application Condition

[~ ]

[ oA |=> ea | /
ref | m.n ref ref
B | ‘B || :B |
with m>0 CheckingRequiredEdge(p) NACm

Figure 3.9: Rule scheme for checking the existence of required non-containment

edges

[é Rule check_RequiredEdge_Anchor_to_DisplayElement(source) ]

«preserve» target «forbid#LowerBoundNotFulfilled»
source:Anchor —aE :DisplayElement

«forbid#LowerBoundNotFulfilled»

Figure 3.10: A rule for checking the existence of a required edge of type target

nodes without violating upper-bound invariants. Note that, if the upper-bound
invariant is specified as unlimited (i.e, n = =), the corresponding application
condition is not generated. Figure 3.11 shows the meta- pattern as well as the
resulting rule scheme for creating a node of type B being contained in an A-
node. This rule scheme can be applied if NACh is satisfied, i.e., if there are not
n B-nodes already contained in this A-node.

Meta Pattern Rule Negative Application Condition
L oa | [ oa |
opr opr opr
= | | e -
con con con
L || s J[ s |
CreatingAdditionalNode(p) NACn

Figure 3.11: Rule scheme for creating an additional B-node

Figure 3.12 presents a rule for creating a Footer-node being contained in a
WebPage-node if there are not already two Footer-nodes in the WebPage-node.
This rule is derived due to edge type footers. Similar rules have to be derived
for edge types header, body, navbars, sections, subSections, elements, eanchor,
footers, labels, and url.

Set of exceeding-edge-removing rules: For each non-containment type with
a limited upper bound of the given meta-model, a rule is generated which re-



= Rule create_AdditionalNode_Footer in_ WebPage(container)

«forbid#upperBoundNotReached»| footers |«preserve» footers |«create»
:Footer container:WebPage :Footer
«create»

[

«forbid#upperBoundNotReached»

«forbid#upperBoundNotReached»

footers
:Footer

«forbid#upperBoundNotReached»

Figure 3.12: A rule for creating an additional node of type Footer

moves one edge if the upper-bound of its non-containment type is exceeded.

The rule scheme in Figure 3.13 removes an edge between an A-node and a B-
node if the PAC is true, i.e., if there are n+1 ref-edges running from this A-node
to other B-nodes in the model (Cn+1) or if there are [+1 opr-edges running
from this B-node to other A-nodes in the model (Cl+1). Figure 3.14 presents
the derived rule for removing an active-edge between two existing nodes: from
a HyperLabel-node to a URL-node assuming that the source node is already
connected to an URL-node (including the uri-edge) by an active-edge.

Meta Pattern Rule Application Condition
A | pl:A | | pl:A | | pl:A | | A | | A |
opr | k.l opr
=> N+l
ref | m.n ref ref ref
B | p2:B | | p2:B | | B | | B | | p2:B |
With
n>0 and n!=* Cn+l Cl+1
or
|>0 and |1=* RemovingExceedingEdge(p1,p2) |PAC=Cn+1 or Cl+1 |

Figure 3.13: Rule scheme for removing an exceeding edge

|$ Rule remove_ExceedingEdge_HyperLabel_to_URL(source, target) |

«require#upperBoundIsReached»| active |«preserve» active «preserve»
:URL source:HyperLabel target:URL
«delete»

«require#upperBoundIsReached»

Figure 3.14: A rule for removing a supernumerous target-edge

Set of target-node-deleting rules: For each containment type of a given
meta-model, this rule scheme deletes a given node from its container. The meta-
pattern as well as the resulting rule scheme are shown in Figure 3.15. Each rule
is configured with a parameter to delete the given node if possible, i.e., once the
given node has no contents and no non-containment edges. Figure 3.16 presents
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the rule for deleting the Footer-node (given as an input parameter) from a
WebPage-node.

Meta Pattern Rule

con

deletingTargetNode(input)

Figure 3.15: Rule scheme for deleting a given node

[@ Rule delete_TargetNode_Footer_in_WebPage(targetContent) ]

«preserve»
:‘WebPage |

footers «delete»
targetContent:Footer

«delete»

Figure 3.16: A rule for deleting a given Footer-node

The algorithm which is being configured with the rule sets not only aims at identifying
and repairing the bound violations but also aims at repairing the model (deleting
and constructing model elements) in a consistency-preserving way. Le., the resulting
model satisfies not only the bounds but also the other EMF constraints (Def. 5).
Thus, the model editor, e.g., can open the resulting model at any time.

The Process of Rule Derivation

To derive the repair rules from any given domain meta-model, we follow the following
process as depicted in Figure 3.17:

1. Specifying the meta-patterns as rules typed by the Ecore meta-metamodel.

2. Applying them to the given domain meta-model to retrieve the corresponding
rule matches (if exists).

3. Using the domain data of the rule matches and the rule scheme of the corre-
sponding meta-pattern, we specify and derive (repair) rules which can be applied
to instance models of the given domain.



Ecore Meta-Metamodel
Ityped by

Meta-Patterns
(specified as rules)

Meta-Model
(domain) ‘ ‘

Rule Matches ‘J

(domain data)

U

Rules’ Schemes
(of different kinds of repair rules)

Concrete Repair Rules
(specified for dealing with the domain instance models)

Figure 3.17: The derivation process of rules

Figure 3.18 shows the meta-pattern rules typed by the Ecore meta-metamodel rep-
resenting the meta-pattern depicted in Figure 3.5. The meta-pattern rules findChil-
drenNodesl and findChildrenNodes2 are specified to find the non-abstract children
types (supporting inheritance) of a container type if the lower bound of the contain-
ment edge type that connects the container type with the content type is >= 1.

Figure 3.19 shows an example of a match resulting from applying the meta-pattern
rule findChildrenNodesI to the Webpage meta-model. The match consists of a node
type Webpage which is connected using a containment edge type body to a node type
Body. The lower bound of the containment edge type body is 1. Using the rule scheme
depicted in Figure 3.5, the concrete repair rule for creating a required Body-node is
generated as depicted in Figure 3.6.



= Rule findChildrenNodes1(container, containment, lower, content)

«preserve» eStructuralFeatures ~ |“Preserve»
containerEClass containment:EReference
«preserve» = lowerBound=Ilower
= containment=true

eReferenceType «preserve>»

«preserve»
content:EClass
= abstract=false
= interface=false

" Condition lowerBoundSet
lower >=1

= Rule findChildrenNodes2(container, containment, lower, content)

«preserve»
containment:EReference
= lowerBound=lower

= containment=true

«preserve»
container:EClass

eStructuralFeatures

«preserve»

" Condition lowerBoundSet

lower >=1 eReferenceType «preserve»
SRl eAllSuperTypes «preserve»
content:EClass “EClass

= abstract=false «preserve»

= interface=false

Figure 3.18: Example of meta-patterns specified as rules typed by the Ecore meta-
metamodel

H webPage H Body
[1..1] body

Figure 3.19: An example of a match of the meta-pattern shown in Figure 3.18
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Algorithm Steps as Transformation Units

This section presents algorithm steps as unit transformations being configured with
the proper set of the derived repair rules. For the representation purpose we use
Henshin transformation units. Henshin is a language and tool environment for EMF
model transformation [3].

In the following, we present the specifications of some steps. More details about the
specification of the algorithm can be found in Section A.3.

Several algorithm steps such as Step (a), Step (1) and Step (2) have to be applied
as much as possible in a non-deterministic way. This is specified using a loop unit
composing an independent unit being configured with the proper rules. We call such
specification as a layer unit. For example, Step (a) of model trimming is speci-
fied using a loop unit Remove_All_EzceedingEdges composing an independent unit
Remove_One_FExceedingEdge being configured with the rules of kind ezceeding-edge-
removing as shown in Figure 3.20. The loop unit will be applied as often as its
independent unit is applicable, and the independent unit is applicable if at least one
of its rules is applicable. Since an exceeding-edge-removing rule is designed to be
applicable if and only if there is an exceeding edge, executing this layer unit ensures
that all the exceeding edges will be removed.

|® LoopUnit Remove_All_ExceedingEdges |

Q_'[ Remove_One_ExceedingEdge ]

Figure 3.20: Layer transformation unit for Step (a)

Another example, we present the Step (4) of model completion, which is specified
with the help of the following transformation units, as shown in Figure 3.21.

5 ConditionalUnit Is_RequiredEdge_E_to_Node_N_Missing 2 PriorityUnit Add_MissingNode_N

[RequiredEdgeCheckRule E to Node_N(?)] [Add_Node_N_lmmediately ]

-

then

plse [ Add_Container_for_Node_N ]
[ Add_MissingNode_N ]

Figure 3.21: Transformation units for Step (4)
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Figure 3.21 consists of a conditional unit Is_RequiredEdge_E_to_Node_N_Missing which
checks if there is a missing edge of type FE. The if-statement of the conditional unit
is configured with a corresponding rule of kind Required_edge_checking. The check-
ing rule is applicable if and only if there is a missing edge of type E to a node of
type N. In this case, the then-statement is called. Otherwise, the else-statement re-
turns false. The then-statement is specified as a priority unit Add_MissingNode_N
composing two ordered sub-units of kind independent unit: (1) an independent unit
Add_Node_N_immediately. (2) an independent unit Add_Container_for_Node_N. These
two independent units are configured with the corresponding rules of kind Addi-
tional_node_creation. Thus, the priority unit adds a node of type N immediately in
an existing container node without violating the respective upper bound. If it failed,
it adds a container node of a container type for the type N without violating the
respective upper bound. Please note that for each required non-containment edge
type of the meta-model, such transformation units are derived as well.

Summary
In the following, we outline the main activities of the whole process of our approach:

o model elements are trimmed to satisfy the negative constraints, i.e., the upper
bounds,

 the trimmed model is completed to satisfy the positive constraints (the lower
bounds) without violating the negative ones (the upper bounds),

e several kinds of repair rules of different actions and transformation units are
defined to deal with an arbitrary instance model violating possibly the negative
and positive constraints (the lower and upper bounds). They are designed in a
way that each successful application of a rule enhances (or at least preserves)
the consistency of the model,

o the repair rules are designed to preserve the EMF constraints by defining not
only proper application conditions but also algorithms (control flows) to deal
with constraints like the dangling condition and rootedness, and

o rule schemes and meta-patterns are defined to derive the proper repair rules
from any given meta-model and to derive the control flows of the algorithm.

3.4 Formalization

3.4.1 Prerequisite

In this section, we provide several definitions and functions needed to show the sound-
ness of our algorithm and its features, present it using Hoare triples and graph au-
tomaton, and prove its correctness.



Since different degrees of conformity to the EMF constraints are needed, we present
and formalize the following functions and definitions as follows:

¢ No-nonCont-ub-violation: For each node and each type of non-containment
edges the number of outgoing edges of this type is smaller or equal to the upper
bound of this edge type:

Vn e Vg.Ver e NC.
#{e € Eq |typer, (e) = er A sg(e) = n} <uppler) .

¢ No-Cont-lb-violation: Each node has (at least) the required number of out-
going containment edges:

Vn € Vg Ve e C(typey, (n) < sr(c)

= #{e € Eq|typer,(e) =c A sg(e) =n} = low(c))

« nonCont-lb-violation: For (at least) one node an outgoing edge of a certain
non-containment type is missing:

Ine Vg.der e NC’(typeVG (n) < sr(er)
A #{e € Eg |typeg;(e) = er A sg(e) = n} < low(er)) .

¢ Cont-ub-violation: There exists a node with a supernumerous outgoing edges
of a certain containment type:
dn € Vg.3ce C.
#{e € Eq |typer,(e) = ¢ A sg(e) =n} > upp(c) .
o Missing-edge(er): An edge of non-containment type er is missing:
In € Vg (typevy (n) < sp(er) A

#{e € Eq |typep,(€) = er A sa(e) =n} < low(er)) .

o No-target-exists(er): No node of G can serve as target node for a non-
containment edge of type er without violation of upper bounds:

Vne Vg (typevc (n) € tr(er) v (er € OE A

#{e € Eq |typep.(e) =er A tg(e) =n} = upp(e;l))) .

o No-target-creation-possible(er): For an edge of non-containment type er
it is not possible to directly create a node, which can serve as target for an edge
of this type:

Vn € Vg.Ver € C(typevg (n) < srler) A tr(er) < tr(er)
= #{ce Ca|typep,(c) = cr A sa(c) =n} = upp(cr)) -
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Furthermore, we need to introduce two counters: For a given typed graph G the
counter ContUbViol(G) gives the number of upper bound violations of containment
type edges in G, which can be interpreted as the number of surplus nodes, while
nonContLbViol(G) counts the number of lower bound violations of edges of non-
containment type, i.e., the number of missing edges.

When considering EMF-model graphs as instances of a meta-model, one expects them
to be concrete and typically to be rooted. We did not include this in the above
definition to be able to define rules more conveniently. But when repairing an instance,
we suppose the input to be concretely typed and rooted and our aim is to receive such
an EMF-model graph as output since that is common practice in EMF. So, unless
stated otherwise, when talking about EMF-model graphs in the following, we always
assume them to be concrete and rooted; we use EMFC as a shortcut for this.

Definition 8 (Valid EMF-Model Graph (VEMFC)). A concrete and rooted
EMF-model graph G is called walid, short vEMFC, if it additionally satisfies the
No-bound-violation property.

Usually, meta-models are expected to have at least one non-empty finite instance
model or for each non-abstract class of the EMF model one instance which instantiates
this class. Since we are going to avoid deletion during the second part of our developed
algorithm, we need to introduce a stricter notion additionally. The second part of
the algorithm expects instances, which may violate lower, but no upper bounds, to
be capable of being complemented into a valid EMF-model graph (without deletion
of elements):

Definition 9 (Fully Finitely Instantiable). A meta-model is called finitely
satisfiable (f.s.) if there exists a non-empty finite instance. It is called finitely instan-
tiable (f.i.) if for every non-abstract class there exists a finite EMF instance model,
instantiating it. It is called fully finitely instantiable (f.£i.) if it satisfies the property
that for every given finite EMF-model graph G which respects upper, but may violate
lower bounds there exists a finite EMF-model graph G, s.t. G is a subgraph of G'.

By definition the following implications hold: f.f.4. = f.i. = f.s.

Example 1 (Fully finitely instantiable). The meta-model presented in Figure 3.2
is f.f.i.: Since no containment cycle with all lower bounds > 1 exists, the creation of
missing nodes to fulfill all lower bounds of containment type edges will always result in
a finite model. Thereafter, a node of type DisplayElement will always exist so that all
Anchor-nodes can be targeted. More generally, let TG be a type graph without cycles
over containment edges with all lower bounds > 0 and for every node n € (Vr\A) the
upper bound of at least one incoming containment relation is higher than the lower
bound of all non-containment edges for which n can serve as target node. Then TG
is f.£.i. This is particularly the case if all (containment) edges have unlimited upper
bounds.
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Example 2 (Finitely instantiable).  Suppose that the multiplicity of linked
in Figure 3.2 is [1..1], i.e., each DisplayElement is linked by exactly one Anchor which
targets exactly one DisplayElement, the upper bounds of navbars and anchors are
set to, e.g., 2 and the eanchor edge is dropped out. The result is a meta-model which
is f.i., but not f.fi.: One easily creates valid instance models, but invalid instance
models with 5 or more nodes of type DisplayElement, which do not violate any
upper bound, cannot be complemented into a valid instance since maximally 4 nodes
of type Anchor can exist in a valid model and therefore the needed 1linked can never
be inserted.

Example 3 (Not finitely satisfiable). Suppose the containment type edge
subSections in Figure 3.2 to have multiplicity [1..x]. This is a typical example of a
meta-model which is not f.s. or f.i.: The lower bound 1 leads to an infinite chain of
subsections.

3.4.2 Hoare Triple Representation of the Algorithm Steps

In this section, we introduce pre- and postconditions for each algorithm step. We
will present those in a way reminding of Hoare triples [62] which describe how the
execution of the algorithm changes the state of instance models. By

{ PreX, Step(X), PostX)

we assert that, given a graph G satisfying PreX, the execution of Step (X) will lead to
a graph G’ satisfying PostX. Please note that in most steps, the rules are randomly
applied as often as possible and the next step is called as soon as no rule is applicable
anymore. Each rule preserves the model consistency w.r.t. EMF constraints and does
not introduce an EMF violation.

In the following we recall the description of the algorithm steps and present their re-
spective Hoare triples. The pre- and postconditions are formalized using the functions
in Section 3.4 (see Definition 4).

Model trimming: This phase eliminates supernumerous model elements. It con-
sists of the following steps: Step (a) removes all supernumerous edges, i.e., non-
containment edges that exceed the upper bound of their respective type:

(EMFC, Step (a), EMFC A No-nonCont-ub-violation ).

Step (b) checks if there is a supernumerous node, i.e., a node which exceeds the upper
bound of a containment edge:

(Post(a), Step (b), Post(a))

If there is none, the model is ready to be completed (Step (e)). Otherwise, this node
and its content have to be deleted. This is done in Step (c¢). It deletes all the incoming
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and outgoing edges of this node and its content nodes, and then deletes the content
nodes in a bottom-up way (Step (c1)); thereafter, it deletes the node itself (Step (c2)):

(Post(a) n Cont-ub-violation, Step (c), Post(a) A
(ContUbViol(G) > ContUbViol(G')) ).

Step (d) calls Step (b) again to check if there is another supernumerous node.

Model completion: This phase adds required model elements. It consists of the
following steps: Step (1) creates all missing required nodes, i.e., nodes that are needed
to fulfill the lower bound of a containment edge type:

(EMFC A No-ub-violation, Step (1), EMFC A No-ub-violation A

No-cont-lb-violation ).

At the end of this stage, the model may contain nodes that are not connected by
required non-containment edges.

Step (2) tries to insert all missing required edges by adding non-containment edges to
the nodes in the model, in order to fulfill the lower bound of each non-containment
edge type. This step may stop without having inserted all required edges due to
potentially missing target nodes, i.e., it may happen that there is no further free node
of a required type. Thus, we get

(Post(1), Step (2), Post(2))

Post(2) := (EMFC A no—bound—violation)
v (Post(l) A der € NC(Missing-edge(er) A No-target-exists(er))

ANonContLbViol(G) = NonContLbViol(G’)) .

Step (3) checks if a lower bound of a non-containment edge type is still violated. If
all the required edges are already inserted, then we have a valid EMF-model graph.
Otherwise, there is still at least one required edge missing. So, Step (3) checks which
of the two possibilities of Post(2) is actually true and additionally returns the type
er of one missing non-containment edge (if true), but does not change the instance.

If an edge was missing, Step (4) tries to create a target node for the missing edge
type. Although there may be more than one target node missing, only one is added
in Step (4). If it cannot be created directly (Step 4.1), a (transitive) container node
of it is created (Step 4.2). So we receive the following pre- and postconditions for
these steps, where er was returned by Step (3):

Pre(4.1) := EMFC A No-ub-violation A No-cont-lb-violation
AMissing-edge(er) A No-target-exists(er).
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Post(4.1) := EMFC A No-ub-violation n Missing-edge(er) A
(target-exists(er) v (No-target-creation-possible(er) A

No-cont-lb-violation)).

Pre(4.2) := EMFC A No-ub-violation A No-cont-lb-violation A

Missing-edge(er) A No-target-creation-possible(er).

Post(4.2) := EMFC A No-ub-violation A Mzssmg edge(er) A
dn € Vo (n ¢ Vo A typey,, (n) 2 tr(e )

Note that the type of a missing target node may have several subtypes. In this case,
there may be several possibilities to create a missing node, choosing one of these
subtypes. A further variation point is node types with several containers. This non-
determinism may be solved by user interaction or automatically by randomly picking
one.

After Step (4), the next iteration of model completion starts by calling Step (1) again:
Adding a node to the model may lead to new required nodes and edges. Starting a
new iteration ensures that all those model elements are generated and that all missing
nodes and edges will be created in the end. Once the model is a valid EMF model,
i.e., EMF constraints and multiplicities are met, the values of all the empty required
attributes are set (Step (6)).

3.4.3 The Algorithm as Graph Repair Automaton

We represent the repair algorithm as a program automaton. The states of the au-
tomaton are given by graph formulas (or constraints) and the transitions by graph
programs. To be able to do this, we first extend the definition of graph programs [106].

Definition 10. Graph programs are inductively defined:

1. Every rule is a program.

2. Every finite set of programs (including the empty one) is a program.

w

. Given programs P and @ then (P;@Q) and P | are programs.

4. Given programs P, @ and R, then if P then @ else R is a program.
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5. Given programs Pi,..., P, then P; ... P, is a program.

We additionally introduce the notation P* as abbreviation for P;...; P (k times).

The semantics of the newly introduced programs is as follows:

if P then @ else R: Execute the program P. If it was executable, execute program
Q. If not, execute R. We write if P then Q for if P then Q else {}.

Py ... P,: Try to execute the programs in the given order and stop as soon as one
program was executed.

With those newly introduced graph programs, almost all Henshin units [3] can be
represented as graph programs. The correspondences are given in Table 3.2.

Graph Program Henshin Unit

single rule single rule

set of programs independent unit

(P;Q) sequential unit

Pl loop unit

if P then Q else R conditional unit

P ...P, priority unit

Pk iteration unit (k iterations of the unit)

Table 3.2: Correspondence between graph programs and Henshin Units

Since we need to use the if ... then ... else ... statement, we need to additionally
extend the concept of transition in automata: A conditional transition can lead to
two of either states (or even into a new conditional transition), depending whether
the then or the else statement is executed.

We now use the newly introduced graph programs to present (most parts of) our
algorithm as a program automaton as shown in Figure 3.22.

The states of the automaton are given by properties of the instance. Transitions are
given by graph programs as introduced above. The states are given by the following
properties:

e Input: Input can be any instance that satisfies the EMF constraints.

e S,: Instances satisfy all EMF constraints and no upper bound of non-
containment edges is violated.

e Sp: Instances satisfy all EMF constraints, and no upper bound of any (contain-
ment or non-containment) edge is violated.

e S7: Instances satisfy all EMF constraints, no upper bound is violated, and no
lower bound of containment edges is violated.
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e S5: Instances satisfy all EMF constraints, no upper bound is violated and
(no lower bound of any edge is violated, or a target node for a missing non-
containment edge is missing).

e Valid: Instances satisfy all EMF constraints, no upper bound is violated, and
no lower bound is violated.

Note, the tiny diamonds are only decision points (not states).

The transitions are defined by the graph programs which are annotated in Figure 3.22.
Please note that following remarks:

e The notation {set of rules} | is implemented as a loop unit containing an
independent unit in Henshin; if R denotes the set of rules, it is just R | as
graph program.

e The transition from S, to Sy is not entirely depicted by graph programs as
introduced above. One would additionally need to: (1) introduce parameters
into graph programs, e.g., if a superflous node is identified, exactly its children
also have to be deleted with it. (2) a graph program to go over each node
content of a given node. A such program is needed to completely represent the
rmug(ng) and elmg(ng).

e The depiction of the outgoing transition from the first diamond then {if ckry
then Py, ..., if ckr, then P, } is a sligth simplification: This then-branch of the
statement calls an independent unit which contains conditional units. As graph
programs we have if ckry then Py, where ckry, is one check-rule and Py contains
a subset of the additional-node-creation rules. This subset contains those rules
needed to create the missing target node — for which the check-rule checks — or
one of its containers.
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3.4.4 Correctness Proof of the Algorithm

In this section, we present and proof some properties of the algorithm. In the follow-
ing, let TG be a fixed type graph over which all the occuring graphs are typed.

Our trimming of models restores integrity with respect to upper bounds:

Theorem 1 (Correctness of Model-Trimming). The model trimming algorithm
in Section 3.3.1 is correct, i.e., given an EMF-model graph G, the algorithm terminates
in a finite number of steps, yielding an EMF-model graph G’ that satisfies all upper
bounds of TG.

Proof. For a graph G, let ub(G) denote the sum of the number of upper bound
violations of (1) containment and (2) non-containment relations. Let G’ denote a
graph resulting from the application of one of the rules of kinds that constitute the
Steps (a) — (c) of the algorithm (see Table 3.1) on graph G. If all upper bounds of G
are satisfied, ub(G) = 0, Step (a) and (b) do not change the graph, and the trimming
algorithm terminates.

Otherwise, an upper bound is unsatisfied. Step (a) removes all supernumerous edges
that violate the upper bounds of a non-containment relation, so ub(G’) < ub(G) and
No-nonCont-ub-violation is certainly true afterwards. Step (b) checks for supernumer-
ous nodes that violate the upper bounds of a containment relation, without changing
the graph, so ub(G) = ub(G') and the postcondition of this step equals its precondi-
tion. Step (cl) does two things to a supernumerous node v: (1) If v is a container, all
content nodes of v (and their edges) are deleted in a bottom-up way. This may remove,
but not add supernumerous nodes, so contUbViol(G') < contUbV'iol(G) and equally
ub(G") < ub(G). If v is not a container, the graph remains unchanged. (2) Incoming
edges of v are removed. In Step (¢2), node v itself is removed, so ub(G’) < ub(G) and
equally contUbViol(G') < contUbViol(G).

Because ub(G) decreases with every iteration, the algorithm terminates with a graph
which does not violate any upper bound as result. O O

For the completion phase of our algorithm to work, we need the meta-model to exhibit
certain qualities: It needs to be always possible to create missing target nodes for
required edges (guaranteed by full finite instantiability) and the creation of one (of
the) possible target node(s) for a required edge may not lead to the need to create a
node of the same type again infinitely often. We characterize precisely how to prevent
this second problem:

Sometimes, when a node has to be created to serve as target for a required non-
containment edge, there exist essentially different ways to do that. This can be due
to two causes: There exist different containment paths from the root to the target
node in the sense that in one path a node type occurs that does not occur in another
path. Or because of inheritance there are different possible node types that can serve
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as target node. We need to pay closer attention to situations like these if the required
edge is an opposite edge.

Definition 11 (Critical Opposite Edge). An opposite edge e € OF is called
critical if low(e) = 1 and there either exists more than one possible target node type,
i.e., #(clans(tr(e)) n (Vr\A)) > 1, or there are containment paths p,p’ for a target
node type for e s.t. a node type occurs in one path that does not occur in the other.

If e is such a critical opposite edge, we require one of the following two conditions to
hold:

(a) The opposite edge e~ ! has unlimited upper bound, or

(b) (one of) the target node type(s) has at least one incoming containment edge with
unlimited upper bound and if there are different possible target node types, they
have to be able to serve as sources of exactly the same edge types:

Definition 12 (Acceptance Condition for Critical Opposite Edges). A type
graph T'G satisfies the acceptance condition of the critical opposite edge (ACCOE) if
every required opposite edge e satisfies condition (a) or condition (b):

(a) Condition (a) on e demands upp(e=!) = *, or

(b) Condition (b) on e demands (bl) that there exists a containment edge ¢ € C
with t7(e) < tr(c) and upp(c) = *. And if clans(tr(e)) # {tr(e)} it additionally
demands (b2) that for each two nodes n,n’ € clan(tr(e)) and every edge €’ €
Er

n < sp(e’) e n’ <sp(e) . (3.1)

Theorem 2 (Correctness of Model-Completion). Let T'G be a fully finitely
instantiable type graph whose critical opposite edges (if exist) meet the acceptance
condition. Then the model completion from Section 3.3.1 is correct, i.e., given an
EMF-model graph G, which satisfies No-ub-violation, the algorithm terminates after
a finite number of steps, yielding a valid EMF-model graph G’.

Proof. Let TG be a type graph and G a graph typed by TG s.t. the conditions
formulated above hold. We check termination and the satisfaction of the postcondi-
tions formulated in Section 3.4.2 for each step and then argue for overall termination.

Step (1). For every containment edge type c =[ A Je—=[ B |in TG,

the set of required-node-creation rules contains a rule = A = B |

with a negative application condition ac that prevents the rule from being applied at
nodes that already meet the lower bound m. But as long as it is not met, the rule is
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applicable. Since m # * by definition, those rules can only be applied finitely often
with the same match. Therefore the only possibility for Step 1 to not terminate is a
containment-cycle with all lower bounds > 0, which is excluded since T'G is f.f.i. (fi.
would even be enough). Thus, Step (1) terminates with a graph G’ as result where
No-cont-lb-violation holds.

Step (2). For every non-containment edge type e = —=| B |in T'G, the
set of required-edge-insertion rules contains a rule

[A ][ B ]=]:A with an application condition ac ensuring that
the rule can not be applied to nodes of types A and B if there is already an edge of
type e between them or the lower bound of A or the upper bound of B (if it is an edge
of opposite type) are already fulfilled. Because of these application conditions and
since no new nodes are created during the execution, Step (2) terminates after finitely
many steps as soon as every lower bound of non-containment relations is satisfied, or
there is no suitable target node available for any unsatisfied non-containment relation
(this is exactly the statement of Post(2)). Note, that the result G’ of this step of
the algorithm is independent of the order of execution and choice of matches in the
following sense: The number of missing non-containment edges of a certain type is
equal for every possible resulting graph. Only the places, where edges are missing,
can be different.

Step (4). If a required-edge-checking rule was applicable in Step (3), a target node
for a certain non-containment edge type is missing. Since we assume T'G to be f.f.i.,
at least one possible target node can be created without violating any upper bounds.
If no target node can be created directly, at least a possible container can. These two
possibilities are reflected by Post(4.1), Pre(4.2), and Post(4.2). As soon as such a
node is created, Step (4) is finished and Step (5) calls Step (1) again.

Steps (3) and (6). Required-edge checking rules do not change the graph and only
finitely many checks are performed, so Step (3) always terminates. Also, the setting
of required empty attributes is finished after finitely many steps and does not change
anything which influences the kind of validity we are discussing.

