1,918 research outputs found

    Lax-Phillips scattering theory for PT-symmetric \rho-perturbed operators

    Full text link
    The S-matrices corresponding to PT-symmetric \rho-perturbed operators are defined and calculated by means of an approach based on an operator-theoretical interpretation of the Lax-Phillips scattering theory

    Posterior Consistency via Precision Operators for Bayesian Nonparametric Drift Estimation in SDEs

    Get PDF
    We study a Bayesian approach to nonparametric estimation of the periodic drift function of a one-dimensional diffusion from continuous-time data. Rewriting the likelihood in terms of local time of the process, and specifying a Gaussian prior with precision operator of differential form, we show that the posterior is also Gaussian with precision operator also of differential form. The resulting expressions are explicit and lead to algorithms which are readily implementable. Using new functional limit theorems for the local time of diffusions on the circle, we bound the rate at which the posterior contracts around the true drift function

    Eulerian digraphs and toric Calabi-Yau varieties

    Full text link
    We investigate the structure of a simple class of affine toric Calabi-Yau varieties that are defined from quiver representations based on finite eulerian directed graphs (digraphs). The vanishing first Chern class of these varieties just follows from the characterisation of eulerian digraphs as being connected with all vertices balanced. Some structure theory is used to show how any eulerian digraph can be generated by iterating combinations of just a few canonical graph-theoretic moves. We describe the effect of each of these moves on the lattice polytopes which encode the toric Calabi-Yau varieties and illustrate the construction in several examples. We comment on physical applications of the construction in the context of moduli spaces for superconformal gauged linear sigma models.Comment: 27 pages, 8 figure

    The large deviation approach to statistical mechanics

    Full text link
    The theory of large deviations is concerned with the exponential decay of probabilities of large fluctuations in random systems. These probabilities are important in many fields of study, including statistics, finance, and engineering, as they often yield valuable information about the large fluctuations of a random system around its most probable state or trajectory. In the context of equilibrium statistical mechanics, the theory of large deviations provides exponential-order estimates of probabilities that refine and generalize Einstein's theory of fluctuations. This review explores this and other connections between large deviation theory and statistical mechanics, in an effort to show that the mathematical language of statistical mechanics is the language of large deviation theory. The first part of the review presents the basics of large deviation theory, and works out many of its classical applications related to sums of random variables and Markov processes. The second part goes through many problems and results of statistical mechanics, and shows how these can be formulated and derived within the context of large deviation theory. The problems and results treated cover a wide range of physical systems, including equilibrium many-particle systems, noise-perturbed dynamics, nonequilibrium systems, as well as multifractals, disordered systems, and chaotic systems. This review also covers many fundamental aspects of statistical mechanics, such as the derivation of variational principles characterizing equilibrium and nonequilibrium states, the breaking of the Legendre transform for nonconcave entropies, and the characterization of nonequilibrium fluctuations through fluctuation relations.Comment: v1: 89 pages, 18 figures, pdflatex. v2: 95 pages, 20 figures, text, figures and appendices added, many references cut, close to published versio

    Incorporation of Spacetime Symmetries in Einstein's Field Equations

    Get PDF
    In the search for exact solutions to Einstein's field equations the main simplification tool is the introduction of spacetime symmetries. Motivated by this fact we develop a method to write the field equations for general matter in a form that fully incorporates the character of the symmetry. The method is being expressed in a covariant formalism using the framework of a double congruence. The basic notion on which it is based is that of the geometrisation of a general symmetry. As a special application of our general method we consider the case of a spacelike conformal Killing vector field on the spacetime manifold regarding special types of matter fields. New perspectives in General Relativity are discussed.Comment: 41 pages, LaTe
    • …
    corecore