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Abstract 

The Zagros-Taurus fold and thrust belt hosts a prolific hydrocarbon system. Most 

hydrocarbon reserves are stored in naturally fractured reservoirs and such fracture systems 

can therefore have a significant impact on reservoir performance. Fractures are one of the 

most important paths for fluid flow in carbonate reservoirs, and industrial geoscientists and 

engineers therefore need to understand and study fracture patterns in order to optimise 

hydrocarbon production. The observed fracture patterns in outcrops may have implications on 

fluid flow and reservoir modelling in subsurface reservoirs, and we have therefore undertaken 

a case study of fracturing associated with regional folding in Iraqi Kurdistan. In this area, 

some exploration wells currently target Upper Triassic dolostones (Kurra Chine Formation) 

and/or Lower Jurassic limestones and dolomitised limestones (Sehkaniyan Formation). In 

both units hydrocarbon production comes mainly from secondary porosity created by 

dolomitisation, dissolution and fracturing. Both formations have undergone multiple phases of 
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deformation associated with burial, uplift, folding and thrusting. We investigate some fracture 

pattern characteristics and some petrophysical properties of these units using selected 

outcrops around the Gara, Ora and Ranya anticlines that form folds directly traceable for 25-

70 km. Our outcrop data is compared with subsurface fracture and petrophysical datasets 

reported from wells in the nearby Shaikhan and Swara Tika Fields. The 1-2-3D fracture 

attributes collected from outcrops are fracture orientation, type, spacing, intensity, length and 

cross-cutting and abutting relationships. Fracture orientations show a clear relationship to the 

local fold axis in both the outcrop and subsurface, although in some cases they appear to 

relate more to the present day in-situ maximum horizontal stress direction or local strike-slip 

faulting. Three stages of fracturing are proposed: pre-folding, early-folding and post-folding 

fractures. In addition, we report petrophysical properties - porosity, permeability and acoustic 

velocity of both the Kurra Chine and Sehkaniyan formations in relation to their structural 

position within folds and faults and stratigraphic level. The highest porosities and 

permeabilities are recorded in the hinges and backlimbs of the Gara Anticline. The best 

reservoir quality (highest porosity and permeability) is often found in areas associated with 

replacement dolomite i.e. solution vugs and intercrystalline porosity. The Kurra Chine 

Formation displays similar trends in velocity-porosity data at both outcrop and the subsurface. 

However, the Sehkaniyan Formation displays lower acoustic velocity for a given porosity at 

outcrop compared to the subsurface.  

 

Keywords: fracture; petrophysical properties; Zagros; Kurdistan; Iraq 
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1. Introduction 

Fractures are one of the most important paths for fluid flow in carbonate reservoirs. Natural 

fracture systems can have a dramatic impact on reservoir performance and can act as 

permeable flow conduits or as baffles and seals (Bourne et al., 2000; Agosta, 2008). Outcrop 

analogue studies can improve understanding of some aspects of fracture distributions and 

their influence on fluid flow in fractured reservoirs (e.g. Antonellini and Mollema, 2000; 

Aydin, 2000; Nelson, 2001; Stephenson et al., 2007; Lacombe et al., 2011) and their influence 

on petrophysical properties such as porosity and velocity (Nemati and Pezeshk, 2005; Healy 

et al., 2015). However, the scaled outcrop data should be used with care in order to improve 

reservoir modelling and constrain uncertainties (Sharp et al., 2006; Wennberg et al., 2006; Barr et 

al., 2007; Lapponi et al., 2011). For example, the processes that have affected fracture 

generation at outcrop such as uplift, gas expansion, and erosion would not have occurred at 

depth, and is not therefore relevant to deeper reservoirs. 

The Zagros mountain belt is a prolific petroleum province with several producing oil 

and gas fields (e.g. Cooper, 2007). Numerous outcrop analogue studies of fractured reservoirs 

have been undertaken, describing fracture patterns in the Zagros fold and thrust belt, 

especially in Iran (e.g. Wennberg et al., 2006; Ahmadhadi et al., 2008; Stephenson et al., 

2007; Casini et al., 2011; Lacombe et al., 2011; Tavani et al., 2011). Reservoirs are mainly 

fractured carbonates developed at a variety of stratigraphic levels. Many studies show that 

fracture pattern is controlled by mechanical stratigraphy and petrophysical properties such as 

porosity (e.g. McQuillan, 1973; Huang and Angelier, 1989; Underwood et al., 2003; Nemati 

and Pezeshk, 2005; Wennberg et al., 2006). In a study of folded carbonate units in SW Iran, 

Wennberg et al. (2006) suggest that the spatial distribution of fractures is a multivariate 

problem, where fracture attributes such as orientation, length, spacing and apertures are 

functions of position within the fold, sedimentary texture and mechanical bed thickness. 
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Fracture patterns could also be controlled by the evolution of fluid pressures during burial and 

evolution of the stress field during unroofing (uplifting). 

The fracture patterns and petrophysical properties of potential carbonate reservoirs are 

investigated within Iraqi Kurdistan, as represented by the Sehkaniyan Formation (Lower 

Jurassic) and the Kurra Chine Formation (Upper Triassic) (Figs. 1a, 1b, 2). The outcrop 

fracture datasets are mainly collected in E-W trending structures and nearby subsurface oil 

fields. These localities are chosen because of the outcrop exposures of the studied units. In 

this paper, we focus on the potential control that regional anticlines may exert on the fracture 

patterns and petrophysical properties of folded and fractured carbonates. Reservoir units are 

analysed in outcrops around regional folds comprising the Gara, Ora and Ranya anticlines, 

and in the subsurface within the Shaikhan and Swara Tika oil fields (Figs. 1a, b). The Gara 

Anticline is studied because it is regarded as viable outcrop analogue to the nearby Shaikhan 

and Swara Tika fields, whereas the Ora and Ranya anticlines were selected as supplementary 

outcrops as they exhibit good exposures of the Kurra Chine and Sehkaniyan formations, 

respectively.  

 

2. Geological setting 

2.1. Tectonics 

The Zagros-Taurus fold and thrust belt is situated along the NE margin of the Arabian Plate. 

It has developed as a consequence of the oblique collision between the Arabian and the 

Eurasian plates (Homke et al., 2004; Homke et al., 2009), reflecting gradual closure of the 

NeoTethys Ocean mainly during Late Cretaceous–Cenozoic times (Talbot and Alavi, 1996). 

The onset of Arabian–Eurasian plate collision, and associated folding and thrusting of the 

Zagros Orogeny started in the Oligocene and is still active (Fard et al., 2006). The Zagros 
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orogenic belt in Kurdistan can be divided into five distinct structural zones, that from the NE 

hinterland to the SW foreland, and are named the: Zagros Suture, Imbricated Zone, Highly 

Folded Zone, Foothill Zone and Mesopotamian Foreland Basin (Jassim and Goff, 2006) (Fig. 

1a). The Imbricate and Highly Folded zones are characterised by major surface-breaching, 

mainly SW-verging thrust-related anticlines, whereas major folds above blind thrusts 

characterise the Foothill Zone (Awdal et al., 2013). The orientation of fold axes in the study 

area varies from NW-SE Zagros (e.g. Ranya Anticline) to WNW-ESE Taurus trends (e.g. 

Gara and Swara Tika anticlines) (Fig. 1b). 

The structural style of the Zagros-Taurus fold and thrust belt in Iraqi Kurdistan is 

characterised by thin- and thick-skinned tectonics (Kubli and McKenna, 2013), and is 

segmented due to the interaction of the exposure level and variations in decollement levels 

along strike (Granath and Odell, 2014). The stratigraphy is dominated by competent to 

incompetent carbonate units interbedded with detached intervals of incompetent siliciclastic 

rocks often bearing evaporite beds. The main thin-skinned detachment levels occur in the 

Lower Fars (Neogene), the Gercus-Kolosh (Palaeogene), the Jurassic, and the Baluti (Upper 

Triassic). In addition, thick-skinned detachment levels are likely to occur at one or more 

deeper levels within the Palaeozoic (e.g. Ora Shale) (Granath and Odell, 2014). This 

stratigraphic architecture sets up a structural style composed of ramps cutting across the 

competent carbonates, and flats running along incompetent units (Al-Breefkani, 2008; 

Granath and Odell, 2014). Duplexes are formed by a group of ramps and comprise narrow 

repeated fault slices that build structural relief. The floor thrust is the lower detachment below 

the duplex, whereas a possible passive roof fault is the upper detachment which isolates the 

duplex from an overlying carapace of less deformed rocks (Al-Breefkani, 2008; Granath and 

Odell, 2014). In south-eastern Iraqi Kurdistan, the surface structures are decoupled from the 

more complex subsurface structures by multiple thrust sheets. Folding, faulting and uplift of 
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early formed thrust sheets took place during progressive structural thickening of the orogenic 

wedge. The orogenic wedge itself is characterised by a stack of nappes and hinterland-

dipping, connecting splay duplexes (Banks, 2013). Basement blocks are possibly involved in 

the thick-skinned tectonic phase and there is most likely reactivation along some of the pre-

existing Late Cretaceous extensional faults (Kubli and McKenna, 2013).  