Overall termination. Let e be a critical edge and let low(e) = m denote its lower
bound. We assume T'G to meet the (ACCOE). Suppose that e satisfies condition (a)
of Def. 12. This implies upp(e~!) = #. If it was not possible to create an edge of
type e during Step (2) often enough, we have at some point created m appropriate
target nodes for an edge of type e. Since each of those target nodes can serve as
target for an unlimited number of edges of type e, after this point all edges of type e
will be created during Step (2). Now suppose that e satisfies condition (b) of Def. 12.
Then it is ensured that at some point a target node for e can always be created
directly, because at least one possible container of a target node has an unlimited
upper bound: If a target node for e had to be created often enough, the randomness
of the creation of target nodes (if no direct container is available) makes for that.
After that point, it is always possible to create the target node directly. Additionally,
if more than one possible target node exists, Eq. 3.1 states that it makes no difference
for the newly arising required containment and non-containment edges, which target
is created. In summary, after finitely many iterations of the algorithm, the algorithm
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becomes deterministic: Every time Step (3) is called, the only missing edges are of
types for which there exists only one way to create a target node, or for which it makes
no difference which target node is created. Since we assume T'G to be f.fi., and we
only create elements that need to exist in a valid model, the algorithm altogether
terminates. The resulting graph needs to be a valid EMF-model graph since this is
the only situation in which the algorithm stops. O O

The above proofs give us almost immediately two further results:

Corollary 1 (Validity of Output). If the algorithm terminates, when applied to
an EMF-model graph G, the result is a valid EMF-model graph G'.

Proof. The proofs of the previous theorems showed that we apply rules as long as
there exist violations of upper or lower bounds. Thus there are only three possible
outcomes when starting the algorithm: No termination, break of the algorithm in
Step (4), because it is not possible to create a needed target node, or termination
with a valid model. O O

Corollary 2 (Hippocraticness of Algorithm). If G already is a valid EMF-
model graph, application of the algorithm to G will result in G again.

Proof. By construction of the rules, as discussed in the proofs of Theorems 1 and
2, the applicability of rules that create or delete graph elements of valid models is
prevented by suitable designed application conditions. O O

3.5 Tooling

In this section, we give an overview of the architecture of the developed tool with the
help of the UML component diagram and present its features as well. Furthermore,
we present the developed test case specifications used for testing our techniques.

Our implemented techniques consist of two main components depicted in Figure 3.23
and described as follow:

1. Meta2RR: This meta-tool (developer tool) automates the derivation of a model
transformation repair system from a given meta-model. The input is a domain
meta-model typed by Ecore, and the output is an Eclipse plug-in containing
the corresponding model transformation system. The generated model trans-
formation system is formulated in Henshin. If the meta-model contains OCL
constraints, they are not taken into account yet. The tool uses the meta-patterns
which are implemented as Henshin rules typed by the Ecore meta-metamodel
to detect and return the corresponding matches (the types) from the domain
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Figure 3.23: An overview of the architecture of our techniques for model repair

meta-model and to generate the corresponding repair rules w.r.t. the domain
and the provided schemes, thereafter.

The meta-tool is implemented as an Eclipse plug-in and composes two main
components as follow:

e Grammar Generator: It is responsible for applying the meta-patterns, find-
ing their matches, and generating the different kinds of repair rules w.r.t.
their schemes and wrapping them in proper units, after that. It contains
several rules generators as follow:

— Creation-Rule Generator: It is for deducing and generating the
required-node-creation rules.

— Insertion-rule gemerator: It is for deducing and generating the
required-edge-insertion rules.
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— Checking-rule generator: 1t is for deducing and generating the checking
rules such as required-edge-checking rules.

— Adding-Rule Generator: It is for deducing and generating the rules
which add elements without violating the upper bounds such as
additional-node-creation rules.

— Deleting-rule generator: It is for deducing and generating the rules for
deleting nodes such as target-node-deleting rules

— Removing-Rule Generator: It is for deducing and generating the rules
for removing edges such as exceeding-edge-removing rules.

— Unit Generator: 1t is for generating the corresponding control flows
as transformation units being configured with the derived rules.

Meta-Specifications: It contains the specification of the meta-patterns for

deducing the different kinds of repair rules. They are designed as Henshin
rules typed by the Ecore meta-metamodel.

2. EMF Model Repair: This tool (modeler tool) implements the repair algo-
rithm presented in Section 3.3.1. This plug-in has two main inputs: The model
transformation system being derived from the given meta-model and an EMF
instance model (composing one node of the root type). To guarantee the ter-
mination of the algorithm, the meta-model should satisfy the defined precon-
ditions, i.e., fully finitely instantiable. The main output is a consistent EMF
instance model which can be opened, e.g., with the model editor.

This tool is implemented as an Eclipse plug-in and consists of several compo-
nents as follow:

Trimming: It implements the first part of the algorithm which deletes
model elements to obey the upper bounds.

Completion: Tt implements the second part of the algorithm which adds
model elements to fulfill the lower bounds.

Set Attribute Values: It is for assigning values for the attributes of primitive

types. Assigning values can be done either randomly or using a set of values
given as a JSON file.

Repair Trace: It records the model changes as a trace model. The trace
model contains the information about the order of the rule applications
and their names, and the matches to which the repair rules are applied.
Repair Randomly. It is for repairing models randomly without user inter-
actions in a non-deterministic way.

Repair Interactively: It is for repairing models semi-automatically consid-
ering the user selections. Additionally, It composes the specifications of
the wizards (the graphical user interfaces).

For more information about the tool such as installation can be found at [141].

Features

Our developed tool (EMF model repair) provides the following features and function-

alities:
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Random or interactive mode. Since the algorithm is configured with the rule
sets in a way that at any point of the algorithm where choices have to be made,
they can be random, or interactive. This applies to choices of rules (repair actions),
matches (model locations or targets), and attribute values. The tool is developed to
repair EMF instance models automatically in two modes:

e Randomly: It repairs the whole model without user interactions.

o Interactively: It guides the user to repair the whole model by providing proper
suggestions that lead to a consistent model.

Rule-based implementation of automatic random or interactive mode.
Within each step of the algorithm, the state of the input model is analyzed by iden-
tifying the applicable rules which configure an algorithm step. Each of the identified
repair rules (actions) aims at repairing the whole model. This is because of the design
of the different kinds of rules. They are designed in a way that each successful appli-
cation of a rule enhances (or at least preserves) the consistency of the model. These
identified rules (actions) are suggested to the user who can decide which action should
be first executed, or they can be executed randomly. Once an action is selected, the
relevant model locations (elements), on which the selected action should be applied,
are identified. The user can also choose a location to be repaired first. Once an action
is applied, the model state is analyzed again, and so on. At the end of the repair
process, the tool yields a consistent EMF instance model.

The tool assigns values to the required attributes of primitive types either randomly
or by using a set of values provided as a JSON file.

In addition to guiding the user during the repair process by providing a list of proper
repair actions which lead to a consistent model, the tool is developed to provide other
two functionaries:

e The user can stop the repair process at any time. This would help him/her to
design the model in different design times and to manage the needed data that
has to be, e.g., deleted. Please note that the intermediate resulting model is
an EMF instance model and the repair process can be triggered again to the
resulting model at any time.

o After choosing some repair actions, the user can also finish the whole step of
the algorithm randomly. This would help him/her to finish the repair process
quickly by skipping choosing all uninteresting actions.

Wizard. Figure 3.24 presents a user-friendly repair interface which consists of three
parts:

1. the first part provides proper repair actions for the current state of the model,



65

5] Model Repair Assistent = |E| ¥

Repair Actions

Missing Required Node(s): Please select a repair action

D Proper Repair Action

0 create RequiredMode Image_in_Section
1 create_RequiredMode_TextBox_in_Section

Matches (locations)

Please select a location

D Proper Container Node (Lecation)
0 Section(location: FULL)

l Stop l I Repair the step [Randomly) ] Apply (Create)

Figure 3.24: Assistant interface for model repair

2. the second part suggests the proper possible locations for a selected action, and

3. in the third part, the user can execute the selected action on the selected loca-
tion, execute the whole step randomly or stop the repair process.

Ordered list of rules’ applications. The tool records semantical model changes
as an ordered list of rules’ applications with their matches. This information may be
beneficial, e.g., to resolve inconsistencies in distributed models. Instead of sending
the whole model, this list could be used as a patch to complement changes for other
distributed copies of the model. Table 3.6 presents the ordered list resulting from
repairing the inconsistent model in Figure 3.3.

Correctness Test

In this following, we design the test case specifications of our algorithm and test
it. We focus on testing the correctness of our algorithm for model trimming and
completion by providing a vital set of input test models. To systematically test the
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correctness of our technique including the meta-model translation, and the algorithm
of model trimming and completion, we consider the meta-model concepts and all
kinds of inconsistencies that may occur in instance models. Thus, the test instance
models have to be designed to cover all the algorithm functionalities w.r.t. possible
meta-model concepts. To identify this set of test models, we first define its test case
specifications. Thereafter, we perform the testing by providing at least one test case
example for each test case specification.

Test Specifications

To systematically test our algorithm, we use an approach called the category-partition
method [104]. Input parameters and environment conditions (i.e., the characteristics
of the system state) that affect the functional behavior have to be identified by finding
categories of information that characterize each parameter and environment condition.
Each category is partitioned into distinct choices that include all possible kinds of
values. All combinations of proper choices of the categories yield all the test case
specifications.

Table 3.3 presents the categories we developed to characterize each parameter and
environment condition for model trimming (Categories A-C) and then for model com-
pletion (Categories D-H).

In general, the Cartesian product of all choices of all categories produces the set of
all the test case specifications. The number of choice combinations can be reduced
since several choices cannot occur together. E.g., if an input model has all required
edges, different forms of missing nodes do not have to be considered. The derived test
case specifications help us to design the set of input test models and to choose the
meta-model structures that have to be provided for testing the algorithm. Table 3.4
and Table 3.5 show 7 and 8 test case specifications that are needed to systemati-
cally test the model trimming and model completion, respectively. Each test case is
specified by stating the corresponding requirements on the input instance model and
meta-model.

Concrete test cases: For each test case specification, we designed manually a test
case consisting of a suitable meta-model and a test model. Then, we repaired the
designed test model using our tool and checked the validity of the output model using
the wvalidator tool integrated into the Eclipse Modeling Framework [135]. Moreover,
we record which rules have been applied during the model repair. As a results, all
the test models are repaired.

Example of Concrete Test Case

Although for each test case specification, we designed a concrete test case example.
We present here a test case example for covering more than one test case specification.
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Table 3.3: The category-partition table for the algorithm

Category A Number of exceeding nodes

Choice 1 The input model has no exceeding node.

Choice 2 At least one exceeding node is existed in the input model.

Category B Number of exceeding edges

Choice 1 The input model has no exceeding edge.

Choice 2 At least one exceeding edge is existed in the input model.

Category C The content of the exceeding node contains

Choice 1 No content.

Choice 2 At least one direct child node.

Choice 3 At least one direct edge.

Choice 4 At least one indirect child node.

Choice 5 At least one indirect child node with at least one indirect
edge.

Category D Number of required nodes

Choice 1 The input model has all required nodes.

Choice 2 At least one required node is missing in the input model.

Category E Number of required edges

Choice 1 The input model has all required edges.

Choice 2 At least one required edge is missing in the input model.

Category F Number of correlated nodes

Choice 1 For all non-containment edge types, there are enough target
nodes to fulfill their lower bounds.

Choice 2 There is at least one non-containment edge type for which
there are not enough target nodes to fulfill its lower bound.

Category G The creation of missing correlated node

Choice 1 For a given non-containment edge type whose lower bound
is not fulfilled, the missing correlated node can be created
directly. IL.e., there is a node which can function as container
for the missing node.

Choice 2 The missing correlated node has to be created indirectly,
i.e., there is not any node which can function as container
for the missing node. Hence, at least one further node has
to be created before creating the missing node.

Category H Number of incoming containment type edges

Choice 1 There is only one option to create the missing node. I.e.,
there is only one containment edge type to create at least
one further intermediate node.

Choice 2 There are more than one option to create the missing node.

Le., there are more than one containment edge type to create
at least one further intermediate node.
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Table 3.4: Test case specifications for model trimming

Nr. Description

1 The input model as no exceeding node and no exceeding edge.
The input model has no exceeding node but it has at least one exceeding
edge.

3 The input model has no exceeding edge but it has at least one exceeding
node and the exceeding node has no content.

4 The input model has no exceeding edge but it has at least one exceeding
node and the exceeding node has at least one direct child node.

5 The input model has no exceeding edge but it has at least one exceeding
node and the exceeding node has at least one edge.

6 The input model has no exceeding edge but it has at least one exceeding
node and the exceeding node has at least one indirect child node.

7 The input model has no exceeding edge but it has at least one exceeding

node and the exceeding node has at least one indirect child node with at
least one edge.

Table 3.5: Test case specifications for model completion

Nr. Description

The input model has all required nodes and edges.

At least one required node is missing while all required edges do exist.

The input model has all required nodes but at least one required edge is

missing and there are enough target nodes.

4 The input model has all required nodes but at least one required edge is
missing. There are not enough target nodes to connect with. The missing
node can be created directly using only one containment type.

5 The input model has all required nodes but at least one required edge is
missing. There are not enough target nodes to connect with. The missing
node can be created directly using more than one containment type.

6 The input model has all required nodes but at least one required edge is
missing. There are not enough target nodes to connect with. The missing
node has to be created indirectly using only one containment type.

7 The input model has all required nodes but at least one required edge is
missing. There are not enough target nodes to connect with. The missing
node has to be created indirectly using more than one containment type.

8 At least one required node and at least one required edge are missing in

the input model.

W N —

Input meta-model: The Webpage meta-model depicted in Figure 3.2.

Input model: We use the input model depicted in Figure 3.3 (the solid-line elements)
as an input test model that covers several test case specifications, namely the test
case specification 7 for model trimming and the test case specification 2 for model
completion. Here, an exceeding node of type Footer do exist while two required nodes
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are missing: one of type Body and one of type Anchor. Please note that the resulting
model state after applying Step (1) of the first iteration of model completion can be
considered as a test case example for the test case specification 6 for model completion.

Ezxpected model repair: A consistent model, which is similar to the one, is illustrated
in Figure 3.3. An exceeding node of type Footer with its contents shall be deleted.
The required nodes of type Body and Anchor should be created. The required edge
of type target should be fulfilled and thus the container node of the missing correlated
node of type Section should be added and two nodes of type DisplayElement shall be
created as well.

Output model: Running the algorithm, the model is trimmed and completed as de-
picted in Figure 3.3. A Footer-node with its contents is deleted. A Body-node and an
Anchor-node are created. A Section-node with two children is created: a TextBox-
node and an Image-node. The target-link points to a TextBor-node. Attribute values
are set according to default values. The expected actions have taken place.

Table 3.6: The ordered list of rules’ applications

Nr. Name of the successful rule application On Match
1 Check_ExceedingNode_Footer_in_Webpage :Webpage(pagex)
2 Remove_Edge_active_to_URL :HyperLabel(label3)
3 Delete_URL_in_HyperLabel in_Footer :Footer (location)
4 Delete_HyperLable_in_Footer :Footer(location)
5 Delete_Footer_in_Webpage :Footer (location)
6 Create_RequiredNode_Body_in_Webpage :Webpage(pagex)
7 Create_RequiredNode_Anchor_in_NavBar :NavBar(pink)
8 Check_RequiredEdge_target_to_DispalyElement :Anchor(moreinfo)
9 Add-AdditionalNode_Section_in_Body :Body(white)
10 Create_RequiredNode_TextBox_in_Section :Section(full)
11 Create_RequiredNode_Image_in_Section :Section(full)

. . :Anchor(moreinfo),
12 Insert_RequiredEdge_target_to_DisplayElement TextBox

Output list of rules’ applications:
cessfully applied to repair the input model using our tool:

of type Webpage.

Table 3.6 presents the rules which are suc-

e The first rule dedicates that there is an exceeding node of type Footer in a node

The rules 2-5 delete a selected Footer-node with its contents in bottom-top way.
The Footer-node can be selected randomly or by the user, and then the selected

node is passed as a rule parameter.

The rules 7 and 8 create the missing required nodes, a Body-node and an An-
chor-node in the Webpage-node and the NavBar-node, respectively.
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e The rule 8 dedicates that there is a missing required edge of type target to a
node of type DisplayFElement.

e The rule 9 adds a Section-node in a Body-node.
e The rules 10-11 create the missing required nodes in the added Section-node.

e The rule 12 inserts the missing required edge target from the Anchor-node to
an DisplayFlement-node.

3.6 Evaluation

In this section, we present an experiment showing the performance and the scala-
bility of our tool being applied to inconsistent models of varying sizes composing a
large number of violations. This experiment intends to answer the following research
questions (RQs):

RQs: How much time does the tool need to repair large models composing a large
number of violations? How many actions are applied to repair the whole models?

3.6.1 Scalability Experiment

To answer RQs, we carried out the following experiment:

Experiment set-up. We consider different size categories of input models, namely
1000, 3000, 5000, 8000 and 10 000 elements (nodes and edges). For each size category,
we generated 100 inconsistent models.

The inconsistent models are generated by randomly adding elements (nodes and
edges) to root nodes. This is done by randomly applying rules which adds elements
without considering the multiplicities. These rules are derived for each meta-model
type, and each one is designed to add one element in a rule application. After gen-
erating random inconsistent models, we checked the number of violations using the
diagnostic of the EMF validator [34]. The number of violations was ranged from 145
to 1511 violations on average.

We applied our tool to the input models and calculated the times needed to repair
the models, the number of trimmed and created elements, and the number of applied
repair actions. We used the webpage meta-model, whose size is 44 elements (13 nodes,
14 edges, 17 attributes) and it has 18 bounded cardinalities.

The evaluation was performed with a desktop PC, Intel Core i7, 16 GB RAM, Win-
dows 7 x64, Eclipse Oxygen with the default settings, e.g., the heap size is limited to
1 GB, Henshin 1.4.
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Table 3.7: Average run time (in seconds) of repairing 500 inconsistent models of
varying size up to 10000 elements and each model contains up to 1511 violations

Size Categories of Inconsistent Models 1000 3000 5000 8000 10000

Number of Inconsistent Models 100 100 100 100 100

Number of Violations 145 442 737 1207 1511
Number of Applied Repair Actions 590 1789 2983 4885 6116
Number of Trimmed Elements 301 927 1562 2559 3204
Number of Created Elements 289 862 1421 2326 2912
Repairing Time in Seconds 0.32 2.01 7.07  28.54 47.27

Table 3.8: Summary of the meta-models

Meta-Model Size Nodes Edges Attributes Bounded Card.

GraphML 39 14 13 12 23
Statechart 51 16 28 7 25
LaTeX 71 31 39 1 55
Bugzilla 63 16 8 39 34
Car Rental 30 8 8 14 14
Web Model 33 13 12 8 9
CoreWareHouse 33 15 14 4 12
Class Model 34 12 17 5 16
Average 44 16 17 11 24

Experiment results. Table 3.7 shows the result of our evaluation. Our tool repairs
145 to 1511 violations in models of size 1000 to 10 000 elements in 0.3 to 47 seconds on
average. The number of the applied repair actions are ranged from 590 to 6116 repair
actions. All the input models are repaired, and the results show that our technique is
fast enough to be usable in practice. Further experiments presenting that our EMF
repair technique is scalable is reported in Chapter 4 in which the EMF repair is used
to generate large consistent models.

3.6.2 Threats to Validity

Although we considered 500 inconsistent models of different sizes being generated
randomly, they are instances of one meta-model. However, we are pretty convinced
that the number of violations and the number of applied repair actions affect the
performance. Therefore, we provided large models with a large number of violations
and calculated the number of actions needed to repair the models.

However, we additionally applied the tool to 8 meta-models taken from the literature,
projects and use cases, namely the Statechart of the Magicdraw [66], web model [16],
car rental and class model [5], Bugzilla, Latex, Warehouse and, Graph Modeling
Language (GML) [6]. Table 3.8 presents the information about the used meta-models.
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Our tool repaired 2592 violations in models of size 10000 in 51 seconds on average.
The used meta-models compose most of the meta-model concepts such as containment
and non-containment relations with different properties (e.g., loop and opposite),
classes, abstract classes, interfaces and enumerations, and supporting inheritance and
all multiplicity patterns.

3.7 Discussion

In this section, we discuss the usefulness of the approach in more general settings.

3.7.1 User Interaction

Rule systems have the advantage to allow incremental processes that can be controlled
by user interaction. During each step of the algorithm, it is easily possible to enable
the user to choose which of the applicable rules to execute at which match. This
includes the resolution of the kind of non-determinism that was already mentioned
at the end of Section 3.3.1. In this way, the user is enabled to repair an instance in a
more meaningful fashion.

In our developed tool, we restrict user interaction to choices that can be made during
a step of the algorithm but do not allow changes of the overall control flow. The steps
are run through in the designated order and, the rules of each step have to be executed
as long as there are applicable rules. The applicable rules and their matches serve as
repair choices. The suggested choices of each step aim at repairing the whole model.
This semi-interactivity guides the user towards a consistent instance and ensures the
integrity of the approach: If user interaction is just used to reduce the amount of
non-determinism in the repair algorithm, the correctness (and termination) proofs for
the algorithm still hold.

The control flow of the algorithm can be stopped at any time, and the resulting
intermediate model is an EMF instance model that can be opened and displayed by
the EMF editor. If arbitrary model editing steps are allowed (out of the repair process
and out of the model editor), it may happen that new inconsistencies are introduced,
and the algorithm does not terminate anymore.

3.7.2 Moving Instead of Trimming

During the first part of our algorithm, we resolve inconsistencies w.r.t. upper bounds.
We do this by deletion of supernumerous elements. This is a general solution. In
some cases, moving the elements into other containers (sources) without violating
their upper bounds would be possible. But this does not always work: For example,
the consistency requirements for rules which move cycle-capable containment edges
are quite strict [14]. So it may not be possible to generally derive a rule that would be
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useful in a concrete situation. And more importantly, because of finite upper bounds
it is possible that there is a maximal number of objects of a certain node type which
are allowed to exists in EMF-model graphs. Thus, no graph that contains more nodes
for one type n than allowed can be repaired without deleting.

But as long as this is considered, the moving of supernumerous elements into other
already existing containers (sources) or newly created ones (if possible) does not
change the validity of Theorem 1 and therefore neither that of Theorem 2. However,
in Sections A.1 and A.2, we present the schemes of moving rules for non cycle-capable
containment and non-containment edges and their meta patterns as well as concrete
examples.

3.7.3 Finitely Instantiable Versus Fully Finitely Instantiable
Meta-Models

While deleting during the trimming part of the algorithm, we intended not to delete
during the second part at the cost of not being able to repair every instance of finitely
instantiable type graphs T'G: Deletion would have to take place in Step (4) of the
algorithm if no target node can be created. In this case, the bounds of all containment
edges would be satisfied, but the lower bound of at least one non-containment edge
violated. This means that multiplicities of non-containment edges would not only
demand or forbid the existence of non-containment edges but additionally impose
constraints on the number of certain types of nodes. Here, it may be more advisable
to adapt the multiplicities of the meta-model than to loose information by deletion.
Furthermore, there are f.i. meta-models for which only a very small number of consis-
tent models exist. Then, repairing instances means the deletion of almost everything
and the creation of one of the few consistent models.

For a type graph T'G, which is not fully finitely instantiable, the algorithm may break
during Step 4. In this case, getting the match of the check rule used in Step 3 aims at
identifying for which edge it was not possible to create a target node. This information
could be useful, e.g., to refactor the multiplicities of the corresponding type graph
so that a given model can be completed, or to maybe delete the source node of that
required edge.

An additional alternative is the creation of a further root node. There exist instances
of finitely instantiable meta-models, which can be repaired — without deletion during
the second part — by creating more than one, but finitely many root nodes.

To summarize, when applying the considered approach to finitely, but not fully finitely
instantiable meta-models, the following possibilities exist:
(a) Instance gets repaired.

(b) Algorithm breaks in Step 4 because a needed target node cannot be created. A
solution might be achieved by creating finitely many new nodes of root type, or
there is no termination, even when creating new nodes of root type.

(¢) No termination.
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Characterizing these situations by features of the type graph or the instance which is
to be repaired is a future work.

3.7.4 Supporting a Set of OCL Constraints

There are some of OCL constraints which can be straightforward supported by our
approach. These OCL constraints are semantically equivalent to the lower and upper
bound constraints, i.e., they can be represented as graph constraints of form V(P,3C1)
or Y(P,3C5) — P, C; and C, are graphs such that P is a sub-graph of C; and of Cb.

For example, the multiplicity bound [1..2] of a containment edge type

o% and the following OCL constraint:

context A inv: self.cont — notEmpty() and self.cont — size()<3

are semantically equivalent to each other and they can be represented as graph con-
straints as follows.

) A1 | [self: Afo—eo—
"C"nt

v (]self:A, 3 (]self:A

It means that there is at least one B-node in an A-node, and there are at most two
B-nodes in an A-node. The first part represents the lower bound constraint of value
1 and the OCI expression self.cont — notEmpty() whereas the second part represents
the upper bound constraint of value 2 and the OCL expression self.cont — size()<3.

Our algorithm can similarly be configured with rules being derived from the graph
patterns as follows: From a graph pattern of form VY(P,3C4), rules of kind required-
node-creation can be derived to configure the Step (1) of the algorithm and from
a graph pattern of form V(P,3C5) rules of kinds finding-exceeding-node, exceeding-
node-deleting and additional-node-creation can be derived to configure the Step (b),
the Step (c¢) and the Step (4) of the algorithm, respectively. Regarding to our
example, a required-node-creation rule, which creates a B-node in an existing A-
node if and only if it has no B-node, will be derived from the graph pattern

v (’SGlfIA, 3 (’self:A )), and an exceeding-node-deleting rule, which deletes a
B-node in an existing A-node if and only if it has more than two B-nodes, will be

, 3 | [self:Ale—=—{:B]
:B|

derived from the graph pattern V (lself:A




However, not all constraints of form Y(P,3C}) or ¥(P,#Cs) can be directly supported.
They need to obey some criteria such that there are no conflicts among them, e.g.,
if there is a conjunction between a positive and a negative graph constraint of form
Y(P,3(C1) A 3(Cs)), C; should be a sub-graph of Cy. Figure 3.25 presents the core
concept of our future work for supporting a set of OCL constraints.

HE—
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Constraints | ™= z\o/b mmm) || G | 0= | Rule-Based Algorithm
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=1 J

Graph Constraints Repair Rules

Figure 3.25: EMF Repair supporting a set of OCL constraints

Moreover, the repair algorithm can straightforwardly support negative constraints as
done previously. I.e., we derive rules which delete supernumerous elements w.r.t. the
negative constraints, and thereafter, we update the rules which create model elements
in a way that they do not violate the negative constraints. Here, we can use the tool
OCL2AC (see Chapter 5) to update the rules automatically. Furthermore, translating
OCL counstraints to graph patterns [12, 113] and further to application conditions of
rules is promising to achieve an automated interactive model repair approach for
meta-models with OCL constraints.

3.8 Related Work

In the following, we consider related work w.r.t. model repair and rule generation.
We relate our approach to repair approaches first. After that, the rule generation is
considered.

Model repair is a long-term research challenge. According to the recent survey on
model repair [79], the number and wide variety of existing approaches make a detailed
comparison with all of them infeasible. However, the existing model repair techniques
can be mainly categorized into syntactic and rule-based approaches on the one hand,
and search-based and logic-based approaches, on the other hand. Table 3.9 shows
an overview of different main features of the approaches. Note, most of the existing
repair techniques based on a solver or a generator for generating valid models. A
general overview of them can be found in Section 4.6, Table 4.6.

Syntactic and rule-based approaches. In [95, 94], the authors provide a syntactic
approach for generating interactive repairs from full first-order logic formulas that
constrain UML documents. The user can choose from automatically generated repair
actions when an inconsistency occurs. Similarly, Egyed et al. [37, 38] describe a
rule-based technique for automatically generating a set of concrete changes for fixing
inconsistencies at different locations in UML models and providing information about
the impact of each change on all consistency rules. The designer is not required to
introduce new model elements, i.e., the approach ignores the creation of new model
elements as choices for fixing inconsistencies. In [111], Rabbi et al. propose a formal
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approach (with prototype tooling) to support software designers in completing partial
models. Their approach is based on rule-based model rewriting, which supports both
addition and deletion of model elements.

In all these approaches, inconsistencies can be considered by the user one after the
other; possible negative side effects are not taken into consideration. It is up to the
user to find a way to a valid model (if any). Moreover, they are not shown to be fully
consistent.

Taentzer et al. [140] present a prototype based on graph transformation theory for
change-preserving model repair. From given edit operations taken from the edit his-
tory of two versions of consistent models and consistency-preserving operations, they
calculate repair operations. These repair operations can be detected to repair the
model resulting from applying an editing operation. The performance of detecting
repair operations is shown to be fast. They consider only the conformance to the
meta-model, and there is no available tool to perform the whole process automati-
cally.

Search-based and logic-based approaches. A search-based repair engine starts with
an inconsistent model state and tries to find a sequence of change actions that leads
to a valid model. Another approach is model finding, using a constraint solver to
calculate a valid model. Many approaches such as [129, 2, 59, 78] provide support for
automatic inconsistency resolution from a logical perspective. All these approaches
provide automatic model completion; however, they may easily run into scalability
problems (as stated in [79]). Since the input model is always translated into a logical
model, the performance depends on the model size. Badger [110] is a search-based
tool which uses a regression planning algorithm to find resolution plans. It can take
a variety of parameters to let the search process be configured by the user to a
certain extent. The meta-model has to be manually specified as a set of logic facts.
The authors argue that their generation of resolution plans is reasonably fast for
resolving several inconsistencies (70 inconsistencies) of a consistency type in large
models. However, they do not show the time needed to apply resolution plans to
resolve a large number of violations of different types so that the whole model is valid.
Moreover, there is no correctness proof. Although being rule-based, the refinement
approach in [117] basically translates a set of rules with complex application conditions
to a logical model. Schneider et al. [121] provide a strategy relying on an existing
graph generation algorithm for graph constraints implemented in AutoGraph. The
input graph is represented as a constraint and then it is given to the AutoGraph
with other constraints to generate a consistent graph. However, if the input graph
is inconsistent, no consistent graph can be found. Moreover, they provide another
strategy similar to the one presented by Taentzer et al. [140]. But, they do not require
the user to specify consistency preserving operations since they derive repairs using
constraint solving techniques directly from the graph constraints. In both strategies,
no implementation and evaluation are available now. Additionally, the AutoGraph
cannot support EMF constraints since some of them are not first order.

