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Abstract: Multiple-output DC–DC converters are essential in a multitude of applications where
different DC output voltages are required. The interest and importance of this type of multiport
configuration is also reflected in that many electronics manufacturers currently develop integrated
solutions. Traditionally, the different output voltages required are obtained by means of a transformer
with several windings, which are in addition to providing electrical isolation. However, the current
trend in the development of multiple-output DC–DC converters follows general aspects, such as
low losses, high-power density, and high efficiency, as well as the development of new architectures
and control strategies. Certainly, simple structures with a reduced number of components and
power switches will be one of the new trends, especially to reduce the size. In this sense, the
incorporation of devices with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and
Silicon Carbide (SiC), will establish future trends, advantages, and disadvantages in the development
and applications of multiple-output DC–DC converters. In this paper, we present a review of the most
important topics related to multiple-output DC–DC converters based on their main topologies and
configurations, applications, solutions, and trends. A wide variety of configurations and topologies
of multiple-output DC–DC converters are shown (more than 30), isolated and non-isolated, single
and multiple switches, and based on soft and hard switching techniques, which are used in many
different applications and solutions.

Keywords: DC–DC converters; multiple outputs; applications; solutions

1. Introduction

Multiple-output DC–DC converters are fundamental in electric power supply, distri-
bution, management, and power delivery systems. They are essential in applications such
as: Intermediate Bus Architecture (IBA), Distributed Power Architectures (DPA), Dynamic
Bus Architecture (DBA), Central Control Architecture (CCA), Datacom and Telecom, Light-
Emitting Diodes (LEDs), consumer electronics products, battery chargers, or even Electric
Vehicles (EV). These converters are used for USB power delivery, I/O, CPUs, FPGAs, ASICs,
and other low-voltage devices, applications where controllability, efficiency, reliability, and
miniaturization are critical.

Undoubtedly, the development of power switch semiconductor technologies has also
contributed significantly to more efficient switching and has facilitated a higher frequency
operation. This has allowed the development of applications where multiple-output
DC–DC converters are used, considering mainly three aspects: high-power density, high
efficiency, and small size. The increase in the rating of power devices, such as Insulated
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Gate Bipolar Transistors (IGBT) and Metal-Oxide-Semiconductor Field-Effect Transistor
(MOSFET) technologies, has allowed innumerable applications to be addressed in the
last 40 years. They have helped to improve energy efficiency and CO2 reductions, in
commercial, residential, transportation systems, industrial, military, aerospace, computer
systems, lighting, and vehicle applications. MOSFET and IGBT, either as power modules or
within discrete devices, have been the preferred technologies for high and medium power
applications. IGBTs are used in applications of high-current, with voltages over 1 kV and
up to 10 kVA, while MOSFETs are used in applications below 1 kV, but they are the most
suitable in applications of high switching frequency, between 10–100 kHz.

Although silicon-based technologies have improved enormously in the recent years,
and still continue to improve, this development will be restricted, ultimately, by silicon
technology limitations [1]. Among the semiconductor materials with the greatest future
potential are those with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and
Silicon Carbide (SiC). The physical properties of WBG materials make them especially
suitable for high switching frequency and high-power applications, also giving them high
resistance to high temperatures, lower switching losses, with low reverse recovery and low
on-resistance, a better relationship between breakdown voltage (VBD) and on-resistance
(RDS(ON)), lower cooling requirements, and with low parasitic inductance. Applications
where broadband technology is experiencing a considerable growth are: in the lighting
sector (using GaN based LEDs); in the generation (transmission and distribution of electrical
energy, where SiC devices present significant improvements in energy efficiency of the
electrical network); and hybrid and fully electric vehicles (where GaN and SiC-based
devices are essential elements, both in the propulsion and energy distribution systems of
the vehicle).

