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Abstract

The increasing adoption of robotic-assisted surgery has opened up the possibility to control

innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable

needles belong to this category, and their potential has been recognised in various surgical fields,

including neurosurgery. However, planning for steerable catheters’ insertions might appear

counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a

feasible trajectory to follow and methods to assist them intra-operatively during the insertion

process are currently of great interest as they could accelerate steerable needles’ translation

from research to practical use.

However, existing computer-assisted planning (CAP) algorithms are often limited in their abil-

ity to meet both operational and kinematic constraints in the context of precise neurosurgery,

due to its demanding surgical conditions and highly complex environment. The research con-

tributions in this thesis relate to understanding the existing gap in planning curved insertions

for steerable needles and implementing intelligent CAP techniques to use in the context of

neurosurgery.

Among this thesis contributions showcase (i) the development of a pre-operative CAP for pre-

cise neurosurgery applications able to generate optimised paths at a safe distance from brain

sensitive structures while meeting steerable needles kinematic constraints; (ii) the develop-

ment of an intra-operative CAP able to adjust the current insertion path with high stability

while compensating for online tissue deformation; (iii) the integration of both methods into

a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of

user-controlled needle steering animal trials, demonstrating successful targeting performances.
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(iv) investigating the use of steerable needles in the context of laser interstitial thermal ther-

apy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for

steerable needles within this context.

The thesis concludes with a discussion of these contributions and suggestions for future work.
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Chapter 1

Introduction

1.1 Motivation: a clinical need

Minimally invasive surgery (MIS) aims to reduce morbidity and tissue disruption of essential

structures in the brain, such as nerves that control vision and hearing, making it less likely that

a person will experience changes in function.

Rapid developments have taken place due to the significant benefits MIS presents for the pa-

tient, including less trauma, shorter hospital stays and reduced recovery times as reported by

[WGJD08].

In traditional open neurosurgeries, surgeons create large incisions to be able to operate and

access the target area. With MIS, surgeons can reduce the intervention to a few small holes

or openings, and use sophisticated tools and video equipment to operate. The MIS revolution

received its impetus from technological advances in pre- and intra-operative navigation and

visualisation, lower profile instruments and of course the evolution of mechanical and com-

puterised devices now considered the gold standard in the different branches of neurosurgery

(trauma, oncological, vascular and functional). Minimising human intervention during the pro-

cedure is one of the key goals for MIS. In future systems, human presence will be supervisory

following the planning stage. This could facilitate complex neurosurgical interventions while

1
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improving accuracy and reducing the overall time and cost [VRB+19].

On this regard, neurosurgery is a field that can greatly benefit from robotic solutions, not

least due to the following reasons: a rich history of neurosurgical innovation in stereotaxy, a

constrained anatomical environment, the microsurgical nature of procedures, a highly technical

nature of the field, a need for growth in MIS and a culture that adopts and embraces new

technology, according to [WJLS17]. However, general system solutions are rare, and conversion

of research programs to commercially successful products has been noted to be very rare, likely

due to the inherently complex nature of procedures. Early robotic neurosurgical platforms

served as computer-assisted stereotactic guidance systems. Indeed the first medical robotic

demonstration in 1985 used a PUMA 560 Industrial robot to guide a brain biopsy needle to a

target along a straight trajectory [KHJH88]. In 1991, a later version of the system allowed the

successful resection of deep benign astrocytomas in 6 children without morbidity or mortality

[DJGK91].

The Renishaw neuromate R© stereotactic robot was the first to obtain U.S. Food and Drug

Administration (FDA) approval; this system is a 5 Degrees of Freedom (DOF) serial ma-

nipulator [LZP+02] which moves in a pre-programmed direction to a specific site defined by

integrated neuronavigation systems for stereotactic biopsy or functional neurosurgical applica-

tions [DHM+95] including deployment of electrodes for Deep Brain Stimulation (DBS), stereo-

electroencephalography and other stereotactic applications.

Other robotic, frameless stereotactic solutions include the Zimmer Biomet (originally MedTech)

Rosa brain, a 6 DOF serial robotic manipulator designed for the accurate placement and in-

sertion of neurosurgical tools, the Medtronic (originally Mazor Robotics) Renaissance system,

a hexapod parallel robotic manipulator with 6 DOF that is directly mounted to the skull of

the patient and used for DBS and biopsies, and CyberKnife [CA06]. CyberKnife is a frameless

platform for stereotactic radiosurgery - a non-invasive procedure that uses precisely targeted

radiation as an ablative surgical tool. It consists of a 6 DOF arm that points the medical linear

accelerator (LINAC) using real-time image guidance.

Future enhancements in visualisation, tools dexterity, automation, and sensory feedback, are
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expected to expand neurosurgical robots applications further. First, the user interface should

be simple enough not to require specialised training to be able to plan the procedure and

operate the device accordingly. This is particularly true in the case of new flexible tools which,

whilst they enable neurosurgeons to overcome current surgical limitations, they might be less

intuitive to manoeuvre safely. Furthermore, robots must be able to sense and automatically

correct for perturbations at all phases of the intervention, thus reducing the skill level required

by the surgeon to perform the procedure.

Steerable needles are at the forefront of medical robotic innovation, aiming to revolutionise

the treatment of brain disease through new minimally invasive surgical techniques. Steerable

needles are an important advancement in MIS techniques for the treatment of brain diseases

since they can reduce brain-tissue damage [FFK+12], avoid critical structures of the brain and

adjust their trajectory online for better accuracy.

1.2 Background

Percutaneous procedures, such as biopsy, brachytherapy and localised drug delivery require

high accuracy and precision in reaching target locations inside the human body. The needle’s

insertion towards a specific target is usually difficult due to the lack of visibility, limited ma-

noeuvrability and possible obstructions or obstacles between the starting and the target points.

Performing this procedure using traditional rigid needles limits the path to a straight line, thus

increasing the chance of complications due to the inability to manoeuvre around impenetrable

or sensitive anatomical structures.

Several needle steering technologies have been developed in order to provide curvilinear paths

within the tissue. These can be broadly classified into seven main categories: needle steering

controlled using concentric tubes, also known as active cannula [WJ10, DLIB10], needle steering

controlled using the lateral motion of the needle base [GS07, DS05a], flexible needle steering con-

trolled using a fixed shape bevel tip (with and without pre-curve) [MWRO10, KC09, EMKR10],

pre-curved stylet [DS05b], tendon actuated tip [RvdBvdDM15], optically controlled needle
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[RQK+15] and flexible needle steering controlled using a bio-inspired multi-segment needle or

programmable bevel-tip (PBN) [SR13b, SKBD17]. Since then, shape memory alloy (SMA)

actuated flexible needles have also been presented by [YNN+18, KDH14].

Needle-based minimally invasive therapies in neurosurgery offer fertile ground for steerable

needles. Steerable needles could, in fact, further improve the accuracy of these procedures

while minimising surgical risks. Particularly, there is a growing emphasis on both minimally

invasive and robotically assisted therapies in neurosurgery. Among these we have: stereotactic

needle-based brain biopsies (SBB), deep brain stimulation (DBS), stereoelectroencephalography

(SEEG), stereotactic needle-based aspiration, stereotactic brachytherapy, needle-based thermal

ablation and intracerebral drug delivery (IDD). Of course, distinct surgical procedures could

benefit from steerable needle technologies in different ways.

J. Burgner Kahrs et al. [BSL+13] suggested that curved insertion could advance needle-based

aspiration for hematomas, thus reducing the current high risk of failure, which offsets the

benefits of this procedure. They hypothesise that a robot that can access the haemorrhage site

through a needle-sized burr-hole and then debulk the clot from within could reduce the trauma

to sensitive brain structures, currently associated with surgical decompression. To do so, they

propose the use of a concentric tube robot which consists of a straight, stiff outer needle and an

inner curved superelastic cannula. What makes concentric tube robots particularly suitable for

brain aspiration is that, contrary to bevel-tip needles, they do not depend on tissue interaction

to achieve steering. Besides, they can achieve high curvatures within the clot for dexterous

aspiration.

Concerning deep brain stimulation, multiple studies are proposing steerable needles use as

[HBM+19, PRH+16]. The main advantages are attributable to their dexterity which allows

clinicians to avoid obstacles on their way towards the target region and reach it with high

accuracy. In a recent study, Segato et al. proposed a computer-assisted path planner for the

EDEN2020 PBN [SPF+19a] for DBS Parkinson’s applications which aims to achieve accurate

targeting of the subthalamic brain nucleus, achieving greater simulated results with respect

to currently followed straight trajectories. Also, this PBN is particularly suited for chronic
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disease management since it could potentially be kept in situ for extended periods. In fact, it is

entirely passive and made of a biocompatible highly flexible material which makes it compliant

to possible brain soft-tissue deformations.

Similarly to DBS, brachytherapy applications demand high targeting accuracy, with the place-

ment of radioactive seeds in specific positions proximal to the lesion under treatment. In

B.Kohn et al. [KDH14], a shape memory alloy (SMA) actuated flexible needle is considered to

improve this practice.

Another fascinating field of application for steerable needle technologies involves thermal tissue

ablation practices. Thermal ablation is usually performed by means of a laser fibre for treating

tumours and seizure-generating brain regions. Concentric tubes robots have been proposed to

provide complete ablation, especially of curved anatomical structures, with respect to currently

used straight catheters. Furthermore, steerable needles’ enhanced flexibility offers the potential

of modifying the traditional surgical procedure. For instance, Yue Chen et al. [CPC+17]

suggested accessing the patient’s brain through a natural opening in the skull base called

foramen ovale), thus avoiding the need for a burr-hole.

Finally, steerable needles lend themselves to intracerebral drug delivery procedures. Since the

blood-brain barrier (BBB) prevents the transport of most systemically delivered molecules

to the brain, convection-enhanced delivery (CED) has been developed in the last decade as

an effective drug-delivery approach to overcome the BBB. This is a method of drug-delivery

currently undergoing clinical evaluation. It uses a positive pressure gradient to increase drug

uptake in the treatment of brain tumours.

In this context, it has been suggested that the location of the needle tip with respect to the

target is vitally important for the efficacy of drug delivery [ZDB19]. The targeted pose for the

infusion must be optimised with respect to the patient-specific tissue properties.

However, the efficacy of the current technique is limited due to poor targeting of infusion points

[SAP+10] and suboptimal delivery of catheters [MPL+11]. Innovation is taking place to over-

come these failings at a system-wide level [BHW+16] and also focusing on specific problems
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associated with catheterisation [GBW+13], but a radical new approach is needed to address

these limitations effectively. At the same time, new imaging modalities are providing clinicians

with additional tools to better plan and execute surgery, for instance by performing tractogra-

phy to identify no-go functional areas [VHW+12] and to assess the extent and type of cancerous

infiltration into white matter [LVR+13]. The availability of this information during therapeutic

delivery is potentially life-changing but currently limited due to the loss of positional accuracy

(i.e. pre vs. intra-operative feature locations) resulting from intra-operative brain shift and tis-

sue deformation. Steerable needles, featuring a single or multiple channels, have been proposed

for IDD applications [ZDB19, HAE+15] thanks to their ability to adjust the path online in re-

sponse to possible deformations in order to reach a specified goal pose accurately. Particularly

important in the context of this thesis is the European funded project EDEN2020 featuring a

diffusion model for improved therapy planning that is expected to increase the efficacy of the

drug delivery process [ZDB19].

Crucial to accurately reaching the goal pose or improving the coverage of the target area is

the ability to plan optimised obstacle-free and low-risk paths. Computer-assisted planning

helps to (i) automate the path selection during the pre-operative phase of the intervention; (ii)

minimise patients’ risk by generating safe paths at a predefined minimum distance from sensitive

structures; (iii) improve patients’ outcomes by proposing paths that optimise important surgical

metrics. Computer-assisted planning, together with intra-operative planning are both widely

researched topics for steerable needles. The latter exploits the flexibility of steerable needles in

being able to adjust a pre-operative trajectory on-the-go, if needed.

However, planning for an appropriate three-dimensional (3D) insertion path for a flexible nee-

dle can be particularly challenging. This is due to factors like kinematic constraints of the

considered catheter, the presence of complex anatomical structures such as the brain network,

and surgical constraints dependent on the specific application (i.e. entry and target pose con-

ditions).

Different kinds of path planning algorithms have been used in the context of steerable needles.

It is also observed that, since Xu et al. [JDAG08] first applied the most common sampling-based
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path planning method called Rapidly-exploring Random Tree (RRT) to search for valid needle

paths in a 3D environment, RRTs have become the most common path planner technique for

steerable needles technologies. However, these algorithms have often been tested with simple

geometrical obstacles, which is a poor representation of a realistic anatomical environment

[VAP+14, ZWZ+, PBWA14]. Furthermore, they generally do not include needle curvature con-

straints and target orientation accuracy is mainly not considered. Only recent RRT spline-based

solutions are able to meet constraints on both a specified target orientation and on a maximum

curvature radius, without requiring further smoothing [YMY+14, FSM18a]. However, these so-

lutions cannot easily be extended to higher curvature constrained needles since they are limited

by their geometrical approach which, as in the case of Dubin’s curves, bound the maximum

curvature radius up to half the distance between the start and target point [FSM18a, Moh15].

RRT-based methods featuring very low computational time have also been proposed for intra-

operative use [PBWA14]. However, local methods, aiming for pre-operative path adjustment

instead of full re-computation could achieve much greater stability from which intra-tissue

applications could benefit [ZSP15, WJLS17]. Therefore, a comprehensive computer-assisted

planning method should be able to meet new constraints deriving from precision neurosurgery

applications and adjust the selected path online during the insertion, compensating for devi-

ations of the tip and tissue deformations with excellent stability. Path planning methods for

steerable needles are reviewed extensively in Chapter 2.

1.3 Objectives

• To assist surgeons during the pre-operative phase of procedures requiring high accuracy

on the final goal pose, which includes both target position accuracy and target orientation

accuracy.

• To propose a computer-assisted planner for steerable needles that can generate safe and

feasible paths according to neurosurgeons preference.

• To propose an intra-operative solution which compensates online for tissue deformations
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and deviations from the pre-operative path.

• To demonstrate the ex-vivo and in-vivo performance of pre-operative and intra-operative

path planning methods.

• To explore a novel application for steerable needles in neurosurgery and demonstrate

curved potential trajectories over straight ones through a retrospective study.

1.4 Research Problem

The main research problem tackled by this thesis is an investigation into path pre-operative

planning and online re-planning in the context of steerable needles. This is achieved through the

development of a computer-assisted planning technique meeting both the kinematic constraints

of a flexible needle and the surgical constraints of a precision neurosurgery intervention which,

as for IDD, demands high accuracy on the goal pose. Furthermore, its integration within

the EDEN2020 robotic suite (www.eden2020.eu) allowed testing of its performances during

ex-vivo and in-vivo trials on ovine models. Then, a novel optimised pre-operative planning

method for thermal ablation purposes is proposed, which can maximise target area coverage

and minimise the risk of damage along with a curved insertion. This has been evaluated through

a retrospective study done on epilepsy patients, demonstrating the potential of steerable needles

for this type of surgical procedure.

1.5 Contributions

This thesis makes the following novel contributions:

• Multi-threading and GPU-based parallel processing methods are explored to implement

pre-operative planning tools that, given a goal pose and a PBN, can aid surgeons in

mapping corresponding feasible access areas on the patient’s skull.
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• A computer-assisted planning (CAP) algorithm for steerable needles is implemented,

which takes into account patient-specific anatomy, PBN geometrical constraints, and

functional clinical requirements, such as preferential drug delivery target orientation (re-

sulting from studies on the microstructure of the brain tissue) and surgeon preference.

• An intra-operative planner for steerable needles is proposed. Online trajectory adjust-

ments are successfully performed to compensate for tissue deformation, needle-tissue in-

teraction, and needle deviations from the planned path (e.g. due to surgeon error during

the servo-assisted insertion of the needle).

• Both the computer-assisted planner and the intra-operative planner are integrated into

the EDEN2020 robotic suite and ex-vivo and in-vivo tests are performed on ovine models.

• A new potential application of the EDEN2020 technology for thermal ablation for epilepsy

procedures is proposed, together with an ad hoc CAP method for steerable needles that

optimises coverage and reduces damage to sensitive structures.

1.6 Research Strategy

The research presented in this dissertation is applied. Numerous pieces of previous academic

research exist regarding path planning for steerable needles, not only within a neurosurgical

environment but also extended to other organs, soft-tissues and cavities. As such, the proposed

research took the form of new research tackling the navigation of follow-the-leader deployment of

steerable needles for the specific application of precise neurosurgery, based on existing literature.

1.7 Research Approach

This dissertation makes use of a quantitative research strategy, where the aim is to classify

features, count them, and construct statistical models in an attempt to explain what is observed.

In quantitative research all aspects of the study are carefully designed before data is collected in
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the form of numbers and statistics. Furthermore, the experimental research approach has been

implemented. In this approach, a test is performed in a controlled environment and specific

data are collected from it. This type of data is used for a situation in which variables are

controlled and manipulated to establish cause-and-effect relationships. Every technical chapter

of this thesis features a methodology section providing information on the specific experiment

design, tools, techniques and procedures used to conduct the tests.

1.8 Data Collection Methods and Tools

For the purpose of this thesis, we decided to mainly use computational simulations methods

(Chapter 3, 4, 5, 7) in combination with lab experiments (in-vitro tests, Chapter 5) and on

field experiments (ex-vivo animal tests, Chapter 6).

With the advent of large-scale computers, computational approaches have become indispensable

for characterising, predicting and simulating real-world events and engineering systems. From

the point of view of scientific investigations, one of the great strengths of computer simulations

over experiments in the lab, is the ability to study a complete range of parameters and analyse

their influence within a simplify simulated environment. Particularly in autonomous robotics,

computer simulations can cut research cost and time, providing a low cost and easy accessible

environment for the development of robotics software.

In addition, simulation can be an important intermediate step between the creation of an

algorithm and the testing in a real world scenario. Since a simulated environment is controllable,

troubleshooting a ”misbehaving” algorithm is simplified due to less factors playing part in its

final performance. Furthermore, a simulated environment is not unpredictable which ensures

the reproducibility of research. A question could be raised about the transferability of simulated

performance into a real world scenario, where many more factors are involved, which warrants

the careful use of experiments to corroborate simulated findings.

Lab and on field experiments (Chapter 5) have thus also been performed in the context of this

thesis. During lab experiments the environment was controlled and the independent variables
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could be manipulated to study cause and effect relationships. Lab experiments offer high

internal validity, which makes them superior to field experiments. However, this may lead to a

lack of ability of generalisation to the real world.

Finally, field tests were carried out to evaluate the integration (Chapter 6) of the proposed

algorithms within a real-world scenario and measure the influence of real-world uncertainties

on the final performance.

1.9 Publications

During the course of the PhD, the following papers were published. This thesis contains edited

versions of these publications; where material used is from modified versions of a publication,

it is detailed at the start of the corresponding chapter.

• Marlene Pinzi, Stefano Galvan, and Ferdinando Rodriguez Y Baena, ”Surgical Planning

and intra-operative Navigation”, Poster presentation at ERF 2017, European Robotics

Forum, March 2017

• Marlene Pinzi, Stefano Galvan, Wenbo Zhan and Ferdinando Rodriguez Y Baena, ”To-

wards an Optimized Path Planner for the EDEN2020 Neurosurgical Steerable Needle”,Hamlyn

Symposium on Medical Robotics Conference, June 2017

• Marlene Pinzi, Stefano Galvan, and Ferdinando Rodriguez Y Baena, ”Adaptive Frac-

tal Trees Parametrisation for Neurosurgery Applications”, 7th Joint Workshop on New

Technologies for Computer/Robot Assisted Surgery, September 2017

• Marlene Pinzi, ”Pre-operative and intra-operative Path Planning for Steerable Needles”,

Invited Speaker at Robotics at Leeds Conference, September 2018

• Marlene Pinzi, Stefano Galvan, and Ferdinando Rodriguez Y Baena, “The Adaptive

Hérmite Fractal Tree (AHFT): a novel surgical 3D path planning approach with cur-

vature and heading constraints.” International Journal of Computer Assisted Radiology

and Surgery, vol. 14, no. 4, pp. 659–670, April 2019
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• Marlene Pinzi, Riccardo Secoli, Tom Watts, Stefano Galvan and Ferdinando Rodriguez

Y Baena, “Path Replanning for Orientation-constrained Needle Steering” IEEE Trans-

actions on Biomedical Engineering, under the second review

• Riccardo Secoli, Eloise Matheson, Marlene Pinzi, Stefano Galvan, Tom Watts, Abdul

Donder, and Ferdinando Rodriguez Y Baena, “A Modular Robotic Platform for Preci-

sion Neurosurgery with a Programmable Bevel-Tip Needle” The International Journal of

Robotics Research, under review

• Marlene Pinzi, Vejay Vakharia, Brian Hwang, William Anderson, John Duncan and Fer-

dinando Rodriguez Y Baena, “Computer Assisted Planning for Curved Laser Interstitial

Thermal Therapy” IEEE Transactions on Biomedical Engineering, under review

1.10 Thesis Structure

Chapter 2 presents a review of path planning algorithms used in the field of steerable needles and

more specifically, the evaluation of their performances with different user-defined constraints

and experimental setups. The relative merits of different approaches are considered in order to

justify the subsequent research choices.

Chapter 3 develops a pre-operative path planner tool for steerable needles with the purpose of

mapping the patient’s skull and aid with entry point selection in a easy and interactive way.

The tool will allow clinicians to visually map the patient skull, highlighting those regions from

where safe and feasible paths can be followed.

Chapter 4 validates a pre-operative path planning algorithm able to cope with the kinematic

constraints of a steerable needle and predefined start and target poses. Its performance to

target pose migration and rotation are assessed in simulation.

Chapter 5 introduces an intra-operative path planning algorithm based on the concept of ”elas-

tic bending” methods able to adjust the pre-operative path online, compensating for deviations

at the tip of the needle and environmental changes. In-vitro experiments with a 4-segment PBN
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demonstrate its potential to be applied either to user-controlled steering or in semi-automatic

needle steering frameworks.

Chapter 6 presents the integration of the discussed pre-operative and intra-operative planning

algorithms into the EDEN2020 system, a neurosurgical platform which targets drug delivery

for treatment of glioblastoma. The system is presented along with performance evaluation.

Chapter 7 proposes the application of a novel computer-assisted planning method to laser

interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy. This is the first quanti-

tative evaluation of an optimised patient-specific technique for curved LiTT insertions. Results

confirm the potential of steerable needles for LiTT neurosurgical purposes.

Chapter 8 concludes the thesis, stating the achievements of the research with respect to the

initial hypotheses. It discusses the wider context within which the thesis was conducted and

presents opportunities for future study.



Chapter 2

Literature Review

2.1 Path Planning for Steerable Needles

Path planning algorithms are a major point of study in the robotic field. Their aim is the

generation of a feasible path from a starting point to a target point, which avoids search space

obstacles. However, the main issue, especially in the field of steerable needles, is not the

generation of an obstacle-free trajectory but its characteristics of smoothness and curvature

which are strongly limited depending on the application. Furthermore, the path planning

environment can be either static or dynamic. For the static environment, the whole solution can

be found before starting execution. However, for dynamic or partially observable environments,

replanning is required frequently and more update time is needed.

There are many studies on robot path planning using various approaches, which are broadly

classified into search methods and numerical methods, as outlined in this section (Fig. 2.1). The

first category includes those strategies in which the topology of the total environment has to be

considered. They rely on capturing the topology of the environment and synthesizing it, either

in a graph (A star, visibility graph, Voronoi diagram, etc.) or in a tree connecting the start to the

goal position as for sampling-based methods (Rapidly-exploring Random Trees, Probabilistic

Road Maps, Adaptive Fractal Tree etc.). Classic strategies using artificial potential fields (APF)

are also included.

14
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2.1.1 Search methods

Graph-based strategies

Graph based path planning algorithms perform optimisation based on an array of nodes gen-

erated by discretisation of the problem space [YQS+16]. Graph-based methods are resolution-

complete, meaning that, at the chosen resolution, they are guaranteed to find a solution, if one

exists. In addition, they are also resolution-optimal, meaning that they can find the optimal

solution, among the existing ones, at the chosen resolution. Thus, optimality is guaranteed

inside the limits imposed by the discretisation of the domain.

