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Abstract
When custom modeling tools are used for designing complex safety-critical systems (e.g., critical cyber-physical systems),
the tools themselves need to be validated by systematic testing to prevent tool-specific bugs reaching the system. Testing of
such modeling tools relies upon an automatically generated set of models as a test suite.While many software testing practices
recommend that this test suite should be diverse, model diversity has not been studied systematically for graph models. In the
paper, we propose different diversity metrics for models by generalizing and exploiting neighborhood and predicate shapes
as abstraction. We evaluate such shape-based diversity metrics using various distance functions in the context of mutation
testing of graph constraints and access policies for two separate industrial DSLs. Furthermore, we evaluate the quality (i.e.,
bug detection capability) of different (random and consistent) model generation techniques for mutation testing purposes.

Keywords Graph diversity metrics · Model diversity · Model generators · Mutation testing · Shape analysis

1 Introduction

Motivation. Several modeling tools in the industrial prac-
tice of model-based systems engineering (such as Capella,
Artop, or Papyrus) are built upon graph-based model repre-
sentations. Suchmodeling toolmayprovide validation for the
system under design from an early stage of development with
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efficient tool support for checking well-formedness (WF)
constraints and design rules over large model instances of
the domain-specific languages (DSL) using tools like Eclipse
OCL [39] or graph queries [58]. They may provide support
for complexmodel transformation or code generation steps to
automatically derive or continuouslymaintain various design
artifacts.

When such modeling tools are used for engineering
complex, safety-critical systems (like safety-critical cyber-
physical systems), they need to comply with related safety
standards (likeDO-178C)where tool qualification frequently
prescribes that software tools used for engineering such sys-
tems also need to be tested systematically. Such testing
requires a test suite that is of sufficiently high quality, i.e.,
it is capable of revealing a large fraction of the anticipated
defects in the system, in an efficient manner. However, a test
suite of a modeling tool is fundamentally different from that
of a traditional software system since a test input needs to
be a complex, graph-based model. Moreover, for advanced
modeling environments, complex instance models are scarce
due to the protection of intellectual property.

Various techniques have been proposed [29,33,48,51,56]
for the automated synthesis of graph models to serve as test
inputs for testing of model transformations, [3,11,59], for
solving the allocation problems [33], for model refactor-
ing or context generation [36] in CPS. Often, these model
generators have to generate consistent models which sat-
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isfywell-formedness (WF) constraints, otherwise themodels
may not be processed by the modeling tool under test.

Many best practices of software testing (such as equiv-
alence partitioning [41], mutation testing [32]) recommend
the synthesis of diverse test inputs where each test case elic-
its structurally different behavior from the artifact under test
(AUT) in order to achieve high coverage or a diverse solution
space. In fact, mutation testing is frequently used [3,37,46]
in model-driven engineering (MDE).

Problem Statement. While diversity is widely studied
[7] for traditional software, existing diversity metrics for
software models are much less elaborated [61]. Model com-
parison techniques [54] frequently rely upon the existence of
node identifiers, which can easily lead to many isomorphic
models. Since checking graph isomorphism is computation-
ally costly, practical solutions tend to use approximation
techniques to achieve certain diversity by random sam-
pling [31], incremental generation [33,51], using symmetry-
breaking predicates [56], or – in case of a white-box testing
– by generating models satisfying (or violating) relevant
graph predicates [51] (possibly derived from OCL expres-
sions [22,26]).

In the current paper, we wish to investigate three major
questions:

Q1 How to characterize diversity in case of graph mod-
els? In other terms, we aim to study the question
what makes a single model or a set of models
diverse.

Q2 How representative or useful are diversity metrics
for deriving an effective test suite? In other terms,
if we derive a set of models which are diverse wrt.
some metrics, then ideally, this set of models should
serve as an effective test suite for functional test-
ing.

Q3 Howeffective are existingmodel generators in deriving
models as a test suite for functional testing? In other
terms, to what an extent can existing generators help
in deriving an effective test suite.

To measure the effectiveness of a test suite (or a single
test case), we are using a mutation testing setup. First, we
specify potential fault models for components of a modeling
tool, then we derive a set of mutant artifacts by injecting
possible faults to the modeling tool. A fault can be killed
by an instance model if a mutant artifact handles the model
differently from what we expected (which is decided by a
test oracle). Therefore, the effectiveness of test cases, test
suites and model generators can be measured by the number
of mutant cases it can detect (so-called mutation score). In
general, the goal is to create a test suite that is able to kill the
most faults in mutation testing setup.

Contribution. In this paper (which extends our initial work
in [50]), we propose and evaluate various diversity metrics to
characterize a single model and a set of models. For that pur-
pose, we innovatively reuse neighborhood graph shapes [43]
and graph predicate abstraction techniques [22,26,44]which
refine the type of each graph object based on the structure of
its neighborhood (e.g., incoming and outgoing edges) and the
truth values of predicates (e.g., a node satisfies a predicate or
not). The internal diversity of a single model will be charac-
terized by the number of shape nodes covered by the model,
which generalizes traditional metamodel coverage (used in
many research papers). Furthermore, we adapt several dis-
tance metrics (e.g., symmetric distance, cosine distance) to
capture the diversity between pairs of graphmodels, and gen-
eralize shape-based external diversitymetrics characterizing
the whole test suite.

We also conduct experiments with a large number of
instance models to investigate whether such metrics can suc-
cessfully predict (or improve, via test case prioritization as
in [9]) the quality of a test or test suite. Experiments are con-
ducted bymutation-based testing [37],withmutation score as
the proxy for test quality. Our experimental evaluation spans
two case studies taken from different application domains:

ST Testing a statechart-based DSL tool used for behav-
ioral modeling (statemachinemodels) as in [50]. Here,
we investigated how diverse input models can test the
correctness of the language specification of the the
modeling tool.

WT Testing access control policies for collaborative mod-
eling (in the context of structural models of wind
turbine control systems [23]). Here, we investigated
how diverse input models can test the correctness of
the access settings of a collaborative modeling plat-
form.

As such, our paper is one of the first extensive studies on
(software) model diversity.

Test inputs to be compared stem from four different
sources: (1) an Alloy-based consistent model generator [56]
(using symmetry-breaking predicates to ensure diversity), (2)
a consistent model generator based on a graph solver [48]
that uses neighborhood shapes, (3) a random model genera-
tor [45] without consistency guarantees, and finally (4) real
models created by humans.

Based on a test suite with 23,439 models, we found high
correlation between mutation score and our diversity met-
rics, which indicates that our metrics are likely to be good
predictors for mutation testing purposes in MDE. Further-
more, model generators using neighborhood graph shapes
(that keep models only if they are surely non-isomorphic)
provide significantly better diversity (and mutation score)
compared to symmetry-breaking predicates (which exclude
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models if they are surely isomorphic). Since Alloy is follow-
ing this second path, this empirical finding likely invalidates
a significant amount of past research results (e.g. [3,11,24,
25,46,47]) where the Alloy Analyzer was used for gener-
ate models, as those test inputs might be well formed, but not
necessarily efficient (with respect tomutation score). Finally,
with random restarts, the graph solver [48] derived more
diverse graph models than a random EMF generator [45] and
significantly outperformed Alloy-based model generators.

This paper extends previous work [50] by incorporating
novel distance metrics, a new complex case study, and a
substantially extended experimental evaluation (with new
research questions, model generators and a new case study).
Finally, as a by-product, we also provide a reusable muta-
tion generator (following ideas in [10,35]) for a model-based
access control policy language [18].

2 Preliminaries

Core modeling concepts and testing challenges of DSL tools
will be illustrated in the context of Yakindu Statecharts [63],
which is an industrial DSL for developing reactive, event-
driven systems, and supports validation and code generation.

2.1 Case studies

The two cases aim at testing different kinds of DSL artifacts:
WF constraints and model access policies, respectively. We
measured the quality of the generated test suites in the con-
text of mutation testing. First, we specified a fault model for
the artifacts of both case studies, andwe derivedmutantmod-
eling artifacts by injecting errors accordingly: we derived a
set of mutant WF constraints for ST, and a set of mutated
access control policies (for WT). Then, we applied both the
original and mutant artifacts on both single test input mod-
els and complete test suites, and evaluated whether the test
input is able to detect the fault injected into the mutant.
A test input model detects the fault if it differentiates the
mutant from the original, i.e., the two artifacts yield different
outcomes for the model (respectively, resulting in different
well-formedness violations, or different levels of access).
The number of detected mutant artifacts is measured by a
mutation score, which is considered a proxy for test suite
quality.

Example 1 State machines describe state-based behaviors
of systems by depicting the states and the possible transi-
tions in-between. Yakindu Statecharts [63] encapsulate state
machines in so-called regions. There are states with special
roles (e.g., an entry state is the first state that becomes active
when entering a region), collectively referred to as pseu-
dostates. Transitions have a source and a target state that may

be of any kind. Some simple state machines are depicted in
abstract syntax (as labelled graphs) in Fig. 1.

A simplified metamodel for Yakindu state machines
is illustrated in Fig. 2 using the popular Eclipse Model-
ing Framework (EMF) [53] used for domain modeling. A
state machine consists of Regions, which in turn contain
states (called Vertexes) and Transitions. The abstract
state Vertex is further refined into RegularStates
(like State or FinalState) and PseudoStates (like
Entry, Exit or Choice).