The interest in DC–DC converters with multiple outputs is reflected in the sub-cited
analysis and numerous publications, both from the academic, research, and economic/
business world [2–11], as well as from industry and manufacturer publications [12–17].
The most recent forecasts estimate that the market for DC–DC converters is expected to
increase at a CAGR (Compound Annual Growth Rate) of 12.1% in the next five years, from
$9.9 billion in 2021 to $17.6 billion in 2026, and that the market for industrial power supply
is expected to increase at a CAGR of 6.9% in the same period, from $7.0 billion in 2021 to
$9.7 billion in 2026, with multiple-output DC–DC converters being one of the segments with
the highest growth rate during the same period [18–30]. This growth is due to very different
sectors and applications, such as storage and servers, battery management, healthcare and
medical equipment, railway traction, beverage and food, information technology and
telecom, transportation, consumer electronics, energy and utilities, defense and aerospace,
machine tools, and security systems. Mobile Phone Industry and Internet of Things (IoT)
are applications where DC–DC converters help to extend battery life. Also, the lighting
sector through technology Light-Emitting Diode (LED) and Organic LED (OLED), which
has provided more reliable and efficient light sources, is also an important sector. Moreover,
the demand for DC–DC converters with multiple outputs in the automotive industry
is driven by electric vehicles, such as Fuel Cell Electric Vehicle (FCEV), Battery Electric
Vehicles (BEV), Plug-in Hybrid Vehicles (PHEV), and Hybrid Electric Vehicle (HEV).

All these applications contemplate various aspects and types of DC–DC converters,
such as output number (dual-output, bipolar output, three- and four-output-type convert-
ers), power (<1 kW, 1–10 kW, 10–20 kW, and >20 kW) including low, medium, and high
power, input voltage (<40 V, 40–70 V, and >70 V), output voltage (24 V, 15 V, 12 V, 5 V, and
3.3 V), isolated (one switch, two switches, and four switches converters) and non-isolated
(one switch or several switches) DC–DC converters. In low-power applications, the two
main trends are related to high-power density and low voltage, while in high power, with
high efficiency and reliability. But the main trend is related to miniaturization for integra-
tion. Small size and weight, together with high-power density are very important items
in power supplies for small format applications, mobile electronic systems, and onboard
systems, driven by applications with facilities with space restrictions such as More-Electric



Electronics 2022, 11, 1258 3 of 34

Aircraft (MEA), Electric Vehicle (EV), Robotics, Electric Ship (ES), Robotics, Solid-State
Lighting, Integrated DC–DC Power Supply and Monolithic Power Systems, Intelligent
DC–DC Power Distribution (micro or nano grids), On-chip Power Supply, Wireless Remote
Sensing Node and Power Transfer, New Transport Technologies, Energy Harvesting, and
IoT. In these applications, multiple or single power systems are used, which distribute
energy to different loads, with converters operating in power ranging from hundreds of
kilowatts to a few watts. This focus on multiple-output DC–DC converter applications
has also led to the development and commercialization of integrated solutions by many
electronic manufacturers [31–42], and to different tutorials, webinars, on-line publica-
tions, white papers and some surveys, reviews, and overviews papers being reported in
the literature.

In this paper, an overview of the most important topics related to multiple-output
DC–DC converters based on their main topologies and configurations, applications, so-
lutions, and trends are presented. The work is organized as follows: Section 2 reviews
multiple-output DC–DC converters: topologies and configurations and some of their main
characteristics are analyzed. Section 3 presents some of the most important applications
and solutions of multiple-output DC–DC converters. Finally, in Section 4 some conclusions
are presented.

2. Multiple-Output DC–DC Converters: Topologies and Configurations

The main objective of DC–DC power conversion is to transfer electric power from a DC
source into another DC source, which can be a load, with the highest efficiency and therefore
lowest losses. The DC–DC converters are widely used at all power levels (from mW to kW),
current levels (from nA to hundreds of amps) and voltage levels (from mV to kV) and have
been very popular for the last three decades, they can invert the polarity of the DC voltage
and increase or decrease its magnitude. The topologies and properties of DC–DC converters
are reported in the literature and are well known. Topology describes how source, load,
inductive and capacitive elements, and switches are interconnected in the converter, while
the configuration establishes the DC conversion relation between the input and output
current/voltage and according to the operating mode and the converter topology. Efficiency
depends on how close converter elements are to ideal condition; assuming that the same
elements are available, efficiency is related to the converter topology. Switch electrical
stress (current and voltage) decides the choice of semiconductor devices used to implement
the switches. For lower losses on parasitic resistances, lower generated noise, and more
efficient filtering, it is preferred that input and output waveforms be continuous (ideally,
DC only). Complexity of a converter is measured by the number of inductors, capacitors,
and switches. Efficiency and density (watts/volume) have long been the metrics used to
compare the performance of power converters.

