699 research outputs found

    A Novel Bio-Inspired Insertion Method for Application to Next Generation Percutaneous Surgical Tools

    No full text
    The use of minimally invasive techniques can dramatically improve patient outcome from neurosurgery, with less risk, faster recovery, and better cost effectiveness when compared to conventional surgical intervention. To achieve this, innovative surgical techniques and new surgical instruments have been developed. Nevertheless, the simplest and most common interventional technique for brain surgery is needle insertion for either diagnostic or therapeutic purposes. The work presented in this thesis shows a new approach to needle insertion into soft tissue, focussing on soft tissue-needle interaction by exploiting microtextured topography and the unique mechanism of a reciprocating motion inspired by the ovipositor of certain parasitic wasps. This thesis starts by developing a brain-like phantom which I was shown to have mechanical properties similar to those of neurological tissue during needle insertion. Secondly, a proof-of-concept of the bio-inspired insertion method was undertaken. Based on this finding, the novel method of a multi-part probe able to penetrate a soft substrate by reciprocal motion of each segment is derived. The advantages of the new insertion method were investigated and compared with a conventional needle insertion in terms of needle-tissue interaction. The soft tissue deformation and damage were also measured by exploiting the method of particle image velocimetry. Finally, the thesis proposes the possible clinical application of a biologically-inspired surface topography for deep brain electrode implantation. As an adjunct to this work, the reciprocal insertion method described here fuelled the research into a novel flexible soft tissue probe for percutaneous intervention, which is able to steer along curvilinear trajectories within a compliant medium. Aspects of this multi-disciplinary research effort on steerable robotic surgery are presented, followed by a discussion of the implications of these findings within the context of future work

    A Novel Flexible and Steerable Probe for Minimally Invasive Soft Tissue Intervention

    No full text
    Current trends in surgical intervention favour a minimally invasive (MI) approach, in which complex procedures are performed through increasingly small incisions. Specifically, in neurosurgery, there is a need for minimally invasive keyhole access, which conflicts with the lack of maneuverability of conventional rigid instruments. In an attempt to address this fundamental shortcoming, this thesis describes the concept design, implementation and experimental validation of a novel flexible and steerable probe, named “STING” (Soft Tissue Intervention and Neurosurgical Guide), which is able to steer along curvilinear trajectories within a compliant medium. The underlying mechanism of motion of the flexible probe, based on the reciprocal movement of interlocked probe segments, is biologically inspired and was designed around the unique features of the ovipositor of certain parasitic wasps. Such insects are able to lay eggs by penetrating different kinds of “host” (e.g. wood, larva) with a very thin and flexible multi-part channel, thanks to a micro-toothed surface topography, coupled with a reciprocating “push and pull” motion of each segment. This thesis starts by exploring these foundations, where the “microtexturing” of the surface of a rigid probe prototype is shown to facilitate probe insertion into soft tissue (porcine brain), while gaining tissue purchase when the probe is tensioned outwards. Based on these findings, forward motion into soft tissue via a reciprocating mechanism is then demonstrated through a focused set of experimental trials in gelatine and agar gel. A flexible probe prototype (10 mm diameter), composed of four interconnected segments, is then presented and shown to be able to steer in a brain-like material along multiple curvilinear trajectories on a plane. The geometry and certain key features of the probe are optimised through finite element models, and a suitable actuation strategy is proposed, where the approach vector of the tip is found to be a function of the offset between interlocked segments. This concept of a “programmable bevel”, which enables the steering angle to be chosen with virtually infinite resolution, represents a world-first in percutaneous soft tissue surgery. The thesis concludes with a description of the integration and validation of a fully functional prototype within a larger neurosurgical robotic suite (EU FP7 ROBOCAST), which is followed by a summary of the corresponding implications for future work

    Position-based Dynamics Simulator of Brain Deformations for Path Planning and Intra-Operative Control in Keyhole Neurosurgery