A star (A*) is the most well-known graph based method for path planning. It was developed

by Peter E. Hart, Nils Nilsson and Bertram Raphael in 1968 [HNR68]. The authors extended

the well known “Dijkstra’s algorithm” which aims at finding the shortest path between a node

and all other nodes in a weighted graph. In particular, it can generate the shortest path from

a starting node to a destination node. However, a critical drawback of Dijkstra’s algorithm is

that it does not consider any information about the target location, thus expanding in every

direction of the search space. A* is a modified version of Dijkstra’s algorithm, improved to

overcome the aforementioned limitation. A* reduces the number of the graph nodes explored,

by using a heuristic leading to the target. Hence, A* algorithm is generally much faster to run

than Dijkstra’s algorithm. In particular, it combines features of uniform-cost search and pure

heuristic search to efficiently compute optimal solutions. It follows that the cost associated

with a node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to

node n and h(n) is the heuristic estimate or the cost of a path from node n to a goal. Thus,

f(n) estimates the lowest total cost of any solution path going through node n. At each point

a node with the lowest f value is chosen for expansion. The algorithm terminates when a goal

is chosen for expansion.

Search space partition techniques can be used in combination with graph based path planning.

Generally, these methods produce a set of possible paths and a search algorithm such as A*

must be used for selecting the optimal route. For instance, Voronoi diagrams have been pro-
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posed in the field of path planning to maximise the margin for error while navigating between

obstacles. A similar approach by Bhattacharya and Gavrilova [BG07] has been used to gen-

erate a simplified roadmap of the environment, also reducing the computational complexity of

the path optimisation task. Similarly, visibility graphs are an illustration of intervisible points

between obstacles. Like Voronoi diagrams, they create a simplified roadmap of the environ-

ment [LSLL98]. This method has been used with success for UAV path planning [Bin11] when

knowledge of the environment is complete.

However, the main drawback of the A* algorithm is its memory requirement. Since the entire

node array must be saved, A* is severely space-limited in practice. Mohamed et al. [Moh14]

introduced a new variant of the A* algorithm, which they state could be applied in a typical

needle based surgery. They implemented an octagonal division for the environment which

resulted in not only bigger obstacle avoidance sensivity and smoother paths but also reduced

computational time with respect to the orginal A* version. However, only preliminary results

have been shown: average computational time is not provided and the algorithm assessment,

specially in the context of needle based surgery, is very poor.

To conclude, A* based methods are able to effectively find paths with obstacle avoidance, but

the search is excessively time consuming. Thus, in practical path planning systems, as in the

context of robotics, it is generally outperformed by algorithms which can pre-process the graph

to attain better performance as well as memory-bounded approaches.

Artificial Potential Fields

The artificial potential field (APF) method proposed by Khatib [Kha] is a popular approach

for implementing real-time obstacle avoidance. The APF algorithm is based on artificial forces

generated by the search space and applied to the robot. In particular, repulsive forces and

attractive forces are assigned to the obstacles and goal position respectively. For each point of

the search space it is possible to calculate an artificial potential value due to the contribution

of the attractive potential pulling the robot towards the target and the repulsive one pushing

the robot away from obstacle regions. The robot is, therefore, attracted to the goal position



18 Chapter 2. Literature Review

and repulsed from the obstacles in the environment. Since this capability is achieved without

costly representations of the free-space, there has been much interest in adapting the potential

field method to path planning.

With regard to medical applications, DiMaio and Salcudean [DS05b] proposed a potential-field-

based path planning technique for needle steering tested in a geometrical environment.

However, the main disadvantages of APF methods are that trap situations can occur due to the

presence of local minima in the potential, thus limiting their use in congested environments such

as anatomical ones. Li et al. [LJYY] came up with a possible approach to overcome this issue

which relies on an APF method in conjunction with an improved conjugate gradient algorithm

(ICGA). This technique was tested in a static geometrical simulated environment, resulting

in higher efficiency (13.45% higher) compared to APF method. Future Li et al. [LJL+17a],

give an example of an APF algorithm used in medical instrument static trajectory planning.

Simulation of prostate brachytherapy using an organ group mockup (OGM) of the pelvic cavity

is performed. The puncture needle always moves from a high potential point to a low potential

point; the needle motion is in the minimum potential direction while the goal is the point of

lowest potential. However, the APF algorithm is only used to generate a preoperative reference

path while is the path tracking controller that constantly guides the needle during the insertion.

It can be concluded that although APF algorithms have a reasonable time solution, they shows

poor ability to overcome the local minima trap and provides non-optimal results. Finally, their

poor performance in narrow passages and complex dynamic environments makes it difficult to

implement them in a real-world application.

Sampling-based methods

Sampling-based methods do not require an a priori discretization of the domain but progres-

sively sample the space, increasing the accuracy of the solution as the search progresses. In con-

trast to graph-based methods, sampling-based methods do not explicitly characterize the free

space and the obstacles space, but generate solutions and then check their feasibility through
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a collision detector.

• Rapidly Exploring Random Tree

The rapidly exploring random tree (RRT) method is a very common sampling-based

method that was first proposed by La Valle [Lav06]. RRTs rapidly search the configuration

space to generate a path connecting the start node and the goal node. The configuration

space consists of two parts, a fixed obstacle region, which must be avoided, and an

obstacle-free region, where the robots must stay. RRT methods are based on a random

sampling of the search space that allows to create a tree which expands towards the

obstacle-free directions. In order to implement a basic RRT algorithm, the following

steps should be obeyed:

1. the initial collision free state x is selected as the first vertex. Then, a state xrandom

is randomly chosen in the free space.

2. the nearest state xnear to the newly generated state xrandom is selected based on

a certain metric (mostly an Euclidean metric) which is already designed. xnear is

considered as the parent state with respect to xrandom.

3. xrandom is the state which shows the direction where the next step should go

but may be beyond the robot’s reachability. Thus a control input factor is added,

considering the kinodynamic constraints, in a cost function gm = f(x, y, z) form.

Then according to the constraints r and cost function gm we get the reachable state

xnew which is first checked for collisions and then added to the path.

RRT produces very cubic graphs. This is expected as nodes are attached to their nearest

neighbor. The structural nature of these graphs hinders the probability of finding an

optimal path. RRT-based algorithms are not asymptotically complete, meaning that

convergence to the optimal solution is not guaranteed.

RRT* is a modified version of RRT able to converge towards an optimal solution. The

main difference with RRT, is on how a new point is connected to the growing tree. First,

RRT* records the distance each vertex has traveled relative to its parent vertex. This is
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referred to as the cost of the vertex. After the closest node xnear is found in the graph,

a neighborhood of vertices in a fixed radius from the new node are examined. If a node

with a cheaper cost() than xnear is found, the cheaper node replaces xnear. The second

difference RRT* adds is the rewiring of the tree. News states are not only added to a tree,

but also considered as replacement parents for existing nearby tree states. With uniform

global sampling, this results in an algorithm that asymptotically find the optimal paths

from the initial state to every state in the problem domain. However, this is inconsistent

with path planners’ single-query nature and becomes expensive in high dimension.

RRT and RRT* planners generally have large computational time and cannot deal with

changing environments where the obstacles are not in a fixed position. Furthermore, they

can suffer from a lack of control in orientation, residual position errors and curvature

discontinuities. On the other hand, sampling based methods and specially RRTs have

been extensively explored, integrating them with different strategies in order to guarantee

the compliance to kinematic constraints while reducing computational time.

Xu et al. were the first to create a variant of RRT for needle steering [JDAG08] which

takes into account the kinematic constraint of a flexible catheter. Their implementation

was only tested with simple 3D spherical obstacles and it is too slow for closed-loop im-

plementation (average of 621.4 across 10 trials). In the recent literature several attempts

have been made to produce needle steering RRT-based planners that act online during

a procedure to correct for needle positioning errors. Different methods to speed up the

convergence of the algorithm and allow its intra-operative use have been evaluated. Patil

et al. [PBWA14] demonstrated a RRT based planner for rapid replanning and controlling

of a concentric tube steerable needle in 3D, with a computational time bounded at 1 sec-

ond per replanning step. Variable curvature arcs are used to compose the trajectory and

a reachability-guided sampling heuristic (RG-RRT) is introduced to reduce the execution

time of the algorithm. This method differs from standard RRT in the choice of the new

random point at each iteration: while in RRT the new point is sampled randomly from

the search space, in RG-RRT, the allowed space for sampling is limited to the region of

space accessible to the needle, according to its kinematic constraints. A similar approach
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was also applied in Vrooijink et al.’s study [VAP+14]. The reachability-guided sampling

allows the search tree to grow efficiently, thus reducing the run time to a fixed planning

time bounded at 0.6 seconds and, therefore, allowing its online application.

A simple modification of RRT* that demonstrates order-of-magnitude improvements in

complex obstacles environments is represented by Informed RRT* methods. These behave

as RRT* until a first solution is found, after which it only samples from the subset of states

defined by an admissible heuristic to possibly improve the solution [GSB]. Informed RRT*

has also been recently used in neurosurgical applications [SPF+19a] in combination with

an evolutionary optimization procedure for path smoothing and refining. Although, this

technique features a high computational time varying between 1 to 3 min, thus limiting

its potential to preoperative path planning.

On the other hand, different RRT and RRT* solutions have been developed with the

aim of generating paths within the required curvature boundaries. Recently, Hong et

al. [HBM+19] incorporated the physical constraints of a flexible needle directly within

an RRT*-based algorithm. Three-dimensional Dubins curves [HG10] have been coupled

with a RRT*-based method [PHB17] to aid the process in the case that start and goal

regions are sufficiently far away. This approach has been originally proposed for aerial

vehicles (UAV) such as drones but could be applicable to steerable needles technologies.

With the same purpose, spline-based RRT methods can deal with differential constraints

directly in the global planner, removing the need for a refinement process. In particular,

curvature bounded cubic Bézier splines have been used as local planner to connect two

states of the RRT search tree [YMY+14]; in Yang et al. simulation and experimental

results of a mobile robot efficiently navigating through a 2D cluttered environment are

presented.

Finally, the RRT-Connect algorithm has been proposed as an enchanced version of the

RRT, which involves the parallel growth of two trees [KS00]. These methods, unlike

basic RRTs, grow search trees from both the goal and the initial region in an attempt

to connect these two and take into account both start and target pose constraints. With

this strategy, more possible connections are available than just those between search tree
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and goal regions. Thus, successfully finding an access path is more likely.

An optimised version of this technique has been very recently introduced in the context

of nonholonomic steerable needles technologies for surgical applications requiring high

precision with start and goal regions in SE(3) [FSM18b]. These tailored RRT-Connect

algorithms outperform state-of-the- art one-directional planners and provide a reliable

and fast method (with a computational time bounded at 0.5 seconds) for planning access

paths in temporal bone surgery. In contrast to the standard RRT-Connect, the proposed

k-RRT-Connect imposes orientation constraint at the start and target state. It also

overcomes the common shortcoming of the RRT-Connect method to show discontinuities

at the intersection of the two trees. Nonetheless, the implemented connection techniques

work only for bounded curvature values that are not always generalizable to existing

steerable needles constraints.

To conclude, sampling-based motion planning algorithms such as rapidly exploring ran-

dom tree planners have been effective for a broad range of robotics problems including

needle steering. However, a common issue in most existing path planning approaches,

including RRTs, is that the algorithm performs the search sequentially, relying on a single

CPU, a fact that imposes a considerable lower bound on computation time and cost. For

this reason, the design of real-time path planning algorithms capable of online updates

is very challenging and a trade-off between computational time and solution optimality

needs to be taken into account.

• Adaptive Fractal Tree:

The Adaptive Fractal Tree (AFT) [LGCSR16] is an innovative algorithm characterised

by the expansion of a self-similar (fractal) structure through the search space. Each

branch of the tree is associated to a GPU thread and runs in parallel on the graphic

card, thus optimising the use of computational resources. The topological structure of

the tree resembles the recursive nature associated to the motion of nonholonomic needles.

At each step, all possible future motions depend on the current pose, a process that

reverses recursively from the target to the insertion point via all tree levels. The basic
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tree structure with this fractal geometry features five possible motion directions: straight,

up, down, right and left, represented by a straight line in the first case and arcs for

all remaining cases, the curvature value of which can be chosen based on the needle’s

constraints. The search space between the straight line and the maximum curvature arcs

can be explored by adding further arcs featuring lower curvature. The ability to consider

straight line segments in addition to the curvilinear ones may both shorten the length of

path and save the cost of control and energy for the active needle. Moreover the curvature

is not considered as a constant, which would severely restrict the range of motion of

the needle tip, making it difficult for planners to compute a feasible motion plan in 3D

environments with obstacles. Because of its specific structure, the AFT is able to produce

paths that comply with the maximum curvature constraints. The density of the fractal

structure, which grows exponentially with the level of the tree, enables the generation of

several collision-free paths even in cluttered environments. Then, an optimised trajectory

can be selected minimising a cost function based on the needle preferential requirements,

such as low curvature values and the absence of inflection points.

The results of a simulation of 100 different AFT path planning problems in a prototypical

scenario are discussed in the study conducted by Liu et al [LGCSR16]. The average

computation time is 5.15 ms, with a corresponding standard deviation of 0.048 ms. The

small variation in computation time between the different simulations is a result of the

automatic speed adjustment of the GPU. However, the computation time is fixed and

independent of the complexity of the obstacles. This represents a significant advantage of

AFT in surgical applications. In comparison, a standard RRT implementation performs

considerably worse than the AFT. The RRT simulation performed on the same dataset

and with the same setup indicates that, after 16,000 iterations (corresponding to an

approximate computation time of 30s in our, non-optimized implementation), a path was

found in 42% less cases than in AFT.

A “parallelisable” path planner, such as the AFT can cope with the catheter nonholonomic

constraints and enable successful real-time path computations even in complex surgery.

However, precise surgical constraints on start and target pose cannot be included and the
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desired target position is reached only within a predefined minimum accuracy.

• Probabilistic Road Maps:

The Probabilistic Road Maps (PRM) motion planning problem is normally formulated

in terms of the configuration space C, the space of all possible placements of the moving

object. Each degree of freedom of the object corresponds to a dimension of the configu-

ration space. Each obstacle in the workspace, in which the object moves, transforms into

an obstacle in the configuration space. Together they form the forbidden part Cforb of

the configuration space. A path for the moving object corresponds to a curve in the con-

figuration space connecting the start and the goal configuration. A path is collision-free

if the corresponding curve does not intersect Cforb, that is, it lies completely in the free

part of the configuration space, denoted with Cfree.

The probabilistic roadmap planner samples the configuration space for free configurations

and tries to connect these configurations into a roadmap of feasible motions. There are

a number of versions of PRM, but they all use the same underlying concepts. These free

configurations form the nodes of a graph. A number of (useful) pairs of nodes are chosen

and a simple local motion planner is used to try to connect these configurations by a

path. When the local planner succeeds an edge is added to the graph. The local planner

must be very fast, but it is allowed to fail on difficult instances. A typical choice is to use

a simple interpolation between the two configurations, and then check whether the path

is collision-free. This will result in a straight line path connectors in the configuration

space. Once the graph reflects the connectivity of Cfree it can be used to answer motion

planning queries.

The PRM assumes that the collision-free connectivity of states is specified using boolean

values rather than distributions. Alterovitz et al. [ASG] relaxed this assumption and

combined a roadmap representation of the configuration space with a stochastic model of

robot motion capable of generating samples of the next configuration given the current

configuration and an action. They applied this method to static needle steering, to find a

path which maximise the probability that the robot will successfully reach the goal under
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uncertainty.

To summarise, PRM algorithms rely on the construction of a good road map that can take

up to few minutes for complex environments. Planning queries are then processed very

fast. The very small query time make PRMs particularly suitable for robots performing

several point-to-point motions in a well known static workplace. Furthermore, similarly

to basic RRTs, are only probabilistically complete and the resulting trajectory can be

very jerky and unnatural.

2.1.2 Numerical methods

2.1.3 Nature-inspired

A considerable number of researchers tried addressing the problem of mobile robotics path plan-

ning and obstacle avoidance using optimization algorithm techniques that imitate the behavior

of some living things including bees, fish, birds, ants, flies etc. These algorithms are referred

to as nature-inspired and has been applied in engineering to solve research problems including

path planning. Nature-inspired computation-based methods are able to solve complex problems

that are characterized with imprecision, uncertainty and partial truth to achieve practical and

robust solutions. Notwithstanding the strengths discussed above, there are some weaknesses of

nature-inspired path planning methods, some of which include trapping in local minima, slow

convergence speed, premature convergence, high computing power requirement, oscillation, dif-

ficulty in choosing initial positions, and the requirement of large data set of the environment

which is difficult to obtain. Notable among nature-inspired methods used in path planning and

obstacle avoidance research include artificial neural networks (ANN), genetic algorithms (GA),

simulated annealing (SA), ant colony optimization (ACO), particle swarm optimization (PSO),

fuzzy logic (FL) and artificial bee colony (ABC), however the focus of this section will be on

GA ans PSO, being the ones have been recently applied to the surgical planning context.

Genetic Algorithms The Genetic Algorithms belong to the larger class of evolutionary algo-

rithms (EAs) and they have demonstrated to be effective procedures for solving multi-criterion
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optimization problems. These algorithms mimic models of natural evolution and have the abil-

ity to adaptively search large spaces in near-optimal ways. They use three main types of rules

at each step to create the next generation from the current population:

1. Selection rules select the individuals, called parents, that contribute to the population at

the next generation.

2. Crossover rules combine two parents to form children for the next generation.

3. Mutation rules apply random changes to individual parents to form children.

GAs have been used for path planning problems [Ach11, CKB+17]. The first step of GAs

consists of generating an initial population of chromosomes. In [CKB+17], each chromosome

represents a path. The robot path is encoded as a sequence of free cells. It begins at a

start cell and finishes with the goal cell joined by a set of intermediate cells. To generate the

remaining paths in the initial population, the algorithm will choose random intermediate cells,

not in the initial path, which will be used to generate a new path from start to goal cells

across the selected intermediate cell. After the generation of the initial population, each path

is evaluated and ranked. The fittest paths are selected to form the current generation. By

selecting solutions which have a high fitness score and iterating the re-combination process a

large number of times, further improved solutions are developed. In a recent study [SPF+19a],

an EA algorithm has been used for the final smoothing phase of a deep brain stimulation

computer-assisted RRT-based planning algorithm. However, the long computation time of

EA algorithms and their difficulty to independently find a solution in complex environments

represent an issue for potential surgical applications.

Particle Swarm Optimization (PSO) Particle swarm optimization (PSO) is a computational

method that optimises a problem through iteratively improvement of a candidate solution with

respect to a given metric. It solves a problem by having a population of candidate solutions and

moving these particles around in the search-space according to simple mathematical formulae

over the particle’s position and velocity. Each particle’s movement is influenced by its local best

known position, but is also guided toward the best known positions in the search-space, which
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are updated as better positions are found by other particles. This is expected to move the swarm

toward the best solutions. PSO is originally attributed to Kennedy et al. [KE] and it was first

intended for simulating social behaviour such as the movement of organisms in a bird flock or

fish school. PSO has been recently used in three-dimensional path planning for flexible needle

puncturing applications [CSHZ20]. In this context two variables are defined as particles: the

values of the center angle of each arc constituting the path and the angle of rotation of the needle

body between adjacent arcs. With the two variables and radius of the arc, the coordinates of any

point on space arc are finally calculated. PSO is shown to be simpler and more versatile than

RRT in finding solutions for a simplified flexible needle puncturing application. In addition,

parameters of PSO can be easily adjusted when the boundary conditions change. the path can

be obtained by changing the most basic elements of the path, such as the length of each arc

and the angle between adjacent arcs.

However, this method is limited to very simple trajectories relying on a small set of parameters.

More complex trajectories are usually desired in order to successfully find obstacle-free solutions

within cluttered anatomical environments.

Learning Based Approaches

Neural networks deal with cognitive tasks such as learning, adaptation generalization and they

are well appropriate when knowledge based systems are involved. Thus, several approaches

based on neural networks for autonomous mobile robots are oriented to design and achieve

robots which simulate the human decision-making in similar way of acquiring some keys of

intelligence. In designing a neural networks navigation approach, the ability of learning must

provide robots with capacities to successfully navigate in the environments. Also, robots must

learn during the navigation process, build a map representing the knowledge from sensors,

update this online and use it for intelligently planning and controlling the navigation. Re-

inforcement Learning (RL) techniques have recently extended his used to the path planning

domain. Sadati et al. [ST09] made use of a Lyapanov energy function of a Hopfield neural

network to optimise a bevel-tip needle insertion under soft-tissue deformation.
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Reinforcement learning path planning methods have been also applied to underwater au-

tonomous vehicle [YK16] demonstrating their potential to reduce the time needed to compute

an optimal path with respect to more conventional path planners (RRT, A*). Furthermore,

they can account for the non-holonomic nature of a system, thus not requiring for a path

smoothing process after a route has been determined. In the context of minimally invasive

neurosurgery, a recent study [SSCD] presents a grid path planning method using GA3C Deep

Reinforcement Learning trained on a dataset of continously changing maps and targets, in or-

der to guarantee high generalization in learning. When tested against the standard A* and

RRT* algorithms, the proposed method performs better in terms of trajectories smoothness

and clearance from safety regions but with significantly increasing length. In addition, failures

start occurring when the complexity of the map increases, especially when dealing with new

maps with severe differences from the ones the method was trained on. Computational time is

also very dependant on the considered environment.

To conclude, reinforcement learning path planning methods are still not applicable to complex

environments or real-time applications, although they have a strong potential to be the future

of path planning research.

Probability Methods

Markov Decision Process (MDP) is an analytical tool that provides a mathematical framework

for modeling decision making in situations where outcomes are partly random and partly under

the control of a decision maker. The planning problem has also been formulated as a Markov

Decision Process (MDP). In the case of motion planning for steerable needles, robot’s mo-

tion uncertainty is represented by soft-tissue interactions. The search space is discretised and

probability distributions are used to model robot’s motion uncertainty. Then, optimal actions

(within error due to discretisation) are computed for a set of feasible states using dynamic

programming (DP) which is an optimisation method for recursive solutions having repeated

calls for the same inputs.

Alterovitz et al. [ABG, ALG+05, ASG08] developed a motion planner computing optimal steer-
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ing actions which maximises the probability of reaching the desired target, with the capability

of considering uncertainty in the insertion due to patient-specific differences. In [WA14], the

path planning problem is devised as a Partially Observed Markov Decision Process (POMDP).

This method enforces collision avoidance in the trajectory optimization process and generates

a locally optimal path. The local optimization is done directly in belief space. The belief state

is the probability distribution over all allowable needle state given sensor measurement and

past control inputs. The assumption made is that Gaussian distribution could be a reason-

able estimation of the belief state, therefore a noise which has been sampled from a Gaussian

distribution with zero mean is added to the motion uncertainty model.

Tan X et al. presented an extension of previous MDP needle steering planners called Enhanced

MDP [TYLC18]. The authors claimed that the uncertainty probability prediction has been

oversimplified, producing inaccurate assumptions to the complex tissue-needle interaction. In

particular, using one transition probability to represent a range of uncertainty in needle–tissue

interaction is not sufficient in practical applications. As the non-homogeneous property of the

tissue could cause the uncertainty of tissue deformation to vary greatly between an upper and

lower boundary, they propose to model the uncertainty with a normal distribution.

However, the accurate estimation of the needle tip pose is hard to achieve as the needle motion

and the sensory model are stochastic. Also, limitations in predicting the needle–tissue inter-

action under the influence of multi-layer tissues and the difficulty to collect such data reduce

MDP-based applications.

Objective function methods

Objective function path planning methods are based on mathematical optimisation techniques.

Alterovitz et al. [AGO05] developed a motion planner for steerable bevel-tip needles that

combines numerical optimization with soft tissue simulation to generate a 2D optimal obstacle-

free trajectory plan which compensate for simulated tissue deformations. Similarly, Duindam

et al.[DASG08] proposed a path planner which makes use of a discretized control space to be

able to express the needle trajectory analytically without approximate numerical simulation.



30 Chapter 2. Literature Review

This method can find a locally optimal trajectory in a 3D environment with obstacles with

just a few seconds of computational time. However, Duindam et al.’s methods benefits for a

low computational time it treats collision avoidance as a cost and not as a hard constraint.