DC–DC converters can be classified depending on the number of inputs as Multiple-
Input and Single-Output (MISO), or Single-Input and Single-Output (SISO), depending
on the number of outputs as Single-Input and Multiple-Output (SIMO), or Multiple-Input
and Multiple-Output (MIMO). In all cases, they can provide one or more output voltages,
from one or more input voltages. Multiple-output DC–DC converters are of interest in
applications that require several outputs, from one or more input voltages, which include
configurations MIMO [43–46] and SIMO [47–51].

As it is showed in Figure 1, SIMO DC–DC converters can be classified into isolated and
non-isolated, depending on whether they are implemented with or without an electrical iso-
lation, by means of a transformer, generally operated at high frequency. The output/input
power range is often used as the main aspect when selecting a topology. However, there
are many other factors that influence the topology selection for an isolated multi-output
DC–DC power converter, such as: electrical stress, size, cost, input voltage range, and
output noise. The size of an isolated multi-output power converter mainly depends on the
transformer size and the number of active switches employed, while for a non-isolated
converter depends on the number of active switches employed. The utilization of the



Electronics 2022, 11, 1258 4 of 34

power transformer affects the size of the power converter. A high-frequency transformer
provides galvanic isolation between input and output, and allows increasing the step-up
conversion ratio, while coupled inductors can also be used to increase the step-up ratio in a
DC conversion and provide different output voltages from several secondary windings.
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Figure 1. Multiple-Output DC–DC Converters Classification.

Control over DC conversion relation can be obtained by PWM (Pulse-Width Modu-
lation) technique, usually using a Constant Frequency (CF). D (Duty Cycle) is the ratio
between TON (Conduction Time) of switch/es and TS (Switching Period). In PWM, the
output voltage regulation is corrected (adjusted) by changing the TON of the switching
element in the converter. Other control strategies used in DC–DC converters are: Variable
Frequency and Constant on-Time (VF-C-on-T), Variable Frequency and Constant off-Time
(VF-C-off-T), and variable frequency and variable pulse width. In VF-C-on-T, the operating
frequency varies as a function of the input and load current. In VF-C-off-T conduction,
the operating frequency varies (implying variable on-time conduction) as a function of the
input and load current. CF is usually preferred over VF control since filtering components
can be optimized to suppress voltage and current ripples at switching frequency and its
harmonics. Also, noise generated by VF converters is more difficult to handle, and, in some
applications, it cannot be tolerated. There is a wide variety of modes, techniques (linear
and nonlinear), and types of controllers used for DC–DC converters: Voltage Mode Control
(VMC), Current Mode Control (CMC), Sliding Mode (SM) or Hysteretic Mode (HM), and
Band-Band Control (BBC), and controllers such as PID (Proportional-Integral-Derivative),
Fuzzy Logic (FL), and Neural Network (NN) in different variants and their advantages and
disadvantages are well understood and described in the literature.

When several outputs must be regulated it appears a mutual Cross Regulation (CR)
effect, and this is one of the critical challenges in multi-output converters, when there is a
load change in any one or more of its outputs. Among the different techniques implemented
to regulate multiple DC outputs, cross regulation technique is very used by its simplicity. In
this technique, one of the output voltages is directly sensed by the controller and regulated
to the desired value. The other output voltages are indirectly regulated (quasi-regulated) by
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the main inductor and switch. Of course, the non-controlled outputs have lower regulation
capacity and can present a variation with respect to their nominal values (CR =4Voi/4Ioj).
On the other hand, cross regulation allows the reduction in size, weight, and cost, and
circuitry simplicity in several applications since it shows many advantages in terms of
flexibility and integration in power-management systems. To suppress cross regulation,
some methods have been reported in the literature [52,53].