Gara and Shaikhan are asymmetrical double-plunging anticlines with N-directed 

vergence and WNW-ESE and E-W orientated fold axes, respectively. Conversely, Swara Tika 

is an asymmetrical double-plunging anticline (i.e. pericline) with S-directed vergence and a 

WNW-ESE orientated fold axis. The Ora Anticline is an asymmetrical, cylindrical and open 

fold with S-directed vergence and E-W orientated fold axis. The Ranya Anticline is 

asymmetrical with NE-directed vergence and a NW-SE oriented fold axis. The Gara, Ranya, 

Shaikhan and Swara Tika anticlines are all located within the Highly Folded Zone, whereas 

the Ora Anticline is positioned within the Imbricated Zone of the Zagros-Taurus fold and 

thrust belt. These anticlines display a range of geometrical similarities and differences, in 

terms of structural styles and fractured reservoir characteristics. 

 

2.2. Stratigraphy 

The studied stratigraphic units are the Upper Triassic Kurra Chine and Lower Jurassic 

Sehkaniyan formations (Figs. 1b, 2). Both units are considered as good reservoirs in recent 

discoveries within Kurdistan, and contain hydrocarbons within the Shaikhan, Atrush and 

Swara Tika fields (Figs. 1a, b). The subsurface equivalents to the Sehkaniyan Formation in 

Iraq are the Alan, Mus and Adaiyah formations (van Bellen et al., 1959) (Fig. 2). 

The Kurra Chine Formation was deposited during the Late Triassic within the Kand 

and Qara Chauq sub-basins of northern Iraq (Sadooni, 1995). The Kurra Chine Formation is 
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assigned to the Kand Basin (Carnian-Norian) which covers an area of 10,000 km2 in northern 

Kurdistan (Sadooni, 1995). Well data indicates a maximum sediment thickness of up to 1000 

m in the basin. The thickness is varied in outcrops and this variation is possibly due to 

dissolution of evaporite beds (Aqrawi et al., 2010). Sedimentation was affected by basement 

block faulting, the initiation of NeoTethys rifting and by arid and semi-arid climate conditions 

(Sadooni, 1995). During the Late Triassic, the main tectonic events were passive subsidence 

and minor extension. The Early Jurassic rocks were continuously deposited over the Triassic 

rocks (Sissakian, 2013). According to microfacies analysis, the Sehkaniyan Formation was 

deposited in shallow open and restricted marine facies on a carbonate platform ramp (Jassim 

and Goff, 2006).  

The Kurra Chine Formation is best exposed at its type locality along the northern flank 

of the Ora Anticline (Figs. 1a, b). Here, the thickness of the unit is 834 m and comprises 

dolomitised carbonates. On the southern limb of the Ora Anticline, the entire Kurra Chine 

section is represented by crystalline dolomites and limestones (van Bellen et al., 1959). It 

crops out in a few other localities such as in the core of the Gara Anticline. At outcrop, the 

unit consists of alternating thin-bedded and thick-bedded limestones, with intercalations of 

thick-bedded foetid dolomites showing slump-structures, and of papery shales. Breccia beds 

at the type section were interpreted as being formed by dissolution and recrystallization of 

evaporites by meteoric waters (van Bellen et al., 1959). This interpretation is supported by the 

presence of thick evaporite intervals in the subsurface (Aqrawi et al., 2010). The Kurra Chine 

Formation was possibly deposited on an epeiric platform, dominated by subtidal to supratidal 

cycles with the local development of sabkhas (Aqrawi et al., 2010). However, there are well 

developed black shales reported in some subsurface wells, and these may have been deposited 

in restricted intrashelf basins such as the Kand Basin (Sadooni, 1995; Aqrawi et al., 2010). 
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The Sehkaniyan Formation (Lower Jurassic) is exposed in the hinges of many 

anticlines in Kurdistan, and forms the core of Gara and Ranya anticlines, where it defines an 

upstanding ridge along the hinge of the Gara Anticline. It is up to 350 m thick and consists of 

foetid, saccharoidal dolomites and dolomitised limestones. These locally contain chert, and 

organic and pellety limestones (locally dolomitised), with silicified fossils and pseudo 

breccias. The breccias were probably formed by the dissolution of evaporites (van Bellen et 

al., 1959; Aqrawi et al., 2010). The lower part of the Sehkaniyan Formation was deposited in 

a restricted carbonate platform facies (Aqrawi et al., 2010) while the middle and the upper 

parts are euxinic (Buday, 1980).  

 

3. Summary of the studied fracture elements 

Some fundamental controls on carbonate fracturing are burial, diagenesis, dolomitisation, 

hydrocarbon fluid expansion, overpressure, proximity to pre-existing faults, evolution of 

mechanical and fracture stratigraphies, mechanical anisotropy and overburden removal. 

Therefore, the timing of the numerous fracture generations and the fundamental deformation 

mechanisms of an evolving fold-thrust belt is crucial. In order to fully discern the evolution of 

the fracture system, it would require analysis of carbonate sedimentology, paragenesis, fluid 

evolution, modelling of burial and uplift magnitudes and timing etc. However, this paper is 

only assessing some aspects of present-day fracture patterns (Table 1). In this paper, joints are 

the studied fracture type as they are common structures in all study areas. The scope of this 

paper is narrower than other fracture studies in fold-thrust belts that cover pre-folding joints 

(Bergbauer and Pollard, 2004), fracture intensity versus mechanical stratigraphy (Wennberg 

et al., 2006), fracture density and surface curvature (Bergbauer, 2007; Cosgrove, 2015) and 

the role of mechanical anisotropy and curvature on fracture development (Stephenson et al., 
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2007). The current study is time and outcrop constrained compared to these other fracture 

studies. 

Fractures in fold-thrust belts can be generated either pre-folding or post-folding (e.g. 

Bellahsen et al., 2006; Ameen et al., 2010) (Fig. 3), and can be distinguished using criteria 

such as relation between fracture orientations and the fold axis, fracture dip angle with respect 

to bedding, and others. Extensional fractures may develop on the outer arcs of flexural slip 

folds. In addition, some fractures may not be of the same age as contractional folds. The 

proposed conceptual model in this study may only be applicable to the studied anticlines and 

not beyond. Because folded structures are the focus of this paper, the fractured carbonates are 

studied at different structural positions of the folds, but not further away from these folds. The 

solution of limestones and evaporites may reduce fracture width, and hence reduce 

connectivity and permeability. However, dolomitisation enhances matrix porosity due to 

formation of intercrystalline porosity, and when dolomitisation is structurally controlled, it 

develops good reservoir quality facies in the vicinity of faults and fracture corridors. Faults 

and fractures act as fluid-migration pathways and they are the main controls on vuggy 

porosity distribution during deep burial (Lønøy, 2006).  

 

4. Methods and Data 

4.1. Outcrop data 

Field work was conducted in outcrops of the Kurra Chine and Sehkaniyan formations around 

the Gara, Ora and Ranya anticlines (Figs. 1a, b). These folds are chosen because of the 

outcrop exposures of the studied units. Both formations are regarded as fractured reservoir 

units with hydrocarbon shows in several boreholes in the region. One-dimensional line 

sampling (scanlines) was used for outcrop data collection, following the methodology of 
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Priest (1993). This sampling technique requires a well-exposed, bedding surface or planar 

rock face that is large relative to the size and spacing of the exposed fractures. Each scanline 

was marked with a measuring tape, and was around 30 m long. In order to reduce the 

directional sampling bias, the scan lines were set up perpendicular to fractures. The reported 

fracture data were measured from 15 scanlines on bedding planes at different localities around 

the Gara, Ora and Ranya anticlines. These localities were carefully chosen in order to collect 

representative data from different structural positions in each fold, i.e. the forelimb, backlimb 

and hinge areas of each fold. Data sampled along each scanline includes: fracture spacing, 

fracture strike and dip, fracture length, fracture type and type of fracture termination (covered, 

termination in intact rock or fracture tips abutting against other fractures). In order to compare 

fracture orientations to the local fold axis and investigate if there is a pre-folding fracture 

family, fractures are back-tilted until associated bedding is restored to the horizontal. Bedding 

dip removal is required to determine the original set of fractures that could have been subject 

to a later regional folding event. It is also required to study the relation between pre-folded 

fracture orientation and the incipient compression or shortening direction of a later formed 

fold. 

