191 research outputs found

    Experimental Evaluation of Meta-Heuristics for Multi-Objective Capacitated Multiple Allocation Hub Location Problem

    Get PDF
    Multi-objective capacitated multiple allocation hub location problem (MOCMAHLP) is a variation of classic hub location problem, which deals with network design, considering both the number and the location of the hubs and the connections between hubs and spokes, as well as routing of flow on the network. In this study, we offer two meta-heuristic approaches based on the non-dominated sorting genetic algorithm (NSGA-II) and archived multi-objective simulated annealing method (AMOSA) to solve MOCMAHLP. We attuned AMOSA based approach to obtain feasible solutions for the problem and developed five different neighborhood operators in this approach. Moreover, for NSGA-II based approach, we developed two novel problem-specific mutation operators. To statistically analyze the behavior of both algorithms, we conducted experiments on two well-known data sets, namely Turkish and Australian Post (AP). Hypervolume indicator is used as the performance metric to measure the effectiveness of both approaches on the given data sets. In the experimental study, thorough tests are conducted to fine-tune the proposed mutation types for NSGA-II and proposed neighborhood operators for AMOSA. Fine-tuning tests reveal that for NSGA-II, mutation probability does not have a real effect on Turkish data set, whereas lower mutation probabilities are slightly better for AP data set. Moreover, among the AMOSA based neighborhood operators, the one which adds/removes a specific number of links according to temperature (NS-5) performs better than the others for both data sets. After analyzing different operators for both algorithms, a comparison between our NSGA-II based and AMOSA based approaches is performed with the best settings. As a result, we conclude that both of our algorithms are able to find feasible solutions of the problem. Moreover, NSGA-II performs better for larger, whereas AMOSA performs better for smaller size networks

    Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey

    Get PDF
    Facility Layout Problem (FLP) is a NP-hard problem concerned with the arrangement of facilities as to minimize the distance travelled between all pairs of facilities. Many exact and approximate approaches have been proposed with an extensive applicability to deal with this problem. This paper studies the fundamentals of some well-known heuristics and metaheuristics used in solving the FLPs. It is hoped that this paper will trigger researchers for in-depth studies in FLPs looking into more specific interest such as equal or unequal FLPs

    Development of transportation and supply chain problems with the combination of agent-based simulation and network optimization

    Get PDF
    Demand drives a different range of supply chain and logistics location decisions, and agent-based modeling (ABM) introduces innovative solutions to address supply chain and logistics problems. This dissertation focuses on an agent-based and network optimization approach to resolve those problems and features three research projects that cover prevalent supply chain management and logistics problems. The first case study evaluates demographic densities in Norway, Finland, and Sweden, and covers how distribution center (DC) locations can be established using a minimizing trip distance approach. Furthermore, traveling time maps are developed for each scenario. In addition, the Nordic area consisting of those three countries is analyzed and five DC location optimization results are presented. The second case study introduces transportation cost modelling in the process of collecting tree logs from several districts and transporting them to the nearest collection point. This research project presents agent-based modelling (ABM) that incorporates comprehensively the key elements of the pick-up and delivery supply chain model and designs the components as autonomous agents communicating with each other. The modelling merges various components such as GIS routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. The entire pick-up and delivery operation are modeled by ABM and modeling outcomes are provided by time series charts such as the number of trucks in use, facilities inventory and travel distance. In addition, various scenarios of simulation based on potential facility locations and truck numbers are evaluated and the optimal facility location and fleet size are identified. In the third case study, an agent-based modeling strategy is used to address the problem of vehicle scheduling and fleet optimization. The solution method is employed to data from a real-world organization, and a set of key performance indicators are created to assess the resolution's effectiveness. The ABM method, contrary to other modeling approaches, is a fully customized method that can incorporate extensively various processes and elements. ABM applying the autonomous agent concept can integrate various components that exist in the complex supply chain and create a similar system to assess the supply chain efficiency.Tuotteiden kysyntä ohjaa erilaisia toimitusketju- ja logistiikkasijaintipäätöksiä, ja agenttipohjainen mallinnusmenetelmä (ABM) tuo innovatiivisia ratkaisuja toimitusketjun ja logistiikan ongelmien ratkaisemiseen. Tämä väitöskirja keskittyy agenttipohjaiseen mallinnusmenetelmään ja verkon optimointiin tällaisten ongelmien ratkaisemiseksi, ja sisältää kolme tapaustutkimusta, jotka voidaan luokitella kuuluvan yleisiin toimitusketjun hallinta- ja logistiikkaongelmiin. Ensimmäinen tapaustutkimus esittelee kuinka käyttämällä väestötiheyksiä Norjassa, Suomessa ja Ruotsissa voidaan määrittää strategioita jakelukeskusten (DC) sijaintiin käyttämällä matkan etäisyyden minimoimista. Kullekin skenaariolle kehitetään matka-aikakartat. Lisäksi analysoidaan näistä kolmesta maasta koostuvaa pohjoismaista aluetta ja esitetään viisi mahdollista sijaintia optimointituloksena. Toinen tapaustutkimus esittelee kuljetuskustannusmallintamisen prosessissa, jossa puutavaraa kerätään useilta alueilta ja kuljetetaan lähimpään keräyspisteeseen. Tämä tutkimusprojekti esittelee agenttipohjaista mallinnusta (ABM), joka yhdistää kattavasti noudon ja toimituksen toimitusketjumallin keskeiset elementit ja suunnittelee komponentit keskenään kommunikoiviksi autonomisiksi agenteiksi. Mallinnuksessa yhdistetään erilaisia komponentteja, kuten GIS-reititys, mahdolliset tilojen sijainnit, satunnaiset puunhakupaikat, kaluston mitoitus, matkan pituus sekä monimuotokuljetukset. ABM:n avulla mallinnetaan noutojen ja toimituksien koko ketju ja tuloksena saadaan aikasarjoja kuvaamaan käytössä olevat kuorma-autot, sekä varastomäärät ja ajetut matkat. Lisäksi arvioidaan erilaisia simuloinnin skenaarioita mahdollisten laitosten sijainnista ja kuorma-autojen lukumäärästä sekä tunnistetaan optimaalinen toimipisteen sijainti ja tarvittava autojen määrä. Kolmannessa tapaustutkimuksessa agenttipohjaista mallinnusstrategiaa käytetään ratkaisemaan ajoneuvojen aikataulujen ja kaluston optimoinnin ongelma. Ratkaisumenetelmää käytetään dataan, joka on peräisin todellisesta organisaatiosta, ja ratkaisun tehokkuuden arvioimiseksi luodaan lukuisia keskeisiä suorituskykyindikaattoreita. ABM-menetelmä, toisin kuin monet muut mallintamismenetelmät, on täysin räätälöitävissä oleva menetelmä, joka voi sisältää laajasti erilaisia prosesseja ja elementtejä. Autonomisia agentteja soveltava ABM voi integroida erilaisia komponentteja, jotka ovat olemassa monimutkaisessa toimitusketjussa ja luoda vastaavan järjestelmän toimitusketjun tehokkuuden arvioimiseksi yksityiskohtaisesti.fi=vertaisarvioitu|en=peerReviewed

