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ABSTRACT

The present paper deals with a variant of hub location problems (HLP): the uncapac-
itated single allocation p-Hub median problem (USApHMP). This problem consists
to jointly locate hub facilities and to allocate demand nodes to these selected facili-
ties. The objective function is to minimize the routing of demands between any origin
and destination pair of nodes. This problem is known to be NP-hard. Based on the
artificial immune systems (AIS) framework, this paper develops a new approach to
efficiently solve the USApHMP. The proposed approach is in the form of a clonal
selection algorithm (CSA) that uses appropriate encoding schemes of solutions and
maintains their feasibility. Comprehensive experiments and comparison of the pro-
posed approach with other existing heuristics are conducted on benchmark from civil
aeronautics board, Australian post, PlanetLab and Urand data sets. The results ob-
tained allow to demonstrate the validity and the effectiveness of our approach. In
terms of solution quality, the results obtained outperform the best-known solutions in
the literature.
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1. INTRODUCTION
In a distribution network, hubs refer to facilities that allow consolidation, sorting, switching and con-

necting of flows between origins and destinations [1]. The design of a hubs network (i.e., distribution network
containing hubs) aims to reduce the cost resulting from connecting many origin-destination pairs of nodes.
Indeed, using hub facilities to consolidate flows brings the advantages of economies of scale. Hub networks are
widely exploited in many industrial areas including telecommunication, air passenger and freight transporta-
tion, postal delivery and public transportation network [1, 2]. In transportation networks, for example, decision
makers are usually faced with the commodity flows problem and need to develop efficient and competitive lo-
gistic strategies to manage such flows. It has been shown that logistic platforms (hubs) can indeed offer a very
interesting competitive potential to cover the commodity flows issue. Furthermore, in addition to their ability
to reduce logistic costs, logistic platforms can be designed by considering sustainable criteria.

Dealing with hub location problems (HLP), two main decisions are addressed, namely the location
of hubs and the allocation of the demand nodes to the selected hubs. The selection of hubs is performed so
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that to determine the optimal routes of flow between origin-destination pairs. Since the pioneered work by
O’ Kelly [3], hub location problem attracted many researchers resulting in several hub location optimization
models appeared in the literature.

In the research literature, the classification of HLP can generally made according to four criteria [2, 4]:
the type of space for locating hub-nodes, the assignment rules, the number of hubs and the capacity of hubs.
Regarding the first criterion (i.e., type of space to locate hub-nodes) it is also referred to as network domain
which can either be discrete or continuous. In the discrete domain, hubs can be located only at a set of finite
points, while in the continuous domain, hubs can be located arbitrarily in a plan or sphere [4]. The assignment
rules criterion refers to two types of nodes allocation, namely single and multiple allocation. In the former
type of allocation, non-hub nodes as demand points are assigned to only one hub, while in the later non-hub
nodes as demand points can be assigned to more than one hub [5]. According to the third criterion, the number
of hubs in network can either be a decision variable or rather defined exogenously and denoted as p. In the
latter case one speaks about p-HLP. In terms of the fourth criterion (i.e. hub capacity), the capacity of a hub
can be of two types limited, in which case one deal with capacitated HLP, and unlimited and therefore deal
with the uncapacitated HLP. Objective functions usually consist, for example, on minimizing the total cost,
minimizing the maximum of travelling time. The reader can refer to some surveys provided in [1, 2, 4, 6].
More recent works have studied more complex models within HLP by relaxing some classical assumptions
while incorporating additional features to meet real-life applications’ requirements, see for example [7–9].

Sadeghi et al. [10] considered the p-Hub covering location problem where reliability of the transporta-
tion network is accounted for by assuming that road (i.e., link) capacities are subject to stochastic degradations.
The road capacity reliability is then defined as the probability that the maximum network capacity is greater
than or equal to the total incoming flow to the network. A stochastic optimisation model is proposed where
the objective is to minimize the total transportation cost. The resulting model is solved by using differential
evolution (DE) algorithm.

In [8], the authors, motivated by the application of delivery within the same day in the city, deal with
the problem of joint single allocation p-Hub median location and routing problem, and pick-up and delivery.
The proposed approach extends the uncapacitated single allocation p-Hub median problem to include vehicle
routing with simultaneous pick-up and delivery. Several mixed integer programming formulations are provided
where the objective is to minimize the cost of transferring the flow between hubs and routing the flow in the
network. Two heuristic approaches based on multi start simulated annealing and ant colony system to solve
these problems.

Recently, Alumur et. al. [7] incorporate the service time constraints and congestion in hub location
problems. Service time is reflected by the travel time on the network connections and the time flows processing
time at the hubs level. Congestion is introduced to model the delay caused by the increase in processing times
at the hubs level. The authors developed mixed-integer linear programming (MILP) formulations for the single
and multiple allocation strategies, and for the direct shipments case within the multiple allocation option.