Fracture orientation data were graphically presented by using stereograms to describe the 

fracture surface as planes in 3D, and rose diagrams to illustrate the trend of the fracture strikes 

in 2D. Furthermore, the sampling bias of fracture densities from directional scanlines was 

corrected using the Terzaghi correction (Terzaghi, 1965). 

 

4.2. Subsurface data 

Subsurface datasets were analysed from the Shaikhan and Swara Tika fields, as they are close 

to outcrop analogues of the Gara Anticline. Wireline and image log datasets were analysed 

from the Shaikhan Field (vertical wells SH-1, SH-2 and SH-4) and the Swara Tika Field 
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(deviated wells ST-1 and ST-2) (Figs. 1a, b). The image logs were calibrated for depth to 

available drill core by using wireline logs such as spectral gamma ray, density and neutron 

logs. Fracture dip is measured relative to horizontal, with the formation dip being rather low 

because the wells are located near the crests of the anticlines.  

 Image logs provide information about the location and orientation of fractures in the 

reservoirs. Resistivity borehole images such as Formation Micro Imager (FMI) and Extended 

Range Micro Imager (XRMI) were used for fracture interpretation in Techlog software 

(Schlumberger Ltd., 2013). The image log raw and processed data (i.e. DLIS files) are used 

for fracture interpretation. No depth shift correction was applied to the datasets because the 

image log depth matched with the wireline depth. Pad images were created and oriented 

relative to the north of the borehole. Static and dynamic image logs were generated by 

applying different normalisation to the image. Electrically conductive features appear dark on 

resistivity images, while electrically resistive features appear bright, and hybrid features 

appear dark and bright. Natural fractures were manually picked and interpreted as potentially 

open fractures (conductive features), potentially mineralised fractures (resistive features) and 

part-open part-mineralised fractures (hybrid features). 

In addition, density and sonic logs were used to quantify porosity and acoustic 

velocity from wells SH-1 and ST-1 using a script written in Matlab software (The MathWorks 

Inc., 2013). The plotted porosity and acoustic velocity data represent fluid saturated intervals. 

 

4.3. Laboratory work 

In order to measure porosity, permeability and acoustic velocity, a total of 65 core plugs 

measuring 2.54 cm in diameter and varying in length between 2.54 and 5.08 cm were drilled 

from 57 outcrop samples, collected around the Gara, Ora and Ranya anticlines. All core plugs 

were initially washed with water and then dried in an oven at 40oC for 24 hours in order to 
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remove water trapped in pores. Porosity was then measured using helium in a porosimeter. 

Permeability was measured using nitrogen in a Hassler sleeve permeameter. To investigate 

the impact of burial depth, core plug permeability was also measured in a confining pressure 

permeameter using nitrogen gas as pore fluid. All measurements were run at room 

temperatures ranging between 18-22oC. P-wave velocity was measured using a digital 

oscilloscope and a pulse generator. For acoustic velocity measurement, a frequency of 100 

and 1000 kHz were used. The petrophysical properties of outcrop core plugs were measured 

under dry sample conditions. It should be noted that these differ from porosity and acoustic 

velocity data measured from wireline logs, which are considered to be fluid saturated.  

We now describe the results of the analysis of fracture patterns and petrophysical 

properties from each of the outcrop study areas: Gara, Ora and Ranya anticlines, together with 

the Shaikhan and Swara Tika sub-surface fields. 

 

5. Gara Anticline 

The Gara Anticline is located about 55 km east-north-eastwards from Duhok City within the 

Highly Folded Zone of the Zagros fold and thrust belt (Figs. 1a, b). It is a WNW-ESE 

trending asymmetrical and double-plunging anticline. The Gara Anticline is a regional fold 

traceable for 72 km along its length, and is up to 10 km in width as marked by the closure of 

competent Aqra Formation. The structure verges towards the north, with several local thrust 

faults displaying top toward the south displacement. The northern flank of the anticline is also 

cut by several faults that form deep narrow gorges through the Pila Spi, Aqra and Sehkaniyan 

carbonate formations. The core of the anticline is accessible through the Derash and Garagu 

Gullies and comprises Kurra Chine, Baluti (Upper Triassic) and Sarki Formations (Lower 

Jurassic). The dip of stratigraphic units in the northern flank increases gradually towards the 
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lower stratigraphic levels, with the dip of the Jurassic units abruptly increasing to nearly 

vertical due to thrust faulting as observed at outcrop.  

 

5.1. Fracture orientation and intensity in the Gara Anticline 

Fracture datasets were collected from three localities within the Kurra Chine Formation 

exposed around the Gara Anticline. These localities are situated in the forelimb (KC-1); hinge 

(KC-2) and in the backlimb (KC-3) of the fold (Fig. 4a). Fracture attributes such as 

orientation, intensity and type were measured at each of these localities. Locality KC-1 is 

positioned north of the axial trace of the Gara Anticline. Bedding dips gently (~22o) towards 

the north and is considered to form part of the forelimb of the Gara Anticline. Joints and veins 

are the most common fracture types (Figs. 4b, c). Most fracture dips are sub-perpendicular to 

bedding, allowing fracture sets to be characterised according to their trend. Four sets of 

fractures were observed at this locality trending: (i) WNW-ESE; (ii) ENE-WSW; (iii) NNE-

SSW and (iv) NE-SW (Fig. 5a). The first two fracture sets dominate the outcrop. Fractures 

strike NNE-SSW are perpendicular to the fold axis. Fracture intensity or 1D fracture density 

is the number of fracture intersections per unit length along a scanline, and it is referred to as 

P10 (m-1) (Dershowitz and Herda, 1992; Aliverti et al., 2003). The measured fracture intensity 

(P10) at this locality is 5.12 m-1. This intensity value represents all fracture sets. In addition, 

tectonic stylolites were observed cross cutting other fractures that now contain bitumen.  

Locality KC-2 is 2.5 km to the east of locality KC-1 in the hinge zone of the Gara 

Anticline (Fig. 5a). Bedding is almost horizontal (~5o) reflecting its position at the crest of the 

anticline. Some fractures are veins that are partially filled with calcite and oriented NNE-

SSW. A dominant fracture set striking WNW-ESE was observed in the outcrop (Fig. 5a). 

Locality KC-3 is about 4 km further east from locality KC-2 and lies on the backlimb of the 

Gara Anticline. This locality exposes the Kurra Chine Formation (Fig. 4b). Bedding dips 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

moderately to the south (~48o) and fractures are oriented in NE-SW, NW-SE, N-S and E-W 

directions (Fig. 5a). Bedding-parallel shear fractures (veins) have been observed at all 

localities, while bitumen was noted along some fractures, and in particular at locality KC-1. 

The WNW-ESE fracture set parallels the fold axis while the NNE-SSW set is oriented 

perpendicular to the fold axis (Fig. 5a).  

The Sehkaniyan Formation is a massive carbonate that does not display well defined 

bedding surfaces or smooth rock faces for fracture studies. Nevertheless, fracture orientation 

data and rock samples were collected at four localities around the Gara Anticline. These 

include the forelimb (SK-1, SK-2) and the backlimb (SK-3, SK-4) of the fold (Figs. 5a, b). 

Fractures in the Sehkaniyan Formation are dominantly oriented E-W and N-S, with a minority 

of NE-SW and NW-SE orientations (Fig. 5a). The majority of fractures are joints which are 

sub-perpendicular to the bedding, while others are layer-oblique fractures. In some cases they 

form conjugate sets whose acute angle is bisected by the shortening direction, such as those at 

locality SK-2 (Fig. 5a). Hydrocarbon in the form of bitumen has invaded the partly cemented 

fractures and vugs in the damage zones of thrust faults within the Sehkaniyan Formation 

(Figs. 4d, e), and will be discussed in more detail in relation to implications for fracture 

timing. Furthermore, tectonic stylolites were also observed to contain bitumen and cross cut 

other fractures. This is particularly observed at locality SK-2 within the damage zone of a 

thrust fault associated with top to the south displacement (Figs. 5a, b). 