    An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

    Get PDF
    This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints

    Bulk wheat transportation and storage problem of public distribution system

    Get PDF
    This research investigates the multi-period multi-modal bulk wheat transportation and storage problem in a two-stage supply chain network of Public Distribution System (PDS). The bulk transportation and storage can significantly curtail the transit and storage losses of food grains, which leads to substantial cost savings. A mixed integer non-linear programming model (MINLP) is developed after studying the Indian wheat supply chain scenario, where the objective is to minimize the transportation, storage and operational cost of the food grain incurred for efficient transfer of wheat from producing states to consuming states. The cost minimization of Indian food grain supply chain is a very complex and challenging problem because of the involvement of the many entities and their constraints such as seasonal procurement, limited scientific storages, varying demand, mode of transportation and vehicle capacity constraints. To address this complex and challenging problem of food grain supply chain, we have proposed the novel variant of Chemical Reaction Optimization (CRO) algorithm which combines the features of CRO and Tabu search (TS) and named it as a hybrid CROTS algorithm (Chemical reaction optimization combined with Tabu Search). The numerous problems with different sizes are solved using the proposed algorithm and obtained results have been compared with CRO. The comparative study reveals that the proposed CROTS algorithm offers a better solution in less computational time than CRO algorithm and the dominance of CROTS algorithm over the CRO algorithm is demonstrated through statistical analysis

    Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant

    Full text link
    The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.Comment: 45 page

    An artificial immune system algorithm for solving the uncapacitated single allocation p-Hub median problem

    Get PDF
    The present paper deals with a variant of hub location problems (HLP): the uncapacitated single allocation p-Hub median problem (USApHMP). This problem consists to jointly locate hub facilities and to allocate demand nodes to these selected facilities. The objective function is to minimize the routing of demands between any origin and destination pair of nodes. This problem is known to be NP-hard. Based on the artificial immune systems (AIS) framework, this paper develops a new approach to efficiently solve the USApHMP. The proposed approach is in the form of a clonal selection algorithm (CSA) that uses appropriate encoding schemes of solutions and maintains their feasibility. Comprehensive experiments and comparison of the proposed approach with other existing heuristics are conducted on benchmark from civil aeronautics board, Australian post, PlanetLab and Urand data sets. The results obtained allow to demonstrate the validity and the effectiveness of our approach. In terms of solution quality, the results obtained outperform the best-known solutions in the literature
    corecore