
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 1

Efficient execution of ATL model transformations
using static analysis and parallelism

Jesús Sánchez Cuadrado, Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo

Abstract—Although model transformations are considered to be the heart and soul of Model Driven Engineering (MDE), there are
still several challenges that need to be addressed to unleash their full potential in industrial settings. Among other shortcomings, their
performance and scalability remain unsatisfactory for dealing with large models, making their wide adoption difficult in practice. This
paper presents A2L, a compiler for the parallel execution of ATL model transformations, which produces efficient code that can use
existing multicore computer architectures, and applies effective optimizations at the transformation level using static analysis. We
have evaluated its performance in both sequential and multi-threaded modes obtaining significant speedups with respect to current
ATL implementations. In particular, we obtain speedups between 2.32x and 38.28x for the A2L sequential version, and between 2.40x
and 245.83x when A2L is executed in parallel, with expected average speedups of 8.59x and 22.42x, respectively.

Index Terms—Model transformation, MDE, ATL, Performance, Scalability, Parallelization

F

1 Introduction
The progressive adoption of Model-Driven Engineering
(MDE) [1] approaches for developing better and more efficient
software is posing different kinds of challenges to current MDE
methods and tools. Despite the potential benefits of MDE
technologies to significantly reduce time to market and im-
prove product quality, they still suffer from some limitations
that may hinder their full adoption by industry (see, e.g., [2]–
[4]). In particular, the scalability, usability and performance of
model transformations (MT) are crucial issues that need to be
tackled if they are to be effectively used to address scenarios
such as model-driven modernization of legacy systems and
the engineering of large and complex applications in, e.g., the
automotive, biology or aerospace domains.

At this moment, ATL [5] and QVT [6] are the most widely-
used model transformation languages [7]. Although they pro-
vide powerful abstractions to specify and implement transfor-
mations between models and to generate model views, their
implementations have limited scalability, and thus the exe-
cution time of transformations may become prohibitive with
large input models (e.g., in the order of millions of elements),
or even medium-size input models if the transformation has
complex model navigations. One reason for this lack of scala-
bility is due to the fact that most transformation engines are
implemented as simple interpreters and they barely use static

• Jesús Sánchez Cuadrado is with the Universidad de Murcia, Dept.
Informática y Sistemas. Campus de Espinardo, Murcia, Spain
E-mail: jesusc@um.es

• Loli Burgueño is with the Open University of Catalonia, IN3,
Barcelona, Spain, and Institut LIST, CEA, Université Paris-
Saclay, Paŕıs, France
Email: lburguenoc@uoc.edu

• Antonio Vallecillo is with ITIS Software, Universidad de Málaga,
Bulevar Louis Pasteur, 35, 29071, Malaga, Spain
E-mail: av@lcc.uma.es

• Manuel Wimmer is with the Johannes Kepler Universität, Busi-
ness Informatics – Software Engineering, Linz, Austria
E-mail: manuel.wimmer@jku.at

analysis information to apply compile time optimizations or
to improve their scheduling. Moreover, although multicore
computers are widely available, there are very few engines
that implement parallel transformation algorithms.

The contribution presented in this paper addresses the
engineering of an efficient model transformation engine for the
particular case of the ATL model transformation language.
We have developed a new compiler for ATL, called A2L, which
provides several novel features with respect to state-of-the-art
approaches, namely:

• A2L uses static analysis information provided by
AnATLyzer [8] to compile ATL transformations to
the Java Virtual Machine (JVM), applying optimiza-
tions for OCL expressions and for transformation rule
handling.

• We present a novel algorithm which enables the paral-
lel execution of the transformation, using data paral-
lelism. This allows A2L to achieve an effective distri-
bution of the parallel jobs, thus outperforming other
parallel ATL engines which are based on task paral-
lelism [9], [10].

• A2L is integrated with the ATL/AnATLyzer IDE
and Eclipse Java Development Toolkit (JDT), which
enables the development of transformations using the
facilities provided by AnATLyzer, e.g., quick fixes [11]
and visualizations [12]. Moreover, the compiled code
can be seamlessly integrated with existing Java code.

A2L has been validated for correctness using the regression
tests defined for the ATL virtual machine [13] and supports
the majority of the constructs of ATL, including all types of
rules (matched, lazy and called), module and context helpers,
imperative blocks, all datatypes including collections, maps
and tuples, and the standard OCL library. We have run several
benchmarks that show significant performance improvements
when compared with the existing ATL engines.

This paper is organized as follows. Sect. 2 introduces the
ATL model transformation language and describes the limi-

This is a preprint version of the paper that will be published in the IEEE Transactions on Software Engineering
The final authenticated version is available onlinehttp://doi.org/10.1109/TSE.2020.3011388

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 2

tations of current transformation engines through a running
example. Then, Sect. 3 describes the architecture of A2L, the
compiler we have developed to compile and execute in parallel
existing ATL programs. The more prominent features of A2L
are described in Sections 4 and 5, which present, respectively,
the algorithm used to execute ATL transformations in par-
allel, and the A2L optimization strategies and mechanisms
enabled by the use of AnATLyzer static typing information.
Sect. 6 describes the evaluation that we have conducted to
validate our proposal. Finally, Sect. 7 discusses related work,
and Sect. 8 concludes with an outline on future work.

2 Motivation and background
Performance and scalability of model transformations is
deemed as one of the most important challenges in MDE
since it enables the use of model transformation technology
to handle large models appearing in scenarios like reverse
engineering, model analysis, or data engineering. It is also
key to apply MDE to other engineering disciplines, such as
construction [14] or automotive engineering [15].

Model transformation languages, notably those with a
declarative form, have the potential to tackle this challenge
because they provide an abstraction to write transforma-
tions which are independent of the execution mechanism. A
good compiler should generate efficient code by analysing the
structure and relationships of the transformation. However,
this possibility has not been exploited in state-of-the-art MT
languages, resulting in poor performance. In fact, a recent
study [7] has revealed that, although MT users value the
advantages of using MT languages, the poor performance
and scalability issues of MT engines are hampering their use
and forcing them to develop their transformations in general-
purpose languages (even though if it makes the task more
cumbersome and error-prone).

Our working hypothesis is twofold. First, by using static
analysis information, it is possible to compile declarative
transformations to produce high-performance code; moreover,
recurrent transformation idioms can be optimized by the com-
piler. Second, since a declarative transformation does not pre-
scribe the execution order, it is possible to seamlessly execute
a transformation in parallel, if the adequate transformation
algorithm is implemented. More precisely, to achieve efficient
parallel execution of ATL programs, such an algorithm should
limit the number of dependencies between parallel processes
to maximize concurrency, while load balancing between pro-
cesses should aim at preventing processes from becoming idle
if they finish before others. To this end, we propose the use of
data-based parallelism, whereby the model is split into chunks
of elements that are transformed by the processes, all running
the complete transformation in parallel.

This paper describes our proposed parallelization algo-
rithm, its main features and characteristics, the optimizations
we have applied, and the performance gains it achieves over
existing ATL model transformation engines.

2.1 ATL
ATL [5] is a hybrid model transformation language that allows
both declarative and imperative constructs. A transformation
consists of a set of rules that specifies which elements of the
output model are created from which ones of the input model.

Package
AbstractType
Declaration

ownedElements *

ownedPackages *

ClassDeclaration

Type

TypeAccess

superclass 0..1

1 typeBody
Declaration

Field
Declaration

type 1

Fig. 1. Excerpt of the Java metamodel (MoDisco).

Classifier

Class Package

client 1..*

* packagedElements

NamedElement

PackageableElement

name : String

isAbstract : Boolean

Dependency

supplier 1..*

Fig. 2. Excerpt of the UML metamodel.

Listing 1 shows an excerpt of an ATL transformation taken
from the ARTIST project [16] that generates a UML class
diagram (a dependency view) from a Java project. Excerpts
from the input and output meta-models of this transformation
are depicted in Fig. 1 and 2, respectively. In ATL, the main
type of rule is the so-called matched rule. It consists of an input
pattern that might have a filter condition which is matched on
the source model, and an output pattern that produces a set of
elements in the target model for each matched input pattern.
OCL expressions [17] are used to calculate the values of fea-
tures of the target elements. In this excerpt, we have included
two matched rules, Package2Package and Class2Class, which
take package and class elements respectively from the Java
model and convert them to the corresponding counterparts
in the UML model, but filtering proxies out (not s1.proxy).
A rule body consists of binding elements. A binding either
assigns a primitive value (e.g., name ← s1.name) or resolves
the source values appearing in its right-hand side (RHS) to
target values generated by other rules. For example, the bind-
ing in line 15 retrieves and assigns the subpackages mapped by
rule Package2Package, and the binding in line 16 retrieves and
assigns all non-proxy classes mapped by rule Class2Class.

The ATL transformation algorithm works in two phases,
which are graphically illustrated in Fig. 3. The left-hand
side shows a sample input model. In the first phase each
matched rule accesses the input model to get all elements
whose type is compatible with its input element (specified in
the from part of the rules). The filter is used to rule elements
out. In the example, elements jp1 and jp3 are retrieved by
the rule Package2Package but only jp1 satisfies the filter
and is matched. When an element is matched, the target
elements specified in the to part of the rules are created and a
traceability link is established (depicted by a dashed arrow in
the image) which includes a reference to the rule producing
the link. The second phase of the algorithm consists of
traversing all traceability links and resolving each rule binding
in order. To resolve a binding, its OCL expression in the RHS

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 3

Listing 1. Excerpt of the Java2UML transformation.
1 -- @nsURI UML = http :// www. eclipse . org/ uml2 /3.0.0/ UML
2 -- @nsURI JAVA = http :// www . eclipse . org / MoDisco / Java /0.2. incubation / java
3 module java2uml ;
4 create OUT : UML from IN : JAVA;
5
6 helper context JAVA! Package def: nonProxyClasses : Sequence (JAVA! ClassDeclaration) =
7 self. ownedElements -> select (e | not e. proxy)->select (e | e. oclIsTypeOf (JAVA! ClassDeclaration));
8
9 helper context JMM! ClassDeclaration def : getRefClassFields : Sequence (JMM! FieldDeclaration) = ...