Schulman et al. [SDH+14] formulate a 3D needle steering planner as a constrained non-convex

trajectory optimisation problem. To do so they define the problem over manifolds in the SE(3)

Lie group instead of using vectors in the real coordinate space. The pathway generated is

curvature constrained and locally optimal. The method considers both kinematic constraints,

maximum curvature constraints and obstacle safety margins as hard constraints, while the

proposed cost function minimises path length and needle steering-induced tissue damage.

However, sequential convex optimization cannot solve difficult path planning problems, and the

probabilistic completeness is not ensured. Additionally, its performance strongly depends on

the path initialisation choice and the obstacles avoidance is in general not guaranteed.

2.1.4 Path planning under uncertainties

Whereas many traditional path planners assume a robot’s motions are perfectly deterministic,

a needle’s motion through soft tissue cannot be anticipated with certainty due to patient differ-

ences and the difficulty in predicting needle-tissue interaction. Furthermore, in clinical settings

it is typically difficult to precisely sense the pose of the needle tip.

Motion planning for needle steering is challenging because the needle is a nonholonomic and

underactuated system, the needle’s motion may be perturbed during insertion due to unmodeled

needle/tissue interactions, and common intra-operative imaging modalities such as ultrasound

and x-ray projection imaging typically provide only noisy and partial state information.

Since the motion response of the needle is affected by different sources of uncertainty, success of

the procedure can rarely be guaranteed. Therefore, if we consider a dynamic environment that

presents tissue and anatomical structures displacement due to patient motion or breathing, the

use of pre-computed paths may not be appropriate.

As explained in Section 2.1.3, Alterovitz et al. [ABG] developed a new motion planning ap-
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proach for steering flexible needles through soft tissue that explicitly considers uncertainty in

needle motion, introducing a new objective for image-guided motion planning: maximizing the

probability of success. The uncertainty is in this study related to the probability of deflection

of the needle from a specific insertion. Their method formulates the planning problem as a

Markov Decision Process (MDP) based on an efficient discretisation of the state space, models

motion uncertainty using probability distributions, and computes optimal actions (within error

due to discretisation) for a set of feasible states using infinite horizon Dynamic Programming

(DP). This approach only requires parameters that can be directly extracted from images, al-

lows fast computation of the optimal needle entry point, and enables intra-operative optimal

steering of the needle using the precomputed dynamic programming look-up table.

A second way to account for deformation is to use a finite element mesh (FEM) to compute

soft tissue deformations. Vancamberg et al.[VSMM] used this information to minimize the final

error of a RRT solution in a breast biopsy application whereas Patil et al. [PVdA11] used FEM

meshes combined with a sampling-based algorithm to plan in highly deformable environments.

The efficiency of these strategies is highly dependant on the quality of the mesh simulation and

how accurately it represents the real tissue. However the most common alternative is to apply

a single-query planner that is fast enough to be used intra-operatively in order to replan the

trajectory from imaging or sensing feedback information as in [PBWA14].

Table 2.1 shows the result of a literature review of online planning methods which have been

proposed between the year 2013-2020 in the field of 3D needle steering.

These online planning techniques can be evaluated with respect to a list of fundamental features

in the context of a real-time surgical scenario. Among these:

• Average computational time

In intra-operative path planning, the execution time of the algorithm plays an important

role in determining the applicability of the planner. The update frequency requirement

depends on factors such as the needle insertion speed or the refreshment rate of the sensing

which could include a real-time imaging modality such as 3D intra-operative ultrasound
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computational speed is hard to be compared. Besides, in some cases the search speed

can be accelerated with parallel processing utilizing the benefit of multi-core CPU or/and

GPU.

It is clear from Table 2.1 that search time for sampling-based methods is lower with

respect to graph-based and optimisation-based ones. RRT-based planners maintain good

performance even in a 3D anatomical environment [PBWA14, FSM18a]. However, their

maximum run time is user-defined considering a good trade off between speed and rate

of success. Therefore, at equal maximum run time, a more complex obstacle map would

lead to a decrease in success rate [FSM18a]. On the other hand, the sampling-based

AFT [LGCSR16] features a fixed computational time regardless of the complexity of the

obstacles. This is advantageous in a neurosurgical context where the complexity of the

anatomical environment is patient-specific.

• Algorithm robustness: success rate

The success rate in finding a collision-free trajectory is an indication of the robustness of

the path planning algorithm. However, this metric cannot be decoupled from the complex-

ity of the considered environment, both in terms of obstacles density and possible applied

deformations. Additionally, simulation tested methods feature a smaller targeting error

than those tested on phantoms or biological tissue, as Table 2.1 illustrates. This is because

computational simulations are free from real-world uncertainties and system disturbance

while phantoms do not replicate the inhomogeneity of real tissue. This inhomogeneity

[AVP+14] and the anisotropy of needle-tissue [PBWA14] are, infact, causing variation in

needle behavior during the insertion. Although using biological tissue provides a better

representation of the operative environment compared to phantom, repetitions of the ex-

periment are difficult to achieved as it is hard to perform multiple insertions on the same

sample [TYLC18]. Looking at Table 2.1, it is possible to deduce that numerical methods

are generally not evalutaed using a realistic clinical setting (i.e. simulation using medical

imaging or experiment on ex-vivo with moving target or obstacles). On the other hand,

sampling based method (RRT, AFT etc.) show high success rates, specially in complex

anatomical environments.
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• Target accuracy and precision

In the context of minimally invasive neurosurgery, literature suggests that neurosurgi-

cal straight needle insertions with accuracy of 3.2 ± 1.4 mm are common when using

stereotactic frames [DPK+10]. The accuracy of the insertion can be determined by the

mean targeting error while precision corresponds to its standard deviation. Precision is

more important as we could possibly calibrate or account for the estimated targeting

error in the planning phase. While low precision decreases the possibility of success rate

of the surgery (which depends on whether a path without collision can be found and

whether the treatment is delivered to the allowable region) as the result is not repeatable

or predictable.

Accuracy also relies on planner ability to account for the uncertainties. In [PBWA14],

the targeting error is compared between a closed-loop system and an open system. It

is observed that open system leads to much larger targeting error, thus higher accuracy

means better performance under the highly deformable environment. Additionally, in

a real operational setting, systemic errors from different sources such as sensing sensors

calibration, flexible needle modelling and needle curvature estimation contribute to the

resulting target accuracy.

• Environmental and surgical constraints

The performances of a path planner can be influenced by both the complexity of the

considered search space and the surgical constraints on entry and goal pose. As shown in

Table 2.1, the obstacle map could be either be static or deformable while the obstacles

could either be geometrical or complex anatomical structures. On the other hand, the

entry pose or position can be defined as a constraint; the same happens for the target. It

should, therefore, be considered that user-defined constraints can increase the difficulty

of the path search, thus influencing both the average rate of success and the average

computational time. For instance, in Fauser et al. study [FSM18a], the performance of

the proposed planners are discussed with respect to different surgical environments of in-

creased complexity. The ability of the suggested planners in meeting headings constraints
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is also evaluated.

Integration of local and global methods

Global path planning methods such as sampling-based methods are generally favoured with

respect to local ones for needle steering applications since, beside reacting to local changes and

unexpected obstacles, they are able to deal with the global problem of reaching an arbitrary

goal. On the other hand, these methods recall a global path planner at high frequency during

the needle insertion, thus increasing the computational cost and causing ”path stability” issues.

The term ”path stability” can be used to refer to a measure of the difference a process induces

between an original (source) plan and a new (target) plan. With regard to path stability to

environmental changes during the procedure, several improvements to the conventional RRT

method are proposed in [ZWZ+]. Between these, the Old Point Tracking System (OPTS)

considers the former generated path when it calculates a new one, thus reducing the probability

of long path detours and improving stability. A more elegant solution to this problem is offered

by ”Elastic Band” methods [QKb] which treats the reference path as a deformable object (i.e. an

elastic), adjusting it only in response to changes in the environment while maintaining its overall

smoothness. This technique benefits from an enhanced reactivity without limiting the ability

to achieve global goals. By deforming the path when changes in the environment are detected,

the computational cost of recalling a global path planner is avoided. The robot can react in

real time to information obtained by sensors keeping complete clearance from obstacles. This

technique provides a strong connection between the robot and its environment while preserving

the global nature of the planned path. The elastic band concept was originally introduced

by Quinlan and Khatib [QKb, Kha] to close the gap between global path planning and real-

time sensor-based robot control. A variation of the elastic band technique known as ”bubble

bending” [LT11][TBV17] has also been proposed for real-time collision-free path planning for

an autonomous small-scale helicopter flying through cluttered, dynamic 3D environments. The

first step of the algorithm involves the computation of a initial path. Following this step, spheres

(bubbles) are evenly inserted along the path labelled with ascending numbers from 0 (start)

to bubbles N (goal). The bubble size creates a collision free channel around the path which
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accounts for a safety margin from obstacles. The most recent information on the environmental

static and dynamic obstacles can be used to modify the path in real-time. Two virtual forces

are introduced to describe the interaction between bubbles or with external obstacles.

Each bubble’s centre is attracted by two internal forces: one from its preceding bubble and the

other from the following one. Moreover, external forces from the obstacles exist. Specifically,

they are repulsive forces which deform the bubble band adequately and then keep the path

collision-free. Only the closest obstacle to a node can influence its position. The Bubble

Bending method, which has never been applied to steerable needle applications in the past, it

will be extensively treated in Chapter 5 as part of a novel planning solution

2.2 Conclusion

The steering of flexible needles in soft-tissue interventions is subjected to uncertainties from

medical imaging, imperfect actuation of the robot, complex tissue-needle interaction, tissue

deformation and target/obstacle motion. Hence, to prevent the risk of collision with anatomical

obstacles, intra-operative path planning methods should be implemented to adjust the pre-

operative path.

Numerical methods require extensive calculation and numerical optimisation, resulting in higher

targeting accuracy. However, because of the high computational cost, these methods are not

easily adaptable to complicated environments. On the other hand, sampling based methods

are associated to relatively fast algorithms which can search for multiple feasible paths simul-

taneously. Because of the relatively faster speed, sampling based methods can be used at high

frequency intra-operatively. Additionally, they can be applied to complex environments con-

taining irregular shaped obstacles as for surgical applications. However, they cannot guarantee

full optimality and they often require smoothing as postprocessing step. It can be concluded

that nowadays, path planning methods are mostly tested in static geometrical environments.

Future research should focus on path planning methods for flexible needle insertions tested in

realistic anatomical environments under tissue deformation [LKR18]. Finally, more importance
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should be given to path stability during intra-operative replanning, favouring an adaptation

of the existing plan to the updated context rather than replanning the insertion path from

scratch. These future directions are explored in the remainder of this thesis.



Chapter 3

Path Planning for Steerable Needles:

Entry Point Selection

In this chapter, a pre-operative path planner tool for steerable needles is presented. The research

presented includes some edited sections from the research study previously published in:

Marlene Pinzi, Stefano Galvan, and Ferdinando Rodriguez Y Baena, “The Adaptive Hérmite

Fractal Tree (AHFT): a novel surgical 3D path planning approach with curvature and heading

constraints.” International journal of computer assisted radiology and surgery, vol. 14, no. 4,

pp. 659–670, april 2019.

3.1 Introduction

The blood-brain barrier features as the major limitation of routine drug delivery into the brain,

owing to its effectiveness in blocking most of the drugs with the blood circulatory system. As

a promising alternative, convection enhanced delivery (CED) has been developed to directly

infuse the drug into the brain interstitial space as a method to bypass the blood-brain barrier.

Although the feasibility and safety have already been reported in preclinical [APM07] and

clinical [VA15] studies, the treatment efficacy of CED remains disappointing [ZW18a]. This is

38
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especially due to the complex structure of brain tissue, resulting in the difficulty of controlling

drug transport and disposition. Moreover, surgical operations are generally constrained to the

straight-line trajectories, which limit the treatment choices available to the surgeon to those

requiring a curved insertion to avoid obstacles as blood vessels and brain ventricles. This

limitation is especially important for treating the tumours bedded in the deep brain. All

these open issues fuel the European project, EDEN2020, to develop an innovative steerable

programmable bevel tip needle (PBN) for the application to convection-enhanced drug delivery

in minimally invasive neurosurgical procedures [SR16].

A drug transport model is developed, within the context of EDEN2020, to optimise the CED ad-

ministration parameters for drug effective accumulation and homogenised distribution. Based

on the theory of fluid and solid mechanics, and the mechanism of intratumoral drug transport,

the model is design to predict the spatio-temporal profile of drug bioavailability by incorpo-

rating the patient specific information acquired from magnetic resonance imaging. The total

drug distribution volume and the spatial characteristics of drug spatial distribution serve as

the criteria to evaluate the delivery outcomes for the optimisation of catheter placement and

infusion regime for each patient [ZW18a, ZDB19].

Once the model predicts the target pose of infusion, an entry pose, orthogonal to the patient’s

skull, is desired in order to facilitate the creation of a suitable burr-hole. In current straight

needle based procedures, the target is usually a point with no specified orientation; the surgeon

selects manually the entry point on the patient skull, trying to minimise the risk to damage

functional and sensitive anatomical structures, while staying perpendicular to the skull surface.

In the context of steerable needles, this task is even less suitable to be performed manually

since the flexibility of their trajectories, together with application dependant surgical con-

straints, makes the entry pose selection not intuitive to clinicians [VDTB97]. In fact, given a

particular target pose and the kinematic constraints of a needle, port placement would become

exceptionally challenging due to the difficulty of mental reconstructing the three-dimensional

shape of brain structures. Furthermore, a needle displacement from the pre-operative planned

trajectory may result in severe neurological complications. Therefore, it is desired to select
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a pre-operative path with a minimum safety distance from critical structures such as blood

vessels, ventricles and some of the major brain functional areas such as motor, sensory, vision

and speech correlated brain cortex regions.

Surgeons would like to be able to know beforehand the feasibility of the target pose for a

designated skull region. A computer-assisted planner is needed to aid surgeons in mapping the

patient skull’s possible accesses for a given target pose.

A patient-specific brain obstacle map is necessary in order to generate a safe trajectory. It

allows the system path planner to attribute a score to feasible generated paths not only in

terms of kinematic and dynamic constraints of the surgical tool but also in terms of safety for

the patient. The obstacle map usually makes use of information coming from different imaging

modalities such as magnetic resonance images (MRI), diffusion tensor images (DTI), functional

MRI (fMRI) and angiographies (MRA). In Caborni et al. [CYD+12], the main brain structures

of a segmented Magnetic Resonance Imaging (MRI)-based dataset were arbitrarily classified

into six categories according to the risk associated with the insertion of the needle into each. The

chosen categories were defined as ”Avoid”, ”Dangerous”, ”Warning”, ”Careful”, ”Common”,

”Accessible”, with each class represented by a unique grey value on the image, white being

impenetrable and black meaning fully accessible. ”Avoid” and ”Dangerous” areas and optional

user-defined restricted regions, such as patient-specific constraints, are set to ”no-go” areas that

the probe must avoid. Although they assign each candidate trajectory with a risk value based

on a weighted sum, the main drawback is that no risk visualisation or quantitative feedback is

provided.

Newer approaches use operator-defined criteria to visualise color-coded projections of the brain’s

internal sensitive structures on the patient skull. These structures are usually meshes or seg-

mented volumetric data which we consider as ”obstacles”. In [Tro12] trajectories are calculated

after segmenting structures such as blood vessels, ventricles and high-density fibre bundles. The

risk-based map is the weighted sum of all these structures and contains for each optional entry

point the summarised risk value. The safest entry points are selected from each region on

the skull surface, and for visualisation, a colour coded trajectories and the head surface are
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presented.

An additional feature is presented in this study [TDBF]. Here the surgeon can update, through

natural language, rules that can be stored in order to prevent the probe from crossing structures

and help to solve possible conflicts in the optimisation strategy. Additionally, the risk-based

map can be updated with new knowledge after each intervention. This process is quite time

consuming, especially if the goal isn’t a single point but perhaps a 3D region from which multiple

target points can be considered.

Figure 3.1: Segmented structures and color coded head surface: green describes low risk access
area, yellow refers to medium risk access area while red is associated to high risk access areas
on the patient’s skull. [Tro12]

In order to avoid errors due to discrepancies between the pre-operative and the intra-operative

images, the trend is to move the entry point selection and the path planning calculation into

the operating room. From here, the need for a time-efficient GPU accelerated method, for

mapping possible access areas on the patient’s skull and be able to provide feasible solutions

at interactive speed.

In this Chapter, we propose the so-called Ray-traced AFT algorithm: a combination of the

standard Adaptive Fractal Tree (AFT) [LGCSR16] planner with a GPU accelerated ray-tracing

algorithm. First, the obstacle map is expanded with a margin that takes into account both

the needle ray and a safety margin from the obstacles. Then, the proposed AFT based path

planner runs from the selected infusion pose generating a series of obstacle-free paths which
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intersect the skull at different points within the needle reachability region, delimited by its

maximum achievable curvature. Afterwards, a ray-tracing method, running in parallel on the

GPU, considers the AFT obstacles-free generated paths and selects only the ones crossing the

skull of the patient at a right angle (within a predefined tolerance) in order to match the

burr-hole port requirements.

The classification of the successful intersection points allows identifying independent sub-regions

on the patient skull from where paths matching both kinematics and surgical constraints can be

found, thus leaving the final selection of a successful path within those regions to the clinician.

The assessment of the proposed method, through a computational simulated environment, has

shown that our technique is robust and can generate curved paths starting from a mesh-based

obstacle map representation. Figure 3.2 illustrates the method.

We believe that this is the first method to enable interactive calculation and visualisation of

curved trajectories in a commercial neurosurgical software. Owing to its low computational

time, the user can interactively explore a series of potential trajectories and target points, thus

providing guidance during the preoperative path selection.

In the next sections, the obstacle map creation procedure (Section 3.2) is first discussed. Then

the Ray-traced AFT algorithm (Section 3.3) is described in detail. The description of a path

cost function, used to rank the generated paths follows, which is outlined in Section 3.4. Finally,

the resulting skull entry-points mapping is demonstrated and discussed in Section 3.5 and 3.6,

respectively.

3.2 Obstacle Map Creation

In this study, we propose a GPU accelerated, patient-specific skull mapping method for steerable

needles called ”Ray-traced AFT”. Given a desired target pose, our technique is able to map

corresponding feasible entry regions on the patient’s skull accounting for obstacle avoidance,

patient risk and probe curvature constraints. Successful entry regions are highlighted on the
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patient’s skull to aid surgeons during the entry point selection for a given target pose. The

proposed Ray-traced AFT requires, as input data, a patient-specific rasterised 3D obstacle map

which is generated through the following procedure:

• Diagnostic images segmentation: meshes of sensitive structures are generated from pre-

operative diagnostic images. Brain ventricles and vessels are usually considered as in

Figure 3.3. The skull is also segmented from a pre-operative computed tomography

image (CT) and a mesh of its surface is generated.

• Voxelisation: a voxelization process [Ada20] which converts the multiple 3D triangular

meshes into a volumetric obstacle map (a discrete grid) considering the skull surface

edges as reference for the obstacle map size, is performed. A specified resolution, usually

matching the one of the reference diagnostic image, is given as input to the voxelisation

process which automatically selects an adequate grid size for the resulting obstacle map. A

value equal to ”2” corresponds to obstacles, ”1” corresponds to free search space while the

skull region is labelled as ”0”. Equal importance is given to all segmented brain structures

within the discrete obstacle map. This affects the complexity of the path planning task,

which aims for full obstacles clearance. The hard constraint on obstacles avoidance is

justified by the enhanced flexibility attributable to steerable needles with respect to their

straight counterpart; they can be programmed to reach a precise goal while avoiding

sensitive regions along the way and adjust their trajectory intra-operatively.

• Obstacles dilation (Figure 3.3): the algorithm compensates for the non-volumetric nature

of the calculated trajectories by expanding the obstacles with a margin equal to the size

of the needle plus a given safety amount that takes into account real-world uncertainties

during the insertion arbitrarily set to 30% of the PBN radius (0.43 mm). Given a raster-

ized binary obstacle map and the total margin, a proposed GPU accelerated algorithm is

used to expand the obstacle map in 3D by the given amount. Every thread on the GPU is

responsible for a specific voxel belonging to the given binary map. If the considered voxel

belongs to the obstacle region (its value in the binary map is equal to ”2”), then every

surrounding voxel within a radius equal to the given margin, that is also obstacle free, is
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Figure 3.3: Brain obstacles before and after the addition of a margin which takes into account
the needle diameter and a safety distance to compensate for real-world uncertainties.

3.3 Ray-traced AFT path planner

First, an optimised goal pose in the brain tumour’s proximity is generated by a drug diffusion

model [ZDB19, ZW18a] or, alternatively, it is manually selected by the clinician. The Ray-

traced AFT algorithm, running on the generated dilated obstacle map (Section 3.2), can be

divided into two different steps:

• AFT obstacle-free paths generation: an AFT-based path planner generates obstacles-free

trajectories which start from the given target pose and meet the given kinematic and

surgical constraints.

• Ray-tracing: a ray-tracing parallelised method evaluates the AFT obstacles-free trajec-
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tories identify those which intersect at 90 deg (within a given tolerance).

The remaining paths are ranked with respect to a cost function. Then, their corresponding

feasible entry points are used to create a skull overlay that allows neurosurgeons to interactively

visualise the resulting skull mapping in a 3D rendered view to facilitate the selection of an

optimal entry point.

In the next sections we will illustrate in more details the Ray-traced AFT stages and the

algorithm potential use as a patient-specific skull entry point mapping tool during the pre-

operative phase of steerable needle insertion.

3.3.1 Adaptive Fractal Tree based algorithm

The Adaptive Fractal Tree (AFT) [LGCSR16] is an algorithm built on the recursive generation

of a self-similar (fractal) structure within the search space, which grows from a given initial

pose (Figure 3.4). Each branch of the tree is associated to a GPU thread and runs in parallel

on the graphics card, thus optimising the use of computational resources (Figure 3.5). The

topological structure of the tree resembles the recursive nature associated with the motion of

nonholonomic needles. At each step, all possible future motions depend on the current pose, a

process that reverses recursively from the last branches back to the root via all tree levels. The

basic tree structure with this fractal geometry features five possible motion directions: straight,

up, down, right and left, represented by a straight line in the first case and arcs for all remaining

cases, the curvature value of which can be chosen based on the needle’s constraints. The search

space between the straight line and the maximum curvature arcs can be explored by adding

further arcs featuring lower curvature. For instance, if there are two arcs for each direction,

the amount of possible motion directions, which is labelled as the tree density parameter (ρ),

increases from five to nine. The tree’s basic structure can be shaped according to any given

scenario by tuning a set of fundamental parameters associated with the trajectory generation

and the needle design parameters. These include the branch length l and the density of the tree

ρ. An important factor in providing an efficient parallelisation is the enumeration of each tree
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branch with an ID number. The fractal structure of the tree guarantees that parent and child

IDs have a regular pattern. To each ID corresponds a control action or ”type” which defines

the rules for travelling up and down the tree explained in Figure 3.5.

In each GPU thread, a voxel-based collision check is performed for every branch in parallel at

the resolution required. In particular, each branch interpolation point is checked for collision

with respect to the obstacle map.

One sample colliding is enough to filter out the entire branch it belongs to. In addition to

obstacles collision, in the proposed Ray-traced AFT algorithm, each sample is also checked

for collision with the obstacle map skull region (labelled as 2). This step replaces the parallel

calculation of the euclidean distance from the desired target point implemented in the standard

AFT algorithm proposed by Liu et al. [LGCSR16]. In fact, the Ray-traced AFT is not looking

for paths reaching a given target but for paths crossing the patient’s skull in different locations

as in Figure 3.7.

At this stage, the algorithm follows a GPU accelerated back-propagation process which exploits

the fractal nature of the tree. As described in [LGCSR16] the back-propagation reconstructs

continuous obstacle-free paths starting from a set of input branches going backwards until

reaching the root of the tree. In the Ray-traced AFT implementation, we set as input branches

all the segments that were labelled as colliding with the patient’s skull. The modified AFT

back-propagation method results in obstacle-free paths which intersect the skull in at least one

interpolation point belonging to their last branch (as the green and the blue path of Figure

3.7).