Example 2 As a second case study of real-world industrial
significance, let us consider a domain-specific modeling lan-
guage [23] developed by IKERLAN for the model-driven
development of control systems for wind turbines (WT).
The core WT control domain metamodel is depicted in
Fig. 3 (for now, ignore the three differently colored types
on the left). The control system WT is composed of different
ControlUnits as building blocks (each realizing a sepa-
rate control algorithm), organized in a containment hierarchy
of Subsystems (and MainSubsystems). Such control
units (and, by virtue of containment, the subsystems them-
selves as well) consume inputs and produce outputs;
such signals, from the point of view of the entire system,
may be classified as SystemInputs, SystemOutputs
or internal variables (SystemVariables). Control units
are further characterized by a number of additional features
including attributes such as cycle and cross-references to
elements such as SystemTimers.

Access control requirements (detailed in
the online appendix 1) necessitate the storage of addi-
tional meta-information: There is a concept of ownership,
where certain classes of specialists are assigned respon-
sibility over of a Subsystem (and everything contained
therein); while certain subsystems may express protected
intellectual property (IP) and must be hidden from such
specialist contractors. We have opted to extend the original
metamodel to be able to seamlessly express this informa-
tion in our experiments; hence, the new root container object
AuthorizedSystem, the class Ownership and their
various features were introduced. Since IKERLANhas opted
not to disclose the list of their actual proprietary control
unit types, we have combined all of them into a single class
ControlUnit as a further deviation from the original. The
reader is encouraged to compareFig. 3with the originalmeta-
model diagram in [23].

1 https://github.com/FTSRG/publication-pages/wiki/Diversity-
STTT-2019
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Fig. 1 Example instance models (as directed graphs)

Fig. 2 Metamodel extract from Yakindu state machines

2.2 Metamodels and instancemodels

In this paper, we use EMF as a metamodeling technique
which is widely used in the modeling community. Nev-
ertheless, the presented techniques can either be analo-
gously adapted to othermetamodeling approaches, or applied
directly after creating a representation of the model in EMF
(like in case of UML model with Papyrus[55]). Formally
[47,49], an (EMF) metamodel defines a vocabulary 〈�,α〉
where � = {C1, . . . ,Cn,R1, . . . ,Rm,P1, . . . ,Pl} is a set of
type, relation, and predicate symbols where a unary predicate
symbol Ci is defined for each EClass and EDataType (like

EString, EInteger, or EEnum), a binary predicate symbol R j

is derived for each EReference and EAttribute and additional
graph predicatesP1, . . . ,Pl are also provided. The additional
predicates are a generalization of class and reference sym-
bols where the number of parameters can be arbitrary. The
function α : � → N assigns arities to predicates, such that
α(Ci ) = 1 and α(R j ) = 2 for all i, j .

An instance model can be represented as a logic structure
M = 〈ObjM , IM 〉 where ObjM is the finite set of objects
(the size of the model is |M | = |ObjM |), and IM provides
interpretation for all predicate symbols in � as follows.

– The interpretation of a unary predicate symbol Ci is
defined in accordance with the types of the EMF model:
IM (Ci ) : ObjM → {1, 0}. An object o ∈ ObjM is an
instance of (more precisely, conforms to) a class Ci in a
model M if IM (Ci )(o) = 1. It is possible for an object
to conform to multiple types, e.g., in case of inheritance
or abstract classes. In EMF, it is required that each object
conforms to at least one non-abstract type, and all of its
supertypes. However, by stating that all supertypes and

Fig. 3 Wind turbine DSL metamodel, adapted from [23]
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subtypes are listed, it can also be applied to more general
type systems.

– The interpretation of a binary predicate symbol R j is
defined in accordance with the links in the EMF model:
IM (R j ) : ObjM × ObjM → {1, 0}. There is a ref-
erence R j between o1, o2 ∈ ObjM in model M if
IM (R j )(o1, o2) = 1.

– The interpretation of a predicate symbol Pk is dis-
cussed in Sect. 2.3: IM (Pk) : Objα(Pk )

M → {1, 0}. There
is a match on objects o1, o2, . . . , oα(Pk ) ∈ ObjM if
IM (Pk)(o1, o2, . . . , oα(Pk )) = 1.

However, not all such logic structures constitute valid
instance models. A metamodel also specifies extra structural
constraints that need to be satisfied in each valid instance
model [47]. Such structural constraints include the type con-
formance of nodes and edges as well as type hierarchy
(essentially type conformance of the object graph), multi-
plicities, acyclic containment structure, etc., in addition to
custom WF constraints.

Example 3 Figure 1 shows graph representations of three
(partial) state machine instance models. For the sake of clar-
ity, Regions and inverse (opposite) relations incoming
Transitions and outgoingTransitions are
excluded from the diagram. In M1 there are two States (s1
and s2), which are connected to a loop via Transitions
t2 and t3. The initial state is marked by a Transition t1
from an entry e1 to state s1. M2 describes a similar statechart
with three states in loop (s3, s4 and s5 connected via t5, t6
and t7). Finally, inM3 there are twomain differences: there is
an incoming Transition t11 to an Entry state (e3), and
there is a State s7 that does not have outgoing transition.
Additional constraints expressed in the metamodel, such as
each transition having at most one source and one target,
are also satisfied by the above graphs; therefore, they can be
considered valid instance models. While all these instance
models are non-isomorphic, later we illustrate why they are
not diverse.

Some modeling technologies and metamodeling
approaches use slightly different definitions for these con-
cepts, but this makes little difference to the substance of our
paper. For instance, in UML, instances of an Association
are entities in their own right; they have attribute values and
multiple such links can share the same source and target. In
our approach, graph edges are represented as binary predi-
cates instead. However, we can make this restriction without
loss of generality: Instances of UML Associations can be
adequately represented in our framework as objects (graph
nodes), with distinguished outgoing edges representing the
association ends. Similarly, definitions in the sequel apply to
such alternate modeling formalisms as well.

[[C(v)]]MZ := IM (C)(Z(v))
[[R(v1, v2)]]MZ := IM (R)(Z(v1), Z(v2))
[[v1 = v2]]MZ := Z(v1) = Z(v2)
[[ϕ1 ∧ ϕ2]]MZ := [[ϕ1]]MZ ∧ [[ϕ2]]MZ
[[ϕ1 ∨ ϕ2]]MZ := [[ϕ1]]MZ ∨ [[ϕ2]]MZ

[[¬ϕ]]MZ := ¬[[ϕ]]MZ
[[∀v : ϕ]]MZ :=

∧
x∈ObjM

[[ϕ]]MZ,v �→x

[[∃v : ϕ]]MZ :=
∨

x∈ObjM
[[ϕ]]MZ,v �→x

Fig. 4 Inductive semantics of graph predicates

2.3 Graph predicates

In many industrial modeling tools, WF constraints are cap-
tured either by OCL constraints [39] or graph patterns (GP)
[58] where the latter captures errors as structural conditions
over an instance model as paths in a graph. To have a unified
and precise handling of evaluating WF constraints, we use a
tool-independent logic representation (which was influenced
by [44,47,49]) that covers the key features of concrete graph
pattern languages and a first-order fragment of OCL (includ-
ing expressions like and, or, not, collect, select,
exists, forall, includes, excludes, but exclud-
ing expressions like size, min or max). In our current
implementation, we used the graph pattern language of Via-
tra [58,60], where error patterns describe malformedness of
the model, and derived logic predicates in accordance with
[47].
Syntax A graph predicate is a first-order logic predicate
ϕ(v1, . . . , vn) over (object) variables which can be induc-
tively constructed by using class and relation predicates C(v)

and R(v1, v2), equality check =, standard first order logic
connectives ¬, ∨, ∧, and quantifiers ∃ and ∀.
SemanticsAgraph predicate ϕ(v1, . . . , vn) can be evaluated
on model M along a variable binding Z : {v1, . . . , vn} →
ObjM from variables to objects inM . The truth value ofϕ can
be evaluated over model M along the mapping Z (denoted
by �ϕ(v1, . . . , vn)�

M
Z ) in accordance with the semantic rules

defined in Fig. 4.
If there is a variable binding Z where the predicate ϕ

is evaluated to 1 over M (i.e., �ϕ�MZ = 1) is often called
a pattern match. Otherwise, if there are no bindings Z to
satisfy a predicate, i.e., �ϕ�MZ = 0 for all Z , then the pred-
icate ϕ is evaluated to 0 over M . Graph query engines like
[58] can retrieve (one or all) matches of a graph predicate
over a model. When using graph patterns for validating WF
constraints, a match of a pattern denotes a violation, thus
the corresponding graph formula needs to capture the erro-
neous case. In order to ensure validity, some of the predicates
Pk ∈ � can be marked as WF constraints.
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Example 4 TwoWFconstraints checkedby theYakindu envi-
ronment can be captured by graph predicates of error patterns
as follows:

– ϕ : incomingToEntry(E) := ∃T : Entry(E) ∧
target(T , E)

– φ : noOutgoingFromEntry(E) := Entry(E) ∧ ¬(∃T :
source(T , E))

2.4 Motivation: testing of DSL tools

A code generator would normally assume that the input
models are well formed, i.e., all WF constraints are vali-
dated prior to calling the code generator. However, there
is no guarantee that the WF constraints actually checked
by the DSL tool are exactly the same as the ones required
by the code generator. For instance, if the validation for-
gets to check a subclause of a WF constraint, then run-
time errors may occur during code generation. More-
over, the preconditions of the transformation rule may
also contain errors. For that purpose, WF constraints and
model transformations of DSL tools can be systematically
tested.