10
11 rule Package2Package {
12 from p : JAVA! Package (not p. proxy)
13 to t : UML! Package (
14 name <- p.name ,
15 packagedElement <- p. ownedPackages -> select (e | not e. proxy)->select (e | e. oclIsTypeOf (JAVA! Package)),
16 packagedElement <- p. nonProxyClasses ,
17 packagedElement <- p. nonProxyClasses
18 ->select (p2 | not p2. getSuperClass . oclIsUndefined ())
19 ->collect (p2 | thisModule . createGeneralizationDependency (p2)),
20 packagedElement <- p. nonProxyClasses
21 -> collect (p2 | p2. getRefClassFields)->flatten () ->collect (e| thisModule . createUsageDependency (e)))
22 }
23 rule Class2Class {
24 from c : JAVA! ClassDeclaration (not c. proxy)
25 to t : UML! Class (name <- c.name)
26 }
27 lazy rule createGeneralizationDependency {
28 from class : JAVA! ClassDeclaration
29 to d : UML! Dependency (
30 supplier <- Sequence { class . superClass .type },
31 client <- Sequence { class }
32)
33 }
34 lazy rule createUsageDependency {
35 from field : JAVA! FieldDeclaration
36 to d : UML! Dependency (
37 supplier <- Sequence { field .type.type },
38 client <- JAVA! ClassDeclaration . allInstances () ->select (cd | cd. bodyDeclarations -> includes (field))
39)
40 }

Fig. 3. Representation of a sample transformation execution.

is evaluated. If the result is a primitive type, the value is
directly assigned to the feature in the left hand side. If it is
an object (or a collection of objects), the internal trace is
looked up to retrieve the corresponding target element and
it is assigned to the left hand side (if it is a collection, the
value is added). In the example, to resolve the binding in line
16, the engine retrieves and assigns target objects c1 and c2
from source objects jc1 and jc2 respectively.

ATL also supports rules which must be explicitly invoked.
This is the case of lazy rules. A lazy rule can be seen as a global
function that takes model elements as parameters and returns
a target model element, which is created and initialized by the
rule. In the example, the lazy rule createUsageDependency
(line 38) defines a dependency between the class that defines
a field and the field type. In line 21, the rule is invoked.
Since the lazy rule generates the target element, it can be
assigned directly in the corresponding binding (i.e., no binding
resolution is needed).

The ATL code is compiled into bytecode for its execution
using two main runtime engines: the default ATL virtual
machine [5], which was released along with the ATL language;
and EMFTVM [18], which provides performance improve-
ments as well as other advanced language features such as
the possibility to execute in-place model transformations.

2.2 Static analysis of model transformations: AnATLyzer
A model transformation is typed against its input and output
meta-models. This means that the types and features used in
the transformation program must exist in the corresponding
meta-model. This can be enforced dynamically (at runtime)
or statically (at compilation time). Some languages, like QVT-
Operational, enforce this statically, while others, like ATL
and Epsilon ETL [19], do it dynamically. In addition, data
dependencies between the input model and the rules which
match the elements, as well as among the transformation rules
(i.e., established by means of bindings in the case of ATL),
may exist. In this work, we have used AnATLyzer [8], [12] to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 4

statically analyse ATL transformations and benefit from this
information to implement our compiler.

Fig. 4 illustrates some of the static analysis informa-
tion made available by AnATLyzer. First, every node of
the abstract syntax tree of the transformation is anno-
tated with its type (i.e., a reference to the corresponding
meta-model element). There are three bindings to initialize
packagedElement, whose semantics is to add elements (i.e.,
the second binding does not override the previous setting
because it is a collection). For example, the type of the first
binding is Sequence(JAVA!Package) because AnATLyzer rec-
ognizes the use of oclIsTypeOf and performs an implicit cast-
ing. From the inferred types, AnATLyzer builds a graph
to make dependencies among rules explicit. For instance,
the first binding packagedElement can only be resolved by
rule Package2Package because of the implicit casting that
determines that the RHS of the binding will only have
JAVA!Package elements. The second binding is resolved by the
rule Class2Class because the return type of nonProxyClasses
is Sequence(JAVA!ClassDeclaration). Finally, the third bind-
ing does not need to be resolved because it directly assigns tar-
get elements generated by the createUsageDependency rule.

rule Package2Package {
from p : JAVA!Package (not p.proxy)
to t : UML!Package(
name <- p.name,
packagedElement <- p.ownedPackages

->select(e | not e.proxy)
->select(e | e.oclIsTypeOf(JAVA!Package)),

packagedElement <- p.nonProxyClasses,
packagedElement <- p.nonProxyClasses

-> collect(p2 | p2.getRefClassFields)->flatten()
->collect(e|thisModule.createUsageDependency(e))

)
}

rule class2class { … }

lazy rule createUsageDependency { … }

direct

re
so
lv
ed

-b
y

re
so
lv
ed

-b
y

invoke

Fig. 4. Static analysis of the example transformation.

2.3 Limitations of current approaches
The original ATL transformation algorithm, based on the two
phases described above, and its implementations (both in the
standard ATL Virtual Machine (VM) [5] and EMFTVM [18]),
can cope with scenarios involving small or medium-size mod-
els. However, their performance and scalability rapidly de-
grade as the size of the input models grows. Among other rea-
sons, they fail to exploit a variety of interesting performance
and optimization opportunities, which are described next.

Limited parallelism. The algorithm and its current imple-
mentations are sequential. A relatively simple approach to
make the algorithm parallel is to use task parallelism [10],
in which the parallelisation unit is the transformation rule.
However, this approach is sub-optimal since it suffers from
lock contention and unbalanced loads (i.e., some threads will
be idle if they finish their tasks earlier than others). Using
a data parallelism approach, all processes perform the same
task, but on different chunks of data—it is the data that is
split. Contrarily, in task parallelism, it is the model transfor-
mation that is split into separate smaller processes (e.g., a

Fig. 5. Compiler architecture.

rule) and all of them work on the same data. As demonstrated
in [20], using data parallelism to implement concurrent model
transformations can produce significantly better results.

Inefficient model access. A transformation engine which
does not exploit type information (such as the existing ATL
virtual machines) does a “blind access” to the input model.
This means that after loading the input, it cannot discard
unused parts of the model. For instance, in the example (see
Fig. 3), objects of types JAVA!Field and JAVA!Method will
never be matched by a rule, and thus, they could be ruled
out in the loading phase. We will improve rule matching by
considering, in a pre-processing step, only those elements that
are relevant for the transformation.

Expensive runtime checks. The ATL compiler does not
perform any type checking, which means that it needs to
insert code to perform dynamic checks, including, e.g., the
cardinality of the LHS of the binding, or calls to helper
methods. Moreover, it can only use the reflective EMF API,
which also imposes an additional overhead. We will use the
information made available by the type checker to avoid these
kinds of overheads.

Lack of OCL optimizations. Complex transformations typ-
ically contain many OCL expressions and operation helpers.
These expressions are often devoted to navigating collections.
A good implementation of OCL is critical to achieve a satisfac-
tory performance on large models—especially when collection
operations are involved. It has already been reported that
the standard ATL VM does not handle large collections
efficiently [21] and it is the EMFTVM engine which does
provide a better implementation. However, both engines have
not addressed optimizations yet. For instance, the expression

s1. nonProxyClasses -> collect (p2| p2. getRefClassFields)
->flatten () ->collect (e| thisModule .
createUsageDependency (e))

requires two intermediate collections to be created (for the
first collect and the flatten). An optimizer could identify
this pattern and evaluate the expression without creating
unnecessary intermediate collections.

To the best of our knowledge, there is no transformation
engine that makes use of static analysis information to im-
prove its performance, and combines this with parallelism to
take advantage of all the computing power of current CPUs.

3 A2L: A Compiler for ATL
Our technical approach to address the limitations presented
above is based on a compiler from ATL to Java. Fig. 5 shows
its architecture.

First, it performs static analyses using AnATLyzer.
This produces an extended ATL abstract syntax model

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 5

(AST), which includes type information, control flow and
data flow information. This will be used throughout the
compilation process.

The optimization phase (described in detail later in
Sect. 5) is in charge of detecting common transformation
patterns that can be particularly managed to generate effi-
cient code. To implement the optimizations, special nodes are
added to the AST. Each of these nodes represents an opti-
mization pattern. The optimizer is in charge of detecting the
patterns and replacing the AST nodes. Then, the compiler has
specific extensions to produce specific code for these nodes.
This optimization phase is optional and can be disabled.

The compilation phase generates all the code and related
artefacts needed to execute the transformation in the JVM.
An essential feature of A2L is that it targets a transformation
algorithm specifically designed to execute the model trans-
formations concurrently, using data parallelism to achieve
adequate performance results (the algorithm is described in
detail later in Sect. 4, and the gains in performance are
presented in Sect. 6).

As a result of these three steps, the compiler generates
four main artefacts (Fig. 5). The Runner allows the user to
configure the transformation execution programatically (e.g.,
to set the input models, to configure the number of threads,
etc.). The Pre-processor is in charge of filtering the input
models to optimize the rule matching by considering only
those elements required by the transformation rules. The
Transformation contains the actual transformation behavior
which will be executed by the parallel processes. Finally, the
Post-processor is in charge of combining the results of all
the processes that have been working in parallel to realize the
transformation, and to generate the output models.

The following sections describe in more detail these fea-
tures of the A2L compiler. We begin explaining our parallel
transformation algorithm. Then, we explain the optimization
strategies and mechanisms to implement them.

4 Parallel execution of ATL transformations
To address the lack of parallelism of ATL we have designed a
new transformation algorithm. The algorithm is intended to
respect the semantics of the original one but, in addition, it
enables data-based parallelism and focuses on minimizing the
amount of lock contention among the worker threads.

In data-based parallelism, all threads execute the same
code but on different chunks of data. The advantage over
task-based parallelism, as proposed in [10] for ATL, is that
processors are less prone to be idle. We have redesigned the
ATL transformation algorithm to make it amenable to data-
based parallelism, generalizing the approach proposed in [20].
Our algorithm is presented in Algorithm 1. It works in three
phases, pre-processing (line 2), execution (line 5) and post-
processing (line 11). The architecture to execute these phases
in parallel is illustrated in Fig. 6 and it is described next.
Pre-processing. The input model is read from some source
(label 1). Its elements are placed in a buffer which will be used
by worker threads in the next phase when fetching work. How-
ever, not all model elements are required by all worker threads,
only those whose type is declared by the matched rules in
their source patterns. Thus, this set of types is extracted from
the static analysis of the transformation, and used to filter

1 def transform(model, transformation):
2 // Step 1: Pre-processing
3 types← footprint(transformation)
4 buffer← preprocess(model, types)
5 // Step 2: Parallel execution
6 // This loop does sequential execution,
7 // parallel execution requires assigning jobs to threads
8 foreach e in buffer do
9 execute(element)

10 end
11 // Step 3: Post-processing
12 foreach b in pendingBinding do
13 resolve(b)
14 end
15 end
16 def execute(element):
17 foreach rule in transformation.rules do
18 if rule.filter(element) then
19 executeRule(rule, element)
20 break
21 end
22 end
23 def executeRule(rule, element):
24 foreach type in rule.outputElements do
25 target = createObject(type)
26 create trace link (element, target)
27 end
28 foreach binding in rule.bindings do
29 right = evaluate(binding) if binding is primitive then
30 target.”binding.feature”← right
31 else
32 // Resolve the binding
33 foreach resolving in binding.resolvingRules do
34 if resolving.filter(element) then
35 add to pendingRules (target, binding, right)
36 break
37 end
38 end
39 end
40 end

Algorithm 1: Data-oriented ATL algorithm.

the source model (lines 3-4). In the transformation example,
this set consists of Package and ClassDeclaration types. The
intended effect is to reduce the size of the buffer and to speed
up rule matching, since there are less elements to consider.
Although this step is done sequentially, the actual overhead
due to the filtering is small since the engine needs to load and
prepare the input model in any case.