Our approach is designed for integrating the best of both worlds: It is a rule-based
approach; therefore, it is easy to allow user interaction during the repair process (in
contrast to search-based and logic-based approaches), and it does not leave the reso-
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lution strategy completely to the modeler as in pure rule-based approaches. Instead,
it guides the modeler in an automatic interactive way to repair the whole model. Our
approach yields valid EMF instance models, which can be opened by the model edi-
tor. How all the EMF constraints are specified and how valid EMF instance models
are constructed are not clearly discussed by most existing approaches. Additionally,
we provide the correctness proof of our approach. On the downside, our approach
cannot yet handle OCL constraints being covered by most of the approaches men-
tioned above. It is promising to translate OCL constraints to graph patterns [12, 113]
functioning as application conditions of rules and thereby extending the automated
interactive model repair approach. Besides, in Section 3.7.4, we discussed an idea
about how to support a set of OCL constraints.

Rule generation. In [66], model transformation rules are generated from a given meta-
model as well. The main difference to our work is that consistency-preserving rules are
generated there while we generate repair rules allowing temporarily inconsistent mod-
els w.r.t the multiplicities. Hence, rules are generated for different purposes: There,
consistency-preserving rules are generated from restricted meta-models to recognize
consistent edit steps, while we generate repair rules to configure our model repair
algorithm yielding consistent EMF models as results. Our rules are more flexible
(less restricted), can be applied to inconsistent models and derived from unrestricted
meta-models.
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3.9 Conclusion

In this work, we presented a rule-based approach for repairing EMF instance models
in two modes: (1) randomly, i.e., fully automatically without user interactions or (2)
semi-automatically (interactively), i.e., guiding the user to repair the whole model
and thereby resolving all the cardinalities violations. The resulting models are consis-
tent EMF models, i.e., consistent instance models of meta-models with multiplicities
conforming to the Eclipse Modeling Framework (EMF). A rule-based algorithm of
model trimming and completion is developed, and different sets of model transfor-
mation rules (repair actions) are designed in a proper way to configure the algorithm
according to the given language. To automatically derive them, a catalog of several
meta-patterns is specified as well. Using the theory of algebraic graph transforma-
tion as a formal background, we proved the correctness of the algorithm and gave
conditions under which the algorithm is guaranteed to terminate. Additionally, we
discussed its features and usefulness in more general settings, such as supporting a set
of OCL constraints. Two Eclipse plug-ins are developed: (1) Meta2RR (meta-tool)
to translate meta-models to model transformation repair systems automatically, and
(2) EMF Model Repair (modeler tool) to repair corresponding EMF instance models.
Using the EMF repair tool, the user can repair EMF models not only randomly and
semi-automatically but also stop the repair process at any time. The resulting model
is an EMF instance model which can be opened, e.g., by the model editor. Further-
more, a systematic test is performed to show the correctness of our technique and we
presented that models of size 10000 elements with 1511 violations are repaired in 47
seconds on average.

We plan to extend our approach to support a certain kind of OCL constraints (e.g.,
the negative constraints) as well. Moreover, translating OCL constraints to graph pat-
terns [12, 113] and further to application conditions of rules is promising to achieve an
automated interactive model repair approach for meta-models with OCL constraints.
Additionally, we want to use the work to generate models w.r.t. given (user) specifica-
tions for testing purposes. Furthermore, we intend to automatically generate editing
operations from a given meta-model for different purposes by using and combining
the different kinds of derived repair rules.
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Rule-based Generator of Consistent EMF Models

This chapter shares material with the accepted paper at FASE’20 “Generating Large
EMF Models Efficiently: A Rule-Based, Configurable Approach” Nassar et al [88].

Efficiently generating large instance models or large sets of diverse instance models
of a given meta-model is a highly important task in model-driven engineering. De-
pending on a chosen application scenario, a model generator has to fulfill different
requirements: As a modeling language is usually defined by a meta-model, all gener-
ated models are expected to conform to their meta-models. For performance tests of
model-driven engineering techniques, the efficient generation of large models should
be supported. When generating several models, the resulting set of models should
show some diversity. Interactive model generation may help in producing relevant
models. In this work, we present a rule-based, configurable approach to automate
model generation which addresses the stated requirements. Our model generator
produces consistent instance models of meta-models with multiplicities conforming to
the Eclipse Modeling Framework (EMF). An evaluation of the model generator shows
that large EMF models (with half a million elements) can be produced. Since the
model generation is rule-based, it can be configured beforehand or during the genera-
tion process to produce sets of models that are diverse to a certain extent. Moreover,
an evaluation of our tool shows a speed-up of several orders of magnitude compared
to other state-of-the-art instance generation tools for EMF models.

4.1 Introduction

The need for the automated generation of instance models grows with the steady
increase of domains and topics to which model-driven engineering (MDE) is applied.
In particular, there is a growing need for large instances of a given meta-model [70,
118]. They are needed in various applications like model transformation testing [8, 44],
benchmarking model queries and transformations [137, 11], model-driven search and
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optimization [150, 15], or validating the suitability of MDE tools to deal with large
input models [122, 1, 47, 31]. As most of the available MDE tools are based on the
Eclipse Modeling Framework (EMF') [135], instances should be conformant to EMF.

Depending on the chosen application scenario, a model generator has to fulfill dif-
ferent requirements: As a modeling language is usually defined by a meta-model, all
generated models are expected to conform to their meta-models. For performance
tests of model-driven engineering techniques, the efficient generation of large models
should be supported. When several models are generated, they should show some
diversity. Interactive model generation may help in producing relevant models. While
there are several tools and approaches to instance model generation in the literature,
e.g. [81, 86, 125, 128, 138], we are not aware of any tool satisfying all the requirements
stated above. Two extreme approaches are the following: The approach in [86] is very
fast but does not address any modeling framework and provides very few guarantees
concerning the properties of the generated output models. As EMF has developed to
the de-facto standard for modeling in MDE, respecting the EMF constraints is crucial
to guarantee the usability of the resulting models in practice for processing them by
other tools, e.g., for opening them in standard editors. On the contrary, solver-based
approaches such as [81, 128, 138] provide high guarantees by generating instance
models that even conform to additional well-formedness constraints (expressed in,
e.g., OCL [99]), but they suffer from severe scalability issues.

We suggest finding a good trade-off between having a scalable generation process for
models and generating well-formed models. In this work, we propose a rule-based
approach to the generation of models which has the following distinguishing features:

e To guarantee interchangeability, generated models conform to the standards of
EMF. In particular, this means that the containment structure of a generated
model forms a tree.

¢ Generated models exhibit a basic consistency in the sense that they conform to
the structure and the multiplicities specified by the meta-model.

e The generation of models can be configured to obtain models that are diverse
to a certain extent.

e The implementation is efficient in the sense that instance models with several
hundred thousand elements can be generated.

e The approach is meta-model agnostic and customizable to a given domain-
specific modeling language (DSML) in a fully automated way.

e The generation can be started by manipulating existing models. This facility
not only supports the incremental development of models at different times but
also is promising for accelerating the generation process.

o It is possible to generate models in a batch mode or interactively to somewhat
guide the generation process towards relevant models. User interaction includes
the setting of seed models as well as interactively choosing between alternative
generation strategies.
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Our rule-based approach to model generation consists of two main tasks:

1. The meta-model of a given modeling language is translated into a rule-based
model transformation system (MTS) containing rules for model generation.

2. These rules are consecutively applied to generate instance models. This gener-
ation process may be further configured by the user. Especially, a potentially
inconsistent model may be used as a seed for generating consistent models.

Our approach is implemented in two Eclipse plug-ins:

1. A meta-tool, called Meta2GR, automatically derives the MTS from a given
meta-model.

2. A second plug-in, called EMF Model Generator, is automatically configured
with the resulting MTS. A modeler uses the configured model generator, which
takes additional user specifications and an optional seed EMF model as inputs
and generates a consistent EMF model.

We argue for the soundness of our approach and evaluate its scalability by generating
large, consistent EMF models (up to half a million elements). Furthermore, we show
how to generate a set of models that are diverse to some extent.

Meta-Model E>

EMF Constraints ,Q ﬂ

Domain Developer

(1) Translation # Model Transformation Generation System

User Specifications Consistent
5 (2) Model Generation » EMF Model
EMF Model |Cy
(optional) ,

Application Modeler

Figure 4.1: Model generation tasks

The contributions of this work are the following:

1. A rule-based model generator, different kinds of generation rules, and several
configuration strategies for supporting user specifications.
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2. Meta-specifications to derive and configure the model generator to a given meta-
model and to configure the user specifications.

3. An Eclipse-based tool (a meta-tool), called Meta2GR, is developed. The domain
developer uses this tool to automate the derivation of the model transforma-
tion system from any given meta-model, i.e., to generate the domain-specific
generation technique.

4. A model generation tool (a DSML tool), called EMF Model Generator, is de-
veloped as an Eclipse plug-in. It takes user specifications and an EMF model
(optional) as inputs, uses the generated domain-specific generation technique,
and generates a consistent EMF model. The application modeler usually uses
this tool.

5. We discuss the soundness of our approach and then evaluate its scalability by
generating consistent EMF models with half a million elements (nodes and
edges). Furthermore, we perform a scalability comparison with the state-of-
the-art instance generator. Moreover, we show the diversity of the generated
models. The related work is discussed as well.

The rest of this chapter is structured as follows: We first introduce our running
example in Section 4.2. Section 4.3 develops our approach showing the generation
strategies, the generated rules, and their meta-patterns, and discusses its soundness
as well. In Section 4.4, we present our tooling that is subsequently evaluated in
Section 4.5 showing its scalability and the diversity of the generated models. We
discuss related work in detail in Section 4.6. Section 4.7 concludes and points to some
future work.
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Figure 4.2: Excerpt of the meta-model of Graph ML

4.2 Running Example

This section presents our running example. As a running example we use a simpli-
fied version of the meta-model of GraphML as provided by [6] shown in Figure 4.2.
GraphML [17] is a file format for different kinds of graphs (directed, hierarchical,
hypergraphs, etc.) and separates the graph structure from additional data. We use
this example to illustrate how our rule-based approach generates instance models of
this meta-model.

4.3 Rule-based Model Generation

In this section, we first present our basic approach to the generation of consistent
EMF models. We then give an overview of the kinds of derived rules, introduce four
parametrization strategies, and show the possibility of user-interaction. We end with
discussing formal guarantees and limitations.

4.3.1 Overall Approach

Our overall approach to instance generation is depicted in Fig. 4.3. The fundamental
idea behind our approach is to base model generation as far as possible on rule-based
model repair using the tool EMF Repair [93]. All rules needed to perform model
generation steps are automatically derived from the given meta-model by the meta-
tool Meta2GR. If a non-empty seed model is given, the model generation process starts
with checking it for upper bound violations and potentially trimming it using EMF
Repair (model trimming). Thereafter, the EMF model is extended with object nodes
and references without violating upper bounds using the rules derived by Meta2GR
(model increase). The resulting model shall meet user specifications w.r.t. its size
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which will be discussed in more detail in Section 4.3.3 below. In the next step, the
EMF model is completed to a consistent EMF model, again using EMF Repair (model
completion). As this repair process adds elements only, the user specifications are still
met by the resulting model. Moreover, the result is guaranteed to be a consistent EMF
model [92]. EMF Repair is also used to set attribute values, either randomly or using
user input which is provided in a JSON-file.

Meta-model => Meta2GR
MTS for MTS for MTS for
Model Trimming Model Increase Model Completion
4 s +
usesi usesi uses|
Seed — : |
EMF Model => Model Trimming : :
|
(optional) (] i i
User = EMF Model = | Model Increase i Consistent
Specifications  |(obeying upper bounds) l i EMF
EMF Model = | Model Completion || ~ Model
(obeying upper bounds
+ user specifications)
EMF Model Generator

Figure 4.3: Rule-based EMF Model Generator

4.3.2 Generated Rules

Table 4.1: Overview of used kinds of rules

Role Kind Semantics

Node creation Additional-node-creation rules

Transitive-node-creation rules

Insert a node of a certain type in-
side of one of its direct containers
Add a node of a certain type inside
of one of its transitive containers

Edge insertion = Additional-edge-insertion rules

Insert an edge of non-containment
type between two nodes

Check Additional-edge-checking rules

Check if possible source and target
nodes for an edge of a certain type
exist

Given a meta-model, we first derive certain kinds of rules that are then used in the
different programs for the generation of an EMF model. Table 4.1 gives an overview
of the kinds of derived rules. The derived rules perform three different roles: (i)
creation of nodes, (ii) insertion of non-containment edges, and (iii) checking for the
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existence of source or target nodes for an edge of a certain type. All rules that
create elements, i.e., the rules with the role (i) or (ii) are generated with NACs that
ensure that the according rules are applicable if and only if they will not introduce
an upper bound violation. Moreover, they are designed in such a way that they are
not able to introduce violations of the EMF constraints such that accordance with
these constraints is preserved throughout their application. Please see Section 3.3.2
to get more information about how the rules are designed to deal with and preserve
the EMF constraints.

Node creation (i) is performed by two different kinds of rules: For each containment
edge type in a given meta-model an additional-node-creation rule is derived. A general
scheme for this kind of rule is depicted in Figure 4.4. Such a rule matches the source
node of this edge and creates an edge of the chosen type together with an instance
of the contained node (if other nodes inherit from the target node, a rule is derived
for each of them as well). Tt is equipped with a NAC that prevents the application
of the rule at a node that already has the maximal number of outgoing edges of the
respective type. The rule add_in_Node_a_Port in Figure 4.8 is an example of a concrete
instance derived for the containment edge type ports. It does not have a NAC since
the upper bound of ports is unlimited.

Meta Pattern Rule NAC

con| m..n :con :con con
o] [ | o]
CreatingAdditionalNode NACn

Figure 4.4: Rule scheme for additional-node-creation rules

Transitive-node-creation rules are similar. An example scheme for length 2 for this
kind of rule is depicted in Figure 4.5. For every concrete node type in the meta-
model, every possible incoming path over containment edges is computed such that
each containment type occurs maximally once. For each such path, a rule is derived
that matches the node where this path starts and creates the rest of this path. Again,
the rules are equipped with a NAC ensuring that no upper bound violation can be
introduced. The lower part of Figure 4.8 depicts all transitive-node-creation rules
that are derived for the type port. Only one of the rules has to be equipped with a
NAC as only the edge type subgraph has an upper bound (of 1).

To insert edges (ii), additional-edge-insertion rules are generated. The general scheme
for this kind of rules is depicted in Figure 4.6. For each non-containment edge type, a
rule is derived that matches the source and the target node of this edge and creates an
edge of the according type. Again, a NAC prevents that an upper bound is violated
(NACn) and a second NAC prevents that parallel edges are introduced (NACp). If the
edge is an EOpposite edge, the opposite edge is created as well and its upper bound
considered accordingly (NACI). A concrete example for the edge type targetport is
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Meta Pattern Rule NAC

addNode_B_in_A

‘ 2:Root l ‘ 2:Root l
—> :cOnRA iconRA/ NconRA
srs s e
:conAB NACn

addNode_B_with_A_in_Root

Figure 4.5: Rule scheme for transitive-node-creation rules (of length 2)

the rule insert_additionalEdge_targetport as depicted in Figure 4.9.

Meta Pattern Rule NAC
IRNNEEEES
opr | k..l opr
—>
ref [ m.n ref
s ||[ 28 | [ 28 |
InsertingAdditionalEdge NACp NACn NACI

| NAC = NACp and NACn and NACI |

Figure 4.6: Rule scheme for additional-edge-insertion rules

In some places of our algorithm, it will be necessary to check if source- or target
nodes for an edge of a certain type have existed and able to serve as proper source-
or target nodes without violating the upper bounds of the certain edge type (iii).
This is done using additional-edge-checking rules which are derived for each edge of
non-containment type. The general scheme is depicted in Figure 4.7. These rules
are applicable if and only if there is a source node where the upper bound of the
non-containment is not yet reached. Thus, if there is no match for rules of this kind,
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no source node for an edge of this type is available. The same kind of rule is derived
for the target node type as well. A concrete example for the edge type targetport is
the rule check_proper_sourceNode. .. in Figure 4.9.

Meta Pattern Rule NAC

| A | | 1A |:>| 1A | et Lo N et

opr

ref Check_AdditionalEdge_ref NACh
II'I 2:B |:>| 2:B ll ‘A ll A l

Check_AdditionalEdge_opr

NACI

Figure 4.7: Rule scheme for additional-edge-checking rules

4.3.3 Generation Strategies: Parameterization

Since we use a rule-based approach, the model generator can be parameterized w.r.t.
given specifications. In the following, we develop four strategies for generating models
w.r.t. user specifications. The resulting EMF models conform to upper bounds, EMF
and meet the user specification but may violate lower bounds. They are then used
as input for the model repair algorithm to receive a consistent EMF model. The user
can:

1. specify the number of elements that is minimally to be created,

2. specify a node type and the number of nodes of this type that is minimally to
be created,

3. specify an edge type and the number of edges of this type that is minimally to
be created, and

4. combine the above-mentioned strategies sequentially in arbitrary order.

In each case, the generation is initialized by creating a node of the root type.

Adding Elements of Arbitrary Types

In this strategy, the user can specify how many elements (nodes and edges) are min-
imally to be created. The idea behind this strategy is to randomly execute a set
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of rules for adding nodes and inserting edges of arbitrary types without violating
the corresponding upper bounds and the EMF constraints. Hence, in this strategy
all rules of kinds additional-node-creation and additional-edge-insertion are collected
into one independent unit. This independent unit is then applied as often as the user
specification requires.

While the independent unit in Henshin is implemented using a uniform distribution, in
general this strategy could be performed using other distributions, e.g., by leveraging
a stochastic controller [148].

Adding Nodes of a Specific Type

In this strategy, the user can specify a node type and the number of nodes of the
specified type that should minimally be created. This strategy is implemented as an
independent unit containing all transitive-node-creation rules for the specified node
type. This unit is applied as often as the user has specified. An example unit for the
node type Port is given in Figure 4.8.

A second way facilitates priority units: One always tries to create a node of the
fixed type inside an already existing container via the additional-node-creation rules
(assembled into an independent unit) and if that is not possible, transitive-node-
creation rules of increasing length are tried to be applied. Thus, this strategy puts the
transitive-node-creation rules, sorted into independent units by length, into a priority
unit, sorted by increasing length. Compared to the first variant of this strategy, here
the number of nodes of other types that are created as well is minimized but also the
diversity of the output when applying the same strategy several times is decreased.

Adding Edges of a Specific Type

In this strategy, the user can specify an edge type (non-containment) and the number
of edges of the specified type that should minimally be created in the output model.
This strategy is similar to the strategy above. Thus its basis is a unit that just
contains the additional-edge insertion rule for the specified type. However, if this rule
is not applicable, a source or a target node (or both) for an additional edge of that
type are missing. The additional-edge-checking rules for this edge type are used to
detect this. Then, according transitive-node-creation rules for the type of the missing
node can be used to create the missing source and/or target node(s). Summarizing,
this strategy consists of a priority unit where the first comprised unit is just the
additional-edge-insertion rule. Its second comprised unit is a sequential unit with two
conditional units where the conditional units check for source or target nodes to be
missing, respectively, and create according nodes if that is needed.

Figure 4.9 presents this strategy at the example of the targetport-edge. The ac-
cording priority unit add_edge_targetport consists of two levels: The first one con-
tains the rule insert_additionalEdge. ... The second level is specified as a sequen-
tial unit add_proper_source_target_Node. . .: The conditional units add a node of type
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7%50 IndependentUnit add_TreeNode_Port
M_’[ add_in_Node_a_Port(?) } @

’ add_in_Graph_a_Node_with_Port(?) ]

—D[ add_in_Node_a_Graph_with_Node_with_Port(?) ]—

—’[ add_in_Root_a_Graph_with_Node_with_Port(?) ]_

[ Rule add_in_Node a_Port(cont.. ”=> Rule add_in_Graph_a_Node_with_Port(container)

«preserve» ports |«create»| |||«preserve» contents|«create»| ports |«create»
container:Node/™ :Port container:Graph[ ™ :Node [T :Port
«Create»| «Create» «Create»|

,:> Rule add_in_Node_a_Graph_with_Node_with_Port(container)

«preserve» subgraph |«create»| contents|«create»| ports |«create»
container:Node[ :Graph [ :Node [ :Port
«Create» «Create» «Create»

subgraph\ «forbid#upperBoundNotReached»

«forbid#upperBoundNotReached»
1:Graph

,:> Rule add_in_Root_a_Graph_with_Node_with_Port(container)

«preserve» graphs |«create»|contents |«create»| ports |«create»

container:Root| :Graph [T ‘Node [ :Port
«Create» «Create» KCreate»

Figure 4.8: Independent unit for randomly creating a containment tree containing
a fixed number of nodes of type Port

Edge (source) if there is no proper one and a node of type Port (target) if there is
no proper one. The conditional unit check_add_proper_sourceNode. .. uses the rule
check_proper_sourceNode. .. in the if-statement. The then-statement is set to true
whereas the else-statement is configured with a priority unit add_treeNode_Fdge which
adds an Edge-node respecting upper bounds and the EMF constraints. The condi-
tional unit adding a missing target node is built up analogously.

Sequential Combination of Strategies

As our approach allows for an arbitrary seed model as input, the result stemming
from one application can be used as input for a second application. This allows for
unlimited sequential combinations of strategies.



92

"% PriorityUnit add edqe_targetport = Rule insert_additionalEdqe_targetport(source, target)
, «presergj» targetport «create» preserven)
source:Edge ;
[inserLadditionalEdgeJargetport(?, ?)] targetport  «forbid» (e dre
Y
. targetport N\ -
add_proper_source_target Node_then_insert_targetpor. forbid» |«<forbid»

:Port

<2 SequentialUnit add_proper_source_target_Node_then_insert_targetpor |[¥% ConditionalUnit check_add_proper._sourceNode_for:_targetpori

if
v Q_'[ check_pmper_sourceNode_for_targetport(?)]

[ check_add_proper_sourceNode_for_ targetporl] -
add_TreeNode_Edge

= Rule check_proper_sourceNode_for_targetport(source:Edge,

[ check_add_proper_targetNode._for-_. targetport]

[insertfadditionalEdge, targetport(?, ?)]

«preserve» | targetpo «forbid#UBNotFulfilled»
source:Edge :Port

«forbid#UBNotFulfilled»

Figure 4.9: Units for inserting a fixed number of edges of type targetport

4.3.4 User Interaction

Since our approach is rule-based, it is also possible to allow for user interaction. In-
stead of random rule applications at random matches, the available rules and matches
can be presented to the user for selecting at which match a rule has to be applied
and how many times. That is promising for generating different tree structures of
various weights. While it may not desirable to completely generate large models in
such a way, a hybrid strategy can be applied to utilize the selection process, e.g., by
employing heuristic data. EMF Repair already supports this kind of user interaction.

4.3.5 Limitations and Formal Guarantees

Limitations

A user may only specify the minimum number of desired elements; the specification of
a maximum number is not yet supported within our approach. Although the genera-
tion process applies the respective rules exactly as often as specified during the model
increase phase, some of the rules create more than one element and additional model
elements may be created to repair violations of lower bounds during the consecutive
model repair. Moreover, we cannot guarantee that the user specification is fully met
since necessary rules may not be applicable as often as specified and backtracking is
not used. Even if the specification could be met in principle, it may happen that the
specific selection, order, and matches of rules do not succeed as they are randomly
chosen in the current version of the approach. By counting created elements, it can
always be decided whether a user specification has been met, and thus, the user can
be informed. In our experiments (in Section 4.5), every generated output meets the
selected specifications. Thus, while more research is needed to precisely evaluate the



93

severity of our limitations, the performed experiments are positive evidence that these
limitations are rather small even for reasonably complex meta-models.

Formal Guarantees

In case of termination, our approach guarantees a consistent EMF model as output:
All generation rules conform to a design that is proven to preserve EMF constraints
in [14]. Moreover, applications of these rules cannot introduce violations of upper
bounds as they are equipped with corresponding NACs. So each strategy mentioned
above is guaranteed to result in an instance model that conforms to EMF and does not
violate any upper bounds. Moreover, it is ensured by the finite number of rule calls
specified in each strategy that the increase phase terminates. Thus, suitable input
for the model completion process of EMF Repair [93] is ensured after finitely many
steps. For model completion, termination was proven in the case of f.f.i. meta-models
while correctness was proven in all cases in [92]. If the user specification is met after
a model has been increased, it is met after model completion as well since no deletion
takes place during model completion. Even an increased model that does not meet
the user specification is an EMF model and hence a suitable input for EMF Repair.
Thus, it can be completed and returned to the user as a consistent EMF model. The
given user specification, however, is only partly satisfied in this case.

4.4 Tooling

We have developed two Eclipse plug-ins that are available for download.! In the
following, we give an overview of the architecture of the developed tool with the help
of the UML component diagram.

Our implemented techniques consist of two main components depicted in Figure 4.10
and described as follow:

1. Meta2GR: The first plug-in is a meta-tool, called Meta2GR. It takes a domain
meta-model as an input and generates an Eclipse plug-in containing a model
transformation system (MTS) (the rules and the control units) implemented in
Henshin. This is done by applying the meta-patterns depicted in Figures 4.4-
4.7, which are specified as rules typed over the Ecore meta-metamodel, to the
given domain meta-model. Using the data of the matches, the domain rules
w.r.t. their schemes are created, thereafter. Once the MTS is generated, there
is no need to use the meta-tool again as long as the meta-model is not changed.
The tool composes two main components:

e Grammar Generator: It is responsible for applying the meta-patterns, find-
ing their matches, and generating the different kinds of generation rules

Thttps://github.com/RuleBased Approach/EMFModelGenerator /wiki
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Figure 4.10: An overview of the architecture of our techniques for model generation

w.r.t. their schemes and wrapping them in proper units, thereafter. This
component has several generators as follow:

— Transitive-node-creation-rule Generator: It is for deducing and gener-
ating the rules which add a node of a certain type inside of one of its
transitive containers without violating the corresponding upper bound
and the EMF constraints.

— Additional-element-creation-rule Generator: It is for deducing
and generating additional-node-creation and additional-edge-insertion
rules.

— Additional-edge-checking-rule Generator: It is for deducing and gen-
erating the rules which check if the possible source and target nodes
exist for an edge of a certain type.

— Unit Generator: 1t is for generating the corresponding control flows
as transformation units being configured with the generated rules.

e Meta-Specification: It contains the specification of the meta-patterns for
deducing the different kinds of the generation rules. They are designed as
Henshin rules typed by the Ecore meta-metamodel.
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2. EMF Model Generator: The second Eclipse plug-in is a modeler tool which
uses the derived MTS to generate instance models. It provides the following
functionalities:

e Generating consistent EMF models. The inputs are the user specifications,
e.g., the minimal number for adding elements of a selected type. The
outputs are consistent EMF models.

e Generating consistent EMF models incrementally. Starting from a given
(consistent) EMF model, the user can generate other consistent EMF mod-
els. This might be helpful, e.g., to generate a huge consistent EMF model
starting from a large consistent EMF model, and thus there is no need to
generate the whole model from scratch.

e Generating EMF models that may contain violations. This is done by
applying rules designed not to consider the multiplicity bounds, i.e., ex-
cluding the corresponding application conditions and keeping the ones that
respect the EMF constraints.

This tool consists of the following main components:
o Configuration-based Generator: It implements the strategies for generating

models w.r.t. user parametrizations.

e Wizard: It composes the specifications of the graphical user interfaces used
to receive the inputs of the user.

4.5 FEvaluation

In this section, we evaluate our approach to instance generation. In particular, we
want to answer the following research questions (RQs):

RQ 1.1: How fast can instance models of varying sizes be generated in our approach?
RQ 1.2: How does this relate to the scalability of the state-of-the-art instance gen-
eration tool?

RQ 2: How diverse are instance models generated using Strategy (1)? Does the use
of parametrization help to increase diversity compared to this?

All experiments were performed on a desktop PC, Intel Core i7, 16 GB RAM, Win-
dows 7 x64 using Eclipse Oxygen. Additionally, our Eclipse-based tool was configured
to use the default settings of Eclipse, e.g., the heap size was limited to 1 GB. All the
evaluation artifacts are available for download.?

4.5.1 Scalability Experiments

To answer RQ 1.1, we conducted three scalability experiments. We used 8 meta-
models taken from the literature and projects, namely the Statechart meta-model of
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Magicdraw [66], web model [16], car rental and class model [5], Bugzilla, Latex, Ware-
house, and GraphML (GML).2 The average size of the meta-models is 44 elements
(16 nodes, 17 edges, 11 attributes) and the number of multiplicity bounds is 24 on
average. Table 3.8 presents information about the meta-models. The overhead for
generating the needed transformation rules and units was, on average, less than 5
seconds, and we will thus focus on the run-time of the model generation in the sequel.