A popular approach for designing test suites for software
artifacts, also applicable to testing DSL tools, is mutation
testing [37,52]. Mutation testing aims to quantify the quality
of test suites by (1) deriving a set of mutant artifacts (e.g.,
WF constraint sets in our case) by applying a set of muta-
tion operators. Then, (2) the test suite is executed for the
evaluation of both the original and the mutant artifacts (WF
checkers), and (3) their outputs are compared. (4) A mutant
is killed by a test if different output is produced for the two
cases (i.e., different match sets); in other words if the test
input is evidence for the different behaviors of the mutant
and the original artifacts. (5) The mutation score of a test
suite is calculated either as the number of mutants killed by
at least one test (from a fixed collection of mutants), or the
ratio of mutants killed wrt. the total number of mutants. A
test suite with better mutation score is preferred [32].
Fault model and detection As a fault model, we con-
sider omission faults in WF constraints of DSL tools where
some subconstraints are not actually checked. In our fault
model, aWF constraint is given in a conjunctive normal form
ϕe = ϕ1∧· · ·∧ϕk , all unbound variables are quantified exis-
tentially (∃), andmay refer to other predicates specified in the
same form. Note that this format is equivalent to first-order
logic, and does not reduce the range of supported graph pred-
icates. We assume that in a faulty predicate (a mutant) the
developer may forget to check one of the predicates ϕi (Con-
straint Omission, CO), i.e., ϕe = [ϕ1 ∧ . . .∧ϕi ∧ . . .∧ϕk] is
rewritten to ϕ f = [ϕ1∧· · ·∧ϕi−1∧ϕi+1∧· · ·∧ϕk], or may
forget a negation (Negation Omission), i.e., ϕe = [ϕ1 ∧ . . .∧
(¬ϕi )∧. . .∧ϕk] is rewritten toϕ f = [ϕ1∧. . .∧ϕi∧. . .∧ϕk].

Given an instance model M , we assume that both �ϕe�
M and

the faulty �ϕ f �
M can be evaluated separately by theDSL tool.

Now a test model M detects a fault if there is a variable bind-
ing Z ,where the two evaluations differ, i.e., �ϕe�

M
Z 
= �ϕ f �

M
Z .

Example 5 According to our fault model, we can derive two
mutants for incomingToEntry of Example 4 as predicates
ϕ f1 := Entry(E) and ϕ f2 := ∃t : target(T , E).

Constraints ϕ and φ are satisfied in model M1 and M2

as the corresponding graph predicates have no matches, thus
�ϕ�M1

Z = 0 and �φ�M1
Z = 0 for all Z . As a test model, both

M1 and M2 are able to detect the same omission fault both
for ϕ f1 as �ϕ f1�

M1 = 1 (with E �→ e1 and E �→ e2) and
similarly ϕ f2 (with s1 and s3). However, M3 is unable to kill
mutant ϕ f1 as (ϕ had a match E �→ e3 which remains in
ϕ f1 ), but able to detect others.

2.5 Motivation: testingmodel-based access control
policies

A second motivating case study is the testing of rule-based,
model-level access control policies for collaborative model-
ing. In our setting, the design model of a complex system,
hosted by a system integrator, must be partially accessible
(for reading, and in some cases for writing) to multiple sub-
contractors, downstream supply chain actors, remote offices,
certification authorities, etc., according to an access control
policy set up by a policy engineer. Erroneous access control
settings can have a critical impact [27], due to export control
regulations, the high business value of intellectual property
(IP) contained in the models, and the importance of adher-
ence to change request procedures. However, in practice, it
may be difficult to properly implement access control poli-
cies based on informal security requirements (see examples
in [8,18,23]) and the interactions or conflicts between differ-
ent access rules or requirementsmay not bewell thought-out.

An example access rule may grant certain specialists full
access to subsystems they own, as well as the contents of
such subsystems. The specialists must also be able to read
or write signals directly provided as outputs of control units
transitively contained in these subsystems; this requires fur-
ther access rules in the policy. As this example shows, the
complexity of such rules may be quite high, and therefore
properly formalizing them may be prone to errors.

Following earlier work including [9,27,35], we propose
test generation for access control policies. In our case, this
means the generation of instance models, on which access
control policies can be evaluated and the results inspected,
so that the policy engineer can verify that the policy indeed
works as intended.Asmanual inspection (human-in-the-loop
testing) is time consuming, test prioritization (the order in
which the generated test cases are evaluated) is of great
importance: The goal is for the test suite to reveal as many
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bugs of the policy as possible, using as few test models as
possible. This motivates the need for ordering heuristics for
tests to support test selection / prioritization.

In our experiments, we rely on the policy language of the
MONDO Collaboration Framework [18], which is (i)
fine-grained in the sense that each model element is assigned
its own set of permissions; and (ii) rule-based with single
rules granting or denying permissions for many elements in
a model (selected according to an expressive graph query /
predicate, see Sect. 2.3). A MONDO Access Control Policy
combines individual rules with various priority classes, and
ensures referential integrity [8] of the filtered view model
throughout the interactions of rules.

The case study applies access control to models of the
wind turbine domain, according to security requirements
from the literature and evaluates generated (consistent and
diverse) testmodels with respect to their ability to distinguish
the original access control policy from its mutant policies. A
detailed description of the security requirements, the baseline
policy, the fault model, and the obtainedmutants, is relegated
to the online appendix 2.

ChallengeUnlike (non-model-based) standard rule-based
policy languages such as XACML [21], MONDO Access
Control applies to graph-structured models, and uses expres-
sive model queries (graph formulae) to identify the elements
to which the rules of the policy are applicable. This presents
the main challenge of this case study: Automated testing
of model-based access control requires the generation of
consistent and diverse (graph) models that demonstrate the
behavior of the access rules.

This is in contrast with existing test generation and
mutation testing approaches (e.g., [9,10,27,35]) for policy
languages such as XACML, where test inputs usually fea-
ture a finite set of parameters for combinatorical or other test
generation approaches to consider. Therefore, the novelty of
our investigation is tied to the rich and expressive nature of
graph models and is specifically focusing on the ability of
graph model generators and measures of model diversity to
efficiently test model-based access control policies.

3 Shape-basedmodel diversity metrics

As a general best practice in testing, a good test suite should
be diverse, but the interpretation of diversity may differ.
For example, equivalence partitioning [41] divides the input
space of a program into equivalence classes based on observ-
able output, and then selects the different test cases of a test
suite from different equivalence classes to achieve a diverse

2 https://github.com/FTSRG/publication-pages/wiki/Diversity-
STTT-2019

test suite. However, while software diversity has been studied
extensively [7], model diversity is much less covered.

In existing approaches [11,12,14,15,46,59] for testing
DSL and transformation tools, a test suite should provide
full metamodel coverage [62], and it should also guarantee
that any pairs of models in the test suite are non-isomorphic
[31,56]. In [61], the diversity of a model Mi is defined as
the number of (direct) types used from its MM, i.e., Mi

is more diverse than Mj if more types of MM are used
in Mi than in Mj . Furthermore, a model generator Gen
deriving a set of models {Mi } is diverse if there is a des-
ignated distance between each pairs of models Mi and Mj :
dist(Mi , Mj ) > D, but no concrete distance function is pro-
posed.

In this section, we propose diversity metrics for a single
model, for pairs of models and for a set of models based
on neighborhood shapes [43], a formal concept known from
the state space exploration of graph transformation systems
[42]. Our diversity metrics generalize both metamodel cov-
erage and (graph) isomorphism tests, which are derived as
two extremes of the proposed metric, and thus, it defines a
finer grained equivalence partitioning technique for graph
models.

3.1 Structural diversity of models

An effective test suite needs models with diverse graph struc-
tures. This paper proposes various metrics to measure the
diversity of graph structures by adapting the formal concepts
of graph shapes. The proposed distance metrics measure the
diversity of a test suite based on the number of structural
differences between models: If two models are the same,
then the related distance metric equals to zero. Models are
“far from each other” if the number of different structures
is high, and they are close if the distance metric is low. Our
intuition is that a more diverse model set wrt. our metrics
will serve as a better test suite as it checks a larger number
of different graph structures.

Example 6 Figure 5 collects the number of occurrences of
four sample structures (subgraphs) in instance models illus-
trated in Fig. 1. First, both M1, M2 and M3 contains an
Entry with an outgoing Transition (Structure 1) once.
However,M3 contains also an Entry state with both incom-
ing and outgoing Transitions (Structure 2), which can
distinguishmodelM3 fromM1 andM2. Therefore, if a design
flaw (like a missing well-formedness constraint) is charac-
terized with this structure, it can be detected with model M3,
but not with models like M1 and M2.