Execution. This phase is in charge of executing the trans-
formation logic. In the sequential version each element in the
buffer is processed one after another. In the parallel version,
we spawn worker threads (label 2). A worker obtains a chunk
of data from the buffer (label 4), which is split into chunks
of a given size (e.g., 512 model elements). Each worker has a
counter to represent the chunk that is currently transforming.
When it finishes, it asks for the next chunk to the scheduler,
which uses an atomic integer variable to represent the last
chunk given to a worker. The scheduler uses an atomic opera-
tion to increment the counter (label 3), which means that the
increment operation for the chunk counter does not need to
be guarded by a lock because it is done atomically. This way,
there are no locks involved in the algorithm and we expect
less contention. There are several possible strategies to split to
decide the chunk size. The simplest one is to use a fixed chunk
size. The larger the chunk size the less competition to get more
work. However, it may happen that some threads are idle at
the end of the transformation execution (i.e., load imbalance).
On the contrary, setting a small chunk size would lead to more
contention. The alternative is a dynamic scheduling policy in
which chunks are larger at the beginning and smaller towards

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 6

Fig. 6. Components of the technical realization of the parallel transformation algorithm.

the end, but this implies some overhead. Therefore, we have
implemented a mixed strategy in which we split the buffer in
two parts. The first one is statically divided into chunks of size
0.75 × buffer size/num workers, which are large enough for
each worker to start transforming elements. As soon as these
chunks are finished, the algorithm continues with a dynamic
scheduling strategy that uses smaller chunks (10 elements in
the current configuration) to prevent workers from being idle.

Each worker uses a new instance of the transformation,
given that we are using data-based parallelism, which has
its own local state so that threads do not compete to access
shared resources (label 6). For each element of a chunk, we try
to find a matching rule. In practice, rule matching consists
of checking the rules of the transformation in some order.
Actually, in ATL the order is irrelevant because a given source
element can only be matched by one rule, otherwise a runtime
error is raised. Algorithm 2 illustrates the style of the code
generated for matching the rules of the running example.

1 def transform(element):
2 if model2model match(element) then
3 model2model execute(element)
4 else if package2package match(element) then
5 package2package execute(element)
6 else if class2class match(element) then
7 class2class execute(element)
8 end
9 end

Algorithm 2: Example of rule matching

If a matching rule is found, the output elements are created
and a trace record is generated to establish a mapping between
the input and output elements. Thus, each transformation
instance contains a partial trace (LocalTrace in the figure)
to store such records locally to avoid any locking situation.
In addition, the RHS of each binding is evaluated. Primitive
bindings are assigned directly, but non-primitive bindings
(i.e., those whose RHS evaluation returns a set of model ele-
ments) cannot be evaluated because the corresponding target
models may not have been transformed yet. Thus, we delay
this task by recording the fact that such dependency has yet
to be resolved (PendingBindings in Fig. 6). This approach is
a generalization of [20] in which special identifiers are used to
construct model references which are yet to be resolved. The
advantage in this case is that it is independent of the meta-
modelling framework and the subsequent resolution does not

require to traverse the full target model, but can be done by a
constant-time look up.
Post-processing. The main task of this phase is to resolve
bindings, given that now all target model elements are avail-
able. For each unresolved binding its RHS is used to look up
the partial traces in order to retrieve the corresponding target
elements and assigning them to target features (label 7). In the
sequential scenario, looking up a single trace has a constant
cost O(1) because the trace model can be indexed by source
element using a hash map. However, an undesirable effect of
the parallelization is that, now, each trace lookup has a cost
proportional to the number of worker threads, because for p
threads we may need p accesses to the partial traces (that is,
the cost is O(p). To mitigate this shortcoming, we also exe-
cute the post-processing in parallel. This requires classifying
unresolved references into overlapping and non-overlapping.
Two references are overlapping if they may potentially cause
a race condition when set in parallel.1 This is the case of
opposite references and references that are set in more than
one location in the transformation. In the example, client
and supplier are non-overlapping, but packagedElement is
overlapping because there are several assignments in the
same rule. At the end of this phase, the output model may
be configured as required by the underlying meta-modeling
framework (label 8). In particular, if the target model is in
EMF format, we need to establish the root elements of the
resulting EMF resource.

This algorithm exhibits almost the same functional be-
havior of the original ATL algorithm, but it enables data
parallelism. The only observable difference is that the order in
which root elements appear in the model is not deterministic
(i.e., elements which are not assigned to any containment
reference) because each run may allocate chunks differently.
Sect. 6 evaluates the speed up that can be obtained by
applying it to exploit multi-core CPUs. However, it is pos-
sible to achieve even greater performance by optimizing the
compilation of the sequential part of the transformation.

5 Optimizations
The availability of typing information allows our compiler
to target a typed runtime environment like the JVM. This

1. Some meta-modelling frameworks, including EMF, are not
thread-safe.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 7

already provides a performance improvement over dynami-
cally typed languages like ATL or ETL, and over interpreter-
based approaches like most QVT implementations. In addi-
tion, another significant increase in performance is possible
by applying a number of optimizations to handle common
transformation scenarios and idioms. The most relevant op-
timizations that A2L implements are described next.

5.1 Optimizations at the transformation level
These optimizations are intended to improve the performance
of the execution of the transformation rules. They include the
process of matching input elements and the binding execution.
Matched rule ordering. Our algorithm tries to match each
input element against the input pattern of each matched
rule. Algorithm 2 shows the generated code. The sooner the
matching rule is identified, the more efficient the process is,
because it avoids checking unnecessary conditions. Finding
the matching rule as soon as possible depends on three main
factors: the order in which the patterns are checked, the
complexity of the rules’ filters, and the structure and contents
of the input model (some rules are matched more frequently
than others depending on the particular model).

Our approach is to heuristically prioritize rules according
to their filters. We count the number of OCL elements to be
evaluated as part of the filter execution, and check the rules
with fewer elements first. The rationale is that, in the worst
case, all rules must be checked and thus it is preferable to
check the cheaper ones first. If a given element is eventually
matched by a rule with a costly filter, the time spent on
checking the wrong rule filters first is low. However, other
heuristics are possible, such as estimating the chances of
matching an element by considering the operations used in
the filter (e.g., equality operation would match less elements
than inequalities).
Transformation footprinting. We use the transformation
footprint to filter the input model in order to consider
only those elements that may actually be matched by some
matched rule. Notably, we only use the partial footprint,
meaning that we are only interested on the types declared
in the source pattern of the rules. In the running example,
the partial footprint of that transformation consists of the
set footprint={Package,Class}. This is specified in line 3 of
Algorithm 1. We intend to significantly reduce the buffer size
in scenarios in which the transformation only matches a small
subset of the model. Although the default ATL algorithm
behaves differently (it computes an associative table to gather
objects per type) it would also benefit from this optimization
since the table size could be smaller by only recording needed
elements. Moreover, we use this step to pre-compute global
data such as ClassDeclaration.allInstances(), thus avoid-
ing another model traversal.
Binding handling. ATL relies on binding resolution to
assign target references implicitly. To resolve a binding, ATL
checks if the the value of the RHS is a primitive value, an
object, or a collection of primitive values and/or objects. If it is
a collection, it might be the case that it is a nested collection,
in which case it needs to be flattened. A2L does not need to
check these conditions at runtime since it knowns at compile
time whether the RHS contains primitive or object values, and
whether collections are nested or not.

Trace footprint reduction. ATL relies on recording trace
links between the input elements matched by a rule and
the corresponding elements created upon execution. A trans-
formation engine without access to information about rule
relationships will generate trace links even in cases where they
are not needed. In A2L, we apply an optimization to reduce
the trace memory footprint, namely, we analyse which rules
may need to resolve a given binding. There are two main
scenarios: a) if a matched rule is never used to resolve a
binding, the link between the input element and the primary
output pattern element does not need to be recorded, and b)
if a matched rule has more than one output pattern element,
there is no need to record the trace link for the secondary
elements (i.e., all elements except the first one) unless there
is a resolveTemp operation which retrieves them (in ATL, the
resolveTemp operation is used to explicitly retrieve a target
element from a given source element).

This optimization is useful to reduce the memory footprint
when there are rules that create, for a single input element, a
large connected set of elements, but other rules only need to
link a single element—typically the parent of these elements.

5.2 OCL-related optimizations
As mentioned in the introduction, A2L supports all ATL and
OCL datatypes including collections, maps and tuples, and
the standard OCL library. ATL makes heavy use of OCL
expressions for navigating the models, selecting elements in
the rule filters, and for calculating the values of the target
elements’ features. However, the evaluation of these OCL
expressions is often inefficient, in particular regarding the use
of collections. This is due to the fact that OCL datatypes
are immutable, which means that each operation over a col-
lection needs to return a new collection. The transformation
engine should therefore use internally a library for immutable
collections, but this is sometimes not enough when dealing
with very large models. The problem is that these auxiliary
collections can be huge and they can be unnecessarily created
several times during an OCL expression evaluation. Moreover,
the typical OCL access patterns for collections are not well
suited for immutable collections (e.g., in sequences including
appends an element, but in an immutable list prepend is
typically more efficient).

To address this issue, we have a two-step approach. In the
first step, we perform escape analysis to check whether a given
collection may be modified in more than one location. In this
case, it is not possible to apply any optimization and we resort
to immutable collections. However, if a collection is not going
to be shared, we mark each involved (sub-)expression as muta-
ble, so that in the second step the compiler is free to generate
code using mutable collections. For instance, in the following
listing, the first example shows a piece of ATL for which it is
possible to generate code using mutable collections, whereas
in the second example we must use immutable collections.

1 -- Intermediate collections do not escape the
2 -- expression
3 s1. ownedPackages -> select (p | not p. proxy)
4 ->collect (p | p. ownedElements)
5 -- The pkgs collection is shared
6 let pkgs : s1. ownedPackages -> select (p | not p. proxy)
7 in if pkgs -> including (aPkg)->size () > 2
8 then pkgs else Set { } endif

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

TABLE 1
Summary of the most relevant OCL optimisations. The target code is written in a Java-like pseudocode for simplicity.

