
Received November 19, 2018, accepted December 22, 2018, date of publication February 1, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2891357

Quality-Driven Detection and Resolution
of Metamodel Smells
LORENZO BETTINI1, DAVIDE DI RUSCIO 2, LUDOVICO IOVINO 3,
AND ALFONSO PIERANTONIO 2
1DiSIA, University of Florence, 50121 Florence, Italy
2Information Engineering, Computer Science and Mathematics Department, University of L’Aquila, 67100 L’Aquila, Italy
3Gran Sasso Science Institute, 67100 L’Aquila, Italy

Corresponding author: Ludovico Iovino (ludovico.iovino@gssi.it)

The research described has been carried out as part of the CROSSMINER Project, which has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under Grant 732223.

ABSTRACT In model-driven engineering, analogously to any software development practice, metamodel
design must be accurate and performed by considering relevant quality factors, including maintainability,
reusability, and understandability. The quality of metamodels might be compromised by the introduction of
smells that can be the result of inappropriate design decisions. Detecting and resolving metamodel smells
are a complex task. The existing approaches deal with this problem by supporting the identification and
resolution of smells without providing the means to explicitly trace them with the quality attributes that
can be potentially affected. In this paper, we present an approach to defining extensible catalogues of
metamodel smells. Each smell can be linked to the corresponding quality attributes. Such links are exploited
to automatically select only those smells that have to be necessarily resolved for enhancing the quality factors
that are of interest for the modeler. The implementation of the approach is based on the Edelta language, and
it has been validated on a corpus of metamodels retrieved from a publicly available repository.

INDEX TERMS Domain-specific languages, model-driven engineering, software quality engineering.

I. INTRODUCTION
Bad smells are symptoms that something may be wrong in
the system design or code [1]. A prominent example of bad
smell is code duplication, a common problem that severely
complicates the maintenance and evolution of large software
systems. There are many bad smells defined in the literature
and detecting them is far from trivial. Therefore, several tools
have been proposed to automate bad smell detection aiming
to improve software maintainability [2].

Model-driven engineering community has made
considerable progress in the last decade as regards devel-
oping software systems with enhanced productivity, quality,
and platform independence. Metamodels are central assets
that permit designers to analyze and formalize application
domains and to achieve (by means of related transformation
techniques) superior automation, whether it be refactoring,
simulation, or code generation. Development methods were
devised to take advantage of these opportunities, and the
accompanying methodologies have matured to the point
where they are generally useful.

Like any long-living software artifact, metamodels are
prone to changes. Evolutionary pressure to accommodate new
requirements in the modeling language and insights emerging

from the domain is more the rule than the exception. Unfortu-
nately, subsequent evolutionary iterations may deteriorate the
metamodel intrinsic consistency and uniformity, potentially
putting the overall metamodel quality in jeopardy. Thus, lift-
ing the concept of bad smell to metamodeling can improve
the detection of bad modeling practices that might have a
negative impact on the quality of themodeling artifact defined
upon the metamodels. As a consequence, advanced tech-
niques to detect metamodel smells and to properly resolve
them are strongly needed [3], [4].

However, refactoring metamodels to remove bad smells
does not come without a price: whenever a metamodel under-
goes modification, the modeling ecosystem defined upon
it might be not valid any longer [5]. While a number of
approaches have been introduced for the co-evolution of
different kinds of artifacts, including models, transformations
and diagrammatic editors, the problem of keeping the corre-
sponding ecosystem consistent is far from being definitively
resolved [6]. Because of such intrinsic difficulties, quality
assurance processes are applied in order to assure that only
bad smells affecting specific quality attributes are resolved.

In this paper, we present a quality-based approach to bad
smell detection and resolution that follows a least-change

16364
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-5077-6793
https://orcid.org/0000-0001-6552-2609
https://orcid.org/0000-0002-5231-3952

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

principle in order to mitigate the impact of the changes on the
modeling ecosystem. The domain-specific language named
Edelta [7] is exploited to specify the detection and resolution
of bad smells, which are in turn aligned as proposed in this
paper with the potential impact on quality attributes. Thus,
the contribution of this paper consists of techniques and tools
allowing modelers to resolve only those bad smells affecting
certain quality factors. The alignment among bad smell res-
olutions and quality attributes is given by means of weaving
models. Moreover, the proposed approach is also able to pro-
duce an automated assessment of the quality attributes before
and after the bad smell resolution. The obtained results in the
experimental evaluation suggest that the proposed approach
is promising and can support the selection of potential bad
smells that should be removed for improving specific meta-
model quality attributes.

The paper is organized as follows: Section II discusses
representative bad metamodel smells and describes them by
means of a running example. Section III explores the existing
approaches introducing some qualities that drove our pro-
posal. Section IV details the proposed process and supporting
tools for dealing with bad smells and metamodel refactorings
based on weaving models and Edelta operations. Section V
presents an evaluation of the approach performed on a dataset
consisting of 10 metamodels, nine of them extracted from
the ATL Zoo [8]. Section VI concludes with the summary of
the paper and the future work.

II. METAMODEL QUALITY ASSURANCE
In software development, code smells are defined as struc-
tural characteristics that may indicate problems in the code,
making the system hard to evolve and maintain, and that can
be resolved by means of code refactoring [9]. A refactoring is
defined as a change made to the internal structure of software
to make it easier to understand and cheaper to modify without
changing its observable behavior [10].

The concept of smell can be lifted to the context of meta-
modeling since bad metamodel design decisions might have
negative impacts on the quality of themodeling artifacts being
developed [11]. For this reason, advanced techniques to detect
metamodel smells and to properly resolve them are strongly
needed [3], [4]. Smells can be categorized as automatically
detectable ones and as those that can only be reliably detected
manually. By smells that cannot be automatically detected
we mean that it is not possible to conceive automated proce-
dures that are able to identify metamodel parts, which might
be source of quality issues [12]. According to [13], model
quality assurance processes are typically based on the three
main activities shown in Fig. 1. In particular, the models at
hand are analyzed by means of specific metrics that once
evaluated might help modelers to identify bad model smells.
Appropriate refactoring steps are then performed to resolve
the identified smells and consequently to enhance the quality
of the analyzed artifacts. The process shown in Fig. 1 can be
instantiated to manage the quality of any modeling artifacts,
including metamodels as done in [13].

FIGURE 1. High-level view of model quality assurance processes.

FIGURE 2. An explanatory metamodel with smells.