    Full text link
    Many tasks in robot-assisted surgery require planning and controlling manipulators' motions that interact with highly deformable objects. This study proposes a realistic, time-bounded simulator based on Position-based Dynamics (PBD) simulation that mocks brain deformations due to catheter insertion for pre-operative path planning and intra-operative guidance in keyhole surgical procedures. It maximizes the probability of success by accounting for uncertainty in deformation models, noisy sensing, and unpredictable actuation. The PBD deformation parameters were initialized on a parallelepiped-shaped simulated phantom to obtain a reasonable starting guess for the brain white matter. They were calibrated by comparing the obtained displacements with deformation data for catheter insertion in a composite hydrogel phantom. Knowing the gray matter brain structures' different behaviors, the parameters were fine-tuned to obtain a generalized human brain model. The brain structures' average displacement was compared with values in the literature. The simulator's numerical model uses a novel approach with respect to the literature, and it has proved to be a close match with real brain deformations through validation using recorded deformation data of in-vivo animal trials with a mean mismatch of 4.73±\pm2.15%. The stability, accuracy, and real-time performance make this model suitable for creating a dynamic environment for KN path planning, pre-operative path planning, and intra-operative guidance.Comment: 8 pages, 8 figures. This article has been accepted for publication in a future issue of IEEE Robotics and Automation Letters, but has not been fully edited. Content may change prior to final publication. 2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. A. Segato and C. Di Vece equally contribute

    Toward a Miniaturized Needle Steering System With Path Planning for Obstacle Avoidance

    Get PDF

    Modelling the deformation of biologically inspired flexible structures for needle steering

    Get PDF
    Recent technical advances in minimally invasive surgery have been enabled by the development of new medical instruments and technologies. To date, the vast majority of mechanisms used within a clinical context are rigid, contrasting with the compliant nature of biological tissues. The field of robotics has seen an increased interest in flexible and compliant systems, and in this paper we investigate the behaviour of deformable multi-segment structures, which take their inspiration from the ovipositor design of parasitic wood wasps. These configurable structures have been shown to steer through highly compliant substrates, potentially enabling percutaneous access to the most delicate of tissues, such as the brain. The model presented here sheds light on how the deformation of the unique structure is related to its shape, and allows comparison between different potential designs. A finite element study is used to evaluate the proposed model, which is shown to provide a good fit (root-mean-square deviation 0.2636 mm for 4-segment case). The results show that both 3-segment and 4-segment designs are able to achieve deformation in all directions, however the magnitude of deformation is more consistent in the 4-segment case

    3D path planning for flexible needle steering in neurosurgery

    Full text link
    Background: We propose a 3D path planning method to steer flexible needles along curved paths in the context of Deep Brain Stimulation (DBS) procedures. Methods: Our approach is based on a rapidly‐exploring random tree strategy and it takes into account constraints coming from anatomical obstacles and physical constraints dictated by flexible needle kinematics. The strategy is evaluated in simulation on a realistic 3D CAD model of the brain. Results: The subthalamic nucleus (STN) and the fornix can be reached along several curved paths from various entry points. As compared to the usual straight line path, these curved paths avoid tissue damage to important neural structures while allowing for a much greater selection of entry points. Conclusions: This path planning method offers alternative curved paths to reach DBS targets with flexible needles. The method potentially leads to safer paths and additional entry points capable of reaching the desired stimulation targets