Similarly, Structure 3 describesStates with both incom-
ing and outgoing Transitions, which occurs 2, 3 and
1 times in models M1, M2 and M3, respectively. Struc-
ture 4 describes only incoming Transitions, and the
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Structure M1 M2 M3

1. Entry with outgoing Transition

×1 ×1 ×1
2. Entry with incoming and outgoing Trans.

×0 ×0 ×1
3. State with incoming and outgoing Trans.

×2 ×3 ×1
4. State with incoming Transition

×2 ×3 ×2

Fig. 5 Number of different structures in models

occurrences of this structure increase to 2 in model M3.
This increase indicates a State without any outgoing
Transitions (i.e., deadlocks), which may describe a
challenging scenario.On the other hand, the number of occur-
rences of Structures 3 and 4 cannot distinguish models M1

and M2, which indicates that they are similar with respect to
those structures.

However, the number of potential structures can be huge
even for small graphs. To systematically count the occur-
rences of all graph structures with a specific size in a graph
model, this paper uses neighborhood shapes [43], which cat-
egorizes all nodes of a graph based on their neighborhood
for a given range, thus collecting all potential structures. The
number of structural differences is calculated on the level
of shapes (which are in between traditional metamodels and
instance models), and such shapes are then used to quantify
the distance between models.

3.2 Neighborhood shapes of graphs

A neighborhood describes the local properties of an object in
a graph model for a range of size i ∈ N. According to [43],
the neighborhood describes the class and edge relations of
an object. Intuitively, neighborhood shapes start splitting
the classes and associations of a metamodel by introducing
subtypes if the neighborhoodof certain elements canbe struc-
turally different. For example, in case of statecharts, shaping
may split the general State class into subclasses such as
InitialState,IntermediateState,TrapState,
etc. based on the existence or nonexistence of incoming and
outgoing source and target edges.

Here, we propose an extension of the shape concept [43]
to support hypergraphs (in other words, predicates/base rela-
tions of higher arity). Besides regular edge relationships
(with objects at the source and target end of a given edge
type), we also consider generalized hyperneighbor relation-

ships (where such a hyperedge is defined by a match of a
predicate with arbitrary arity leading between objects). Since
classes and references can be regarded as special predicates
(with arity 1 and 2), the proposed concept handles relations
specified by any predicate P ∈ � uniformly.

Concretely, a neighborhood of range i for an object o ∈
ObjM contains descriptors of objects that can be reached from
o by a path of at most i hyperedges. Technically, nbhi (o)
(range i neighborhood of o) contains range i − 1 neigh-
borhoods of objects with a common hyperedge, which by
recursion contain range i − 2 neighborhoods of their neigh-
bors (which are objects reachable from o in at most i − 2
steps), and so on.

Definition 1 (Generalized neighborhood) Formally, neigh-
borhood descriptors are defined recursively for a range i with
the predicate symbols of �.

– As a base case, for range i = 0, the neighborhood is an
empty set: Nbh0 = ∅.

– For ranges i > 0 neighborhood descriptors are build
upon the description of references Reli , which consists
of predicate symbols P ∈ �, parameter indexes of P and
α(P) − 1 neighborhoods. Therefore, Reli ⊆ � × N ×
⋃

P∈� Nbhα(P)−1
i−1 .

– For range i > 0 the neighborhood of an object can
be formalized as Nbhi = Nbhi−1 × 2Reli , where in
a tuple 〈n, r〉 n is the neighborhood of the object
with range i − 1 and r describes the set of its rela-
tions.

The shaping function nbhi : ObjM → Nbhi maps each
object in a model M to a neighborhood with range i : (1) if
i = 0, then nbh0(o) = ∅; (2) if i > 0, then nbhi (o) =
〈nbhi−1(o), rel〉, where

rel = {〈P, j, n1, . . . , n j−1, n j+1, . . . , nα(P)〉 |
∃o1, . . . , o j−1, o j+1, . . . , oα(P) ∈ ObjM :
�P(v1, . . . , v j−1, v, v j+1, . . . , vα(P))�

M
v1 �→o1,...,vα(P) �→oα(P)

∧
∧

0<k≤α(P),
k 
= j

[nk = nbhi−1(ok)]}.

A (graph) shape of a model M for range i (denoted
as Si (M)) is a multiset of neighborhood descriptors of the
model: Si (M) = (Nbhi ,mM ) where mM : Nbhi → N

assigns multiplicities to the neighborhoods: mM (n) = |{o ∈
ObjM | nbhi (o) = n}|. We will use the size of a shape
|Si (M)| as the number of shapes used in M , i.e., |Si (M)| =
|{n ∈ Nbhi |mM (n) > 0}|.
Example 7 We illustrate the concept of graph shapes for
model M1 (visualized in Fig. 6). For range 0, all local neigh-
borhood descriptors are the same: ∀o ∈ M1 : nbh0(o) = ∅.
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Fig. 6 Neighborhoods in M1 for range 2

For range 1, objects are mapped to class and reference
symbols as neighborhood descriptors (for lack of predicate
matches of WF constraints):

nbh1(e1) = 〈∅, {〈Entry, 1〉, 〈RegularState, 1〉,
〈Vertex, 1〉, 〈source, 2,∅〉}〉

Which describes that for node e1, unary predicates Entry,
RegularState and Vertex are true if e1 is substituted
for the first (1) parameter, and binary predicate source is
true in some cases (namely in source(t1, e1)) where node
e1 is in the second (2) parameter of this predicate. However,
for range 1, the neighborhood does not describes more infor-
mation about the other node t1 (as illustratedwith the internal
box). The neighborhood of the other nodes is calculated sim-
ilarly:

nbh1(t1) = nbh1(t2) = nbh1(t3) = 〈∅,

{〈Transition, 1〉, 〈source, 1,∅〉, 〈target, 1,∅〉}〉

And for the states:

nbh1(s1) = nbh1(s2) = 〈∅,

{〈State, 1〉, 〈RegularState, 1〉, 〈Vertex, 1〉,
〈source, 2,∅〉, 〈target, 2,∅〉}〉

In this example, objects of the same class have the same
neighborhood for range 1. Accordingly, we denote the (range
1) neighborhoods ofTransitions as nbh1(t) andStates
as nbh1(s).

For range 2, objects are further split based on the types
on the other ends of the references, e.g., the neighborhood of
t1 is different from that of t2 and t3 as it is connected to an
Entry along a source reference, while the source of t2
and t3 are States.

nbh2(e1) = 〈nbh1(e1), {〈Entry, 1〉, 〈RegularState, 1〉,
〈Vertex, 1〉, 〈source, 2, nbh1(t1)〉}〉

nbh2(t1) = 〈nbh1(t), {〈Transition, 1〉,
〈source, 1, nbh1(e1)〉, 〈target, 1, nbh1(s)〉}〉〉

nbh2(t2) = nbh2(t3) = 〈nbh1(t), {〈Transition, 1〉,
〈source, 1, nbh1(s)〉, 〈target, 1, nbh1(s)〉}〉

nbh2(s1) = nbh2(s2) = 〈nbh1(s), {〈State, 1〉,
〈RegularState, 1〉, 〈Vertex, 1〉,
〈source, 2, nbh1(t)〉, 〈target, 2, nbh1(t)〉}〉

The neighborhoods of range 2 are depicted in Fig. 6. For
range 3, each object of M1 would be mapped to a unique
element.

Figure 7 next illustrates the construction of a type graph
from neighborhoods of shape S1 = {n1, . . . , n4} of the nodes
of graphM1. Here, boxeswith n1, . . . , n4 represent the group
of nodes with the same shape for range 2, and edges between
the boxes representing the references between the groups. In
Fig. 8, the neighborhood shapes of models M1, M2, and M3

for range 1 are represented in a visual notation adapted from
[43,44] (without additional annotations e.g., multiplicities or
predicates used for verification purposes). The trace of the
concrete graph nodes to neighborhood is illustrated on the
right. For instance, e1 and e2 in M1 and M2 Entries are
both mapped to the same neighborhood n1, while e3 can be
distinguished from them as it has incoming reference from a
transition, thus creating a different neighborhood n5.

Properties of graph shapes The theoretical foundations of
graph shapes [43,44] prove several key semantic properties
which are exploited in this paper:

P1 There are only a finite number of graph shapes in a
certain range, and a smaller range reduces the number
of graph shapes, i.e., |Si (M)| ≤ |Si+1(M)|.
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Fig. 7 Construction of type graph from neighborhoods n1,…,n4

P2 |Si (Mj )|+|Si (Mk)| ≥ |Si (Mj ∪Mk)| ≥ |Si (Mj )| and
|Si (Mj ∪ Mk)| ≥ |Si (Mk)|.

3.3 Shape-basedmodel diversity

We define two types of metrics for model diversity based
upon neighborhood shapes. Internal diversity captures the
diversity of a single model (or model set), i.e., it can be eval-
uated individually for each and every generated model. This
model diversity metric measures the number of neighbor-

hood types (object categories) used in the model (or model
set) with respect to the size of the model(s). External diver-
sity captures the distance between a pair of models, or the
overall degree of variation in a larger set of models.