By focusing on the management of metamodel quality,
we discuss the sample metamodel shown in Fig. 2 and
some representative bad smells contained therein in the
remaining of this section. The metamodel has been designed
to support the specification of CRM (Customer Relation-
ship Management) applications. A CRMModel is composed
of a CRM and a Company on which the CRM operates
on. CRM systems can contain Clients and Workers,
whereas Company refers to its own employees, which can
be InternalWorker or ExternalWorker instances.
Client elements can be distinguished between Private
and Organization (in case of companies).

According to the smells presented in [12], the simple
CRM metamodel is the result of poor design decisions due
to the following smells that have been introduced during the
development of the metamodel in Fig. 2: Duplicated fea-
tures in metaclasses, Dead metaclass, Redundant container
relation, Classification by enumeration or by hierarchy, and
Concrete abstract metaclass. Suchmetamodel smells have an
impact on the overall quality of the metamodel. In particular,
each smell affects specific quality attributes [12], [14] as
shown in Table 1.1 The bad smells that are in the simple
CRM metamodel and the corresponding affected quality
attributes are detailed in the following.

1The goal of Table 1 is to summarize some of the impacts retrieved
from [12] that are used in this paper to describe the proposed
approach. An exhaustive discussion on metamodel smells and corresponding
quality attributes is beyond the scope of this work.

VOLUME 7, 2019 16365

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

TABLE 1. Impact of metamodel smells on quality attributes.

Duplicated features inmetaclasses (BS1):when a feature
(attribute or reference) is present in different metaclasses
(with the same type and properties), duplication of informa-
tion might be induced. The resolution for this smell can be
managed by introducing a hierarchy, and moving the shared
feature up to the newly created super-metaclass. According
to [12] redundant feature declarations can affect the main-
tainability and the reusability of the considered metamodel,
as theymust be consistentlymaintained in all themetaclasses.
An example of duplicated feature, and in particular of a
duplicated attribute, is shown in Fig. 2, where the name
attribute of type String is present in four different meta-
classes, i.e., Company, CRM, Client, and Worker. Note
that, on the contrary, crm in CRM, Client, and Worker
should not be considered as duplicated feature, since, apart
from the name, the other properties of the crm feature are
different.

Dead metaclass (BS2): depending on the goal of the
metamodel under analysis, it can happen to have metaclasses
completely disconnected from the other elements of the
metamodel. In object-oriented design, similar situations are
referred as dead code or oxbow code [15]. It is possible
to statically detect the existence of metaclasses that are not
connected with any other elements of the considered meta-
model. However, a manual assessment is then required to
decide whether the identified class should be considered as
dead. For instance, it is viable (though not obligatory) to
consider root container metaclasses as uncontainable. One of
the possible refactoring operations that can be applied in these
cases is the removal of the dead metaclass (even though such
an action should be confirmed by the modeler). According
to [12], this smell can have a negative impact on at least
the understandability of the affected metamodels. An exam-
ple of dead class is LocatedElement in the metamodel
shown in Fig. 2. This metaclass is usually used to instantiate
shapes or elements in graphical editors or to maintain the
current position in textual editors. Thus, depending on the
final use of the metamodel, modelers can decide what to do
with the LocatedElement metaclass.

Redundant container relation (BS3): containment rela-
tions represent compositions of target elements from source
ones. When navigating model elements (e.g., to analyze the
considered model or to evaluate a query over it), it can be nec-
essary to traverse containment relations from the contained

elements to the containing ones. In EMF, the generic and
implicit eContainer reference is available and it is also
possible to define an explicit container reference using the
concept of eOpposite references. If eOpposite is not
set for a given containment relation, a metamodel smell can
occur since two unidirectional references are defined instead,
without providing the bidirectional navigation of the wanted
containment relation. The presence of such a smell has several
negative implications. In particular, it introduces redundancy,
since the implicit eContainer reference is always present,
and the addition of an explicit container reference represents
a conceptual duplication. Thus, such a smell can increase at
least the complexity and themaintainability of the considered
metamodel. Figure 2 contains an example of this smell where
the containment reference clients of the CRMmetaclass is
not set as opposite of the reference crm of Client. This
smell does not make the navigation of such elements easy.

Classification by enumeration or by hierarchy (BS4): as
discussed in [12] model elements can be classified by means
of enumeration or by hierarchies. For instance, according
to Fig. 2, workers can be classified as internal and exter-
nal ones by means of two specializations of the metaclass
Worker. Alternatively, an enumeration with two different
literals might be used in the Worker metaclass. Depend-
ing on the particular case at hand, the by enumeration
classification can be less appropriate than the by hierarchy
one, and vice versa. For instance, modelers can consider
the situation like the one in Fig. 2 a bad smell, since the
InternalWorker and ExternalWorker metaclasses
do not add any additional features to that of the superclass,
and consequently a classification by enumeration would have
been preferred. In such cases, the smell can have a negative
impact on the complexity of the considered metamodels that,
e.g., might contain more metaclasses than those actually
needed.

Concrete abstract metaclass (BS5): depending on the
particular situation being modeled, it can happen to have
the superclass of a given class hierarchy being specified as
concrete instead of abstract. If such a smell occurs, the corre-
sponding resolution consists of changing the concrete meta-
class into an abstract one. A metaclass that should be abstract
and that is specified concrete can have negative impacts on the
understandability of the considered metamodel. In particular,
due to the fact that a metaclass of the considered metamodel

16366 VOLUME 7, 2019

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

can be directly instantiated, might give place to erroneous
situations. An example of such a situation is reported in Fig. 2
where themetaclassClient, being concrete, can be instanti-
ated. However, in that specific case this should not be allowed
since only the creation of Private and Organization
instances should be enabled. The dual smell of this one is the
abstract concrete metaclass.
Currently available model assurance processes (like the

one presented in [13]) provide modelers with the means to
manually select the smells to be removed from the ana-
lyzed metamodel and support the application of correspond-
ing refactorings. However, managing metamodel changes is
a challenging task especially because of the ripple effects
that metamodel changes can have on the other depending
artifacts like models and transformations. Consequently, it is
of crucial importance to have the possibility of specifying the
quality attributes that modelers would like to improve and
consequently be supported in the selection and application of
only those refactorings that are actually needed to enhance
the selected quality attributes. Section IV will present the
approach we have conceived to support such a quality-driven
refactoring of metamodels.