The observed NNE-SSW fractures strike perpendicular to the fold axis in the Gara 

Anticline. This fracture set is partially cemented with calcite and is hydrocarbon stained. 

Another hydrocarbon stained fracture set is observed along and within the damage zone of the 

E-W striking thrust faults. These observations may have implications for reservoir 

connectivity in the subsurface. Furthermore, stress release during uplift and weathering are 

likely to enhance the differences in fracture patterns between the surface and subsurface 
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anticlines. Fracture patterns at surface can be affected by evolution of the stress field during 

unroofing (uplifting), whereas fractures may be influenced by evolution of fluid pressures 

during burial at subsurface condition.  

 

5.2. Petrophysical properties in the Gara Anticline 

Helium porosity, nitrogen permeability, confining pressure-permeability and acoustic velocity 

were measured from core plugs drilled from the outcrop samples. There is a general trend of 

increasing permeability with increasing porosity (Figs. 6a, b). Porosity-permeability datasets 

for both the Kurra Chine and Sehkaniyan reservoir units were also classified relative to their 

structural positions around the Gara Anticline (Figs. 6c, d). Within the Sehkaniyan Formation 

exposed around the Gara Anticline, a range of porosities are found in the backlimb (varying 

from 3.4 – 13.2%), in the hinge zone (2.3 – 10.9%), and in the forelimb of the fold (2.2 – 

6.3%) (Fig. 6c). Permeabilities vary in the backlimb (0.005 – 5.7 mD), in the hinge zone (0.02 

– 26.4 mD), and in the forelimb of the fold (0.02 – 0.6 mD) (Fig. 6c).  

In the Kurra Chine Formation, porosities ranging from 9.5 – 18.9% are found in the 

backlimb of the Gara Anticline, 6.1% in the hinge zone, and 2.7 – 12.8% in the forelimb of 

the fold (Fig. 6d). Similarly, variable permeabilities are found in the backlimb (0.1 – 16.5 

mD), in the hinge zone (0.04 mD), and in the forelimb of the fold (0.0003 – 0.7 mD) (Fig. 

6d).  

 

6. Ora Anticline 

The Ora Anticline is located 50 km NE of Duhok City (Figs. 1a, b). Despite its location 

within the Imbricated Zone, its outcrops provide the type section of the Kurra Chine 

Formation. The Ora Anticline is an E-W trending asymmetrical anticline which verges 
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towards south. It is a hanging wall anticline with a steep forelimb that is carried on a south-

directed thrust (Figs. 7a, b). Parasitic folds verging towards the south are also observed in the 

lower part of the Kurra Chine section. The structure is traceable along its length for 25 km 

and has a width of 11 km. The Khabour Quartzite Formation (Ordovician) makes up the core 

of the anticline, whereas other Palaeozoic and Mesozoic units crop out along its flanks (Figs. 

7a, b). Both dextral and sinistral strike-slip faults have been observed in the southern limb of 

the Ora Anticline (Fig. 7a).  

The Kurra Chine Formation crops out along the northern and southern limbs of the 

Ora Anticline. Due to security considerations, it was only possible to collect fracture data and 

samples from the southern limb of the fold. The fracture data were collected from three 

localities at different stratigraphical levels on this southern limb. The unit comprises bedded 

limestone in the lower part, massive dolomitised limestone in the middle part, and karstified 

dolomitised limestone in its upper part. The upper part of the Kurra Chine Formation is highly 

deformed and structurally brecciated.  

 

6.1. Fracture orientation and intensity in the Ora Anticline 

As noted above, fracture datasets were collected at three localities on the southern forelimb of 

the Ora Anticline (Figs. 7a, b). Most fractures dip sub-perpendicular to bedding and may 

therefore be categorised according to trend. Four fracture sets trending N-S, E-W, NE-SW 

and NW-SE were identified from the stereograms (Fig. 7a). Most fractures are veins filled 

with calcite. The N-S and NE-SW fracture sets at locality KC-2 together form a conjugate set, 

with the acute bisector forming parallel to a local NNE-SSW trending sinistral strike slip fault 

(Fig. 7a). The three locations are however in close proximity to a strike-slip fault and lie 

within the damage zone of the fault. 1D fracture density (P10) ranges between 0.46 and 2.89 
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m-1 for all fracture sets. In terms of their length, fractures are observed to be short (0.25 – 3 

m) at locality KC-1, are relatively longer (4 – 15 m) at locality KC-2, while their lengths are 

obscured by scree at locality KC-3. Furthermore, the majority of fracture terminations are of 

fracture-abutting type at all three localities.  

 

6.2. Petrophysical properties in the Ora Anticline 

The Kurra Chine Formation exposed in the Ora Anticline displays a general trend of 

increasing permeability with increasing porosity (Fig. 6b). The porosities range over two 

orders of magnitude (0.8 - 19.2%), while permeabilities vary over four orders of magnitude 

(0.0015 – 19.8 mD) (Fig. 6b). The Kurra Chine datasets come from the steep forelimb of the 

Ora Anticline and damage zones of strike-slip faults. The high porosities and high 

permeabilities can be attributed to the structural position of the fold and fault zones, and 

presumably related to micro fractures observed in the core plugs.  

 

7. Ranya Anticline 

The Ranya Anticline is located in the Highly Folded Zone of the Zagros fold and thrust belt 

about 75 km east of Erbil City (Figs. 1a, b). It is an asymmetrical anticline with NE-directed 

vergence and a NW-SE orientated fold axis (Figs. 8a, b). The anticline extends for 27 km and 

is 7 km wide (Fig. 1b). The Sehkaniyan Formation is exposed at the core of the anticline, 

which has been extensively eroded resulting in a deep valley along the fold axis.  
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7.1. Fracture orientation and intensity in the Ranya Anticline 

Fracture data and samples were collected near Hanjira village, which is located a few 

kilometres to the north of Ranya City (Fig. 8a). The study area is located within the forelimb 

of the Ranya Anticline, which comprises Sehkaniyan and Sarki formations (Lower Jurassic) 

(Figs. 8a, b). The datasets have been collected from the better exposed upper part of the 

Sehkaniyan Formation (Fig. 8b).  

 The fracture data in the Sehkaniyan Formation shows a dominant N-S orientation, a 

less dominant hinge parallel trend represented by NW-SE fractures, and a hinge perpendicular 

trend represented by NE-SW orientations (Fig. 8a). In the overlying Sargelu Formation, 

fracture orientations at locality SG-1 are defined by two dominant orthogonal sets of NNE-

SSW and WNW-ESE fractures (Fig. 8a). Most fractures are sub-perpendicular to bedding. 

Fractures in the Sargelu Formation are confined by thin limestone layers. Furthermore, 

fractures in the limestones of the Sargelu Formation are generally more abundant and display 

a greater fracture density than those in the massive dolostones and dolomitised limestones of 

the Sehkaniyan Formation. The average 1D fracture density (P10) in the Sehkaniyan 

Formation is 1.47 m-1 while it is 5.27 m-1 in the overlying Sargelu Formation (Fig. 9). Most of 

these fractures belong to the ~N-S striking fracture set. The fracture lengths are variable and 

range from 0.25 m to up to more than 7 m, where fracture tips are obscured. Fracture 

terminations are of fracture-abutting type. Furthermore, most fractures are joints at locality 

SK-2, whereas they are veins filled with calcite at localities SK-1 and SK-3 as well as locality 

SG-1.  
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7.2. Petrophysical properties in the Ranya Anticline 

The Sehkaniyan Formation in the Ranya Anticline displays a general trend of increasing 

permeability with increasing porosity (Fig. 6a). The porosities are distributed within one order 

of magnitude (1.1 – 7.5%), while permeabilities are spread over three orders of magnitude 

(0.001 – 1.5 mD) (Fig. 6a). The Sehkaniyan dataset was sampled from the forelimb of the 

Ranya Anticline, and shows a similar distribution to those measured in the forelimb of the 

Gara Anticline (Fig. 6c). Furthermore, the porosity-permeability datasets from the Sehkaniyan 

outcrops make a clustering pattern around a best-fit line (Fig. 6a), whereas the porosity-

permeability trend in the Kurra Chine Formation has a scattering pattern around a best-fit line 

(Fig. 6b). 