Further filtering needs to be completed in order to consider only those paths which meet the

given surgical constraint on the entry pose. In particular, the orientation of a given path in

correspondence to its intersection with the patient’s skull is desired to be perpendicular. A

ray-tracing algorithm is implemented in the next section to adapt the AFT search to this

constraint.
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Figure 3.4: Geometry of the tree in 2D with a focus on the basic structure of the fractal
geometry (within the green window).
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Figure 3.5: The fractal structure of the tree can be easily parallelised; each tree segment can
be allocated to a GPU thread, as shown in the figure. Given the fractal nature of the tree, it
is possible to attribute a certain ”type” to each branch belonging to the tree’s basic structure.
Each branch features a different ID number, but its corresponding type can easily calculate
dividing its ID number by the density parameter (ρ) value of the basic tree structure.
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Figure 3.6: Adaptive fractal tree (AFT) extending through segmented brain vessels which
constitute the obstacle map

3.3.2 Ray-tracing

Given the previously segmented patient’s skull mesh and the resulting AFT based paths, a

ray-tracing technique is now needed to evaluate the precise points of path-skull intersection

and assess their approach angle with respect to the normal of the skull.

A well known ray-tracing method called Möller-Trumbore algorithm [MT05] is implemented in

a GPU parallelised version. In particular, each skull-colliding branch, belonging to a resulting

AFT based path, is evaluated on a separate thread. Therefore, this ray-tracing technique has

also been adapted to fit with the AFT based path search results.

The Ray-traced AFT algorithm running on each GPU thread can be summarised as follows:

• Each AFT sample point is evaluated in parallel on the GPU. Each thread is checked for

a potential intersection with the patient skull by assessing all the faces constituting the

given skull mesh.
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Figure 3.7: Three examples of AFT first-stage generated paths, starting from a given target
pose and crossing the skull at different points, are shown. The green path intersects the skull
with an angle outside the given tolerance with respect to the normal of the skull, while the pink
path collides with an obstacle. The only successful path is the blue one, which is obstacles-free,
and it also crosses the skull almost perpendicularly.
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• For each given AFT sample point laying in the patient skull region and belonging to an

obstacle-free path, the previous point along the same path is found, and the segment

linking the two is considered and saved as dir.

• We look for the intersection point P between dir and the plane represented by each of the

patient’s skull mesh faces. faces1, faces2, faces3 are one-dimensional arrays featuring

the indexes of the vertices delimiting the skull mesh faces. The corresponding 3D vertices

coordinates are also inputted through three separate arrays called vx, vy, vz. For each face

mesh, a cross product of its edges is performed to obtain the normal of that face/plane.

The intersection point P , if it exist, lays on a ray directed along dir at distance t from

its origin (0, 0, 0). We can also assess that if P exists, it has to belong to the face plane

considered, the standard equation for which is ax + bx + cy + d = 0. a, b and c are the

components (or coordinates) of the normal to the plane we previously calculated and d

is instead the unknown distance from the origin to the plane. Knowing the plane normal

N and at least one of the three triangle’s vertices v0, v1, v2 lying in the plane is enough

to compute d. Consequently, we can substitute the expression for P within the plane

equation and solve for t.

• If a point of intersection is found, its inclusion within the considered mesh face is eval-

uated. The so-called inside-outside test is used in this case. If a point P is laying on

the triangle’s plane then the dot product between the triangle’s normal and a vector C

is positive. To apply the technique we need to repeat the test for each edge of the tri-

angle where C is the result of the cross product between edge0, edge1, edge2 and vectors

(P − v0), (P − v1) and (P − v2) respectively for each edge of the triangle. If the inside-

outside test is verified for all the edges, P is within the considered face. The reader can

find the geometrical detail in the study of Möller-Trumbore et al. [MT05].

• If the inclusion test is passed, then the misalignment between dir and the normal of the

plane at the intersection point is calculated using the dot product formula.

• The considered branch and, therefore, its corresponding obstacle-free path is considered

successful only if the misalignment is within a given tolerance (tol). A label equal to 1 is
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associated with a successful path.

The following code implements the Möller-Trumbore ray-tracing method [MT05] to check the

path intersection with each face of the patient’s skull mesh:

Data: dir, faces1, faces2, faces3, vx, vy, vz, tol

Result: label

initialisation;

for each face of the skull mesh do

find face vertices v0,v1,v2 and normal N ;

⊲ Step 1: find segment-plane intersection: P

RayDirection = dotProduct(N,dir);

d= dotProd(N ,v0); ⊲ compute d parameter

t = (dotProduct(N ,orig) + d) / RayDirection; ⊲ compute t parameter

P = orig + t * dir; ⊲ compute the intersection point P

⊲ Step 2: Check triangle inclusion

vp0 = P - v0; vp1 = P - v1; vp2 =P - v2;

C = crossProd(edge0,vp0); C1 = crossProd(edge1,vp1); C2 =crossProd(edge2,vp2);

if C0,C1 and C2 > 0 then

inside-outside test is successfull;

⊲ Step 3: Check crossing angle

angle=atan(||crossProduct(N,dir)||, dotProduct(N,dir));

if angle < tol then

label=1; ⊲ crossing angle is within tolerance

else

label=0;

end

else

no intersection between dir and face;

end

end
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3.4 Risk evaluation using a cost function

In this study, a cost function measuring path length and smoothness is introduced with the

aim of minimising patient risk and facilitating the control of the needle movement during the

insertion. Each resulting path is evaluated via the following cost function (CF):

CF = w1 ∗

nseg−1
∑

i

|Ci+1 − Ci|

2 ∗maxcurv

+ w2 ∗

nseg
∑

i

|Ci|

maxcurv

+ w3 ∗
length

maxlength

(3.1)

where nseg represents the number of segments or tree branches composing the path. The cost

function considers the preferential path characteristics, where the first term of the equation

is the curvature gradient which is calculated as the sum of the difference between the curva-

tures (Ci+1 - Ci) of consecutive branches constituting the path with respect to the maximum

achievable value measured in the proximity of an inflection point between two arcs of maximum

curvature (maxcurv=
1
70
) and opposite sign. It measures the smoothness of the trajectory in

terms of the absence of inflection points and curvature variability. This feature is preferred

because it facilitates the control of the needle movement. The second term refers to the sum

of the segments’ curvature k with respect to the maximum curvature value, which reflects the

linearity of the path. Trajectories presenting moderate curvature, away from the maximum

constraint of the needle, are favored. The path length, which is normalised with respect to

the maximum path length (maxlength=treelevels * l with treelevels being the number of tree

growth levels and l being its branches length), is minimized to favor short paths, with the

effect of reducing potential tissue damage during needle insertion. The three function terms

are weighted by their corresponding coefficient, where w1=w2=w3=1 in order to give all the

same contribution. Colour-coded information, added to the skull overlay, could contribute to

the decision-making process by attributing different risk to the calculated trajectories and cor-

responding entry points. Optimal paths are the ones which minimise the cost function value,

and they are therefore highlighted with a different colour on the skull overlay, thus providing

visual feedback to the surgeons as in Figure 3.9.
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3.5 Skull entry-points mapping simulation

The Ray-traced AFT algorithm has been first tested in simulation using real data acquired on a

brain tumour patient and then implemented on the EDEN2020 neurosurgical interface (Chapter

6) to aid surgeons in selecting an appropriate entry point on the sheep skull accounting for

kinematic constraints of the EDEN2020 probe and surgical constraints of the operation.

Figure 3.8: The obstacle map includes a margin that takes into account both the cross section of
the needle and a safe distance from obstacles (Top image). In the bottom, the AFT obstacle-free
paths (red trajectories) combined with a ray-tracing algorithm select those paths intersecting
the skull perpendicularly (green points). The highlighted sub-regions on the skull (pink areas)
contain multiple possible entry poses from which it is feasible to reach the required target pose
meeting the kinematic constraints of the PBN.

In both scenarios, a similar procedure is followed to process the available medical images and
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Figure 3.9: The Ray-traced generated paths are ranked according to a cost function accounting
for maximum length and smoothness. This aims to aid the path selection by highlighting sub-
regions on the skull contain the resulting entry points with different colours depending on their
respective cost function value. The yellow region is associated with better results in terms of
cost function.

create the expected path planner input data. Brain ventricles and vessels are segmented and

saved as meshes with 3DSlicer (www.3DSlicer.com), using region growing and vessels extraction

tools respectively. The patient CT image has, instead, been used to segment the skull by

a thresholding method, creating a mesh from its surface. Then, a rasterised obstacle map,

of size equal to a bounding box containing all the previously listed meshes is generated as

described in Section 3.2. The resulting map is dilated by a value equal to 1.6 mm. This

safety margin includes both the occupancy of the EDEN2020 catheter (1.25 mm in radius) and

an arbitrary safety distance to account for real-world inaccuracies. The tumour segmentation

and the optimised target pose generation is performed by the EDEN2020 convection enhanced

delivery model [ZDB19]. At this stage, the Ray-Traced AFT is run from 61 different target

poses originating from the same target position, laying on the same plane and uniformly covering

multiple directions at 360 deg. In a real case scenario, clinicians could select the desired target

pose or a number of acceptable ones. For each simulation the search tree expands throughout

the obstacle map until eventually crossing the skull.

We ensure the AFT expansion to reach the skull by setting the total expansion of the tree

to 100 mm, the maximum achievable length for our needle. A branch length of 20 mm and
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a density of the tree of 17 were also set to increase the probability of finding obstacle-free

solution within a very cluttered environment such as the human brain. A detailed tuning of

the AFT fundamental parameters (such as branch length and density) with respect to the AFT

performance can be found in Chapter 4.

A value of 15 degrees (tol) has been decided, in agreement with neurosurgeons, as maximum

misalignment of the resulting AFT obstacles-free path with respect to the normal of the skull

at the intersection point. A total of Ray-traced AFT paths can be seen in Figure 3.9; they all

cross the skull with an angle within the given tolerance. The algorithm’s computational time

has been calculated on a workstation with an NVIDIA GeForce GTX 1080 Ti 11GB Pascal.

Thanks to its GPU implementation, the computational time does not suffer from variations

while the average computational time, calculated from the 61 simulations, is equal to 2.3 sec.

A fast computation allows the surgeons to interactively modify the target pose if needed and

recompute the corresponding feasible paths. The resulting path entry points, on the skull

surface, are classified into independent feasible entry point regions which are then exported as

a unique mesh. The cost function (Section 3.4) can be used to rank the resulting paths and

associated entry points. In particular, different colours can be attributed to them depending

on their scores. This visual feedback can further aid clinicians in choosing the smoothest and

shortest path to follow or more generally a region on the skull from where well-ranked paths

begin.

3.6 Conclusion

The Ray-traced AFT algorithm is proposed as a valuable extension to the standard AFT path

planner in the field of steerable needles for neurosurgery. In particular, the Ray-traced AFT

meets both the kinematic constraints of a steerable needle and the surgical constraints on the

required entry pose, target pose and obstacles’ minimum clearance from sensitive structures.

The Ray-traced AFT is, therefore, a valuable tool for neurosurgeons during the pre-operative

phase of a steerable insertion. It allows them to visually map the patient skull, highlighting
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those regions from where safe and feasible paths can be followed and finally select one of the

proposed trajectories. However, it can happen that neurosurgeons want to manually select both

entry and target pose. For this purpose, in Chapter 4, we will address the development of a

second AFT-base preoperative planning called Adaptive Hèrmite Fractal Tree (AHFT) that is

able to meet constraints on both selected entry and target poses. This technique can be either

used alone for a given entry-target pair or, in combination with the Ray-tracing AFT. In the

second case, the Ray-tracing AFT maps the patient skull with the successful entry-points while

the AHFT refines these solutions by constraining the entry pose to be perfectly perpendicular

to the skull and by generating multiple paths from a single entry pose.



Chapter 4

Path Planning for Steerable Needles:

Adaptive Hérmite Fractal Tree

In this chapter, a pre-operative path planner for steerable needles is presented. The research

presented is an edited version of research previously published in:

Marlene Pinzi, Stefano Galvan, and Ferdinando Rodriguez Y Baena, “The Adaptive Hérmite

Fractal Tree (AHFT): a novel surgical 3D path planning approach with curvature and heading

constraints.” International journal of computer assisted radiology and surgery, vol. 14, no. 4,

pp. 659–670, april 2019.

4.1 Introduction

The taxing kinematic constraints behind PBNs [LGCSR16, LOR16] and the complexity of a 3D

anatomical obstacle map which includes both brain vessels, eloquent areas, and brain ventricles,

contribute to making path generation within the EDEN2020 context particularly challenging.

Moreover, in complex neurological planning such as the one proposed in EDEN2020, both the

pose of the entry key-hole in the skull and the pose of the drug delivery target site might need

to be defined a priori.

58
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However, the original AFT and the proposed AFT Ray-traced (Chapter 3) algorithms are not

able to deal with both starting and final heading constraints. Specifically, while the direction

of growth of the tree can be changed according to the required starting heading, the final

heading is not taken into account during path planning. For this reason the AFT Ray-traced

technique is applicable to scenarios with no specification on the entry point or, as explained in

the previous chapter, for skull mapping purposes followed by an entry point selection. Existing

RRT-connect algorithms [FSM18b] can meet start and target heading constraints but they

rely on geometrical techniques, such as Dubin’s curves based methods, to meet the curvature

constraint at the trees connection points. These geometrical techniques are not extendable

to high curvature constraints which are required by the majority of existing steerable needles

prototypes (i.e. [SBGW13, FKT+10a]).

Following these considerations, the Adaptive Hermite Fractal Tree (AHFT) path planner is

proposed in this work. Thanks to some important properties related to a particular kind

of Hermite curves called optimized geometric Hermite curves (OGH), the AHFT is able to

account for both heading constraints accurately. The AHFT could be useful as a AFT Ray-

traced refinement to find more path from the selected entry pose or, from scratch, in case both

heading constraints are set from the beginning. Given two endpoints and two endpoint tangent

vectors, a cubic polynomial curve is called an OGH curve with respect to the given endpoint

conditions if it has the smallest strain energy among all cubic Hermite curves satisfying the

conditions on starting and final pose and is also geometrically smooth [YC04]. This specific

property allows us to use OGH curves to extend the AFT obstacle-free paths at different

positions along candidate trajectories. For each linking position, the local tangent is computed,

which is subsequently employed as the starting heading for the Hermit curve connecting the

AFT path to the desired target pose. Finally, a voxel-based obstacle collision and a maximum

curvature check are performed on the Hermite extension with the same voxel-based modality

of the AFT but evaluating one path at the time. Only feasible paths are returned.

In this Chapter, the AHFT implementation is described in detail; it follows a quantitative

robustness evaluation of the proposed preoperative planner by mean of a realistic computer-

simulated environment. The flexibility provided by computer simulations under tunable condi-
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tions allows to test the AHFT robustness to specific events or perturbations while eliminating

the influence of other factors if needed.

4.2 Adaptive Hermite Fractal Tree Method

4.2.1 AFT automatic parametrization

Starting from the original AFT algorithm described in Chapter 3, Section 3.3.1, an automatic

parameter tuning process for our AFT implementation is designed to maximize the number of

paths generated in a neurosurgical scenario and to exploit the entire GPU memory available

during fractal tree parallel construction. To do so, it is necessary to understand the relation-

ship between the parameters l (branch length) and ρ (tree density) on AFT performance, an

objective that we pursue through a brute force search of the parameter space.

The AFT density relates to the total number of segments composing the tree which, if beyond

a threshold (Number of GPU cores * 10, and equal to 25600 for our workstation), can cause

the GPU to have to iterate in order for all the segments to be processed, thus increasing

computation time. On the other hand, l affects the number of subsegments composing each

branch through which the obstacle collision has to be performed. This part of the code runs in

parallel for every segment and influences the total amount of simulation time. In this study, the

interpolation constant determines the resolution of the obstacle collision check performed for

each tree branch. In order to set its value, blood vessels are segmented from a representative

and anonymized MRI image volume [CF19] via standard thresholding (www.slicer.org). Next,

the branch length l is assigned to one of the following values: 20, 30, 40, and 50 mm. This set

is chosen in order to measure the AFT’s behavior across a representative range. In particular,

the minimum branch length of 20 mm comes as a result of two existing constraints, one on

the maximum reachable needle length of 100 mm and the other one on the required GPU

memory space which limits the tree growth to a maximum of 5 levels of increments of the

fractal structure, with a density value of up to 17. Therefore, the lower limit of 20 mm has
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been selected as the minimum acceptable branch length value in order to cover a distance of at

least 100 mm in five steps of tree growth. On the other hand, the upper limit, which cannot be

more than the total path length, has been set to 50 mm in order to cover the search space with

the minimum number of 2 turns. Branch lengths of 30 mm and 40 mm are chosen to assess the

performance in the case of 4 and 3 increment levels, respectively. Knowing the specified branch

length and the corresponding necessary levels of tree growth to cover the maximum needle

extension, we can then use the exponential law governing tree growth in order to compute the

total number of AFT branches needed, each of which occupies a thread of the GPU memory

(Equation 4.1).

AFTbranches =

treelevels
∑

i=0

(branchdensity)
i (4.1)

where treelevels represents the number of levels of tree growth and branchdensity represents the

density of the tree ρ. Ultimately, the density of the AFT is set to one of these values: 9, 17 or

33. These define the number of branches forming the basic fractal structure, which has to be

equal to a multiple of 4 (up, down, right, left) plus 1 (straight). A high tree density increases

the mapping capability of the AFT, but this value must be limited to 33 in order to meet the

GPU (NVIDIA GeForce GTX 1080 Ti 11GB Pascal) memory constraints (3072 cores, 12288MB

total memory), at least with the longest branch selection of 50 mm. Of particular importance

is understanding the trade-off relationship between ρ and l in terms of computational cost and

AFT outcome. We explore this via a brute force search of the parameter space, where the

initial tree space orientation is also considered as variable. The tree can be oriented towards

random points inside a circumference around the target, which lies on the plane perpendicular

to the line subtended between insertion and target points. This further variability increases

the number of cases explored.

We executed a total of 1260 simulations on our workstation, varying parameter values as dis-

cussed above. Each path is evaluated by the cost function (CF) described in Chapter 3, Section

3.4.
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4.2.2 AHFT algorithm implementation

The AHFT is implemented with two main routines. The first identifies whether a given start-

end pose combination is feasible. The second computes the optimum continuous path between

the two, which meets the needle’s constraints and is obstacle free.

Step I: Start and Target Pose Reachability Check A feasibility check is performed

once the path planner is invoked as a means to ascertain whether the start and target pose

combination is feasible either in terms of maximum needle length or in terms of needle kinematic

constraints, such as the maximum curvature constraint (kmax). We define a ”reachable volume”

by considering the intersection of the two bounding volumes which enclose all branches of the

two AFTs, the first rooted at the start pose and the second at the target pose. If no intersecting

volume which encompasses both poses is available, the algorithm cannot progress.

Step II: Optimized Geometric Hermite (OGH) Extension Before defining an Opti-

mized Geometric Hermite (OGH) curve it is appropriate to introduce the wider class of Hermite

curves. The following paragraph refers to the results presented in [YC04], which are of partic-

ular interest for our application. The verbatim-copied parts are enclosed in quotation marks.

”A cubic Hermite curve Q(t), t ∈ [t0, t1] where (t0, t1) ∈ R and t0 < t1 , is a cubic polynomial

curve satisfying the following endpoint location and tangent vector conditions: ”

Q(t0) = P0, Q(t1) = P1,Q(t0) = V0Q(t1) = V1 (4.2)

where P0 and P1 are the start and end point coordinates, and V0 and V1 represent the desired

approach direction for P0 and P1, respectively. Q(t) can be expressed as follows:

Q(t) = (2s+ 1)(s− 1)2 ∗ P0 + (−2s+ 3)s2P1 + (1− s)2s(t1 − t0)V0 + (s− 1)s2(t1 − t0)V1

(4.3)

where s = t−t0
t1−t0

.
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”The strain energy of a C2-continuous curve f(t) defined on [t0, t1] is defined as follows:

∫ t1

t0

[f(t)′′]
2
dt (4.4)

where [f(t)′′] is the second derivative of f(t). A Hermite curve is mathematically smooth because

it has the minimum strain energy among all C1 cubic polynomial spline curves satisfying the

same endpoint conditions”.

Between similarly smooth Hermite curves, we select the one with the minimum strain energy

which is also mathematically smooth by optimising the magnitudes of the considered endpoint

tangent vectors. This curve is defined in [YC04] as an optimized geometric Hermite (OGH)

curve.

Given two endpoints P0 and P1, and two endpoint approach vectors V0 and V1, an OGH curve

is the cubic Hermite curve Q(t), t ∈ [t0, t1], with the smallest strain energy, and which also

satisfies the following conditions:

Q(t0) = P0, Q(t1) = P1,Q(t0) = a0V0,Q(t1) = a1V1 (4.5)

where a0 and a1 are arbitrary real numbers that relate to the magnitude of the curve approach

vector in P0 and P1, respectively. In this study, we consider a0 = a1 = a∗ to enforce similar

conditions for both start and end pose alignment. In some cases, one might want to hold the

ratio of the tangent vector magnitudes unchanged in order to maintain a fixed shape style on

the resulting curve, avoiding higher curvature values at one proximity. Therefore, we give a∗

the value suggested in [YC04].

a0 = a1 = a∗ =
3[(P1 − P0)(V0 + V1)]

2(V 2
0 + V0V1 + V 2

1 )(t1 − t0)
(4.6)

In the AHFT, OGH curves are used as extensions which depart from the AFT obstacle-free

paths at different positions along the trajectories and connect them to the target point with a

predefined orientation (Figure 4.1). First, the optimized AFT algorithm described in Section
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Figure 4.1: Three feasible paths, generated by the AHFT path planner, connect the requested
start and target pose. In gray: the AFT tree branches laying between the feasible volume; in
light blue: the AFT portion of the paths; in green: the OGH portion of the paths.

4.2.1 is used as a method to explore the search space. Only the branches which do not collide

with obstacles and which lie within the ”reachable volume” identified in Step I are considered,

and candidate paths are computed as per the original AFT algorithm. At this point, every

point of all trajectories found so far, is considered as the initial point during the AFT extension

through OGH curves, which is described next. The OGH curves for all candidate extension

paths are chosen such that each one is tangent to the AFT path on one side, and the desired

target pose on the other. Subsequently, the generated OGHs can be easily expressed as a Bézier

curves with four control points. The cubic polynomials, expressed in Bézier form, allow for an

easier computation of the curvature values along the paths. Once a voxel-based collision check

and a curvature checks are performed also on the candidate extensions, viable AHFT paths

are considered as possible solutions and the cost function is employed to rank these in order

of performance. Finally, we use a function called “interparc” (author: John D’Errico [D’E12]),

available on the Matlab (Mathworks Inc.) file exchange server in order to obtain equally spaced

points along the considered paths.
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4.3 Results

4.3.1 AFT performance parameters significance

As already discussed in Section 4.2.1, we executed a total of 1260 simulations, 105 for each

combination of parameters which can vary as shown in the table (Table 4.1). In particular, the

AFT density ρ can take the following values: 9, 17 or 33, while the AFT branch length l can

be equal to 20, 30, 40 or 50 mm, values which are associated to the following tree expansion

numbers, respectively: 5, 4, 3, 2. In this specific scenario, start and target points are chosen

to be at the maximum acceptable distance with respect to the needle length. Additionally,

the AFT algorithm has been iteratively run rotating the tree around an axis corresponding to

its root (the entry pose) for ten times in pi/5 degree steps in order to achieve a even more

homogeneous and dense expansion through the 3D search space.

These first results show that the branch length or, more generally, the related number of tree

increments, have a particularly strong influence on the memory requirements. Indeed, they

directly affect the number of segments of the tree and, therefore, the number of generated

paths (Figure4.1). Setting l = 20 mm, the maximum acceptable value of ρ within the memory

constraint is equal to 17. This combination produces at least one AFT path 94.23% of the

times, with an average computation time of 0.22 sec and an average number of solutions equal

to 408.51; while, increasing the branch length, the percentage success rate decreases to 72.12%

for l = 30 mm (4 levels of growth) and then drops to 36.54% for l = 40 mm (3 levels of growth)

and to 25.00 % for l = 50 mm (only 2 levels of growth). For smaller values of AFT density, as

for ρ = 9, the performance of the AFT is still high, with a 90.48 % success rate. The average

number of paths found is only equal to 32.82, but this is in favour of a lower computation

time of 10.65 ms. Because we are interested in maximizing the AFT’s mapping ability in a

complex environment, the number of generated paths together with the percentage success rate

are considered as the most important indexes assessing the robustness of the method in finding

solutions. Therefore, 5 levels of tree increments and ρ = 17 are selected as the best combination

for future trials. The computation time in a pre-operative scenario is secondary with respect
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to the quality and robustness of the planning. In addition, the difference in computation time

for l = 20 mm between ρ = 17 and ρ = 9 is due to GPU overflow, as described earlier. This

unwanted side effect of an excessive number of segments would disappear if using a multi-GPU

implementation or a different GPU featuring a higher number of threads was employed. In

other words, an increase in ρ would not affect the computation time for one GPU thread or the

computation time for any given iteration, as long as the GPU features a sufficient number of

threads to service all tree branches in one run.