III. EXISTING APPROACHES FOR MANAGING
METAMODEL QUALITY AND REFACTORING
Bertoa and Vallecillo [11] identified a set of quality attributes
for metamodels, and compose them in a model to represent
their characteristics. This approach provides all the infor-
mation required to evaluate metamodels according to differ-
ent criteria. A language called mmSpec has been presented
in [16], and it allows the specification of properties to be
checked on meta-models. In this work they also present
metaBest, a tool to visualize and report the problematic
elements.

The work that is closest to ours is the one presented
in [13] and [17]. It consists of the EMF Refactor tool that
permits users to perform quantitative analysis of models,
to implement resolutions of model smells, and apply them.
EMF Refactor provides modelers with an extensible infras-
tructure that exploits the Eclipse extension mechanisms for
adding new metrics, new smells detectors, and new model
refactorings.

Strittmatter et al. [12] present a list of metamodel smells
found in the Palladio Component Model [18]. They identi-
fied ten different types of smells, some of them inspired by
the object-oriented programming paradigm. For each smell
authors discuss the observed negative effects and further
consequences that are expected. We relied on the discussions
presented in [12] to link bad smells and quality attributes as
detailed in the next section.

Another related work is presented in [19]. It consists of
an approach for modeling refactorings for different modeling
and meta-modeling languages. It is an extensible refactoring
framework based on EMF. According to the work in [19],
structural requirements for refactorings can be formalized
in terms of role models. Then, by means of a mapping

specification, such role models can be related to specific
modeling languages. This mapping defines which elements
of a language play which role in the context of a refactoring.
Based on the mapping, generic transformation specifications
are executed to restructure models. Thus, generic refactorings
can be reused for different languages only by providing a
mapping. This part of the approach is related to Edelta con-
structs that can be defined and extended by modelers using
a concrete textual syntax that is more similar to program-
ming languages in which usually refactorings are expressed.
However, the explicit management of links among quality
attributes and corresponding bad smells as proposed in this
paper is not available in the approach presented in [19].

With the aim of addressing the need of having quality
assessment stages as systematic part of the development pro-
cess, several quality models have been proposed over the
last decades (see [14], [20]–[24] just to mention a few).
The quality attributes considered in this paper borrow their
definitions from existing work in the area of software quality
engineering [20], and consequently should not be consid-
ered as part of the novel contributions of this paper, which
instead presents the means to link existing quality attributes
definitions with bad smells of interest. A quality evaluation
approach in metamodeling has been proposed in [14], where
an infrastructure for defining customizable quality defini-
tion for different types of model-based artifacts has been
conceived. The approach is based on a DSL for defining
the customized quality model, which can be evaluated on
the artifact subject of the evaluation. The result is the same
qualitymodel instantiatedwith the calculated quality attribute
values. The concept of bad smells can be applied also for
managing architectural aspects of software systems as pro-
posed in [25]. The paper focuses on bad design smells that can
have non-obvious and significant detrimental effects on the
analyzed systems. Some of the identified bad smell presented
in [25] can resemble modeling bad smells since software
architectures can be specified by means of domain specific
modeling languages.

According to the approaches previously summarized and to
the requirements defined in [13], any approach able to iden-
tify and resolve bad metamodel smells, should implement the
following features:
– Quality attribute specification and evaluation: Themod-

eler should be providedwith themeans to specify quality
attributes to be used for assessing the quality of the
metamodels at hand. Ideally, also the evaluation of the
defined attributes should be tool supported.

– Bad smell specification and detection: Modelers should
be provided with dedicated languages and tools for spec-
ifying recurrent metamodel bad smells. Such specifi-
cations should be automatically manageable in order
to enable the detection of the defined bad smells on
concrete metamodels.

– Refactoring specification and application: Dedicated
support is needed to specify and execute metamodel
refactorings in a reusable manner.

VOLUME 7, 2019 16367

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

TABLE 2. Approaches for managing the metamodel quality and refactoring.

FIGURE 3. The proposed process for quality-driven detection and resolution of metamodel smells.

– Quality attributes and bad smells linking: It should
be possible to link quality attributes with bad smells,
which (if occurring) can reduce the quality of the
metamodel at hand and that consequently, need to be
resolved by applying appropriate metamodel refactoring
operations.

– Bad smells and refactorings linking: It should be
possible to link bad smells with metamodel refactorings,
which might be suitable to resolve all the occurrences of
the linked bad smells.

– Extension mechanism: The mechanisms that modelers
can exploit to specify quality attributes, bad smells, and
metamodel refactorings can be based on general pur-
pose or domain specific languages.

– Quality-driven resolution of metamodel bad smells:
modelers should be able to check the existence of bad
smells that negatively affect the quality attributes that
are of interest for the user.

Table 2 shows the approaches previously summarized
with respect to the features presented above. Interestingly,
the EMF Refactor approach [13], [17] permits users to per-
form quantitative analysis of models, to implement resolu-
tions of model smells, and to apply them. However, modelers
that want to add new metrics, new smells detectors, and new
model refactorings have to implement them in Java by follow-
ing the constraints of the extension mechanisms imposed by
Eclipse platform. Moreover, EMF Refactor does not support
quality-driven resolutions of metamodel bad smells as shown
in the last column of Table 2. Such limitations are overcome

by the approach proposed in this paper as described in next
section.

IV. PROPOSED APPROACH
The last row of Table 2 is related to the approach pre-
sented in this section. In particular, it is based on Edelta [7],
a DSL for easily defining metamodel evolutions and refac-
torings. The core language Edelta and the constructs of the
domain specific language have been previously presented
in [7]. In this work we rely on Edelta to define bad smells,
which are resolved by means of the proposed quality driven
process.

Figure 3 shows the high level view of the process underpin-
ning the proposed approach, and consisting of both control
and data flows. In particular, the process starts with the selec-
tion of the quality attributes that the modeler would like to
improve in the metamodel at hand. Such quality attributes are
used to select from a library of knownmetamodel smells only
those that should be potentially removed. Thus, all the occur-
rences of such automatically selected smells are resolved by
means of metamodel refactoring actions.

It is important to remark that detecting and resolving
smells are very complex tasks since they might be related
to design flows that cannot be always detected in automated
manners [26]. Similarly, smell resolutions might need the
involvement of humans that can be required to take deci-
sions about how to solve some semantic flows that cannot
be encoded in automated procedures. Consequently, the pro-
cess shown in Fig. 3 has been conceived to support the

16368 VOLUME 7, 2019

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

FIGURE 4. Technical artifacts supporting the proposed smell detection and resolution process.