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces

    Biomechanics of a parasitic wasp ovipositor : Probing for answers

    Get PDF
    Insects such as mosquitoes, true bugs, and parasitic wasps, probe for resources hidden in various substrates. The resources are often, located deep within the substrate and can only be reached with long and thin (slender) probes. Such probes can, however, easily bend or break (buckle) when pushed inside the substrate, which makes probing a challenging task. Nevertheless, the mentioned insects use their probes repeatedly throughout their lifetime without apparent damage. Furthermore, the probes are also used for sensing the targets, can be steered during insertion, and can transport both fluids (e.g. blood, phloem sap) and eggs. Insect probes seem highly versatile structures that satisfy many functional requirements, including buckling avoidance, steering, sensing, and transport. Similar requirements also hold for minimally invasive medical procedures, where slender tools are used to minimize damage to the patient. Understanding the probing process in insects can bring insights in the insect ecology and evolution and it may also help in the development of novel surgical tools. In this thesis, I focus on the mechanical and motor adaptations of insect probing, while other aspects are only briefly discussed. In chapter 2, we review the literature on the probing structures and their operating principles across mosquitoes, parasitic wasps, and hemipterans. Probes are either modified mouthparts (mosquitoes, true bugs) or special tubular outgrowths of the abdomen (parasitic wasps). Despite having different developmental origins, the probes share three major morphological characteristics, which may reflect the shared functional requirements of buckling avoidance and steering: (i) the probes consist of multiple, interconnected elements that can slide along each other, (ii) the probe diameters are very small, which leaves no space for internal musculature, and (iii) the distal ends (tips) of the probe elements are asymmetric and often bear various serrations, hooks, bulges, or notches. How such slender multi-element probes avoid buckling during insertion has been hypothesized in the so-called push–pull mechanism. According to this mechanism, the probe is inserted into the substrate by reciprocal movements of the elements. The insects therefore simultaneously push on some of the probe elements, while pulling on the others. The tip serrations are directed such, that they primarily increase the friction upon pulling of the elements. This puts the pulled elements under tension and makes them effectively stiffer in bending (like when pulling a rope). The elements under tension can serve as guides along which the other elements are pushed inside the substrate without the risk of buckling. The insect alternates the pushing and pulling between the elements to incrementally insert the probe in the substrate. This mechanism has, however, never been quantified in insects and it was hitherto unknown whether the animals rely on it during probing. The probe tip asymmetry presumably facilitates steering. The asymmetric tip geometry leads to asymmetric reaction forces from the substrate on the tip during insertion, which push the probe tip sideways into a curved path. Controlling the tip geometry therefore allows for control of probing direction. Although offsetting the elements by sliding already changes the shape of the probe tip, these changes might be too small to induce the necessary change of probing direction. A number of mechanisms that enhance the tip asymmetry during the sliding of the elements have been suggested. However, few mechanisms have been observed or studied in vivo, so it is not completely clear how insects steer with their probes. Additionally, the effect of the substrate on both the steering and insertion mechanisms is unknown. To understand the biomechanics of insect probing, we investigated the probing behaviour of the braconid parasitic wasp Diachasmimorpha longicaudata. This is an ideal species for studying the buckling avoidance and steering, because it: (i) possess a slender ovipositor several millimetres in length, (ii) probes into solid material (e.g. citrus fruits), and (iii) attack fruit-fly larvae that are freely moving within the substrate (i.e. steering can be expected). The ovipositor of D. longicaudata is similar to other hymenopterans and consists of three interconnected elements (valves), one dorsal and two ventral ones. The interconnection is a tongue-and-groove mechanism, which allows for sliding of the valves, but prevents their separation. The ovipositor has an asymmetric tip—the distal end of the dorsal valve is enlarged (bulge), while the ventral valve tips have harpoon-like serrations. Additionally, just proximal to the bulge of the dorsal valve, the ovipositor is characteristically bent in an S-shape. This seems to be a feature present only in D. longicaudata and closely related species. The wasps also possess a pair of sheaths that envelop the ovipositor at rest and throughout most of the probing process, but do not penetrate into the substrate. In chapter 3, we studied the kinematics of ovipositor insertion into translucent, artificial substrates of various stiffnesses. Ovipositor insertion was filmed in a three camera setup, which allowed us to reconstruct the ovipositor insertion in 3D, while also monitoring the orientation of the insect’s body. We discovered that the wasps can explore a wide range of the substrate by probing in any direction with respect to their body orientation from a single puncture point. Probing range and speed decreased with increasing substrate stiffness. Wasps used two strategies of ovipositor insertion. In soft substrates, all ovipositor valves were pushed inside the substrate at the same time. In stiff substrates, wasps always moved the valves alternatively, presumably employing the hypothesized push–pull mechanism. We observed that ovipositors can follow curved trajectories inside the substrate. Detailed kinematic analysis revealed that the ovipositors followed a curved path during probing with protracted ventral valve(s). In contrast, probing with protracted dorsal valve resulted in straight trajectories. We linked the changes in the probing direction to the shape changes in the ovipositor tip. When the ventral valves were protracted, they curved towards the dorsal valve, resulting