Internal model diversity for one model Internal model
diversity measures the number of different neighborhood
with respect to the number of nodes. The range of this inter-
nal diversity metric d inti (M) is normalized to [0..1], and for a
modelM with d int1 (M) = 1 ensures each object has some dif-
ferent property (i.e., there is a predicate that can differentiate
between each node).

Definition 2 (Internalmodel diversity) For a range i of neigh-
borhood shapes for model M , the internal diversity of M is
the number of shapes wrt. the size of the model: d inti (M) =
|Si (M)|/|M |.

This metric helps to minimize test inputs with respect to
model size by punishing the unnecessary copying of the same
model fragments (which is typical output for a logic solver).
Models with higher internal diversity is frequently preferred
in numerous machine learning or testing scenarios where a
certain approach ismore sensitive to the number of examples,
but not insensitive to their size.

For simplicity, our definition for internal model diver-
sity (as well as other metrics presented in this paper) takes
the designated shape range as a parameter. However, it is
possible to derive a generalized metric for internal model
diversity that includes shapes of all ranges. For instance, the
generalized metric for internal diversity can be defined as

d int(M) = ∑
i∈N

d inti (M)

2i+1 . In this formula, internal diversities
of smaller ranges have larger coefficients because the differ-
ences in smaller neighborhoods are more significant. Other
aggregation methods are also possible to use.

Coverage of model set The coverage of a model set mea-
sures the number of different shapes (for a given range) that
appear in at least one of the models.

o nbh1(o)
e1 − 2 n1

e3 n5
s1 − 6 n3

s7 n7
t1, 4, 11 n2

t2, 3, 5 − 8, 10 n4
t9 n6

Fig. 8 Sample neighborhood shapes of M1, M2 and M3
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Definition 3 (Coverage of model set) Given a range i
of neighborhood shapes and a set of models MS =
{M1, . . . , Mk}, the coverage of this model set is defined as
covi 〈MS〉 = |Si (M1) ∪ · · · ∪ Si (Mk)|.
For a specific range i , the number of potential neighborhood
shapes within that range is finite, but it grows superexponen-
tially. As such, the coverage of a model set is not normalized,
but its value grows monotonously for any range i by adding
newmodels. This way, this is not yet an appropriate diversity
metric for a set of models.

On the positive side, the proposed coverage concept
covi 〈MS〉 generalizes metamodel coverage [20,62], which
is a frequently used coverage metric. Metamodel cover-
age requires test input for each attribute (feature coverage),
each subtype of a type (inheritance coverage) and references
(potentially with multiple representative multiplicities, asso-
ciation coverage) of a metamodel. Compared to metamodel
coverage, shape coverage requires test case for each possible
combination of those features (for a specific range).

Internal diversity of model set In order to obtain a diversity
metric for a set of models, we normalize the coverage by the
size of the models as follows.

Definition 4 (Diversity of model set) For a range i of neigh-
borhood shapes for model set MS = {M1, M2, . . . , Mn},
the internal diversity of MS is the number of covered shapes
proportional to the total (combined) size of the models:
d inti (MS) = covi 〈MS〉/� j |Mj |.
For a small range i of neighborhood shapes, one can derive a
modelMj with d inti (Mj ) = 1, but for largermodelsMk (with
|Mk | > |Mj |) we will likely have d inti (Mj ) ≥ d inti (Mk).
However, due to the rapid growth of the number of shapes
for increasing range i , for most practical cases, d inti (Mj )will
converge to 1 if Mj is sufficiently diverse.

External model diversity Finally, we also wish to measure
the structural diversity between two models, which is cap-
tured by the concept of external diversity which combines
shaping with existing pseudo-distance metrics. To increase
the generality of our definition, we make the actual pseudo-
distance functionald to be a parameter, andwe adapt concrete
metrics to calculate distances in the context of shapes.

Definition 5 (External model diversity) A function d : M×
M → R is an external model diversity function if (i) d is
a pseudo-distance and (ii) the value of d(Mj , Mk) can be
calculated from Si (Mj ) and Si (Mk).

3.4 Distancemetrics for model diversity

Distance metrics characterize the difference between two
models. For usability, it is required that a metric is a pseudo-

Fig. 9 Illustration of pseudo-distance

distance over models in the mathematical sense [4], and thus,
it can serve as a diversity metric for a model generator in
accordance with [61].

Definition 6 (Pseudo-distance) A function d : M × M →
R is called a (pseudo-)distance, if it satisfies the following
properties:

– d is non-negative: d(Mj , Mk) ≥ 0
– d is symmetric d(Mj , Mk) = d(Mk, Mj )

– if Mj and Mk are isomorphic, then d(Mj , Mk) = 0
– triangle inequality:d(Mj , Ml)≤d(Mk, Mj )+d(Mj , Ml)

Figure 9 illustrates the calculation of distances between
M1, . . . , M5 by mapping them to a pseudo-metric space.
First, as in classic geometry, all distances are positive,
and symmetric. For pseudo-distances, we assume triangle
inequality, which means that direct distance (e.g., between
models M1 and M3) is less or equal than the sum of indirect
paths (like fromM1 toM2 and fromM2 toM3). Additionally,
the mapping have to be functional, which means that if two
models are isomorphic (like M3 and M4) it has to mapped to
the same point. Moreover, even non-isomorphic models can
be mapped to the same point (like M4 and M5). Therefore,
d(Mi , Mj ) = 0 is not implies that Mi and Mj isomorphic
(just they are similar with respect to d). On the other hand, if
d(Mi , Mj ) > 0 implies that Mi and Mj are non-isomorphic.

The first metric considers the number of different shapes
contained in the models:

Definition 7 (Symmetric distance) Given a range i of neigh-
borhood shapes, the symmetric distance of models Mj and
Mk is the number of shapes contained exclusively in Mj

or Mk but not in the other, formally, dsymi (Mj , Mk) =
|{n ∈ Nbhi | mMj (n) > 0 ∧ mMk (n) = 0

∨
mMj (n) =

0 ∧ mMk (n) > 0}|.
The second distance metric is derived from the cosine of

the angle between shape count vectors, where the dimensions
are the local neighborhoods and the coordinates of the shapes
are the corresponding multiplicities:
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Definition 8 (Cosine distance) Given a range i of neighbor-
hood shapes, the cosine distance dcosi (Mj , Mk) ofmodelsMj

and Mk represents an angular distance between two shapes.
The value of dcosi (Mj , Mk) is derived from the angle between
the shape vectors.

dcosi (Mj , Mk) = 1−cosi (Mj , Mk), where cosi (Mj , Mk)

is the cosine similarity of the shape vectors:

cosi (Mj , Mk) =
∑

n∈Nbhi mMj (n)mMk (n)
√ ∑

n∈Nbhi
(mMj (n))2

√ ∑

n∈Nbhi
(mMk (n))2

Technically, the presented definition does not fit Defini-
tion 5, because it does not satisfy the triangle inequality
property of Definition 6. However, since the exceptions are
rather extreme cases, this formula is widely used as a semi-
metric.

During model generation, we will exclude a model Mk if
dsymi (Mj , Mk) = 0 for a previously defined model Mj , but
it does not imply that they are isomorphic. Thus, our defi-
nition allows to avoid graph isomorphism checks between
Mj and Mk which have high computation complexity. Note
that distance metrics can be considered a dual of symmetry-
breaking predicates [56] used in the Alloy Analyzer where
d(Mj , Mk) = 0 implies thatMj andMk are isomorphic (and
not vice versa).

Example 8 Let us calculate the different diversity metrics for
M1, M2 and M3 of Fig. 1. For range 1, they have the shapes
illustrated in Fig. 8. The internal diversity of thosemodels are
d int1 (M1) = 4/6, d int1 (M2) = 4/8 and d int1 (M3) = 6/7, thus
M3 is the most diverse model among them. As M1 and M2

has the same shape, the symmetric distance between them
is dsym1 (M1, M2) = 0. The distance between M1 and M3

is dsym1 (M1, M3) = 4 as M1 has 1 different neighborhoods
(n1), and M3 has 3 (n5, n6 and n7). The set coverage of
M1, M2 and M3 is 7 altogether, as they have 7 different
neighborhoods (n1–n7). ��

3.5 Diversity-basedmodel ordering for test case
prioritization

In addition to test input efficiency, the efficiency of a test suite
also matters: It needs to detects faults using as few individual
tests as possible - especially if the automatically generated
test input graphs are to be complemented with expected out-
puts by a human oracle. Asmotivated earlier, given a fixed set
of graph models, we need to be able to select a small subset
to be actually used as test inputs, so that they are still likely
to detect a large number of faults. This requires diversity-
based ordering heuristics in support of test prioritization /
selection.

Based on the introduced diversitymetrics,we propose sev-
eral model orderings (M1, M2, . . .) of a given set of models
that focus on maximizing the diversity of prefix sequences
(M1, . . . , Mi ) in order (informally, the models are sorted
based on most diverse first).

The first ordering is based on the internal diversity ofmod-
els and therefore can be calculated efficiently.

Definition 9 (Coverage order) Given a set of models MS,
an order (M1, M2, . . .) is a coverage order of MS if (i) M1

is of maximal shape: ∀i ≤ |MS| : |S(Mi )| ≤ |S(M1)| and
(ii) for i > 1 Mi maximizes the coverage of (M1, . . . , Mi ):
∀ j : i ≤ j ≤ |MS| → cov〈M1, . . . , Mi−1, Mj 〉 ≤
cov〈M1, . . . , Mi 〉.