FIGURE 5. Metamodel for representing smells.

management of only those smells whose identification and
resolution can be done algorithmically.

To support the process shown in Fig. 3 different compo-
nents have been conceived as shown in Fig. 4 and described
in the following.
Metamodel for specifying metamodel smells (Ê): it permits

the modeler to define libraries of smell names. The meta-
model is simple and consists of two metaclasses as shown
in Fig. 5.
Metamodel for specifyingmetamodel quality attributes (Ë):

it permits the modeler to specify the quality attributes of
interest. A fragment of the metamodel is shown in Fig. 6. It is
a simplification of the one proposed in [14] and it mainly con-
sists of the QualityAttribute and MetricProvider
constructs. A QualityAttribute represents a qual-
ity aspect of interest like maintainability, understandabil-
ity, reusability, etc. A quality attribute can be aligned
with other attributes, e.g., maintainability can be defined
in terms of changeability and modularity. Thus, each
quality attribute specifies how to combine the contained
attributes in order to provide an overall quality value. The
value definition of a quality attribute is computed by the
application of a given MetricProvider, which refers
to the software component able to calculate a specific
metric.
Domain specific language for developing libraries of smell

finders (Ì): the Edelta language [7] is used for such a pur-
pose. In particular, Edelta operations are developed to specify
queries to be evaluated on the metamodel under analysis as
detailed in Sec. IV-B.

FIGURE 6. Fragment of the metamodel for specifying quality
attributes [14].

FIGURE 7. Metamodel for defining links among smells and quality
attributes.

Domain specific language for developing libraries of
reusable metamodel refactorings (Ì): the Edelta language
is used also to specify metamodel refactorings as detailed
in Sec. IV-C.
Metamodel for linking the quality attributes that are

impacted by each metamodel smell (Í): model weaving [27]
is used for establishing links between model elements. This
task is supported by the weaving metamodel shown in Fig. 7
which permits themodeler to define impact relation elements.
In fact, weaving models are used when distinct operations
have to be executed with respect to the semantics of the

VOLUME 7, 2019 16369

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

FIGURE 8. Sample model defining links among smells and quality attributes.

FIGURE 9. Metamodel for specifying links among smells, finders, and
refactorings.

specified weaving links [27]. Each ImpactRelation ele-
ment specifies howQualityAttributes can be impacted
negatively by metamodel Smells. Figure 8 shows a model
conforming to the metamodel in Fig.7. According to the
shown example, three different quality attributes including
reusability andmaintainability are negatively impacted by the
smell DuplicatedFeatures.
Metamodel for specifying links between smells, corre-

sponding finders, and metamodel refactorings (Î): a frag-
ment of this metamodel is shown in Fig. 9 and it permits the
modeler to specify models like the one in Fig. 10. According
to such a specification, the DuplicatedFeatures smell can
be detected by means of the finder findDuplicateFeatures
available in a reusable library implemented with the Edelta
language. The resolution is also specified, it is the Edelta
operation named extractSuperclass available from an avail-
able library of refactorings as specified in the property view
at the bottom of Fig. 10.

Details about the proposed quality-driven selection of
metamodel smells are given in Sec. IV-A. Edelta-based
specifications of smell finders are given in Sec. IV-B,
whereas correspondingmetamodel refactorings are explained
in Sec. IV-C. The tools discussed in this section are
available for download (together with the data used for
the evaluation presented in the next section) at https://
github.com/gssi/Edelta_bad_smells/.

A. QUALITY-DRIVEN SELECTION OF METAMODEL
SMELLS
As previously mentioned, the proposed approach enables the
selection of quality attributes that modelers want to improve
in the metamodel under analysis, and the automated identi-
fication of the corresponding smells that need to be detected
and resolved. To this end, specific queries have been devel-
oped in order to trace elements specified in Smell-Finders-
Refactorings models with those in Smell-Quality attribute
models with respect to the quality attributes of interest for
the user. For instance, according to the models discussed in
the previous section, in order to increase the maintainability
of the metamodel under analysis, all the occurrences of the
DuplicatedFeatures smell should be removed (see Fig. 8).
To this end, all the occurrences of such a smell can be detected
by means of the finder findDuplicateFeatures; each of them
can be resolved bymeans of the refactoring extractSuperclass
(see Fig. 10). The navigation of the weaving models is per-
formed by means of OCL queries like the one shown below:

1 self.relations->select(r|r.quality
Attribute->

2 collect(n|n.varName)->includes
(’MAINTAINABILITY_QA’))->
3 collect(bs|bs.smell)

If the OCL query would be evaluated on the model shown
in Fig. 8 (which has been defined to represent the impacts
shown in Table 1) a collection would be given as result con-
sisting of the DuplicatedFeatures and RedundantContainer
smells.

B. FINDING METAMODEL SMELLS WITH EDELTA
In this section we make an overview of the Edelta language
already proposed in [7]. Edelta is at the core of the overall
process for detecting metamodel smells and for resolving
them by means of reusable metamodel refactorings.

Edelta is integrated in Eclipse with a fully-fledged Eclipse
editor with all the typical IDE mechanisms (from code
completion to debugging). Our DSL is also completely

16370 VOLUME 7, 2019

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

FIGURE 10. Linking the DuplicatedFeatures smell with the corresponding Edelta finder and refactoring operation.

interoperable with Java and its type system, meaning that
any existing Java code can be seamlessly used from within
an Edelta program. Thus, our approach allows the developer
to use a compact syntax for specifying metamodel analysis
and evolution, without forcing the developer to use Edelta
for everything: Java code can also used only if desired. This
allows for easy extension mechanisms that do not rely on
cumbersome plug-ins. Moreover, the Edelta compiler and
Eclipse editor also interprets the current Edelta specification
on-the-fly, giving the developer an immediate feedback on
the resulting modified metamodel without rebooting the IDE
(more details can be found in [7]). Finally, since an Edelta
program is represented in memory as an EMFmodel, existing
EMF tools can be used to manipulate an Edelta program. For
example, we can use the standard EMF tree editor to link
smells, finders and refactoring operations (see Figure 10).

Edelta is publicly available as an open source project.2

In order to enable the adoption of the approach we provide
both the link for installing the Eclipse plugin in existing
distributions, and a complete Eclipse distribution with Edelta
already installed and ready to use.