In a more recent paper, Taherkhani and Alumur [9] considered the HLP from a profit point of view.
The profit is defined as the total revenue minus total cost. The total cost is induced by the transportation
cost, the installation cost of hubs, in addition to the cost of operating hub links. By considering different
allocation strategies, four mathematical models are formulated to determine the location of hubs, designing the
hub networks, and routing the demand.

The present paper deals with solution methods dedicated to the uncapacitated single allocation p-Hub
median problem (USApHMP) where hubs are assumed to have unlimited capacities and each spoke is assigned
to one and only one hub. Furthermore, the number of hubs, denoted as p, to locate is assumed to be known
(exogeneous parameter). The objective of the USApHMP consists to jointly select appropriate hub facilities
and to allocate demand nodes to these selected facilities so that to minimize the transportation costs of the
overall flow in a network.

In the literature, there are exact and approximate solution methods used to solve the USApHMP. In
[3], a quadratic formulation is proposed for the USApHMP problem. Later on, two integer linear formula-
tions were proposed by [11, 12]. To solve the resulting optimization model in [3], a full enumeration method
is used combined with two assignment heuristics based on the nearest and the second nearest hub. In [13]
Klincewiczhas proposed an exchange heuristic based on local neighborhood search which was proved to be
more effective than the method developed by [3]. Since USApHMP is NP-hard [14], exact method are valid
only for low-sized problems. Therefore, developing efficient solution methods is crucial to deal with large-sized
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hub location problems. In [11], Klincewicz developed two heuristics based on tabu search and on a greedy ran-
domized adaptive search procedure (GRASP) where nodes are assumed to be assigned to their nearest hub.

A new variant of tabu search algorithm, called TABUHUB, is proposed by Skorin-Kapov and [12].
This approach considers equally the locational and the allocational part of the hub location problem. It also
consists of a single exchange heuristic for the location of hubs, and for the reallocations of non-hub nodes. Ernst
and Krishnamoorthy [15] developed a heuristic method based on simulated annealing (SA) to solve the US-
ApHMP. They have developed an LP-based branch and bound solution method by using the SA upper bound.
Pérez et al. [16] have presented an algorithm based on a hybridization combining the variable neighborhood
search (VNS) together with the path relinking (PR) heuristics. Their VNS-PR hybrid heuristic outperforms
the TABUHUB-based approach [12] and SA-based approach [15] in both solution quality and computational
times.

In Kratica et al. [17] two genetic algorithm GA-based approaches are proposed. New encoding
schemes and modified genetic operators are used to maintain the feasibility of individuals. The proposed ap-
proach exploited the idea of frozen bits to increase the diversity of genetic algorithm. To improve the computa-
tional time, the authors used the caching technique to avoid the fitness calculation for individuals that reappear
during the GA run. Experiments conducted on both civil aeronautics board (CAB) and Australia post (AP)
benchmark data sets, demonstrated to be robustness and efficiency of the approach in solving the USApHMP
with up to 200 nodes and 20 hubs.

Urošević et al. [18] proposed a new general variable neighborhood search algorithm for solving the
USApHMP. The authors provided three neighborhoods and structures to efficiently computing the network’s
total flow. In addition, the authors proposed a new nested strategy in designing a deterministic variable neigh-
borhood descent local search.

The more recent solution approach of the USApHMP appeared in Benaini et al. [19]. the authors
implemented a parallel genetic algorithm on graphic processing unit (GPU) for solving the problem. Their
approach improved some best-known solutions in cost and in computing times.

The present paper develops a new approach to efficiently solve the USApHMP. The approach is based
on the artificial immune systems (AIS) framework which is a new class of computational intelligence inspired
by the biologic immune system [20]. As point out in [21], AIS is one of the most effective methods to be
used while dealing with optimization problems. It is a sort of population based metaheuristics which is known
for its ability to reach global optimum and avoid local optimums [22]. The most appropriate AIS algorithms
for optimization problems are clonal selection algorithms (CSA) which are based on clonal selection theory
[23]. CSA starts by generating a set of candidate solutions in the form of an initial population, and improves
the features of the population by applying evolutionary operators until a stopping criterion is reached. Its
computational cost is reduced when compared to other evolutionary algorithms [22].

This paper is an extension to the work presented in [24]. In our previous work we provided a summary
about theoretical framework of the artificial immune systems and a detailed review of the clonal selection
algorithm. In this study we provide numerical results to the proposed approach and compare it with existing
methods in the literature.