 

7.3. Permeability versus confining pressure 

In order to investigate the impact of burial depth on permeability reduction and fluid flow 

within the Kurra Chine and Sehkaniyan formations, five samples from each rock unit are 

analysed for permeability using stepwise increasing hydrostatic confining pressure (Figs. 10a, 

b). The data were collected from 20 MPa up to a maximum confining pressure of 100 MPa. 

The Kurra Chine reservoir can be represented by a confining pressure of 60 MPa, which 

corresponds to approximately 3 km of burial depth. Permeability values show their most 

significant reduction over the first 20 MPa of applied confining pressure (Fig. 10b). Ratios 

between initial and final permeability values range from 0.27 to 0.09 in the Kurra Chine and 

from 0.46 to 0.17 in the Sehkaniyan (Figs. 10a, b). The datasets show a variation in confining 

pressure permeability of the Kurra Chine and Sehkaniyan. The permeabilities of the Kurra 

Chine Formation show variation of one order of magnitude (0.02-0.62 mD) at a confining 

pressure of 60 MPa. The permeabilities of the Sehkaniyan Formation range within one order 
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of magnitude (0.11-0.73 mD) at a confining pressure of 60 MPa (Figs. 10a, b). At high 

confining pressure, permeability decreases dramatically implying pore, crack or pore throat 

closure, while at low confining pressure, the permeability increases slightly, perhaps due to 

dilatant opening of voids (cracks, pores or pore throats). 

 

8. Shaikhan Anticline 

The Shaikhan Anticline is located about 85 km to the northwest of Erbil City and is a double-

plunging fold within the Highly Folded Zone of the Zagros fold and thrust belt (Figs. 1a, b). 

The Shaikhan Anticline is an E-W trending asymmetrical anticline which verges towards 

north, is 30 km long and 7 km in width (Figs. 11a, b). Eight hydrocarbon reservoir formations 

of Cretaceous and Triassic ages were encountered in the SH-1B well, among them are the 

Alan, Mus (Sehkaniyan equivalent) and Kurra Chine formations (Figs. 2, 11b). 

 

8.1. Fracture orientation and intensity in the Shaikhan Anticline 

Wells are located around the Shaikhan Anticline including the crest (SH-1), the backlimb 

(SH-2), and the forelimb close to the western nose of the fold (SH-4) (Fig. 11a). Three types 

of fractures were interpreted from FMI and XRMI image logs: conductive (open), resistive 

(mineralised) and hybrid (part-open, part-mineralised), as well as faults. The interpreted 

fractures (mainly conductive and hybrid) and faults show a dominant N-S orientation in the 

Sehkaniyan Formation in wells SH-1 and SH-2, and a dominant WNW-ESE striking fractures 

(mainly resistive) in the Kurra Chine Formation in well SH-4 (Fig. 11a). The WNW-ESE 

fractures were observed in the damage zones of WNW-ESE striking faults. The fault 

orientations in well SH-4 parallel the fold axis, and also align with the E-W oriented main 

thrust that cuts through the forelimb of the Shaikhan Anticline. The average corrected fracture 
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intensity (P10_C) of the Mus-Adaiyah, Alan (Sehkaniyan equivalent) and Kurra Chine 

formations in wells SH-1, SH-2 and SH-4 are 0.3 m-1, 0.75 m-1 and 0.74 m-1, respectively. 

Furthermore, the fracture density is higher within stratigraphical levels associated with 

limestones, where two cross-cutting fracture sets exist in some cases.  

 

8.2. Petrophysical properties in the Shaikhan Anticline  

There is a general trend of decreasing porosity with increasing P-wave acoustic velocity in the 

Sehkaniyan and Kurra Chine intervals in the Shaikhan wells (Figs. 12a, b). The Sehkaniyan 

Formation displays a clustered trend of decreasing porosity with increasing acoustic velocity 

(Fig. 12a). The Kurra Chine Formation shows a considerable scattering in P-wave velocity 

(Fig. 12b). Furthermore, the Sehkaniyan Formation shows higher velocity for a given porosity 

at the subsurface than outcrops (Figs. 12a, 13a). The petrophysical properties vary with 

lithology at different stratigraphical levels. For example, the best reservoir quality is found at 

a stratigraphic level which comprises a vuggy dolomite facies in both units (Figs. 12a, b). 

 

9. Swara Tika Anticline 

The Swara Tika Anticline is a well-defined double-plunging fold located 10 kilometres to the 

SW of the Gara Anticline (Figs. 1a, b). The fold axis is oriented WNW-ESE within the 

Highly Folded Zone of the Zagros fold and thrust belt (Fig. 11a). The Swara Tika Anticline is 

an asymmetrical fold which verges towards south, is 15 km along the fold axis and 3 km in 

width (Figs. 11a, b). The bedding dip from core data is around 10º, reflecting the position of 

the wells close to the crest of the anticline. The core data does not show much evidence for 

layer-parallel slip, once again reflecting the location of the cores from wells drilled at the crest 

of the anticline. Bedding-parallel cleavage is however observed from core data, and typically 
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displays a dextral sense of movement. The primary reservoir units are the Cretaceous 

Qamchuqa, Jurassic Sehkaniyan and the Triassic Kurra Chine dolomite reservoirs.  

 

9.1. Fracture orientation and intensity in the Swara Tika Anticline 

The fractures and faults interpreted from FMI and XRMI image logs show dominant N-S 

trends in well ST-1 and dominant NNE-SSW trend in well ST-2, and a less abundant NW-SE 

fault and fracture set (Fig. 11a). Conductive (open) and hybrid (part-open, part-mineralised) 

fractures are abundant in well ST-1 whereas hybrid fractures are dominant in well ST-2. 

Fractures of Jurassic intervals from the Swara Tika cores are partially filled with calcite veins 

and invaded with oil. Many fractures in Jurassic and Triassic intervals are partially 

mineralised by calcite, leading to a reduction in fracture porosity. The average fracture 

aperture was calculated in well ST-2 using the equation introduced by Luthi and Souhaite 

(1990). This method depends on the fracture width and mud filtrate resistivity. However, 

fracture aperture measurement is also dependent on other factors such as mud weights, while 

drilling may influence the amount of invasion, and minor changes in lithology which also 

affect the resistivity values. The measured fracture porosity ranges between 0.01% and 0.06% 

in the Sehkaniyan Formation in well ST-2. High fracture porosity corresponds to high 

aperture and fracture density. High fracture density may indicate a fracture corridor, or can be 

a function of lithological-mechanical control. The average corrected fracture intensity 

(P10_C) of the Alan-Mus-Adaiyah (Sehkaniyan equivalent) and Alan Formation in wells ST-

1 and ST-2 are 0.33 m-2 and 0.31 m-3, respectively. 
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9.2. Petrophysical properties in the Swara Tika Field 

There is a general trend of decreasing porosity with increasing P-wave velocity in the 

Sehkaniyan and Kurra Chine intervals in the Swara Tika wells (Figs. 12c, d). Similar to the 

Shaikhan datasets, the Sehkaniyan Formation shows higher acoustic velocity for a given 

porosity at the subsurface when compared to the outcrops (Figs. 12c, 13a), while the Kurra 

Chine Formation displays a significant scattering in acoustic velocity (Fig. 12d).  

 

10. Reservoir characteristics of the Kurra Chine and Sehkaniyan 

formations 

 The Kurra Chine and Sehkaniyan formations are important fractured carbonate units in the 

Upper Triassic and Lower Jurassic plays in Iraqi Kurdistan. In almost all recent wells that 

have been drilled and encountered these units in the region, they exhibit hydrocarbon show. 

Their lithologies are heterogeneous and therefore studying their fracture patterns and 

petrophysical properties can help to understand reservoir types. 