It is important to remark that definitions of smells can be
very subjective and informal [26]. Consequently, we decided
to provide modelers with a language enabling the speci-
fication of custom smell finders and metamodel refactor-
ings, which can be properly organized in reusable libraries.
In this paper, we focus on automatically detectable smells
and in this section we show explanatory examples of defini-
tions falling in this category. Concerning, metamodel changes
the language allows developers to specify both atomic and
complex ones. Moreover, the implementation of Edelta is
based on Xtext [28] and the language is endowed with an
Eclipse-based development environment providing also early
evaluation of the refactoring being applied and the ability to
debug Edelta programs. Edelta programs can contain Edelta
instructions, called Operations, by reusing other operations
already defined in available libraries.

Edelta uses Xbase [29] to provide a rich Java-like syntax
for its expressions. In order to make code snippets presented

2https://github.com/LorenzoBettini/edelta

in the paper comprehensible, we will briefly sketch the main
features of Xbase; for a deeper description of the Edelta
Xbase expression language, we refer the reader to [7]. Xbase
should be easily understood by Java programmers. Since
Xbase is completely interoperable with Java, this implies
that Edelta reuses the Java type system, including generics,
and existing Java libraries can be used in Edelta. This also
means that existing refactoring implementations for Ecore
models written in Java, can be seamlessly reused in an Edelta
program.

Xbase removes much of the ‘‘syntactic noise’’ verbosity
that is typical of Java. Terminating semicolons are optional
in Xbase. Xbase comes with a powerful type inference mech-
anism that allows the programmer to avoid specifying types
in declarations when they can be inferred from the context
(e.g., in method signatures and variable declarations). This
makes Edelta expressions compact and readable like in script-
ing and untyped languages, while still enjoying the static type
safety, not to mention rich content assist in Eclipse, based on
the inferred types.

Xbase extension methods are a syntactic sugar mecha-
nism to simulate adding new methods to existing types with-
out modifying them. Using extension methods results in a
more readable code, since method calls are chained, e.g.,
o.foo().bar() rather than nested, e.g., bar(foo(o)).
Syntactic sugar for getters and setters is also provided:
one can simply write o.name and o.name = "...",
instead of o.getName() and o.setName("..."),
respectively.

Xbase lambda expressions have the shape:
[param1, param2, ... | body].
The types of parameters can be omitted if they can

be inferred from the context. Xbase has another addi-
tional special variable, it. Similar to this, it can be
omitted as object receiver of method call and member
access expressions. The programmer is allowed to declare
any variable or method parameter with the name it,
thus a custom implicit object receiver can be declared in
any scope of the program. When a lambda has a single
parameter, the parameter can be omitted and it will be
automatically it.

VOLUME 7, 2019 16371

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

Listing 1. Edelta example of reusable functions.

Thanks to all these linguistic mechanisms, Edelta allows
the programmer to easily write reusable functions in a com-
pact and readable way, like the ones shown in Listing 1
(note the use of syntactic sugar for getters, allEClasses
used as an extension method, and the type inference in func-
tion return types).

Listing 2 reports an extract of an Edelta library able to find
and match the bad smells previously defined. It is important
to understand that the library is independent from the specific
case and it contains all the bad smell finder instructions
covered by the various modelers.

In the specific case of lines 4-11, the findDuplicate
Features operation is defined. Note that this opera-
tion calls another operation, which actually performs the
search for duplicate features, findDuplicateFeatures
Custom. This operation takes as argument an additional
lambda that is responsible of deciding whether two fea-
tures should be considered equal in two different EClasses.
findDuplicateFeatures calls this operation with
a lambda that relies on our default implementation of
equality detection for features, which scans all the prop-
erties of two given features. The modeler could have
a different strategy for deciding whether two features
have to be considered equal, that is why we also pro-
vide findDuplicateFeaturesCustom. In particular,
we follow the same pattern also for other bad smell finders
in our library.

This operation returns a map whose values are lists of
duplicated features in any EClass of the specified EPackage.
Instead of flattening the lists of duplicated features, we keep
them separated so that, later, we can extract a superclass
for each duplicated feature in a straightforward way, without
having to visit again the model. We follow the same pattern
in the other bad smell finders: the information returned by
the finders contains all the elements to implement the corre-
sponding refactoring.

C. REMOVING METAMODEL SMELLS WITH EDELTA
When a bad smell is found by Edelta operations, the refac-
toring specified in the considered weaving model like the
one shown in Fig. 10 can be applied in order to resolve
it. In this specific case the bad smell duplicated features
can be automatically resolved by applying the refactor-
ing extractSuperClass as defined by the modeler in
Listing 3. The listed Edelta operation is part of the refactoring

Listing 2. Edelta snippet of the bad smell identification library.

Listing 3. Edelta snippet of the refactorings library.

library containing all the possible refactorings we defined to
cover the catalog published at [3].

In this refactoring the argument is the list of found dupli-
cated features, that will be removed from the metaclasses
and moved up (in a single feature) to the hierarchy. The
extracted metaclass created will have the name of the feature
concatenated with the postfix Element (plus a possible
suffix to guarantee that such a name is not already used within
the same EPackage). Then, for all the metaclasses containing
the duplicated features, the supertype will be set to the newly
created metaclass, and the original feature is removed from
the initial metaclass.

By applying the proposed approach on the meta-
model shown in Fig. 2, with the aim of improving the

16372 VOLUME 7, 2019

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

FIGURE 11. The original metamodel after the refactorings.

maintainability, complexity, understandability, and reuse
quality attributes, the metamodel shown in Fig. 11 can be
obtained. In particular,
i) the duplicated features smell, due to the name attribute

occurring in four metaclasses, has been resolved by
means of the extract metaclass refactoring, which added
the new NameElement metaclass with the name
attribute pulled in;

ii) the redundant containment relation between the CRM
and Clientmetaclasses has been removed by properly
setting the eOpposite property of the kept relation
between such metaclasses;

iii) the dead metaclass smell that was found on the
LocatedElement metaclass has been resolved
with the removal of the dead metaclass, after the
user interaction confirmation (as detailed below);

iv) the bad classification smell, previously identified in
the sub-classes of Worker, has been resolved by
introducing the enumeration WorkerType, and the
introduction of the attribute workerType in the rel-
ative metaclass;

v) finally, the erroneously concrete metaclass identi-
fied in Client has been fixed by setting it as
abstract.