Experiment 1. In the first experiment, we randomly generated consistent EMF
models of varying sizes up to 10000 elements (counting nodes and edges) for each
meta-model using Strategy (1) (in Section 4.3.3). For each size category, we generated
10 consistent EMF models and calculated the average run-time. Table 4.2 presents
the results of this experiment. Considering all the meta-models and generated models
of varying sizes, our tool always generates a consistent EMF model with at least 10 000
elements. Generation times were fastest for the Bugzilla meta-model and slowest for
the GraphML one. To assess how robust the times are, we measured the time for
generating a seed and for the subsequent repair separately. For each one, we also
computed the corrected standard deviation (which is presented for model size 10000
only). Generating the seed is generally faster than the subsequent repair, except
for the StateChart and Warehouse meta-models. If the standard deviation is rather
high, this tends to be the case for both, the seed generation and the repair (as for
GraphML, Web Model, and Class Model). A closer inspection of the meta-models
shows that higher run-times, as well as higher deviations of run-times, are caused by
larger meta-model sizes (and hence larger sizes of derived MTSs) and higher numbers
of interrelated multiplicity constraints.

Table 4.2: Average run-time (in seconds) for generating consistent EMF models of
varying sizes for 8 meta-models (MM) using Strategy (1); for size 10000, run-time is
split into the generation of seed and subsequent repair where the corrected standard
deviation is added in brackets, respectively.

MM\Model Size 1000 3000 5000 8000 10000

Bugzilla 005 01 01 01 0.8 (0.006) + 0.04 (0.01)
Car Rental 0.27 5 179 723 65.5 (7.2) + 78.1 (4)
Class Model 0.16 17 94 615 132 (14.2) + 85 (113.8)
CoreWarehouse 0.81 4.5 189 679 0.4 (0.02) + 131 (10.9)
GraphML 04 26 167 792  39.3 (56) + 168.1 (119.6)
Latex 127 13 13 15  0.7(0.01) + 0.8 (0.03)
StateChart 055 1.7 55 187 35.8 (3.9) + 1 (0.3)
Web Model 016 14 51 146  18.7 (18.8) + 6.2 (2.6)

Experiment 2. The second experiment is dedicated to generating huge models for
a complex meta-model which would lead to complex model repair processes. The
meta-model GraphML is right for this purpose as its number of lower bounds being
non-zero is above the average. Fulfilling these bounds renders model repair into a

2The last four meta-models are extracted from  http://web.imt-atlantique.fr/x-
info/atlanmod/index.php?title=Zoos
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complex process. We expect the generation of models to become faster when using
Strategy (3), i.e., when specifying a minimal number of edge occurrences of a certain
type. In this case, nodes are introduced together with incident edges; this generation
behavior should reduce the number of repairs needed to take place for fixing lower
bound violations. Models of an average size of between 200000 and 500 000 elements
are generated in 6 to 32.5 minutes on average. Each generation process was repeated
five times. The standard deviation was between 1.4 to 6.5 minutes, i.e., the run-
times for the generation of these huge models are pretty stable. Table 4.3 presents
the experiment results. Moreover, to give an impression of the tool performance
for simple meta-models, we applied it to the Bugzilla meta-model. It is considered
as simple since it consists of unrestricted containment edges only. The tool needed
1.2 minutes only to generate a consistent EMF model with a minimum of 500000
elements.

Table 4.3: Average run-time and standard deviation (in minutes) for generating
consistent EMF models of varying huge sizes for the GraphML meta-model using
Strategy (3). The standard deviations are presented in brackets.

Model Size 200000 300000 400000 half a million
Average Time (Min.) 6 (1.4) 11.4(2.6) 23.3 (5.7) 32.5 (6.5)

Experiment 3. To answer RQ 1.2, we conducted a similar experiment with the
VIATRA Solver (the state-of-the-art of the generators for EMF models). In [125],
Semerath et al. report that after an extensive warm-up phase the tool was able to
generate models of size of about 500 objects in a few seconds, and models with about
4000 objects in 20 minutes on average (median). We installed their Eclipse-based tool

=| Generationwsconfig 3

import epackage "atlan.GraphmL"

Z

3= generate {

= metamodel = { package GraphML }
5 solver = ViatraSolver
B scope = {

7 #node = 188..500
8 #node= 188 ..1060
9 }

1@ number = 1

1 runs = 1

12 config = {

13 runtime = 3680808,
14 memory = 12808

15 }

16 }

Figure 4.11: Configuration of VIATRA Solver

as described at their web page [54] on January 23, 2019 and performed an experiment
on the hardware mentioned above using Xtext SDK 2.1 [147] and VIATRA SDK
2.1 [144].
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Figure 4.11 shows the configuration of their generator: the VIATRA solver is selected
(on line 5), the size of the model is assigned to an interval of values 100 to 500 nodes
(on line 7), the run time is limited to one hour and the memory is set to 12000 MB
(on line 14). As initial tests, we tried to generate models of size 10 to 100 nodes.
After many runs, the tool was able to generate a small model of size about 20 objects
for some of the meta-models in a few seconds or minutes. After that, we changed the
scope to be 100 to 500 nodes and executed the tool to generate instance models for
the GraphML meta-model. In several tests, after one hour of the execution, their tool
could not generate any instance (although it explored roughly 2 500 states of the state
space). This result is evidence that our tool generates consistent models considerably
larger and faster than what the VIATRA can perform.

4.5.2 Diversity Experiments

To assess the diversity of the output of our tool we conducted two experiments.

Diversity by Strategy (1)

We randomly generated sets of 10 instance models of the meta-model of GraphML
for sizes of about 100, 1000, 2000, and 10000 elements using Strategy 1). For each
set, we computed the difference for each pair of instance models using a simple metric
based on their respective local structure: For each instance model M, we computed
the in- and outdegrees in,, and out,, of every node n resulting in sets of tuples

Dy = {(ing, out,) | n is node of M} .

Given two such sets of tuples stemming from different instance models M and N, we
computed |Dyr A Dy, i.e., the cardinality of the symmetric difference of the respec-
tive sets. We call this metric the Number of Distinct In-/Out-Degrees (NoDIOD). It
can be seen as a simplification of the metric used in [127], by only taking into account
one very abstract kind of shape and ignoring typing information and larger possible
structures.

Table 4.4: Diversity of randomly generated instance models for different sizes

NoDIOD\Size 100 1000 2000 10 000
Average 15.3 35.5 44.7 59.6
Standard Deviation 3.4 6.7 5.6 6.5

The results are presented in Table 4.4. While for two instance models of size 100 there
exist 15 nodes on average connected in a way that is specific to one of the graphs, this
number only grows to roughly 60 for instance models with 10000 elements. While
this shows that resulting models are different enough from each other, they contain a
lot of nodes having an identical structure w.r.t. their connections. In particular, the
proportion of unique patterns w.r.t. the size of the instance models strongly decreases
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with growing size. A more sophisticated metric would be needed to state the real
extent of their diversity as typing information and larger structures are ignored by
our metric.

Diversity by Strategy (2)

To test if the further parametrization of our algorithm is fit to introduce diversity, we
conducted the following experiment. We randomly created a first set of ten instance
models of size of about 2000 elements of the meta-model of GraphML using Strat-
egy 1). As a comparison, we created sets of instances using Strategy 2): For each
node type, we created a set of ten instance models generated by specifying that this
node type should minimally occur 500 times. Since we expected this to already affect
the distribution of occurring elements, for each of the resulting sets we just calculated
the Shannon index [131], an established diversity measure. This is, we considered the
nodes of each of the sets as individuals and the node types as species and computed
the Shannon index according to the formula

9
n; n;

where N is the total number of nodes, ¢ ranges over the non-abstract node types
and n; is the according number of nodes of that type. The results are presented

Table 4.5: Diversity of randomly generated instances parametrized by node type

Strategy (1) Element Key Graph Edge
Shannon index 3 2.12 0.82 0.76 0.94

HyperEdge Node Port EndPoint Data
Shannon index 0.92 0.99 1.57 1.48 2.06

in Table 4.5. The result shows that the distribution of elements among the types
is significantly different between several of the sets which is a new kind of diversity
compared to that considered above. Note that, the types of occurring elements in
large instances resulting from Strategy (1) show nearly uniform distribution as the
maximal possible Shannon index is 1g9 ~ 3.17.

To assess that even the sets with similar Shannon indexes differ from one another, we
checked for the types actually occurring in each set and compared them. The results
are depicted in Figure 4.12. For example, 66 % of the nodes are of type HyperEdge if
HyperEdge (H.E.) is chosen as type parameter, and 68 % of the nodes are of type Edge
if Edge (E.) is chosen as parameter, even though both sets of models exhibit almost
the same Shannon index.

To answer RQ 2, instance models resulting from our first generation strategy contain
patterns distinguishing them from each other, even when only considering a small
pattern without typing information. Hence, the generated output is diverse even if
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Figure 4.12: Relative number of occurrences (x-axis) of node types (y-axis) in
all the instance models generated using Strategy (2); results obtained for different
parameter settings are encoded in colors and each color indicates one instance model.
For example, 79.26% nodes of type Graph and 20.74% nodes of type Node are created
in an instance model for parameter Graph (G.).

the effect diminishes with the growing size of instances. Moreover, choosing different
node kinds as a parameter leads to significantly different distributions of the types of
occurring elements. Hence, parametrization is fit to introduce a new kind of diversity
compared to the one observed for large instance models resulting from Strategy (1),
which exhibit a nearly uniform distribution of occurring types. However, the set
generated by Strategy (1) shows diversity compared to the other sets generated by
Strategy (2).

4.5.3 Threats to Validity

In our evaluation, we selected 8 meta-models. Evaluation results might differ when
choosing others. We are confident, however, that our results are representative as
we selected meta-models from diverse backgrounds, with reasonable sizes, and with
varying numbers and forms of multiplicities. The used metric to measure diversity
completely abstracts from details of the underlying graph structures of generated
instance models. On the one hand, abstracting from such details typically underrates
diversity rather than overrating it. On the other hand, we have to acknowledge that
the form of diversity we show in our experiments is limited to the distribution of

types.
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4.6 Related Work

In this section, we first present a classification scheme for existing model generation
approaches, which is shown in Figure 4.13. Language- and application-specific ap-
proaches will be only considered very briefly due to their principle limitations. Next,
we consider generic solver-based and a tableaux-based approach, which share with our
approach that they can be applied to arbitrary meta-models and used for a variety of
different application scenarios. Generic rule-based approaches are the most closely re-
lated to ours and will be considered in detail. We conclude our review by summarizing
the limitations of existing generic approaches which motivate our work.

Language- and Application-Specific Approaches

Language-specific approaches are presented, e.g., in [75, 138, 81, 82]. Laurent et
al. [75] present a manipulation-based approach employing multi-objective genetic al-
gorithms for the generation of process models. Solver-based approaches have been
proposed by Svendsen et al. [138], McQuillan and Power [82], and McGill et al. [81]
targeting domain-specifc languages referred to as metrics, object-role and train mod-
eling language, respectively.

Application-specific approaches mostly concentrate on the scenario of model trans-
formation testing with the aim of generating sets of models serving as model trans-
formation test suites exposing certain coverage criteria. This has been first addressed
by Fleurey et al. [43] and later been extended and implemented in [18, 74, 146]. Xiao
et al. [57] propose a rule-based approach which randomly generates large test models
for stress testing of model transformations in industrial applications.

Generic Solver-based Approaches

Solver-based approaches indirectly generate models by (i) translating a meta-model
into a logical formula, (ii) using an off-the-shelf solver to find possible solutions, and
(iii) translating back the found solutions into instances of the meta-model. In most
cases, solver-based approaches are capable of generating models which respect further
well-formedness constraints such as OCL constraints [51] since these can be translated
into the logical formula, too. The approaches presented in [128, 138, 81, 82] use Al-
loy [63] for this purpose. Although we see no general limitation for them to be applied
to arbitrary meta-models, the translations to Alloy presented in [138, 81, 82] target
dedicated domain-specific languages (see Section 4.6), and the language-independent
translation presented by Sen et al. [128] is, in contrast to our rule generation, not
fully automated. Most importantly, however, the scalability of using an off-the-shelf
solver is limited to very small models [125].
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Model Generation
Language-specific Application-specific
Solver-based Tableaux-based
\
Manipulation-based

Figure 4.13: Classification of existing approaches to model generation.

Rule-based

A Generic Tableaux-based Approach

Schneider et al. [120] present an approach and tool for generation of symbolic in-
stances of attributed typed graphs fulfilling a given set of first order constraints. The
approach is based on a correct and refutationally complete tableaux calculus for graph
constraints. The resulting minimal graphs encode (infinitely) many instances fulfilling
the set of constraints. While this is highly desirable to achieve an overview of the
structure of possible instances, retrieving large graphs from the symbolic instances is
not directly supported. Moreover, the work does not aim at EMF, and it is also not
possible to add the EMF constraints as some of those are not first order. Additionally,
the work cannot generate a valid graph starting from an invalid input graph.

Generic Rule-based Approaches

Grammar-based approaches. Ehrig et al. [41] present an approach for convert-
ing type graphs with restricted multiplicity constraints into instance-generating graph
grammars. Starting from the empty model, instance generation proceeds in three
phases; (i) the addition of nodes, (ii) the addition of edges (with nodes if necessary)
to respect lower bounds, and (iii) the addition of additional edges without violat-
ing upper bounds. Taentzer [139] generalizes the approach from restricted to arbi-
trary multiplicity constraints. However, the approach is presented for plain graphs,
i.e., there is no consideration of containment edge types and other EMF constraints.
Moreover, there is no discussion on how to parametrize the approach and how to sup-
port user interactions. Finally, there is no implementation and thus, no experiment
showing the scalability of the approach.
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Radke et al. [114] present a translation from OCL constraints to graph constraints
which can be integrated as application conditions into a given set of transformation
rules [89]. The resulting rules guarantee validity w.r.t. the OCL constraints. The work
is motivated by application to instance generation. However, no dedicated algorithm
is presented. Instead, each rule-based approach could use this technique to adapt its
rules to respect further well-formedness constraints additionally. As a drawback, the
resulting application conditions can render rules inapplicable.

Another grammar-based approach is presented by Mougenot et al. [86]. By reducing
models to their containment structure, a tree grammar is derived from that meta-
model projection. The approach uses the so-called Boltzmann method to create tree
structures uniformly, where uniformity means that for a tree of a given size (in num-
ber of nodes), the method is capable of uniformly generating all tree structures of
that size. Similarly, the tool EMF random instantiator [50] presented by Gémez and
the AtlanMod Team (no paper presenting the tool is found) considers only the con-
tainment edges. While both approaches are highly efficient, reducing models to their
containment structure is a severe oversimplification in practice.

Additionally, both frameworks RandomEMEF presented by Scheidgen [118] and EMG
presented by S. Popoola et al. [109], aid users to manually specify a generator that
automatically generates models, and thus, the developing time and effort can be re-
duced. However, ensuring that the generated models conform to the meta-model and
the generated models satisfy the required constraints is the responsibility of the de-
veloper of the model generator. Moreover, there is no discussion about how to design
the generator. Besides, there are no mature experiments evaluating the scalability of
the tools.

Manipulation-based approaches. A manipulation-based approach known as the
SiDiff model generator (SMG) has been proposed by Pietsch et al. [108, 107]. It takes
an existing model as input and manipulates it by applying model editing operations,
configured by a stochastic controller. Pietsch et al. propose to adopt the approach pre-
sented by Kehrer et al. [66] which generates a complete set of consistency-preserving
edit operations from a given meta-model. However, it supports only a restricted
class of meta-models, and the edit operations can be applied to valid models only.
Moreover, the stochastic controller has been designed to generate sequences of mod-
els which mimic realistic model histories [148]. Thus, the generated models are, on
purpose, very similar to each other lacking diversity.

Hybrid approaches. A hybrid approach is implemented within the VIATRA
Solver [125]: Rules are used to generate an instance model from a seed model or from
scratch, and a solver is used to guarantee validity with respect to additional well-
formedness constraints. During the generation process, a partial model is extended
using rules, and this partial model is continuously evaluated w.r.t. the validity of the
constraints using a 3-valued logic [126]. By under-approximation, the search space is
pruned as soon as a partial model cannot be refined into a valid model. The evaluation
of the constraints can be done using a specifically developed solver or an off-the-shelf
one. The resulting instance models fulfill the additional constraints and conform to
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EMF. The VIATRA Solver supports well-formedness constraints in a particular graph
pattern language; support of OCL is not yet implemented. Moreover, the VIATRA
Solver has been investigated successfully for diverse output. However, while exper-
imental results indicate that the approach is 1-2 orders of magnitude better than
existing approaches using Alloy [125], the authors also mention that the scalability of
their approach is not yet sufficient.

We summarize the related work through selected generic approaches from all cate-
gories in Table 4.6 w.r.t. important characteristics. First, we indicate whether the
approach is implemented in a tool (column 1). Second, we are interested in ma-
nipulating an existing seed model (column 2), e.g., for the sake of generating model
evolution scenarios. Here, o indicates that only special kinds of seeds are possible.
Third, concerning the consistency level of generated output models, we are interested
in the conformance with EMF (column 3) and additional well-formedness constraints,
including multiplicities (column 4). Here, + indicates partly and ++ full support of
multiplicity constraints, whereas ++-+ means support of more general well-formedness
constraints. Fourth, we are interested in the properties of the generation algorithm
itself, which should be configurable (column 5), offer interaction possibilities (col-
umn 6), and be scalable (column 7) in order to support the generation of diverse and
large instances, respectively.
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None of the generic approaches to model generation fully meets all criteria. Given a
meta-model with multiplicities as the only well-formedness constraints, we are heading
towards a model generator that supports all quality attributes.

4.7 Conclusion

We developed a rule-based approach for generating consistent models w.r.t. arbitrary
multiplicities and EMF constraints. Since we use a rule-based approach, our genera-
tor is configurable to support user specifications and to allow user interaction. Several
parameterization strategies are presented to generate different sets of consistent EMF
models. Two Eclipse plug-ins have been developed: Meta2GR automatically trans-
lates the meta-model of a given DSML to an MTS and the EMF Model Generator
uses the derived MTS to generate consistent EMF models. We evaluated the scalabil-
ity of our approach by generating large instances of several meta-models of different
domains and showed that models with 10000 elements can be generated in about
a minute on average. Furthermore, our tool can generate consistent EMF models
of 500000 elements in less than 2 minutes for a meta-model with largely unrelated
multiplicity constraints and in about 30 minutes for a meta-model with closely in-
terrelated ones. A scalability comparison with the state-of-the-art instance generator
is provided showing that our generator is efficient for generating large and consis-
tent EMF models from meta-models without OCL constraints. Moreover, we showed
that a certain form of diversity between the generated models can be achieved by
configuration. The related work is discussed in detail as well.

As future work, we intend to support a set of OCL constraints (at least negative
constraints). Translating OCL constraints to graph patterns [114, 89], and further
to application conditions of rules is promising to develop an automated interactive
approach for generating consistent EMF models conforming meta-models with (OCL)
constraints. Furthermore, we want to support further configurations and generate
realistic models by leveraging a stochastic controller [148] and extend our experiments
to generate huge models starting from existing large models as seed models.
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Part 11

Consistency Ensuring Techniques for Model
Transformations

In Model-Driven Engineering (MDE), model transformations are the key operations for
manipulating models, including, e.g., a repair transformation as described in Chapter 3,
refactoring, and code generation. Applying a transformation to a model may change its
consistency with respect to a set of constraints, and thus, errors may occur. In several
application scenarios, models have to fulfill a set of constraints or their consistencies (at
least basic ones) have to be preserved during the transformation process. For example,
applying editing operations to a model has to satisfy the constraints required by the model
editor to view it. Moreover, each state of a concurrent and distributed system should fulfill
some required invariants such as safety properties, and each refactoring should preserve the
model consistency.

Manually enhancing a set of rules to guarantee or to preserve a set of constraints is
a tedious, time-consuming, and error-prone task. Furthermore, it requires high skills related
to the theoretical foundation and the environment. Optimizing the results is another
challenge as well.

In this part, we present two works: In Chapter 5, we introduce a correct-by-construction
technique for translating OCL constraints into semantically equivalent graph constraints
and integrating them as guaranteeing application conditions into a transformation rule.
Our techniques realize an existing theory and automate the whole process. In Chapter 6, we
present an optimizing-by-construction technique for application conditions for transforma-
tion rules that need to be constraint-preserving. This automatic construction of optimized
preserving application condition is conceptually new. Moreover, we show the soundness of
the technique.

We develop all the techniques as ready-to-use tools based on the Eclipse Modeling
Framework. Further, we evaluate the efficiency (complexity and performance) of both
works, assess the overall approach in general, and discuss the related work.
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Automated Construction of Guaranteeing
Application Conditions from OCL Constraints

This chapter shares material with the ICGT’18 paper “OCL2AC: Automatic Transla-
tion of OCL Constraints to Graph Constraints and Application Conditions for Trans-
formation Rules” Nassar et al.[89].

Model transformations are often supposed to have a well-defined behavior in the sense
that their resulting models are consistent w.r.t. a set of constraints. Based on existing
theory, we develop an automated technique that is able to adapt a given rule-based
model transformation such that resulting models guarantee a given constraint set.
This technique is designed for models of the Eclipse Modeling Framework and based
on graph constraints and graph transformations. Two main correct-by-construction
functionalities are developed: First, OCL constraints are translated into semantically
equivalent graph constraints. Secondly, graph constraints can further be integrated
as application conditions into transformation rules. The resulting rule is applicable to
an EMF model only if its application does not violate the original constraints. This
technique is thus able to guarantee the consistency of a model transformation w.r.t
a given set of constraints; its correctness is shown in the literature. Our technique is
implemented as Eclipse plug-in, called OCL2AC, and enhances Henshin transforma-
tion rules in a fully automated way. In the evaluation, we show that our technique is
feasible and effective in practice, i.e., both components work reasonably fast, and the
complexity of the resulting output is far better than could be expected from theory.

5.1 Introduction

Model transformations are key artifacts of Model-Driven Engineering (MDE). They
are used for various MDE-activities including translation, optimization, and synchro-
nization of models [130]. Resulting models should belong to the transformation’s tar-



110

get language, which means that they have to satisfy all the corresponding language
constraints. This means that the developer has the task to design transformation
rules such that they behave well w.r.t. language constraints. This task can easily
become time-consuming and error-prone. Moreover, it requires high skills related
to the theoretical foundation and the environment. Furthermore, a straight forward
way to test the well-behavedness of a model transformation is to systematically apply
it to selected test models and to analyze the transformation results. Since testing
can become tedious, we are interested in a static and automatic way to guarantee
constraints.

Based on existing theory [55, 114], we present a static, automated technique which
is able to automatically adapt a given rule-based model transformation such that
resulting models satisfy a given set of constraints. Use-cases for this technique are
abundant, including instance generation [114], ensuring that refactored models do
not show certain model smells (anymore), and generating model editing rules from
meta-models to enable high-level model version management [66]. More examples of
how advancing constraints into application conditions of transformation rules may be
used can be found in [28].

Our technique builds upon the following basis (see Chapter 2 for more details): The
de facto standard for defining modeling languages in practice are the Eclipse Mod-
eling Framework (EMF) [34] for specifying meta-models and the Object Constraint
Language (OCL) [99] for expressing additional constraints. Recent empirical find-
ings suggest that OCL is especially fit to express complex constraints (compared to
Java) [149]. Graph transformation [39] has been shown to be a versatile foundation
for rule-based model transformation [40] focusing on the models’ underlying graph
structure. To reason about graph properties, Habel and Pennemann [55] have devel-
oped (nested) graph constraints being equivalent to first-order formulas on graphs. A
construction of application conditions for transformation rules out of constraints was
first developed for graphs by Heckel and Wagner [58] and then generalized in [55].

The first component of our technique is able to translate a reasonable subset of OCL
constraints to nested graph constraints using the formally defined OCL translation
in [114] as a conceptual basis. The second component of our technique integrates
a graph constraint as an application condition into a transformation rule. The re-
sulting application condition guarantees that the EMF model resulting from the suc-
cessful application of the enhanced rule satisfies the original constraint. We call it
a constraint-guaranteeing application condition. This integration does not change
the rule’ actions. Note, our technique does not yet check in advance whether the
given transformation rule with its application condition does already guarantee the
constraint or not.

Our technique is implemented as Eclipse plug-in, called OCL2AC; being based on
EMF and the model transformation language Henshin.

Note that our OCL translator is novel: Instead of checking satisfiability, it enhances
transformation rules such that their applications can result in valid models only. To
that extent, our technique is static; moreover, it not just checks constraint satisfaction
but also aims the user to improve transformation rules. Specifically, we make the
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following contributions:

e Solution design for automatically translating OCL constraints to graph con-
straints and application conditions of transformation rules (in Sections 5.3.1
and 5.3.2). The theoretical background for our technique is fully elaborated
and proven to be correct. The most comprehensive references are [55] for the
calculation of preconditions and [114] for the translation of OCL into graph

constraints.

o Implementation: Providing a ready-to-use tool, called OCL2AC, based on EMF
and Henshin (in Section 5.3.4). The domain developer can use this tool to
automate the whole process.

o Evaluation of this implementation in which we study the complexity and the
performance of constraint translation and integration (in Section 5.4).

The rest of this chapter is structured as follows: Section 5.2 contains our running
example, a simplified statecharts meta-model. Section 5.3 describes the design and
implementation of our technique in more detail and presents the developed tool and
its functionalities while Section 5.4 report the results of several research questions
investigated regarding the restrictiveness, complexity, and performance. We discuss
related work in Section 5.5 and conclude in Section 5.6.

5.2 Running Example

To illustrate the behavior of our developed technique, we use a simple Statecharts
meta-model displayed in Figure 5.1.

2 PseudostateKind
~ initial

= deepHistory

~ jein

- fork

= choice

~ exitPoint

= terminate

E StateMachine

[0..*] connectionPoint

B Vertex

= name : EString

[0.*] subvertex

= name : EString

[1.*] region

B Region

[1.1]target  [0.*] incoming

2 Transition |[0-*] transition

[1.1] source [0..*] outgoing

5 Pseudostate

T kind : PseudostateKind = initial

[0..*] connectionPoint

O State

o

[0.*] region

Figure 5.1: A simple Statecharts meta-model

i

B FinalState

A StateMachine contains at least one Region and potentially Pseudostates of a kind
such as initial. A Region contains Transitions and Vertices. Vertex is an abstract class
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with concrete subclasses State and Pseudostate. A State can again contain Regions
and Pseudostates to support the specification of state hierarchies. FinalState inherits
from State. Transitions connect between Vertices.

A basic constraint on statecharts, which is not expressible by just the graphical struc-
ture of the meta-model or by multiplicities is the constraint no_outgoing_transitions:
A FinalState has no outgoing transition. This constraint can be specified in OCL as
follows:

context FinalState invariant no_outgoing_transitions: self.outgoing—>
isEmpty ()

Our technique can translate this constraint into the graph constraint in Figure 5.2.
The graph constraint states that a FinalState does not have an outgoing transition.
Node names signify inclusions of graphs along the nesting structure.

[f) Rule insert_outgoing_transition ]

v (self:FinalState,
outeoin — «preserve», . |«preserve»
? (Self:FinaIState e )) rv:\Vertex outgoing rt:Transition

«Create»

Figure 5.2: Graph  constraint
no_outgoing_transitions Figure 5.3: Transformation rule

Figure 5.3 shows a simple transformation rule in Henshin. The rule inserts an edge
of type outgoing between a Vertex and a Transition which both have to exist before
rule application and are preserved.

As a second capacity, our technique can adapt a given transformation rule such that
it is not applicable if the result would violate a graph constraint. This behavior is
achieved by integrating a new application condition into the rule. Integrating, e.g., the
constraint no_outgoing_transitions into the rule insert_outgoing_transition results in the
application condition displayed in Figure 5.4. The upper part forbids node rv:Vertex
being matched to a FinalState. The lower part requires that the rule is matched
to consistent models only, i.e., not containing already a FinalState with an outgoing
Transition. It may be omitted if consistent input models can always be assumed.

. outgoin, oy
rv-FinalState] [rv:FinalState £ons v FinalStato
3 .3 v3 A
rv:Vortcx‘

3 ‘rt:Transition‘ ,3 ‘rt:Transition‘ v 3

[self:FinalState| [self:FinalStatef—*****{var9: Transition] lself:FinalState]—"="*/rt: Transition|

‘rv:\/ortcx‘

Figure 5.4: Application condition for the rule insert_outgoing_transition after inte-
grating the constraint no_outgoing_transitions
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5.3 Solution Design and Implementation

In this section, we present the solution design of the developed technique and present
its main functionalities. Our correct-by-construction technique consists of two main
components: (1) a translation from OCL constraints to graph constraints and (2) an
integration of graph constraints as guaranteeing application conditions into transfor-
mation rules. Each of these two main components is designed to be usable on its
own.

5.3.1 From OCL to Graph Constraints

The first component of our technique takes a domain meta-model and a set of OCL
constraints as inputs and returns a set of semantically equivalent (nested) graph
constraints as output. The translation process is composed of the steps shown in Fig-
ure 5.5, which can be automatically performed.

(1) prepare (@) simplify (5) simplify

Meta-model

oCL translate | Compact |complete| Nested Graph
—)

/ Constraints | ™= | ondition Constraints .
v — Graph Constraints

OCL Constraints

Figure 5.5: From OCL to graph constraints: Component design

In Step (1) an OCL constraint is prepared by refactorings. This is done to ease the
translation process, especially to save translation rules for OCL constraints. The
semantics of the constraint is preserved during this preparation. Step (2) translates
an OCL constraint to a graph constraint along with the abstract syntax structure of
OCL expressions. This translation largely follows the one in [114].

Let us consider the translation of OCL constraint no_outgoing_transitions to the graph
constraint displayed in Figure 5.2: The expression self.outgoing—isEmpty() is refac-
tored to not(self.outgoing—size() > 1). Hence, a translation rule for isEmpty() is not
needed. Then, this sub-expression is translated to a compact condition containing a
graph with one edge of type outgoing from a node of type FinalState to a node of type
Transition. The existence of such a pattern is negated.