Following these results, an automatic parametrisation method was developed to enable case-

specific AFT efficiency optimization, as follows:

• Select the number of AFT levels (N) and AFT density ρ according to hardware constraints.

• Compute the branch length value necessary to cover the search space through the N-level

AFT growth based on the distance between a given start and target positions (which can

be less than the predefined 100 mm used during the previous simulations).

This optimization method, applied to our test case, results in a 5-level AFT, with an AFT

density equal to 17, which results in 1,508,597 tree branches. This resulting optimized AFT

is used to demonstrate AHFT performance in subsequent sections. Three different tests were

performed to assess the performance of the AHFT-based path planner. The first two focus

on the robustness of the AHFT to changes in target pose and final heading, respectively, with

no obstacles included in the search space. These tests explore the ability of the algorithm to

respond to changes in the plan incurred due to, e.g., tissue deformation, deliquoration and

pulsatile motion. These tests have been performed without the influence of obstacles in order

to assess algorithm’s performance and observance of constraints under perturbations.

The last test involves the simulation of a pre-operative scenario, which enables the assessment

of the AHFT within a complex network of realistic obstacles. Here, the use of our ”reachable

volume” computation (Section 4.2.2) to automatically support user selection of a viable entry

point is also described. Such a tool is expected to simplify the planning process in complex

neurosurgical scenarios, where the range of feasible paths is highly restricted.
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Length: 20 mm (5 Levels)
Performance Density

9 17 33
success rate 90.48% 94.23% out
avg n path 32.82 408.51 out
avg time 10.65 ms 223.28 ms out
tot paths 3118 40034 out

Length: 30 mm (4 Levels)
Performance Density

9 17 33
success rate 40.00% 72.12% 86.40%
avg n path 5.26 18.27 117.77
avg time 2.79 ms 18.41 ms 247.8

ms
tot paths 221 1370 10640

Length: 40 mm (3 Levels)
Performance Density

9 17 33
success rate 20.95% 36.54% 53.39%
avg n path 1 3.71 8.47
avg time 1.41 ms 2.85 ms 10.76

ms
tot paths 22 141 481

Length: 50 mm (2 Levels)
Performance Density

9 17 33
success rate 20.95% 25.00% 34.95%
avg n path 1 1.04 10.89
avg time 1.08 ms 1.32 ms 3.05 ms
tot paths 22 27 403

Table 4.1: AFT parametrisation: Success rate, average number of paths found, average com-
putation time and total number of paths found for 150 trials, for each combination of length
(l), and density (ρ).
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4.3.2 AHFT robustness evaluation

Here we evaluate the ability of the AHFT to identify feasible paths for the following set of

needle kinematic constraints: curvature continuity, maximum curvature (kmax=
1
70
mm−1) and

needle length (l=100mm). Starting with the trivial case of a straight line path between the

entry and target pose, we then systematically alter both the position and the approach vector

of the target pose to explore the bounds of the solution space. In doing so, we provide a visual

and quantitative representation of needle performance, confirming correct execution within the

solution space.

Target Orientation Sensitivity To ascertain the sensitivity of the algorithm to target

approach vector changes, a setup with coaxial start and end approach vectors is considered, then

the target approach vectors are displaced with steps of one degree towards a certain direction

until no solution is found. This is repeated for 21 displacement directions that constitute

the rays of a polar grid where the angular spacing is equal to π
10
. Each approach vector was

then considered as the target approach vector for an AHFT run, maintaining the same target

position and the same starting pose for all pairs within this test.

Results are provided in Figure 4.3, where the success rate for each displacement degree is

calculated as the number of times at least a path is found with respect to the total number of

directions evaluated. The green points identify those target approach vectors for which at least

one path could be found, while red points correspond to those for which no paths were found

(Figure 4.2). From these results, solutions could be found for all target coordinates within 23

degrees of the coaxial start and target scenario. The success rate, defined as the number of

target points providing at least one AHFT solution, decreases to 66.66% for a deviation of 24

degrees, to 47.61% for 25 degrees and finally to 14.29% for 26 degrees, which is the maximum

deviation for which we can still find some solutions.

Target Placement Sensitivity To ascertain the sensitivity of the algorithm to target place-

ment, the following setup was employed. Starting with the trivial case of a straight line path
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Figure 4.2: AHFT robustness evaluation for target approach vector: given a target position
and an initial pose, the final approach vector is systematically oriented away from the trivial
case until no solution is found. A red point corresponds to an approach vector for which no
paths are found, while green points correspond to successful runs. At the bottom, the solutions
corresponding to a single ray of the polar grid are displayed

with coaxial start and end approach vectors, target coordinates were discretized within the

same polar grid described in Section 4.3.2, maintaining both approach vectors constant. Each

point within the grid was then considered as the target for an AHFT run, maintaining the same

starting pose for all pairs within this test.

Results are provided in Figure 4.4, where green points identify those targets for which at

least one path could be found, while red points correspond to those for which no paths were

found. From these results (Figure 4.5), it is evident that solutions could be found for all target

coordinates within a 22.36 mm radius circle from the center. Once again, these results confirm
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Figure 4.3: The graph shows the AHFT success rate with respect to an increasing deviation of
the target heading from the coaxial start and target scenario.

Figure 4.4: AHFT robustness evaluation for target placement: given a final approach vector
and a fixed starting pose, the target position is systematically moved away until no solutions
can be found. A red point indicates that no paths are found for the given target position, while
a green point corresponds to a successful run.

the ability of the AHFT algorithm to identify suitable solutions within the feasible space.

Pre-operative Path Planning Simulation In a pre-operative neurosurgical scenario, the

operating surgeon would generally select a suitable entry point for the needle on the skull of the

patient. Entry poses perpendicular to the patient’s skull are calculated for each of the patient’s

skull mesh vertex points using the correspondent surface normals. The entry-pose decision has

to account for the desired target pose (i.e. the position and orientation of the needle at the
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Figure 4.5: The graph shows the AHFT success rate with respect to an increasing displacement
of the target away from the polar grid center.

point of application) and any cortical functional areas that must be avoided. Additionally, the

approach angle at the start of the needle insertion process should be roughly perpendicular

to the skull at the desired entry point in order to facilitate the creation of a suitable burr-

hole. Consequently, the selection of a feasible starting pose is not straightforward. To aid

in this process, each vertex of a homogeneously distributed skull mesh is considered in turn

(total number of vertices = 1702), where the coordinates represent a possible entry point, and

the associated vertex normal represents the corresponding desired start approach vector. All

feasible entry points for a given target pose are then identified by executing the feasibility

check for each pair, as per Section 4.2.2. The green dots within the light blue region are those

for which the AHFT is able to find at least one trajectory, while the red dots are those for

which no paths can be found because of obstacle collisions, which are not accounted for during

the feasibility check. For illustrative purposes, a second mesh is produced out of the green

successful vertices, in such a way as to highlight the skull region which would be suitable for

a given target pose. Such a region is highlighted in light blue in Figure 4.6, as an illustrative

case, alongside a complete set of feasible paths (dark blue) for a representative target pose close

to a tumor.

The skull mapping was performed for 15 different target poses. The average computation time

for every start and target pose pair was 24.67 sec, with a high standard deviation (25.76 sec)

because the path planner was run until the first solution was found, leading to different times

depending on task complexity. The target pose success rate for all runs is shown in Figure 4.6.
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Each rate has been computed considering the number of feasible entry poses from which at

least a path could be found with respect to the total corresponding amount of feasible points

for the considered target pose. The fact that, for some target headings, few solutions could

be found is mainly due to the density of the obstacle map and the complexity of the selected

case in terms of start and target poses. These target poses are possibly those which a surgeon

should exclude in favour of ones highlighted in the subregions, which would guarantee a better

coverage of the feasible area on the patient skull (red dashed target pose in Figure 4.6).

0% 0% 0%16.6%
41.6%

50%
41.7%

41.5%
33.3%

25%
25%

33.3%
33.3%

25%

8.33%

Figure 4.6: Pre-operative scenario simulation: For each one of the displayed target poses laying
near the tumor (brown), a rate has been calculated considering the number of feasible entry
poses from which at least a path could be found with respect to the total skull mesh vertices.
On the bottom, the best target pose (in terms of rate) is considered, and a skull region (light
blue) is displayed to highlight the surface area where a burr-hole could be placed. Within this
highlighted region, all feasible paths between each mesh vertex and the target are depicted in
blue. Vertices in green are associated to obstacle-free paths, while red vertices are those for
which an obstacle-free path could not be found.
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4.4 Discussion

Starting with the trivial case of a straight line path between entry and target pose, systemati-

cally changing both the position and the approach vector of the target pose resulted in a set of

results which confirm the ability of the AHFT algorithm to identify suitable candidate paths,

if they exist. As the simulated setup explored increasingly challenging pose configurations (i.e.

those lying at the edges of the solution space), more complex trajectories were required to

intersect the target pose, implying a greater risk of failure. The AHFT algorithm is thus able

to find at least one path for a given set of needle constraints, as long as the AFT sampling

space lies within the ”feasible volume” identified in Section 4.2.2. The AHFT is a sampling

based method which, because of its discrete nature, does not guarantee an optimum solution.

However, the fractal tree structure provides a dense, invariant and organized exploration of

the entire domain ensuring high robustness and success rate in path planning for highly con-

strained and complex environments. The top-ranked generated trajectories with respect to a

specific cost function are those to be selected. The AHFT architecture also leads itself to full

parallelization, unlocking the massive computational speedup capacity of the GPU, leading to

a potential for intra-operative use. The differences in the experimental setup, ways to access

the methods, software and hardware used make it difficult to compare the performance of path

planning algorithms completely. Additionally, the very different constraints related to medical

applications influence the complexity of the problem, making path planning algorithms very

case-specific and even more difficult to assess. However, with respect to the pre-operative sim-

ulation scenario, the proof of concept results described in Section 4.3.2 demonstrate that the

AHFT is able to identify a path planning solution if one can be found, and that the method

can be used to identify a dense set of viable skull entry points within a preferable skull entry

region, for a given target pose and set of needle constraints, automatically. Clinicians would

still be free to select any other point within the highlighted skull region/s, as needed. The

method, therefore, can offer an important tool to assist and facilitate planning in the most

complex surgical scenarios. The surgeon can be assisted in identifying a suitable location for

the burr hole, which is both clinically safe and feasible, with full control over both the entry
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and target needle poses.

4.5 Conclusion

In this work, we proposed the Adaptive Hermite Fractal Tree, a novel parallelizable 3D path

planning approach able to cope with the kinematic constraints of a steerable needle and prede-

fined start and target poses. The performance of the algorithm to perturbations in the target

position and approach vector were evaluated. Additionally, the AHFT was tested in a pre-

operative neurosurgical simulated environment, which demonstrates that multiple viable paths

can be identified through a complex network of realistic obstacles. The method also enables

easy identification of a suitable entry area on the patient skull for a given choice of target pose,

which would be a useful tool for the surgeon. AHFTs can be applied to other fields where

explicit control on entry and target poses, and a parallelizable architecture, are required. In

Chapter 5 we will address the development of methods for intra-operative path adaptation. At

this stage of the surgery, an algorithm’s time efficiency is key. Furthermore, different solutions

that account for occurring tissue deformations and real-world inaccuracies are needed to keep

proximity to the preoperative path and accurately reach a desired target, specially when both

start and target pose are predefined.



Chapter 5

Adaptive Path Replanning for

Orientation-constrained Needle

Steering

Chapters 3 and 4 focused on pre-operative path planning solutions. In this chapter, a intra-

operative path planner for steerable needles is presented. The aim of this study is to develop a

new intra-operative planning approach and test its computational performance both in simu-

lation and in-vitro, together with its integration in a surgical robotic setup, which is presented

in Chapter 6. In-vitro trials were carried out to evaluate planner’s performances in finding

feasible solutions at a time rate that is acceptable for its integration within the EDEN2020

robotic system.

Ex-vivo and in-vivo experiments were planned to further assess the proposed intra-operative

planner, but they have unfortunately been postponed due to COVID19 outbrake.

The research presented is an edited version of recently published study:

Marlene Pinzi, Tom Watts, Stefano Galvan, Riccardo Secoli and Ferdinando Rodriguez Y

Baena, “Path Replanning for Orientation-constrained Needle Steering” Transaction in Biomed-

ical Engineering (TBME), February 2021.
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5.1 Introduction

Minimally invasive surgery and treatment represents a major trend in current neurosurgical

procedures, minimizing patient trauma, and thus the risk of complications and recovery time

[APM07]. Steerable needles are a promising technology within this field, allowing clinical

access to previously inaccessible anatomical targets. By steering along low-risk preoperatively

computed paths, the safety of percutaneous procedures is increased. To control the insertion

during steerable needle procedures, the surgeon usually operates with the aid of a robotic

platform. With a suitable interface and model of the needle, surgeons can intuitively control

steering without needing to understand the specific needle mechanics. However, the accuracy of

the needle insertion with respect to the preoperative selected path is affected by several factors.

The first factor is tissue deformation, primarily caused by fluid loss occurring during the creation

of the burr-hole port on the patient’s skull, a phenomenon known as “Brain shift” [IYS+14].

Targeting accuracy is also affected by poor quality medical imaging, unpredictable needle-tissue

interactions, and surgeon errors [LKR18]. Steerable needles must also avoid colliding with

anatomical structures such as brain vessels and ventricles which may deform during insertion.

Due to these considerations, the path selected preoperatively should be reassessed during the

procedure to verify its feasibility with the new deformed obstacle configuration.

To account for the surgeon’s preoperative evaluation of the necessary surgical intervention, it

is desirable to design a replanning algorithm which adjusts the existing surgeon-defined path

rather than replacing it, compensating online for deviations of the tip and tissue deformation

while maintaining high ”path similarity”: a measure of the deviation a process induces between

an original path and a new (target) path. Preserving path similarity reduces the cognitive load

on users observing the planned activity, by ensuring coherence and consistency of behaviors,

even in dynamic environments [NKS+]. Also, less changeable plans reduce stress on hardware

execution components, facilitating the PBN’s motion.

On the other hand, a comprehensive computer-assisted planning method should be able to meet

new constraints deriving from precision neurosurgery applications which demand high accuracy
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in target orientation, such as in Convection Enhanced Delivery (CED) [ZW18b] or Deep Brain

Stimulation (DBS) [SPF+19b].

Global path planning methods are generally favored with respect to local ones for online needle

steering applications since, besides reacting to local changes and unexpected obstacles, they

can deal with the global problem of reaching an arbitrary goal. The most common technique

is to apply a single-query planner that is fast enough to be used intra-operatively to replan

the trajectory from imaging or sensing feedback information as in [PBWA14]. As we discuss

in the literature review (Chapter 2) Rapidly Exploring Random Tree (RRT) based solvers are

generally favored because they maintain good performance even in a 3D anatomical environment

[PBWA14]. However, their maximum run time is user-defined, leading to a trade-off between

speed and success rate. Therefore, at equal maximum run time, a more complex obstacle map

would lead to a decrease in success rate [FSM18a]. Additionally, RRTs generally do not include

needle curvature constraints and target orientation accuracy is generally not considered. Only

recent RRT spline-based solutions can meet constraints on both a specified target orientation

and on a maximum curvature radius, without requiring further smoothing [YMY+14, FSM18a].

However, these solutions are limited by their geometrical approach which, as in the case of

Dubin’s curves [PHB17], bound the maximum curvature radius up to half the distance between

the start and target point [Moh15].

”Bubble Bending” algorithms [QKa][LT11], coupled with optimised trajectory smoothing meth-

ods [ZSP15] provide an elegant solution to these problems. In general, ”Bubble Bending” is

based on the online modification of a predefined path. The path behaves as an elastic band,

reacting in real-time to local changes in a dynamic environment. The power of this framework

is that it avoids the computational cost and the risk of long path detours associated with re-

calling a global path planner as is required in RRT based methods: local modifications to the

original path do not limit the ability to achieve global goals. A disadvantage of the approach

alone, however, is that the resulting path curvature is generally not bounded. Constrained

path smoothing methods, such as the Convex Elastic Smoothing (CES) algorithm, has been

developed to address this and implemented for 2D car-like robot applications [ZSP15].
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In this study, we present a modified version of the ”Bubble Bending” which has been adapted to

the surgical environment to be able to compensate for both tissue deformation and real-world

uncertainties. Additionally, an extension of the CES for 3D scenarios is incorporated, which can

find a curvature constrained solution suitable for steerable needle navigation. Our replanning

method continuously generates an updated path which meets the desired target orientation

and position constraint accuracy while meeting surgical and curvature constraints. The ”path

similarity” is also optimised to make the algorithm more predictable to users and interaction

with the front-end potentially easier.

Figure 5.1: Our application of the ”Bubble Bending” technique can be summarised as follows
(starting from the first frame on the top): (i) a preoperative path is selected by the surgeon, (ii)
a virtual channel of overlapping spheres around the preoperative path, starting from the current
needle tip position (green sphere), adapts to compensate for obstacles deformations; the orange
spheres represent a collision with the surrounding obstacles causing a channel adjustment. On
the other hand, the violet spheres are static, thus constraining the target approach vector.
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initialisation is described in Section 5.2.1 and followed by a step-by-step description in Section

5.2.2. Secondly, we propose a metric to evaluate the risk during the insertion (Section 5.2.3).

Finally, the experimental setup is discussed in Section 5.2.4. In particular, our replanning

method is first evaluated in a computational simulation (Section 5.3.1) to assess its robustness

in a deforming environment; then in-vitro in Section 5.3.2, to assess the algorithm’s integration

within an experimental robotic surgery setup.

5.2.1 Initialisation

The following overview of the preoperative phase introduces the concepts relating to surgical

constraints and the initialisation of the relevant replanning algorithm parameters.

First, patient-specific diagnostic images are considered to build a binary anatomical obstacle

map (Mobs) composed of sensitive brain structures such as segmented arteries and brain ven-

tricles. Subsequently, a safety margin is added to obtain an expanded obstacle map taking

into account both the needle’s footprint and a safety distance to obstacles, which can be set by

the clinician. Finally, a preoperative path planner algorithm [PGR19a] is run on the expanded

obstacle map to identify a suitable path between a set location, perpendicular to the patient’s

skull, and a predefined target pose. This becomes the first reference path for our online replan-

ning technique. The initialisation of the standard ”Bubble Bending” algorithm requires that

the reference path is enveloped within a series of spheres of radius equal to Rb, with a minimum

overlapping value, ∆, between consecutive spheres.

In our study, Rb and ∆ are chosen to obtain a bubble channel (according to Equation 5.1),

the radius of which Rc corresponds to the amount of margin previously introduced with the

expanded obstacle map.

Rc =

√

(Rb)2 − (Rb −
∆

2
)2 (5.1)

Hence, the channel is initialised to be collision-free with respect to the original obstacle map
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Mobs.

5.2.2 Extended Bubble Bending Approach

We propose a modified version of the ”Bubble Bending” algorithm which makes use of a defor-

mation field that can be acquired intraoperatively via an online imaging system (i.e. intraoper-

ative ultrasound) [RHM+17] and calculates an obstacle-free path with a flexible constraint on

the target pose. In particular accuracy on the target orientation is prioritized with respect to

the target position and respective tolerances are provided (Fig. 5.1). The ”Bubble Bending”

algorithm assumes the path behaves like an elastic band, deforming to accommodate external

forces and reacting with internal forces to keep its original shape. The path is discretised as

a succession of 3D points, each of which is the centre of a sphere/bubble of a specified radius.

Two virtual forces are introduced to describe the bubbles’ interaction with the deforming en-

vironment. The main virtual forces acting on the path are due to external forces caused by

obstacles intersecting the volume of any number of spheres. These generate repulsive forces

along the main direction of the obstacle distribution, which keep the path collision-free. Since

we consider a binary and discrete obstacle map, each voxel belonging to a certain obstacle

contributes with a repulsive force that acts along the line connecting it to the respective bubble

centre. The external forces are compensated by internal forces between consecutive bubbles,

which act to reduce their displacement and to keep the overlapping region within the predefined

minimum value. The internal forces guarantee an elastic response of the bubbles channel to

external interactions. (see [LT11] and supplementary material for details about the algorithm).

In summary, the position of each sphere is modified according to the total amount of forces act-

ing on it until an equilibrium is reached. In this way, the initial path is continuously adjusted in

line with the updated obstacles map. However, as the path replanning algorithm presented here

is intended for steerable needles in neurosurgery, the method must take into account surgical

constraints, such as the required target vector approach and the need for maintaining a safety

margin from the brain’s sensitive structures. Additionally, it must account for a deforming

environment affecting not only the obstacles’ position but also the target pose Ttar and the



82 Chapter 5. Adaptive Path Replanning for Orientation-constrained Needle Steering

needle tip pose Ttip which can change due to deformations of the surrounding soft tissue and

the high compliance of beveled-tip flexible needles. It should be noted that Ttar and Ttip are

7-dimensional arrays including both the points position information in 3D coordinates (Ttarc ,

Ttipc) and their orientation, with respect to a reference axis, as 4-dimensional unit quaternions

(Ttarq ,Ttipq) .

We address the neurosurgical requirements with an ”Extended Bubble Bending” approach that

proceeds as follows (Fig. 5.2):

Bubble Reorganisation

The preoperative path is calculated taking into account a safety margin from known anatomical

obstacles. A channel of overlapping bubbles qb,j is generated around the current reference path

by BubbleReorganisation(qu,i). New bubbles are inserted when the overlapping value

between consecutive bubbles is below the predefined threshold. In the same way, redundant

bubbles are removed, as explained in [LT11].

Applied Deformation

The obstacle map Mobs is updated according to the brain displacement field, defined by D(x)

intraoperatively. Unlike the standard ”Bubble Bending” method, we opted to contribute to

the path adjustment by applying the deformation field directly to the bubble centres’ position

to allow the channel to adapt to the changing environment. Therefore, target pose Ttar and

bubble centres qb,j are also transformed via ApplyDef(qb,j,Ttar,Mobs,D(x)). In particular,

the Mathworks Matlab2019b c© function imwarp is used to transform these points according

to the displacement featured at their specific position, resulting in qd,j. The tip pose Ttip is

continuously input to the system from the EM sensing.
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Bubble Bending

The bubble centres are constantly adjusted following the ”Bubble Bending” method

BubbleBending(qd,j,Ttip,Ttar). Virtual internal and external forces are computed for each

bubble center, the position of which is moved by a discrete step in the direction of the respec-

tive resultant force. In our application, this applies to all of the bubbles except the two at the

beginning and the two at the end of the bubble channel, which keep the correct initial and final

orientation respectively. This is an iterative procedure that runs until the total channel adjust-

ment is below an equilibrium threshold and is also entirely collision-free. At every iteration, a

reorganisation of the bubble channel is performed. The result at this stage is an obstacle-free

bubble channel represented by qc,j.

Constrained Smoothing

The bubble center positions act as way-points. They must be smooth and satisfy curvature

continuity and the constraint on the minimum radius of curvature Rmin

(function ConstrainedSmoothing(qc,j,Ttip,Ttar, Rmin). The CES approach has already

been applied in previous studies to smooth the bubble center positions (BCPs) for ”Bubble

Bending” algorithm implementations in 2D scenarios. Here, we extend the CES to 3D and with

adjusted constraints on the convex optimisation. Our convex optimisation aims to minimise

two objective functions O1 and O2 simultaneously, as defined in Equation 5.2.

