6,466 research outputs found

    Switching-Cell Arrays - An Alternative Design Approach in Power Conversion

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe conventional design of voltage-source power converters is based on a two-level half-bridge configuration and the selection of power devices designed to meet the full application specifications (voltage, current, etc.). This leads to the need to design and optimize a large number of different devices and their ancillary circuitry and prevents taking advantage from scale economies. This paper proposes a paradigm shift in the design of power converters through the use of a novel configurable device consisting on a matrix arrangement of highly-optimized switching cells at a single voltage class. Each switching cell consists of a controlled switch with antiparallel diode together with a self-powered gate driver. By properly interconnecting the switching cells, the switching cell array (SCA) can be configured as a multilevel active-clamped leg with different number of levels. Thus, the SCA presents adjustable voltage and current ratings, according to the selected configuration. For maximum compactness, the SCA can be conceived to be only configurable by the device manufacturer upon the customer needs. For minimum cost, it can also be conceived to be configurable by the customer, leading to field-configurable SCAs. Experimental results of a 6x3 field-configurable SCA are provided to illustrate and validate this design approach.Peer ReviewedPostprint (author's final draft

    Bi-directional Dcm Dc-to-dc Converter For Hybrid Electric Vehicles

    Get PDF
    With the recent revival of the hybrid vehicle much advancement in power management has been made. The most popular hybrid vehicle, the hybrid electric vehicle, has many topologies developed to realize this hybrid vehicle. From these topologies, as sub set was created to define a particular group of vehicles where the converter discussed in this thesis has the most advantage. This sub set is defined by two electric sources of power coupled together at a common bus. This set up presents many unique operating conditions which can be handled seamlessly by the DC-to-DC converter when designed properly. The DC-to-DC converter discussed in this thesis is operated in Discontinuous Conduction Mode (DCM) of operation because of its unique advantages over the Continuous Conduction Mode (CCM) operated converter. The most relevant being the reduction of size of the magnetic components such as inductor, capacitor and transformers. However, the DC-to-DC converter operated in DCM does not have the inherent capability of bi-directional power flow. This problem can be overcome with a unique digital control technique developed here. The control is developed in a hierarchical fashion to separate the functions required for this sub set of hybrid electric vehicle topologies. This layered approach for the controller allows for the seamless integration of this converter into the vehicle. The first and lowest level of control includes a group of voltage and controller regulators. The average and small signal model of these controllers were developed here to be stable and have a relatively fast recovery time to handle the transient dynamics of the vehicle system. The second level of control commands and organizes the regulators from the first level of control to perform high level task that is more specific to the operation of the vehicle. This level of control is divided into three modes called hybrid boost, hybrid buck and electric vehicle mode. These modes are developed to handle the specific operating conditions found when the vehicle is operated in the specific mode. The third level of control is used to command the second level of control and is left opened via a communication area network (CAN) bus controller. This level of control is intended to come from the vehicle s system controller. Because the DC-to-DC converter is operated in DCM, this introduces added voltage ripple on the output voltage as well as higher current ripple demand from the input voltage. Since this is generally undesirable, the converter is split into three phases and properly interleaved. The interleaving operation is used to counteract the effects of the added voltage and current ripple. Finally, a level of protection is added to protect the converter and surrounding components from harm. All protection is designed and implemented digitally in DSP

    Isolated and Bidirectional DC-DC Converter for Electric Vehicles

    Get PDF
    O estado da arte iniciou com a análise na literatura de topologias de conversores DC-DC. Técnicas de modulação são estudadas com vista a melhorar a eficiência de conversão, realçando as vantagens e limitações inerentes das mesmas. Após a análise da literatura, o foco projeto passou a ser a topologias de dupla ponte com dispositivos ativos e com isolamento galvânico intermédio entre as duas pontes (conhecido em inglês por dual active bridge). Algumas técnicas de modulação que permitem o funcionamento do conversor são analisadas no documento e suportadas com resultados obtidos em ambiente de simulação. O dimensionamento do transformador de potência é realizado assim como a descrição dos passos. É relizado uma análise de mercado de dispositivos de comutação com a tecnologia "Silicon Carbide" e são apresentados estimativas de perdas e eficiência de operação na utilização de transistores com a techonoloa SiC no conversor analisado. Os resultados são obtidos com recurso a simulações computacionais que através de modelos de aproximação permitem aproximar o conversor a uma situação mais proxima da real. Em termos de implementação, é esperado a implementação um circuito de comando para dois MOSFETS com tecnologia SiC com a configuração em meia ponte ligada a uma carga

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Multiple-output DC–DC converters: applications and solutions