Then a first simplification of the resulting compact condition takes place in Step (3),
using equivalence rules [106, 114]. Applying those can greatly simplify the represen-
tation of a condition; they can even collapse nesting levels.

Step (4) completes the compact condition to a nested graph constraint being used
to compute application conditions later on. The resulting nested graph constraint is
simplified in Step (5) using equivalence rules again.
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5.3.2 From Graph Constraints to Left Application Conditions

The second component of our technique takes a Henshin rule and a graph constraint
as inputs and returns the Henshin rule with an updated application condition guar-
anteeing the given graph constraint. Figure 5.6 gives an overview of the steps to be
performed:

e (Dprepare )
/ P ® ® Bate |
Graph Constraint > shift left A~
raph Constrain / CO(E\r;f;nt s | Henshin RUIe,~| =) Henshin Rule E>’ -
A
- = >
(@ simplify J Henshin Rule

Henshin Rule

Figure 5.6: Integration as application conditions: Component design

In Step (1) the given graph constraint is prepared; if the input is a compact constraint,
it is expanded to a nested constraint. Moreover, it is refactored to eliminate syntactic
sugar. The operator = for implication, for example, is replaced with basic logic
operators.

Step (2) shifts a given graph constraint ge to the RHS of the given rule so that we
get a new right application condition rac for this rule. The main idea of shift is to
consider all possible ways in which gc could be satisfied after rule application. This
is done by overlapping the elements of the rule’s RHS with each graph of gc in every
possible way. This overlapping is done iteratively along with the nesting structure of
gc. This algorithm is formally defined in [55] and shown to be correct. The result of
this calculation is yet impractical as one would need first to apply the rule and then
check the right application condition to be fulfilled. Therefore, we continue with the
next step.

Step (3) translates a right application condition rac to the LHS of the given rule r to
get a new left application condition lac. It is translated by applying the rule reversely
to the right application condition rac, again along with its nesting structure. If
the inverse rule of r is applicable, the resulting condition is the new left application
condition. Otherwise r gets equipped with the application condition false, as it is
not possible to apply r at any instance without violating gc. The rule r with its new
application condition has the property that, if it is applicable, the resulting instance
fulfills the integrated constraint.

Step (4) simplifies the resulting left application condition using equivalences as for
graph conditions. The output is the original Henshin rule with an updated left appli-
cation condition guaranteeing the given graph constraint.
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5.3.3 Graph Condition Representation

Figure 5.7 shows the meta-model we developed to represent nested graph conditions.
Basically, a NestedConstraint contains exactly one NestedCondition which is concretely
a QuantifiedCondition, a True or a Formula. The domain of a nested constraint must
compose an empty Graph, i.e, a graph without nodes and edges. a NestedConstraint
may contain AttributeConditions also. A Formula has an operator property and con-
tains at least one nested condition. A QuantifiedCondition has a quantifier property
with value EXISTS or FORALL, and has a nested condition, a graph and a morphism.
A Graph may contain Nodes and Edges being connected together. A Morphism may
contain NodeMappings and EdgeMappings. A NodeMapping maps between a source
node and a target node using the references origin and image, respectively. Similarly,
the EdgeMapping does between two edges. Each NestedCondition has a domain which
refers to a graph and it may have Variables.

Figure 5.8 shows the abstract syntax of the completed form of the nested graph con-
straint no_outgoing_condition shown in Figure 5.2. The abstract syntax of the compact
form of the constraint no_outgoing_condition is similar to that one but without the mor-
phisms and their contents, i.e., without the nodes m1, m2 and nm (the gray-colored
elements).
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5.3.4 Tooling

In this section, we give an overview of the architecture of our developed tool with
the help of the UML component diagram. Additionally, we discuss its features and
limitation and present the test as well.

0oCL2GC = |

Graph Condition $:]

’ Meta-models {]‘ ’ Simplifier %:]H Pretty Printer $:”
Meta-model + OCL ocL %:]
invaraints (.ecore file) _O}

Translator g:]
OCL.oclas — l OCL Refactor $:” l OCLTranslator $_” l Completer $_”

User Interface (Ul) {]

GraphConstraints.xmi

} l Wizard $:]‘ ’ Viewer {]‘
AN S

Q T
GC2AC 2 |
Integrator 2 ]
e ’ Shifter {]‘ Lefter $:”
lenshin
—O)/ Application Condition $:]
’ Simplifier $:” ’ Pretty Printer @‘

Eclipse Modeling Framework g:]
Operation System g:]
l Latex and PDF Engine g:” ’ Java {H

Figure 5.9: An overview of the architecture of our tool OCL2AC

The developed tool OCL2AC consists of several components depicted in Figure 5.9
and described as follows:

e OCLZ2GC: It has two main components: One is for specifying, simplifying, and
displaying graph conditions ( Graph Condition) and the other one is for refactor-
ing and translating OCL constraints to graph conditions ( Translator). OCL2GC
takes a domain meta-model (typed by Ecore) and a set of OCL constraints as
inputs and automatically returns a set of semantically equivalent graph con-
straints as an output.
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o User Interface: It is for handling the user inputs and displaying the outputs.

e GC2AC: It comprises two main components: One is for integrating a graph con-
straint as a constraint-guaranteeing application condition into a rule (Integrator)
and the other one is for simplifying and displaying application conditions (Ap-
plication Condition). GC2AC takes a transformation rule defined in Henshin
and a graph constraint as inputs and automatically returns the Henshin rule
with an updated application condition respecting the given graph constraint.
Note, GC2AC does not yet check in advance whether the given transformation
rule with its application condition does already guarantee the constraint or not.

OCL2GC uses the functionalities of the OCL plug-in [35] to extract the OCL con-
straints as a model file. OCL2GC takes the OCL model file as an input and returns a
set of semantically equivalent graph conditions as an output. The output is provided
as an instance model of the meta-model for representing graph conditions depicted
in Figure 5.7. The component User Interface takes a Henshin model file (including
rules) and the model file of graph constraints as inputs, and the output is the Hen-
shin model file including the rules being updated. This component mainly calls the
functionalities of the component GC2AC. GC2AC uses the Henshin plug-in [61] to
deal with rules specified in Henshin. All the developed components are developed
as plug-ins on top of the Eclipse Modeling Framework and presented as grey-colored
components in Figure 5.9.

Both components OCL2GC and GC2AC can be used independently as an Eclipse-
based tool. The domain developer can use both components to automate the whole
process. The tool is available for download at [142].

Features

OCL2AC additionally provides the following features:

Wizard. OCL2AC provides a user-friendly wizard for selecting a rule and a graph
constraint that shall be integrated, as shown in Figure 5.10. The inputs of the wizard
are a Henshin model (file) and a graph constraint model being generated by OCL2GC
or manually designed w.r.t the developed meta-model for graph conditions.

Pretty printing. OCL2AC additionally provides tool support for pretty printing
graph constraints and application conditions of Henshin rules in a graphical form as
shown in Figures 5.2 and 5.4 above. Pretty printing is supported for both compact and
detailed representation of nested constraints and application conditions. The pretty
printer is developed as an additional Eclipse plug-in which automatically derives the
corresponding I TEX-representation. The input can be a graph constraint or a Henshin
rule (for printing the left application condition); the outputs are in WTEX and in PDF
(being rendered from the I TEX-output) as shown in Figure 5.11. Additionally, an
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Figure 5.10: User-friendly wizard for the integrator

Eclipse PDF viewer has been developed to display results which can be printed or
saved, thereafter.

Constraints as application conditions. Our tool OCL2AC can be used to inte-
grate a given constraint as a left application condition into an empty rule (the LHS and
RHS are empty graphs), and thus we get a rule which checks if the model is consistent
w.r.t. the constraint. The updated rule is applicable if and only if the input model sat-
isfies the constraint. For example, integrating the constraint no_outgoing_transitions
into an empty rule produces an application condition being semantically equivalent
to the constraint as shown in Figure 5.12. Thus, the rule with the resulting appli-
cation condition is applicable if and only if the input model is consistent w.r.t. the
constraint, i.e., if the model has no FinalState-node being connected to a Transition-
node with an outgoing-edge. Such a rule can be used to assert a model w.r.t. the
constraint, for example.

Limitation

Since the theory beyond our technique considers a first-order, two-valued logic and
relying on sets as the only collection type, our first component OCL2GC supports
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Figure 5.12: Application condition being semantically equivalent to the con-
straint no_outgoing_transitions

a slightly restricted subset of Essential OCL: OCL2GC translates OCL constraints
corresponding to first-order, two-valued logic and relying on sets as the only collection
type. These restrictions are revealed in the restricted use of collection operation size
as well as the omission of operation iterate and types void and invalid. Moreover,
operations associated with collections not being sets (like isUnique) or with sets of
primitive values (like sum) are not supported. Likewise, the translation of user-
defined operations is not supported. Operations defined in OCL are supported as
long as they are not recursive and follow the restrictions above. Pairing with the
technique’s functionality, we focus on OCL invariants and neglect other uses of OCL.
Therefore, the operation ocllsNew is not supported. Moreover, there is only limited
support to integrate constraints on attributes into Henshin rules that perform complex
attribute computations. However, in Section 5.4.1 we show that the supported subset
of OCL is sufficient even for a complex example.
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Test

We applied our tool OCL2AC to the PetriNet meta-model being enriched with 11
OCL constraints (listed in Table B.1). The results of translating the OCL constraints
to graph constraints are presented as concrete examples for the OCL translation
rules of the theoretical foundation of the tool [114]. Furthermore, we applied the
tool to another meta-model, namely the Statechart of the MagicDraw with 11 OCL
constraints also (listed in Table B.2). Here, we calculated the results manually. In
both cases, the received outputs using our tool conform to the theoretical results.

After that, the tool is applied to integrate the 11 OCL constraints of the Statechart of
the MagicDraw as application conditions into a set of 15 editing rules of different kinds.
First, we integrated one constraint into a rule and compared the output with the result
of the manual calculation. The outputs are equivalent. Second, we integrated all the
11 constraints into each rule. Since the integration of all constraints results in a large
application condition which is difficult to be checked manually, we performed the
following tests: each enhanced rule is applied to a valid model at a specific match.
Then, the output of the rule application is compared with the output of the EMF
validator after applying the original rule at that match. Moreover, we checked the
outputs of applying the rules at several matches. In both cases, the comparison
results are identical. For these tests, we used valid models of sizes between 800 to
16000 elements covering all the meta-model types.

5.4 Evaluation

Research questions (RQs). Since the complexity may arise when translating a
graph constraint to an application condition, and thus the translation time may be
an obstacle to usability, we want to figure out the effectiveness of our technique in
practice. Therefore, we ask the following research questions:

RQ 1: How restrictive is our OCL translation?

RQ 2.1: Is the complexity of a given OCL constraint comparable to that of the
resulting graph constraint and what is the worst complexity of resulting
graph constraints?

RQ 2.2: What is the worst complexity of resulting application conditions and
what is the number of graphs of the resulting application conditions?

RQ 3: How fast is the translation process and how fast is the integration pro-
cess?

5.4.1 Restrictiveness of Our Technique

To answer RQ 1, we investigated the OCL-constraints coming with the UML meta-
model. More concretely, we considered the Eclipse plug-in org.eclipse.uml2.uml for



123

UML. OCL constraints are implemented as EMF operations, potentially using further
operations as helpers. We extracted 406 invariants from the documented operations,
which we further investigated. 32 invariants are not well-formed, well-written, or just
empty. 200 of the remaining 374 well-formed invariants are trivial, i.e., equal to true or
false. 104 of the remaining 174 non-trivial ones can be directly translated. The other
70 invariants use helper operations. By analyzing their source code, we found that
22 of these 70 invariants use recursive operations or non-supported OCL operations,
the other 48 invariants use non-recursive operations. Hence, their operations can be
preprocessed by inlining them into the invariants. In summary, 152 invariants out of
174 can be translated, i.e., more than 87 %.

5.4.2 Complexity Considerations

To answer RQ 2, we characterize the complexity of our OCL translation by considering
the space complexity of the outcomes dependent on input constraints. We consider
both components of our technique separately.

Experiment set-up. We consider the case study presented in [66] where editing
rules are automatically and manually generated for the Statechart of MagiDraw [80].
Out of 17 original constraints, they identified 11 as necessary to be valid to edit a
model in MagicDraw. Table B.2 presents the OCL expressions. In total, they used 84
editing rules for Statecharts. Those are suitable for our purpose, as rules of different
sizes and for all kinds of actions and elements of the meta-model are provided. Note
that, for all graph conditions, we evaluated the resulting compact conditions, since
the completed graph conditions, i.e., the detailed version containing morphisms and
their domains, are just internally needed for the tool.

Translation of OCL Constraints

We characterize the complexity of our first component which translates OCL con-
straints to graph constraints. Let n denote the number of abstract syntax elements
of an OCL constraint (as they occur in the OCL meta-model). We estimate the num-
ber of syntax elements in the corresponding compact condition along the translation
steps presented above. In Step (1), refactorings do constant pattern replacement,
hence they do not change the complexity of a constraint significantly. Step (2) does
the proper translation. Two of the translation patterns lead to an increase of model
elements in the graph constraint: (a) Translation of v.role creates not only an edge of
kind role but additionally the corresponding target node. (b) Translation of operation
size() >= c creates ¢ graph elements. Hence the size of the resulting graph constraint
is roughly n + Y., ¢; with Y, ¢; being the sum of those constants the size-expressions
of the constraint are compared to. Steps (3)—(5) just simplify constraints.

In practice, the values of occurring constants are usually pretty small (such as 1 or
2), so using operation size does not harm.
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Figure 5.13: Comparision of complexity of OCL and GC

Complexity experiment. As an application case, we translated the 11 OCL con-
straints of the Statechart of the MagicDraw to graph constraints. To compare the
complexity of results, we used several simple complexity metrics. When comparing
OCL with graph constraints, we measured two factors: (1) size and (2) nesting depth.
To measure the size of constraints, we just compared the number of elements in ab-
stract syntax structures w.r.t. the corresponding meta-models. For nesting depth,
we basically used the deepest nesting level of their abstract syntax trees. However,
for OCL constraints, we did not count navigation expressions and, for nested graph
constraints, we counted occurrences of 3G as one level. We tried to compare the
logical nesting one has to follow when reading a constraint.

Applying the first component OCL2GC to the Statecharts meta-model with 11 con-
straints leads to metric values summarized in Figure 5.13.

The number of elements in the resulting graph constraints is increased by one-third
on average compared to the original OCL constraints. In the worst case, the number
of elements is doubled; in the best case, only one element is added. In contrast, the
nesting of the constraints was never increased but decreased (by 1) in 6 of 10 cases.

The increase of elements mostly stems from the inclusion of target nodes: While OCL
just navigates along roles, a graph constraint contains an edge and, additionally, its
target node for each role. Moreover, a size-comparison can lead to the addition of 2n
graph elements where OCL just refers to the integer n. These observations suggest
an answer to RQ 2.1: There is a slight increase in metric values on average. We
can argue, however, that it is accompanied by a gain of information: The context of
attributes and associations, i.e., containing or target nodes, becomes visible, which
might help in understanding the constraint. Considering that not all possible simpli-
fications are implemented yet and that the nesting could be even further reduced in
some of the resulting graph constraints, the translation of OCL constraints into graph
constraints seems to be a promising way to ease the comprehension of constraints:
Context information is added while structural complexity is reduced. However, the
comprehensibility of a graph constraint is highly dependent on its visual organiza-
tion. It is up to future work to develop a technique for condensing graph conditions
considerably so that users can understand all the application conditions a rule has to
fulfill.
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Integration of Graph Constraints

To answer RQ 2.2, we roughly sketch how constraint complexity grows in the worst
case when computing application conditions from a given graph constraint and a rule.
The preparation in Step (1) and the computation of the left application condition
in Step (3) do not change the complexity significantly. But in Step (2) all possible
overlappings of the RHS of the rule with the prepared constraint need to be computed.
Let n denote the number of nodes in the first graph of the constraint and m the
number of nodes in the RHS of the rule. In the worst case (untyped graphs containing

just nodes) this results in 3™ (D) (D)k! < (n + 1)!m! different graphs with m
to n + m nodes each (compare also [105]). Further, each of the resulting graphs
needs to be overlapped in each possible way with the graphs following on the deeper
levels of nesting of the constraint. In practice, however, the size of an application
condition is much more restricted. Due to node typing and graph structure, many

node overlappings are not possible.

Complexity experiment. To find out how far this blow up of application condi-
tions is a problem in practice, we conducted the following experiments considering the
number of graphs as well as the number of nesting levels in application conditions.

To answer R() 2.2, we compare the number of graphs of a nested graph constraint
with the number of graphs of the resulting application condition. For a rule which
already has an application condition, we subtract the number of its graphs from the
result. Given the 11 OCL constraints of our application case, we translated them to
graph constraints containing 2 to 10 graphs (36 in total) and integrated all of those
in each of the 84 rules using OCL2AC (i.e., computing the guaranteeing application
conditions). The newly added application conditions contain 77.3 graphs on average
(with 36 being the best and 191 being the worst case) and 6 nesting levels. Thus, on
average the number of graphs more or less doubles.

5.4.3 Performance Experiments

To answer RQ 3, we re-considered both set-ups, for UML and for Statecharts. Across
10 test runs, a set of 104 OCL constraints of the UML meta-model (see Section 5.4.1)
was translated in 2.4seconds on average. When integrating the 11 different graph
constraints of the Statecharts meta-model into the 84 editing rules, the tool took only
2.3 seconds to update all the rules w.r.t. all the 11 constraints. All evaluations were
performed with a desktop PC, Intel Core i7, 16 GB RAM, Windows 7, Eclipse Neon,
Henshin 1.4.

Summarizing. Both components of OCL2AC work fast. The translation of OCL
to graph constraints is promising to increase the comprehensibility of constraints,
though a slight overhead in size is produced. Application conditions resulting from
the integration process tend to be more complex than the original graph constraints.
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In most cases, the growth is moderate. However, there are cases where the size
of the results become too complicated. Further work is needed to investigate the
circumstances for such a blow-up.

5.4.4 Threats to Validity

Although the chosen metrics are quite simple and we considered a limited number of
OCL constraints and rules, the metrics are expressive enough to argue about com-
plexity basically, and the OCL and rules examples are stemmed from standard use
cases and meta-models (of statecharts and UML). Concerning the considered OCL
constraints of the statecharts, it can be noticed that about half of them are not com-
plex. However, all core features of OCL (logical operators, navigation expressions,
and collection operators) are covered, and at least one rather complex constraint is
included. Nevertheless, further larger case examples are interesting to be considered
in the future. In Section 5.4.1 we used the Eclipse plug-in org.eclipse.uml2.uml for
UML instead of the original UML specification since it allows us to automatically
check the well-formedness of each constraint. Additionally, we noticed that some of
the translated constraints cannot be persisted even they are well translated because
UML uses non-persistence types, i.e., preventing their objects from being persisted.

5.5 Related Work

We first relate our work to other translations of OCL and subsequently to other
calculations of application conditions. Note that the formal approach of our tool is
compared to its related work in [55] and [114].

Translations of OCL. As pointed out in [53], model verification approaches are typi-
cally structured into two phases: formalization (e.g., translating a model with its OCL
constraints to some formalism) and reasoning within that formalism, which usually
means checking satisfiability. Approaches are either automatic but bounded (i.e., con-
figuring the boundaries of the solution space) such as [26, 27, 52|, or semi-automatic
as [20]. For a given model with constraints, the output of an automatic supporting
tool is a valid instance model. In contrast, our approach is unbounded (i.e., static)
and automatic but works on a slightly restricted form of OCL only and yields a differ-
ent output. Given a model with constraints and a set of rules, our technique provides
all application conditions for the given rules to guarantee that models resulting from
rule applications are valid w.r.t. the given constraints.

The translation processes in [13] and [116] are the ones most similar to ours since they
also translate into graph-based languages: In [13], Bergmann proposes a translation
of OCL constraints into so-called graph patterns. His work focuses on the possibility
to validate models more efficiently compared to other OCL validators. That approach
supports a similar, but a slightly larger subset of OCL. The correctness of that trans-
lation is not shown. The implementation covers only a subset of that translation. In
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[116], Richa et al. consider ATL rules and translate them into Henshin rules. The
guards of ATL rules (defined in OCL) are translated into application conditions of
Henshin rules. To this end, they adapt and extend the translations proposed in [4]
and [13].

Calculation of application conditions. In [106], Pennemann introduces ENFORCe
which can check and ensure the correctness of high-level programs. It integrates
graph constraints as left application conditions of rules as well. However, the tool is
not published and it is not compliant with EMF. Furthermore, there is no translation
from OCL to graph constraints available.

Claris6 et al. present in [28] how to calculate an application condition for a rule
and an OCL constraint, directly in OCL. The supported subset of OCL is slightly
larger than ours because staying with OCL, they can support operations that are not
first-order. But they do not distinguish between conditions (on matches for rules)
and constraints (on model graphs), which leads to a certain imprecision: Either they
would need to consider their preconditions as queries to retrieve contexts to which
the rule can be applied, or use rule matches as contexts to evaluate the constraints.
This is what our tool does automatically by calculating an application condition for
a given rule. They provide a correctness proof and a partial implementation.

To the best of our knowledge, we present the first ready-to-use tool for integrating
OCL constraints as application conditions into transformation rules.

5.6 Conclusion

Our correct-by-construction technique OCL2AC takes OCL constraints and calculates
automatically (graph-based) application conditions for transformation rules such that
these rules become constraint-guaranteeing. Its first component OCL2GC translates
OCL constraints into semantically equivalent graph constraints. Its second compo-
nent GC2AC takes a graph constraint and a Henshin rule as inputs and updates the
application condition of the rule such that the rule becomes constraint-guaranteeing.
OCL2AC is a ready-to-use tool implemented as an Eclipse plug-in based on EMF and
Henshin. Although the theory shows that the size of a computed application condition
(in terms of a number of graphs) can grow over-exponentially in the worst case, we
figured out the feasibility of our developed technique in practice. Tests with a larger
case example showed that our technique (both components) works reasonably fast
and that the translation of OCL to graph constraints can reduce the complexity. Re-
garding the complexity of the resulting application conditions, the number of graphs
is more or less doubles compared to the size of the graph constraints. Although these
results are far better than could be expected from theory, the number of graphs is
still high and the number of levels could be reduced in most cases.

It is up to future work to develop a technique for condensing graph conditions con-
siderably so that users can understand all the application conditions a rule has to
fulfill. A promising way is to find sub-conditions, which subsume each other. Sub-
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graph isomorphism is an obvious cause for such subsumption. Application conditions
can be further condensed by taking multiplicity constraints into account. Further-
more, we plan to apply our tool in scenarios such as deriving consistency-preserving
model editing rules from meta-models [66] and improving model refactoring rules [84].
Additionally, applications to model validation and model repair look promising.
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Constructing Optimized Consistency-Preserving
Application Conditions

This chapter shares material with the ICGT’19 paper “Constructing Optimized
Validity-Preserving Application Conditions” Nassar et al.[90]. (Best Paper Award)

There is an increasing need for graph transformations ensuring consistent result
graphs w.r.t. a given set of constraints. In a model refactoring process, for example,
each performed refactoring should yield a consistent model graph. At least, it has to
remain an element of the underlying modeling language. If a graph transformation
starts at a consistent graph already, it is called consistency-preserving. Otherwise, it
is considered to be consistency-guaranteeing. There is a formal construction for graph
transformation systems making them consistency-guaranteeing. This is ensured by
adding a consistency-guaranteeing application condition to each of its transforma-
tion rules. This theory has been implemented recently as an Eclipse plug-in called
OCL2AC. Initial tests have shown that resulting application conditions can become
pretty large. As there are interesting application cases where transformations just
need to be consistency-preserving (such as model refactoring), we started to investi-
gate this case further. We developed optimizing-by-construction techniques for appli-
cation conditions for transformations that just need to be consistency-preserving. All
presented optimizations are proven to be correct. Implementing and evaluating them,
we found that the complexity of the resulting application conditions is considerably
reduced (by factor 7 on average). Moreover, our optimization yields a speedup of rule
application by approximately 2.5 times.

6.1 Introduction

Model transformations are the heart and soul of Model-Driven Engineering (MDE).
They are used for various MDE-activities including translation, optimization, and
synchronization of models [130]. Usually, a transformation (that may consist of sev-
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eral transformation steps) should yield a consistent result model, especially if it has
been applied to an already consistent model. Intermediate models may not be re-
quired to be consistent as, e.g., argued in [36]. But there are scenarios where even
intermediate models have to show consistency, at least a basic one, as the following
example applications show: (1) Throughout a larger refactoring process, each per-
formed refactoring should preserve the model’s consistency [10]. (2) More generally,
any in-place model change should preserve a basic consistency, enough to view an
edited model in its domain-specific model editor [66]. Model editors typically en-
sure the creation of models with basic consistency right from the beginning. This
is the application scenario we will use as a running example and for our evaluation.
A similar scenario is considered in projectional editing for textual editors [134]. (3)
Modeling the behavior of concurrent and distributed systems with model transforma-
tions, each model represents a system state that should fulfill system invariants such
as safety properties [72]. (4) When generating code from abstractly specified model
transformations, the transformations should be consistency-preserving, especially for
safety-critical systems [48].

State of the art. From the formal point of view, the theory of algebraic graph
transformation constitutes a suitable framework to reason about model transforma-
tions [39, 40], in particular about the rule-based transformation of EMF models [14].
Constraints are typically expressed as (nested) graph constraints [115, 55], into which
a large and relevant part of OCL [99] can be translated [114]. Graph constraints can
be integrated as application conditions into graph transformation rules as shown in
[65]. Given a rule and a constraint, there are two variants of integration, namely
computing a constraint-preserving or a constraint-guaranteeing rule. Both computa-
tions do not alter the actions of the rule but equip it with an application condition.
Graph consistency is preserved, if applying an equipped rule to a consistent graph,
the resulting graph is consistent as well. Graph consistency is guaranteed, if applying
an equipped rule to a graph, the resulting graph is consistent. As for tool support,
OCL2AC [89] automatically translates OCL constraints into graph constraints and
integrates these as application conditions into transformation rules specified in Hen-
shin [3]. It computes guaranteeing rules.

Tests of OCL2AC have shown that resulting application conditions can become
very complex. Theoretically, application conditions of guaranteeing rules grow over-
exponentially in the worst case [105]. As there are interesting application cases where
transformations just need to be consistency-preserving (as pointed out above), it is
worthwhile to investigate consistency-preserving transformations further. Habel and
Pennemann [55] present a direct construction of the logically weakest application con-
dition, enough to preserve consistency. As this kind of condition is logically weaker,
our expectation was in the beginning that it can be expressed in a simpler form. In
contrast, the resulting application conditions may contain even more elements than
the consistency-guaranteeing ones. (This is due to the approach taken: The premise
that the model was already consistent before rule application is added to the com-
puted consistency-guaranteeing application condition. The resulting condition can be
inherently difficult to simplify because of the used material implication operator and
the nesting. An example can be found in Section B.1.2.)

Contribution and Structure. Focusing on consistency preserving transformations only,
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we developed optimizing-by-construction techniques to construct application condi-
tions that preserve the consistency and are considerably less complex than the results
of the original construction.

1. In Section 6.3, we take a constraint and a rule as a starting point and construct
an application condition that preserves consistency. This construction is based
on the construction of the guaranteeing application conditions but simplifies it
by omitting parts that check for antecedent consistency, while keeping parts
that prevent the introduction of violations. This automatic approximation of
the preserving application condition is conceptually new and quite general in
scope. While some of the simplifications are specific for EMF (Theorem 2),
the others (Theorem 1) are proven for graph constraints in general and can
be easily lifted to adhesive categories [73]. We will argue how some of these
simplifications omit global checks that have to traverse the whole model while
keeping local ones, i.e., checks being performed in the context of a rule match.

2. Practically, we have implemented the techniques as an Eclipse plug-in, called
Optimizer on top of OCL2AC (Section 6.4). The domain developer can use this
tool to automate the whole process. Additionally, we compared the application
conditions of guaranteeing rules with those of preserving ones. The results show
a considerable loss in complexity of application conditions (Section 6.5.1).

3. We provide an application case which shows that consistency-preserving trans-
formations are used in practice. In domain-specific model editing (presented
as scenario (2) above), every state of the transformation process has to ensure
basic model consistency. The example comprises the MagicDraw Statechart
meta-model with 11 OCL constraints and 84 editing rules. The optimizations
do not only reduce the size of computed application conditions considerably but
also improve the performance of consistency-preserving transformations.

In addition, we have conducted several evaluations that do not specifically test
our optimization but the overall approach.

There are basically two strategies to achieve consistency preservation by assum-
ing consistent input models: We either test for consistency after each transfor-
mation step and rollback the transformation step if its resulting model is not
consistent anymore (a-posteriori consistency check as shown in Figure 6.1). Or
the transformation performs consistency-preserving steps only, i.e., it does not
allow any transformation step making a model inconsistent (a-priori consistency
check as shown in Figure 6.2).

constraint Check

AL 0 Apply the rule the constraint
Model —y Iodcl' N ]\f()de,['

constraint

@ roliback  Model’ = constraint

Figure 6.1: Steps of a-posteriori consistency check
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constraint constraint

AL 0 Apply the preserving rule AL
Model »  Model’

Figure 6.2: Step of a-priori consistency check

We compared the run times of consistency checking after a transformation us-
ing existing OCL validators (a-posterori approach) with running a consistency-
preserving transformation (being enriched with application conditions) with and
without optimization (a-priori approach) (Section 6.5.2). Results show that
both approaches are fast in practice.

We start our presentation with the running example in Section 6.2. Chapter B con-
tains all proofs and more details about the evaluation.

6.2 Running Example

In this section, we illustrate the effect of our optimizations on application conditions
computed by OCL2AC.