O1 =
n−1
∑

k=2

‖2pk − pk−1 − pk+1‖
2

O2 =
n−2
∑

i=3

‖pi − qi‖

minimize
q3..qn−2

(O1 +O2) (5.2)

s.t. p1 = Ttipc ;



84 Chapter 5. Adaptive Path Replanning for Orientation-constrained Needle Steering

p2 = Ttipc + dVin; pn−1 = Ttarc − dVfin (5.3)

‖2pk − pk−1 − pk+1‖ ≤
d2

Rmin

(5.4)

(pn −Ttarc)
2 ≤ ǫ2

Vfin(pn −Ttarc) = 0 (5.5)

Here, qi represent the BCPs (qc,j) resulting from the BubbleBending() function (Fig. 5.2);

while pi represent the set of optimisation variables, initialised as qi, which will eventually

converge to the solution and be the output (pc,j) of the ConstrainedSmoothing() function.

In particular, the minimisation of O1 is, in the CES approach, a geometrical method to reduce

the curvature ”peaks” along the path, thus leading to a much smoother result. O2 represents the

distance from the bubble centers, minimised to keep the smoothed curve within the obstacle-free

bubble channel and as close as possible to the reference path. Equation 5.3 sets optimisation

constraints on both the current tip orientation (Ttipq) in the form of directional vector Vin

and the current target orientation (Ttarq) in the form of directional vector Vfin; Equation

5.4 represents a CES approach to enforce the geometrical constraint to bound the minimum

curvature radius Rmin of the generated path. Finally, in Equation 5.5, the target point pn is

constrained to be located on a plane that includes the original target point Ttarc and has the

constrained target orientation as the normal. Furthermore, a maximum distance tolerance, ǫ,

from Ttarc is included, which can be tuned according to the required target accuracy. The

replanned path is, therefore, a curvature constrained approximation Interpolate(pc,j, n) of

the new BCPs resulting from the iterative bubble channel deformation. Additionally, the

accuracy of the desired target approach angle is prioritized. If these criteria are not satisfied

(worst-case scenario) then the algorithm interrupts, indicating that the patient’s safety may be

at risk. The surgeon can then decide either to progress manually or to move backward until a

new path that meets the constraints is found.
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5.2.3 Online Risk Metric

A risk metric for curvature constrained steerable needles was developed in this study, which

measures how feasible it is for the current PBN tip pose to reach the target pose while meeting

the kinematic constraints of the needle. In other words, this metric quantifies the robustness

of the current path to further deviations and therefore the risk of an inaccurate outcome.

Steerable needle

Needle tip

Target pose

Needle tip pose

Figure 5.3: This figure shows the feasibility volumes starting respectively from the tip pose
and the target pose. The intersection represents that region of feasibility the needle should
aim to stay within, during the insertion, to satisfy both curvature and orientation constraints.
The distance of the needle tip (δtip) from the boundaries of the intersection with respect to the
feasibility volume radius at that height (Rf ), gives us a metric of risk during the insertion.

The needle tip position is evaluated with respect to a feasibility or reachability volume, starting

from the current target pose, and directed along with the target orientation in the direction of

the path. Conversely, the target point is evaluated with respect to a feasibility volume starting

from the current tip location, directed along with the corresponding tip orientation in the

direction of the target (Fig. 5.3). These volumes have the shape of a horn torus, the radius of

which is equal to the minimum radius of curvature the needle can follow (Rmin). The inclusion

of both points within the corresponding feasibility regions ensures that the target orientation

requirement is achievable from the current tip pose.

The risk metric ρ, normalised in the range [0,1], is computed as the ratio between the minimum

distance of the tip from the edges of the boundaries of the feasibility regions intersect (δtip) and
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the radius of the feasibility volume (Rf ) at the same distance from the target (Equation 5.6).

ρ =
δtip
Rf

;Rf ≥ δtip (5.6)

This metric can be used to provide the surgeon with feedback about the current path related

risk.

5.2.4 Path Replanning Simulation

The robustness of our path-planning algorithm to brain-shift deformations was evaluated in a

simulated environment.

Preprocessing

Anonymized medical images (MRI/CT) of a healthy subject from a patient dataset acquired

within the context of the Horizon 2020 EDEN2020 European project [CF19] were used. We

performed segmentation of the skull and key anatomical structures, such as the brain vessels and

ventricles, to produce a realistic obstacle map. The AHFT preoperative path planner algorithm

[PGR19a] was run on the expanded obstacle map to find paths starting from different entry-

point locations perpendicular to the patient’s skull directed to a set of target poses. For the

subject in this study, a total of 165 paths (Fig. 5.4) were obtained from the AHFT using an

expanded obstacle map with a margin equal to 1.68 mm, computed as the sum of the radius

of the PBN used in the in-vitro experiments (1.25 mm), and a safety margin, arbitrarily set to

30% of the PBN radius (0.43 mm). This distance also guarantees some maneuvering space in

case of replanning. The 165 paths were used to simulate the same number of insertions.

As mentioned previously, tissue deformation is an important factor that can influence targeting

accuracy. To account for this, a simulated deformation field was generated, taking into account

that the mean displacement of the brain surface during neurosurgery is found in the literature

to be up to 15 mm. In Reinges et al. [RNK+04] brain-shift measured 6.1±3.4 mm on average
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Figure 5.4: The figure shows the generated AHFT [PGR19a] preoperative paths reaching the
target with different vector approaches (different shades of blue). These paths intersect the
patient skull perpendicularly within a tolerance of five degrees.

after approximately 50 minutes after dura opening, where a comparison between superficial

and sub-cortical brain-shift at 20 mm distance over the same time period is also performed.

They found that deep brain structures experience a smaller deformation compared to cortical

structures, with a decreasing deformation rate of 0.59 mm per millimeter depth. Consequently,

we utilised a simulated deformation field of magnitude equal to 15 mm at the dura mater, which

progressively decreases at 0.59 mm per millimeter of depth, towards the stem.

Computational Simulation Protocol

A fraction of the deformation field was progressively applied to the obstacle map at each step

of the simulated insertion so as to achieve complete deformation at the point the target was

reached. This approach was adopted to replicate the average amount of brain-shift experienced

by a patient during neurosurgery. During these trials, the main direction of the applied de-

formation (coinciding with the gravity vector in a real-life scenario) was randomised for each

simulation to increase the variability of the test. The 165 preoperative paths were used as

sequential inputs to the path replanning algorithm simulations, which were run five times each,

for a total of 825 simulated insertions.
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Table 5.1: Path Replanning Parameters

Rb ∆ Rc Rmin tartol αtol

3 mm 0.96 mm 1.68 mm 70 mm 2.5 mm 10◦

A replan was performed at every insertion step (arbitrarily considered to be 1 mm in length)

just after deformation was applied to the entire obstacle map, target pose, tip pose, and the

BCP. As in Table 5.1, we set Rb equal to 3 mm in order to react only to obstacles very close to

the catheter body (Fig. 5.5). The overlap ∆ was chosen as 0.96 mm and the minimum channel

radius Rc was, therefore, equal to 1.68 mm (Equation 5.1), matching the value of the obstacle

margin included in the preoperative expanded obstacle map. This guarantees that the channel

is initialised as obstacle-free. However, this minimum distance from obstacles is constrained

by the algorithm during the entire operation. Additionally, target orientation accuracy is

prioritised within an arbitrarily defined tolerance of αtol. Finally, a tolerance tartol of 2.5 mm

is used for the target position, which is within the acceptable accuracy for minimally invasive

neurosurgical treatment and comparable to the results in [PBWA14]. The simulations were

run on a workstation with an NVIDIA GeForce GTX 1080 Ti 11GB Pascal using Matlab2017b

(Mathworks inc.) and the CVX package available in Matlab [cvx] for the smoothing convex

optimisation.

5.2.5 Path Replanning Experiments

These trials aim to demonstrate the integration of our algorithm within the EDEN2020 robotic

suite. In particular, we chose the ”Replanning as Control” framework as a tool to create a chal-

lenging testing environment for our replanning. Successful implementation of this framework

depends upon a low computational replanning time and high robustness in correcting for real-

world perturbations while finding feasible and safe paths at each insertion step. In contrast

with the standard practice of planning a feasible path and then using a feedback controller

for correcting uncertain perturbations, we want our path replanner to be able to correct for

real-world inaccuracies (i.e. needle tip deviation, dynamic model inaccuracies, and hardware

acquisition uncertainties). On the other hand, the ”Replanning as Control” framework removes
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the need of a user guiding the needle insertion, thus avoiding external influence on the resulting

accuracy. The system automatically steers the needle along paths that avoid obstacles of known

location.

System Components

We describe the experimental protocol starting from the experimental setup shown in Fig. 5.6.

• Bevel-Tip Steerable Needle: our PBN is a passive catheter with a finite orientation veloc-

ity and a bio-inspired insertion mechanism [FKT+10b]. Particularly, the offset measured

at the tip between its four segments influences its bending direction.

• Needle Steering Robot: the EDEN2020 robotic suite (www.eden2020.eu) comprises four

actuators that activate the four segments of our needle independently to provide the

desired motion [MSB+18].

• Electromagnetic Tracking System: four electromagnetic (EM) tracking sensors (Aurora

5DOF catheter, type 1, external diameter 0.3 mm, position accuracy 0.9 mm/0.3; North-

ern Digital Inc., Canada), inserted one in each of the four needle segments, were employed

to estimate the probe tip pose Ttip continuously during the insertion process, thus provid-

ing the path-replanner with the start pose constraint for its subsequent path generation.

• Gelatine Box: a 6% by weight bovine gelatin (Chef William Powdered gelatine) was

placed into a cuboidal block of approximate 20 cm x 10 cm x 25 cm for our experiments.

• Front-end Visualisation Software: the EDEN2020 visual interface [EM19] provides an

intra-operative modality featuring three standard MRI orthogonal views and an interac-

tive simulated perspective of the current path with respect to the needle tip pose.

In-vitro Experiments Protocol

The experiment block diagram in Fig. 5.7 shows how the ”Replanning as Control” block

receives the current tip pose as input and generates a new path from there. The generated
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tangent vector ez in the ey and ex directions, as defined in the body-attached frame of Fig.

5.8, are calculated. The PBN inverse model, as explained in [WSB18], takes kdes(t) as input

and returns the best relative offset between the four-needle segments to achieve the desired

curvature.

Figure 5.8: The PBN body frame coordinates are shown (top) as described in Watts et al.
study [WSB19a]. In particular angular and linear velocities, ωx ,ωy, ωz and v are shown along
with the corresponding curvatures κ1, κ2 and torsion θ (assumed to be zero for our needle).

To test the system in-vitro, three preoperative plans are generated using our surgical planning

software. A total of fifteen needle insertions (five insertions for each path) are performed in

gelatin with virtual anatomical obstacles. The virtual environment used is in this case static,

as any simulated deformations would not be reflected in the EM sensor positions, as would be

expected in the real scenario.

In fact, in a real world scenario, we would expect the needle tip to deviate according to the

passive displacement of our flexible catheter within a deforming tissue. However,the aim of these

trial was to demonstrate that our path replanner is fast enough to be used in a ”Replanning

as Control” framework while correcting for perturbations caused by real world uncertainties.

This enables the system to automatically steer the needle along paths that avoid obstacles of

known location. In these trials, the needle is actuated by motors at an insertion speed of 0.4

mm/sec, while the replanner is constantly generating new paths. Clinical parameters such as

the proposed risk metric and the distance from the target are provided to surgeons during the

procedure. To evaluate our algorithm’s performance we acquired the following key data during

both simulated and in-vitro insertions (Table 5.2 and 5.3).

• Replanning time (T [sec])
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It measures the computational time associated with the proposed replanner. It has to

fulfill the minimum requirement of an update per millimeter of insertion for a constant

maximum of 0.4 mm/sec needle insertion speed.

• Success rate (S[%])

It measures the algorithm’s robustness in reaching the target within the constraints (tartol)

while maintaining the minimum distance from obstacles (Rc).

• Target accuracy (CLoop[mm] error)

Target orientation accuracy is considered along with target position accuracy. They both

have to be within the given tolerances: tartol and αtol respectively.

• Path similarity (Fr[mm])

Proximity to the previously calculated path is constantly maximised during the insertion.

The Frechet distance provides an appropriate ”path similarity” evaluation criteria. the

Fréchet distance is a measure of similarity between curves that takes into account the

location and ordering of the points along the curves. Given two curves P and Q, ”Fr”

is defined as the minimum cord-length sufficient to join a point traveling forward along

with P and one traveling forward along with Q.

5.3 Results and Discussion

5.3.1 Computational Simulations Evaluation

We aim to demonstrate that our technique can accurately guide the needle to the a desired

target not only in terms of position but also in terms of final heading while avoiding complex

3D deforming obstacles. In doing so, we tested our solution in a constantly changing simulated

environment and measure its robustness in reaching the target within the constraints (Success

rate (S[%])).

From a total of 825 tests, 93.6% were successful. The remaining 6.3% resulted in unfeasible
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scenarios where an obstacle-free solution that meets both kinematic and surgical constraints

was not able to be found. At the point during the insertion this occurred, the simulation

stopped.

Table 5.2: Extended Bubble Bending: computational simulation results

OLoop CLoop T [sec] S[%] Fr[mm]

8.10±0.31mm 0.65±0.46mm 0.53±0.03 93.6 0.24±0.06
18.81±24.5◦ 3.25±5.23◦

Table 5.3: Extended Bubble Bending: experimental results

CLoop T [sec] S[%] Fr[mm]

1.81±0.51mm 0.51±0.02 100 0.48±0.11
5.9 ± 1.42◦

The average computation time was 0.53 ± 0.03 seconds, which fulfills the minimum require-

ments. Finally, the final distance from the target pose CLoop is compared to the error we would

have in an open-loop situation OLoop when there is no replanning involved (our ground-truth).

This comparison is conducted in simulation (Table 5.2). With an independent two-sample t-

test, we measured a statistically significant mean reduction in targeting error over the open-loop

results (P<.0001), with OLoop mean equal to 8.10±0.31 mm compared with 0.65 ± 0.46 mm in

the case (CLoop) case. These results meet the given tolerance of 2.5 mm target position error we

set for this task. Furthermore, the target orientation error was computed, with a closed-loop

mean of 3.24±5.23 degrees, versus 18.81±24.5 degrees in the open-loop case. The total im-

provement in target orientation accuracy is also statistically significant (P<.0001). Finally, the

average Fr, calculated at each step of insertion is equal to 0.24±0.06 mm. Since the simulated

deformation will inevitably cause a difference between the current and the updated path, we

can only aim to minimize Fr value.

5.3.2 In-vitro Experiments Evaluation

An average target position error of 1.81±0.51 mm and a mean target orientation error of

5.9±1.42 degrees were measured at the end of 15 insertions (Fig. 5.9). The average compu-

tational replanning time of 0.51±0.02 seconds confirms our algorithm’s performances in-vitro.
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Then, a Frechet distance of 0.48±0.12 mm is measured. These values are substantially higher

than the respective simulation errors. We believe this discrepancy arises primarily from the

inaccuracies in our needle dynamic model. However, all the tests were considered successful,

since our technique constantly guided our PBN to the desired target pose within the given

tolerances and above the previously set minimum Rc.

Figure 5.9: Our flexible needle at the end of the insertion is shown.

5.4 Conclusion

This study describes a novel 3D path replanning technique optimised for soft-tissue surgical in-

terventions and applicable to curvature bounded steerable needles. The algorithm can smoothly

adjust a preoperative path intraoperatively, while meeting constraints on both target position

and orientation. Furthermore, this system reacts smoothly to ongoing tissue deformations and

real-world uncertainties. Its ability to compensate for local changes, while meeting the con-

straints on its global goals, removes the risk of long path detours affecting the more common

RRT-based techniques. A complete implementation of the method was tested in both simula-

tion and in-vitro experiments demonstrating acceptable target position accuracy for minimally

invasive neurosurgery [PBWA14]. These results confirm its performance as an online replan-

ning tool and building block in a ”Replanning as Control” needle steering framework, with the

novel addition of a target orientation constraint.



Chapter 6

An Enhanced Delivery Ecosystem for

Neurosurgery

In this chapter, the EDEN2020 robotic platform for steerable needle neurosurgery is briefly

presented. The system has been developed by the whole EDEN2020 team at Imperial and a

general description of the platform and the surgical workflow is an edited version of research

currently under review:

Riccardo Secoli, Tom Watts, Marlene Pinzi, Stefano Galvan, Eloise Matheson, Abdul Don-

der and Ferdinando Rodriguez Y Baena, “A Modular Robotic Platform for Precision Neuro-

surgery with a Programmable Bevel-Tip Needle” The International Journal of Robotics Re-

search (IJRR), under final review.

On the other hand, the experimental work presented in this chapter, which aims to evaluate the

path planning integration, is a contribution of this thesis. Section 6.2 and Section 6.3 are not

part of previous publication but have been included in this thesis to extend the path planning

integration assessment to a real-world scenario.

96









100 Chapter 6. An Enhanced Delivery Ecosystem for Neurosurgery

Figure 6.4: Top: Cross-section of the 4-segment PBN with two 0.3mm diameter working chan-
nels per segment. The overall PBN diameter is 2.5mm. Bottom-Left: trocar with embedded
medical grade PBN. Bottom-Right: connection mechanism between the PBN wings and the
push-rods of TB

two orthogonal axes of the joystick. To steer with a commanded direction and magnitude, a

corresponding steering input Θ is found. As there may exist more than one catheter configura-

tion to achieve a commanded steering, we formulate the problem as a non-linear programming

problem. By optimising a measure of catheter steerability, whilst constraining the commanded

curvature with (6.1), the optimal required steering input is found. In the case that a curvature

above the maximum achievable is commanded, the optimisation fails to find a solution and the

previous steering input is used.
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6.1.1 Front-end interface:

The front-end interface was designed on top of the commercial neurosurgical planning and

intra-operative software neuroinspireTM (Renishaw plc, UK). The standard functionalities of

the software such as the pre-operative registration of MRI and CT images, displays of medical

image dataset using conventional three orthogonal views, and renders of the three dimensional

volume on a fourth view were kept as the original software.

The new visual interface incorporates the rendering of tractography computed from Diffusion

Tensor Imaging (DTI), obstacles segmentation definition or import (e.g. vessels from angiog-

raphy and other structural area) both for pre- and intra-operative planning. Custom views to

support planning (drug selection, target selection, planner options, burr-hole port placement,

path selection and visualisation, etc.), devices initialisation and intra-operative navigation were

added. In particular, the new visual interface includes the pre- and intra-operative planning

method decribed in Chapter 4, Chapter 3 and in Chapter 5.

Pre-operative plan:

The workflow of the pre-operative planner is as follows:

• An MRI scan of the patient’s head is performed.

• The stereotactic frame is fitted onto the patient’s skull.

• A CT scan is performed. Note that the positions of the IR markers are visible on the CT

scan as this is needed for the patient registration step.

• The user follows imaging registration steps in the software

• The Neuroinspire software allows a user to select the position of the IR markers on the

CT scan so that the coordinates of the IR markers with respect to the CT reference frame

are known.



102 Chapter 6. An Enhanced Delivery Ecosystem for Neurosurgery

• The stereotactic frame is fixed to the base of the Neuromate robot. The coordinates of

the IR markers with respect to the reference frame of the Neuromate are hardcoded into

the Neuroinspire software.

• The coordinates of the markers are known in both the CT and the Neuromate reference

frames. Therefore, the transformation between these reference frames can be calculated.

This is used in later steps to allow the Neuromate to position surgical tools relative to

the patient’s head accurately.

• The MRI scan is segmented to isolate any areas in the brain, which may be especially

sensitive to surgery. These sensitive areas will be referred to as obstacles and usually

consist of ventricles and blood vessels.

• The CT scan is segmented to isolate the skull of the patient.

• The tumour is found and segmented from the MRI scan and the user chooses the infusion

drug type and volume

• The back-end software computes and display the infusion catheter target point and di-

rection, and the drug flow rate according to Zhan et al. [ZDB19]

• The skull, obstacles and target pose can be either displayed as a overlay of the three

standard surgical planar views or as a 3D rendering view.

• The back-end software computes a set of candidate entry points, that are perpendicular

to the skull’s surface with a 15% degrees tolerance. The user select the preferred one.

There are options to freely modify or manually redefine the entry point if required. A

model of the burr-hole port is displayed to facilitate the positioning according to the

user’s preferences

• The back-end software computes and ranks all feasible paths according to a specific metric.

The front-end display the best 10 candidate paths

• The user selects a preferred path among the proposed candidate paths
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The ‘Actual Overlay’ represents the current path the catheter is following based on a local

reconstruction of the curvatures in Parallel Transport frame. This is further described in the

next section. The ‘Commanded Overlay’ represents the path the catheter should follow based

on the configuration of the joystick and inverse kinematic described . The colour of the ring

represents a metric for the error indicating how far the catheter is from the path, and fuses the

magnitude of position and orientation error into a value between 0 (directly on the path) and

1 (far from the path, in which case a path re-planning event is triggered)(Chapter 5, Section

5.2.3). Quantitative and qualitative results from a user studies trial for the visual interface are

reported in a previous work of [EM19].

6.2 Multiple users simulated insertions

To validate the EDEN2020 front-end interface and in particular the influence of path re-planning

integration on users performance, a set of computational simulation trials were carried out.

First, three pre-operative paths were defined using the pre-operative path planner presented

in Chapter 4 [PWS+ew] on an anonymised patient dataset [CF19]; then five non-expert users

performed six simulated insertions on the three different paths for a total of 18 insertions. All

the insertions were executed with visual feedback, but only half of the insertions were integrated

with the EDEN2020 intra-operative re-planning method [PWS+ew] and the corresponding on-

line visualisation of the adjusted path. Steering was controlled with the joystick and insertion

speed was set at a constant 1 mm/s, with start/stop controlled by a foot pedal.

In these trials, the user should follow the displayed path which is adjusted only if the deviation

of the tip pose from the path exceeds a predefined magnitude. This magnitude is calculated by

mean of a risk metric in the range [0,1] (Chapter 5, Section 5.2.3) which triggers the re-planning

when greater than 0.5. The subjects were asked to reach the target with the best accuracy

possible; it was not stated whether they should prioritise position or rotational accuracy. What

follows is a summary of the instructions given to the users:

• You will be able to train with five insertions for each of the following conditions: path
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re-planning on, path re-planning off.

• You will be asked to do three insertions of each of the above conditions over three different

paths. The insertion modality will occur at random.

• The foot pedal enables movement

• The 3D navigation window can be maximised or minimised at will

• You can change to overview mode, but you must release the foot pedal

• Follow the position of the path, to reach the position of the target

• Arrive at the target with the same orientation as the target –this is best seen in the

overview mode

• Reach the target in the shortest time possible

Two error metrics were calculated for each insertion: (i) The target reaching error, including

position and rotation. The position error is measured as the minimum distance between the re-

sultant needle path and the original target location. The rotation error is the angular difference

between needle tangent vector and target vector at the closest point. This metric is chosen to

disregard an additional error due to target overshoot, which future developments to the visual

interface hope to minimise. (ii) The path tracking error, measured as the mean position error

along the whole length of the needle path with respect to the original pre-operative path. The

standard deviation is also calculated. The overall target reaching error along all the trials and

users result equal to 0,59 ± 0,52 mm (median value) in position and 7,29 ± 5,7 deg in rotation

in case of ”re-planning on” modality while it reaches 0,67 ± 0,75 mm (median value) in position

and 8 ± 6,1 deg in rotation in case of no re-planning. As evident in the means, the re-planning

modality resulted in 11.9% improved target reaching position and 8.87% in rotation compared

to no re-planning modality. An analysis of variance showed the difference in target position is

statistically significant with p <0.05 (F = 2.109, p = 0.0179). The results in Figure 6.8 suggest

that users seem to prioritise position over rotation accuracy, although re-planning modality

provides more coherent results. They also show that, in case of re-planning (Figure 6.8 and
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target position accuracy value for the automatic re-planning modality is [0.9554 1.213 1.410]

mm respectively for the 25th, 50th and 75th percentiles with a target rotation error that reduces

to [1.959 6.338 10.93] deg with respect to the trigger-based re-plan scenario.

Looking at Figure 6.12 it is possible to conclude that the interquartile ranges of target position

errors are less spread in the case of automatic re-planning but there is no statistically significant

difference between the two modalities’ performance. On the other hand, the analysis of the

updated target error, which corresponds to the last point of the last updated path, results in

statistically significant better performances for the automatic fast re-planning modality (t-test,

p <0.05, p = 0.01).