in an enhanced bevel which presumably caused a change in insertion direction. In chapter 4, we investigated the above described steering mechanism by quantifying the bending stiffness (three point bend test) and the geometry (high-resolution computer tomography) of the ovipositor in D. longicaudata. Additionally, we qualitatively assessed the material composition of the valves using fluorescence imaging. The thick dorsal valve bulge might be stiff and could straighten the S-shaped region of the ovipositor during the valve offset, causing bending of the tip. We discovered that the S-shaped region of the ovipositor is significantly softer than its neighbouring regions, which is mostly due to the presence of resilin in the S-shaped region of the ventral valve. Resilin is a rubber-like protein and reduces the stiffness of the otherwise heavily sclerotized valves. Additionally, we showed that the ventral valves have a higher bending stiffness than the dorsal valve along most of their length. The exception is presumably the bulge on the dorsal valve—although we could not directly measure its bending stiffness, its geometrical properties show that it is the thickest (and therefore stiffest) region in the distal end of the ovipositor. Outside the substrate, offsetting of the valves in any direction (i.e. pro- or retraction of the ventral valves) caused a straightening of the S-shaped region of the ovipositor and a curving towards the dorsal side. However, during probing in a substrate, such curving was only observed upon protraction of the ventral valves. We hypothesize this is due to the interaction of the ovipositor with the substrate. Namely, the bevelled ventral valve tips generate substrate reaction forces that promote dorsal curving, while the bevelled tip of the dorsal valve generates substrate forces that promote ventral bending. The interaction between the ventral and dorsal valves straightens the S-shaped region of the ovipositor and enhances dorsal curving. This therefore facilitates strong shape changes of the tip only upon protraction of the ventral valves, while counteracting the ventral curving of the dorsal valve. These opposing mechanisms presumably result in an approximately straight protraction of the dorsal valve. In chapters 2 and 3 we describe how the wasps use the reciprocal valve movements when probing in stiff substrates. As such substrates presumably require strong forces during insertion, the reciprocal valve movements may indeed serve to avoid buckling. However, how the valves are actuated or the forces generated during probing have never been quantified. In chapter 5, we therefore investigated the ovipositor base and the muscles driving the movements of the valves. At the base, the valves attach to plate-like structures that are interconnected with a series of linkages. The muscles attach to these plates and can move them with respect to each other. Such movements also result in the movements of the valves. To analyse the mechanics of this linked system, we performed high-resolution computer tomography scans of wasps in different stages of the probing cycle. This allowed us to compare the configurational changes of the basal plates to the valve offset, and measure the muscle cross-sections and attachment sites. We also calculated the muscle moment arms and estimated the forces and moments of the most relevant musculature actuating the ovipositor movements, by assuming a tensile muscle stress previously reported for insect muscles. For the ventral valves only, we also calculated the forces the valves can exert onto the substrate. The dorsal valve can only be moved by moving the base that is linked inside the abdomen, and therefore force estimation could not be made. The displacement magnitude of the basal plates corresponded to the valve offset, indicating that the valves are indeed moved due to the changes in the arrangement of the basal plates. We also showed that the ventral valve plates move most during the probing cycle, while the magnitude of the dorsal valve plate movements is much smaller. This suggests that the ventral valves move along the dorsal valve, while the dorsal valve moves together with the abdomen during probing. Additionally, in the situation where the animal keeps its abdomen stationary, we estimated the maximal forces actuating the ventral valves. The estimated maximal pushing forces can be higher than the estimated buckling load of the unsupported ovipositor outside the substrate. Assuming the maximal pushing forces are required during probing, antibuckling mechanisms are needed to avoid damaging the ovipositor. Buckling can be limited (prevented) by either supporting the ovipositor outside the substrate with additional sheaths, employing the push–pull mechanism, or both. Subtracting the maximal estimated pushing and pulling forces on the ventral valves, results in a net pushing force that is very close to the buckling threshold of the ovipositor, albeit still slightly higher. The sheaths, although being flexible, might provide the additional support if needed. In this thesis, I show that multi-element probes are inserted into the substrate using reciprocal movements of the individual elements. These movements appear to be necessary in stiff substrates, which presumably require high pushing forces on a single element during probing. This is in accordance with the hypothesis that reciprocal valve movements serve as an anti-buckling mechanism. Additionally, such valve movements are also important for steering of the probe during insertion. The valve offset controls the shape of the probe tip and therefore the net substrate reaction forces that result in bending of the probe. Wasps evolved special structures that enhance the shape changes of their ovipositor tips and facilitate steering. Our findings may be interesting for a broad range of audiences. Entomologists, evolutionary biologists, and ecologists may find them useful when studying the diversification of probing insects, their evolutionary success, or their ecological interactions (e.g. insect–plant, parasite–host). The anti-buckling and steering mechanisms may be helpful when developing novel, man-made probes. These mechanisms allow for minimization of the probe thickness and accurate steering control, which minimizes substrate damage during probing. Our findings may be particularly useful in the development of slender, steerable needles for minimally invasive surgery.</p