The following orderings are based on external diversity.
In the following definition, dist(M, M ′) can be replaced by
any distance metric.

Definition 10 (Distance order) Given a set of models MS,
an order (M1, M2, . . .) is a distance order of MS if (i)
dist(M1, M2) is themaximal distance inMS:∀ j, k ≤ |MS| :
dist(Mj , Mk) ≤ dist(M1, M2) and (ii) for i > 2 Mi maxi-
mizes the distance from {M1, . . . , Mi−1}: ∀i ≤ j ≤ |MS| :
mink<i dist(Mk, Mj ) ≤ mink<i dist(Mk, Mi ).

Calculating distance order is less efficient as it requires
all distances to be known from the beginning and therefore
has both time and space complexity ofO(|MS|2). The space
complexity can be reduced toO(|MS|) by omitting condition
(i) and chosing the first element randomly or similarly to
coverage order. This way the distances can be calculated on
the fly.

Definition 11 (Weak distance order) Given a set of models
MS, an order (M1, M2, . . .) is a weak distance order of MS
if (i) M1 is of maximal shape: ∀i ≤ |MS| : |S(Mi )| ≤
|S(M1)| and (ii) for i > 1 Mi maximizes the distance from
{M1, . . . , Mi−1}: ∀i ≤ j ≤ |MS| : mink<i dist(Mk, Mj ) ≤
mink<i dist(Mk, Mi ).

3.6 From instancemodel to shaping

Section 3.2 defines how shapes are computed from a set
of relations over the graph nodes; then, Sect. 3.4 intro-
duces diversity and distancemetrics, while Sect. 3.5 proposes
orderings of test cases, all derived from the shaping. How-
ever, so far we have not specified how a given instance model
is to be interpreted as a set of relations for the purposes of
computing the shapes.

The straightforward solution is to take a unary relation for
each class / node type, and a binary relation for each edge
/ reference type (ignoring attributes for conciseness). This
results in classic neighborhood-based graph shaping [43].
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However, this is not the only possibility. Instead of actual
classes and edges, we may take an arbitrary set of rela-
tions (each identified by a predicate symbol P ∈ �) over
the graph nodes that characterize the graph model accord-
ing to some properties of interest. The definitions given in
Sect. 3.2 are general enough so that they can be applied to
these relations instead of the graph directly, resulting in a
different set of node shapes. We call this predicate-based (or
TVLA-style [44]) shaping. The two approaches can even be
combined; it is possible to take both the basic graph structure
and additional predicates to jointly determine shapes.

To motivate predicate-based shaping, let us discuss an
intended use case. The literature on testing distinguishes
black-box testing, where the artifact under test is not known
at the time of test development (only its specification), from
white-box testing, where the actual realization of the AUT
can be taken into account to better focus the effort. Adapt-
ing this general terminology to testing a tool that processes
models in certain modeling language, we find that a black-
box test has to be developed with knowledge of the input
DSL only; whereas a white-box approach is aware of how
the tool processes its input models, e.g., whichmodel queries
(graph predicates / patterns) are used internally.

For example, consider the case of testing access control
policies, as introduced in Sect. 2.5. For compiling a test suite
or measuring its efficiency, a black-box testing approach
would only consult themodeling language (theWindTurbine
domain) and aim for a diverse selection of model elements,
whereas awhite-box approachwould additionally inspect the
access control policy under consideration. Such a white-box
techniquemaymeasure somenotion of coverageof the policy
provided by a given test suite, for example the proportion of
access rules that applied (without being overruled) to at least
one test case. Gaps in coverage would signal that more tests
have to be developed or selected, as arbitrarily severe bugs
may lurk in the untested parts of the policy; this is clearly use-
ful for test selection/prioritization. Additionally, a white-box
test input generatormay aim to specifically generate such test
cases that increase coverage. For example, the generator may
take the graph patterns (predicates) used as access rule pre-
conditions, and try to satisfy various combinations of these
predicates. A similar white-box test generation approachwas
used for access control policies, e.g., in [35].

The above proposed generalized neighborhood-based
shaping procedure can easily incorporate such additional
white-box knowledge in the form of extra predicates (sim-
ilarly to the classifying terms proposed in [22,26]). The
additional predicates discussed in Sect. 2.2 allow the defi-
nition of domain-specific graph predicates. Specifying such
additional graph predicates for each graph pattern used in
the AUT drives the graph generator to find models that are
diverse in the described domain-specific aspect, as well as
the local neighborhhod aspects. This way the proposed diver-

sity metrics also guarantee model diversity from the point of
view of the AUT, and may reward test cases and test suites
that specifically satisfy or violate relevant graph predicates
in several combinations.

4 Evaluation

So far, we have proposed diversity-related properties of
graphs and sets of graphs that we hypothetize to be use-
ful for predicting or improving the quality and efficiency of
test suites formed by automated generation of graph models.
(Here, by “quality” of test suites, we mean their ability to
detect faults in a modeling artifact; while “efficiency” also
means that they do so in a small number of tests.) In this
section, we will experimentally investigate the veracity of
this claim. The experiments will apply mutation testing and
use the obtained mutation scores as proxy for test suite qual-
ity. In short, we provide an experimental evaluation of our
diversity metrics, based on mutation testing, with respect to
various model generation techniques.

We address the following research questions:

RQ1: How effective are different external diversity metrics
for test selection/prioritization in improving the over-
all mutation score for a test suite?

RQ2: How effective are different model generation tech-
niques for test input generation in mutation testing?

RQ3: How effective is the internal diversity metric in pre-
dicting the mutation score of an individual instance
model as test input?

4.1 Target domains and artifacts under test

In order to answer those questions, we executed model gen-
eration campaigns in our two case studies.

For both case studies, the campaigns involved generating
a large set of test input models (conforming to the model-
ing language used in the case study), using multiple different
model generation mechanisms. The generated models were
evaluated both “statically” with respect to diversity metrics
defined earlier, and also “dynamically” with regards to their
quality as test inputs to detect faults in the AUTs specific to
the case study. The latter involved applying an appropriate
fault model and injecting corresponding faults into the AUT
to obtain a large number of mutant artifacts, and then evalu-
ating whether the test input models are able to differentiate
the mutants from the original AUT. Beside the total number
of mutants killed by a test suite, we also investigated how this
mutation score increases with each additional test (according
to a given ordering of graphs), in order to find test selection
approaches that reach high test suite quality using a small
number of tests.
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Table 1 Case studies overview

Case Study ST WT

DSL style Behavioral Structural

AUT WF constraints Access policy

Inputs versus WF Arbitrary Consistent

Mutated Patterns Everything else

Extra predicates – (black-box) Optional

An overview of case study-specific details follows in the
next paragraphs, with the most important differences high-
lighted in Table 1.
Yakindu Statecharts (ST) First, we used a DSL extracted
from Yakindu Statecharts as proposed in [51]. We used the
partial metamodel describing the state hierarchy and transi-
tions of statecharts (illustrated in Fig. 2, containing 12 classes
and 6 references). Additionally, we formalized 10 WF con-
straints regulating the transitions as graph predicates, based
on the built-in validation of Yakindu. These WF constraints
serve as AUTs (not “extra predicates” for white-box testing);
i.e., we measured the ability of model generators to reveal
bugs in WF constraints.

For mutation testing of WF constraints, we used a con-
straint or negation omission operator (CO and NO) to inject
a fault to the original WF constraint in every possible way,
which yielded 51 mutants from the original 10 constraints
(but some mutants may never have matches). We evaluated
both the original and mutated versions of the constraints for
each instance model. A model kills a mutant if there is a dif-
ference in the match set of the two constraints. The mutation
score for a test suite (i.e., a set of models) is the total number
of mutant WF constraints killed that way.

Since the WF constraint is suspicious (not assumed to be
correct) in this case study, the model generators were not
instructed to obey them (i.e., consistency was not required),
as the goal of generated models is to reveal discrepancies in
WF.
Wind Turbine control system models (WT) As a second
case study (which is novel compared to [50], and described
in more detail in the online appendix 3), we used WT system
models conforming to the metamodel illustrated in Fig. 3,
containing 15 classes, 18 references, two relevant attributes,
which is extended by two classes and an enum type to encode
access control metadata. For this case study, we also for-
malized 10 WF constraints. Additionally, we formalized 25
access control rules using a further 18 graph patterns to define
a complex access control policy motivated by the literature.
This access control policy serves as the AUT; i.e., we mea-

3 https://github.com/FTSRG/publication-pages/wiki/Diversity-
STTT-2019

sured the ability of model generators to reveal bugs in the
policy.

For mutation testing of access control rules (WT), we
derived 174 mutant policies by applying mutation operators
on the access control rules. However, in WT mutations did
not applied on theWF constraints.Moreover, mutations were
allowed to change neither the 18 graph patterns underlying
the policy, nor the way they are used in the access rules
(“bindings”). This choice was deliberately made to reduce
the overlap with the first case study; in ST, mutation affected
graph patterns / model queries exclusively, while in WT,
mutation affected all parts of the access policy except the
model queries. This way our experiments can attest that the
test generation methods can be used to verify both graph
patterns and other kinds of DSL artifacts.