Name Example Generated code

Mutable
addition

aPkg. ownedElements
->select (p|p. isProxy)
->including (aClass)

res = new ArrayList < AbstractTypeDcl >()
for(o : aPkg. getOwnedElements ())

if (o. isProxy ())
res.add(o)

res.add(aClass)

Filter and check
existence

aPkg. ownedElements
->select (p|p. oclIsKindOf (JAVA! ClassDeclaration))
->exists (c|c. isAbstract)

boolean result = false
for(o : aPkg. getOwnedElements ())

if (o instanceof ClassDeclaration)
ClassDeclaration cd = (ClassDeclaration)o
if (cd. isAbstract ())

result = true
break

Filter and count

aClass . bodyDeclarations
->select (d|not d. isProxy)
->select (d|d. modifier . static)
->size ()

size = 0
for(d : aClass . getBodyDeclarations ())

if (!d. isProxy () &&
d. getModifier (). isStatic ())

size ++

Filter and map

aPkg. ownedElements
->select (p|not p. proxy)
->collect (p|p. class)
->collect (c|c.name)

res = new ArrayList <String >()
for(p in aPkg. getOwnedElements ())

if (!p. isProxy ())
tmp1 = p. getClass ()
tmp2 = tmp1. getName ()
res.add(tmp2)
// or res . addAll (tmp2) if flatten

Collection con-
version

classes
->collect (c| c.name)
->asSet ()

// Target collection is created beforehand
res = new HashSet <String >()
for(c in classes)

res.add(c)

Indexing

(1) JAVA! ClassDeclaration . allInstances ()
->exists (p | p.name = name)

(2) JAVA! ClassDeclaration . allInstances ()
->select (p | p.name = name)

// A global object is initialized in
// the pre - processing phase with
// (1) Set < String >
// (2) Map < String , List < ClassDeclaration >>
globalContext . existsIndex . contains (name)
globalContext . selectIndex .get(name)

In a second step, we use the results of the escape analysis.
We try to optimize certain access patterns for which we
can generate optimized code that avoids redundant creation
of temporary collections by using mutable collections. For
instance, the evaluation of the following OCL expression using
immutable collections requires traversing two intermediate
collections (one for select and another for collect) whose size
is equal to the number of UML!Class instances.

UML! Class . allInstances () ->
select (c| not c. owningPackage . oclIsUndefined ())->
collect (c| c. owningPackage ())->asSet ()

However, if the resulting collection is not shared we can
generate more efficient code which avoids unnecessary pro-
cessing and memory usage. Our compiler detects this partic-
ular pattern and generate specific code for it, using only one
traversal of the source collection and without intermediate
collections. The following listing illustrates the code that
would be generated.

Set <Package > result = new HashSet < >();
for(Class c : model . allInstancesOf (Class . class)) {

if (! (c. getOwningPackage () == null)) {
result .add(c. getOwningPackage ())

}
}

Table 1 shows a summary of the most relevant optimiza-
tions, described by means of their context, a prototypical
example of each one, and how they are implemented in A2L,
i.e, the Java code generated for them.

5.3 Automatic caching
This optimization deals with OCL code that computes the
same value several times, and such computation can be
potentially time consuming. It is possible to increase the
execution performance if such computations are cached so
that they are reused in subsequent accesses. ATL supports
caching by factorising code in attribute helpers, but this
requires the developer to identify which code locations should
be cached. Our compiler detects some of these locations and
generates code that caches repeated results. In particular, we
consider a hot spot a sub-expression within a nested loop
such that it starts with a variable that is independent of
the outermost loop. For instance, in the following code the
value c2.allSuperClasses()->reject(...) is reused across
iterations of the outer forAll because it is cached.

-- Classes in pkg must have a non - abstract subclass
pkg. ownedClasses -> forAll (c1|

UML! Class . allInstances () ->exists (c2|
c2. allSuperclasses () ->reject (c | c. isAbstract)->

contains (c1))

The last row of Table 1 shows another form of automatic
caching, in which certain access patterns are compiled as an
indexing operation. The index is filled in the pre-processing
phase in order to provide fast access during the transformation
execution.

6 Validation
To evaluate our approach, we have defined four research
questions regarding the correctness of the obtained transfor-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 9

mation output models, the completeness of the ATL language
support, the speedup compared to existing ATL engines and,
finally, the scalability of A2L, i.e., the speedup gained when
raising the number of available cores. To answer these ques-
tions, we carried out an empirical case study [22] by following
the guidelines for conducting empirical explanatory case stud-
ies by Roneson and Hörst [23]. Moreover, the implementation,
case studies and scripts to reproduce our results are available
at http://github.com/anatlyzer/a2l.

In the next subsections, we describe our research questions
and the case studies and metrics we have used to answer these
questions. Finally, we discuss the answer to each research
question and the overall threats to validity of our proposal.

6.1 Research Questions

Our study addresses the following four research questions.
With these questions, we aim to justify the use of our com-
pilation strategy and our parallelization approach in order
to significantly improve the performance of ATL transforma-
tions. At the same time, we argue about the correctness and
completeness of our approach.

RQ1 Compiler Correctness: Does the code gener-
ated by the A2L compiler exhibit the same
functional behavior as the standard ATL en-
gine? To validate the correctness, we compared the
results of running transformations compiled with A2L
against the results of running the same transforma-
tions on the standard ATL VM. We resort to an
available set of regression tests already used by ATL
transformation engines [13] to test their correctness.

RQ2 Compiler Completeness: How much of the ATL
language is the A2L compiler able to deal
with? To validate its completeness, we evaluated
the coverage of the ATL language, defined by the
ATL metamodel, for which the A2L compiler provides
support. Moreover, we have manually checked against
the ATL documentation which features are actually
supported by A2L.

RQ3 Performance: What is the gain in perfor-
mance when compared with ATL VM and
EMFTVM? To evaluate the performance of the
implementation we have used seven case studies,
which exercise several transformation styles and ATL
constructs. We compared the execution times of dif-
ferent A2L versions (non-optimized, optimized, se-
quential and parallel) with the standard ATL VM
and EMFTVM. EMFTVM is a newer ATL engine
that compiles to Java bytecode on the fly and it is
reported to achieve gains of 80% in basic benchmarks.
In the experiments, we used A2L in both sequential
and parallel mode. The sequential execution allows us
to show the gains obtained only by the use of static
analysis and optimizations. The parallel execution
aims to validate our parallelization strategy. Since
the optimizations are optional, we also compared the
executions with and without the optimizations, to
assess their impact on performance.

RQ4 Parallelism: What are the effects of adding
more cores? We analyse how the number of cores

influences the execution times of ATL transforma-
tions parallelized by A2L. We have executed our case
studies using an increasing number of threads and
recorded the obtained speedups.

6.2 Experimental Setup
6.2.1 Case Studies
RQ1 and RQ2 are evaluated using the same set of 24 regres-
sion tests [13] that the ATL team used to validate the correct-
ness of two consecutive versions of the ATL Virtual Machine.
Each of these tests consists of one model transformation and
all the necessary artifacts needed to execute the transforma-
tion, i.e., the input and output metamodels, and a sample
input model. Since none of these tests provides large models,
to answer RQ3 and RQ4, we considered seven additional case
studies: java2uml (reverse engineering Java code into UML
models), java2graph (creates a graph of dependencies between
Java classes), dblpv1 (query the DBLP database to obtain
authors and associated information), dblp2bibtex (map DBLP
entries to BibTeX records), identity (copy transformation of
the IMDB database), findcouples (extracts actors from IMDB
who played together) and airquality (queries weather data
obtained from sensors). For these transformations, we have
models with up to 5.6 millions elements, and 1.2 GB when
serialized and stored in disk.

In order to characterize our benchmark, we have consid-
ered six dimensions, which are used in Table 2 to summarize
the main characteristics of the performance case studies:

1) I/O size is the expected size of the output model
with respect to the size of the input model.

2) Matching cost is the expected cost of rule matching,
in particular the complexity of the rule filters.

3) Rule cost is the expected cost of rule execution,
which is the complexity of the RHS of the bindings.

4) FP size is the footprint size with respect to the input
model size, that is, if the transformation has rules
that attempt to match all input elements.

5) OCL refers to the dominant OCL elements in
the transformation: collection intensive, usage of
allInstances, conditionals, etc.

6) Finally, we count the transformation elements in or-
der to have an indication about its “size”: number of
matched rules (MR), number or called or lazy rules
(LR), number of helpers (H), dependencies between
rules as the number of bindings for references (B),
number of imperative blocks (I).

All transformations except identity and dblp2bibtex gener-
ate output models which are smaller, in terms of number of
elements, than their corresponding input models (I/O size).
This means that they either rule out many elements in the
rule filters (they have a high matching cost) or its footprint
with respect to the original meta-model is small (they pur-
posely lack rules to match certain elements). Both identity
and dblp2bibtex exercise the ability of the engine to handle
many binding resolutions. Regarding the matching cost, we
have that airquality, dblpv1 and dblp2bibtex have at least one
rule filter which traverses collections or accesses all instances
of a given type, so it is expected to be costly, whereas the
other four transformations have very simple or no rule filters.

http://github.com/anatlyzer/a2l

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 10

TABLE 2
Main features of the case studies.

Name MR LR H B I I/O size Match. cost Exec. cost FP size OCL elements
airquality 1 0 0 0 0 Isize > Osize high low equal collections, allInstances
dblpv1 1 0 1 0 0 Isize > Osize medium medium equal collections
dblp2bibtex 7 2 1 1 0 Isize = Osize medium medium equal allInstances
findcouples 3 1 2 5 2 Isize > Osize low high equal set operations
identity 5 0 0 8 0 Isize = Osize low low equal property access
java2graph 2 0 3 2 0 Isize > Osize low medium smaller conditionals
java2uml 3 5 2 6 0 Isize > Osize low medium smaller collections

The execution of cost of airquality and dblpv1 is low because
they are “query transformation” whose target elements have
simple initialisations. In this respect identity also has simple
initialisations, but it has more binding dependencies which
makes the post-processing phase time consuming.

6.2.2 Evaluation Metrics
To answer our research questions, we use several metrics
depending on the nature of the research question.

Model Comparison Metrics (RQ1): To evaluate re-
search question RQ1, correctness, we need to compare the
resulting models after running the code produced by the
A2L compiler, with those obtained from the execution of the
standard ATL VM. For this, we used EMF Compare, a model
comparison framework that compares two models and reports
differences between them, such as additions, deletions, and
updated elements.

Language Coverage Metrics (RQ2): To evaluate RQ2,
we computed the footprints of the ATL transformations with
respect to the ATL metamodel. This gives an estimation of
how many features are tested by the test cases.

Execution Performance Metrics (RQ3 and RQ4):
To evaluate research questions RQ3 and RQ4, we calculated
the execution time of the seven case studies listed in Table 2,
using a large model as input. We run the experiments on a
desktop machine with Ubuntu 18.04 and kernel 5.3.0, a i7-
5820K CPU, with 6 cores at 3.30GHz and hyper-threading
(12 threads) and 16 GB of RAM, which is expected to be
representative of a typical setup of a professional developer.
We have used Java 8 (OpenJDK 1.8.0 252) configured with
the default options except for the heap size which was set to 8
GB (-Xms=8196m -Xmx=8196m), except for dblp2bibtex which
was set to 12GB. Each case study is run 10 times with
the different engines, discarding the first two runs (as warm
up). We perform the 10 executions together in the same VM
instance, but after each execution we wait until the garbage
collector has released the used memory. We report the average
results.