 

10.1. Petrophysical properties   

Despite low matrix porosity and permeability in both the Kurra Chine and Sehkaniyan 

formations, they work as reservoirs because of the fractures. Both units can be considered as 

reservoir type II as fractures provide the essential reservoir permeability, with low matrix 

contribution (Nelson, 2001). In the current study, porosities of the Sehkaniyan Formation vary 

between 1% and 14% at outcrops and subsurface, and permeabilities show a range of four 

orders of magnitude (0.001-26 mD) (Fig. 6a). Porosities of the Kurra Chine Formation range 

from 0.8% to about 19% at outcrops and subsurface, and permeabilities show higher variation 
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(about five orders of magnitude, 0.0003-20 mD) (Fig. 6b). Overall there is a general trend of 

increasing permeability with increasing porosity. Even at low poro-perm, the limestone and 

dolomite data show the typical pattern of dolomites having higher permeability for a given 

porosity than limestones, maybe because of well-connected intercrystalline pores (Figs. 6a, 

b), or may be because of dilation of micro-fractures due to overburden removal at surface. In 

comparison, there is lower porosity and permeability in the Sehkaniyan Formation than in the 

Kurra Chine. In addition there is a scattering of the Kurra Chine data at high porosity and 

permeability, whereas the Sehkaniyan shows clustering (Figs. 6a, b).  

The structural position on regional folds may control the distribution of porosity and 

permeability of the Sehkaniyan and Kurra Chine rocks. For example, the same stratigraphic 

levels display higher porosities and permeabilities on the backlimb of the Gara Anticline 

when compared to the forelimb (Figs. 6c, d). It is observed that positon on the fold also 

controls spatial distribution of fracture patterns in the Sehkaniyan and Kurra Chine 

formations. 

There is a general trend of decreasing porosity with increasing P-wave acoustic 

velocity (Figs. 12, 13). The velocity-porosity data show similar trends to the Kurra Chine 

Formation at outcrops and subsurface. However, the trend is steeper (lower velocity for a 

given porosity) for the Sehkaniyan Formation at outcrops than in the subsurface (Figs. 12a, c, 

13a). This variation in slope between outcrop and subsurface data can be attributed to the 

saturated rock densities with fluids (hydrocarbon and/or water) at subsurface. The Kurra 

Chine Formation shows scattering in acoustic velocity, while the Sehkaniyan shows clustering 

(Figs. 13a, b). Furthermore, the structural position on the fold controls the distribution of 

porosity and P-wave velocity. For example, the highest velocities correspond to the forelimbs 

of the anticlines (Fig. 13c). In addition, the Sehkaniyan porosity-permeability datasets from 

outcrops make a clustering pattern around a best-fit line (Fig. 6a), whereas the porosity-
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permeability data from the Kurra Chine Formation has a scattering pattern around a best-fit 

line (Fig. 6b). 

 

10.2. Elastic properties 

We perform this analysis to compare elastic properties of surface rocks with those from the 

subsurface. The Voigt upper bound and Reuss lower bound on the elastic moduli of rocks 

provide a useful basis for porosity-velocity relations (Avseth et al., 2005). The bounds are 

valuable rock physics tools since well logs give information on constituents and their volume 

fraction, but relatively little about grain and pore microstructure (Avseth et al., 2005). A 

simple mixture of two constituents such as two different minerals, or a mineral plus fluid 

(water, oil or gas), can be used. At any given volume fraction of constituents, the effective 

modulus of the mixture will fall between the bounds, depending on the geometric details. It is 

observed that with increasing diagenesis, the rock properties lie along steep trends that extend 

upwards from the Reuss bound toward the mineral end point at zero porosity (Avseth et al., 

2005). 

In the current study, a mixture of calcite and brine is used for the Sehkaniyan 

Formation, and a mixture of calcite, dolomite and brine for the Kurra Chine Formation. The 

brine is used as the second constituent for the fluid saturated well data. Despite the 

homogenous stratigraphic interval of the Kurra Chine Formation in well ST-1, a significant 

scattering and enhancement of porosities are observed in dolomites (Fig. 12d). The logged 

stratigraphy is constrained from mud logging and cutting data rather than on the basis of 

detailed micro-scale lithofacies analysis. Therefore, this scattering and enhancement of 

porosities are interpreted to be a result of the intercrystalline pores that formed by diagenetic 

processes. Another possibility for the increased scattering and enhanced porosity in the Kurra 
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Chine Formation in well ST-1 compared to well SH-1 relates to the Kurra Chine consisting of 

massive dolomites in well ST-1, whereas it comprises a mixture of limestones, dolomites and 

evaporites in well SH-1. 

 

11. Discussion 

11.1. Comparison of outcrop and subsurface fracture data 

Fractures observed and sampled in the Gara outcrops show layer parallel shearing such as 

those at localities SK-1 and SK-2 (Fig. 5a). However, the core data do not display much 

evidence for layer-parallel slip because the cores come from a well that drilled on the crest of 

the Swara Tika Anticline. Bedding-parallel cleavage is however observed from core data, and 

typically displays a dextral sense of movement. Calcite veins are observed to be folded in 

Swara Tika cores, indicating they are fold-related and bending is earlier or at least 

synchronous with folding. Hence, flexural slip folding is the possible mechanism of folding 

which is characterised by bedding-parallel slip striation and bending (Reif et al., 2012). 

Tectonic stylolites were observed within the Kurra Chine Formation in the Gara Anticline. 

This stratigraphic unit is probably below the neutral surface of the fold and could therefore 

help support the flexural slip folding mechanism. 

Fracture orientations show a clear relationship to the local fold axis in both the 

outcrops and subsurface (e.g. Gara, Shaikhan, Swara Tika). In particular, a fracture set 

parallels the WNW-ESE fold axis and a NNE-SSW fracture set is oriented perpendicular to 

the fold axis. However, some fractures do not show any relation to the local folding. These 

fractures may be formed pre-folding, post-folding, or could be interpreted as interference of 

two different shortening phases, related to folding (Csontos et al., 2012). Some fracture 

orientations display symmetry relative to the local strike slip fault in the Ora Anticline (Fig. 
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7a). This fault could primarily control the overprinted NE-SW fractures, while the position on 

the fold controls the fold-related N-S fractures. Other fracture orientations exhibit a 

symmetrical relation to the maximum horizontal stress direction such as in the Ranya 

Anticline (Fig. 8a). The present in-situ maximum horizontal tectonic stress direction in 

Kurdistan is oriented ~NNE-SSW, based on regional geology and the world stress data 

(Heidbach et al., 2008). Furthermore, local rotations (10º-15º) of fracture orientations were 

observed and are attributed either to curvature in the fold axis or fault movement (Csontos et 

al., 2012).  

There is likely lithological and/or bed thickness control on fracture density such as in 

the Ranya Anticline, where 1D fracture density (P10) is over three times higher in the Sargelu 

thin-bedded limestones than the underlying Sehkaniyan massive dolomites (Fig. 9). Fractures 

are generally more linear, smoother and evenly distributed in limestones compared to 

dolomites.  

In the Gara Anticline, the NNE-SSW fractures are oriented parallel to the maximum 

horizontal principal stress direction and perpendicular to the fold axis. Hinge parallel fractures 

may have formed due to local outer arc extension of the folds. Open fractures are observed to 

strike perpendicular to the fold axis in the Gara Anticline. Hinge normal fractures may be 

created as a pericline grows along the length of its axis, with bed dips initially increasing 

around the plunging nose, before being rotated and reducing as the rocks then form part of the 

general hinge. i.e. the nose of the fold has migrated along strike into new rocks. Bitumen 

staining along the fractures and vugs is often found along thrust faults in the Sehkaniyan and 

Kurra Chine formations. For example, the bitumen filled-fractures in the Kurra Chine 

Formation in the Gara Anticline are oriented perpendicular to the compressional direction and 

the fold axis, whereas bituminous fractures in the Sehkaniyan Formation are oriented parallel 

to the thrust faults and fold axis. As mentioned above, the observed open fractures are striking 
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perpendicular to the fold axis in the Gara Anticline. These fractures are partially cemented 

with calcite, while the innermost part is filled by bitumen. This could mean that bitumen 

invaded after the fracturing process, suggesting that hydrocarbon migration is young and 

possibly postdates folding (Csontos et al., 2012). It could also be interpreted that the fluid 

used to reach failure was hydrocarbon or a hydrocarbon/water emulsion and as such is 

coincident with the fracture development and not independent. Fractures require both critical 

stress and continuous elevated pore pressure to form (see Cosgrove, 2015; MacKay, 2015) 

and as such the fracture become temporary fluid conduits.  This may suggest that 

emplacement of hydrocarbons and fold development occur simultaneously. These fractures 

with bitumen inclusion are mostly observed within damage zones of thrust faults. 