    Get PDF
    Multiple-output DC–DC converters are essential in a multitude of applications where different DC output voltages are required. The interest and importance of this type of multiport configuration is also reflected in that many electronics manufacturers currently develop integrated solutions. Traditionally, the different output voltages required are obtained by means of a transformer with several windings, which are in addition to providing electrical isolation. However, the current trend in the development of multiple-output DC–DC converters follows general aspects, such as low losses, high-power density, and high efficiency, as well as the development of new architectures and control strategies. Certainly, simple structures with a reduced number of components and power switches will be one of the new trends, especially to reduce the size. In this sense, the incorporation of devices with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and Silicon Carbide (SiC), will establish future trends, advantages, and disadvantages in the development and applications of multiple-output DC–DC converters. In this paper, we present a review of the most important topics related to multiple-output DC–DC converters based on their main topologies and configurations, applications, solutions, and trends. A wide variety of configurations and topologies of multiple-output DC–DC converters are shown (more than 30), isolated and non-isolated, single and multiple switches, and based on soft and hard switching techniques, which are used in many different applications and solutions.info:eu-repo/semantics/publishedVersio

    Fault Tolerant DC–DC Converters at Homes and Offices

    Get PDF
    The emergence of direct current (DC) microgrids within the context of residential buildings and offices brings in a whole new paradigm in energy distribution. As a result, a set of technical challenges arise, concerning the adoption of efficient, cost-effective, and reliable DC-compatible power conditioning solutions, suitable to interface DC microgrids and energy consuming elements. This thesis encompasses the development of DC–DC power conversion solutions, featuring improved availability and efficiency, suitable to meet the requirements of a comprehensive set of end-uses commonly found in homes and offices. Based on the energy consumption profiles and requirements of the typical elements found at homes and offices, three distinctive groups are established: light-emitting diode (LED) lighting, electric vehicle (EV) charging, and general appliances. For each group, a careful evaluation of the criteria to fulfil is performed, based on which at least one DC–DC power converter is selected and investigated. Totally, a set of five DC–DC converter topologies are addressed in this work, being specific aspects related to fault diagnosis and/or fault tolerance analysed with particular detail in two of them. Firstly, mathematical models are described for LED devices and EV batteries, for the development of a theoretical analysis of the systems’ operation through computational simulations. Based on a compilation of requirements to account for in each end-use (LED lighting, EV charging, and general appliances), brief design considerations are drawn for each converter topology, regarding their architecture and control strategy. Aiming a detailed understanding of the two DC–DC power conversion systems subjected to thorough evaluation in this work – interleaved boost converter and fault-tolerant single-inductor multiple-output (SIMO) converter – under both normal and abnormal conditions, the operation of the systems is evaluated in the presence of open-circuit (OC) faults. Parameters of interest are monitored and evaluated to understand how the failures impact the operation of the entire system. At this stage, valuable information is obtained for the development of fault diagnosis strategies. Taking profit of the data collected in the analysis, a novel fault diagnostic strategy is presented, targeting interleaved DC–DC boost converters for general appliances. Ease of implementation, fast diagnostic and robustness against false alarms distinguish the proposed approach over the state-of-the-art. Its effectiveness is confirmed through a set of operation scenarios, implemented in both simulation environment and experimental context. Finally, an extensive set of reconfiguration strategies is presented and evaluated, aiming to grant fault tolerance capability to the multiple DC–DC converter topologies under analysis. A hybrid reconfiguration approach is developed for the interleaved boost converter. It is demonstrated that the combination of reconfiguration strategies promotes remarkable improvements on the post-fault operation of the converter. In addition, an alternative SIMO converter architecture, featuring inherent tolerance against OC faults, is presented and described. To exploit the OC fault tolerance capability of the fault-tolerant SIMO converter, a converter topology targeted at residential LED lighting systems, two alternative reconfiguration strategies are presented and evaluated in detail. Results obtained from computational simulations and experimental tests confirm the effectiveness of the approaches. To further improve the fault-tolerant SIMO converter with regards to its robustness against sensor faults, while simplifying its hardware architecture, a sensorless current control strategy is presented. The proposed control strategy is evaluated resorting to computational simulations.O surgimento de micro-redes em corrente contínua (CC) em edifícios residenciais e de escritórios estabelece um novo paradigma no domínio da distribuição de energia. Como consequência disso, surge uma panóplia de desafios técnicos ligados à adopção de soluções de conversão de energia, compatíveis com CC, que demonstrem ser eficientes, rentáveis e fiáveis, capazes de estabelecer a interface entre micro-redes em CC e as cargas alimentadas por esse sistema de energia. Até aos dias de hoje, os conversores CC–CC têm vindo a ser maioritariamente utilizados em aplicações de nicho, que geralmente envolvem níveis de potência reduzidos. Porém, as perspectivas futuras apontam para a adopção, em larga escala, destas