4,101 research outputs found

    Radar sounding using the Cassini altimeter waveform modeling and Monte Carlo approach for data inversion observations of Titan's seas

    Get PDF
    Recently, the Cassini RADAR has been used as a sounder to probe the depth and constrain the composition of hydrocarbon seas on Saturn's largest moon, Titan. Altimetry waveforms from observations over the seas are generally composed of two main reflections: the first from the surface of the liquid and the second from the seafloor. The time interval between these two peaks is a measure of sea depth, and the attenuation from the propagation through the liquid is a measure of the dielectric properties, which is a sensitive property of liquid composition. Radar measurements are affected by uncertainties that can include saturation effects, possible receiver distortion, and processing artifacts, in addition to thermal noise and speckle. To rigorously treat these problems, we simulate the Ku-band altimetry echo received from Titan's seas using a two-layer model, where the surface is represented by a specular reflection and the seafloor is modeled using a facet-based synthetic surface. The simulation accounts for the thermal noise, speckle, analog-to-digital conversion, and block adaptive quantization and allows for possible receiver saturation. We use a Monte Carlo method to compare simulated and observed waveforms and retrieve the probability distributions of depth, surface/subsurface intensity ratio, and subsurface roughness for the individual double-peaked waveform of Ligeia Mare acquired by the Cassini spacecraft in May 2013. This new analysis provides an update to the Ku-band attenuation and results in a new estimate for its loss tangent and composition. We also demonstrate the ability to retrieve bathymetric information from saturated altimetry echoes acquired over Ontario Lacus in December 2008

    Structure and Dynamics of the Quasi-Liquid Layer at the Surface of Ice from Molecular Simulations

    Full text link
    We characterized the structural and dynamical properties of the quasi-liquid layer (QLL) at the surface of ice by molecular dynamics simulations with a thermodynamically consistent water model. Our simulations show that for three low-index ice surfaces only the outermost molecular layer presents short-range and mid-range disorder and is diffusive. The onset temperature for normal diffusion is much higher than the glass temperature of supercooled water, although the diffusivity of the QLL is higher than that of bulk water at the corresponding temperature. The underlying subsurface layers impose an ordered template, which produces a regular patterning of the ice/water interface at any temperature, and is responsible for the major differences between QLL and bulk water, especially for what concern the dynamics and the mid-range structure of the hydrogen-bonded network. Our work highlights the need of a holistic approach to the characterization of QLL, as a single experimental technique may probe only one specific feature, missing part of the complexity of this fascinating system.Comment: 6 Figure

    Asymptotic wave-splitting in anisotropic linear acoustics

    Full text link
    Linear acoustic wave-splitting is an often used tool in describing sound-wave propagation through earth's subsurface. Earth's subsurface is in general anisotropic due to the presence of water-filled porous rocks. Due to the complexity and the implicitness of the wave-splitting solutions in anisotropic media, wave-splitting in seismic experiments is often modeled as isotropic. With the present paper, we have derived a simple wave-splitting procedure for an instantaneously reacting anisotropic media that includes spatial variation in depth, yielding both a traditional (approximate) and a `true amplitude' wave-field decomposition. One of the main advantages of the method presented here is that it gives an explicit asymptotic representation of the linear acoustic-admittance operator to all orders of smoothness for the smooth, positive definite anisotropic material parameters considered here. Once the admittance operator is known we obtain an explicit asymptotic wave-splitting solution.Comment: 20 page

    Preparation of atomically clean and flat Si(100) surfaces by low-energy ion sputtering and low-temperature annealing

    Full text link
    Si(100) surfaces were prepared by wet-chemical etching followed by 0.3-1.5keV Ar ion sputtering, either at elevated or room temperature. After a brief anneal under ultrahigh vacuum conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(100) surface. However, subsequent 300eV Ar ion sputtering at room temperature followed by a 973K anneal yields atomically clean and flat Si(100) surfaces suitable for nanoscale device fabrication.Comment: 13 pages, 3 figures, to be published in Applied Surface Scienc

    Fracture patterns and petrophysical properties of carbonates undergoing regional folding : A case study from Kurdistan, N Iraq

    Get PDF
    Acknowledgements The authors thank the Ministry of Natural Resources in Iraqi Kurdistan Region for permission to publish this paper. Gulf Keystone Petroleum Ltd. and HKN Energy Ltd. are acknowledged for providing the subsurface datasets. Great thanks to Colin Taylor at the University of Aberdeen for his assistance in the laboratory work. Thoughtful reviews by two anonymous referees improved the clarity of the paper. Graham Banks is thanked for his helpful and constructive review on a late version of the manuscript, which has significantly improved this paper.Peer reviewedPostprin

    Comparison of the bidirectional reflectance distribution function of various surfaces

    Get PDF
    Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared

    Dependence of inner-shell vacancy production upon distance in hard Li-Al collisions

    Get PDF
    We match the predictions of molecular-dynamics simulations of 1.2 keV and 2.0 keV 7Li+ scattered from Al(100) to observed total Li atom spectra measured by time-of-flight spectroscopy. In doing so we determine the relevant parameters in a simple distance of closest approach model for the probability of production of single and double vacancies in the Li 1s shell during hard Li-Al collisions. In the standard Fano-Lichten model of vacancy production, vacancies are produced with unit probability if the collision is hard enough to force the collision partners past some critical distance of closest approach. We find that such an assumption is insufficient to fit our simulations to experimental observations, and that we must allow for a gradual turning on of the vacancy production probability as the distance of closest approach decreases. The resulting model may be useful in modeling atomic excitation effects in simulations of other ion-impact processes

    Characteristics of the electric field accompanying a longitudinal acoustic wave in a metal. Anomaly in the superconducting phase

    Full text link
    The temperature dependence of the amplitude and phase of the electric potential arising at a plane boundary of a conductor when a longitudinal acoustic wave is incident normally on it is investigated theoretically and experimentally. The surface potential is formed by two contributions, one of which is spatially periodic inside the sample, with the period of the acoustic field; the second is aperiodic and arises as a result of an additional nonuniformity of the electron distribution in a surface layer of the metal. In the nonlocal region the second contribution is dominant. The phases of these contributions are shifted by approximately \pi /2. For metals in the normal state the experiment is in qualitative agreement with the theory. The superconducting transition is accompanied by catastrophically rapid vanishing of the electric potential, in sharp contrast to the theoretical estimates, which predict behavior similar to the BCS dependence of the attenuation coefficient for a longitudinal sound.Comment: 9 pages, 6 figure

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples
    corecore