2.1. SIMO DC–DC Converters Isolated

Isolated SIMO DC–DC converter topologies can be denominated as either double-
ended or single-ended, based on the use of the magnetization curve (B-H curve, flux density
versus magnetic field strength), as shown in Figure 2. During the operation, if the flux
oscillates in two quadrants of the B-H curve (Figure 2a), then the topology is called as
double-ended. While, if the flux oscillates in only one quadrant of the B-H curve (Figure 2b),
then the topology is called as single-ended. In general, for given operating conditions, a
single-ended topology requires a greater core than a double-ended topology and needs an
additional reset winding.
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Among Buck and Buck–Boost derived DC–DC converters, the most popular single-
switch are Forward and Flyback converter, while those employing multiple switches
include Full-Bridge, Half-Bridge, and Push–Pull converter. Figures 3–5, show the basic
isolated SIMO DC–DC converters. The conversion relations for DCM (Discontinuous
Conduction Mode) and CCM (Continuous Conduction Mode) are summarized in Table 1.
The output filter inductor in Full-Bridge, Half-Bridge, and Push–Pull converters acts as
the inductance in a Buck converter, and thus the equation for critical inductance for the
Buck is valid for these Buck-Derived converters, as long as the appropriate transformation
of the input voltage due to the transformer turns ratio and topology is applied. As a
result, Isolated Buck (Fly-Buck) converter is used in applications below 15 W, Flyback, and
Buck-Derived converters in 10–100 W, Forward in 50–300 W, Half-Bridge, and Push–Pull
converters in more than 500 W, while Full-Bridge is used in applications with a power range
of 1 to 5 kW. Table 2 summarizes some features of the converters shown in Figures 3–5.
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Forward Converter.
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Figure 5. Multiple-Output Isolated DC–DC Converters Topologies. (a) Isolated Buck (Fly-Buck)
Converter. (b) Half-Bridge Converter. (c) Push–Pull Converter. (d) Full-Bridge Converter.
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Table 1. Conversion relations for Multiple-Output Isolated DC–DC Converters.

Converter CCM DCM

Flyback
Converter

(Figure 3a,b)

Vo1 = Vg · N2
N1
· D

1−D , . . . ,

VoN = Vg · NN
N1
· D

1−D

Vo1 = D ·Vg

√
Req.1·Ts
2·Lm1

, . . . , VoN = D ·Vg

√
Req.N ·Ts
2·Lm1

With : 1
Req.1

= 1
R1

+ 1
R2

(
N3
N2

)2
+ · · ·+ 1

RN

(
NN+1

N2

)2
, . . .

. . . , 1
Req.N

= 1
R1

(
N2

NN+1

)2
+ 1

R2

(
N3

NN+1

)2
· · ·+ 1

RN

0 < D < 1

Isolated Buck
Converter
(Figure 5a)

Vo1 = D · Vg
Vo2 = N2

N1
·Vo1, . . . , VoN = NN

N1
· Vo1

Vo1 =
2·Vg(

1+
√

1+ 8·Lm1
R1 ·D2 ·Ts

)
Vo2 = N2

N1
·Vo1, . . . , VoN = NN

N1
· Vo1

0 < D < 1

Forward
Converter

(Figure 3c,d)

Vo1 = N21
N1
· D · Vg, . . . , VoN = N2N

N1
· D · Vg Vo1 =

(
N21
N1

)
·2·Vg(

1+
√

1+ 8·L1
R1 ·D2 ·Ts

) , . . . , VoN =

(
N2N
N1

)
·2·Vg(

1+
√

1+ 8·LN
RN ·D2 ·Ts

)
0 < D < 0.5 f or N1 = N3

Active Clamp
Forward Converter

(Figure 4a)

Vo1 = N21
N1
· D · Vg, . . . , VoN = N2N

N1
· D · Vg Vo1 =

(
N21
N1

)
·2·Vg(
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(
N2N
N1
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√
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0 < D < 0.5

Push–Pull Converter
(Figure 5c)

Vo1 = 2 · N21
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· D · Vg, . . . ,

VoN = 2 · N2N
N1
· D · Vg

Vo1 =

(
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N1

)
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1+
√

1+ 8·L1
R1 ·D2 ·Ts

) , . . . , VoN =

(
N2N
N1

)
·4·Vg(

1+
√

1+ 8·LN
RN ·D2 ·Ts

)
0 < D < 0.5

Half-Bridge Converter
(Figure 5b)

Vo1 = N21
N1
· D · Vg, . . . , VoN = N2N

N1
· D · Vg

Vo1 =

(
N21
N1

)
·2·Vg(

1+
√

1+ 8·L1
R1 ·D2 ·Ts

) , . . . , VoN =

(
N2N
N1

)
·2·Vg(

1+
√

1+ 8·LN
RN ·D2 ·Ts

)
0 < D < 0.5

Full-Bridge Converter
(Figure 5d)

Vo1 = N21
N1
· D · Vg, . . . , VoN = N2N

N1
· D · Vg Vo1 =

(
N21
N1

)
·4·Vg(
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√
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) , . . . , VoN =

(
N2N
N1

)
·4·Vg(

1+
√

1+ 8·LN
RN ·D2 ·Ts

)
0 < D < 0.5

Buck–Boost-Derived
Isolated Converters

(Figure 4b–d)

Vo1 = Vg · N2
N1
· D

1−D , . . . ,

VoN = Vg · NN
N1
· D

1−D

Vo1 = D ·Vg

√
Req.1·Ts
2·Lm1

, . . . , VoN = D ·Vg

√
Req.N ·Ts
2·Lm1

With : 1
Req.1

= 1
R1

+ 1
R2

(
N3
N2

)2
+ · · ·+ 1

RN

(
NN+1

N2

)2
, . . .