For evaluation,we applied both the original and themutant
access control policies on a model, and checked all read and
write permission for all users and all model elements. A test
input model kills a mutant policy, if there is a difference for
any user in any read or write permission in any part of the
model, compared to the effective permissions assigned by
the baseline policy. The mutation score for a test suite is the
total number of mutant policies killed that way.

Since the WF constraints are assumed to be correct in
this case study, the model generators (where supported) were
instructed to obey them (consistent model generation), to
reveal real problems with the policy.

As explained in Sect. 3.6, in case of white-box testing, the
queries underlying the access rules can be used to enhance
the shaping function. Such extra predicates may potentially
result in diversity metrics and orderings that reward diversity
in triggering access rules (over diversity in graph structure).

4.2 Comparedmodel generation approaches

Our test input models were taken from multiple sources.

– First, we generated models with our Viatra Solver
[48] (denoted with VS), a state-of-the-art scalable graph
model generator. ForWT case study, we also configured
the generator to satisfy WF constraints, so that all gen-
erated models are consistent. We used the generator in
three configurations:

– VS/All: This configuration is able to generate all
consistent models and non-isomorphic model for a
specific scope (number of objects).

– VS+ i: This incremental configuration reuses the
search space between each model generation steps.
The solver is configured to introduce at least 3
new node shapes in each steps, using neighborhood
abstraction for range 1.
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– VS-i:After finding avalidmodel, this non-incremental
configuration restarts the search. Similarly, the solver
is configured to introduce at least 3 new node shapes
in each steps, using neighborhood abstraction for
range 1.

– Next, we generated models for the same domains using
the Alloy Analyzer [56], a well-known SAT-based rela-
tional model finder, used as a model generator for several
model generation scenarios. For representing EMFmeta-
models, we used traditional encoding techniques [13,47].
We used the latest 4.2 build for Alloy with the default
Sat4j [34] as back-end solver. We artificially prevented
the deterministic run of the solver to enable statistical
analysis by adding a random amount of additional true
statements. To enforce model diversity, Alloy was con-
figured with two different setups for symmetry-breaking
predicates. All other configuration options were set to
default.

– A/20: default configuration. For greater values, the
tool produced the same set of models.

– A/0: minimal value for symmetry breaking. Between
0 and 20, lower values produced better models with
respect to mutation scores.

– We used the EMF random instantiator [5] (REMF) to
produce randommodels for the domains.REMFdoes not
enforce WF constraints (i.e., the generated models will
typically violate some of the constraints), and it produces
models which are at least as large as the designated spec-
ified size (so the designated size is the minimum size).

– Finally, for theST case study,wealso included1250man-
ually created statechart models in our analysis (marked
by Human). The models were created by students as
solutions for similar (but not identical) statechart model-
ing homework assignments [61] representing realmodels
whichwere not intentionally created for testing purposes.
We did not have such manually created models for the
WT case study.

4.3 Measurement setup

To address RQ1, we generated two sets of models for each
case study:

– VS/All: We generated the complete set of models of a
certain size using VS in the order the generator produces
the models (this default ordering of models is denoted by
VS/Solver). For case study WT, we generated all 3483
well-formed models with five objects; for case study ST,
we generated all 4606 models with seven objects. There-
fore, in this measurement, all non-isomorphic models are

available to fairly evaluate the efficiency of different met-
rics.

– REMF: We generated the same number of models of
same size using REMF as random generator. REMF
does not guarantee the well-formedness of the mod-
els, and isomorphic models may be constructed multiple
times.

After generating the model set, we compared the efficiency
of different ordering (test case prioritization) techniques on
the model set, and measured the mutation score of the first n
elements in the sequence.

To answer RQ2 and RQ3, we introduced the following
measurement setup. First, a sequence of instance models
is generated with all VS, A and REMF configurations.
Each tool in each configuration generated a sequence of 30
instance models produced by subsequent solver calls, and
each sequence is repeated 20 times (so 6000 models are gen-
erated for all configuration of VS , Aand REMF, for both
case studies). The target model size is uniformly set to 30
objects (as Alloy did not scale with increasing size). The size
of Human models ranges from 50 to 200 objects. Next, we
evaluate the mutation scores for all the models individually,
for each prefix of the entire model sequence as test suites.

4.4 RQ1: external diversity for test prioritization

In order to answer RQ1, we checked the efficiency of all
proposed orderings on test selection, both case studies (WT
and ST) are executed on a complete set of instance models
(created byVS/All) and a randomly generated set (generated
byREMF). Figure 10 illustrates the efficiency of the various
test case orderings for each tool and case study: WT and
ST are illustrated top and bottom, VS/All and REMF are
illustrated left to right. On a diagram, the horizontal axis
shows the number of tests selected in a test suite (in log scale),
in other words the length of the prefix of the complete model
sequence. The vertical axis shows the achieved jointmutation
score (a number of mutant killed by the test suite as a whole).
Each chart line represents the mutation score achieved by a
specific test case prioritization / ordering scheme, in context
of the given tool and given case study.

– Shape, CosDist, SymmDiffDist, illustrate orderings
with respect to Coverage order, Distance order with
respect to Cosine distance, and Distance order with
respect to Symmetric Difference.

– +P and−P denotes whether or not the shape abstraction
aggregates extra predicates (see Sect. 3.6) in addition to
the graph structure. +P is available only in case study
WT, where such extra predicates represent the graph
patterns underlying the access control rules (white-box
testing).
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Fig. 10 Mutation score for different ordering of model sequences (illustrated in log scale)

– Solver denotes the unchanged order in which VS origi-
nally produced the models.

– Random shows the average score of 50 random shuf-
flings of the test suite.

– Optimal shows an optimal ordering of test models with
respect tomutation score; i.e., for each test case,we select
the model that increases the score of the test suite the
most.

In both case studies, random order produced logarithmic
characteristic in mutation score before killing all mutants.
VS discovered mutants in multiple steps, stagnating for a
large amount of models before increasing the mutation score
again. Table 2 highlights when each ordering reached 95%
and 100% of the maximal number of mutants it kills. For
each case study ST and WT executed on either a complete
set or a randomly sampled set of models, almost all proposed
orderings performed significantly better than random order-
ing.

– Random ordering was always better than the order which
VS+i produced themodels. This is in accordancewith the
experience reported in [31].

– Surprisingly, complete mutation coverage could be
achieved very quickly with optimal ordering (1–4 mod-

els). However,with the exception of the random sampling
example of WT, at least one of our metrics was also able
to provide complete coveragewith fewer than tenmodels.

– Finally, in all cases, there was at least one test ordering
heuristic which significantly outperformed both the orig-
inal order and the random order, using one or two orders
of magnitude fewer models.

Findings We can summarize our important findings of con-
cerning reordering of models (RQ1):
Byusing the proposed external shape-baseddiversitymet-
rics as heuristics for test prioritization, the same coverage
can be achieved by using one or two orders of magni-
tude less models compared to random ordering or default
model sequences derived by existing generators.

However, therewere no external diversitymetrics that always
produced better orderings than others; thus, we cannot pro-
pose a single best heuristic.

4.5 RQ2: test input generation techniques.

Figure 11 shows the number of killed mutants (vertical axis)
by an increasingly longer sequence of models (horizontal
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Table 2 Mutation score by order

Case study Test suite Order 95% 100%

ST Shape-P 7 19

All CosDist-P 6 9

SymDiffDist-P 7 19

(4606 models) Solver 118 420

Random 12 202

Optimal 2 2

Randomly Shape-P 3 3

generated CosDist-P 2 8

SymDiffDist-P 5 5

(4700 models) Random 16 36

Optimal 1 1

WT Shape+P 10 10

CosDist+P 9 9

SymDiffDist+P 16 16

All Shape-P 9 50

CosDist-P 25 25

(3480 models) SymDiffDist-P 23 23

Solver 1363 1381

Random 39 208

Optimal 2 3

Shape+P 1135 1135

CosDist+P 230 308

Randomly SymDiffDist+P 118 262

generated Shape-P 1206 1206

CosDist-P 111 151

(3500 models) SymDiffDist-P 1129 1129

Random 330 1196

Optimal 3 4

axis) generated by the different approaches. The diagram
shows the average of 20 generation runs.

For case study ST, both VS+i and VS-i found a large
amount of mutants in the first model, and the number of
killed mutants (45+) which increased to 51. For A, the result
highly depends on the symmetry value: for s = 0 it found
a large amount of mutants, but the value saturated early.
The default configuration (s=20) found the least number of
mutants.

For case study WT, VS+i and both A solvers started
from relatively high mutation score at the beginning, but
not a single run was unable to discover more than 75
bugs. At first VS+i showed better results, but at the end
they showed similar efficiency. On the other hand REMF
showed poor mutation score values at the beginning, but
it was able to improve the score with each additional
model, outpacing both VS+i and A after 7 models. Finally,
VS-i showed the benefit of both VS+i and REMF: it
produced relatively high mutation score at the beginning,
and it was able to increase the mutation score in every
step.

– From all generator VS-i produced the best mutation
score, and combined the high initial mutation score of
VS+i with the steepness of REMF.

– REMF provided good mutation score, but it dominantly
generated malformed instances.