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Development of an online progressive mathematical model of needle deflection for application to robotic-assisted percutaneous interventions

    Get PDF
    A highly flexible multipart needle is under development in the Mechatronics in Medicine Laboratory at Imperial College, with the aim to achieve multi-curvature trajectories inside biological soft tissue, such as to avoid obstacles during surgery. Currently, there is no dedicated software or analytical methodology for the analysis of the needle’s behaviour during the insertion process, which is instead described empirically on the basis of experimental trials on synthetic tissue phantoms. This analysis is crucial for needle and insertion trajectory design purposes. It is proposed that a real-time, progressive, mathematical model of the needle deflection during insertion be developed. This model can serve three purposes, namely, offline needle and trajectory design in a forward solution of the model, when the loads acting on needle from the substrate are known; online, real-time identification of the loads that act on the needle in a reverse solution, when the deflections at discrete points along the needle length are known; and the development of a sensitivity matrix, which enables the calculation of the corrective loads that are required to drive the needle back on track, if any deviations occur away from a predefined trajectory. Previously developed mathematical models of needle deflection inside soft tissue are limited to small deflection and linear strain. In some cases, identical tip path and body shape after full insertion of the needle are assumed. Also, the axial load acting on the needle is either ignored or is calculated from empirical formulae, while its inclusion would render the model nonlinear even for small deflection cases. These nonlinearities are a result of the effects of the axial and transverse forces at the tip being co-dependent, restricting the calculation of the independent effects of each on the needle’s deflection. As such, a model with small deflection assumptions incorporating tip axial forces can be called “quasi-nonlinear” and a methodology is proposed here to tackle the identification of such axial force in the linear range. During large deflection of the needle, discrepancies between the shape of the needle after the insertion and its tip path, computed during the insertion, also significantly increase, causing errors in a model based on the assumption that they are the same. Some of the models developed to date have also been dependent on existing or experimentally derived material models of soft tissue developed offline, which is inefficient for surgical applications, where the biological soft tissue can change radically and experimentation on the patient is limited. Conversely, a model is proposed in this thesis which, when solved inversely, provides an estimate for the contact stiffness of the substrate in a real-time manner. The study and the proposed model and techniques involved are limited to two dimensional projections of the needle movements, but can be easily extended to the 3-dimensional case. Results which demonstrate the accuracy and validity of the models developed are provided on the basis of simulations and via experimental trials of a multi-part 2D steering needle in gelatine.Open Acces
    • 

    corecore