This can be explained by the fact that the automatic re-planner guides the needle along the

current path which is constantly updated during the insertion. Its real aim is, therefore, reaching

the final pose associated to the last path update, which is constrained to be at a maximum

2.5 mm from the original target, featuring the same approach angle. On the other hand, the

user, by means of a joystick, has no real constraint and could either aim for the original target

(still visible on the front-end) or stick to the updated path until the end of insertion as the

automatic modality.

With regard to target rotation accuracy, which is independent from the target considered, a

two-ways Anova t-test shows there is a statistically significant difference on target rotation

error means between the two tested modalities (p <0.0001)(Figure 6.13), with better accuracy

results for the automatic re-planning.

It can be concluded that expert user joystick guidance (trigger-based re-planning) and auto-

matic fast-re-planning modalities are both associated to low target position errors although the

automatic insertion modality results in a significantly higher target rotation accuracy. Auto-

matic fast re-planning modality should be taken into account as a high potential alternative

to trigger-based replanning, especially in case of very complex navigation tasks or when high

target orientation accuracy is desired.
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one of the two working channels of each segment and secured at the tail end of the catheter to

avoid relative motion during the insertion. The procedure is divided into seven macro steps as

follows:

• The sheep is located on a spinal stretcher (acrylonitrile butadiene styrene, ABS stretcher,

Millenia, Ferno) and is secured in a prone position on a vacuum mattress with extended

legs, via two straps.

• The Head Frame System of Figure 6.16 described in [TBZ+ew] is placed onto the stretcher

and secured using a bespoke fixture system

• The animal head is fixed into the Head Frame System

• Acquisition of the pre-operative CT imaging sequence (CT-pre - GE Healthcare CT sys-

tem, 16 slices helical scan). The imaging sequences were acquired with standard display

field of view (DFOV), matrix of 512x512, slice thickness of 0, 625mm, 120 kilovolt (KV),

220 milliampere (mA), pitch 0, 562 : 1 and 1/s tube rotation. The images were collected

using a soft tissue algorithm)

• Acquisition of a pre-operative MRI (Siemens 1.5T, 3DT1 Fast-Field-Echo (FFE), DTI,

TOF). DTI imaging is loaded from a dataset of a previous study [PTC+19]

• The surgeon performs the pre-operative planning sequence following steps in section 6.1.1

• The surgeon performs the intra-operative planning and navigation sequence in section

6.4.1

• A second CT imaging sequence is recorded (post-CT) to assess the positioning of the

catheter

6.4.1 Intra-operative planning sequence

The following procedure (Step 6) is carried out once the pre-operative planning is completed:
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by the surgeon. If the foot pedal is released, the catheter pauses the insertion. If the

foot-switch pedal is pressed again, the insertion is restarted.

• The intra-operative planner described in Chapter 5 constantly adjust the insertion path

depending on the current tip and target pose.

• Once the target is reached, the surgeon secures the catheter on the skull by using an inner

locking mechanism in the burr-hole port

• The sensing embedded in the catheter is removed by pulling the fibres from the tail of

the catheter

• The catheter is cut flush to the top surface of the burr-hole port and the robot end-effector

is moved to the parking position

At the final step of the procedure, the front-end interface provides a message reporting which

coloured segment of the PBN is suitable for the infusion. The infusion of the drug is delivered

with an additional catheter with an outer diameter of 0.3mm and an inner diameter of 0.1 mm,

inserted in the desired segment’s working channel. This latter part of the protocol, as well as

the infusion performance, are out of scope for this work. Following the surgery, a CT image is

collected to define the final position of the catheter with respect to the surgical plan (Step 7).

As shown in Figure 6.19 representing the post-CT imaging of the ex-vivo trial, the catheter has

reached the target with an error in position of 1.42 mm. The ex-vivo target position accuracy

is, therefore, in line with in-vitro results (Section 5.3.2). More ex-vivo tests are needed to

statistically compare in-vitro and ex-vivo perfomance and to assess the influence of a more

realistic ex-vivo setup on the PBN performance.

6.5 Conclusion

In this chapter, the EDEN2020 full modular robotic ecosystem is presented, which is used

for neurosurgical applications and employs a programmable bevel tip needle. The design has
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taken into account the functional requirements of the operating theatre (OR), from ergonomics

to sterilisability. The front-end interface, as well as the workflow, have been developed in

collaboration with a clinical team within the European consortium EDEN2020, to provide a

system which is employable in the OR, without disrupting the current clinical flow. The path

planning methods described in the previous chapters are integrated within the EDEN2020

ecosystem and tested first in a simulated environment and then both in-vitro and ex-vivo. Our

intra-operative solution demonstrated its potential in guiding not expert users to a precise target

pose. Particularly, replanning-as-control technique provided better in-vitro results than trigger-

base path replanning, confirming that stronger guidance approaches might be preferable for less

intuitive technologies as steerable needles even in the case of expert users. Overall, these trials

confirmed the overall performance in position accuracy of the catheter, which are comparable

to the results of analogous systems [MVO+18a], both in bench-testing and ex-vivo assessment.

The system will require further investigation and in vivo trials to improve the efficiency in

catheter placement and to assess the performance in CED applications. Future works will

include an extensive evaluation of the system in ex vivo and in vivo models, with additional

sensing such as Ultrasound Imaging to provide measurements of tissue deformation during

operation. The additional sensing will also be fused with the embedded sensing to provide intra-

operative localisation of the catheter tip. This integration will allow the system to compensate

target migration from tissue deformation, that can affect the final positioning accuracy of the

catheter at the target and along the path.



Chapter 7

Computer Assisted Planning for

Curved Laser Interstitial Thermal

Therapy

In this chapter, a CAP method for curved interstitial thermal therapy or LITT is presented.

This neurosurgical application demands not only for target accuracy but for optimal ablation

of a target volume. The research presented is an edited version of research recently pubished:

Marlene Pinzi, Vejay Vakharia, John Duncan, William Anderson, Brian Hwang and Ferdinando

Rodriguez Y Baena, “Computer Assisted Planning for Curved Laser Interstitial Thermal Ther-

apy” Transaction on Biomedical Engineering (TBME), Jan 2021.

7.1 Introduction

Several surgical disciplines have seen significant advances in the last decade, with the in-

troduction of novel robotic and endoscopic tools that have aided more extensive resections

through minimally invasive corridors [WGJD08, ABB20]. Amongst these, steerable needle

technologies have been tested for different neurosurgical applications. Stereotactic needle-based

120
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brain biopsies [MVO+18b], deep brain stimulation [HBM+19, PRH+16, SPF+19b], stereoelec-

troencephalography, stereotactic needle-based aspiration [BSL+13], stereotactic brachytherapy

[KDH14] and intracerebral drug delivery [ZDB19, HAE+15] could all potentially benefit from

steerable needle technologies. Another needle steering application, yet to be investigated, is

laser interstitial thermal therapy (LiTT). LiTT provides a minimally invasive alternative to con-

ventional open surgery [HWH+17] for drug-resistant mesial temporal lobe epilepsy (MTLE),

which is the most common drug-refractory focal epilepsy [Cen05]. Recent studies suggest that

higher seizure freedom rates are correlated with maximal ablation of the mesial hippocampal

head, whilst sparing of the parahippocampal gyrus (PHG) may reduce neuropsychological se-

quelae. Current commercially available laser catheters are inserted following manually planned

straight-line trajectories, which cannot conform to curved brain structures, such as the hip-

pocampus, without causing collateral damage or requiring multiple insertions. The clinical

feasibility and potential of curved LiTT trajectories through steerable needles has yet to be

investigated. This is the focus of this chapter.

7.2 Background

Selective amygdalohippocampal complex (AHC) ablation with LiTT is currently performed by

means of a straight catheter featuring a laser tip which is inserted through the brain along

the longitudinal axis of the hippocampus to the anterior border of the amygdala. The extend

of the ablation can be modulated through MR-thermography to generate an ablation diam-

eter between 5 to 15 mm. Recent studies demonstrated that post-ablation seizure freedom

(defined as ”Engel I” outcome) are correlated with maximal ablation of the mesial hippocam-

pal head, amygdala and the entorhinal cortex (EnCx), while sparing of the parahippocampal

gyrus (PHG) and collateral structures may reduce the probability of neuropsychological com-

plications [WJC+19a, DLV+15]. Additionally, a multi-center validation study by Galovic et al.

[GBWG+19] supports the importance of resecting the temporal portion of the piriform cortex

(PiCx) during temporal lobectomy, resulting in increased odds of achieving seizure freedom

by a factor of 16. The most common LiTT-related neurological complications are visual field
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deficits, ranging from 5 to 29% of total cases [JKS+17, WOS+15]. Visual deficits arise from

heat transfer to the optic radiation or the lateral geniculate nucleus (LGN) during the ablation

process.

Automated computer assisted planning (CAP) for straight tools has been proposed by Vakharia

et.al [VSL+18, LVS+19] to generate optimized paths that maximize AHC ablation, spare the

PHG and maintain a safety distance from the brainstem, LGN, sulci and vasculature. The

machine learning-based method was validated in a multi-centre retrospective study [VSL+19]

in which three automated straight trajectories and corresponding outcomes, featuring different

entry point and target constraints, were compared to manually planned and implemented paths

in 95 MTLE patients. The results showed a significant improvement in safety parameters

and amygdalohippocampal complex ablation volumes and blinded external expert reviewers

preferred the CAP trajectories over the manually planned trajectories.

However, the hippocampus features a distinctive curved shape that is generally very challenging

to ablate in one single trajectory without damaging nearby structures, avoiding vasculature,

transgressing the ventricular ependyma, as well as not being feasible in patients with abnormal

anatomy. A trade-off between total target ablation coverage and minimum collateral damage is

difficult to achieve even for automated methods based on straight tools. In some circumstances,

more than one trajectory is necessary to achieve a successful ablation [CPG+17], thus increasing

operative time and surgical risk. Additionally, a suboptimal ablation, due to the limited flexi-

bility of currently available laser tools, resulted in 46% of patients requiring follow-on surgeries

to achieve seizure freedom in some series [GAL+19].

A curved trajectory through a steerable needle could provide a better trade-off between coverage

of the target area and damage reduction to collateral structures, while facilitating the inclusion

of EnCx and PiCx, as recently reported in terms of Engel I outcomes for correlated structures

[JKS+17, WJC+19b]. D.Comber et al [CPC+17] proposed a patient-specific design of concentric

tube needles for a transforamenal approach to access the hippocampus. In this study, for each

of the 20 selected hippocampi, a concentric tube robot was designed and optimized to traverse a

trajectory from the foramen ovale to and through the hippocampus, from head to tail. Patient-
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specific needles were rapidly fabricated featuring a precurved of up to 32.4 mm−1. However, the

insertion path was selected to simply match the hippocampus centerline and ablate the AHC.

Consequently, to date, there are no studies proposing the computation of curvature-bounded

optimized paths for steerable needles in the context of LiTT, taking into account ablation

parameters and the optimization of chance with respect to seizure-free outcomes.

Here, we propose a computer assisted planning (CAP) algorithm able to maximize AHC, EnCx

and PiCx ablation whilst minimizing damage to the PHG and surrounding structures. Sur-

geons will be able to fine-tune LiTT related parameters during the preoperative phase and

interactively assess the generated path looking at the corresponding expected ablation of brain

structures, both in the standard surgical 2D view and in a 3D rendering. In this work, a

three-dimensional path planner for systems with nonholonomic constraints in complex environ-

ments is developed. A Bevel tip needle is considered to be a nonholonomic system, that is to

say, one with nonintegrable velocity constraints [RJWKC+06]. Our own design is that of the

EDEN2020 programmable bevel tip needle (PBN) [FKT+10c]. PBNs are able to steer along

three-dimensional paths without duty cycle spinning along the insertion axis (as in [MEFR07]),

and thus offer an ideal solution for the path planning technique described in this work. With

this study we aim to show the potential of steerable needles, such as the EDEN2020 PBN, to

improve the efficacy of LiTT procedures whilst improving safety. This is the first clinical appli-

cation of preoperative planning for steerable needle based LiTT. Among its novel features we

distinguish:(1) A GPU accelerated algorithm for patient-specific optimisation of curved LiTT

ablation volume; (2) Ablation of the piriform temporal portion (PiCx) which is included for

the first time in a LiTT CAP assessment; (3) Optimisation of the laser ablation diameter for

each ablation step to achieve more precise targeting of the lesion; (4) The introduction of a

new combined cost function for curved LiTT to rank the generated paths with respect to both

patient risk and path smoothness. Finally, we assess generated curved CAP LiTT trajectories

on five patients with hippocampal sclerosis (HS) and compare the results of target structure ab-

lation (Amygdala, Hippocampus, EnCx and PiCx), collateral damage (temporal white matter,

PHG and fusiform gyrus) and associated trajectory risk metrics with respect to a previously

published straight CAP LiTT studies method [VSL+19, LJL+17b].
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7.3 Curved Computer Assisted Planning

In this chapter we introduce a novel curved LiTT CAP which optimizes a path for mesial

temporal lobe epilepsy treatment. The principal mechanism behind LiTT is to selectively ablate

tissue of interest by heat produced from an optical fiber. The optical fiber is inserted into the

mesial temporal lobe through a small hole made in the skull and its location is confirmed under

MRI guidance. The tip of the laser fiber produces heat, resulting in an approximately spherical

ablation of the surrounding target tissue area. The fiber is then pulled back in small interment

steps and the procedure is repeated to cover the complete target volume. Our method aims to

minimize path length, overall curvature, ablation of PHG and surrounding critical structures

such as the LGN, fusiform gyrus (FuG) and temporal white matter (WM). On the other hand,

the algorithm maximizes the ablation of the hippocampal head and body, amygdala, EnCx

and the PiCx, which are structures correlated with the Engel 1 outcome in MTLE patients

[JKS+17, WJC+19b]. Trajectories that do not meet the constraint of a 120 mm maximum

length and ρ = 1
35
mm−1 maximum achievable needle curvature are rejected. The latter was

chosen on the basis of a previous study [CPG+16], which estimated the average curvature of the

AHC complex for steerable needle designs to have a radius of 49.015± 14.79 mm, from which

we derived a reasonable minimum radius of 35 mm. Furthermore, simulation and experimental

results on the EDEN2020 PBN [WSB19b, TDR+20] show that similar curvature can be reached

by increasing the needle stiffness, reducing its size and tuning the tip offset [TDR+20]. Paths

colliding with obstacles such as the atrium of the lateral ventricles, vasculature and sulci, or less

than 7.5 mm away from the brainstem and LGN, are also rejected, as in [LVS+19, VSL+19], to

prevent excess heat transmission.

The distance from critical structures such as the vasculature and sulci is optimized by means of

a risk score, first introduced in [VSL+18, LVS+19]. This metric, normalized to to be within the

[0,1] range, measures the overall path risk as the cumulative distance from critical structures

along the entire intracerebral trajectory. The minimum distance here is set to be 3 mm, as in

Li et al. [LVS+19], so that a path having a risk score equal to zero is constantly at more than

10 mm distance from obstacles, while a risk of 1 corresponds to a path being continuously at
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3 mm from obstacles.

The proposed CAP consists of a combination of two different planners. The first one addresses

the optimization of the portion of the path in correspondence of the target ablation area, which

we will refer to from now as the ”ablation path”. It aims to calculate a trajectory which

optimizes the overall ablation of the targeted area, while reducing collateral tissue damage.

The second is based on the previously presented adaptive fractal tree [LGCSR16] and adaptive

hèrmite fractal tree (AHFT) [PGR19b] path planner techniques and aims to find a curvature-

bounded obstacles-free path to connect the ablation path to a suitable entry point on the

patient skull; we will refer to this portion of the path as ”AFT-connection”.

7.3.1 Ablation Path

The first step involves the generation of a so-called ”ablation field map” (Figure 7.1). A GPU

accelerated algorithm evaluates each voxel of the obstacle map in parallel. On each thread,

given an homogeneous ablation diameter Da, a sphere centered on a specific voxel is considered.

The search space within the sphere is evaluated; the number of voxels belonging to obstacle

regions Nd are counted as unwanted tissue damage; the voxels belonging to the ablation target

area Na are counted as successful tissue ablation; while the voxels not belonging to the previous

categories are counted as additional tissue damage Nr. A normalized score Sv in the range [0,1],

computed as the weighted positive contribution of the percentage of damage and additional

tissue ablation plus the negative contribution of percentage ablated target area, is associated

to each voxel, thus generating an ablation field map (Equation 7.1). The weights associated

to damage Wd, target area ablation Wa and additional tissue ablation We can be tuned by

clinicians to capture the desired trade-off between target ablation and collateral damage.

Sv = −Wa ∗
Na

NT

+Wd ∗
Nd

NT

+We ∗
Nr

NT

(7.1)

Given the generated ablation field map, the ablation path can be optimized accordingly. Specif-

ically, the search map section delimited by the tectal plate (which generally identifies the tran-
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continuity on the overall trajectory. To do so, we implemented some of the techniques discussed

in [PGR19b], which optimize the choice of AFT parameters specifically for neurosurgery and

provide different methods to take into account the goal pose accuracy, which includes both

target position and target approach angle accuracy. A fractal tree is grown from an entry pose

perpendicular to the patient’s skull, then a ”reachability volume” with the shape of a horn

torus is placed in correspondence of the goal pose and directed towards the patient skull to

filter only those samples laying within. The horn torus radius corresponds to the maximum

needle achievable curvature and ensures that the AFT obstacle-free paths, laying within, meet

the desired target pose and curvature constraint. The full path obtained from the combination

of the ablation path and the AFT-connection is finally smoothed to guarantee continuity and

avoid potential misalignment. The generated paths are evaluated by mean of a normalized

score Sp (Equation 7.2), which corresponds to the weighted contribution of two terms: Sm and

Risk for all N path samples. The first corresponds to a cost function, introduced in [PGR19b],

that measures the path smoothness in terms of overall curvature (Ci), gradient of curvature

between consecutive points (Ci+1 - Ci) and length of the given trajectory (length). More linear

and shorter paths are favoured to reduce the extent of tissue damage and facilitate the needle

insertion. The second term is taken from the study by Li et al. [LVS+19] and captures the

risk of a given path in terms of overall distance from vasculature and sulci, with a minimum

distance Dist of 3 mm. Paths that are further away from vessels are favoured, since they reduce

the chance of a potential hemorrhage. Both terms are normalised within the [0,1] range and

their weight Ws and Wr can be tuned according to surgeon preference.

Sp = Ws ∗ Sm+Wr ∗Risk

Sm =
N−1
∑

i

|Ci+1 − Ci|

2 ∗maxcurv

+

nseg
∑

i

|Ci|

maxcurv

+
length

maxlength

Risk =















∑N

i

10−Dist(i)
N(10−3)

, if Dist(i) > 3

1−
∑N

i

3−Dist(i)
3∗N

, if Dist(i) ≤ 3

(7.2)
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7.3.2 Dataset

Following ethics approval provided by the National Research Ethics Service Committee, with

approval reference 12/LO/0377, five patients from the National Hospital for Neurology and

Neurosurgery epilepsy surgery program were included in this study. For each patient the fol-

lowing diagnostic images were provided: single T1 MPRAGE acquisition with a voxel size

of 1 mm isotropic (TE/TR/TI = 3.1/7.4/400 ms; flip angle 11; parallel imaging acceleration

factor 2), whole-brain parcellation and synthetic CT (pseudo-CT), images were generated us-

ing geodesic information flow [CMW+15] and a multi-atlas information propagation scheme

[BCM+13], respectively.

7.3.3 Simulations

Patient-specific 3D models of the ventricular system, sulci, brainstem, PHG, FuG, AHC, EnC,

WM and PicX were extracted from the whole brain parcellation. In particular, the brain

stem (including LGN) was expanded by 7.5 mm to avoid any ablation related damage while

ventricles, PHG, FuG, WM and sulci were merged with the vasculature segmentation to create

an obstacle map, which is then expanded with a tunable safety margin, set as 1.5 mm by default

(Figure 7.4). This takes into account both the needle occupancy and real-world uncertainties

and it is more or less conservative depending on the geometry of the flexible tool considered.

Currently used straight needles are about 0.8 mm in radius (i.e. Medtronic VisualaseTM), while

flexible catheters are generally larger, reaching up to 2.5 mm in diameter [FKT+10b, SMG+20].

Similarly, 3D models of the amygdala, hippocampus, EnC and temporal PiCx constitute the

ablation target area for the proposed curved CAP LiTT (Figure 7.3). The ablation path is

calculated for each patient’s anatomy, Wa and Wc are set to 1 and 0.5 respectively, while Wd

is progressively increased in steps of 0.5 starting from zero until the PHG damage rate reaches

a maximum of 16%. This threshold has been arbitrarily fixed looking at clinical accepted

values and optimized straight LiTT CAP results from the literature, which show average PHG

damage rate of 21% for manual insertions and 12% for straight CAP trajectories [VSL+19].

The ablation step is set to 7 mm by default and the best ranked Da is generated for each
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insertion step, as previously described. The overall % of damage and % ablated target area,

corresponding to the calculated ablation path, can be interactively assessed by neurosurgeons,

and both a 3D rendering and a 2D overlay aid them during this process. A pseudo-CT is used

to segment the patient’s skull through simple threshold-based segmentation. A uniform mesh

is then created from its surface, where the vertex coordinates represent possible entry points,

and the associated normals represent the corresponding start approach vectors. Between these,

a feasibility check with respect to the desired target pose is performed, as in [PGR19b]. This

ascertains whether the start and target combination is feasible either in terms of maximum

needle length or the maximum curvature constraint. The AFT-based planner runs over each

entry pose to look for a connection with the given target pose, which coincides with the first

pose of the ablation path. The resulting curvature-bounded and obstacle-free paths are merged

with the previously calculated ablation path and ranked by means of the Sp score (Equation

7.2). Finally, the first ranked path and the corresponding ablation and damage areas are offered

to clinicians for review (Figure 7.5).

7.4 Results

Following the implementation of a 5 mm to 15 mm variable laser ablation diameter, ablation

results for the generated curved CAP trajectories are compared to their straight counterparts,

generated with the machine learning based straight CAP described in [VSL+19]. A one sample

t-test is used to analyse the difference between the means while an F-test evaluates the difference

in the standard deviations. As illustrated in Figure 7.7 and Table 7.1: curved CAP results in a

significant improvement in terms of greater % ablated, on amygdala, hippocampus, EnC (t-test,

p ≤ 0.05) and on the overall target area (t-test, p ≤ 0.01); While a higher standard deviation

was registered for the amygdala (F-test, p ≤ 0.05) with respect to straight insertions [VSL+19].

Additionally, PiCx ablation is included for the first time during LiTT planning optimization,

resulting in a great rate of ablation of its temporal portion for both curved and straight CAP,

with no statistical difference.
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Figure 7.6: The best ranked path is shown to be collision-free within the intricate brain obstacle
map. The map is cropped axially (bottom image) at the level of the specified path to show its
sensitive structures avoidance.

equal performance. Also, the greater EnCx, amygdala and hippocampus ablation coverage

and the inclusion of the PiCx at no expense of further PHG damage or smaller hippocampus

ablation confirms the potential of steerable needles for LiTT. Furthermore, the ability of mov-

ing through a cluttered environment avoiding obstacles corresponds to smaller registered risk

metrics and thus a reduced risk for patients. It is also worth considering that steerable needles

are robotically driven systems that can be guided in real-time through soft-tissue to allow for

small adjustments with respect to the preoperative plan, if needed. Their intra-operative flex-

ibility could compensate for possible misalignments and tissue deformations, due to real-world

uncertainties, which are responsible for erroneous placement and the need for follow-on LiTT

surgery in up to 46% of patients [WPS+19]. Finally, performing the desired ablation with a

single curved insertion may reduce the overall error rate which, especially in the case of multi-
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Figure 7.7: Box-plots of curved CAP % ablation (green) versus straight CAP results (blue).
The statistical significance resulting from one sample t-test is shown using the p-value standard
convention: * for p ≤ 0.05, ** for p ≤0.01, *** p ≤0.001, **** p ≤0.0001.