A simple Statecharts language serves as an example. Its meta-model is displayed in
Figure 5.1 and explained in Section 5.2.

v (self:Transition,
3 ( transition self:Transition)> A (solf:FinalStatc .%)

Figure 6.3: Graph constraint for Transi- Figure 6.4: Graph constraint for
tionInRegion no_region

The UML definition specifies several constraints on statechart models. For example,
each Transition is required to be contained in a Region (TransitionInRegion) and a
FinalState is forbidden to contain a Region (no_Region). Figures 6.3 and 6.4 show
these constraints as graph constraints, respectively. In the UML, however, these
constraints are specified in OCL; the OCL constraint for no_region, for example, is
specified as

context FinalState invariant no_region: self.region—>isEmpty()

Figure 6.5 shows a simple transformation rule in Henshin taken from [66] for specifying
an edit operation in MagicDraw [80]. The rule moves an existing Region from an
existing State (the old source) to another existing State (the new source). This is
done by deleting the containment edge region from the old source and recreating it in
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= Rule moveRegionFROMStateTOState(Selected....

«preserve» region

OldSource:State |e_«delete»
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Selected:Region
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NewSource:State]  €gion
«Create»

Figure 6.5: Transformation rule in Henshin

the new source. Rules specifying such edit operations may be used, e.g., to recognize
semantic change sets while comparing two model versions [65, 66].

The validity of basic constraints should be preserved throughout editing because a
typical model editor is not able to display an instance violating them. Since FinalState
is a subtype of State, applying the rule moveRegionFromStateToState might introduce
a violation of the constraint no_region. Using OCL2AC [89], a language engineer can
automatically integrate a constraint as an application condition into the rule and cal-
culate the according constraint-guaranteeing version of the rule. The guaranteeing
application condition obtained by integrating constraint no_region into rule moveRe-
gionFromStateToState forbids matching this rule to a FinalState. It checks additionally
if the model already encompasses a FinalState containing a Region — either matched
by the rule or not. Figure 6.6 presents the resulting guaranteeing application condi-
tion, which is composed of 7 graphs (explained later in Section 6.3.1). Knowing the
input model to be valid (consistent), most of the checks are unnecessary, especially
the checks which do not only involve elements being local to the rule application but
amount to traversing every existing node, i.e., the global checks.

OldSource:Statefs—==—Selected:Region
]

[NewSource:FinalState]

[OldSource:Statels—=*—

!

( OldSource:StateO&Sele(ﬂted:f{egion) ( oL)
o region

‘NCWSourcc:FinalStatc"& var29:Region NewSource:State var29:Region

‘OldSOurce:FinalStateL‘;/,‘Selected: Region‘ ‘NewSource:FinalState‘O% Selected:Region
A P

OldSource:State

Figure 6.6: Non-optimized application condition for moveRegionFromStateToState
after integrating the constraint no_region

A

In this chapter, we develop and implement optimizations that allow for omitting
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region

(OldSource:State[s—“>"—>Selected:Region

’NewSource:FinalState‘

Figure 6.7: Optimized application condition for moveRegionFromStateToState still
preserving the constraint no_region

certain parts from the construction of a guaranteeing application condition. In our
example, we will arrive at the optimized application condition shown in Figure 6.7,
which consists of only one graph that, moreover, only requires a local check. It forbids
the rule node newSource:State to be matched to a FinalState.

As the rule moveRegionFromStateToState does not change any graph element occur-
ring in constraint TransitionInRegion, this constraint cannot be violated by a result
model if it was not violated before. Hence, the optimized application condition is
just true. The guaranteeing condition (not shown), however, consists of three graphs.
Thus, assuming valid input models, guaranteeing application conditions can be con-
siderably simplified.

6.3 Optimizing Application Conditions

The application conditions being calculated by the approach of the tool OCL2AC
guarantee consistency even if the input is not a consistent EMF-model. Since we focus
on the consistency preservation of EMF-models in this work, the calculated conditions
can be considerably simplified. In this section, we investigate several strategies to
construct optimized consistency-preserving application conditions.

6.3.1 Approximating Preservation

In common application scenarios (like refactoring), a user can assume that rules are
applied to instances showing a certain consistency. Hence, when applying a rule, an
already valid constraint does not need to be guaranteed but just preserved. The con-
struction Pres of a preserving rule (as mentioned in Fact 1) takes this into account.
Though being logically weaker, the resulting application condition, however, can be
even more complex with respect to the structure and the number of contained graphs
and simplification is inherently difficult. Nevertheless, it is possible to simplify guar-
anteeing application conditions during the construction process if they just need to
preserve consistency. In the following, we present three forms of simplification.

1. We collect all rule elements being deleted or created and check if this set overlaps
with the set of all constraint elements. If this overlap is empty, the resulting
preserving application condition is just true.



135

2. If a rule creates new graph structure only, positive constraints 3 C' do not need
to be integrated into such a rule. Analogously, if a rule only deletes graph
structure, negative constraints —3 C do not need to be integrated. In both cases,
applications of such a rule cannot introduce a new violation of the constraint.
Hence, the optimized application condition is just true.

3. When calculating an application condition, a constraint graph is overlapped
with the RHS graph of a rule in all possible ways. For negative constraints —3C'
it is not necessary to consider all possible overlappings. One may omit all the
cases where C' and the RHS R do not overlap in at least one element created.
The parts of the application conditions arising from those cases would just check
that the input graph already fulfills the constraint.

The third simplification omits cases where the arising graph in the application con-
dition contains nodes not connected to nodes of the LHS of the rule, thus amounting
to global checks upon application. We state the correctness of these simplifications
in the following theorem. Figure 6.8 illustrates the theorems and their applications
during the optimization process.

Check the overlap of
cwithr

Theorem 1.1
no overlap with elements No
created or deleted by r integration Rule (r)

r is monotonic
cis of form 3C

r deletes only
cis of form AC Theorem 1.2
Otherwise

Overlap RHS of r with C
of cin every possible way

Omit the overlapped
graphs
where C and the RHS
are not overlapped in
at least one element
created by r

Theorem 1.3 set of overlapped graphs

cis of form AC

Theorem 2
simplify and deal with
EMF negative constraints

Figure 6.8: Optimization process based on the theorems

Theorem 1 (Correctness of simplifications). Let ¢ be a graph constraint and
p = (L « K — R) be a plain rule. Let p = (p, ac) be the same plain rule equipped
with the application condition ac computed in one of the following ways:

1. If both the elements of L\K and the elements of R\K intersect emptily with
every graph C occurring in the constraint ¢, then ac = true.

2. If p is monotonic and c is a positive constraint, then ac = true. Analogously,
if p only deletes and c is a negative constraint, then ac = true.
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3. If ¢ = —3C, let Gua(p,c) yield the right application condition rac :=
—(V,e; 3P) with morphisms ¢; : C = P; and r; : R — P;. Let racpes =
=(Ves3P;) with J € I including only those P; where ¢;(C) nri(R\K) + .
Then ac is the application condition that arises by translating the right appli-
cation condition rac,r.s to the LHS of rule p.

Then for all transformations G = ,—(;, 4) H where G = c also H = c.

The proof follows a common pattern in all cases: Checking for the (non-)existence of
graphs occurring in the constraint in all these cases is sequentially independent from
the application of the rule. Hence, checking the constraint for validity always gives
the same result, no matter if done before or after rule application.

Example 1 (compare Section 6.2). Constraint no_region is required to be inte-
grated into rule moveRegionFromStateToState since a region-edge is created by this
rule and contained in this constraint. Figure 6.6 shows the guaranteeing application
condition. The first graph (the uppermost graph) results from a maximal overlapping
of the constraint with the rule. Note that it is possible to identify nodes of types
State and FinalState since FinalState is a subtype of State (compare Figure 5.1). The
second graph results from copying the graph of the constraint and the RHS of the
rule and putting them next to each other. The third graph results from merging the
nodes of type Region. The forth and the fifth graph result from just merging nodes of
type State and FinalState. The sixth and the seventh graph result from merging the
nodes of type State and the nodes of type Region. In every case, the overlapping of
the constraint with the RHS is then translated to the LHS of the rule.

Our proposed optimizations lead to the result displayed in Figure 6.7 by the applica-
tion of Theorem 1, 3.: Except for the sub-condition containing the uppermost graph,
all other sub-conditions in Figure 6.6 are omitted. The uppermost one has to be
saved because the region-edge created by the rule is overlapped with the region-edge
of the constraint. The omitted sub-conditions do not only involve elements being local
to the rule application but amount to traversing every existing FinalState leading to
global checks. To conclude, only one local check remains.

Example 2 (compare Section 6.2). The constraint TransitionInRegion is not re-
quired to be integrated into the rule moveRegionFromStateToState. Theorem 1, 1.
justifies this: the rule moveRegionFromStateToState does not have any effect on the
validity of the constraint since its application neither deletes nor creates elements that
occur in the constraint.

6.3.2 Dealing with EMF’s Built-in Negative Constraints

EMF has several built-in constraints [14]. Instance models that do not satisfy these
EMF-constraints cannot even be opened in the EMF-editor. Most of these constraints
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are negative, i.e., they forbid certain patterns in instances to exist. Concretely, cycles
over containment edges, nodes with more than one container, and parallel edges, i.e.,
two edges of the same type between the same two nodes, are forbidden. Therefore,
given an application condition ac of a rule p, each occurrence of a sub-condition of
the form 3 A with A violating one of these EMF constraints, may be replaced by
false without altering the meaning. We know that such patterns cannot appear in
any EMF instance model. Thus, in the context of EMF, the result is semantically
equivalent to the actual guaranteeing rule but may contain fewer sub-conditions.

Theorem 2 (Correctness of EMF-specific simplifications).

Let ¢ be a graph condition over P and ¢’ be the condition that results from replacing
every occurrence of a sub-condition 3(a : C; — Cs) of ¢ by false if the graph Co
contains parallel edges or multiple incoming containment edges to the same node.
Then an injective morphism p : P < G into an EMF-model graph G satisfies ¢ if and
only if it satisfies ¢’. In particular, if ¢ is a graph constraint, any EMF-model graph
G satisfies ¢ if and only if it satisfies ¢/.

The correctness of this theorem is proven by induction along with the nesting struc-
ture of the constraint in the cases of parallel edges and multiple containment nodes.
The same argument also applies in the case of finite containment cycles. But since
containment cycles of arbitrary length cannot be expressed as graph constraints, the
correctness of replacing their occurrence by false is intuitive but not amenable to a
formal proof by induction.

Example 3 (compare Section 6.2). Theorem 2 would drop the third, sixth and
seventh sub-conditions from the application condition in Figure 6.6 by replacing it
with false since it contains a node with more than one container or parallel edges.

6.4 Tooling

We developed our optimizer as an Eclipse plug-in on top of OCL2AC implementing
all of the proposed simplifications except for the elimination of containment cycles.
Given a Henshin rule and a graph constraint, our optimizer automatically renders the
rule to preserve the validity of the constraint.

The optimizer consists of two main components depicted in Figure 6.9 and described
as follow:

e Analyzer: It detects if a constraint needs to be integrated into a given rule,
i.e., it implements (Theorem 1, 1 and 2).

e Omitter: It eliminates unnecessary subconditions from the constraint-
guaranteeing application conditions during the construction process, i.e., it im-
plements (Theorem 1, 3 and Theorem 2).
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Figure 6.9: An overview of the architecture of our tool Optimizer

Additionally, we implemented simplifications of application conditions by applying
well-known equivalence rules [105]:

3(01736'2)5302 if C1 € Cy
1C, v3IC,=3C,if C; € Cy
1C; A3C, =30y if Cp € Cy

A user can choose to automatically apply them. Applying these, entire graphs may
be omitted and even levels of nesting may be collapsed.

The tool can be downloaded from our website.!

6.5 Evaluation

In this section, we show the highlights of our evaluation; the artifacts can be down-
loaded from the website of our tool.

Research questions (RQs). Our evaluation aims to answer the following RQs
regarding the complexity and performance:

RQ 1: How complex are the resulting application conditions with and without opti-
mizations? How does this compare to the complexity of the original graph constraints?

To perform consistency-preserving steps, there are two basic approaches: We either
test for consistency after each transformation step and rollback the step if its resulting
model is not valid (a-posteriori check) or the transformation is designed to perform
consistency-preserving steps only (a-priori check). We, therefore, ask the following
questions:

Thttps://ocl2ac.github.io/home/


https://ocl2ac.github.io/home/opt/
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RQ 2.1: How fast is the a-priori consistency check compared to the a-posteriori
check? RQ 2.2: Does the optimization of application conditions improve the perfor-
mance significantly?

General set-up. As an application case, we consider the scenario of in-place model
transformations that should preserve a basic consistency such that the resulting in-
stances can be opened in a domain-specific model editor throughout. In [66], Kehrer
et al. derive consistency-preserving editing rules from a given meta-model. However,
they support basic constraints like multiplicities only. More complex OCL constraints
are left to future work. In their evaluation, this restriction has the most serious im-
pact on the UML meta-model for Statecharts [100]. Out of 17 original constraints,
they identified 11 to be enforced in MagicDraw [80]. In total, they used 84 editing
rules for Statecharts.

We translated those 11 OCL constraints into graph constraints and then integrated
them as application conditions into the 84 rules.

7 valid test models of sizes between 800 to 16 000 elements (nodes and references)
are used to conduct our performance experiments. These test models are synthetic
containing copies of an initial valid model composing 5 objects of each non-abstract
class of the meta-model. All evaluations were performed with a desktop PC, Intel
Core i7, 16 GB RAM, Windows 7, Eclipse Neon, Henshin 1.4.

6.5.1 Evaluating Complexity

In theory, the size of a computed application condition (the number of graphs) can
grow over-exponentially in the worst case compard to the size of the original con-
straint [105]. In practice, however, the growth is moderate. Mainly due to node
typing, many node overlappings are not possible. To find out how far this blow up
of application conditions is a problem in practice, we conducted the following ex-
periments considering the number of graphs as well as the number of nesting levels
in application conditions. Additionally, we explore how far the complexity can be
reduced using our optimization. Table 6.1 gives an overview of the results.

Integration without and with optimization. Given the 11 OCL constraints
and the 84 editing rules, the newly added application conditions contain 77.3 graphs
on average (with 36 being the best and 191 being the worst case) and 6 nesting levels
as we have shown in Section 5.4.2. Nonetheless, the number of graphs is way too high
and also the number of levels should be smaller in most cases. Hence, there is a clear
need to optimize the resulting application conditions further.

To find out how efficient our optimizations of application conditions are, we conducted
the same experiment as above using our developed optimizer. In a result, the average
number of graphs in the application condition is 10.8 (with 0 being the best and 35
being the worst case), i.e., the complexity is reduced by a factor o 7 on average using
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our optimizer. Additionally, the deepest nesting level of 6 was often reduced to at
most 2 levels. Theorem 1,1 turns out to be the main reason behind this considerable
loss of complexity: Instead of integrating 11 constraints into each rule, on average,
only 1.7 constraints are integrated into a rule.

Table 6.1: Numbers of graphs of application conditions and deepest nesting levels
before and after optimization (with emphasis on extreme cases)

w/o optimization w optimization

Rule #graphs level #graphs level #integrated constraints
create_Transition 191 6 1 1 (1)

create_FinalState 44 6 31 6 (11)

delete_Trigger 37 6 0 0 (0)

Average (84 rules) 77.3 6 10.8 2.6 1.7

Table 6.1 shows extreme cases: Considering all 84 rules and the 11 constraints, the
best optimization was reached with rule create_Transition where the resulting applica-
tion condition with 191 graphs was reduced to a condition with just one graph. One
of the lowest optimizations came along with rule create_FinalState. Since it is over-
lapped with all the 11 constraints, the number of the resulting graphs is reduced by
a factor of 1.4 only (using Theorem 1, 3). Rule delete_Trigger started with one of the
lowest number of graphs in their application conditions. This condition is eliminated
altogether using our optimization.

The average time of integrating the 11 graph constraints for statecharts into all 84
rules was 2.3 sec. without optimization and 1.03 sec. with optimization. Hence
calculating all needed application conditions for a given rule set is fast enough to be
used in practice.

To answer RQ 1, given graph constraints with 2-10 graphs (3.2 on average) and 2—
6 nesting levels (2.3 on average), non-optimized application conditions have 36-191
graphs (77.3 on average) and 6 nesting levels, while optimized ones have 0-35 graphs
(10.8 on average) and 0-6 nesting levels (2.6 on average). Hence, condition sizes are
considerably reduced (by a factor of 7 on average).

6.5.2 Evaluating Performance

To answer RQ 2.1 and RQ 2.2, we set up two test scenarios comparing the runtime
of a-posteriori and a-priori consistency checks.

Experiment set-up. Each test scenario (TS) consists of 15 test cases, one case
for 15 selected rules (out of 84). These 15 rules are representative w.r.t. supported
editing actions and rule size, in particular, they cover all kinds of editing actions.
Their sizes range between 3 and 7 model elements. The average size of an application
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condition of the 15 rules is 56.4 graphs with nesting level 6 (without optimization)
and 16.8 graphs with nesting level 3.1 (with optimization). Table 6.2 presents their
detailed information. A test case of T'S 1 consists of first applying an original rule to

Table 6.2: Numbers of graphs of application conditions and deepest nesting levels
before and after optimization for the selected 15 rules

w /o optimization w optimization

Rule #graphs level #graphs level #overlapped const.
addToConnectionPoint.. 58 6 30 6 (1)
addToStateMachine.. 7 6 25 6 (2)
createBehavior.. 70 6 1 1 (3)
createFinalState.. 44 6 31 6 (11)
createRegion.. 41 6 7 2 (2)
deleteFinalState.. 42 6 29 6 (11)
deleteState.. 42 6 29 6 (11)
deleteTrigger.. 37 6 0 0 (0)
moveConstraint.. 39 6 0 0 (0)
moveFinalState.. 86 6 0 0 (0)
moveTransition.. 49 6 0 0 (0)
removeEntry.. 55 6 27 6 (1)
removeExit.. 55 6 27 6 (1)
setState_submachine.. 77 6 25 6 (2)
unsetState_submachine.. 74 6 22 6 (2)
Average (15 rules) 56.4 6 16.8 3.8 3.1

a test model at a random match and then checking the validity of the resulting model
(using (a) the EMF validator [34] configured to employ the OCLinEcore validator [97]
to validate OCL constraints and (b) the OCL interpreter [35]). A test case of TS 2
consists of applying an updated rule (with (a) the guaranteeing and (b) the optimized
application condition) to a test model at a random match. To eliminate effects stem-
ming from the choice of match, each test case of a test scenario is performed 100
times. A test scenario in TS 1 (a) is performed in one run time session such that
caching of information can be used advantageously. The second variant of TS 1 (a)
performs each a-posteriori check in a separate session making caching useless. All the
test scenarios have been performed on all the 7 valid test models. A timeout (TO)
takes place if the average run time exceeds 5 minutes. To evaluate an OCL constraint
using the OCL interpreter, the context object has to be given. Focusing on approach
differences, the following times were excluded from the evaluation time: The time
needed to find the context objects of all OCL constraints for the OCL interpreter, the
loading time of a test model to any validator, and the time needed to roll back to the
state of a test model after applying a rule whose resulting model does not satisfy the
constraints.

Experiment results. Table 6.3 shows the following results: A-posteriori check-
ing is performed in 3 variants. TS 1 (a) uses the EMF validator with and without
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Table 6.3: Average run time (in seconds) of a single rule application (and validation)
over 15 test cases with 100 random matches each using models of varying size

Model size
Scenario (Caching) 800 1500 3000 6000 10000 13000 16 000

TS 1(a) (yes) 001 001 001 002 004 005 0.06
TS 1(a) (no) 166 171 176 179 1.8  1.83 185
TS 1(b) (no) 12897 185.08 254.17 TO TO  TO  TO
TS 2(a) (no) 001 001 004 013 03 05 079
TS 2(b) (no) 0.0l 001 0.02 005 012 022 033

caching mechanism since we noted the followings: In the first validation check, the
EMF validator took 1.77 to 1.95 seconds to check a test model of size between 800
to 16 000, whereas in the next validation checks, it took only 5 to 63 milliseconds.
Our understanding of this improvement is that the EMF validator saves the model
state after the first validity check. Thus, in the next checks at the same run time
session, the EMF validator is still able to reach the model in the cache such that
only the elements affected by rule application are considered. Without caching, the
average run times are less than 2 seconds; with caching, they are even about two
magnitudes faster. Using the OCL interpreter (TS 1 (b)) instead leads to run times
over 2 minutes or even timeouts (after 5 min.). A-priori checking is performed in two
variants: In TS 2 (a) rules with non-optimized application conditions are used while
the application conditions in TS 2 (b) are optimized. The run times of both variants
are below 1 second and hence slightly better than in TS 1 (a) without caching. Using
caching, however, TS 1 (a) is even faster. This consideration yields the answer to
RQ 2.1. To answer RQ 2.2 we can see that using rules with optimized application
conditions is two and a half times faster than without optimization. Almost all of
the times our rules were applicable and thus the whole application condition of a rule
was completely checked and evaluated.

To conclude, we can state that scenarios TS 1 (a) and T'S 2 are both fast enough to
be usable in practice. However, a rollback step in the a-posteriori approach (TS 1)
may not always be feasible. For example, if the rollback step is defined by applying
the inverse rule, this is might not always be applicable if the rule computes attribute
values. Furthermore, in the a-posteriori approach, the rule action is performed first,
which may cause dangerous situations in several fields such as a railway system, self-
driving cars, and an e-health system.

6.5.3 Threats to Validity

External validity can be questioned since we consider a limited number of OCL con-
straints and rules. For our performance experiments, we selected 15 out of 84 editing
rules which are representative concerning their kinds (rules for creating, deleting, set-
ting, unsetting, and moving model elements) and sizes. Moreover, we reduced the
effect of the rules’ matches by executing each rule at 100 matches chosen randomly
from each given model. For performance evaluation, we restricted our studies to syn-
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thetic models. As we did not spot any performance bottleneck, we are convinced that
using realistic models would not yield basically different results.

Concerning the considered OCL constraints it can be noticed that about half of them
are simple negative constraints. However, all core features of OCL (logical opera-
tors, navigation expressions, and collection operators) are covered and at least one
rather complex constraint is included. And, more importantly, this kind of a set of
constraints seems to be quite typical for the chosen application case. Constraints re-
quired by model editors are often negative to forbid input that is not allowed anyway.
Therefore, we are quite confident that the results are representative. Nevertheless,
further case examples are interesting to be considered in the future, especially if they
include very large models.

6.6 Related Work

Related works can be distinguished into two groups: (1) other works ensuring transfor-
mation rules to be consistency-preserving and (2) simplifying (application) conditions
and constraints.

Ensuring transformation rules to be consistency-preserving. In [7, 106], Azab, Pen-
nemann et al. introduce ENFORCe, a prototype implementation that can check and
ensure the correctness of graph programs. It integrates graph constraints as left ap-
plication conditions of rules as well but supports (partially) labeled graphs, not EMF
models, and there is no translation from OCL to graph constraints available.

Clarisé et al. present in [28] how to calculate an application condition for a trans-
formation rule and an OCL constraint, directly in OCL. The supported subset of
OCL is slightly larger than in OCL2AC because, staying with OCL, they can support
operations that are not first-order. The authors provide a correctness proof for the
presented translation into application conditions. In addition, there is a partial im-
plementation. Resulting application conditions are not essentially further optimized,
neither by ENFORCe nor in work by Clarisé et al.

Dyck et al. [32, 33] present works that extend the one presented by Becker et al. [9].
Their goal is to verify whether a graph transformation system preserves graph consis-
tency concerning forbidden graph patterns. They can improve the performance of the
check under very specific conditions, e.g., the NACs have no nesting, have a common
domain and the forbidden graph constraint is of a particular form. One improvement
is done by reducing the number of the patterns that have to be checked. They check
the ones which relate to the local match of the rule. This is similar to Theorem 1,3
of our work where we remove irrelevant subconditions and keep the ones which relate
to the rule match. However, the objective of their approach is not to automatically
construct constraint-preserving rules but rather to verify the consistency of a set of
transformation rules w.r.t. a set of forbidden graph patterns. If that fails to be the
case, the rule system has to be adapted manually by the user. Additionally, EMF
constraints are not considered.
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To the best of our knowledge, our work is the only one which constructs and optimizes
the resulting application conditions considerably.

Simplifying (application) conditions and constraints. Rules for semantic equivalences
in graph constraints and conditions have been reported in several places [105, 106, 114]
and their application can lead to considerable simplification in the structure of a con-
straint. There are also approaches and implementations simplifying OCL constraints,
especially automatically generated ones [49, 29]. Depending on the usage scenario,
such simplifications could provide a valuable pre-processing step to our approach.

6.7 Discussion

For a given constraint-preserving application condition created w.r.t. the construction
provided by Habel and Pennemann in [55], for example, the application condition can
be refactored to be of form CNF [106]. Then, rules for semantic equivalences can be
applied to reduce the structure of a constraint. However, here there are several open
questions: Which semantic equivalence rules have to be applied and in which order?
Do we always get the simplified constraint-preserving application condition? How do
such computations take time w.r.t the nesting levels?

Anyway, assuming semantic equivalence rules are defined and applied optimally (in
an optimal order), we can argue that our approach leads to get the optimal ones:
According to Theorem 1,1 and Theorem 1,2, we get true as an application condition.
The application condition true cannot be semantically simplified further. According
to Theorem 1,3, we keep only the relevant overlapped graphs w.r.t. the rule match
and each overlapped graph is unique and needed. Concerning Theorem 2, which deals
with the violations of the EMF constraints, it is independent of the semantic of the
resulting application conditions. It can even be applied as a last step after using the
semantic equivalence rules in general.

Moreover, using our approach, we may often get an application condition that is
structurally simpler than the one resulted by optimally applying semantic equivalence
rules. For example, using our approach, the application condition true is represented
by not integrating the corresponding constraint at all. Whereas, the application
condition true which is resulted by optimally applying the semantic equivalence rules
may consist of several checks which are semantically equivalent to true but composing
several graph patterns.

Based on the previous argumentation, we have formally shown in [91] that our tech-
niques construct the weakest preserving application conditions.
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6.8 Conclusion

Application scenarios where each graph transformation step has to preserve the con-
sistency of models w.r.t. given constraints are needed in practice. As the construction
of application conditions in [55] yields consistency-guaranteeing ones and assuming
that the preservation of graph consistency is already sufficient, the resulting applica-
tion conditions can be considerably optimized. We developed several techniques (in
Theorem 1 and Theorem 2) to construct optimized consistency-preserving application
conditions and implemented them as an Eclipse-based tool, called Optimizer, on top
of OCL2AC. The evaluation results show that OCL2AC can lead to quite large appli-
cation conditions which can be significantly optimized by a factor of 7 (on average)
using our developed techniques. Accordingly, while the performance results of correct
graph transformations are good in general, applying rules with optimized applica-
tion conditions is shown to be ca. 2.5 times faster than applying non-optimized ones.
Moreover, we showed that the runtime comparison of a-priori consistency check using
our techniques with a-posteriori consistency check using the EMF validator is fast.

In the future, we intend to further optimize resulting application conditions by iden-
tifying redundant sub-conditions and by checking negative invariants of modeling
languages. Our ultimate goal is to obtain understandable application conditions iden-
tifying exactly those portions of the given constraints that are relevant for a given
rule. This work is already an essential step in that direction. Moreover, our opti-
mization of conditions could have some interesting applications beyond MDE. We
are interested, e.g., in assessing if our ideas can be beneficially integrated into proof
systems [106, 120].
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Summary and Outlook

7.1 Summary

In Model-Driven Engineering (MDE), model consistency is vital during software devel-
opment since it affects the quality of the generated artifacts, the successful application
of the transformations, and the correctness of their results. Thus, it affects the quality
of the overall system. In this thesis, we developed several consistency-by-construction
techniques for ensuring the consistency of models and model transformations. Our
techniques are implemented as ready-to-use tools performing the tasks in a fully auto-
mated and interactive way. Moreover, we evaluated the techniques and showed their
efficiency and soundness.

We presented a model repair technique by developing a generic rule-based algorithm
for trimming and completing models and thereby resolving their cardinality violations.
The developed technique allows models to be viewed and changed interactively during
the repair process and thus aims at designing desired models. The modeler has the
opportunity to choose the repair actions and the matches from the proper suggested
ones, to stop the repair process, or to let the model be repaired automatically at any
time. The technique considers EMF constraints, and thus, the resulting models have
a standard format in the sense that they can be manipulated by other standard tools
(conforming to the OMG specifications). Different kinds of repair rules are designed
in a way that each successful application of a rule enhances (or at least preserves) the
model consistency. We formally proved under which conditions the developed repair
algorithm terminates. Its features are discussed in more general settings, such as
supporting a set of OCL constraints. Since the approach is generic, i.e., it can work
with any domain meta-model and its instance models, it has to be customized for
each given DSML defined by a meta-model. Therefore, meta-techniques are specified
to customize the approach to the given meta-model. A meta-tool, called Meta2RR,
is developed as an Eclipse plug-in to derive the repair techniques for a given DSML
automatically. A DSML tool, called EMF Model Repair, is developed as an Eclipse
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plug-in and uses the generated repair technique to repair instance models of the given
domain. The tool is systematically tested. Furthermore, we showed that the tool
repairs models of size 10000 elements with about 1511 violations in just 47 seconds
on average.