6.3 Result Analysis
6.3.1 Results for RQ1
We executed the 24 regression test cases and compared the
output models produced by the standard ATL engine and by
A2L. All test cases produced the same results, apart from five
of them that could not be directly executed.

We could not compile the ATL2Problem transformation
with A2L because its typing is too convoluted for AnAT-
Lyzer and it cannot properly infer the type of a couple of
expressions. Another two unsupported transformations were
DSL2XML and KM32DSL, because they set global variables

using some reflective operations which are currently unsup-
ported by A2L. Similarly, the SpreadsheetMLSimplified2Trace
transformation uses global attributes in a way that adds se-
rious performance penalties to the parallel algorithm. It is
worth noting that all of these four transformations could be
rewritten so that they could be compiled by A2L. For instance,
when there are global variables involved, a strategy could be to
use helpers to compute the global information from the source
model each time (possibly with some penalty in the execution
time). When the problem is related to typing, it might be
possible to insert specific annotations (e.g., a dummy version
of oclAsType) in dedicated places to guide the type inference
performed by AnATLyzer [24]. Finally, the ATL and A2L
output models of the XML2DSLModel transformation were
slightly different because this transformation suffers from
child stealing, i.e., an element is set to a containment reference
more than once.

6.3.2 Results for RQ2
The test cases used in our experiments cover 88% of the
ATL meta-model. The missing 12% belongs to meta-model
elements used to represent declaration of libraries and query
modules, unique lazy rules, entry point rules, rule inheritance
and map types. We have separate tests for all of these ele-
ments, except query modules and rule inheritance which are
currently not supported. Although we do not foresee any
difficulty in supporting rule inheritance in the future, we
decided not to implement it at this stage because it is rarely
used in practice [25].

We have used the ATL manual as reference for our imple-
mentation. Table 3 shows the language features covered by
A2L. We support all forms of matched rules (i.e., 1:1, 1:N, N:1
and N:N) and all major ATL features.

6.3.3 Results for RQ3
Table 4 shows the execution times of the case studies in our
desktop machine. It compares two versions of the ATL engine
(the standard VM and EMFTVM) against four different
configurations of A2L: sequential mode without optimizations
(seq O−), sequential mode with optimizations (seq O+),
parallel (using 12 cores) without optimizations enabled (par
O−), and parallel (using 12 cores) with optimizations (par
O+) — or simply A2L, since this is the default A2L mode. The
figures shown in Table 4 correspond to the average execution
time in seconds of eight runs of each transformation. Note
that the execution time excludes model loading, but in the
case of A2L, it includes the three phases of the algorithm:
pre-processing (filling the buffer after model loading), trans-
formation execution, and post-processing. We did not include
the parallel ATL [9] implementation (pATL) because it is not
supported anymore and we could not make it work reliably.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 11

TABLE 3
ATL coverage.

Feature Support Observations

Matched rules Yes
Input elements = 1 Yes
Input elements > 1 Yes Via rewriting
Output elements = 1 Yes
Output elements > 1 Yes
Rule inheritance No

Binding resolution Yes
resolveTemp Yes Secondary elements resolution
Lazy rules Yes
Unique lazy rules Yes
Called rules Yes Also end/entry point rules
Helpers Yes Context and global helpers
OCL

Collection types Yes
Tuple types Yes
Collection iterators Yes
Iterate operation Yes

Reflective operations No

Table 5 shows the speedups obtained by the different
transformation engines and A2L execution modes. For each
one, we calculated the individual speedups achieved in all
the case studies (excluding the dblp2bibtex model transfor-
mation in the comparisons between ATL/EMFTVM and A2L
because it could not be executed in ATL and EMFTVM).
Every cell shows a tuple with the minimum (left) and max-
imum (right) values, as well as its geometric mean (center),
which is the most informative way to represent the average
speedup as expected by users [26]. The standard ATL engine
is consistently slower than the other options. This is due to its
sub-optimal implementation of immutable collections which
hinders its ability to handle scenarios with extensive process-
ing of large collections [21]. In particular, the airquality test
case heavily exercises this feature and shows that EMFTVM
is far more efficient (50 vs. 1,280 secs). This is because it uses
a custom implementation of immutable (and lazy) collections.
Moreover, EMFTVM compiles to JVM bytecode on the fly,
which provides additional gains. These two features combined
makes it normally much faster than the standard ATL engine
(except for the findcouples example).

A2L obtains significant gains over both engines in all
execution modes. Next, we only discuss improvements w.r.t.
EMFTVM since they also imply gains over standard ATL.

In the slowest A2L execution mode (A2L seq O–), the
speedup w.r.t. EMFTVM is between 1.37x and 10.4x depend-
ing on the application. Given that both A2L and EMFTVM
target JVM bytecode, this improvement can be explained (in
addition to differences in the engine internals) by the fact that
A2L does not need to generate code for dynamic checks and
model accesses. Table 4 shows that all case studies benefit
from this improvement. The findcouples case study is the
slowest, with a relatively modest performance gain of 1.37x.
The main bottleneck is a nested loop which computes the
same value in different rule applications. This shortcoming
is addressed by our optimizer through automatic caching.
Given these results, it can be stated that it is possible to
have a significant performance improvement by changing the
design of the transformation language from dynamically to
statically typed. All other A2L execution modes (with opti-
mizations and in parallel) outperform EMFTVM even more,

with speedups that range between 2.32x and 38.28x (A2L seq
O+), 1.79x and 21.43x (A2L par O−), and even between 2.4x
and 245.83x in the case of the A2L default behavior (A2L
par O+), depending on the test case. The geometric means
indicate expected average speedups of A2L against EMFTVM
of 3.37, 8.59, 6.49 and 22.42, respectively.

We also wanted to investigate the individual effects of opti-
mization and parallelization in A2L. This is why we compared
the performance of the four possible execution modes of A2L:
A2L seq O−, A2L seq O+, A2L par O−, and A2L par O+.

Using as baseline the sequential mode without optimiza-
tions (seq O−), the speedup obtained by enabling optimiza-
tions (seq O+) ranges between 0.84x and 66.76x depending on
the case study. The worse case is the identity application, in
which the execution time even increases. This is because the
partial footprint of the transformation is equal to the source
meta-model, and therefore our footprint filtering optimisation
only adds overhead to the optimised version but does not
reduce the buffer size (there are no other optimisations in that
transformation). Therefore, when the partial footprint is equal
to the meta-model, it is better not to activate this optimisa-
tion. The best case occurs in the dblp2bibtex transformation,
where optimizations achieve a speedup of 66.76x due to the
automatic indexing optimization. The speedup obtained by
the use of optimizations in the airquality case study is 5.2x,
because this transformation is particularly well-suited for
collection optimizations given that it applies several OCL
iterators to the set of objects returned by allInstances (i.e.,
it needs to traverse the complete model). The findcouples case
study gets a speedup of 3.84x thanks to the automatic caching
optimization. The rest of the transformations obtain speedups
of 1.64x, 6.31x and 1.65x, respectively, when optimizations are
enabled, with a geometric average of 4.07x.

To analyse the effects of parallelization on the performance
of A2L (using the 12 threads in our experimental desktop ma-
chine), we compared our baseline A2L seq O− with A2L par
O−. The resulting speedup ranges between 1.15x and 4.66x,
which represents a significant improvement, although not as
noticeable as the one obtained with the optimizations. This is
clear in the comparison between optimizations (seq O+) and
parallelization (par O−), where the former outperforms the
latter 2.14x ('1.0/0.47x) on average.

The speedup obtained by combining optimizations and
parallelization ranges between 1.11x and 92.02x depending
on the case study, compared to the sequential baseline (seq
O−). Again, the identity transformation gets the smallest
improvement (1.11x) while dblp2bibtex obtains the largest
gain (92.02x). The rest of the test cases achieve speedups of
32.23x, 22.66x, 1.70x, 14.19, and 4.47x, respectively.

Finally, if we compare the execution times of the two
parallel modes (with and without optimizations), the one
with optimizations obtain speedups that range between 0.96x
(identity) and 53.48x (dblp2bibtex). This means that opti-
mizations also have a positive effect in the parallel results,
mainly because they reduce memory usage, thus reducing
the pressure over the garbage collector (i.e., the less garbage
collection pauses the better, because a pause stops all threads
and causes an important degradation in the speedup).

In summary, A2L achieves significant speedups compared
to ATL and EMFTVM. By combining both optimizations
and parallel execution, A2L is able to outperform EMFTVM

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 12

TABLE 4
Performance comparison. Execution on an i7-5820K CPU@3.30GHz - 6 cores (12 threads). Time in seconds.

#elements ATL EMFTVM A2L: seq O− A2L: seq O+ A2L: par O− A2L: par O+
(millions) (1 thread) (1 thread) (12 threads) (12 threads)

airquality 0.1M 1280.40 50.70 6.65 1.32 3.39 0.21
findcouples 3.5M 1765.09 1908.89 1395.66 363.28 299.54 61.60
identity 3.5M 269.00 71.73 11.63 13.87 10.08 10.48
java2graph 4.4M 146.33 2.32 1.65 1.00 1.30 0.97
java2uml 4.4M 49.18 42.05 27.28 4.32 14.59 1.92
dblpv1 5.6M 75.66 48.68 4.68 2.84 2.27 1.05
dblp2bibtex 5.6M - - 783.07 11.73 455.15 8.51

TABLE 5
Speedups achieved between the transformation engines: ATL, EMFTVM and the different A2L options.

Speedups EMFTVM A2L seq O− A2L seq O+ A2L par O− A2L par O+

ATL [0.92; 4.64; 63.06] [1.26; 15.63; 192.6] [4.86; 39.90; 966.63] [3.37; 30.15; 377.25] [25.58; 104.14; 6207.98]
EMFTVM – [1.37; 3.37; 10.4] [2.32; 8.59; 38.28] [1.79; 6.49; 21.43] [2.40; 22.42; 245.83]
A2L: seq, O− – [0.84; 4.07; 66.76] [1.15; 1.90; 4.66] [1.11; 9.69; 92.02]
A2L. seq, O+ – [0.03; 0.47; 1.38] [1.04; 2.38; 6.42]
A2L: par, O− – [0.96; 5.11; 53.48]

between 2.4x and 245.83x, with an expected average of 22.42x.
In this way, A2L execution times for large models become
acceptable in all cases, which is an indication that ATL can
become a competitive model transformation language when
compiled with A2L. In addition, A2L is capable of running
transformations such as dblp2bibtex that may not be executed
with the other engines because of the excessive usage of collec-
tion operations over very large collections. In practice, these
results also mean a much better developer experience because
the transformations can be used as part of the development
process without incurring long waiting times.