Accordingly, this paper develops a CSA-based method to solve the USApHMP, which is an adaptation
of the optimization version of the CLONALG algorithm [22]. To the best of our knowledge, this heuristic has
never been used before in solving the USApHMP. Comprehensive experiments and comparison of the proposed
approach with other existing heuristics are conducted on benchmark from civil aeronautics board and Australian
post data sets. Roughly speaking, the proposed approach is compared with: The simulated annealing method
(SA), proposed by Ernst and Krishnamoorthy [15], the hybrid variable neighborhood search VNS and path
relinking PR heuristics presented by [16], Genetic algorithm GAHUB2 proposed by Kratica et al. [17], and the
general variable neighborhood search (GVNS) proposed by [18]. The results obtained allow to demonstrate the
validity and the effectiveness of our approach. In terms of solution quality, the results obtained outperform the
best-known solutions in the literature.

The rest of the paper is structured around 5 sections. Section 2 provides the mathematical formulation
of USApHMP used in this work. A brief overview of artificial immune systems and clonal selection algorithms
is given in section 3. Section 4 describes the proposed approach. Computational results on different problem
instances from the literature are reported in section 5. Conclusions and future research works are summarized
in section 6.
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2. NOTATION AND MAIN WORKING ASSUMPTIONS
This section presents the notation system used and also states the main working assumptions made in

this paper.

2.1. Notation
G Hub network graph model
N Set of nodes of a hub network graph G
A Set of arcs of a hub network graph G
N Number of nodes in hub network graph G
p Number of hubs allocated in a hub network
(i, j) Arcs linking two nodes i and j of G
wij Flow routed in the arc (i, j)
dij Distance between nodes i and j
χ Collection cost per flow and per distance units incurred between a spoke (non-

hub) and hub nodes
α Transfer cost per flow and per distance units defined between hubs
δ Distribution cost per flow and per distance units defined between a hub and a

spoke destination nodes

2.2. Assumptions
− The number of hubs to locate is predetermined (p).
− Hubs are assumed to have unlimited capacities.
− Each origin-destination node is assigned to a single hub.
− Direct link between nodes is not allowed.
− The network is complete.

3. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION
Let us consider a hub network modelled as a complete graph G = (N ,A) where N is the set of

nodes and A is the set of arcs. A note i ∈ N can either be a hub or a spoke (non-hub nodes). To simplify
the notations, nodes are considered as numbered from 1 to cardinality N of N . An arc (i, j) ∈ A (i =
1, · · · , N ; j = 1, · · · , N ) is a link between nodes i and j, respectively, the origin and destination. Each arc
(i, j) ∈ A is characterized by the amount wij of flow to be routed, and a distance dij between nodes i and
j (dii = 0). Three cost rates are considered, namely the collection cost χ defined between origin and hub
nodes, the transfer cost α defined between hubs, in addition to the distribution cost δ defined between hub and
destination nodes.

The uncapacitated single allocation p-hub median problem (USApHMP) considered in the present
work is a variant of the HLP where hubs are assumed to have unlimited capacities and each spoke is assigned
to one and only one hub. Furthermore, the number p of hubs to locate is assumed to be known (exogenous
parameter). The objective of the USApHMP consists to jointly select appropriate hub facilities and to allocate
demand nodes to these selected facilities so that to minimize the transportation costs incurred from collection,
transfer and distribution of the overall flow in the network. To model this optimization problem, we consider a
binary decision variable zij defined as (1):

zij =


1, if node i is allocated to

a hub located at node j,
0, otherwise.

(1)

Accordingly, the objective function is computed as the sum of collection, transfer and distribution
costs as [18]: ∑

i

∑
j

∑
k

∑
l

wij(χ.dij .zik + α.dkl.zik.zjl + δ.djl.zjl) (2)

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2293 – 2306



Int J Elec & Comp Eng ISSN: 2088-8708 r 2297

The resulting USApHMP optimization problem can be then formulated as:

3.1. Model USApHMP

Minimize∑
i

∑
j

∑
k

∑
l

wij(χ.dij .zik + α.dkl.zik.zjl + δ.djl.zjl) (3)

Subject to:∑
i

zii = p (4)

∑
k

zik = 1, ∀i (5)

zik ≤ zkk, ∀i, k (6)

zij ∈ {0, 1}, ∀i, j, (7)

In the above optimization model, the objective function in (3) minimizes the overall transportation
cost. Constraints in (4) ensures that exactly p hubs are located. Constraints given by (5) ensure that all nodes
are hubs or are assigned to a single hub. Finally, constraints in (6) ensures that no node is assigned to a location
unless a hub is opened at that site, which also mean that node to node connection is not allowed in the network.