We provided a model generation technique to efficiently generate large, consistent,
and diverse models. The generation process can start at a seed model being poten-
tially inconsistent as well. Such models are needed in various application scenarios
like model transformation testing, benchmarking model queries and transformations,
model-driven search and optimization, or validating the suitability of MDE tools to
deal with large input models. Our rule-based approach is configurable and utilizes the
model repair algorithm that guarantees to yield consistent EMF models (conforming
to their meta-model without OCL constraints). Several parameterization strategies
are presented to support user specifications and thus aiming at generating diverse in-
stance models. Our approach is generic that can work with any domain meta-model
and its instances, and therefore, meta-techniques are specified to customize it with
respect to a given DSML. A meta-tool, called Meta2GR, is developed to derive the
model generation techniques for the given DSML automatically. A DSML tool, called
EMF Model Generator, is developed as an Eclipse plug-in and uses the derived genera-
tion technique to generate consistent models by supporting user specifications. Using
several meta-models of different domains, we showed that the tool generates consis-
tent models of size 10000 elements in 85 seconds on average. Moreover, we showed
that the tool was able to generate consistent EMF models with half a million elements
in few minutes on average. Besides, we presented that our developed tool shows a
speed-up of several orders of magnitude compared to the state-of-the-art generation
tool. Furthermore, using the developed parameterization strategies, we presented
that one could generate several sets of consistent models where the distribution of
elements among types is significantly different.

In several application scenarios like in safety-critical systems and model refactoring,
models have to ensure particular consistency properties, and the resulting models
should belong to the transformation’s target language. Moreover, manually enhancing
a set of rules to guarantee a set of constraints is a tedious, time-consuming, and error-
prone task. Besides, it requires high skills related to the theoretical foundation and the
environment. For these purposes, we developed an automated technique for adapting
a given rule-based model transformation such that resulting models guarantee a given
set of constraints. Based on existing theory, two correct-by-construction techniques are
developed: First, OCL constraints are translated into semantically equivalent graph
constraints. Secondly, graph constraints can further be integrated as guaranteeing ap-
plication conditions into transformation rules. The resulting rule is applicable to a
model only if its application does not violate the original constraints. To the best
of our knowledge, we provided the first ready-to-use tool, called OCL2AC, imple-
menting and automating both techniques. We assessed their performances, and they
are efficient: A set of 104 OCL constraints of the UML meta-model are translated
in 2.4 seconds on average. Furthermore, the tool took only 2.3 seconds to update
all 84 editing rules of the Magicdraw Statechart w.r.t. 11 constraints. Furthermore,
we considered the complexity of the outputs. Although the translation of OCL con-
straints to graph constraints slightly increases the complexity, the resulting graph
constraint is accompanied by a gain of information that might help in understanding
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the constraint. Additionally, the nesting of the constraints was never increased but
decreased. Application conditions resulting from the integration process tend to be
more complicated than the original graph constraints. However, the complexity of the
resulting output is far better than could be expected from theory. In most cases, the
growth is moderate (the number of graphs more or less doubles on average). Nonethe-
less, there are cases where the size of the results becomes too large. Therefore, we
tackled this problem in the next contribution.

We developed optimizing-by-construction techniques for application conditions for
transformations that need to be consistency-preserving. For a given transformation
rule and a set of constraints, our techniques render the model transformation rule
consistency-preserving. lL.e., the rule is applicable to a consistent model if and only if
the resulting model is still consistent after the rule application. Our techniques are
conceptually new and quite general in scope. Moreover, two theorems are formally
presented showing the correctness of the techniques.

We have implemented the technique as an Eclipse plug-in, called optimizer, on top of
the tool OCL2AC. After that, we carried out an evaluation comparing non-optimized
application conditions with the optimized ones. The results show a considerable loss
in the complexity of application conditions. Given graph constraints with 2-10 graphs
and 2-6 nesting levels, non-optimized application conditions have 36-191 graphs and
6 nesting levels, while optimized ones have 0-35 graphs and 0-6 nesting levels. Hence,
condition sizes are considerably reduced by a factor of 7 on average. Moreover, the
optimizations do not only reduce the size of computed application conditions consid-
erably but also improve the performance of consistency-preserving transformations.
While the performance results of graph transformations with application conditions
are good in general, applying rules with optimized application conditions is shown to
be ca. 2.5 times faster than applying non-optimized ones. Furthermore, we evaluated
the run-time of the overall approach in general by comparing a-posteriori consistency
check with a-priori consistency check based on our techniques. Results show that our
techniques are fast enough to be usable in practice.

7.2 Outlook

DSML Tool-Driven Techniques » DSML Compact

(concepts and meta-tools)Q Development Environment

User specifications =

S

Figure 7.1: Vision: DSML Tool-Driven Engineering (Describe, Generate and Use)

Since tool development is one of the main obstacles for using DSMLs, our ultimate



150

vision is to develop tool-driven techniques (new concepts, methods, and meta-tools) to
ease and accelerate the DSML tool development. For a given DSML and user spec-
ifications (configurations), the tool-driven techniques should (semi-) automatically
produce a compact development environment customized for the given DSML. The
generated DSML development environment has to include at least the basic DSML
tools needed during the development such as editing tools, repairing and quick fixing
tools, quality assurance tools, testing tools, and versioning tools. Figure 7.1 illustrates
the vision. This thesis represents a step forward towards this vision.

In the following, we give an outlook about the current and future work of our devel-
oped techniques of both parts.

7.2.1 Model Repair and Generation

Supporting a set of OCL constraints. Model repair and generation can
be extended to support a set of OCL constraints by deriving proper rules from
constraints. As we mentioned in Section 3.7.4, our approach can be straightforwardly
extended to support a set of OCL constraints (of depth one) which are semantically
equivalent to the lower and upper bound constraints such as the following expressions:

context T inv: self.cont/T.alllnstances() — size()>=m/notEmpty() /isEmpty()/<n;
context T inv: self.cont— select/any/collect(oclIsTypeOf(T1))— notEmpty();
context T inv: self.name <>’ ’;

T and T1 denote to a node type and cont denotes to the outgoing reference.

Once such a set of OCL constraints is distinguished, the corresponding bounds of the
meta-model can be refactored correspondingly. Furthermore, we have been working on
deriving repair rules from more complex constraints to configure our repair algorithm.
The idea is to translate OCL constraints to graph constraints and then to derive
several repair rules from the graph structure of each constraint by considering the
containment and non-containment paths (see Section 3.7.4 for more detail). We have
already supervised a university project which derives repair rules configuring our
repair algorithm from graph constraints. Since the structure of a graph constraint
can be too complex and arbitrary, we intend to perform the following:

1. Translating commonly used OCL constraints in practice into graph constraints
using our tool OCL2AC (namely, the second component OCL2GC).

2. Analyzing and classifying their structures instead of analyzing an arbitrary
structure of a graph constraint.

3. Deriving the corresponding repair rules to configure the repair algorithm.

Besides, our project partner has been started investigating the idea by deriving graph
programs for repairing graphs to satisfy a restricted form of graph constraints [56].
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Additionally, we are interested in the following future work:

Editing operations for different purposes. Since we specified a catalog of dif-
ferent kinds of (repair and generation) rules with their meta-patterns and developed
meta-tools that derive them from any given meta-model automatically, we are sure
that they can be used to achieve various purposes such as model editing or for pro-
viding a benchmark of rules. Additionally, the rules are specified to respect EMF
constraints and multiplicities and are flexible in the sense that they are a kind of
atomic rules of different actions. They are designed in a way that each successful
application of a rule enhances (or at least preserves) the consistency of the model.
The various kinds of rules can be easily classified and used within control flows, such
as transformation units. Lately, the catalog of our rules has been used for generating
search operators in the field of search-based model engineering as presented in [22, 23].

Model synchronization. Since our rule-based approach and the developed tools
record semantical model changes as an ordered list of rules’ applications with their
matches. This information may be beneficial, e.g., to resolve inconsistencies in dis-
tributed models or to synchronize distributed copies of a model. Instead of sending
the whole repaired model, this list could be used as a patch to complement changes
in other distributed copies of the model.

Realistic models. Based on heuristic information, we are interested in reordering
the suggested proper repair actions during the repair process according to their oc-
currence in practice. Additionally, we want to generate realistic models by leveraging
a stochastic controller.

7.2.2 Graph Constraints and Application Conditions

Foundation for handling complex attribute constraints. The theory beyond
our tool OCL2AC does not consider in detail how to handle complex attribute con-
straints, including arithmetic operations. However, in the implementation, we ad-
vanced that as follows:

The meta-model of a graph constraint is extended to have a node type called At-
tribute Condition for specifying arithmetic operations. Each condition may have an
arbitrary number of attribute conditions. The node type Attribute (part of the graph
meta-model) is specified to have a filed value that can hold a primitive value or a
variable. At this end, the arithmetic operations can be specified using the variables
assigned to the fields. During the integration of a graph constraint as an application
condition into a rule, the tool OCL2AC copies and introduces the attribute condi-
tions of a graph constraint as attribute conditions of the rule. Moreover, the attribute
variables of the graph constraint are introduced as rule variables. Note that the inte-
grated attribute conditions may conflict with the already existing attribute conditions
of the rule because, e.g., the arithmetic operations become unsolvable, or they use
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the same variable names with different semantics. However, the foundation and the
correctness are not yet comprehensively studied.

Constraints as application conditions. As outlined in Section 5.3.4, integrating
a constraint into an empty rule produces an application condition being semantically
equivalent to the constraint. Thus, the rule with the resulting application condition
is applicable if and only if the input model is consistent w.r.t. the constraint. The
tool OCL2AC implements that also. This idea is promising to support and develop
the following projects:

e Deriving a configurable model checker from graph constraints: Given a set of
constraints, we apply OCL2AC to integrate each constraint into an empty rule.
Thus, we get a check rule which is applicable if and only if the model satisfies
the constraint. Then, we set the resulting enhanced rules in a transformation
unit such as a sequential unit. If all the sub-units of the sequential unit are
applicable, the model is consistent w.r.t. the configured constraints. Otherwise,
the information about the violations is reported to the user. The sequential
unit can be configured by the user who can choose which constraints have to
be checked, i.e., which rules have to configure the unit. Moreover, the model
checker could also be realized by deriving check rules from the structures of
graph constraints directly. Here, the graph structure of the constraint consti-
tutes the graphs of the check rule. For example, given a constraint of the form
Y(P,3C), where P is a sub-graph of C, the check rule can be specified to pre-
serve the graph P and forbid the graph C\P. Thus, the check rule is designed
to be applicable if and only if the model does not satisfy the constraint. If the
check rule is not applicable, the model satisfies the constraint. The advantage
of this specification is that using the rule match we can retrieve information
about the violations such as the location. Our configurable model checker can
also be used as a test model assertion.

o Auto-detection for smells, refactoring, or quick fixzing: Given a set of smells spec-
ified as graph constraints or OCL constraints, one can use our tool OCL2AC
to derive an application condition from a smell specification by integrating the
constraint into an empty rule. This resulting application condition checks the
existence of such a smell in a model. Appending the resulting application con-
dition into the corresponding fixing or refactoring rule would foster the trust of
automatically applying the refactoring/fixing rule to eliminate the smells while
the model is manipulated. Additionally, the smell specification and its refactor-
ing rule are composed together as one unit, i.e., as a rule with an application
condition, and that might be more efficient if the rules are distributed.

Application scenarios for self-adaptive and safety-critical systems. Since
our techniques perform the tasks automatically and they perform efficiently, we are
looking for scenarios from, e.g., self-adaptive systems where the requirements (the
constraints) are changed continuously, and the transformations have to be updated
accordingly. Additionally, we are looking forward to applying our techniques to ad-
vance the safety-critical application scenarios in which the transformations have to
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fulfill particular properties. Systems like the Wireless Sensor Network (WSN) and the
Internet of Things (IoT) are interesting application scenarios for applying our tech-
niques since preserving the connectivity, for example, among devices is required [68].
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Appendix for Part |

A.1 Catalog of Rules’ Schemes and their Meta-
Patterns

In the following, we present all the rule schemes and their meta-patterns which are
used by EMF repair (in Chapter 3). The rules are defined to deal with an arbitrary
instance model violating possibly the negative and positive constraints (the lower and
upper bounds). They are designed in a way that each successful application of a rule
enhances (or at least preserves) the consistency of the model. Detailed information
about the solution design of the rules is presented in Section 3.3.2. The rules are
derived using different kinds of meta-patterns. Each rule scheme may comprise pos-
itive or negative application conditions that are derived from the given meta-model
as well.

¢ Set of required-node-creation rules: For each containment type with lower
bound > 0, a rule is derived which creates a node with its containment edge
if the lower-bound invariant of the corresponding containment type is not yet
reached. The container is determined by the input parameter p. The user gets
the possibility to select the right container; otherwise, it is chosen randomly by
the algorithm. Figure A.1 illustrates the rule scheme used to derive this kind
of rules. A node of type B is created in an A-node if NACm is satisfied, i.e., if
there is no m B-nodes contained in the A-node. Note that for each non-abstract
class type B’ in clan(B) such a rule is derived.

e Set of required-edge-insertion rules: For each non-containment edge type
with one of its lower bounds m or k being > 0, a rule is generated which inserts
a corresponding edge if the composite application condition NAC at the bottom
of Figure A.2 is satisfied. Condition NACp forbids to insert an edge between
two nodes if there is already one of that type. Conditions NACm and NACI
check if lower bound m has not been reached and the upper bound [ has not
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Meta Pattern Rule Negative Application Condition
A p:A p:A p:A
opr| 1 opr o
pr
—> opr
..... m-—
con |m..n con con con
B :B* :B B
with m>0 CreatingRequiredNode(p) NACm

Figure A.1: Rule scheme for creating a required B-node

been exceeded. Then, an edge has to be inserted between the given nodes, and
this is possible. Similarly, conditions NACk and NACn may be fulfilled; i.e.,
the lower bound k has not been reached, and the upper bound n has not been
exceeded. Note, the NAC in Figure A.2 is generated in case that there is an
opposite non-containment edge type and 0 < k,l,m,n < #. For all other cases
the NAC is adapted correspondingly. I.e., if the edge type is not opposite or
((k =0)and(l = *)), NAC = NACp and NACm. If ((k = 0)and(n = *)), NAC
= NACp and NACm and N ACI. Similarly, the NAC is specified regarding the
bounds of the other edge direction.

Meta Pattern Rule Negative Application Condition

A |p1:A| |p1:A||p1:A||p1:A| |p1:A||:A||:A||:A||:A|

opr | k.l opr opr opr k-7 OP" 0pr\.}./" opr

: ref ref f-m-\ref ref [f N7\ ref

ref | m.n ref
5 |p2:B| |p2;B||p2:B||:B||:B||:B||:B||p2:B|

with m>0 NACp NACm NACn NACk NACI

or k>0

InsertingRequiredEdge(p1,p2) | NAC = NACp and ((NACm and NACI) or (NACn and NACk)) |

Figure A.2: Rule scheme for inserting a required non-containment edge

For each required non-containment edge type ref being a loop, two rule schemes
are derived: The first rule inserts a ref-edge between two different nodes of the
same type A if the composite application condition NAC is satisfied as shown
in Figure A.3. This insertion can take place if there is not already a ref-edge
between these nodes (NACref), there are not already m ref-edges going out
of the source node to other A-nodes(NACm), and there is no loop ref-edge at
the source node plus m-1 ref-edges running to other A-nodes (NACrefm-1).
The second rule scheme inserts a loop ref-edge at an A-node if the composite
application condition NAC is satisfied as shown in Figure A.4. This loop can
be inserted if there is not already a loop ref-edge at the A-node (NACref) and
if there are not m ref-edges running to other A-nodes (NACm).

¢ Set of additional-node-creation rules: Figure A.5 shows the meta-pattern
as well as the resulting rule scheme for creating a node of type B being contained
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Meta Pattern Rule 1 Negative Application Condition
ref:
| pL:A | | pL:A | | pL:A | | pL:A |
—> ref ref
withm>0 || pan | | p2a | N A |l A ]
NACref NACm NACrefm-1
InsertingRequiredEdge(p1,p2) I NAC = NACref and NACm and NACrefm-1 l

Figure A.3: First rule scheme for inserting a required non-containment loop

Meta Pattern Rule 2 Negative Application Condition

—> \I//fe ey

with m>0 InsertingRequiredEdge(p) | p:A | A || A |

NACref NACm

| NAC = NACref and NACm |

Figure A.4: Second rule scheme for inserting a required non-containment loop

in an A-node. This rule scheme can be applied if NACn is satisfied, i.e., if there
are not n B-nodes already contained in this A-node.

Meta Pattern Rule Negative Application Condition
A p:A p:A
opr
opr| 1
—>
con
con m..n
B’ :B B
B
CreatingAdditionalNode(p) NACn

Figure A.5: Rule scheme for creating an additional B-node

¢ Set of required-edge-checking rules: This rule scheme checks if a required
edge is missing. If a rule of this scheme can be successfully applied, there is
at least one missing required edge. Such a rule scheme is generated for each
non-containment edge type with m > 0. This meta-pattern and the resulting
rule scheme are shown in Figure A.6.

If the required non-containment edge type is a loop, another rule scheme is de-
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Meta Pattern Rule Negative Application Condition
A
p:A —_> p:A
ref m..n
B B :B
with m>0 CheckingRequiredEdge(p) NACm

Figure A.6: Rule scheme for checking the existence of required non-containment
edges

rived. The meta-pattern and the resulting rule scheme are shown in Figure A.7.
A rule of this scheme is applicable if there are not already m ref-edges run-
ning from the selected A-node to other A-nodes (NACm) and there is not a
loop ref-edge at the selected node plus m-1 ref-edges running to other A-nodes
(NACrefm-1).

Meta Pattern Rule Negative Application Condition

Lra o> [ o |

ref ref

CheckingRequiredEdge(p)

%

A ||

NACm NACrefm-1

| NAC = NACm and NACrefm-1 |

Figure A.7: Rule scheme for checking the existence of required non-containment
loop edges

e Set of exceeding-edge-removing rules: The meta-patterns as well as the

resulting rule schemes are shown in Figures A.8, A.9, and A.10. The derived rule
schemes are used to remove exceeding (loop) edges in a correct way (i.e., with-
out violating the fulfillment of their upper-bound invariants) The rule scheme
in Figure A.8 removes an edge between an A-node and a B-node if the PAC' is
true, i.e., if there are n+1 ref-edges running from this A-node to other B-nodes
in the model (Cn+1) or if there are [+1 opr-edges running from this B-node to
other A-nodes in the model (Cl+1).

The rule scheme in Figure A.9 removes an edge of a loop type between two
different nodes of type A (a source node and a target node) if the PAC is true,
i.e., if there are n+1 ref-edges running from this source A-node to other A-
nodes in the model (Cn+1) or if there are a loop ref-edge running from this
source A-node to itself and n ref-edges running from this source A-node to other
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Meta Pattern Rule Application Condition
A | pl:A | | pl:A | | pl:A | | A | | A |
opr | k.l opr
=> -n+1-
ref | m.n ref ref ref
B | p2:B | | p2:B | | B | | B | | p2:B |
With
n>0and n!=* Cn+l Cl+1
or
|0 and [1=* RemovingExceedingEdge(p1,p2) | PAC=Cn+lorCl+1 |

Figure A.8: Rule scheme for removing an exceeding edge

A-nodes in the model (Cnref). (In a similar way, the existence of opr-edges has
to be considered.)

Meta Pattern Rule 1 Application Condition
ref I pl:A I I pl:A I rgef pl:A I I
m.n opr
=
opr ref /e ref
k.l ref
B A A
o e vy | S EN |
n>0and ni= Crref cn+l Clop a1
or
>0 and I1=* i i (p1,p2) | PAC = Cnrefor Cn+1 or Clop or Cl+1 |

Figure A.9: First rule scheme for removing an exceeding loop edge

The rule scheme in Figure A.10 removes a loop edge at an A-node if the PAC
is true, i.e., if the A-node has already a loop edge to itself (Cref) and if there,
in addition, are n ref-edges running from this A-node to other A-nodes in the
model (Cn) or | opr-edges running from the other A-node to further A-nodes
in the model (CI).

Meta Pattern Rule 2 Application Condition

ref ref
m..n opr
A = j
0pr|

opr ref
) .
with | p:A A I | A I | p:A I
n>0 and nl=* . .
or RemovingExceedingEdge(p) Cn Cl
I>0 and |!=* Crefopr | PAC = Crefopr and (Cn or Cl) I

Figure A.10: Second rule scheme for removing an exceeding loop edge

¢ Set of exceeding-node-finding rules: For each containment type with a
limited upper bound in the given meta-model, a rule is derived which finds an
exceeding (supernumerous) node. The rule is applicable if there is at least
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one exceeding node in a given model. The meta-pattern and the resulting
rule scheme are shown in Figure A.11. This rule scheme comprises an output
parameter output to retrieve an exceeding model node. The rule is designed to
comprise two nodes (the container node and the contained node). The contained
node is specified with an output parameter. The condition Cn checks if there
are n additional B-nodes yielding n+1 B-nodes altogether, i.e., exceeding the
upper bound.

Meta Pattern Rule Application Condition
T T
opr |1 opr opr opr opr
= | | /[ )
con [ m.n con con con con
‘ B ‘ ‘ output:B ‘ ‘ output:B ‘ ‘ B ‘ ‘ B ‘
with findExceedingNode(output) Cn
n>0and nl=* PAC=Cn

Figure A.11: Rule scheme for finding a supernumerous node

e Set of node-content-deleting rules: For each path of containment types

of the given meta-model, a rule is derived. This rule scheme deletes a direct
or indirect contained node of a given node. Given a path longer than 1, there
is a rule for each sub-path. If the meta-model has such path meta-pattern as
shown in Figure A.12, for example, two rules are derived. The first one deletes
a B-node being contained in the given A-node and the other rule deletes a C-
node being contained in a B-node being contained in the given A-node. Note
that these rules aim to delete node contents. Each rule is configured with a
parameter to delete nodes contained in a given node.

Meta Pattern Rule 1 Rule 2

| A | | input:A | | input:A | | input:A | | input:A |

oprl 11 oprl oprl oprl
—> —>

conl [ m..n conl conl conl

Le | |Ls | | N

B
oprZQ opr2 ’

con2

:C

deletingNodeContent(input)

con2 |s.t

[ ]

deletingNodeContent(input)

Figure A.12: Rule scheme for deleting the node-contents of a given node
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o Set of target-node-deleting rules: For each containment type of a given
meta-model, this rule scheme deletes a given node. The meta-pattern and the
resulting rule scheme are shown in Figure A.13. Each rule is configured with a
parameter to delete the given node if possible, i.e., once the given node has no
contents and no non-containment edges.

Meta Pattern Rule

A 1:A 1:A

opr |1 opr —>

con m..n con

input:B

os]

deletingTargetNode(inp ut)

Figure A.13: Rule scheme for deleting a given node

e Set of edge-removing rules: For each non-containment type of the given
meta-model, a rule scheme is generated which removes an edge. The meta-
patterns and the resulting rule scheme are shown in Figure A.14 and Fig-
ure A.15. Note that these rules aim to delete node contents. Each rule is
configured with a parameter to remove the non-containment edges of a given
node.

Meta Pattern Rule
A ‘ input:A ‘ ‘ input:A ‘
opr | k.l opr
—=>
ref m..n ref

B ‘Z:B“Z:B‘

removingEdge(input)

Figure A.14: Rule scheme for removing an edge

¢ Set of node-moving rules: For each containment type with a limited upper
bound in the given meta-model, a rule is derived which moves a contained
node from its container node to another container node without violating the
corresponding upper bound of the target container node. The meta-pattern and
the resulting rule scheme are shown in Figure A.16. The contained node, its
container node and the target container node are specified with input parameters
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Meta Pattern Rule 1 Rule 2
ref ’ input:A ‘ ’ input:A ‘
ref
m..n opr opr
opr ; -
ref
’ 2:A ‘ ’ 2:A ‘
removingEdge(input)

Figure A.15: Rule scheme for removing a loop edge

pa, pb and pto, respectively. A rule of this scheme is applicable if there are not
already n B-nodes contained by the selected target container node.

Meta Pattern Rule Negative Application Condition
| A | | pa:A |0—| pb:B | | pa:A |
con m..n I:>
| B | pto:A | | pto:A |0—| pb:B |
With MoveNode (pa, pb, pto)

n>0 and n!=*

Figure A.16: Rule scheme for moving a contained node

In a similar way, Figure A.17 shows the rule scheme derived from a loop con-
tainment type with a limited upper bound in the given meta-model.

Meta Pattern Rule Negative Application Condition
mn | pa:A |‘—| pb:A| | pa:A |
con
A :>
pto:A | pto:A |0—| pb:A |
With

n>0 and nl=*

MoveNode (pa, pb, pto)

NACnh

Figure A.17: Rule scheme for moving a contained node

e Set of edge-moving rules: For each non-containment type with a limited
upper bound in the given meta-model, a rule is derived which moves an edge
from its source node to another source node if the composite application condi-
tion NAC at the bottom of Figure A.18 is satisfied. Condition NACp forbid to
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insert an edge between two nodes if there is already one of that type. Condition
NACn checks if the upper bound n has not been reached.

Meta Pattern Rule Negative Application Condition
to:A
T [ e o | [oon ] [ron ]
ref — ref ref /7= L ref
m..n
| [pto:a fresf oot || [obe | [8 | [ e |
With MoveEdge(pa, pb, pto) NACp NACn
n>0 and n!=* |
NAC = NACp and NACn |

Figure A.18: Rule scheme for moving an edge

Similarly, Figure A.19 and Figure A.20 show the rule schemes derived from a
loop non-containment type with a limited upper bound in the given meta-model.

Meta Pattern Rule Negative Application Condition

| pa:A ’—ref—)| pb:A | | pa:A |

ref

—>
m..n | pto:A ’—ref—)| pb:A |

With
n>0 and nl=* MoveEdge(pa, pb, pto)
NACn NACrefn-1
| NAC = NACn and NACRefn-1 |
Figure A.19: Rule scheme for moving a loop edge
Meta Pattern Rule Negative Application Condition
re :
A
m..n ref ref ref
With | A | | A |
-k
n>0andn!= MoveEdge(pa, pto)
NACn NACn

| NAC = NACn and NACp |

Figure A.20: Rule scheme for moving a loop edge
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A.2 Rules’ Examples

We demonstrate the derivation of transformation rules at the Webpage meta-model
in Figure 3.2.

= Rule create_RequiredNode_Image_in_Section(container)

«forbid#lowerBoundNotReached» elements

s «preserve» elements |«create»
DisplayElement container:Section JImage
«create»

«forbid#lowerBoundNotReached» [}

«forbid#lowerBoundNotReached» elements
:DisplayElement

«forbid#lowerBoundNotReached»

Figure A.21: A rule for creating a required node of type Image

An example of the set of required-node-creation rules: Figure A.21 presents the rule
for creating an Image-node being contained in an existing Section-node if there are
not already two nodes of type DisplayFlementcontained. This rule is derived due to
the lower bound of edge type elements. Similar rules have to be derived for edge types
header, body, navbars, and anchors. Note that there have to be two node creation
rules for elements since there are two different concrete target node types.

An example of the set of required-edge-insertion rules: Figure A.22 presents the de-
rived rule for inserting an edge of type target between two existing nodes: from an
Anchor-node to a DisplayFElement-node assuming that the source node is not already
connected to a node of type DisplayFElement by a target-edge. The opposite linked-
edge is automatically inserted in EMF as well.

| =¥ Rule insert_RequiredEdge_Anchor_to_DisplayElement(source, target)

«forbid#B» target  [(preserve» «forbid#A» target «preserve»
:DisplayElement source:Anchor target:DisplayElement
«forbid#B» «create»  target

Figure A.22: A rule for inserting a required non-containment edge of type target

An example of the set of required-edge checking rules: Figure A.23 presents the rule
which checks if a given Anchor-node is connected to a node of type DisplayFElement
by a target-edge. If this rule is applicable to a given instance model, there is a missing
required edge of type target.

An example of the set of the additional-node-creation rules: Figure A.24 presents a
rule for creating a Footer-node being contained in a WebPage-node if there are not
already two Footer-nodes in the WebPage-node. This rule is derived due to edge type
footers. Similar rules have to be derived for edge types header, body, navbars, sections,
subSections, elements, eanchor, footers, labels, and url.

An example of the set of exceeding-edge-removing rules: Figure A.25 presents the
derived rule for removing an active-edge between two existing nodes: from a Hyper-
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[:) Rule check_RequiredEdge_Anchor_to_DisplayElement(source) ]

«preserve» target «forbid#LowerBoundNotFulfilled»

source:Anchor :DisplayElement

«forbid#LowerBoundNotFulfilled»

Figure A.23: A rule for checking the existence of a required edge of type target

=» Rule create_AdditionalNode_Footer_in_WebPage(container)

«forbid#upperBoundNotReached»| footers |«preserve» footers |«create»

:Footer container:WebPage [ :Footer
} «Create»

«forbid#upperBoundNotReached»

«forbid#upperBoundNotReached»

footers
:Footer

«forbid#upperBoundNotReached»

Figure A.24: A rule for creating an additional node of type Footer

Label-node to a URL-node assuming that the source node is already connected to an
URL-node (including the url-edge) by an active-edge. A similar rule has to be derived
for edge type target. Note that the upper bound of the edge type linked is unlimited.
Therefore, no rule is derived for it.

|:) Rule remove_ExceedingEdge_HyperLabel to_URL(source, target) |

:URL source:HyperlL: — “ltargetURL
«delete»

«require#upperBoundIsReached»| active |«preserve» active «preserve|
abel

«require#upperBoundIsReached»

Figure A.25: A rule for removing a supernumerous target-edge

Figure A.26 presents two rules for deleting the node contents of a given Footer-node.
The first rule deletes an URL-node contained in a HyperLabel-node being contained
in the Footer-node. The other rule deletes a HyperLabel-node being contained in the
Footer-node. The Footer-node is given as an input parameter to these rules.

[@ Rule delete_URL_in_HyperLabel_in_Footer(container) ] [@ Rule delete_HyperLabel_in_Footer(container) ]
«preserve» labels _|<Preserve» url  |«delete»| || [«preserve» labels  [«delete»
container:Footer [ :HyperLabel :URL container:Footer [ :HyperLabel

«preserve» «delete» «delete»

Figure A.26: Two rules for deleting a node (transitively) contained in a given
Footer-node
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An example of the set of edge-removing rules: Figure A.27 presents the rule for re-
moving an active-edge from a HyperLabel-node to a URL-node.