Table 7.1: LiTT: Curved CAP vs Straight CAP

% Ablation Target Areas
Curved CAP Straight CAP t-test F-test

Hippocampus 79.6±6.4% 66.5±12.8% * ns
Amygdala 88.6±7.8% 76.6±2.4% * *
EnC 53.1±8.2% 26.1±14.5% * ns
PiCx 51.3±5.6% 41.8±5.3% ns ns
Total 72±6.2% 50.9±2.8% ** ns

% Ablation of Non Target Areas (collateral damage)
Curved CAP Straight CAP t-test F-test

PHG 12.7±1.9% 14.8±11.3% ns *
WM 6.6±3.7% 5.9 ±2.8 ns ns
FuG 1.9±2% 13.8±11.9 ns **
Total 9.1 ±5.3% 10.4±2.6 ns ns

Safety Metrics
Curved CAP Straight CAP t-test F-test

Length 111 ±7.5mm 100 ±9.1mm ns ns
Risk 0.4 ±0.1 1.3 ±0.1 **** ns
Sm 0.6 ±0.03 NA NA NA

Curved CAP versus straight CAP Performance. Statistically significant results from one sample
t-test and F-test are shown using the p-value standard convention: * for p ≤ 0.05, ** for p
≤0.01, *** for p ≤0.001, **** for p ≤0.0001, ns for not significant and NA for not comparable
available data.
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ple straight passes, equals the sum of all contributions. However, the generally larger diameter

associated to current flexible catheters (e.g.[FFK+12, WSB19a]) could potentially cause more

damage along the track, which means that further miniaturisation of this technology would be

desirable. The EDEN2020 setup has already been tested within a standard surgical workflow

during preclinical animal trials, demonstrating successful real-time performance and high target

accuracy [SMG+20]. Following the results of this study, a new version of the existing EDEN2020

PBN, with smaller footprint and higher steerability will be developed. The proposed curved

LiTT CAP algorithm will be included as an additional preoperative planner module within

the EDEN2020 front-end interface. Autonomous path following under surgeon’s supervision

can be performed through adaptive path-following control [RS18]. To track the needle inside

tissue, a system based on Fiber Bragg Gratings (FBGs) was being developed to track the nee-

dle tip [KDG+20b], as well as to sense the shape of each of the four needle segments, while

intraoperative Ultrasound is used to provide information about real-time tissue deformation

[GNH18]. The application of steerable needles in ablative therapies could also be beneficial in

situations that require multi-trajectory planning, such as corpus callosotomy for generalized

epilepsy. [VSV+].

7.6 Conclusion

This is the first fully automated CAP method for the generation of curved LiTT trajectories that

maximizes both the ablation of mesial temporal target areas (hippocampus, amygdala, EnC

and PiCx) and patient safety metrics, while minimizing collateral damage to nearby structures

(PHG, WM and FuG). We have also presented the optimization of a variable ablation diameter

field ranging between 5 and 15 mm diameter along the generated curved ablation trajectory and

demonstrated that LiTT procedures could benefit from steerable needle technologies by tailoring

the insertion path to the subject-specific anatomy. CAP methods provide an objective means

of planning LiTT procedures that may overcome the heterogeneity existing between different

surgeons and institutions. Future studies using larger datasets will be required to further assess

and validate the exciting potential of the proposed method. It will follow the integration of the
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proposed Curved CAP within a neurosurgical setup (i.e. EDEN2020 system) for in-vitro and

ex-vivo trials.



Chapter 8

Conclusion

8.1 Summary of Thesis Achievements

In the introduction, the aims of the thesis were set out. These were:

• To assist surgeons during the pre-operative phase of steerable needles procedures requiring

high accuracy on the final goal pose.

• To propose a computer-assisted planner for steerable needles that can generate safe and

feasible paths according to neurosurgeons preference.

• To propose an intra-operative solution which compensates for tissue deformations and

deviations from the pre-operative path.

• To demonstrate ex-vivo and in-vivo performance of pre-operative and intra-operative

steerable needles path planning methods

• To explore a novel application for steerable needles in neurosurgery and demonstrate

curved insertions potential over straights through a retrospective study.

In pursuit of the first aim, it was imperative to understand the potential of steerable needles

technology in the operating room. Steerable needles can be actively controlled during the in-

138
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sertion, compensating for target migration and needle deflection, thus providing high target

accuracy. Additionally, delicate tissue (e.g. nerves or vessels) can be circumvented, and deep

structures can be accessed, reducing related patients’ risk. Different surgical fields and applica-

tions might benefit from this new technology; however, planning for steerable needle insertions

might result counterintuitive to neurosurgeons due to their difficulty in exploiting steerable

needle dexterity. Therefore, clinicians’ desires need to be fully understood to promote the use

of steerable needles, with their enhanced manoeuvrability, within the bounds of related surgical

constraints. The thesis aims were pursued in part to aid the development of EDEN2020, an EU

project which aims to deploy the PBN as a neurosurgical device to treat brain cancer. For this

particular application, a radical new approach was needed to effectively address the current

limitations related to poor targeting of infusion points [SAP+10] and suboptimal delivery of

catheters [MPL+11] discussed in the introduction. For this purpose, the EDEN2020 project

(Chapter 6) aims to address the key research challenges which stand in the way of a commercial

robotically driven needle steering system.

With regard to planning and navigation, the following needs were identified:

• An intelligent planner which assist the surgeon to define the optimal catheter trajectory

to a lesion

• A real-time intra-operative catheter insertion platform for accurate, adaptive path track-

ing in the presence of tissue deformation and real-world uncertainties.

In Chapter 3 and Chapter 4 surgical and technical constraints were assessed and taken into

account for the development of computer-assisted pre-operative planning techniques for the

application of steerable needles for precise surgery.

A GPU-accelerated path planning algorithm called AFT [LGCSR16], featuring high computa-

tional efficiency and great ability in finding solutions in very complex environments, was applied

to the neurosurgical field. A sensitivity analysis of its parameters was performed, and optimal

tuning for the neurosurgical context was found. Then, an extension of the AFT algorithm



140 Chapter 8. Conclusion

called Ray-tracing AFT (3) was developed to aid clinicians during the patient-specific entry-

point selection process. This method, similarly to available skull mapping techniques, provides

guidance either during target pose selection or, once the target pose is already set, during entry

point selection. The novelty of combining ray-tracing with a path planning method provides

additional information on the feasibility of each plan, either in terms of target pose reachability

or with respect to the desired entry angle tolerance. Contrary to straight needle pre-operative

planning selection, neurosurgeons can benefit from interactively tuning the desired plan and

relative entry pose while enforcing a hard constraint on the desired final pose.

However, in complex neurological planning such as the one proposed in EDEN2020, both the

skull entry pose and the the drug delivery target pose might need to be defined a priori. Since

the original AFT and the proposed AFT Ray-traced algorithms are not able to deal with both

starting and final heading constraints, a new algorithm called AHFT (Chapter 4) was proposed

to meet this additional requirement. The AHFT offers a robust technique to either refine the

Ray-tracing AFT solution or provide new obstacle-free curvature-bounded paths connecting

two given 3D poses.

Its performance was assessed first in a brain simulated environment and then tested on a

commercial surgical interface, the NeuroInspire, both ex-vivo and in-vivo with positive feedback

from clinicians.

The thesis follows with the illustration of an online intra-operative path re-planning method

for accurate and adaptive path following in the presence of tissue deformation and real-world

uncertainties. The target pose and the selected catheter pathway, computed individually for

each patient during the pre-operative phase, are intra-operatively updated based on tissue

deformation. Neurosurgeons specified the need for a re-planning method that could adapt the

pre-operative plan to environmental changes during the insertion rather than recalculating an

entirely new trajectory. To this end, we equipped a commercial system (NeuroInspire) with

a state of the art, intelligent planning workstation and online re-planner, which fuse patient-

specific imaging and therapeutic constraints with catheter limits and a deformable substrate

to guide the surgeon along procedure-optimised trajectories.



8.1. Summary of Thesis Achievements 141

The intra-operative planner adapts the path from the current needle tip pose while meeting

the operational constraints on the desired target pose, obstacle avoidance, maximum achievable

curvature and pre-operative plan proximity. The path adapts online, compensating for ongoing

tissue deformation. The new path substitutes the reference one on the front-end visualisation

with maximised path stability: a measure of the difference induced by the re-planning with

respect to the reference plan. Preserving plan stability decreases the cognitive load on users

observing the planned activity, by ensuring coherence and consistency of behaviours, even in a

dynamic environment.

A proposed risk metric, measuring the feasibility of reaching the desired target from the current

pose, triggers the path re-planning when the risk is above a predefined threshold. Results from

multiple-user trials (Chapter 6, Section 6.2) suggest that the online updated path front-end

visualisation leads to a statistically significant reduction in insertion position error standard

deviation with respect to the pre-operative plan, thus indicating the influence of path re-

planning visualisation on improved path stability and insertion guidance.

These results underline the advantages of further assistance during steerable needle insertions,

especially in the case of a high maximum curvature constraint which prevents users from re-

acting fast enough, thus interfering with the demanding target accuracy requirement. On the

other hand, no statistically significant difference on the average final pose error was registered

in these user trials. This may be due to the visual interface, which was part of an ongoing

investigation, where its efficacy in guiding the users to the correct final pose was still under

refinement. For this reason, a ”replanning-as-control” framework, which naturally requires fast

re-planning computation, was considered for a second study. This method allows the system

to automatically steer the needle along the current path without using a joystick, but rather a

”start and stop” approach where the user inputs the command via a foot pedal. Furthermore,

this framework removes the need for a user to guide the needle insertion, thus avoiding this

form of external influence on the trial’s resulting accuracy. The combination of intra-operative

sensing with path re-planning in a closed-loop fashion provided good accuracy results during

in-vitro trials (Chapter 5), thus suggesting that the EDEN2020 PBN could benefit from au-

tomatic robotic guidance in delicate soft-tissue insertions and for maintaining a high level of
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performance even for non-expert users.

Few path planning methods are currently able to take into account surgical and kinematic

steerable needle constraints, especially if in the context of a very complex 3D environment such

as the human brain. Therefore, our proposed techniques provide novel pre and intra-operative

methods to aid both path planning selection and intra-operative path following accuracy in the

field of PBN insertions for neurosurgery.

In light of the previous results and the clinicians’ excitement for the EDEN2020 steerable

technology, we started investigating new potential applications for steerable needles in neu-

rosurgery. Among the existing procedures that could benefit from steering, laser interstitial

thermal therapy (LiTT) for mesial temporal lobe epilepsy was found to have great potential

due to the existing need for increased flexibility with respect to current straight LiTT tools

in ablating deep brain curved structures. In fact, LiTT patients are currently found to suffer

from visual field deficits, ranging from 5 to 29% of total cases [JKS+17, WOS+15], that arise

from accidental heat transfer to the optic radiations or the lateral geniculate nucleus (LGN)

during ablation. Additionally, current straight LiTT tools are associated with the erroneous

placement and the need for follow-on LiTT surgery in up to 46% of patients [WPS+19].

A great collaboration with John Hopkins University Hospital and University College Lon-

don (Department of Clinical and Experimental Epilepsy, Institute of Neurology) allowed us

to closely understand the limits of the current commercially available straight technology in

terms of low flexibility, usability and induced risk to the patient. Furthermore, surgical factors

which were found to correlate with seizure-free outcomes were taken into account to realise

an optimised curved LiTT computer-assisted planner (CAP). The generated curved CAP tra-

jectories were evaluated on an dataset of epilepsy patients in terms of target area ablation,

brain sensitive structures damage and overall risk with respect to previously published straight

results. Improved safety and ablation distribution for the considered patients was shown in the

simulations results in Chapter 7. This could also be beneficial to corpus callosum LiTT for

generalized epilepsy, which currently requires multi-trajectory plans [VSV+20].
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8.2 Limitations and Future Work

The main advantage of embedding one’s Phd within a large-scale integrate program, is be-

ing able to apply your research directly and immediately realise impact. In EDEN2020, the

PBN forms part of a neurosurgical system. It is being clinically evaluated through ongoing

animal trials. The requirement of an effective path pre-operative planning and intra-operative

re-planner method, taking into account precise surgical constraints, motivates this research:

improvements in planning usability, efficiency and safety transfer to needle targeting accuracy

and ultimately clinical outcomes. This thesis was able to contribute to the project in the areas

of planning, intra-operative guidance and simulation. The proposed path planning techniques

facilitate a surgeon to choose a preferential trajectory to follow during the insertion and control

the needle curvature under disturbances, whilst maintaining proximity to the reference path.

In particular, future works on the Ray-tracing AFT (Chapter 3) path planning method could

be focused on the integration of an augmented reality (AR) modality. Surgeons will be able

to check the feasibility of the proposed entry regions looking directly at the patient skull by

means of a tablet or an AR headset, in a more intuitive way with respect to standard surgical

2D visualisations and rendering. With regard to the AHFT planning technique (Chapter 4),

full parallelisation of the algorithm should be considered. In particular, the OGH extensions

departing from the AFT trajectories at different levels could be indipendently evaluated on the

GPU. The voxel-based obstacle collision and the curvature check would then be performed in

parallel in a similar way to the AFT method which covers the first part of the AHFT generated

path. This would drastically reduce computation time at no-cost for the AHFT performance,

thus facilitating surgeons interaction, similarly to the Ray-tracing AFT.

Moving to the intra-operative planning, while we demonstrated a successful planner, our physi-

cal experiments reveal that our needle dynamic model fails to perfectly model the needle motion,

thus leading to inaccuracies and bigger deviations from the desired path. In addition, further

studies under a real deforming environment will enable the full assessment of the proposed

method. Future works will have to concentrate on mitigating dynamic model inaccuracies and

assessing the algorithm’s performance with more ex-vivo and subsequently in-vivo animal trials
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planned with the EDEN2020 system. The in-vivo tests will feature a full setup including an in-

traoperative 3D ultrasound, hence the robustness of the replanner in compensating for realistic

brain deformations will be evaluated. Additionaly, we show in this thesis that by integrating

the needle mechanics-based model into the fast re-planning routine, it is possible to achieve

more accurate trajectory following compared to joystick guidance results. An interesting future

study would be to directly compare the automatic fast re-planning performance with respect

to manual surgeon guidance (by means of a joystick) in-vitro. This would remove the influence

of different testing conditions and soft-tissue interactions that influence the PBN’s steering

capabilities.

Regarding LiTT research, steerable needles seem to have great potential to improve on cur-

rent methods, though our study was limited by the small dataset used. A PBN prototype,

specifically designed for LiTT application is currently under development in our lab and not

yet available for testing. Further studies will apply the proposed curved CAP method to a

more extensive dataset. Comparison to straight CAP on a larger dataset will enable more

statistically significant results. Additionally, the ongoing curved LiTT CAP front-end will be

finalised together with a novel PBN design able to host a laser ablation fibre within. This could

potentially be the first integrated steerable needle system for LiTT procedures.

In summary, the existing trend of efficient parallel computational methods and augmented

reality in surgery should be taken into consideration to direct future improvements in the

context of computer-assisted surgical planning and navigation tools. Artificial intelligence (AI)

is also a growing field, however, current AI-based path planning solutions are still far from

achieving optimal results in complex three-dimensional environments. Given the popularity of

AI solutions and the increasing availability of data, future research should consider neurosurgical

planning as a research topic with high potential.

Finally, future research in the field should consider that conducting research as part of a devel-

opment project also has its challenges. The ability to manage an appropriate balance between

development and research work is crucial in conducting research that is both thorough and

impactful. On the other hand, the close contact with clinicians and the possibility of receiving
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their feedback in the field is extremely stimulating and rewarding. As the EDEN2020 project

matures further, the opportunities for impact will grow along with the challenges of isolating

research from the demands of development. Future researchers should bear this keenly in mind,

and also ensure that the research engages with the medical robotics community-at-large.
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Pérez-Garćıa, Lucas G.S. França, Andrew L. Ko, Chengyuan Wu, Joshua P.

Aronson, Brett E. Youngerman, Ashwini Sharan, Guy McKhann, Sebastien

Ourselin, and John S. Duncan. Multicenter validation of automated trajecto-

ries for selective laser amygdalohippocampectomy. Epilepsia, 60(9):1949–1959,

2019.

[VSMM] Laurence Vancamberg, Anis Sahbani, Serge Muller, and Guillaume Morel.

Needle Path Planning for Digital Breast Tomosynthesis Biopsy.

[VSV+] Vejay N Vakharia, Rachel E Sparks, Sjoerd B Vos, Yarema Bezchlibnyk,

Ashesh D Mehta, Jon T Willie, Chengyuan Wu, Ashwini Sharan, Sebastien

Ourselin, and John S Duncan. Computer-assisted planning for minimally in-

vasive anterior two-thirds laser corpus callosotomy: A feasibility study with

probabilistic tractography validation. NeuroImage. Clinical, page 102174.

[VSV+20] Vejay N. Vakharia, Rachel E. Sparks, Sjoerd B. Vos, Yarema Bezchlibnyk,

Ashesh D. Mehta, Jon T. Willie, Chengyuan Wu, Ashwini Sharan, Sebastien

Ourselin, and John S. Duncan. Computer-assisted planning for minimally

invasive anterior two-thirds laser corpus callosotomy: A feasibility study with

probabilistic tractography validation: Automated laser callosotomy trajectory

planning. NeuroImage: Clinical, 25(October 2019):102174, 2020.



BIBLIOGRAPHY 165

[WA14] Wen Sun and Ron Alterovitz. Motion planning under uncertainty for medical

needle steering using optimization in belief space. In 2014 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 1775–1781. IEEE,

sep 2014.

[WGJD08] E. P. Westebring – van der Putten, R. H. M. Goossens, J. J. Jakimowicz, and

J. Dankelman. Haptics in minimally invasive surgery – a review. Minimally

Invasive Therapy & Allied Technologies, 17(1):3–16, jan 2008.

[WJ10] R. J. Webster and B. a. Jones. Design and Kinematic Modeling of Con-

stant Curvature Continuum Robots: A Review. The International Journal of

Robotics Research, 29(13):1661–1683, 2010.

[WJC+19a] Chengyuan Wu, Walter J. Jermakowicz, Srijata Chakravorti, Iahn Cajigas,

Ashwini D. Sharan, Jonathan R. Jagid, Caio M. Matias, Michael R. Sper-

ling, Robert Buckley, Andrew Ko, Jeffrey G. Ojemann, John W. Miller,

Brett Youngerman, Sameer A. Sheth, Guy M. McKhann, Adrian W. Laxton,

Daniel E. Couture, Gautam S. Popli, Alexander Smith, Ashesh D. Mehta,

Allen L. Ho, Casey H. Halpern, Dario J. Englot, Joseph S. Neimat, Peter E.

Konrad, Elliot Neal, Fernando L. Vale, Kathryn L. Holloway, Ellen L. Air,

Jason Schwalb, Benoit M. Dawant, and Pierre-Francois D’Haese. Effects of

surgical targeting in laser interstitial thermal therapy for mesial temporal lobe

epilepsy: A multicenter study of 234 patients. Epilepsia, 60(6):epi.15565, may

2019.

[WJC+19b] Chengyuan Wu, Walter J Jermakowicz, Srijata Chakravorti, Iahn Cajigas,

Ashwini D Sharan, Jonathan R Jagid, Caio M Matias, Michael R Sper-

ling, Robert Buckley, Andrew Ko, Jeffrey G Ojemann, John W Miller, Brett

Youngerman, Sameer A Sheth, Guy M McKhann, Adrian W Laxton, Daniel E

Couture, Gautam S Popli, Alexander Smith, Ashesh D Mehta, Allen L Ho,

Casey H Halpern, Dario J Englot, Joseph S Neimat, Peter E Konrad, Elliot

Neal, Fernando L Vale, Kathryn L Holloway, Ellen L Air, Jason Schwalb,



166 BIBLIOGRAPHY

Benoit M Dawant, and Pierre-Francois D’Haese. Effects of surgical target-

ing in laser interstitial thermal therapy for mesial temporal lobe epilepsy: A

multicenter study of 234 patients. Epilepsia, 60(6):1171–1183, 2019.

[WJLS17] Xiaoliang Wang, Peng Jiang, Deshi Li, and Tao Sun. Curvature Continuous

and Bounded Path Planning for Fixed-Wing UAVs. Sensors, 17(9):2155, sep

2017.

[WOS+15] Hena Waseem, Katie E Osborn, Mike R Schoenberg, Valerie Kelley, Ali Bo-

zorg, Daniel Cabello, Selim R Benbadis, and Fernando L Vale. Laser ablation

therapy: An alternative treatment for medically resistant mesial temporal lobe

epilepsy after age 50. Epilepsy & behavior : E&B, 51:152–7, oct 2015.

[WPS+19] Elysa Widjaja, Tina Papastavros, Beate Sander, Carter Snead, and Petros

Pechlivanoglou. Early economic evaluation of MRI-guided laser interstitial

thermal therapy (MRgLITT) and epilepsy surgery for mesial temporal lobe

epilepsy. PLoS ONE, 14(11), 2019.

[WSB18] Thomas Watts, Riccardo Secoli, and Ferdinando Rodriguez Baena. Needle

Steerability Measures: Definition and Application for Optimized Steering of

the Programmable Bevel-Tip Needle. In 2018 IEEE International Conference

on Robotics and Biomimetics, ROBIO 2018, pages 59–64. IEEE, dec 2018.

[WSB19a] Thomas Watts, Riccardo Secoli, and Ferdinando Rodriguez y Baena. A

Mechanics-Based Model for 3-D Steering of Programmable Bevel-Tip Needles.

IEEE Transactions on Robotics, 35(2):371–386, apr 2019.

[WSB19b] Thomas Watts, Riccardo Secoli, and Ferdinando Rodriguez y Baena. A

Mechanics-Based Model for 3-D Steering of Programmable Bevel-Tip Needles.

IEEE Transactions on Robotics, 35(2):371–386, apr 2019.

[WSyB18] T. Watts, R. Secoli, and Ferdinando. Rodriguez y Baena. Needle steer-

ability measures: Definition and application for optimized steering of the



BIBLIOGRAPHY 167

programmable bevel-tip needle. In 2018 IEEE International Conference on

Robotics and Biomimetics (ROBIO), pages 59–64, 2018.

[YC04] Jun Hai Yong and Fuhua Cheng. Geometric Hermite curves with minimum

strain energy. Computer Aided Geometric Design, 21(3):281–301, 2004.

[YK16] Byunghyun Yoo and Jinwhan Kim. Path optimization for marine vehicles in

ocean currents using reinforcement learning. JOURNAL OF MARINE SCI-

ENCE AND TECHNOLOGY, 21(2):334–343, jun 2016.

[YMY+14] Kwangjin Yang, Sangwoo Moon, Seunghoon Yoo, Jaehyeon Kang, Nakju Lett

Doh, Hong Bong Kim, and Sanghyun Joo. Spline-Based RRT Path Planner

for Non-Holonomic Robots. Journal of Intelligent & Robotic Systems, 73(1-

4):763–782, jan 2014.

[YNN+18] Atsushi Yamada, Shigeyuki Naka, Norihisa Nitta, Shigehiro Morikawa, and

Tohru Tani. A Loop-Shaped Flexible Mechanism for Robotic Needle Steering.

IEEE Robotics and Automation Letters, 3(2):648–655, apr 2018.

[YQS+16] Liang Yang, Juntong Qi, Dalei Song, Jizhong Xiao, Jianda Han, and Yong Xia.

Survey of Robot 3D Path Planning Algorithms. Journal of Control Science

and Engineering, 2016:1–22, 2016.

[ZDB19] Wenbo Zhan, Daniele Dini, and Ferdinando Rodriguez y Baena. Transport of

Chemotherapeutic Agents in Anisotropic Tissue under Convection Enhanced

Delivery for Localised Treatment, 2019.

[ZSP15] Zhijie Zhu, Edward Schmerling, and Marco Pavone. A convex optimization

approach to smooth trajectories for motion planning with car-like robots. Pro-

ceedings of the IEEE Conference on Decision and Control, 54rd IEEE:835–842,

jun 2015.

[ZW18a] Wenbo Zhan and Chi-Hwa Wang. Convection enhanced delivery of chemother-

apeutic drugs into brain tumour. Journal of Controlled Release, 271:74–87, feb

2018.



168 BIBLIOGRAPHY

[ZW18b] Wenbo Zhan and Chi-Hwa Wang. Convection enhanced delivery of chemother-

apeutic drugs into brain tumour. Journal of Controlled Release, 271:74–87, feb

2018.

[ZWZ+] Yan-Jiang Zhao, Wen-Qiang Wu, Yong-De Zhang, Rui-Xue Wang, Jing-Chun

Peng, and Yan Yu. 3D Dynamic Motion Planning for Robot-assisted Cannula

Flexible Needle Insertion into Soft Tissue. International Journal of Advanced

Robotic Systems.