. . . , 1
Req.N

= 1
R1

(
N2

NN+1

)2
+ 1

R2

(
N3

NN+1

)2
· · ·+ 1

RN

0 < D < 1

Nomenclature:
Vg: Source voltage

N: Winding turn number
D: Duty cycle

R: Load resistance
L: Inductance

Ts: Switching period

Other classification of isolated multiple-output DC–DC converters can be realized de-
pending on the switching technique: hard-switching (PWM converters) and soft-switching
(resonant converters) [54–56]. They are traditionally used in applications such as very
high frequency power supplies, induction heating, ballasts for fluorescent lamps, sonar
transmitters, ultrasonic generators, and power supplies for laser cutting machines. Isolated
resonant converters can be defined as converter networks to which resonant (L and C)
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elements are added. In contrast to square wave switch waveforms in PWM converters,
resonant topologies exhibit smooth quasi-sinusoidal waveforms and, therefore, reduced
switching losses. The incentive to increase the frequency at which DC–DC converters are
operated is motivated by the fact that correspondingly smaller values and, hence, weights
and sizes of energy storage components should result in lighter and smaller converters.
However, the inevitable increase in power losses due to switching establishes a practical
upper limit in the frequency range. Resonant isolated converter topologies overcome some
of the switching loss mechanisms attributed to PWM converters and offer the possibility of
extending the usable frequency range toward higher frequencies (typically 100 to 500 kHz).
In contrast to sharp transitions in current and voltage waveforms of PWM converters, the
resonant converters operate with smooth, quasi-sinusoidal, resonant waveforms, leading
to reduced losses ascribed to switching transitions. Soft-switching converters can exhibit
reduced switching loss, at the expense of increased conduction loss.

Table 2. Comparative summary of SIMO Isolated DC–DC Converters.

Type
Converter

Number
Switches

Number
Components

Voltage
Stress

Transformer
Utility

Floating
Switches

Input/Output
Feature

Single-Switch
Flyback Low Low High Moderate No Discontinuous input current

Discontinuous output currents

Two-Switch
Flyback Medium Low Medium Moderate Yes Discontinuous input current

Discontinuous output currents

Single-Switch
Forward Low Medium High Moderate No Discontinuous input current

Continuous output currents

Two-Switch
Forward Medium Medium Medium Moderate Yes Discontinuous input current

Continuous output currents

Active Clamp
Forward Medium High Medium Moderate Yes Discontinuous input current

Continuous output currents

Isolated Zeta Low Medium High Moderate No Discontinuous input current
Continuous output currents

Isolated SEPIC Low Medium High Moderate No Continuous input current
Discontinuous output currents

Isolated Ćuk Low Medium High Moderate No Continuous input current
Continuous output currents

Isolated Buck
(Fly–Buck) Low Low Medium Moderate Yes Discontinuous input current

Discontinuous output currents

Half-Bridge Medium Medium Medium Good Yes Continuous input current
Continuous output currents

Push–Pull Medium High Medium Good No Continuous input current
Continuous output currents

Full-Bridge High High Low Good Yes Continuous input current
Continuous output currents

Resonant converters use resonant L-C elements that cause sinusoidal variation of
voltage and current waveforms in order to reduce switching losses. They were developed as
an alternative to simple rectangular switching, the power devices switch at high frequency,
maintaining acceptable converter efficiency by minimizing the significant switching losses
associated with hard-switching. In these converters, the size and weight are reduced
(mainly, magnetic and filtering components) and the power density is increased, with low
stress on the switching devices. In addition, the soft-switching technique utilizes Variable
Frequency (VF) for regulation, with constant on-time or constant off-time, which creates
an oscillating circuit that allows power device transitions to occur at zero voltage (Zero
Voltage Switching, ZVS) or zero current (Zero Current Switching, ZCS), eliminating or
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reducing the switching losses in the converter, higher-frequency operation and reducing
the size of magnetic and filter components. Both resonant techniques are widely used in
many applications.