[$ Rule remove_Edge_HyperLabel_to_URL(source, target) ]

«preserve» active

«preserve»
source:HyperLabel

target:URL

«delete»

Figure A.27: A rule for removing an active-edge

An example of the set of target-node-deleting rules: Figure A.28 presents the rule for
deleting the Footer-node (given as an input parameter) from a WebPage-node.

[;'5 Rule delete_TargetNode_Footer_in_WebPage(targetContent) ]

«preserve»
‘WebPage &

footers «delete»
targetContent:Footer

«delete»

Figure A.28: A rule for deleting a given Footer-node

An example of the set of exceeding-node-finding rules: Figure A.29 presents the rule
for finding a supernumerous Footer-node in a WebPage-node and retrieving it as an
output parameter.

= Rule check_ExceedingNode_Footer_in_WebPage(targetContent)

«require#upperBoundIsReached»| footers  |«preserve» footers «preserve»
:Footer :WebPage [* targetContent:Footer
) «preserve»

«require#upperBoundIsReached»

- foot
«require#upperBoundIsReached»| ooters

:Footer

«require#upperBoundIsReached»

Figure A.29: A rule for finding a supernumerous Footer-node

An example of the set of node-moving rules: Figure A.30 presents a rule for moving
a URL-node from its container HyperLable-node to another proper HyperLable-node.
The input parameters pa, pb and pto are specified by the user.

An example of the set of edge-moving rules: Figure A.31 presents a rule for moving
an active-edge from its source HyperLable-node to another proper HyperLable-node.
The input parameters pa, pb and pto are specified by the user.
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=» Rule moveNode_URL(pa, pb, pto)
«preserve» url «preserve»
pa:HyperLabel® pb:URL
«delete»
«forbid» url «preserve» |
:URL pto:HyperlLabel o, ur
«forbid» «Create»

Figure A.30: A rule for moving a URL-node

# Rule moveEdge_active(pa, pb, pto)

«preserve» active «preserve»|
pa:HyperLabel pb:URL
«delete»
active
«forbid»
«forbid»| active |«preserve» active

:URL to:HyperLabel
«forbid» «create»

Figure A.31: A rule for moving an active-edge
A.3 Unit-based Template of the Repair Algorithm

In the following, we represent the repair algorithm (in Section 3.3.1) as transforma-
tion units. For the representation purpose, we use Henshin transformation units.
Henshin is a language and tool environment for EMF model transformation [3]. A
transformation unit may compose sub-units and rules.

The algorithm is represented a sequential unit RepairModel composing two sequential
units: (1) TrimInstance and (2) CompleteInstance.

Model Trimming

Figure A.32 presents the transformation unit template of the control flow of model
trimming. It consists of a sequential unit TrimlInstance composing two layer units:
(1) Remove_All_ExceedingEdges and (2) Delete_All_ExceedingNodes. Note, a layer
unit is represented as a loop unit composing an independent unit. The layer unit Re-
move_All_EzxceedingFEdges is configured with all the derived exceeding-edge-removing
rules whereas the layer unit Delete_All_FExceedingNodes composes conditional units.
A conditional unit is of form CheckThenDelete_ExceedingNode_N_in_R. It is specified
to check the existence of an exceeding node of type N and to delete it in a proper
way. Its if-statement composes the corresponding exceeding-node-finding rule. If an
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exceeding-node-finding rule is applicable, there is an exceeding node and thus an ex-
ceeding node is retrieved. The then-statement can be represented as a sequential unit
which deletes a given node of type N and its content in a proper way. The else-
statement returns false. For each containment type whose upper bound is limited
such conditional unit is derived. Please note that we consider that a conditional unit
is applied successfully, i.e., returns true if the then-statement is executed. Other-
wise, it returns the value of the execution of the else-statement. The sequential unit
Delete_SelectedNode_N_in_R_Hierarchy is specified to delete a node and its content in
a proper way as follows: (1) All the edges of the selected node and its contents are
removed. (2) All the node contents are deleted in a bottom-up way, i.e, the deletion
starts at the node leaves. Finally, the selected node, which is empty now, is deleted
using an independent unit Delete_SelectedNode_N_From_R being configured with the
target-node-deleting rules. Steps (1) and (2) could be specified using foreach units,
which is not yet introduced in Henshin, with the help of a layer unit configured with
edge-remove rules and a layer unit configured with the target-node-deleting rules, re-
spectively. Step (2) could also be specified as a layer unit being configured with the
target-node-deleting rules. Note, with the help of parameters, the rules are identified.

Model Completion

Figure A.32 presents the unit transformation template of the control flow of model
completion. It consists of a sequential unit Completelnstance composing three
units as follows: (1) a layer unit CreateAllRequiredNodes, (2) a layer unit Con-
nectCorrelatedNodes and (3) a conditional unit CheckAndValidate_AllRequiredEdges.
The layer unit CreateAllRequiredNodes is configured with all the derived required-
node-creation rules and the layer unit ConnectCorrelatedNodes is configured with
all the derived required-edge-insertion rules. The conditional unit CheckAndVali-
date_AllRequiredEdges is specified as follows: The if-statement is specified as an in-
dependent unit being configured with all the derived required-edge-checking rules.
The else-statement is specified to return true. The then-statement is specified as
conditional unit. The goal of this conditional unit is: (1) to find unfulfilled re-
quired edge and create its missing node, and then (2) call the model completion
again. Its if-statement is specified as an independent unit AddOneMissingNode-
ForUnfulfilledRequiredEdge whereas the then-statement is specified to call the se-
quential unit Completelnstance. The later independent unit is configured with con-
ditional units of form Is_RequiredEdge_E_to_Node_N_Missing. For each required non-
containment edge type, a such conditional unit is derived. The conditional unit
Is_RequiredEdge_E_to_Node_N_Missing checks if there is a missing required edge of
type E. The if-statement of it is configured with a corresponding rule of kind required-
edge-checking. The check rule is applicable if and only if there is a missing edge
of type F to a node of type N. In this case, the then-statement is called. Other-
wise, the else-statement returns false. The then-statement is specified as a priority
unit Add_MissingNode_N composing two ordered sub-units: (1) an independent unit
Add_Node_N_immediately. (2) an independent unit Add_Container_for_Node_N. These
two independent units are configured with the corresponding rules of kind additional-
node-creation. The priority unit adds a node of type N immediately in an existing
container node without violating the respective upper bound. If it failed, it adds a
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container node of a container type for the type N without violating the respective
upper bound.
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Appendix for Part Il

B.1 Proofs and Examples

B.1.1 Proofs

This section contains the proofs of the theorems presented in Chapter 6.

Proof (of Theorem 2 in Section 6.3.2). We first show that this replacement
results in a graph condition again: Since all morphisms are injective, if a subcondition
I(a : C1 — () is replaced by false because of such a violation, so are all subcon-
ditions dependent of C5 in the tree structure of the condition: These subconditions
contain the same violation.

We prove the general statement using structural induction.

The statement holds for ¢ =true since true’ = true and p =true for every injective
morphism p.

Let ¢ = 3(a : P — C,d) be a condition and, by induction hypothesis, ¢ =d < ¢ = d’
for each injective morphism ¢ from C' to any EMF-model graph. First, if C' neither
contains parallel edges nor multiple incoming containment edges to the same node,
then ¢ = 3(a : P — C,d"). Now, for every injective morphism p : P — G, where G
is any EMF-model graph

pEce3q:C—>G, st qoa=pandql=d
< 3¢:C—> G, st.goa=pand g d
opkEd.

Secondly, if C' contains parallel edges or multiple incoming containment edges to the
same node, then ¢’ = false. Therefore, no injective morphism p : P — G satisfies
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¢, where G is any graph. But since no EMF-model graph G contains parallel edges
or multiple incoming containment edges to the same node, there does not exist any
injective morphism ¢ : C' — G into any EMF-model graph G. Hence, there does never
exist an injective morphism ¢ s.t. goa = p and ¢ |= d’. In summary, p b c < p # ¢
for all injective morphisms p : P — G for any EMF-model graph G.

The induction steps for Boolean operators are routine. O O

The next proof, for all three situations, relies on the notion of parallel independence
which we first shortly recall.

Definition 13 (Parallel independence).  Given two plain rules p; = (L; R
K; < R;) with i = 1,2, two direct transformations G =, ,, H1 and G =, , Ho
via those rules are parallelly independent if there exist two morphisms dy : L1 — Dy
and dy : Ly — D1 as depicted below such that m; = fsody and mo = fi0ds. The rules

p1 and po are parallel independent if every pair of transformations H; < G = H»
p1 P2

is.

R1<L)K1(l—l>[/1 Lo l2)K2(T2 Rs

\ T/

L .
e
oy
f2

ni

H < D « s @ 7 Dy

2 H,

dgz//
f1

Proof (of Theorem 1 in Section 6.3.1).

1. Let G =, H be a transformation via rule p where G }= ¢. By induction, we
show the stronger statement that for every condition ¢ over any graph P, there
exists an injective morphism g : P — G with ¢ |= ¢ if and only if there exists
an injective morphism ¢’ : P — H with ¢’ = c¢. In particular, for constraints
¢ = 3(g — C,d) this implies that H |= ¢ (via the empty morphism) if and
only if G |= c. We prove the statement by induction over the structure of the
condition. If c =true, H Ece G E=c.

Let c=3(a: P — C,d), g: P — G and g |= ¢. By definition, there exists an
injective morphism ¢ : C' — G such that goa = ¢g and g |= d. By induction
hypothesis, there exists an injective morphism ¢’ : C — H such that ¢’ }= d.
Consider the constant rule idp : P « P < P (which just checks for the
existence of the graph P). The intersection between L\K and P is empty and
therefore the rules p and idp are parallelly independent. In particular, pairs
of transformations G ,; <G =, H are. Hence, for the match morphism g for
rule idp in G, there exists an according match morphism ¢’ : P — H such
that ¢’ = ¢ oa (compare the Local Church-Rosser Theorem and its proof [39]).
Thus, ¢’ = c.



191

In the other direction, let ¢’ : P — H and ¢’ }= ¢. By definition, there exists
an injective morphism ¢’ : C — H such that ¢ ca = ¢’ and ¢’ = d. By
induction hypothesis, there exists an injective morphism ¢ : C' — G such that
q |= d. Consider, again, the constant rule idp : P «= P — P. The intersection
between R\K and P is empty and therefore the rules p and idp are sequentially
independent. In particular, transformation sequences G =4, G =, H are.
This is equivalent to p~! and idp being parallelly independent. Then, again by
the Local Church-Rosser Theorem, there is an injective morphism g : P — G
such that g = goa. Thus, g = c.

Induction over the Boolean operators is standard, again.

. The proof for this second situation uses parallel independence in a similar fash-
ion; since the considered constraints are not nested, we do not need an induction.
Let H denote a graph which arises by application of a monotonic ruler : K <— R
to a graph G, i.e., G =, H. A monotonic rule is parallel independent from the
rule which just checks for the existence of the graph C, i.e., each pair of trans-
formations G, <G =, H is, where idc : C <> C — (' is constant. Hence,
every match for the graph C' in G extends to a match for graph C in H, i.e.,
GEc=HEc

Dually, checking the existence of a graph C' is sequentially independent of ap-
plying a rule [ : L « K which only deletes. Hence, every match for C in a
graph H can be extended to a match for C in G, i.e., H E=31C = G =3C and
hence G Ec= H =c.

. Let I be a set indexing the possible overlappings of C' and R, i.e., the pairs of
jointly surjective, injective morphisms ig : R — P;,ic : C — P;. Let J c I be
the subset of I that consists only of that indices denoting overlappings where
at least one newly created element from the rule, i.e., an element from R\K is
overlapped with one from C. Let rac = —|(\/jeJ 3jr : R — P;) be the right
application condition of p arising by only considering overlappings from J (and
not from the whole set I). Let ac denote the application condition for rule p
when moving rac equivalently to the LHS of p.

We prove the statement by contraction. Thus, let G | c=—-3C,G = 5= (p,ac),m
H, so p is equipped with application condition ac, and assume H |= —c =3C.
This means, there is an injective morphism ¢’ : C — H. By construction of
I, there exists an i € I such that there is an injective morphism ¢’ : P; — H
with n = ¢’ oip and ¢’ cic = ¢ (compare Figure B.1). Since p is equipped with
application condition ac, ¢ € I\J; otherwise rule application would have been
prevented by that application condition:

n#E—-I(ir:R—>P)enkEI(ir: R— F)

<3¢ :P—>H,st.n=q oip .

Now, like in the proofs above, checking for the existence of P;,i € I\J in graph
H is independent of applying rule p. Hence, the morphism ¢’ : P; < H restricts
to an injective morphism ¢ : P; — G and therefore G = —¢ = 3C via the
injective morphism ¢ = G o i¢. This contradicts G = c.
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C

ic
I l > K ¢ r R iR P,
%
G o D4 H

Figure B.1: Existence of satisfying morphism

B.1.2 C-Preserving Application Conditions as Defined in the
Theory [55]: An Example

Using our running example (see Section 6.2), we present the resulting c-preserving
application condition acp,.s w.r.t. the construction provided by Habel and Penne-
mann in ([55], Def. 9). The construction of a c-preserving application condition is
defined by them using an implication operator as follows:

ACpres = (Shift(ril,c) = (Cgua) (B.1)

where r~! denotes the inverse rule of the given rule r, ¢ denotes the given
constraint and acgyu, denotes the c-guaranteeing application condition defined as
Left(r, (Shift(r,c)) which is the output (of the second component) of OCL2AC.

Figure B.2 presents the c-preserving application condition of integrating the constraint
no_region into the rule moveRegionFromStateTOState being constructed according
to the formula (B.1). The left column displays the antecedent that expresses that
the model was already valid before rule application and the right column displays
the consequent of the conditional. The resulting application condition acpr.s con-
tains 14 graphs although we have integrated only one constraint into the rule. To
further simplify the result, the material implication has to be simplified by applying
De Morgan’s Law and the distributivity law yielding a formula in conjunctive normal
form. It consists of 7 clauses where each clause contains 8 literals. To simplify the
particular clauses, subgraph isomorphism checks have to be performed. As soon as
the input constraint is really nested, the simplification becomes even more difficult
since particular clauses can no longer be simplified by simply checking for subgraph
isomorphisms. Our optimizing-by-construction technique simplifies the resulting ap-
plication conditions throughout the construction process without the need for such
costly computations. In the best case, as, e.g., in Figure 6.7, we even receive the
logically weakest possible application condition in a simplified version as output.
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region

‘self:NewSour('e:b‘inalState‘O&»‘val'Zg:Regiou‘
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AP rogion
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Figure B.2: The resulting c-preserving application condition acpres w.r.t. the con-
struction provided by Habel and Pennemann in [55], compare with our optimized

version in Figure 6.7
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B.2 List of OCL Constraints
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B.2.1 List of OCL Constraints of Petrinet

Table B.1: OCL constraints of Petrinet

ID OCL Constraints of Petrinet

1 invariant Example09: self.name <> ’7;

2 invariant ExamplelOa: self.preArc -> notEmpty() or self.postArc
-> notEmpty Q) ;

3 invariant ExamplelOb: self.transition -> forAll(t|t.preArc ->
notEmpty() or t.postArc -> notEmpty());

4 invariant Examplell: self.preArc -> notEmpty() or self.postArc ->
notEmpty () ;

) invariant Examplel2: self.place -> forAll(pl|self.place —->
forAll(p2|pl <> p2 implies pl.name <> p2.name));

6 invariant Examplel3a: self.place -> exists(plp.token ->
notEmpty()) ;

7 invariant Examplel3b: self.place -> select(pl|p.token ->
notEmpty()) -> notEmptyQ) ;

8 invariant Examplel3c: self.place -> collect(plp.token) ->
notEmpty () ;

9 invariant Examplel3d: Token.allInstances() -> notEmpty();

10 invariant Examplel4: self.weight >= 1;
11 invariant Examplelb5: self.place -> size() >= 2;
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B.2.2 List of OCL Constraints of Statechart

Table B.2: OCL constraints of Statecharts

ID OCL Constraints of Statecharts

1 invariant owned: (stateMachine -> notEmpty() implies state
-> isEmpty()) and(state -> notEmpty() implies stateMachine ->
isEmpty () ;

2 invariant submachine_states: isSubmachineState=false implies
connection -> notEmpty();

3 invariant destinations_or_sources_of_transitions:

self.isSubmachineState=true implies (self.connection -> forAll(cp

|cp.entry -> forAll(p|p.stateMachine = self.submachine) and
cp.exit -> forAll (p | p.stateMachine = self.submachine)));

4 invariant submachine or_regions: self.isComposite=true implies not

(self.isSubmachineState=true);

5 invariant composite_states: self.connectionPoint -> notEmpty()
implies self.isComposite=true;

6 invariant no_outgoing transitions: self.outgoing -> size() = 0;

7 invariant no_regions: self.region -> size() = 0;

8 invariant no_entry_behavior: self.enty -> isEmpty();

9 invariant no_exist_behavior: self.exit -> isEmpty();

10 invariant cannot_reference_submachine: self.submachine ->

isEmpty () ;

11 invariant no_state_behavior: self.doActivity -> isEmpty();
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B.2.3 List of OCL Constraints of UML
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Table B.3: OCL constraints of UML

ID OCL Constraints of UML

1 invariant visibility_public_or_private: self.visibility
= VisibilityKind: :public orself.visibility =
VisibilityKind: :private;

2 invariant public_or_private: self.visibility
= VisibilityKind: :public orself.visibility =
VisibilityKind: :private;

3 invariant not_apply_to_self: mnot self.constrainedElement ->
includes(self);
4 invariant binary_associations: self.memberEnd ->

exists(aggregation <> AggregationKind::none) impliesself.memberEnd
-> size() = 2;

5) invariant association_ends: (self.memberEnd -> size()>2)
implies(self.ownedEnd -> includesAll(self.memberEnd));

6 invariant only_return_result_parameters: self.behavior.ownedParameter
-> select(p | p.direction<>ParameterDirectionKind::return) ->
isEmpty () ;

7 invariant derived_union_is_derived: isDerivedUnion=true
impliesisDerived=true;

8 invariant derived_union_is_read_only: isDerivedUnion=true
impliesisReadOnly=true;

9 invariant deployed_elements: self.deployment —>

forAll (d | d.location.deployedElement -> forAll (de |
de.oclIsKindOf (Component))) ;

10 invariant deployment_target: self.deployment -> forAll (4 |
d.location.oclIsKindOf (ExecutionEnvironment)) ;

11 invariant at_most_one return: self.ownedParameter -> select(par |
par.direction = ParameterDirectionKind::return) -> size() <= 1;

12 invariant only_body_for_query: self.bodyCondition -> notEmpty()
impliesisQuery=true;

13 invariant passive_class: not (self.isActive=true)
impliesself.ownedReception -> isEmpty();

14 invariant visibility: self.feature -> forAll(f | f.visibility =
VisibilityKind: :public);

15 invariant protocol_transitions: self.region -> forAll(r |
r.transition -> forAll(t | t.oclIsTypeOf (ProtocolTransition)));

16 invariant classifier_context: (not self.context -> isEmpty())
andself.specification -> isEmpty();

17 invariant classifier_context: self.context -> notEmpty()
impliesnot self.context.oclIsKindOf (Interface);

18 invariant connection_points: self.connectionPoint ->

forAll (c | c.kind = PseudostateKind::entryPoint orc.kind =
PseudostateKind: :exitPoint);

19 invariant method: self.specification -> notEmpty()
impliesself.connectionPoint -> isEmpty();
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ID

OCL Constraints of UML

20

invariant entry_or_exit: self.connectionPoint ->
forAll(cplcp.kind = PseudostateKind::entryPoint orcp.kind =
PseudostateKind: :exitPoint);

21

invariant initial_vertex: self.subvertex -> select (v |
v.oclIsKindOf (Pseudostate)) -> select(p : Pseudostate | p.kind
= PseudostateKind::initial) -> size() <= 1;

22

invariant deep._history_vertex: self.subvertex -> select (v |
v.oclIsKindOf (Pseudostate)) -> select(p : Pseudostate | p.kind
= PseudostateKind: :deepHistory) -> size() <= 1;

23

invariant shallow_history_vertex: self.subvertex —-> select(v |
v.oclIsKindOf (Pseudostate)) -> select(p : Pseudostate | p.kind =
PseudostateKind: :shallowHistory) -> size() <= 1;

24

25

invariant submachine_states: isSubmachineState=true
impliesconnection -> notEmpty();

invariant destinations_or_sources_of_transitions:
self.isSubmachineState=true implies(self.connection -> forAll
(cp | cp.entry -> forAll (p | p.stateMachine = self.submachine)
andcp.exit -> forAll (p | p.stateMachine = self.submachine)));

26

27

invariant submachine or_regions: self.isComposite=true impliesnot
(self.isSubmachineState=true);

invariant composite_states: self.connectionPoint -> notEmpty()
impliesself.isComposite=true;

28

invariant entry_pseudostates: self.entry ->
notEmpty() impliesself.entry -> forAll(e | e.kind =
PseudostateKind: :entryPoint) ;

29

invariant exit_pseudostates: self.exit -> notEmpty()
impliesself.exit -> forAll(e | e.kind = PseudostateKind::exitPoint);

30

invariant initial_vertex: (self.kind = PseudostateKind::initial)
implies(self.outgoing -> size() <= 1);

31

invariant history_vertices: ((self.kind = PseudostateKind::deepHistory)
or(self.kind = PseudostateKind::shallowHistory))
implies(self.outgoing -> size() <= 1);

32

invariant join_vertex: (self.kind = PseudostateKind::join) implies
((self.outgoing -> size() = 1) and(self.incoming -> size() >= 2));

33

invariant fork_vertex: (self.kind = PseudostateKind::fork)
implies((self.incoming -> size() = 1) and(self.outgoing -> size()
>= 2));

34

invariant junction_vertex: (self.kind = PseudostateKind::junction)
implies((self.incoming -> size() >= 1) and(self.outgoing -> size()
>= 1)),

35

invariant choice_vertex: (self.kind = PseudostateKind::choice)
implies ((self.incoming -> size() >= 1) and(self.outgoing ->
size() >= 1));

36

invariant outgoing from initial: (self.kind =
PseudostateKind::initial) implies(self.outgoing.guard -> isEmpty()
andself.outgoing.trigger -> isEmpty());

37

invariant is_binary: self.memberEnd -> size() = 2;
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ID OCL Constraints of UML

38 invariant aggregation: self.aggregation = AggregationKind::composite;

39 invariant control_pins: self.isControl=true implies
self.isControlType=true;

40 invariant extension points: self.extensionLocation -> forAll (xp |
self.extendedCase.extensionPoint -> includes(xp));

41 invariant operands: self.operand->
forAll (oplop.oclIsKindOf(LiteralString));

42 invariant subexpressions: if self.subExpression -> notEmpty()
then self.operand-> isEmpty() else self.operand-> notEmpty ()
endif;

43 invariant one_output_parameter: self.ownedParameter

-> select(p | p.direction=ParameterDirectionKind: :out
orp.direction=ParameterDirectionKind: :inout
orp.direction=ParameterDirectionKind: :return) -> size() >= 1;

44 invariant generalize: self.generalization.general -> forAll(e
|e.oclIsKindOf (Stereotype)) and self.generalization.specific ->
forAll(e | e.oclIsKindOf(Stereotype));

45 invariant consider_and_ignore: ((self.interactionOperator=
InteractionOperatorKind: :consider) or(self.interactionOperator=
InteractionOperatorKind: :ignore)) implies
self.oclIsTypeOf (ConsiderIgnoreFragment) ;

46 invariant consider_or_ignore: (self.interactionOperator=
InteractionOperatorKind: :consider) or(self.interactionOperator=
InteractionOperatorKind: :ignore);

47 invariant type: self.message -> forAll(m |m.oclIsKindOf (Operation)
orm.oclIsKindOf (Reception) orm.oclIsKindOf (Signal));

48 invariant classifier not_abstract: not (self.classifier.isAbstract
= true);

49 invariant classifier not_association_class: not

self.classifier.oclIsKindOf (AssociationClass);
20 invariant no_type: self.target.type —-> size() = 0;
51 invariant no_type: self.first.type -> size() = 0
andself.second.type -> size() = 0;

52 invariant contained: self.context -> size() = 1;

53 invariant not_static: self.structuralFeature.isStatic = false;

o4 invariant one_featuring classifier:
self.structuralFeature.featuringClassifier -> size() = 1;

55 invariant input_pin: self.value.type =

self.structuralFeature.featuringClassifier;

56 invariant type_of result: self.result -> notEmpty()
impliesself.result.type = self.object.type;

57 invariant type_of_result: self.result -> notEmpty()
impliesself.result.type = self.object.type;

o8 invariant property_is_association_end: self.end.association ->
size() = 1;

59 invariant same_type2: self.value.type = self.end.type;

60 invariant end_object_input_pin:
self.value -> excludesAll(self.qualifier.value);
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ID OCL Constraints of UML

61 invariant qualifier_attribute: self.LinkEndData.end ->
collect(qualifier) -> includes(self.qualifier);

62 invariant type_of_qualifier: self.value.type =
self.qualifier.type;

63 invariant one_open_end: self.endData -> select(ed | ed.value ->
size() = 0) -> size() = 1;

64 invariant create_link_ action:
self.LinkAction.oclIsKindOf (CreatelLinkAction);

65 invariant no._regions: self.region -> size() = 0;

66 invariant cannot_reference_submachine: self.submachine ->
isEmpty () ;

67 invariant no_entry_behavior: self.entry -> isEmpty();

68 invariant no_exit_behavior: self.exit -> isEmptyQ);

69 invariant no_state_behavior: self.doActivity -> isEmpty(Q);

70 invariant same_type4: self.value.type = self.variable.type;

71 invariant has no: self.generalization -> isEmpty() andself.feature
-> isEmpty();

72 invariant not_instantiable: isAbstract=true;

73 invariant sources_and targets_kind: (self.source ->
forAll(p | p —> oclIsKind0Of(Actor) oroclIsKindOf (Node)
oroclIsKind0Of (UseCase) oroclIsKindOf (Artifact)
oroclIsKindOf (Class) oroclIsKindOf (Component)
oroclIsKindOf (Port) oroclIsKindOf (Property) or
0c1IsKind0f (Interface) oroclIsKindOf (Package)
oroclIsKindOf (ActivityNode) oroclIsKindOf (ActivityPartition)
or oclIsKindOf (InstanceSpecification))) and(self.target
-> forAll(p | p —> oclIsKindOf (Actor) oroclIsKindOf (Node)
oroclIsKindOf (UseCase) oroclIsKindOf (Artifact)
oroclIsKindOf (Class) oroclIsKindOf (Component)
oroclIsKindOf (Port) oroclIsKindOf (Property)
oroclIsKindOf (Interface) oroclIsKindOf (Package)
oroclIsKindOf (ActivityNode) oroclIsKindOf (ActivityPartition)
oroclIsKindOf (InstanceSpecification)));

74 invariant convey_classifiers: self.conveyed.representation ->
forAll(p | p -> oclIsKindOf(Class) oroclIsKindOf (Interface)
oroclIsKindOf (InformationItem) oroclIsKindOf (Signal)
oroclIsKindOf (Component)) ;

75 invariant classifier not_abstract: not self.newClassifier ->
exists(isAbstract = true);

76 invariant no_type: self.object.type -> isEmptyQ);

7 invariant boolean result: self.result.type = Boolean;

78 invariant property: self.end.association -> notEmpty();

79 invariant association_of_association:
self.end.association.oclIsKindOf (AssociationClass);

80 invariant type_of _result: self.result.type = self.end.type;

81 invariant qualifier_attribute: self.qualifier.associationEnd ->
size() = 1;

82 invariant association_of_association:

self.qualifier.associationEnd.association.oclIsKindOf (AssociationClass)
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83 invariant same_typeb: self.result.type = self.qualifier.type;

84 invariant unmarshall: self.isUnmarshall = true;

85 invariant event_on_reply_to_call_trigger:
self.replyToCall.oclIsKindOf (CallEvent) ;

86 invariant one_outgoing edge: self.outgoing -> size() = 1;

87 invariant associated_actions: self.effect -> isEmpty(Q);




Typeset 2020-03-13



	Abstract
	Überblick
	Acknowledgements
	Introduction
	Challenges and Goals
	Contributions
	Methodology
	Publications
	Outline

	Background
	EMF Models, Constraints and Hierarchy
	Graphs and EMF Graphs
	Model Transformations: Henshin
	Object Constraint Language (OCL)
	Graph Constraints and Conditions
	OCL Translation Rules
	The Calculus of Application Conditions

	I Consistency Techniques for Software Models
	Rule-based Repair of EMF Models
	Introduction
	Running Example
	Rule-based Model Repair
	Formalization
	Tooling
	Evaluation
	Discussion
	Related Work
	Conclusion

	Rule-based Generator of Consistent EMF Models
	Introduction
	Running Example
	Rule-based Model Generation
	Tooling
	Evaluation
	Related Work
	Conclusion


	II Consistency Techniques for Model Transformations
	Automated Construction of Guaranteeing Application Conditions from OCL Constraints
	Introduction
	Running Example
	Solution Design and Implementation
	Evaluation
	Related Work
	Conclusion

	Constructing Optimized Consistency-Preserving Application Conditions
	Introduction
	Running Example
	Optimizing Application Conditions
	Tooling
	Evaluation
	Related Work
	Discussion
	Conclusion


	Summary and Outlook
	Summary
	Outlook

	Bibliography
	Appendix for Part I
	Catalog of Rules' Schemes and their Meta-Patterns
	Rules' Examples
	Unit-based Template of the Repair Algorithm

	Appendix for Part II
	Proofs and Examples
	List of OCL Constraints