6.3.4 Results for RQ4
To answer this question, we have executed the case studies
using an increasing number of cores, from 1 to 12. Our algo-
rithm has three phases: pre-processing, execution and post-
processing, but only the execution phase is expected to have a
speedup due to parallelism, because the parallel execution of
the post-processing phase only amortizes the cost of accessing
the partial traces created by each transformation instance.
The speedups obtained in the execution phase for each case
study are shown in Fig. 7. We can see how two of the test
cases (airquality and findcouples) scale up very well, close to
the theoretical limit, which is 6x with 6 threads. Then, dblpv1
and identity also scale well, with speedups around 4.5x with
6 threads. However, the other three stop scaling soon. This
can be caused by a variety of reasons. On the one hand, the
rules of these transformations have a modest computation
cost which may increase the competition for obtaining the
next chunk from the scheduler. On the other hand, parallel
computations are highly sensitive to external factors. For
instance, a stop-the-world execution of the Java GC would
provoke an important decrease in the speedup. Also, in Java
and EMF in particular there is little control over the memory
layout which may cause an increase in cache misses.

A related question is what is the scalability when taking
into account all the phases of the algorithm, or in other words,
how much the pre-processing and post-processing phases limit
the parallel speedup. Table 6 shows the breakdown of the
execution times of the case studies in sequential and in parallel

2 4 6 8 10 12
#Threads

1

2

3

4

5

6

7
Sp

ee
d-

up
airquality
findcouples
identity
java2graph
java2uml
dblpv1
dblp2bibtex

Fig. 7. Speedup of the execution phase of the transformations.

mode with 6 threads. In some transformations, like airquality,
java2graph, java2uml and dblpv1, the post-processing time is
negligible because they do not resolve many bindings. How-
ever, transformations with more bindings or whose bindings
have many objects in the RHS, incur in large postprocessing
times. Therefore, the post-processing phase represents the
main bottleneck for scalability in case there are many depen-
dencies among the elements in the rules, because the traces
are distributed in the threads and there is a O(numThreads)
cost to access them.

Overall, it can be claimed that our algorithm exhibits good
scalability, particularly for transformations whose rules have a
high computational cost, but relatively few rule dependencies.

6.3.5 Further findings
Compatibility with ATL. The fact that ATL is a dynamic
language poses the challenge of correctly inferring type infor-
mation for its compilation to a typed target language such as
Java. In practice this means that we require the transforma-
tion to be considered well-typed by AnATLyzer. However,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 13

TABLE 6
Execution times for A2L O+.

Sequential Par. 6 threads
Pre. Exec. Post. Pre Exec. Post.

airquality 0.01 1.31 0.00 0.01 0.25 0.00
findcouples 0.60 353.65 9.03 0.61 68.64 8.48
identity 0.66 3.88 9.33 0.65 0.87 9.14
java2graph 0.94 0.05 0.01 0.93 0.01 0.01
java2uml 1.10 3.13 0.08 1.06 0.91 0.07
dblpv1 0.73 2.11 0.00 0.74 0.47 0.00
dblp2bibtex 1.88 4.70 5.15 1.84 1.72 5.20

when evaluating RQ1, we already found that ATL2Problem
and those transformations using reflective operations could
not be compiled. The fact that we have been able to compile
the rest of the test cases make us believe that this is a minor
issue. Besides, it is always possible to write an equivalent
program compatible with A2L.

At the execution level, there might be differences in the or-
der in which the root elements appear in the serialized model,
notably when executed in parallel mode. Nevertheless, this is
not a real incompatibility since this order is not prescribed by
the ATL manual. There are also some differences in the way
errors are handled. In particular, ATL signals rule conflicts
with a runtime exception, whereas A2L ignores them and
relies on AnATLyzer for signalling them at compile time.

Additional optimizations. In the experiments, we have
observed that the post-processing phase is sometimes a bot-
tleneck when a transformation needs to initialize many target
references. It would be interesting to find out ways to reduce
its impact. At the pre-processing level, it would be possible
to filter the input model at loading time using approaches
like partial model loading [27]. This would enable the engine
to start the transformation without waiting for the model to
be fully loaded. Regarding the evaluation of OCL expressions,
more specific optimizations for common access patterns can be
developed. A2L is prepared for this with a dedicated extension
mechanism.

Using GPLs vs. ATL. There is a recent trend in the mod-
eling community to use general purpose programming lan-
guages (GPL), such as Java or Scala, to develop and execute
model transformations. There are several reasons that justify
such a decision. For example, (a) IDE features available for
GPLs such as live error reporting, quick fixes and debugging
have been traditionally missing for transformation languages
like ATL; (b) the performance and scalability of ATL, when
compared with those of GPL, are much worse; (c) ATL can
only deal with EMF models, which is not the format in which
many models are stored (for instance, in biology or automotive
applications), being rather inefficient, too. The declarative
nature of ATL for specifying the transformations and the
facility to navigate models using OCL was at the beginning
a strong point against Java, but this is not the case any more
after Java 8 supported lambda expressions. Scala was also
strong in this respect, and its efficient performance has made
it a good recent replacement for ATL, too.

However, our goal with A2L is to improve the situation
for model transformation languages in general, and ATL in
particular, showing that our design can make MT languages
competitive again against these GPLs. First, the AnATLyzer

tool provides very helpful and useful analyses of the ATL code
which are not possible if the transformation is written in a
GPL. This, together with the quick-fixing and visualization
capabilities that AnATLyzer provides [11], [12] help solving
the first shortcoming. Second, we have seen how the perfor-
mance and scalability of the A2L generated code can be quite
acceptable for transforming large models, with competitive
execution times. Furthermore, the specific optimizations of
A2L for the ATL code and the OCL expressions can provide
interesting advantages over GPLs since navigation code could
be written in the most readable manner without impact
in its performance. A transformation engine also hides the
technological complexity related to the modelling platforms.
For instance, we internally optimize certain type of accesses
to multi-valued features for which we discovered poor perfor-
mance of the default EMF’s internal iterators.2 Moreover, the
declarative nature of ATL enables the automatic paralleliza-
tion of the transformation code. If a transformation is written
in a GPL, this improvement has to be done manually, which
is typically difficult, cumbersome, and error prone.

6.4 Threats to Validity
In this section, we cover the four basic types of validity threats
that can affect the validity of our study [28].

6.4.1 Conclusion Validity
Conclusion validity affects the ability to draw correct con-
clusion about the relations between the treatment and the
outcome, i.e., how reasonable the conclusion is. Examples
that influence this threat to validity include the choice of
sample size, and the measurement of the experiment. In
this respect, the correctness and coverage of the compiler
have been assessed using the standard regression test suite
for ATL [13]. The size of this suite is relatively low, but it
covers a large part of the ATL language. Regarding the per-
formance evaluation, there might be specific transformations
for which A2L performs worse than ATL and EMFTVM.
To mitigate this threat, we have used transformations which
exercise different types of scenarios and its analysis shows
that they cover different transformation styles. Moreover, the
large improvents obtained with A2L makes us confident that
improvements will be achieved even in unforeseen scenarios.

6.4.2 Construct Validity
Construct validity refers to the extent to which the experiment
setting reflects the theory, i.e., whether the research/tests are
well-constructed using established standards and methods.
For example, whether the type of samples are representative of
the population or not; or whether the number of classes taken
reflects common experience. Again, by using a standard test
suite for ATL, we aimed at minimizing this threat, since the
transformations that comprise the suite provide a representa-
tive subset of all kinds of transformations that can be written
with ATL. Likewise, the seven additional transformations
were carefully selected so that they contain the main features
that can have impact on the performance and scalability
of the results, and therefore can constitute a representative

2. This happens because EListIterator.hasNext() invokes
List.size() instead of having its own size property, which pre-
vents JVM optimizations

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 14

sample of the kinds of ATL transformations in which we are
interested. Moreover, the sizes of the input models were also
selected according to the model sizes used in similar tests [9],
[20] in order to extract comparable conclusions.

6.4.3 External Validity
This kind of threat limits the ability to generalize the results
beyond the experiment context. In this respect, the fact that
we have used representative model transformations gives us
some confidence that the performance results can be general-
ized to the rest of the ATL model transformations. Regarding
how our results could be applicable to other languages, we
believe that for model-to-model rule-based languages like
ETL and RubyTL, the applicability would be straightforward,
provided that an appropriate type checker is available. QVT-
Operational is also rule-based but the rule structure is more
explicit, which implies that there might be less opportunities
for data-based parallelism at the matched rule level as we
do. Nevertheless, the OCL compiler and optimizer could
be adapted. In particular, applying these ideas to QVT-
Operational is part of our future work.

Moreover, we have used differently sized input models for
our study to cover diverse scenarios. However, there may be
scenarios where even larger input models are required to be
processed by model transformations. We cannot generalize
our results for very large models (going beyond 10 millions of
model elements such as present in the Train Benchmark [29]
for continuous model queries) based on our performed study
and leave this as subject to future work.

6.4.4 Internal Validity
Internal validity checks whether the test or instrument mea-
sures what it is supposed to. This threat can affect the inde-
pendent variable with respect to causality. That is, the results
may indicate a causal relationship, although there is none.
In this respect, the optimizations at the transformation and
OCL expression level, as well as the parallelization algorithm
used to execute the transformation have proved to be effective
to significantly improve its performance. The speedup results
obtained independently for each separated feature seem to
corroborate our hypotheses. The compiler was designed so
that these features could be independently enabled or dis-
abled, precisely to facilitate these kinds of analyses.

7 Related Work
With respect to the contribution of this paper, namely the
efficient execution of model transformations by data paral-
lelism and optimizations based on static analysis information,
we identify three lines of related work. First, we discuss
general approaches for speeding up model transformations
which apply smart execution strategies for different contexts.
Second, we discuss research dedicated to the evaluation of
model transformation engines. Third, we discuss approaches
focusing on the parallel execution of model transformations.

7.1 Model transformation execution strategies
In this paper, we have investigated the creation of output
models from input models by following the classical batch
transformation strategy, i.e., the transformation run is con-
sidered as a fresh one which is creating a new output model

from scratch for a given input model [30]. In addition to
this strategy, there are several other strategies for executing
model transformations in particular contexts. First, incremen-
tal transformations [31]–[33] have been proposed for cases
where output models are already available from previous
transformation runs. In such cases, the transformation engine
may only propagate the changes of the input models to the ex-
isting output models. Second, lazy transformations [34] have
been proposed for cases where only subsets of output models
are needed in a first step. In such cases, the transformation
engine only creates these subsets in a first phase, while other
elements are created just-in-time when they are requested.
Third, streaming transformations [35] have been proposed for
transforming so-called streaming models, i.e., models are con-
sidered as an open and continuous stream of model elements
opposed to a fixed set of elements given at once in a closed
input model. Fourth, patch transformations [36] are used in
cases where transformations are evolving and the existing
output models have to be migrated to newer versions of the
transformations.