In isolated multiple-output DC–DC converters, the resonant components can be placed
either on the primary or on the secondary side. When a resonant capacitor is placed on
in some winding, the leakage inductance and magnetizing inductance of the transformer
can be used as a resonant element in order to reduce the number of discrete magnetic
components and, therefore, increase the power density of the converter.

Although there is a wide variety of isolated multiple-output resonant converter topolo-
gies, the most widely used are those based on three reactive elements, being LLC and LCC,
shown in Figure 6, the most popular. The conversion relations for these topologies are
summarized in Table 3 [56]. Table 4 shows some features of the LLC and LCC converters.
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Table 3. Conversion relations for Multiple-Output Isolated Resonant DC–DC Converters.

Converter Output Voltages

LLC Resonant
DC–DC Converter

(Figure 6a)

Vo1 =
N2
N1
· Vg

2√[
(Ln+1)− 1

f 2
n

]2

· 1
L2

n
+
(

fn− 1
fn

)2
·Q2

, . . . , VoN =
NN
N1
· Vg

2√[
(Ln+1)− 1

f 2
n

]2

· 1
L2

n
+
(

fn− 1
fn

)2
·Q2

VoN = NN
N1
· Vg

2 ← Mode I ( fS = fR1

)
.

VoN = NN
N1
· Vg

2 ← Mode II ( fS > fR1

)
.

VoN > / < NN
N1
· Vg

2 ← Mode III ( fS < fR1

)
.

fs = Switching Frequency, fR1 =
1

2π
√

LRCR
and fR2 =

1
2π
√
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Lm1
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·
√
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and 1
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R1

(
N2
N1

)2
+ · · ·+ 1
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(
NN+1

N1

)2

LCC Resonant
DC–DC Converter

(Figure 6b)

Vo1 =
N2
N1
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2√
[ Cn+1
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− f 2

n ]
2·C2
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(

fn− 1
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, . . . , VoN =
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2√
[ Cn+1

Cn
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(

fn− 1
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)2
·Q2

VoN = NN
N1
· Vg

2 ← Mode I ( fS = fR1

)
.

VoN = NN
N1
· Vg

2 ← Mode II ( fS < fR1

)
.

VoN > / < NN
N1
· Vg

2 ← Mode III ( fS > fR1

)
.

fs = Switching Frequency, fR1 =
1

2π
√

LRCR
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1

2π

√
LR

(
CR ·CP

CR+CP

)
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CR
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√
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+ · · ·+ 1
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Nomenclature:
Vg: Source voltage

N: Winding turn number
D: Duty cycle

R: Load resistance

L: Inductance
fs: Switching frequency
fR: Resonance frequency

Q = Quality factor

Table 4. Comparative summary of SIMO Isolated DC–DC Resonant Converters.

Type
Converter

Number
Switches

Number
Components

Voltage
Stress

Transformer
Utility

Floating
Switches

Input/Output
Feature

LLC Resonant Medium Medium Medium Good Yes Discontinuous input current
Continuous output currents

LCC Resonant Medium High Medium Good Yes Discontinuous input current
Continuous output currents

2.2. SIMO DC–DC Converters Non-Isolated

Multiple-output converters without transformers are an alternative in applications
where galvanic isolation is not required. In this sense, non-isolated multiple-output convert-
ers can be implemented with single switch or multiple switches, with their advantages and
disadvantages. As an example, multiple switches require several control switches, which
increases the cost, losses, and number of gate drivers in the converter, while single-switch
converters cause higher stress in terms of voltage and current.