The console shown in Fig. 12 reports the smells iden-
tified and resolved automatically and also the detection
of those that required user intervention. For instance,
concerning the found dead metaclass, the user was
asked to confirm the refactoring chosen by the Edelta
program i.e., the removal of the LocatedElement
metaclass.

V. EVALUATION
In this section we discuss the evaluation we have performed
with the aim of answering the following research question: is
the proposed approach able to refactor the metamodel under
analysis by affecting the quality attributes as selected by the
modeler?

FIGURE 12. Edelta console asking confirmation to apply the refactoring
to resolve the found dead metaclass smell.

A. EXPERIMENT SETUP
In order to validate the approach, Table 1 has been specified
in terms of the required (weaving) models as presented in
the previous section. A data set consisting of 10 metamodels
(i.e., the CRM metamodel presented in the previous section
and additional 9 metamodels retrieved from the ATL Zoo [8])
has been considered. The metamodels have been selected
among the group of packages provided in the ATL Zoo where
no errors have been observed in the execution without man-
ual inspection. Then, similarly to mutation testing, for each
metamodelMM in the dataset the following process has been
applied:

1) for each quality attribute (qa), MM has been manually
mutated by introducing the bad smells (bs) affecting
qa according to Table 1. For instance, concerning the
maintainability attribute, two different mutated meta-
models have been obtained from MM: one has been
obtained by introducing an instance of the duplicated
features smell, and another one by adding an instance
of the redundant container smell;

2) the proposed approach has been applied on each
mutated metamodel obtained in the previous step.
In particular, the tool has been asked to select the bad
smells that were needed to be resolved for improv-
ing each quality attribute on each mutated metamodel.
Then, each quality attribute has been evaluated on
each mutated metamodel, before and after the refac-
torings selected by the tool according to the given
weaving specifications. If the value of the considered
quality attribute gets improved after the application of
the selected refactoring, then it is confirmed that the
approach is able to select and identify the right bad
smells, and to finally resolve them.

B. DEFINITION OF THE CONSIDERED QUALITY
ATTRIBUTES
For measuring the quality attributes during the experiment,
the quality assessment tool presented in [14] has been used.
It permits to define quality attributes, which can be hierarchi-
cally organized. Each quality attribute consists of an expres-
sion defining how the values of sub-attributes or metrics have
to be combined.

The maintainability quality attribute considered in this
paper has been defined according to the definition given

VOLUME 7, 2019 16373

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

TABLE 3. Excerpt of the metrics considered in the evaluation.

in [30] and that is based on some of the metrics shown
in Table 3 as follows:

Maintainability

=

(
NC + NA+ NR+ DITMax + FanoutMax

5

)
(1)

According to the considered definition of maintainability the
lower values the better.

The definitions of the Understandability and Complexity
quality attributes have been taken from [31]. In particular,
understandability can be defined as follows

Understandability =

(∑NC
k=1 PRED+ 1

NC

)
(2)

where PRED regards the predecessors of each metaclass,
since, in order to understand a metaclass, we have to under-
stand all of the ancestor metaclasses that affect the class as
well as the metaclass itself. According to such a definition
the higher values for the understandability quality attribute
the better.
Complexity can be defined in terms of the number of

static relationships between the metaclasses of the considered
metamodel (i.e., number of references). The complexity of
the association and aggregation relationships is counted as
the number of direct connections, whereas the generalization
relationship is counted as the number of all the ancestor
and descendant metaclasses. Thus, the complexity quality
attribute can be defined as follows:

Complexity = (NR− NUR+NOPR+UND+ (NR− NCR))

(3)

where NUR is the number of unidirectional references
calculated as the difference between bidirectional and total
reference number, and UND is the understandability value
calculated as defined in Def. 2. According to the given defini-
tion, the lower values for the complexity attribute the better.

The reusability of a given metamodel can be calculated in
different ways. One among the proposed ones is to use the
attribute inheritance factor AIF as proposed in [32] where it
is stated that a higher value indicates a higher level of reuse.

As presented in [33], AIF can be defined as follows:

AIF =
(
INHF
NTF

)
(4)

where INHF is the sum of the inherited features in all
metaclasses, and NTF is the total number of available
features.

C. RESULTS
The results of the performed experiment are shown in Table 4.
Each quality attribute consists of different columns. For
instance, concerning the quality attribute Complexity, the
columns BS3pm, BS3pr , BS4pm, and BS4pr are shown. The
subscripts pm and pr are used to distinguish the values of
the quality attribute evaluated after the application of the
mutations (to add the bad smells BS3 and BS4), and after
the execution of the metamodel refactorings (to remove the
bad smells BS3 and BS4 from the mutated models), respec-
tively. For example, the refactoring operated by the proposed
approach to reduce the complexity of the metamodel Persons,
obtained after the mutation to add the smell BS4, has been
effective. In fact, the value of BS4pr for the metamodel
Persons is lower than BS4pm for the same metamodel.
The row Expected delta in Table 4 shows if the differ-

ence between one value under the considered column pr
and that in the cell under the corresponding pr column is
expected to be lower or greater than 0. The last row of Table 4
shows the number of cases when the expected delta occurred.
The obtained results suggest that the proposed approach is
promising and can be used to get support for selecting poten-
tial bad smells that should be removed for improving specific
metamodel quality attributes.

D. THREATS TO VALIDITY
In this section, potential threats to validity associated with
the experimental validation are discussed, by distinguishing
construct, internal, and external validity.
Construct validity concerns any factor that can compro-

mise the validity of the experiment and of the resulting
observations. A potential threat to construct validity is related
to the specification of the weaving models that might link
erroneously quality attributes, smells, and corresponding
metamodel refactorings. We did our best to specify the used
weaving models in a consistent way with the considered
literature. Moreover, we did several manual assessments to
check if suggested bad smells were actually consistent with
the quality attributes to be improved.
Internal validity concerns any confounding factor that

could influence our results. We attempted to avoid any bias
in the definition of the weaving models and in the selection
of the quality attributes: i) by considering already existing
quality attributes as they were presented in their original
papers; ii) by completely delegating the evaluation of the
considered quality attributes to external assessment tools
(in particular the one presented in [14]). Indeed, the imple-
mented tools could be defective. To contrast and mitigate

16374 VOLUME 7, 2019

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

TABLE 4. Quality attribute values calculated post-mutations (pm) and post-refactorings (pr).

this threat, we have run several manual assessments and
counter-checks.
External validity refers to the extent to which the results of

our study can be generalized. The metamodels we have inves-
tigated come from a publicly available repository already
used in other experiments discussed in literature. However,
we cannot claim that the results of our experimental evalua-
tion are generalizable, even though the performed validation
provides uswith an acceptable confidence about the effective-
ness of the approach on awell-known and recognized data set.