All of the mentioned execution strategies mainly focus
on not having to re-execute the whole transformation by
providing some kind of reactivity, e.g., to changes in the
input models and model transformations or read access to the
output models. Needless to say, identifying the transformation
statements that are unnecessary to be re-executed is probably
the best optimization for running transformations outside the
classical batch transformation area.

While we have focused on batch transformations in this
work, we do not see any major obstacle to adopt the presented
optimizations also for other kind of transformation execution
strategies used for the discussed contexts. On the contrary, we
see the introduction and evaluation of the presented optimiza-
tion techniques for these additional transformation strategies
as an interesting line for future research.

In addition to the already mentioned model transforma-
tion execution strategies, in recent years there have been also
major efforts in optimizing the execution of full batch trans-
formations by following the distributed execution paradigm
for transforming large models which are fragmented over
different computing nodes. For instance, MapReduce has been
exploited for running ATL transformations on distributed
models [9]. Camargo et al. presented a data-centric fame-
work for distributed model transformations reusing the Bloom
platform [37]. In one of our previous work, we have em-
ployed Linda-based tuple spaces to run distributed model
transformations [38]. Finally, graph queries (comparable to
the matching part of model transformation rules such as
the in-pattern of ATL rules) are executed for large models
in a distributed manner by combining incremental graph
search techniques and cloud computing technologies [39] as
well as by providing dedicated optimization concepts such as
node sharing for efficiently executing partially redundant code
fragments [40].

In this paper, we did not consider the distribution aspect
of models but rather focused on supporting the scenario of
running model transformations directly on developer-scale
machines having the models stored in-memory. Thus, we con-
sider investigations on the distribution aspect in combination
with our presented optimization techniques as a subject for
future work.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 15

7.2 Performance evaluations of transformation engines
There is work on evaluating the performance of state-of-the-
art model transformation engines. For instance, Amstel et
al. [41] compared the runtime performance of transformations
written in ATL and in QVT, finding that the standard
ATL engine outperforms the available QVT engines. From
these works we can conclude that A2L may also outperform
existing QVT engines, although this needs to be confirmed
with the more recent versions of the QVT engines. In [42],
several implementation variants of the ATL language, e.g.,
using either imperative constructs or declarative constructs,
of the same transformation scenario have been considered and
their different runtime performance was compared. However,
both mentioned works [41], [42] only consider the traditional
sequential execution engines.

A performance evaluation of the standard ATL engines
with respect to running the transformations within database
technologies is performed in [43]. In our work, we currently do
not use a dedicated database technology for storing the mod-
els to be transformed. However, the presented optimization
techniques for ATL rules and OCL expressions based on static
analysis information may also help in cases where dedicated
database technologies are used to produce even more efficient
code that is subsequently executed inside the databases. An
interesting future work line in this respect is to study the
combination of the presented approach of this paper with
current advances achieved for graph databases (cf. [44] for
a survey) as well as investigations of data-parallel operations
inside databases (cf. [45] for a comparison of different execu-
tion models) to allow even more efficient transformations of
very large models.

Finally, we also like to mention the Transformation Tool
Contest (TTC)3 that is now running for 13 years. Every
year, there are dedicated transformation cases developed
and submitted by the community for the community. In
previous years, there have also been some transformation
cases that focused on performance and scalability of model
transformations. In particular, worth to mention are the Train
Benchmark case, the Movie Database case and the Program
Comprehension case. We have reused and partially adapted
the Movie Database case and the Program Comprehension
case for our evaluation, as they represent outplace batch
transformations that we are considering in this paper.

7.3 Parallel model transformations
In recent years, there is an increased interest in paralleliz-
ing different types of model transformations which resulted
in dedicated extensions for graph transformation languages,
model management languages based on Epsilon, and also ATL
which we discuss in the following.

First, there is work in the field of graph transformations
where multi-core platforms are used for parallel execution of
graph transformation rules [46], [47]. In these papers, specific
focus is put on the parallel execution of the matching phase
of the left-hand sides of graph transformation rules, which
is considered to be the most expensive part. Another work
exploits the Bulk Synchronous Parallel model for executing
transformations based on the Henshin graph transformation

3. https://www.transformation-tool-contest.eu

framework [48]. To make use of the Bulk Synchronous Parallel
model, the Henshin graph transformation rules are compiled
to Apache Giraph.

Secondly, efforts have been made to speed up different
types of model management programs (which can be con-
sidered as specific kinds of model transformations) for the
Epsilon framework [19], [49] available in Eclipse. In partic-
ular, parallel execution support for the different model man-
agement languages provided by Epsilon has been presented
in [50], [51]. For instance, the authors provide data and rule
parallelization approaches for the Epsilon Validation Lan-
guage (EVL). However, the use of static analysis information
for automatic performance improvement is only mentioned as
future work.

Thirdly, there have been pioneering approaches for the
parallel execution of ATL transformations. In previous work,
we have presented LinTra [20], an approach for running
ATL transformations on Linda-based platforms following the
data-based parallelization approach. Tisi et al. [10] presented
another approach for the parallel execution of ATL transfor-
mations, using a task-based approach for parallelization, as
already mentioned in Sect. 2.3.

7.4 Synopsis
While there are several approaches available for speeding up
model transformations, the scalability of model transforma-
tions is still considered as a major challenge in MDE [52]. We
are not aware of any approach that uses the information from
static analyses to find improved (parallel) execution strategies
for model transformations. Thus, we are confident that in this
paper we provide an important cornerstone for scalable and
high-performance execution of model transformations, which
may also help to improve other model transformation engines
beyond ATL. This line of research is considered critical to the
long-term success of model transformation tools, as a recent
survey has revealed [30].

8 Conclusions
This paper has presented A2L, a compiler for the ATL model
transformation language that aims at achieving efficient trans-
formations of large models. Improved performance and scal-
ability is accomplished by two of the main features of A2L:
the use of static information to achieve effective optimizations
on both rule execution and the evaluation of the OCL ex-
pressions; and the use of data parallelism in the algorithm
that implements and executes the transformation. The results
show that A2L produces large performance gains with respect
to existing ATL engines in both sequential and parallel modes.
The figures presented in this paper should be a baseline for the
expected performance of future transformation languages.

Our work can be extended along different lines of re-
search. First, further optimizations can be pursued, mainly
for domain-specific transformations where the semantics of
the particular domains can be taken into account. Second,
we plan to study how our work can be generalised to other
model transformation languages, notably QVT-Operational.
To this end we aim at designing an intermediate representa-
tion from which it is easy to reuse most of the infrastructure.
Implementation-wise, it would be interesting to create an
intermediate representation in which it is easier to perform

https://www.transformation-tool-contest.eu

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 16

rewritings and make our optimizations composable. Handling
models from different modeling platforms, beyond EMF, or
even stored as plain Java objects, is another research line we
are also working on, with the goal of widening the usability of
A2L. This line of research may also require the development of
a dedicated debugger which allows the observation and control
of the executing transformations directly on the ATL code
level [53]. Finally, we would like to explore the possibilities
of creating a streaming transformation engine on top of A2L
as well as of employing emerging database technologies for
executing our transformations for very large models.

Acknowledgments
This work was partially funded by Spanish Research
Projects PGC2018-094905-B-I00, TIN2015-73968-JIN
(AEI/FEDER/UE), a Ramón y Cajal 2017 research grant,
and TIN2016-75944-R. Furthermore, this work was partially
supported and funded by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, and by the FWF
under the Grant Numbers P28519-N31 and P30525-N31.

References
[1] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Soft-

ware Engineering in Practice, 2nd ed. Morgan & Claypool Pub.,
2017.

[2] B. Selic, “What will it take? A view on adoption of model-based
methods in practice,” Software and System Modeling, vol. 11,
no. 4, pp. 513–526, 2012.

[3] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra,
J. Sánchez Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, and
J. Cabot, “A research roadmap towards achieving scalability in
model driven engineering,” in Proc. of the Workshop on Scalabil-
ity in Model Driven Engineering (BigMDE 2013). ACM, 2013,
pp. 2:1–2:10.

[4] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, and O. M.
dos Santos, “Engineering model transformations with transML,”
Software & Systems Modeling, vol. 12, no. 3, pp. 555–577, 2013.

[5] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A
model transformation tool,” Science of Computer Programming,
vol. 72, no. 1-2, pp. 31–39, 2008.

[6] OMG, MOF QVT Final Adopted Specification, Object Manage-
ment Group, 2005, OMG doc. ptc/05-11-01.

[7] L. Burgueño, J. Cabot, and S. Gérard, “The future of model
transformation languages: An open community discussion,”
Journal of Object Technology, vol. 18, no. 3, pp. 7:1–11, Jul. 2019.

[8] J. S. Cuadrado, E. Guerra, and J. de Lara, “Static analysis of
model transformations,” IEEE Trans. Software Eng., vol. 43,
no. 9, pp. 868–897, 2017.

[9] A. Benelallam, A. Gómez, M. Tisi, and J. Cabot, “Distributing
relational model transformation on MapReduce,” Journal of
Systems and Software, vol. 142, pp. 1–20, 2018.

[10] M. Tisi, S. M. Pérez, and H. Choura, “Parallel Execution of ATL
Transformation Rules,” in Proc. of MoDELS 2013, ser. LNCS,
vol. 8107. Springer, 2013, pp. 656–672.

[11] J. S. Cuadrado, E. Guerra, and J. de Lara, “Quick fixing ATL
transformations with speculative analysis,” Software and Sys-
tems Modeling, vol. 17, no. 3, pp. 779–813, 2018.

[12] ——, “AnATLyzer: an advanced IDE for ATL model transfor-
mations,” in ICSE’18 Companion Proceedings. ACM, 2018,
pp. 85–88.

[13] F. Jouault, “Regression Tests for the ATL Virtual Machine,”
2013. [Online]. Available: https://wiki.eclipse.org/ATL VM
Testing

[14] C. Eastman, P. Tiecholz, R. Sacks, and K. Liston, BIM Hand-
book: A Guide to Building Information Modeling for Owners,
Managers, Designers, Engineers and Contractors, 2nd ed. John
Wiley, 2011.

[15] Y. Dajsuren and M. van den Brand, Eds., Automotive Systems
and Software Engineering – State of the Art and Future Trends.
Springer, 2019.

[16] J. Troya, H. Brunelière, M. Fleck, M. Wimmer, L. Orue-
Echevarria, and J. Gorroñogoitia, “ARTIST: Model-Based Stair-
way to the Cloud,” in Proc. of the Projects Showcase @ STAF,
vol. 1400. CEUR-WS.org, 2015, pp. 1–8.