Both the Shaikhan and Swara Tika fields are dominated by the N–S fracture set 

(hinge-perpendicular) whereas the E–W fracture set (hinge-parallel) is not present. The 

absence of the E-W fracture set may be attributed to (i) the orientation of the in-situ stress, 

which has a tendency to keep the N-S fractures open thereby providing a sufficient contrast to 

be resolved on the borehole image logs. Correspondingly, hinge-parallel E-W fractures would 

be suppressed (Awdal et al., 2013); and/or (ii) a low compressional stress within the 

reservoirs could also partly explain the relatively open state of the N-S fracture system 

(Garland et al., 2010). Furthermore, stress release during uplift is likely to enhance the 

differences in fracture pattern between the surface and subsurface anticlines. 

   

11.2. Comparison of outcrop and subsurface petrophysical data 

The petrophysical properties of the Kurra Chine Formation show a similar trend in the 

outcrop dry samples and subsurface fluid saturated datasets. Most dolomites have higher 

average porosities and permeabilities than limestones. In the literature, it is documented that a 
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slight increase in porosity develops in the early stages of dolomitisation of limestones, but a 

sudden increase occurs with greater amounts of dolomitisation (e.g. Flügel, 2010). The Kurra 

Chine limestone and dolomite data therefore show the typical pattern of dolomites having 

higher permeability for a given porosity than limestones, presumably because of well-

connected intercrystalline pores. On the other hand, limestones of the Sehkaniyan Formation 

show lower porosities, and may be due to low matrix porosity with no secondary porosity 

developed in limestones. Furthermore, the velocity-porosity trend is steeper (lower acoustic 

velocity for a given porosity) in the Sehkaniyan outcrop dry sample measurements than its 

fluid saturated subsurface measurements. The variation in slope between outcrop and 

subsurface may be related to the saturated rock densities with fluids (hydrocarbon and/or 

water) at subsurface.  

The matrix porosity and permeability of the Kurra Chine and Sehkaniyan formations 

depends on the lithology, structural position on the fold, proximity to the local faults, and 

other factors that have not been discussed in this paper such as gas expansion, scale of 

lithologic heterogeneity, grain size, pore type, extent of porosity enhancing diagenesis and 

cement dissolution. The porosity and permeability values range over 2 – 5 orders of 

magnitude due to the different lithologies of the Kurra Chine and Sehkaniyan formations. 

Dolomites generally have better permeability of effective porosity than limestones and is 

perhaps due to interconnected pores. Vuggy porosity facies were found in the damage zones 

of thrust faults. In terms of structural position, the hinge and backlimb seem to have better 

porosities and permeabilities than the forelimb of the Gara Anticline (Figs. 6c, d). This may 

be due to the presence of vuggy and interconnected porosity of dolomite facies, or may be due 

to the existence of natural micro-fractures in the core plug samples that offer additional 

porosity. Likely the fractures add significantly to the permeability of the system and as such 

the permeability sampled by the core plugs will under-estimate the permeability of the system 
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as a whole. The relationship between micro-fractures and fractures observed and sampled in 

the outcrops are not studied in this paper. 

 

11.3. Implications for reservoir connectivity and production 

Both the Kurra Chine and Sehkaniyan formations are potential fractured reservoirs in several 

oil and gas fields in Kurdistan. Despite their low matrix porosity and permeability, the Kurra 

Chine and Sehkaniyan formation are extensively fractured and have a good fracture network. 

Both units can be considered as reservoir type II as fractures provide the essential reservoir 

permeability, with less matrix contribution (Nelson, 2001). The prediction of the permeability 

and connectivity is challenging, as indicated by initial high flow rates from discoveries 

followed by a dramatic drop off during production.  

The fracture interpretation of borehole images from the Shaikhan and Swara Tika 

fields shows that the most dominant orientation of conductive (open) and hybrid (part-open 

part-mineralised) fractures is N-S in wells SH-1, SH-2, ST-1 and ST-2. The dominant N-S 

conductive and hybrid fractures were interpreted within the Alan, Mus and Adaiyah 

(Sehkaniyan equivalent) formations. However, a dominant resistive (mineralised) fracture 

strike orientation of WNW-ESE was interpreted in well SH-4 within the Kurra Chine 

Formation. The variation in fracture strike orientation of well SH-4 compared to other wells 

may be due to the occurrence of WNW-ESE striking faults. The WNW-ESE striking 

mineralised fractures were interpreted within damage zones of the WNW-ESE striking faults. 

Hence, these faults may primarily control the overprinted WNW-ESE fractures while the 

position on the fold could control the fold-related N-S fractures. In terms of geometry, the 

dominant N-S open and part-open fracture strike orientation is perpendicular to the fold axes, 

which indicates anisotropic permeability with the maximum fracture permeability aligning in 
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the N-S direction. In terms of drilling dynamics, the total mud losses and hydrocarbon shows 

at reservoir intervals confirm the presence of various scales of conductive fractures and faults. 

 

11.4. Conceptual fracture model 

Based on the current datasets, a conceptual model is proposed for fractures in the studied 

thrust-related anticlines (Fig. 14). The proposed conceptual model describes the various 

components of the fracture network in terms of geometry and dynamic behaviour. Three 

stages of fracturing are suggested in the studied anticlines (Fig. 14). This conceptual model is 

based on actual fracture results in this study and also supported by earlier studies carried out 

in the Zagros fold and thrust belt in Iraqi Kurdistan (e.g. Csontos et al., 2012; Reif et al., 

2012; Awdal et al., 2013). A pre-folding stage of hinge-perpendicular fractures is proposed to 

have been formed by the far-field stress during the collision between the Arabian and 

Eurasian plates in a foreland position (Ahmadhadi et al., 2008). Similar fracturing has been 

suggested elsewhere in the Zagros (e.g. Casini et al., 2011; Tavani et al., 2011; Awdal et al., 

2013). An early-folding stage of hinge-parallel fractures and faults are possibly formed due to 

outer arc extension in the folds, and could be associated with layer-parallel and intra-layer 

shear. The oblique fractures in the forelimb are suggested to post-date the hinge-parallel and 

hinge-perpendicular fracture sets. These oblique fractures are proposed to be related to 

reactivation of, and stress reorientation around, basement faults, as suggested elsewhere along 

the Zagros fold and thrust belt (e.g. Fard et al., 2006; Stephenson et al., 2007; Ahmadhadi et 

al., 2008; Tavani et al., 2011). Alternatively, they could be caused by nearly bedding-

perpendicular shortening and lateral extension during significant flexing in the forelimb. The 

latter interpretation fits best with the dominant position in the steeper dipping forelimb in 

conjunction with the proposed late development of the conjugate oblique fracture sets. 

Furthermore, mechanical anisotropy cause some fracture formation. Bedding-perpendicular 
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fractures could be formed by the mechanical anisotropy created by bedding and it is not 

necessarily related to early (pre-folding) fracture set. 

 

12. Summary and conclusions  

Based on a comparison of outcrop fracture data, subsurface data from wireline and image logs 

and laboratory petrophysical measurements, the following conclusions can be drawn. 

• The current study focuses on the potential control that folds may exert on the fracture 

patterns and petrophysical properties of fractured carbonates. 

• Fracture sets may show relationships to local folding in the study area. Fractures may form 

a hinge-parallel set, a hinge-perpendicular set and two conjugate oblique sets whose acute 

angle bisects the shortening direction. In addition, some fractures show a relationship with 

the present day in-situ maximum horizontal stress direction or local strike-slip faulting. 

• N-S dominant open and part-open fracture orientation is perpendicular to the Shaikhan and 

Swara Tika fold axes, which may indicates anisotropic permeability with the maximum 

fracture permeability aligning in the N-S direction. 

• Fracture intensity may be influenced by lithology and/or bed thickness in the study area. 

Fracture intensity is markedly higher in the Sargelu thin-bedded limestones than the 

underlying massive Sehkaniyan Formation, and the Sehkaniyan may be influenced by 

dolomitisation. 

• Three stages of fracturing are proposed: a pre-folding stage of hinge-perpendicular 

fractures, an early-folding stage of hinge-parallel fractures and faults, and a post-dating 

stage of oblique fractures. 

• Petrophysical properties in the Kurra Chine and Sehkaniyan formations may be controlled 

by lithology, position on folds and spatial distribution within faults. 
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• Some differences between surface and subsurface fracture patterns can be explained by 

stress release during uplift or exhumation, diagenesis and differences in mechanical 

behaviour. 