VI. CONCLUSIONS AND FUTURE WORK
We have presented an approach to support the selection of
smells that should be potentially removed from the meta-
model under developer in order to enhance the particu-
lar quality attribute that the modeler is interested in. The
approach is essentially based on weaving specifications able
to link smells, Edelta operations able to find them, and cor-
responding metamodel refactorings also specified in Edelta.
We have presented an evaluation of the approach by con-
sidering a set of metamodels retrieved from the ATL Zoo.
The obtained results suggest that the proposed approach is
promising to deal with the problem of metamodel bad smell
detection and resolution.

We plan to extend the approach in different directions.
Currently, the proposed methodology works properly under
the conditions that the considered bad smells do not depend
on other ones, and consequently that the weaving models
are specified so that the proposed solution for enhancing
the quality attribute of interest is unique. However, different
kinds of bad smells are not independent of each other, and
the resolution of one kind of bad smells may influence the
resolution of other bad smells [34]. Thus, we plan to extend
the bad smell metamodel allowing modelers to specify also
the relation of containment for bad smells, e.g., a bad smell
containing a simpler bad smell, and the order of resolution
and influence. The proposed approach allows modelers to
define automatically detectable smells and we plan to define
a custom library of finders based on bad smell definitions
and examples available in the literature, also inspired by

code smells. However, this does not exclude the possibility
to define additional domain-specific smell finders, since the
Edelta language supports custom definitions organized in
different libraries as described in Section IV-B. Since Edelta
acts on Ecore models through the standard EMFAPI, we plan
to integrate Edelta with existing EMF frameworks, such as,
e.g., Edapt [35] for the migration of existing models and
Refacola [36] for the existing generated code.

REFERENCES
[1] T. Hall, M. Zhang, D. Bowes, and Y. Sun, ‘‘Some code smells have a

significant but small effect on faults,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, 2014, Art. no. 33.

[2] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, ‘‘A review-
based comparative study of bad smell detection tools,’’ in Proc. ACM
EASE, New York, NY, USA, 2016, pp. 18-1–18-12.

[3] MDE Research Group, University of L’Aquila. The Metamodel
Refactorings Catalog. Accessed: Jan. 15, 2018. [Online]. Available:
http://www.metamodelrefactoring.org

[4] R. Hebig, D. E. Khelladi, and R. Bendraou, ‘‘Approaches to co-evolution
of metamodels and models: A survey,’’ IEEE Trans. Softw. Eng., vol. 43,
no. 5, pp. 396–414, May 2017.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, ‘‘Automating
co-evolution in model-driven engineering,’’ in Proc. 12th Int. IEEE ECOC,
Munich, Germany: IEEE Computer Society, Sep. 2008, pp. 222–231.

[6] D. Di Ruscio, L. Iovino, and A. Pierantonio, ‘‘Coupled evolution in
model-driven engineering,’’ IEEE Softw., vol. 29, no. 6, pp. 78–84,
Nov./Dec. 2012.

[7] L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio, ‘‘Edelta:
An approach for defining and applying reusable metamodel refactorings,’’
in Proc. MODELS Satellite Event, 2017, pp. 71–80.

[8] Eclipse. (2012). ATL Transformations Zoo. [Online].
Available: https://www.eclipse.org/atl/atlTransformations/

[9] F. A. Fontana, P. Braione, and M. Zanoni, ‘‘Automatic detection of bad
smells in code: An experimental assessment,’’ J. Object Technol., vol. 11,
no. 2, pp. 1–5, 2012.

[10] G. B. Regulwar and R. M. Tugnayat, ‘‘Detection of bad smell code for
software refactoring,’’ in Innovations in Computer Science and Engineer-
ing, H. S. Saini, R. Sayal, A. Govardhan, and R. Buyya, Eds. Singapore:
Springer, 2019, pp. 143–152.

[11] M. F. Bertoa and A. Vallecillo, ‘‘Quality attributes for software metamod-
els,’’ Univ. Málaga, Málaga, Spain, Tech. Rep., 2010.

[12] M. Strittmatter, G. Hinkel, M. Langhammer, R. Jung, and R. Heinrich,
‘‘Challenges in the evolution of metamodels: Smells and anti-patterns of
a historically-grown metamodel,’’ in Proc. CEUR Workshop, vol. 1706,
2016, pp. 30–39.

[13] T. Arendt andG. Taentzer, ‘‘A tool environment for quality assurance based
on the eclipse modeling framework,’’ Automat. Softw. Eng., vol. 20, no. 2,
pp. 141–184, Jun. 2013.

VOLUME 7, 2019 16375

L. Bettini et al.: Quality-Driven Detection and Resolution of Metamodel Smells

[14] F. Basciani, J. di Rocco, D. di Ruscio, L. Iovino, and A. Pierantonio,
‘‘A customizable approach for the automated quality assessment of mod-
elling artifacts,’’ in Proc. 10th Int. Conf. Qual. Inf. Commun. Technol.
(QUATIC), Sep. 2016, pp. 88–93.

[15] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, ‘‘Compiler techniques
for code compaction,’’ ACM Trans. Programm. Lang. Syst., vol. 22, no. 2,
pp. 378–415, Mar. 2000.

[16] Z.Ma, X. He, andC. Liu, ‘‘Assessing the quality ofmetamodels,’’Frontiers
Comput. Sci., vol. 7, no. 4, pp. 558–570, Aug. 2013, doi: 10.1007/s11704-
013-1151-5.

[17] T. Arendt and G. Taentzer, ‘‘Integration of smells and refactorings within
the Eclipse modeling framework,’’ in Proc. ACM 5th Workshop Refactor-
ing Tools (WRT), New York, NY, USA, 2012, pp. 8–15.

[18] R. H. Reussner et al., Modeling and Simulating Software Architectures:
The Palladio Approach. Cambridge, MA, USA: MIT Press, 2016.

[19] J. Reimann, M. Seifert, and U. Aßmann, ‘‘Role-based generic model
refactoring,’’ in Model Driven Engineering Languages and Systems,
D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds. Berlin, Germany:
Springer, 2010, pp. 78–92.