4. SOLUTION METHOD
The optimization model USApHMP formulated by (3)-(7), is NP-hard. An exhaustive examination

of all possible solutions is therefore not realistic due to the computational time limitation. Meta-heuristic
algorithms are well known approaches for their efficiency and effectiveness to search, in a reasonable amount
of time, the optimal or a near optimal solution of complex combinational problems. Based on the artificial
immune systems (AIS) framework, this paper develops a new approach to efficiently solve the USApHMP
(3)-(7). AIS are computational intelligence algorithms inspired by the natural biological immune systems.
The four known AIS-based algorithms are immune network, negative/positive selection and clonal selection
algorithms. They are all recognized for their powerful adaptive learning and robustness, in addition to their
valuable properties to avoid premature convergence and improve local search [23]. They have indeed been
successfully applied to a large range of domains including classification/clustering, anomaly detection and
pattern recognition [25, 26].

To solve the USApHMP problem, the present paper develops a procedure based on clonal selection
algorithm (CSA). CSA is inspired by the features of clonal selection theories of immune systems and appeared
first in the work by de Castro and Von Zuben [27]. Since then, it has been demonstrated to be an efficient
method to solve multi-modal and combinatorial optimization problems. The CSA is constructed around 7 steps
and processes: Population initialization, affinity evaluation, selection and cloning (proliferation), hypermuta-
tion, receptor editing, convergence and termination condition. Algorithm 1 describes the pseudo code of our
algorithm.

The analogy between the immune system and the algorithm is presented in Table 1. In this Table, an
antigen refers to the value of the objective function, an antibody represents a candidate feasible solution, and
the affinity value refers to the performance measure of an antibody. The affinity represents indeed the degree
of matching between the antibody and the antigen. The detailed design (solution encoding and operators’
definitions, initial population selection, · · · ) of the CSA developed here will be discussed as shown in Table 1.
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Algorithm 1 Pseudo code of the proposed algorithm

Parameters:
MaxIt: Maximum Number of Generations
Psize: Population size
P: Population (Set of antibodies)
Nsel: Number of Abs (Individuals) to select for cloning
N: Number of nodes in the network (bit string length of antibody)
d: Number of random antibodies to replace at the end of each generation (d antibodies with lowest affinity)
Idv: Individuals (Antibodies)
Nc: Number of clones generated by each selected antibody
β :Multiplying factor(user parameter)
Proposed Algorithm:
Input: P , Nsel, N , Nc, d, β
Output: Pf
P ← rand(Psize,N)
while Number of Generation < MaxIt do

for i=1 to Psize do
Calculate objective function value for each individual (Pi)

end for
Pselect← Select(P,Nsel) using SUS selection method
for i=1 to Nsel do
Pclones← Clone(Pi, β)

end for
for i=1 to Pclones do
Interchanging mutation(Pi)
Calculate objective function value for each individual(Pi)

end for
P ← Select(P, Pclones, Psize)
Prand← rand(d,N)
Replace(d, Prand)

end while
Return P
Report the best antibody as the final solution

Table 1. Analogy between natural immune system principles and our developed system
Natural immune system Artificial immune system applied in USApHMP
Antigen The value of the objective function to be optimized
Antibody Candidate feasible solution to the problem
Affinity Degree of matching between an antibody and the antigen
Proliferation of antibody Creation of new antibodies by using of clonal operators

4.1. Solution representation (encoding), and initial population generation
In order to apply the CSA to the stated optimization problem, a specific representation scheme to

encode antibodies is required. In the present work, individual solution (antibody) is represented by a vector s
of integers whose length is given by the number N of nodes in the complete graph G. The ith element of the
vector solution s corresponds to the hub number to which node i is assigned to. To illustrate, let us consider the
solution s :

s = [1 4 7 4 7 4 7 7 1 4 1].

Accordingly, the corresponding hub network is composed of a total of N = 11 nodes among which p = 3
nodes are defined as hubs. The three pre-selected hubs are numbered as 1, 4, and 7. From this representation,
one may observe that each node of the network is linked to the appropriate hub. For example, nodes 2, 6 and
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10 are all linked to hub 4, while nodes 3, 5 and 8 are assigned to hub 7. It is worth noticing that each hub is
assigned to itself.

To generate the initial population, a procedure is developed on the basis of flow quantities emanating
from and destined to a given node. Roughly speaking, the procedure considers the total amount Oi and Di

of flow originating from and destined to a node i (i ∈ N ), respectively. These two quantities are evaluated
as: Oi =

∑
j

wij and Di =
∑
j

wji. The resulting total amount Fi of flows at each node i of the network is

computed as Fi = Oi +Di. The overall nodes are then arranged in a decreasing order of total flows. From the
resulting ordered list, the initial population is then generated in two steps as summarized in the pseudo code of
algorithm 2. From this algorithm,the first step defines the 80% of candidate solutions of the population. For this
part of the population, for each individual we choose in a randomly way p hubs from nodes that represent the
highest total amount of flows in the network. To do this, we sort nodes in a list (flow-list) in decreasing order
of total amount of flows, and we select p hubs from the nodes that are in the range 1...3/4n of the flow-list.
This strategy promotes the nodes that has higher amount of flow to have a higher probability of being selected
as hub. The second step construct the remaining 20% of the population by choosing p hubs randomly from the
entire set of nodes. Once the selection of hubs is achieved, we proceed to the allocation of the remaining spokes
(non-hub nodes) to the established hubs. For each non-hub node i, the located hubs are sorted in ascending
order of distance from i, then i is allocated to the nearest hub. Each established hub is allocated to itself,
following the assumptions of the problem.