• Understanding fracture patterns can help to make better predictions of fluid flow in 

subsurface reservoirs. Therefore, the results of this study may have implications for 

reservoir connectivity and fracture modelling. 
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Figures 

Table 1: Studied fracture-forming events and available datasets from outcrops and subsurface. 

Figure 1: (a) Tectonic map of the Iraqi Kurdistan. The study area is indicated by the black 

rectangular box (After Jassim and Goff, 2006); (b) Simplified Geological map of Kurdistan 

showing the anticlinal axes and related thrust faults. The studied anticlines are labelled (After 

Sissakian and Hagopian, 1995; Sissakian, 1997; Csontos et al., 2012). 

Figure 2: Stratigraphy of the Upper Triassic and Jurassic in Kurdistan. The Kurra Chine 

Formation (Upper Triassic) and Sehkaniyan Formation (Lower Jurassic) are the studied 

fractured reservoir units. Note that Alan, Mus and Adaiyah formations are the subsurface 

equivalent of the Sehkaniyan Formation (After van Bellen et al., 1959; Csontos et al., 2012). 

Figure 3: Observed fracture sets shown in Price’s classification of fracture sets typical for 

asymmetric anticlines (after Price, 1966; modified from Price and Cosgrove, 1990). The 

hypothesis is that hinge-perpendicular fractures are pre-folding whereas hinge-parallel and 

oblique fractures are fold-related or post-folding fractures. 

Figure 4: (a) Photograph looking east of crest of the Gara Anticline. Samples were collected 

from the Kurra Chine and Sehkaniyan formations at different structural positions; (b) Kurra 

Chine Formation at locality KC-3 (See Figure 5 for localities); (c) Thin cemented fractures 

with calcite in the Kurra Chine Formation; (d) Vugs (angular pores) in the Sehkaniyan 

Formation; (e) Partial cemented fracture with calcite and include some bitumen. 
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Figure 5: (a) Fracture strike orientations of the Kurra Chine and Sehkaniyan formations at 

different structural positions (i.e. forelimb, hinge, backlimb) in the Gara Anticline. 

Stereograms: Schmidt lower hemisphere; black dashed semi-circle is bedding plane. Both 

measured data sets (with fracture density diagram at the background) and back-tilted 

(unfolded) data sets (without density diagram at the background) are shown. Red solid semi-

circle is hinge-parallel fractures. Blue solid semi-circle is hinge-perpendicular fractures. 

Green solid semi-circle is hinge-oblique fractures. Contour lines represent density of fracture 

population using Fisher distribution as contouring method. N is the number of fractures. The 

background is a simplified geological map of the Gara Anticline draped over a shaded relief 

topographic map; (b) Cross-section of the Gara Anticline constructed only from the calculated 

dip angles using the constant dip domain method (Tearpock and Bischke, 2003). The grid 

reference of the northern end of the cross section is: Easting 370821; Northing 4100890; and 

southern end: Easting 369080; Northing 4088280; UTM Zone: 38N. 

Figure 6: (a) and (b) Helium porosity versus nitrogen permeability of the Sehkaniyan and 

Kurra Chine formations measured from core plugs of samples that have been collected at 

Gara, Ora and Ranya anticlines; (c) and (d) Helium porosity versus nitrogen permeability of 

the Sehkaniyan and Kurra Chine formations measured from core plugs of samples that have 

been collected at the Gara Anticline. The dataset has been classified according to the 

structural position of the anticline. 

Figure 7: (a) Fracture strike orientations of the Kurra Chine Formation at the forelimb of the 

Ora Anticline. Stereograms: same key as in Figure 5. The background is a simplified 

geological map of the Ora Anticline draped over a shaded relief topographic map; (b) 

Schematic cross-section of the Ora Anticline showing the steep forelimb and gentle backlimb. 

The grid reference of north end of the cross section: Easting 352744; Northing 4132427; and 

south end: Easting 348680; Northing 4120600; UTM Zone: 38N. 
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Figure 8: (a) Fracture strike orientations of the Sehkaniyan Formation at the forelimb of the 

Ranya Anticline. Stereograms: same key as in Figure 5. The background is a simplified 

geological map of the Ranya Anticline draped over a shaded relief topographic map; (b) 

Cross-section of the Ranya Anticline constructed only from the calculated dip angles using 

the constant dip domain method (After Reif et al., 2011). The grid reference of NE end of the 

cross section is: Easting 489770; Northing 4018030; and SW end: Easting 483055; Northing 

4012539; UTM Zone: 38N. 

Figure 9: Fracture intensity of the Sehkaniyan and the overlying Sargelu Formation measured 

at different localities in the Ranya Anticline. Fracture intensity is markedly higher in Sargelu 

thin bedded limestones than the underlying Sehkaniyan massive dolomites. 

Figure 10: High confining pressure permeability data of the (a) Sehkaniyan and (b) Kurra 

Chine formations measured from core plugs of samples that have been collected at Gara, Ora 

and Ranya anticlines. 

Figure 11: (a) Stereograms showing poles to planes and area-weighted rose diagrams of the 

conductive, resistive and hybrid  fractures and faults of the Sehkaniyan Formation (Jurassic) 

in wells SH-1 and SH-2 and the Kurra Chine Formation (Triassic) in well SH-4 interpreted 

from borehole image logs (FMI and XRMI) in the Shaikhan Field. Dominant hinge 

perpendicular N-S fracture trends are observed in wells SH-1 and SH-2, whereas dominant 

hinge parallel WNW-ESE and a less dominant N-S fracture orientations were observed in 

well SH-4. Most fractures in this well were interpreted in the damage zones of WNW-ESE 

striking faults and hence fracture orientations are parallel to the fault trends in well SH-4. The 

same structural features were interpreted from borehole image logs (FMI and XRMI) in the 

Swara Tika Field. Dominant N-S and NNE-SSW fracture trends were observed in wells ST-1 

and ST-2, respectively; The background is a simplified geological map; (b) Schematic 
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regional cross-section of NW Kurdistan across Gara, Swara Tika and Shaikhan anticlines 

(After de Verteuil et. al., 2011). 

Figure 12: (a) and (b) Porosity versus P-wave acoustic velocity of the Sehkaniyan and Kurra 

Chine formations measured from wireline logs in well SH-1 of Shaikhan Field; (c) and (d) 

Porosity versus P-wave acoustic velocity of the Sehkaniyan and Kurra Chine formations 

measured from wireline logs in well ST-1 of Swara Tika Field. All the datasets are distributed 

between Voigt upper bound and Reuss lower bound. See text for explanation. 

Figure 13: (a) and (b) Porosity versus acoustic velocity of the Sehkaniyan and Kurra Chine 

formations measured from core plugs of dry outcrop samples that have been collected at Gara, 

Ora and Ranya anticlines; (c) and (d) The same datasets have been classified according to the 

structural positions of the anticlines.  

Figure 14: Schematic cartoon of a pericline illustrating the actual fracture results on the Gara, 

Shaikhan and Swara Tika anticlines. This conceptual fracture model may be applicable to 

other anticlines in Kurdistan, especially where the fracture patterns, fold morphology and 

structural style are similar to the studied structures. The pericline cartoon is modified from 

Fossen (2010). 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Study area Studied fracture-forming variables Available datasets

Gara

Ora

Ranya 

Structural position

Lithological variation

Petrophysical properties

Burial and overburden removall

Proximity to faults

Fracture orientation, spacing,
intensity (P10), length, type..

Porosity, permeability, acoustic 
velocity, confining pressure 
permeability 

Shaikhan 

Swara Tika 

Lithological variation

Petrophysical properties

Proximity to faults

Fracture orientation, spacing,
intensity (P10), type..

Porosity, acoustic velocity, 
elastic properties 
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Middle -Late Jurassic

Cretaceous

Early - Middle Triassic

Palaeozoic

Kurra Chine and Baluti

Sarki and Sehkaniyan

Paleogene

Neogene

Red beds
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Sargelu - Thin bedded limestone 

Sehkaniyan - Massive dolomite
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3370

3380

3390

3400

3410

3420

3430

3440

3450

 

1660

1670

1680

1690

1700

1710

1720

1730

1740

2060

2070

2080

2090

2100

2110

2120

2130

2140

 
2420
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2470

2480

2490
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Highlights 

• Fractures may show relationships to local folding, faulting and in-situ stress 

• Fracture intensity may be influenced by lithology and bed thickness  

• Petrophysical properties are influenced by lithology, position on folds and faults 

 