tecnologias de conversão de energia, também em equipamentos eléctricos residenciais e de escritórios. Tal como qualquer outra tecnologia de conversão electrónica de potência, os conversores CC–CC podem ver o seu funcionamento afectado por falhas que degradam o seu bom funcionamento, sendo que essas falhas acabam por afectar não apenas os conversores em si, mas também as cargas que alimentam, limitando assim o tempo de vida útil do conjunto conversor + carga. Desta forma, é fulcral localizar a origem da falha, para que possam ser adoptadas acções correctivas, capazes de limitar as consequências nefastas associadas à falha. Para responder a este desafio, esta tese contempla o desenvolvimento de soluções de conversão de energia CC–CC altamente eficientes e fiáveis, capazes de responder a requisitos impostos por um conjunto alargado de equipamentos frequentemente encontrados em habitações e escritórios. Com base nos perfis de consumo de energia eléctrica e nos requisitos impostos pelas cargas tipicamente utilizadas em habitações e escritórios, são estabelecidos três grupos distintos: iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral. Para cada grupo, é efectuada uma avaliação cuidadosa dos critérios a respeitar, sendo com base nesses critérios que será escolhida e investigada pelo menos uma topologia de conversor CC–CC. No total, são abordadas cinco topologias de conversores CC–CC distintas, sendo que os aspectos ligados ao diagnóstico de avarias e/ou tolerância a falhas são analisados com particular detalhe em duas dessas topologias. Inicialmente, são estabelecidos modelos matemáticos descritivos do comportamento das principais cargas consideradas no estudo – díodos emissores de luz e baterias de VEs – visando a análise teórica do funcionamento dos sistemas em estudo, suportada por simulações computacionais. Com base numa compilação de requisitos a ter em conta em cada aplicação – iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral – são estabelecidas considerações ligadas à escolha de cada topologia de conversor não isolado, no que respeita à sua arquitectura e estratégia de controlo. Visando o conhecimento aprofundado das duas topologias de conversor CC–CC alvo de particular enfoque neste trabalho – conversor entrelaçado elevador e conversor de entrada única e múltiplas saídas, tolerante a falhas – quer em funcionamento normal, quer em funcionamento em modo de falha, é avaliado o funcionamento de ambas as topologias na presença de falhas de circuito aberto nos semicondutores activos. Para o efeito, são monitorizados e analisados parâmetros úteis à percepção da forma como os modos de falha avaliados neste trabalho impactam o funcionamento de todo o sistema. Nesta fase, é obtida informação fundamental ao desenvolvimento de estratégias de diagnóstico de avarias, particularmente indicadas para avarias de circuito aberto nos semicondutores activos dos conversores em estudo. Com base na informação recolhida anteriormente, é apresentada uma nova estratégia de diagnóstico de avarias direccionada a conversores CC–CC elevadores entrelaçados utilizados em aparelhos eléctricos, em geral. Facilidade de implementação, rapidez e robustez contra falsos positivos são algumas das características que distinguem a estratégia proposta em relação ao estado da arte. A sua efectividade é confirmada com recurso a uma multiplicidade de cenários de funcionamento, implementados quer em ambiente de simulação, quer em contexto experimental. Por fim, é apresentada e avaliada uma gama alargada de estratégias de reconfiguração, que visam assegurar a tolerância a falhas das diversas topologias de conversores CC–CC em estudo. É desenvolvida uma estratégia de reconfiguração híbrida, direccionada ao conversor entrelaçado elevador, que combina múltiplas medidas de reconfiguração mais simples num único procedimento. Demonstra-se que a combinação de múltiplas estratégias de reconfiguração introduz melhorias substanciais no funcionamento do conversor ao longo do período pós-falha, ao mesmo tempo que assegura a manutenção da qualidade da energia à entrada e saída do conversor reconfigurado. Noutra frente, é apresentada e descrita uma arquitectura alternativa do conversor de entrada única e múltiplas saídas, com tolerância a falhas de circuito aberto. Através da configuração proposta, é possível manter o fornecimento de energia eléctrica a todas as saídas do conversor. Para tirar máximo proveito da tolerância a falhas do conversor de entrada única e múltiplas saídas, uma topologia de conversor indicada para sistemas residenciais de iluminação baseados em díodos emissores de luz, são apresentadas e avaliadas duas estratégias de reconfiguração do conversor, exclusivamente baseadas na adaptação do controlo aplicado ao conversor. Os resultados de simulação computacional e os resultados experimentais obtidos confirmam a efectividade das abordagens adoptadas, através da melhoria da qualidade da energia eléctrica fornecida às diversas saídas do conversor. São assim asseguradas condições essenciais ao funcionamento ininterrupto e estável dos sistemas de iluminação, já que a qualidade da energia eléctrica fornecida aos sistemas de iluminação tem impacto directo na qualidade da luz produzida. Por fim, e para aprimorar o conversor de entrada única e múltiplas saídas tolerante a falhas, no que respeita à sua robustez contra falhas em sensores, é apresentada uma estratégia de controlo de corrente que evita o recurso excessivo a sensores e, ao mesmo tempo, simplifica a estrutura de controlo do conversor. A estratégia apresentada é avaliada através de simulações computacionais. A abordagem apresentada assume vantagens em múltiplos domínios, sendo de destacar vantagens como a melhoria da fiabilidade de todo o sistema de iluminação (conversor + carga), os ganhos atingidos ao nível do rendimento, a redução do custo de implementação da solução, ou a simplificação da estrutura de controlo.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under grant number SFRH/BD/131002/2017, co-funded by the Ministry of Science, Technology and Higher Education (MCTES), by the European Social Fund (FSE) through the ‘Programa Operacional Regional Centro’ (POR-Centro), and by the Human Capital Operational Programme (POCH)