– From the three generators, A found the least amount of
mutant.

– The significant difference inVS-i andVS+i inWT shows
that restarting the solver had larger effect on the diversity
heuristic (at least at the early stage).

Findings Our important findings about the efficiency of
existing model generators are the following (RQ2):
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Fig. 11 Mutation score of model sequences generated by multiple approaches
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Table 3 Correlation values of internal diversity and mutation score

Model set ST WT

Autogenerated WF models 0.95 0.89

VS − 0.01 − 0.05

A 0.55 0.73

REMF 0.54 − 0.16

Human 0.12

Graph solvers with random restarts (VS-i) and ran-
dom graph generators (REMF) provided high mutation
scores, where the former generated consistent instance
models while the latter had better runtime performance.
Since inconsistent models may not be loaded into mod-
eling tools, logic solvers with random restart would
be preferred to random graph generators in most test-
ing scenarios. Deterministic model generators based on
incremental graph solver (VS+i) or the logic solver (like
Alloy, A) were significantly outperformed by randomized
techniques. Altogether, effective model generators used
for test input generation are randomized but consistent.

4.6 RQ3: measurement results and analysis

Figure 12 illustrates the correlation between mutation score
(horizontal axis) and internal diversity (vertical axis) for all
generated models with 30 elements (1200 A, 1200 VS, 600
REMF for both case studies), and 1250 human models for
ST.

Table 3 shows the correlation between mutation score and
internal diversity for a group of models. We detected a high
correlation on the set of well-formed models:

– On both case studies, automatically generated valid
model sets (A/0,A/20,VS-i,VS+i and REMF in case of
ST) showed high correlation of 0.95 and 0.89.

– VS-i and VS+i on itself does not show high correlation
as all models have high diversity and mutation score.

– On the other hand, A generated both highly symmetric
and diverse models, and internal diversity showed fairly
good correlation in both case study (0.55 and 0.73).

– REMF produced mixed results: for ST it showed fairly
good correlation, but in case of WT there was no correla-
tion: all model had high diversity, but the mutation score
was fairly low. This is because WT case study expected
well-formed models, and REMFmodels was mostly ill-
formed.

– Finally,Humanmodels showed low correlation between
mutation score and diversity, and it seams that those prop-
erties were independent.

– Generally speaking,A produced the lowest,Human and
REMF medium, and VS high mutation score and diver-
sity for single models.

Findings We highlight the following findings regarding the
correlation between internal diversity and mutation score
(RQ3):
High internal diversity indicates (correlates with) high
mutation score; thus, our metrics can potentially be good
predictors of the effectiveness of test suite for mutation
testing of modeling tools.

However, there are certain model groups that showed no cor-
relation. In particular, REMF was able to produce models
with very high diversity, but with low mutation score. This
can be partially considered to the fact that REMF models
were mostly malformed.
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Additionally, based on our measurement conducted on a
large number of instance models created by humans, we con-
clude as follows:

Real instance models, created by humans with the
intention to solve an engineering problem, provide low
mutation score, thus they are ineffective for testing pur-
poses.

4.7 Threats to validity and limitations

We evaluated more than 23,439 test inputs in our mea-
surement, and all models were taken from two open-source
industrial tools and for two different testing scenarios. Those
case studies used wide range of metamodel and constraint
features; thus, we did not specialized the generators to those
case studies. Thus, we believe that similar results would be
obtained for other domains.

For mutation operations, we checked only omission of
predicates for WF, as extra constraints could easily yield
infeasible predicates due to inconsistency with the meta-
model, thus further reducing the number of mutants that can
be killed. For mutation testing of WT, we used mutation
operators similar to [10,35]. In this paper, we focused on
testing of structural constraints that can be captured as logic
predicates (as detailed in Sect. 2.3).

Finally, althoughwe detected a strong correlation between
diversity and mutation score with our well-formed test cases,
this result cannot be generalized to statistical causality,
because the generated models were not random samples
taken from the universe of models. Thus, additional inves-
tigations are needed to justify this correlation, and we only
state that if a model is generated by either VS or A, a higher
diversity means a higher mutation score with high probabil-
ity.

5 Related work

There are several initiatives to systematically cover the
functionality of a modeling tool. In [20,62], modeling
tools are specified as application using models as input,
and the coverage critery is defined in MOF [28] level.
It specifies the generic goal to create a set of test cases
where at least one instance for every metamodel element
is included.

Stochastic sampling and generation An advanced model
generation approach was presented in the Formula Frame-
work [30] using the Z3 SMT solver [17]. It is similar to
our approach in the sense that both approaches are based on
constraint solving. On the other hand, the approach of [31]
applies stochastic random sampling to achieve a diverse set

of generated models: In our work we rely more on the logical
structure of the models to ensure diversity. Stochastic simu-
lation is proposed for graph transformation systems in [57],
where rule application is stochastic (and not the properties
of models), but fulfillment of WF constraints can only be
assured by a carefully constructed rule set.

[1] proposed a fuzzy logic-basedmodel refinement frame-
work that derives multiple test cases by extending simple
models. In comparison, our proposed graph generation tech-
nique [48] uses similar principles, but with three-valued
logic and partial model refinement instead of fuzzy logic.
It may partially explain the quality of the generated mod-
els.

Mutation-based testing Diverse model generation plays a
key role in testingmodel transformations code generators and
complete development environments [40]. Mutation-based
approaches [3,16,37] take existing artifacts (model transfor-
mations) and make random changes on them by applying
mutation rules. A similar randommodel generator is used for
experimentation purposes in [6]. Other automated techniques
[12,19,45] generate models that only conform to the meta-
model. While these techniques scale well for larger models,
there is no guarantee whether the mutated models are well-
formed.

White-box testing There is a wide set of model generation
techniques which provide certain promises for test effective-
ness. White-box approaches [2,3,11,24,25,46,47] rely on the
implementation of the transformation and dominantly use
back-end logic solvers, which lack scalability when deriving
graph models.

Scalability and diversity of solver-based techniques can
be improved by iteratively calling the underlying solver
[33,51]. In each step, a partial model is extended with
additional elements as a result of a solver call. Higher
diversity is achieved by avoiding the same partial solu-
tions. As a downside, generation steps need to be specified
manually, and higher diversity can be achieved only if the
models are decomposable into separate well-defined parti-
tions.

[22,26] proposes a similar predicate abstraction-based
diversity and coverage metrics using OCL expressions:
A set of relevant (unary) graph predicates are selected,
and the logic solver aims to cover all combinations of
possible evaluations of those predicates (e.g., for predi-
cates p1 and p2 it tries to find models M1, . . . , M4 where
〈�Mi �

p1 , �Mi �
p2〉 ∈ {〈0, 0〉 . . . 〈1, 1〉}). As a difference, we

use graph patterns which generalizes this technique to n-ary
predicates. More importantly, our technique is able to auto-
matically derive a large range of graph predicates from a
neighborhood, thereby enabling the use of black-box testing
scenarios.
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Black-box testing Black-box approaches [13,20,25,38] can
only exploit the specification of the language or the trans-
formation, so they frequently rely upon contracts or model
fragments. As a common theme, these techniquesmay gener-
ate a set of simple models, and while certain diversity can be
achieved by using symmetry-breaking predicates, they fail to
scale for larger sizes. In fact, the effective diversity of mod-
els is also questionable since corresponding safety standards
prescribemuch stricter test coverage criteria for software cer-
tification and tool qualification than those currently offered
by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach
of [31] aims to improve the diversity of generated models
by taking exactly one element from each equivalence class
defined by graph isomorphism, which can be too restrictive
for coverage purposes.

6 Conclusion and future work

We proposed novel diversity and distance metrics for models
based on shape analysis [43,44], which are true generaliza-
tions of metamodel coverage and graph isomorphism used
in many research papers. We have shown how to incorpo-
rate additional information, e.g., for white-box testing. Based
on these metrics, we have proposed test case prioritization
schemes.

We evaluated our approach in a mutation testing scenario
for two industrial case studies, for two different modeling
domains and artifacts under test, and using four different
sources of test input models.

We have found that among automatically generated con-
sistent models, our internal diversity metric can predict the
quality of individual models as test inputs. Additionally,
we have shown that our test case prioritization heuris-
tics generally outperformed a randomly ordered test suite
(consisting of the same models) in terms of test qual-
ity. Finally, we have shown that an open-source graph
solver [48], equipped with a (restart-based) iterative model
generation strategy that aims to increase the proposed shape
coverage metric, will outperform other model generation
approaches. Note, however, that this effect is not observed
with the incremental mode of the same generator, where
locality effects annihilate the benefits of the proposed diver-
sity.

While Alloy has been used as a model generator for
numerous functional testing scenarios of DSL tools and
model transformations [11,13,51,52,59], our measurements
strongly indicate that it is not a justified choice as (1) the
diversity and mutation score of generated models are prob-
lematic and (2) Alloy is very sensitive to configurations of
symmetry-breaking predicates.

Although the metric-based iterative model generation
scheme was shown to successfully produce diverse test
suites, it remains to be seen whether deeper integration of
shape-based metrics into the decisions of a graph solver is
feasible and conductive to efficiently producing even higher-
quality diverse test input sequences.
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