Algorithm 2 Population Initialization

Input : N ,p.
Output: Set of feasible solutions.
Calculate the total amount of flow originated and destined to each node: Total-Flowk = Ok +Dk.

Sort the nodes in decreasing order of Total-Flowk values in a list, flow-list.
Hub-Set= Nk|Nk = flow − list[i],∀i, 1 ≤ i ≤ 3

4 ×N.
for i = 1 to ( 45 × popsize) do

Select p hubs from Hub-Set, randomly.
Assign each spoke to the nearest hub based on distance values.

end for
for ( 45 × popsize) + 1 to popsize do

Select p hubs from all nodes randomly.
Assign each spoke to the nearest hub based on distance values.

end for

4.2. Affinity determination
Let us recall that the affinity value of a given candidate solution measures the degree of matching

between antibodies and antigen. In the present work, the affinity of a solution is inverse proportional to the
solution fitness. We use the global cost given by the objective function of the optimization model USApHMP
(3) to evaluate the fitness of each solution. Each solution in the population has a chance of surviving to the
next generation with respect to its affinity level. The affinity value is computed for each solution to conduct the
selection and cloning process.

4.3. Selection and cloning
Selection process is a stochastic procedure, based on the affinity/fitness value of each solution in

the population, used to select the solutions that will move on to the subsequent generation. The stochas-
tic universal sampling (SUS) is employed in this implementation of clonal selection algorithm (algorithm 3),
it was developed as a single-phase sampling algorithm with minimum spread and zero bias. This selection
method is a development of roulette wheel selection strategy (RWS); it uses N equally spaced pointers in-
stead of a single selection pointer (N is the required number of selection), see algorithm 3. In the population,
each individual gets a reproduction probability which depends on his own affinity value and the total affin-
ity of all other individuals. The principle of this method consists to map the individuals to a line, such that
each individual gets a portion of the line which is proportional to its affinity value. Then, a single random
number (pointer1) is generated in the range [0, 1/N ] and N pointers are generated starting with pointer1 and
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spaced by 1/N . The N individuals whose affinity spans the positions of the pointers are selected see Figure 1.
In Figure 1, the selected individuals consist of individuals 1, 2, 3, and 6. Unlike the RWS, this selection method
gives weaker individuals in the population a chance to be selected.

Figure 1. Stochastic universal sampling

Algorithm 3 Stochastic Universal Sampling

Input : The population P , Number of antibodies to select N
Output : The population after selection
sum← 0
pointer ← random[0, 1/N ]
for i=1 to N do
sum← sum+ pi (pi is the probability of selection of antibody Abi)
while sum > pointer do
Ab′i ← Abi
pointer ← pointer + 1

end while
end for
return Ab′1, ..., Ab′N

The antibodies that are selected from the initial population will be cloned directly proportional to
their affinity values. The number of clones generated from each selected antibody depends on the selection
probability of the antibody. The number of clones of a selected antibody i is hereafter denoted as NCi and
computed as:

NCi =

⌊
βNs

ri

⌋
, (8)

where β is a multiplying factor (here β is set to β = 2), ri is the rank of the selected antibody i, and Ns is
the total number of selected antibodies. The function bxc gives the value of the integer nearest to x. From (8)
results a proliferation phenomena according to which for an antibody with high affinity value (i.e. with low
rank) corresponds a high number of clones. Consequently, the selection and cloning process gives to solutions
with low costs (high affinity value) a high chance of being selected and also to be cloned with a high number
of clones.

4.4. Hypermutation operator
Once the cloning process is achieved, the hypermutation operation is carried out on clones. In the

present paper, a two-phase hypermutation method is adopted. This method consists first an interchanging
mutation followed by a scramble mutation. This later is performed only when no affinity improvement is
obtained in the interchanging mutation. To illustrate, let us consider an arbitrary solution vector s from the
clone population. The interchanging mutation consists to choose randomly two elements, say s(i) and s(j) of
the solution vector s, and then to interchange their respective hubs’ values. If the affinity value of the resulting
new solution vector s′ is better than that of the original solution s, then the antibody s is replaced by the new one
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s′. In case of no affinity value improvement, a scramble mutation is then performed on the original antibody s.
The scramble mutation consists to chose randomly a subset of elements and then to scramble or shuffle their
respective hubs’ values. Once again, if the affinity value of the resulting new solution improves that of the
original solution, then the original antibody is replaced by the new one. If the affinity of the solution is not
improved by both hypermutation phases, the original antibody string is conserved as is. Once the hypermutation
process is accomplished, antibodies are sorted with respect to their respective affinity values.