[17] Object Management Group, Object Constraint Language
(OCL) Specification. Version 2.2, Feb. 2010, OMG Document
formal/2010-02-01.

[18] D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault, “Towards a
general composition semantics for rule-based model transfor-
mation,” in Proc. of MODELS 2011, ser. LNCS, vol. 6981.
Springer, 2011, pp. 623–637.

[19] D. Kolovos, L. Rose, R. Paige, and A. Garćıa-Domı́nguez,
The Epsilon Book. Eclipse, 2010. [Online]. Available: https:
//www.eclipse.org/epsilon/doc/book/

[20] L. Burgueño, M. Wimmer, and A. Vallecillo, “A Linda-based
platform for the parallel execution of out-place model transfor-
mations,” Information and Software Technology, vol. 79, pp. 17–
35, 2016.

[21] J. S. Cuadrado, F. Jouault, J. G. Molina, and J. Bézivin, “Op-
timization patterns for OCL-based model transformations,” in
Proc. of Workshops and Symposia at MODELS 2008, ser. LNCS,
vol. 5421. Springer, 2008, pp. 273–284.

[22] A. S. Lee, “A scientific methodology for MIS case studies,” MIS
Quarterly, vol. 13, no. 1, pp. 33–50, 1989.

[23] P. Runeson and M. Höst, “Guidelines for Conducting and Re-
porting Case Study Research in Software Engineering,” Empiri-
cal Software Engineering, vol. 14, no. 2, pp. 131–164, 2009.

[24] “AnATLyzer tutorial,” 2017, https://github.com/jesusc/
anatlyzer-models17.

[25] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Rets-
chitzegger, and W. Schwinger, “Reuse in model-to-model trans-
formation languages: are we there yet?” Software and Systems
Modeling, vol. 14, no. 2, pp. 537–572, 2015.

[26] T. Hoefler and R. Belli, “Scientific benchmarking of parallel com-
puting systems: twelve ways to tell the masses when reporting
performance results,” in Proc. of SC’15. ACM, 2015, pp. 73:1–
73:12.

[27] R. Wei, D. S. Kolovos, A. Garcia-Dominguez, K. Barmpis, and
R. F. Paige, “Partial loading of XMI models,” in Proc. of MOD-
ELS 2016. ACM, 2016, pp. 329–339.

[28] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012.

[29] G. Szárnyas, B. Izsó, I. Ráth, and D. Varró, “The train bench-
mark: cross-technology performance evaluation of continuous
model queries,” Software & Systems Modeling, vol. 17, no. 4,
pp. 1365–1393, 2018.

[30] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and
D. Varró, “Survey and classification of model transformation
tools,” Software and Systems Modeling, vol. 18, no. 4, pp. 2361–
2397, 2019.

[31] T. L. Calvar, F. Jouault, F. Chhel, and M. Clavreul, “Efficient
ATL incremental transformations,” Journal of Object Technol-
ogy, vol. 18, no. 3, pp. 2:1–17, 2019.

[32] A. Razavi and K. Kontogiannis, “Partial evaluation of model
transformations,” in Proc. of ICSE 2012. IEEE Computer
Society, 2012, pp. 562–572.

[33] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and
Z. Ujhelyi, “Road to a reactive and incremental model transfor-
mation platform: three generations of the VIATRA framework,”
Software and Systems Modeling, vol. 15, no. 3, pp. 609–629, 2016.

[34] M. Tisi, S. M. Perez, F. Jouault, and J. Cabot, “Lazy execution
of model-to-model transformations,” in Proc. of MODELS 2011,
ser. LNCS, vol. 6981. Springer, 2011, pp. 32–46.

[35] J. S. Cuadrado and J. de Lara, “Streaming model transforma-
tions: Scenarios, challenges and initial solutions,” in Proc. of
ICMT 2013, ser. LNCS, vol. 7909. Springer, 2013, pp. 1–16.

[36] A. Bergmayr, J. Troya, and M. Wimmer, “From out-place trans-
formation evolution to in-place model patching,” in Proc. of ASE
2014. ACM, 2014, pp. 647–652.

[37] L. C. Camargo and M. D. D. Fabro, “Applying a data-centric
framework for developing model transformations,” in Proc. of
SAC 2019. ACM, 2019, pp. 1570–1573.

https://wiki.eclipse.org/ATL_VM_Testing
https://wiki.eclipse.org/ATL_VM_Testing
https://www.eclipse.org/epsilon/doc/book/
https://www.eclipse.org/epsilon/doc/book/
https://github.com/jesusc/anatlyzer-models17
https://github.com/jesusc/anatlyzer-models17

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 17

[38] L. Burgueño, “Concurrent and Distributed Model Transforma-
tions based on Linda,” in Proc. of the MODELS 2013 Doctoral
Symposium, vol. 1071. CEUR-WS.org, 2013, pp. 9–16.

[39] G. Szárnyas, B. Izsó, I. Ráth, D. Harmath, G. Bergmann, and
D. Varró, “IncQuery-D: A Distributed Incremental Model Query
Framework in the Cloud,” in Proc. of MODELS 2014, ser. LNCS,
vol. 8767. Springer, 2014, pp. 653–669.

[40] G. Bergmann, “Incremental model queries in model-driven de-
sign,” Ph.D. dissertation, Budapest University of Technology
and Economics, 2013.

[41] M. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires, “Perfor-
mance in model transformations: Experiments with ATL and
QVT,” in Proc. of ICMT 2011, ser. LNCS, vol. 6707. Springer,
2011, pp. 198–212.

[42] M. Wimmer, S. M. Perez, F. Jouault, and J. Cabot, “A catalogue
of refactorings for model-to-model transformations,” Journal of
Object Technology, vol. 11, no. 2, pp. 2: 1–40, 2012.

[43] G. Daniel, F. Jouault, G. Sunyé, and J. Cabot, “Gremlin-ATL:
a scalable model transformation framework,” in Proc. of ASE
2017. IEEE Computer Society, 2017, pp. 462–472.

[44] M. Besta, E. Peter, R. Gerstenberger, M. Fischer,
M. Podstawski, C. Barthels, G. Alonso, and T. Hoefler,
“Demystifying graph databases: Analysis and taxonomy of
data organization, system designs, and graph queries,”
CoRR, vol. abs/1910.09017, 2019. [Online]. Available:
http://arxiv.org/abs/1910.09017

[45] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and
P. A. Boncz, “Everything you always wanted to know about
compiled and vectorized queries but were afraid to ask,” Proc.
VLDB Endow., vol. 11, no. 13, pp. 2209–2222, 2018.

[46] G. Bergmann, I. Ráth, and D. Varró, “Parallelization of graph
transformation based on incremental pattern matching,” Elec-
tronic Communication of the European Association of Software
Science and Technology (ECEASST), vol. 18, 2009.

[47] G. Imre and G. Mezei, “Parallel graph transformations on mul-
ticore systems,” in Proc. of MSEPT 2012, ser. LNCS, vol. 7303.
Springer, 2012, pp. 86–89.

[48] C. Krause, M. Tichy, and H. Giese, “Implementing graph trans-
formations in the bulk synchronous parallel model,” in Proc. of
FASE 2014, ser. LNCS, vol. 8411. Springer, 2014, pp. 325–339.

[49] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon
Transformation Language,” in Proc. of ICMT 2008, ser. LNCS,
vol. 5063. Springer, 2008, pp. 46–60.

[50] S. Madani, D. S. Kolovos, and R. F. Paige, “Towards optimisa-
tion of model queries: A parallel execution approach,” Journal
of Object Technology, vol. 18, no. 2, pp. 3:1–21, 2019.

[51] ——, “Parallel Model Validation with Epsilon,” in Proc. of
ECMFA 2018, ser. LNCS, vol. 10890. Springer, 2018, pp. 115–
131.

[52] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio,
“Grand challenges in model-driven engineering: an analysis of
the state of the research,” Software and Systems Modeling,
vol. 19, no. 1, pp. 5–13, 2020.

[53] E. Bousse and M. Wimmer, “Domain-Level Observation and
Control for Compiled Executable DSLs,” in Proc. of MODELS
2019. IEEE, 2019, pp. 150–160.

Jesús Sánchez Cuadrado is a Ramón y Cajal
researcher at Universidad de Murcia. Previously
he was an associate professor at Universidad
Autónoma de Madrid. His research is focused
on Model Driven Engineering (MDE) topics,
notably model transformation languages, meta-
modelling and domain specific languages. On
these topics, he has published several articles
in journals and peer-reviewed conferences, and
developed several tools. For more information,
please visit http://sanchezcuadrado.es.

Loli Burgueño is a postdoctoral researcher and
lecturer at the Open University of Catalonia
(Spain) and CEA LIST (France). Her research
interests focus on Model-Driven Engineering, in
particular the performance, scalability and test-
ing of model transformations, the modeling of
uncertainty in software models for its use in
the Industry 4.0 and the integration of Artifi-
cial Intelligence techniques into modeling tools
and processes. For more information, please visit
https://som-research.uoc.edu/loli-burgueno/.

Manuel Wimmer is full professor leading the
Institute of Business Informatics–Software Engi-
neering at the Johannes Kepler University Linz,
and he is head of the Christian Doppler Labora-
tory CDL-MINT. His research interests comprise
foundations of model engineering techniques as
well as their application in domains such as
tool interoperability, legacy tool modernization,
model versioning and evolution, and industrial
engineering. For more information, please visit
https://www.se.jku.at/manuel-wimmer.

Antonio Vallecillo is Full Professor of Software
Engineering at the University of Málaga, Spain,
where he leads the Atenea research group ded-
icated to systems modeling and analysis. His
research interests include open distributed pro-
cessing, model-based software engineering, and
software quality. For more information, please
visit http://www.lcc.uma.es/∼av.

http://arxiv.org/abs/1910.09017
http://sanchezcuadrado.es
https://som-research.uoc.edu/loli-burgueno/
https://www.se.jku.at/manuel-wimmer
http://www.lcc.uma.es/~av

	Introduction
	Motivation and background
	ATL
	Static analysis of model transformations: AnATLyzer
	Limitations of current approaches

	A2L: A Compiler for ATL
	Parallel execution of ATL transformations
	Optimizations
	Optimizations at the transformation level
	OCL-related optimizations
	Automatic caching

	Validation
	Research Questions
	Experimental Setup
	Case Studies
	Evaluation Metrics

	Result Analysis
	Results for RQ1
	Results for RQ2
	Results for RQ3
	Results for RQ4
	Further findings

	Threats to Validity
	Conclusion Validity
	Construct Validity
	External Validity
	Internal Validity

	Related Work
	Model transformation execution strategies
	Performance evaluations of transformation engines
	Parallel model transformations
	Synopsis

	Conclusions
	References
	Biographies
	Jesús Sánchez Cuadrado
	Loli Burgueño
	Manuel Wimmer
	Antonio Vallecillo