    Stability analysis and speed control of brushless DC motor based on self-ameliorate soft switching control methods

    Get PDF
    In recent years, electric vehicles are the large-scale spread of the transportation field has led to the emergence of brushless direct current (DC) motors (BLDCM), which are mostly utilized in electrical vehicle systems. The speed control of a BLDCM is a subsystem, consisting of torque, flux hysteresis comparators, and appropriate switching logic of an inverter. Due to the sudden load torque variation and improper switching pulse, the speed of the BLDCM is not maintained properly. In recent research, the BLDC current control method gives a better way to control the speed of the motor. Also, the rotor position information should be the need for feedback control of the power electronic converters to varying the appropriate pulse width modulation (PWM) of the inverter. The proposed optimization work controls the switching device to manage the power supply BLDCM. In this proposed self-ameliorate soft switching (SASS) system is a simple and effective way for BLDC motor current control technology, a proposed control strategy is intended to stabilize the speed of the BLDCM at different load torque conditions. The proposed SASS system method is analyzing hall-based sensor values continuously. The suggested model is simulated using the MATLAB Simulink tool, and the results reveal that the maximum steady-state error value achieved is 4.2, as well as a speedy recovery of the BLDCM's speed

    Very High Frequency Galvanic Isolated Offline Power Supply

    Get PDF

    A Novel Three-Level Isolated AC-DC PFC Power Converter Topology with Reduced Number of Switches

    Get PDF
    The three-level isolated AC-DC power factor corrected (PFC) converter provides safe and more efficient power conversion. In comparison with two-level, three-level PFC converter has the advantages of low total harmonic distortion, low device voltage rating, low di/dt, better output performance, high power factor, and low switching losses at higher switching frequencies. The high frequency transformer (HFT) grants galvanic isolation, steps up or down secondary voltage, and limits damage in case of a fault current. The existing three-level converter based on solid-state transformer (SST) topologies convert ac power from the electrical grid to a dc load while maintaining at least the minimum requirements set by the international standards (i.e., high power factor and low total harmonic distortion). The SST topologies with the capability of controlling intermediate dc-bus and output voltage simultaneously require two full bridges at the primary and secondary side of the HFT. As the power level increases, the number of cascaded bridges increases accordingly, and the price associated with these semiconductor devices becomes highly expensive. As result, the demand of converting high power level led to emphasis on high performance and cost-effective power conversion topology. The aim of this dissertation is to develop a new low-cost and high-performance three-level isolated AC-DC (PFC) converter topology. The proposed topology replaces the conventional three-level inverter in the secondary side of the HFT by only two switches and four diodes while still maintaining the basic functionality of a three-level converter (i.e., regulating the output voltage, controlling the dc-bus voltage to be within desired limits). The advantages of this new topology are: (1) low conduction losses; (2) low-cost; (3) no need to consider the issue of the power backflow; (4) zero-voltage switching (ZVS) and zero-current switching (ZCS) at turn ON are inherently guaranteed without any extra control effort. Two isolated three-level AC-DC power converter topologies are developed and investigated through the dissertation. First topology is based on the neutral point clamping (NPC) converter, and the second topology composed of the T-type converter. Two scale-down prototypes rated at 900-W and 1kW, 200 V are built to test the overall performance of the proposed topologies. The first and second topologies exhibit 94.5 % and 95.8 % efficiency scaled at a nominal power, respectively. The secondary bridge (novel circuit) in both topologies, which consists of two switches and four diodes, has 99.34 % practical efficiency
    • …
    corecore