4.5. Receptor editing operator
After the hypermutation process, new antibodies are introduced to ensure population diversity. Ac-

cordingly, a fraction of antibodies with the worst affinity values in the population are eliminated and replaced
by randomly generated newcomers. The purpose of receptor editing operator consists to avoid pre-mature
solution convergence by escaping from local optima.

4.6. Convergence and termination
When the maximum number of generations is reached, the convergence is thought to be attained and

the corresponding solution can be considered as the best one, and the algorithm stops. In the contrary case, the
search process is restarted from step 2 and the improvement process continues.

5. RESULTS AND DISCUSSION
In this section, computational results of the proposed CSA heuristic are provided and compared to the

best results appeared in the literature. The clonal selection algorithm was implemented in MATLAB (2016a)
and experiments are performed on a 2.00 GHz Intel Core IV PC, with 8 GB of RAM.

To compare our approach to the existing works, all experiments are conducted on four different sets
of benchmark instances commonly used in the literature related to the HLP [4, 14]. The first is the well-known
CAB data set provided by the US civil aeronautics board. The CAB data set considers 100 cities in the US and
provides Euclidean distances dijand the amount of flows wij routed between each pair of cities (i, j). Dealing
with CAB data set, three instances with N ∈ 10, 20, 25 nodes and up to p = 4 hubs are selected. For these
instances, the collection and distribution costs rates are equally estimated to χ = δ = 1 while the transfer cost
rate α takes values between 0.2 and 1 (α ∈ [0.2, 1]). The second data set is established within the Australian
postal (AP) delivery system where 200 postal districts in the metro Sydney area are considered. Transportation
costs are proportional to the Euclidian distances dij between two postal districts i and j with a postal flow wij .
Seven instances are also selected where the number N of nodes is such that N ∈ 10, 20, 25, 40, 50, 100, 200
nodes and up to p = 20 hubs. In the AP data set, collection, transfer and distribution costs rates are, respectively,
estimated to χ = 3, α = 0.75 and δ = 2. The third data set is PlanetLab instances which is a real world node-
to-node delay data for performing internet measurements [18]. In these networks, α = χ = δ = 1 and the
distance matrix does not respect the triangle inequality due to missing links. The flow wij is equal to 0 if i
= j and 1 otherwise. The fourth data set concerns the very large size instances with 1000 nodes of the Urand
dataset which was generated by [18]. In these benchmarks, the nodes coordinates were randomly generated
from 0 to 105 and the flow matrix was randomly generated.

The comparison of our approach against the existing works is made on the basis of both CPU time and
solution quality criteria. Solutions quality comparisons is obtained by measuring the gap defined (in percent)
as the absolute value of the ratio:

Gap =
Cost function obtained− Best exiting cost function

Best exiting cost function
(9)

The Standard deviation of the average gap is also calculated:

σ =

√√√√ 1

20

20∑
i=1

(Gapi − aGap)2 (10)

In all experiments conducted hereafter, each test instance was launched 20 times and the elimination
ratio is set at 30% in the Receptor Editing process. The search process is altered whenever the maximum
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number of generations is reached. In what follows, this stoppage criterion is set at 500 and 1000 for small and
large problem instances, respectively.

5.1. Experiments set #1: Case of small to moderate size problems
By using the optimal solution obtained from CPLEX solver as a reference, we will show that our

heuristic based on CSA also provides optimal solutions within a low computation time. For varying values
of the parameters α and that of the number p of hubs, the results obtained for CAB instances are reported in
Tables 2 and 3. For varying values of the number p of hubs, the results obtained for AP instances are given in
Tables 4 and 5. In these tables, E (CPU time) and E (Gap), refer, respectively, to the average CSA computation
time, and the average gap value of the 20 runs performed.

From the results reported in Tables 2, 3, 4, and 5, one may observe that our heuristic method reaches
all previously known optimal solutions for small to moderate instances. From these table, one may also observe
that the computation time is very low and the proposed approach is capable of providing an optimal solution in
less than 1 second for instances with N = 50 nodes. Moreover, the robustness of our method is confirmed as
indicated by the low values of standard deviation. Now that the proposed approach has been validated against
previously published works for small to moderate problem sizes, numerical experiments will be run for large
size problems.