[20] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Boston, MA, USA: Addison-Wesley, 2002.

[21] P. Berander et al., ‘‘Software quality attributes and trade-offs,’’ Blekinge
Inst. Technol., 2005.

[22] B. Boehm, J. Brown, J. Kaspar, and M. Lipow, Characteristics of Software
Quality. Amsterdam, The Netherlands: North Holland, 1978.

[23] R. G. Dromey, ‘‘A model for software product quality,’’ IEEE Trans. Softw.
Eng., vol. 21, no. 2, pp. 146–162, Feb. 1995.

[24] R. B. Grady andD. L. Caswell, SoftwareMetrics: Establishing aCompany-
Wide Program. Upper Saddle River, NJ, USA: Prentice-Hall, 1987.

[25] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, ‘‘Identifying
architectural bad smells,’’ in Proc. 13th Eur. Conf. Softw. Maintenance
Reeng., Mar. 2009, pp. 255–258.

[26] F. A. Fontana, P. Braione, and M. Zanoni, ‘‘Automatic detection of bad
smells in code: An experimental assessment,’’ J. Object Technol., vol. 11,
no. 2, pp. 5-1–5-38, Aug. 2012.

[27] M. D. Del Fabro, J. Bézivin, and P. Valduriez, ‘‘Weaving models with the
eclipse AMW plugin,’’ in Proc. Eclipse Modeling Symp., Eclipse Summit
Europe, 2006, pp. 37–44.

[28] L. Bettini, Implementing Domain-Specific Languages with Xtext and
Xtend, 2nd ed. Birmingham, U.K.: Packt Publishing, 2016.

[29] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, W. Hasselbring, and
R. von Massow, ‘‘Xbase: Implementing domain-specific languages for
Java,’’ in Proc. ACM GPCE, 2012, pp. 112–121.

[30] M. Genero and M. Piattini, ‘‘Empirical validation of measures for class
diagram structural complexity through controlled experiments,’’ in Proc.
QAOOSE@ECOOP, 2001, pp. 87–95.

[31] F. T. Sheldon and H. Chung, ‘‘Measuring the complexity of class diagrams
in reverse engineering,’’ J. Softw. Maintenance Evolution, Res. Pract.,
vol. 18, no. 5, pp. 333–350, 2006.

[32] T. Arendt, F. Mantz, and G. Taentzer, ‘‘UML model quality assurance
techniques,’’ Philipps-Univ. Marburg, Marburg, Germany, Tech. Rep.,
Oct. 2009.

[33] J. Al-Ja’Afer, K. Eddin, and M. Sabri, ‘‘Metrics for object oriented
design (MOOD) to assess java programs,’’ Univ. Jordan, Amman, Jordan,
Tech. Rep., 2007.

[34] H. Liu, L. Yang, Z. Niu, Z. Ma, and W. Shao, ‘‘Facilitating software
refactoring with appropriate resolution order of bad smells,’’ in Proc. ACM
ESEC/FSE, New York, NY, USA, 2009, pp. 265–268.

[35] Eclipse. (2018). Edapt—Migrating EMF Models. [Online]. Available:
https://www.eclipse.org/edapt/

[36] J. von Pilgrim, B. Ulke, A. Thies, and F. Steimann, ‘‘Model/code
co-refactoring: An MDE approach,’’ in Proc. 28th IEEE/ACM Int.
Conf. Automat. Softw. Eng. (ASE), New York, NY, USA, Nov. 2013,
pp. 682–687.

LORENZO BETTINI was an Assistant Professor
(Researcher) of computer science with the Dipar-
timento di Informatica, Università di Torino, Italy.
He has been an Associate Professor of computer
science with the DISIA Dipartimento di Statistica,
Informatica, Applicazioni Giuseppe Parenti,
Università di Firenze, Italy, since 2016. His
research interests include design, theory, and
implementation of programming languages (in
particular object-oriented languages and network
aware languages).

DAVIDE DI RUSCIO is currently an Assistant
Professor with the University of L’Aquila. Over
the last decade, he has worked on several
European projects by contributing the applica-
tion of model-driven engineering in different
application domains, such as service-based soft-
ware systems, autonomous systems, and open
source software. His main research interests
include software engineering and several aspects
of model-driven engineering, including domain-

specific languages, model transformations, andmodel evolution. He has pub-
lished more than 100 papers in various journals, conferences, and workshops
on these topics.

LUDOVICO IOVINO is currently an Assistant
Professor with the Computer Science department,
GSSI Gran Sasso Science Institute, L’Aquila. His
research interests include model-driven engineer-
ing, model transformations, metamodel evolution,
code generation, and software quality evaluation.
He has been working on the model-based arti-
facts and issues related to the metamodel evolution
problem.He is a part of different academic projects
related to model repositories, model migration

tools, and eclipse plugins. He was included in the program committees of
numerous conferences and in the local organization of the STAF 2015 and
the iCities 2018 conferences. He has organized the models and evolution
workshop at the MODELS 2018.

ALFONSO PIERANTONIO is currently an Asso-
ciate Professor with the University of L’Aquila,
Italy. His research interests include model-
driven engineering with a specific emphasis on
co-evolution problems, bidirectionality, and meg-
amodeling. He has chaired a number of inter-
national conferences and has organized over
20 workshops (including ICMT and STAF). He is
on the Editorial Board of several scientific journals
(including SoSyM and JOT).

16376 VOLUME 7, 2019

http://dx.doi.org/10.1007/s11704-013-1151-5
http://dx.doi.org/10.1007/s11704-013-1151-5

	INTRODUCTION
	METAMODEL QUALITY ASSURANCE
	EXISTING APPROACHES FOR MANAGING METAMODEL QUALITY AND REFACTORING
	PROPOSED APPROACH
	QUALITY-DRIVEN SELECTION OF METAMODEL SMELLS
	FINDING METAMODEL SMELLS WITH EDELTA
	REMOVING METAMODEL SMELLS WITH EDELTA

	EVALUATION
	EXPERIMENT SETUP
	DEFINITION OF THE CONSIDERED QUALITY ATTRIBUTES
	RESULTS
	THREATS TO VALIDITY

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	LORENZO BETTINI
	DAVIDE DI RUSCIO
	LUDOVICO IOVINO
	ALFONSO PIERANTONIO