Table 2. Results of experiment #1: Case of CAB instances with N = 20
N p α CPLEX CSA E(CPU time) E(Gap) σ

20 2 0.2 979.087 0.093 0.000 0.000
0.4 1042.566 0.092 0.000 0.000
0.6 1106.044 opt 0.096 0.000 0.000
0.8 1169.523 0.092 0.000 0.000

20 3 1.0 1210.077 0.097 0.000 0.000
0.2 724.538 0.151 0.000 0.000
0.4 847.767 0.153 0.000 0.000
0.6 970.996 opt 0.154 0.000 0.000
0.8 1091.050 0.158 0.000 0.000
1.0 1156.072 0.170 0.000 0.000

20 4 0.2 577.621 0.168 0.027 0.019
0.4 727.099 0.177 0.000 0.000
0.6 869.157 opt 0.180 0.000 0.000
0.8 1008.492 0.200 0.000 0.000
1.0 1111.015 0.222 0.000 0.000

Table 3. Results of experiment #1: Case of CAB instances with N = 25
N p α CPLEX CSA E(CPU time) E(Gap) σ

25 2 0.2 1000.907 0.098 0.000 0.000
0.4 1101.629 0.110 0.000 0.000
0.6 1201.206 opt 0.119 0.000 0.000
0.8 1294.085 0.123 0.000 0.000
1.0 1359.190 0.130 0.088 0.047

25 3 0.2 767.349 0.188 0.000 0.000
0.4 901.699 0.199 0.000 0.000
0.6 1033.565 opt 0.201 0.000 0.000
0.8 1158.831 0.220 0.000 0.000
1.0 1256.630 0.227 0.000 0.000

25 4 0.2 629.634 0.230 0.000 0.000
0.4 787.515 0.233 0.000 0.000
0.6 939.206 opt 0.232 0.000 0.000
0.8 1087.662 0.240 0.098 0.156
1.0 1211.232 0.248 0.112 0.208
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Table 4. Results of experiment #1: Case of AP instances with N ∈ {10, 20, 25}
N p CPLEX CSA E(CPU time) E(Gap) σ

10 2 167493.06 opt 0.044 0.000 0.000
3 136008.13 opt 0.089 0.000 0.000
4 112396.07 opt 0.130 0.000 0.000
5 91105.37 opt 0.166 0.033 0.098

20 2 172816.69 opt 0.098 0.000 0.000
3 151533.08 opt 0.139 0.022 0.068
4 135624.88 opt 0.142 0.000 0.000
5 123130.09 opt 0.199 0.020 0.125

25 2 175541.98 opt 0.120 0.000 0.000
3 155256.32 opt 0.190 0.000 0.000
4 139197.17 opt 0.210 0.000 0.000
5 123574.29 opt 0.289 0.000 0.000

Table 5. Results of experiment #1: Case of AP instances with N ∈ {40, 50}
N p CPLEX CSA E(CPU time) E(Gap) σ

40 2 177471.67 opt 0.199 0.116 0.215
3 158830.54 opt 0.299 0.000 0.000
4 143968.88 opt 0.333 0.000 0.000
5 134264.97 opt 0.457 0.000 0.000

50 2 178484.29 opt 0.366 0.000 0.000
3 158569.93 opt 0.405 0.000 0.000
4 143378.05 opt 0.499 0.000 0.000
5 132366.95 opt 0.699 0.202 0.117

5.2. Experiments set #2: Case of large size problems
In this set of experiments, the proposed approach is applied in large size problems. We will also show

that our heuristic based on CSA provides fast, good and robust solutions. The performance of the proposed
heuristic will be compared to 6 existing heuristic methods: Simulated annealing method (SA) [15], the hybrid
Variable neighbourhood search (VNS) and path re-linking (PR) heuristics [16], Genetic algorithm (GAHUB2)
in [17], the general variable neighborhood search (GVNS) [18] and the parallel genetic algorithm on GPU
(GPU) [19]. In the present experiments, instances are selected from the AP data set where the number of
the nodes N ∈ 100, 200, as shown in Tables 6 and 7 and from PlanetLab data set with up to 414 nodes, see
Tables 8 and 9.

Table 6. Results of experiments #2: Solution quality criteria (case of AP instances)
N p SA VNS-PR GAHUB2 GVSN GPU CSA

100 5 136969.44 136929.44 136929.44 136929.44 136929.44 129020.22
10 106469.57 106469.57 106469.57 106469.57 106469.57 106469.57
15 90605.10 90605.10 90533.523 90533.523 90533.523 90126.122
20 80682.71 80682.71 80270.962 80270.962 80270.962 80270.962

200 5 140409.41 140318.36 140175.645 140062 140062 139976.521
10 111088.33 110955.27 110147.657 110147.657 110147.657 110147.657
15 95460.54 95111.06 94496.406 94459.201 94459.201 94459.201
20 85560.39 85439.92 85129.343 84955.328 84955.328 84955.328

Table 7. Results of experiments #2: Average computation time E (CPU time) criteria (case of AP instances)
N p SA VNS-PR GAHUB2 GVSN GPU CSA

100 5 80.55 0.48 22.108 0.077 1.310 3.245
10 161.86 0.91 40.733 0.666 1.310 3.245
15 279.79 1.32 57.453 3.219 1.49 4.77
20 522.70 1.92 79.200 3.572 1.63 4.98

200 5 399.73 0.86 169.733 5.157 3.602 6.435
10 776.58 1.87 259.142 5.600 3.722 6.675
15 1105.29 2.11 313.017 17.656 3.783 7.74
20 1555.90 3.20 374.751 12.979 3.841 7.85
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Table 8. Results of experiments #2: Solution quality criteria (case of PlanetLab instances)
Instance N p GVSN GPU CSA
01-2005 127 12 2927946 2904434 2904434
02-2005 321 19 18579238 18329984 18278594
03-2005 324 18 20569390 20284132 20284132
04-2005 70 9 739954 730810 720945
05-2005 374 20 25696352 25583240 25583240
06-2005 365 20 22214156 22191592 22191592
07-2005 380 20 30984986 30782956 30782956
08-2005 402 21 30878576 30636170 30387655
09-2005 419 21 32959078 32649752 32649752
10-2005 414 21 32836162 32687796 32687796
11-2005 407 21 27787880 27644374 27644374
12-2005 414 21 28462348 28213748 28213748

Table 9. Results of experiments #2: Average computation time E (CPU time)
criteria (case of PlanetLab instances)

Instance N p GVSN GPU CSA
01-2005 127 12 148.9 0.5 1.87
02-2005 321 19 462.7 6.9 8.98
03-2005 324 18 543.8 7.5 8.65
04-2005 70 9 0.6 0.3 1.12
05-2005 374 20 622.6 8.3 12.54
06-2005 365 20 581.7 7.9 11.42
07-2005 380 20 546.6 8.5 12.54
08-2005 402 21 637.6 8.7 12.88
09-2005 419 21 684.9 9.3 13.23
10-2005 414 21 731.9 9.1 13.77
11-2005 407 21 588.3 9.2 12.75
12-2005 414 21 680.3 9.1 13.14

5.3. Experiments set #3: Case of very large size problems
We also compare our heuristic method with the GVNS and GPU on very large instances from Urand

data set with 1000 nodes generated by [18], as shown in Tables 10 and 11.

Table 10. Results of experiments #3: Solution quality criteria
N p GVSN GPU CSA

1000 2 198071412.53 8184986.50 7889215.78
3 169450816.35 7024184.00 7024184.00
4 150733606.87 6184749.01 6184749.01
5 142450250.26 5860994.06 5018955.03
10 114220373.07 4752317.00 4752317.00
20 92883250.98 3928617.48 3928617.48

Table 11. Results of experiments #3: Average computation time E (CPU time) criteria
N p GVSN GPU CSA

1000 2 1.7245 9.321 11.122
3 8.1550 9.785 11.896
4 2.2240 10.431 13.125
5 58.6070 10.89 13.895

10 187.8385 13.7 18.231
20 403.4280 17.923 25.875

By analyzing the above results, we conclude that our CSA method is more robust than other related
methods for large sized problems, see the number of times it reached the best solution. In regards to small
sized problems, the results of our approach are similar to those existed in the literature, but when the problem
size increases our proposed heuristic enhances the results of GVNS and GPU in terms of solutions quality.
Moreover, we could improve the best-known solution for eight instances in total.
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6. CONCLUSION
In this paper we develop a clonal selection algorithm for solving the Uncapacitated single allocation

p-Hub median problem. The clonal selection algorithm mimics the clonal selection principles in improving the
affinity of individuals through generations in order to achieve the near optimal solution. The computational
results state that our CSA method is more robust than other related methods for large sized problems, see the
number of times it reached the best solution. In regards to small sized problems, the results of our approach are
similar to those existed in the literature, but when the problem size increases our proposed heuristic enhances
the results of GVNS in terms of solutions quality. Moreover, we could improve the best-known solution for six
instances in total. The main contributions of this paper can be summarized as: i) To our best knowledge, CSA is
applied to the USApHMP for the first time; ii) A new different selection method “Stochastic universal sampling
“is used which is a development of the roulette wheel selection strategy (RWS) usually used in the literature;
iii) An appropriate encoding scheme is used, which keep the feasibility of solutions through generations; and
iv) Quality solution was enhanced for six instances.

In the future, we will concentrate on extending our heuristic method on an other more complex hub
location problem model, which captures real life circumstances more effectively. The model will take into
account the perishability nature of transported products in the network, i.e., the products have to be routed to
their customers through the hub network in a limited time.
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