SIMO non-isolated with multiple switches converters have been developed for many
applications and in different configurations and topologies [57–64]. They can provide
space savings, while maintaining high efficiency. They are generally based on traditional
Single-Input Single-Output (SISO) structures such as Buck, Boost, Buck–Boost and cascade
Buck–Boost, as shown in Figure 7. Each output voltage is a function of a fraction of the duty
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cycle of the switch to which it is connected. By having several switches, different switching
strategies (time sequencing [65] and time-multiplexing [66]) and operation modes (CCM
and DCM) are applicable.
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Figure 7. Single Input Multiple-Output (SIMO) non-isolated multiple switches DC–DC converters.
(a) SIMO Buck Converter versions [57]. (b) SIMO Boost Converter versions. (c) SIMO Buck–Boost
Converter versions.
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Within SIMO non-isolated with multiple-switch converters, special attention should be
paid to Single Input Dual Output (SIDO), Symmetric Outputs DC–DC Converters or Bipolar
Output DC–DC Converters, as shown in Figure 8. Not only because of the interest of its
applications, but also because of the different topologies that have been developed [67–77].
The conversion relations SIDO Boost and Buck–Boost converters based are summarized in
Table 5 [67].
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Figure 8. Single Input Dual Output (SIDO) DC–DC Converters. (a) Three-level Single-inductor
Boost Converter [69]. (b) Three-level Two-inductors Boost Converter [70]. (c) Dual-output DC–DC
Boost Converter [71]. (d) Series-combined Boost and Buck–Boost Converter [72]. (e) Single-inductor
Buck–Boost Converter [73].
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SIMO non-isolated with single-switch converters [78–80] try to avoid some of the dis-
advantages of using multiple controlled switches. They are also based on the combination
of SISO structures, using their front end, as shown in Figures 9 and 10. In these cases, each
output voltage is a function of the duty cycle of the single switch, operation modes (CCM
and DCM) and of the combined configuration.

Table 5. Conversion relations for SIDO DC–DC Converters.

Converter CCM DCM

Boost Converter
(Figure 8a) Vo =

Vg
1−D = 2Vo1 = 2Vo2

Ig = Io
1−D

Vo =
Vg
2

(
1 +

√
1 + 2RL ·D2·Ts

L

)
Ig = Io

2

(
1 +

√
1 + 2RL ·D2·Ts

L

)
Buck–Boost Converter

(Figure 8e) Vo =
Vg D
1−D = 2Vo1 = 2Vo2

Ig = Io D
1−D

Vo = D ·Vg

√
RL ·TS

2·L

Ig = D · Io

√
RL ·TS

2·L

Nomenclature:
Vg: Source voltage
Ig: Source curren

D: Duty cycle

R: Load resistance
L: Inductance

Ts: Switching period
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Figure 9. Two-output-type converter combinations. (a) Boost–Ćuk converter combination. (b) Boost–
SEPIC converter combination. (c) Buck–Boost–Zeta converter combination. (d) SEPIC–Ćuk con-
verter combination.
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Table 6 summarizes some features of the converters shown in Figures 7–10.
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Figure 10. Three-output-type converter combination for six loads.

Table 6. Comparative summary of SIMO DC–DC Converters Non-Isolated.

Type
Converter

Number
Switches

Number
Components

Voltage
Stress

Floating
Switches

Input/Output
Feature

SIMO Buck Medium Medium High Yes Discontinuous input current
Discontinuous output currents

SIMO Boost Medium Medium High Yes Continuous input current
Discontinuous output currents

SIMO Buck–Boost Medium Medium High Yes Discontinuous input current
Discontinuous output currents

Three-level Single-
inductor Boost Medium Low Medium Yes Continuous input current

Discontinuous output currents

Three-level Two-
inductors Boost Medium Low Medium Yes Continuous input current

Discontinuous output currents

Dual-output
DC–DC Boost Medium Low Medium No Continuous input current

Discontinuous output currents

Series-combined Boost
and Buck–Boost Medium Low Medium Yes Continuous input current

Discontinuous output currents

Single-inductor
Buck–Boost Medium Medium Medium Yes Discontinuous input current

Discontinuous output currents

Boost–Ćuk
combination

Low Low High No
Continuous input current

Discontinuous/Continuous
output currents
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Table 6. Cont.

Type
Converter

Number
Switches

Number
Components

Voltage
Stress

Floating
Switches

Input/Output
Feature

Boost–SEPIC
combination Low Low High No Continuous input current

Discontinuous output currents

Buck–Boost–Zeta
combination Low Low High Yes

Discontinuous input current
Discontinuous/Continuous

output currents

SEPIC–Ćuk
combination

Low Low High No
Continuous input current

Discontinuous/Continuous
output currents

Three-output-type
converter

for six loads
Low Medium High No

Continuous input current
Discontinuous/Continuous

output currents

2.3. MIMO DC–DC Converters Isolated

In the same way, MIMO DC–DC converters for combining various output loads
and input sources, they have become an interesting alternative in recent years, especially
because they allow the integration of different sources, such as: Rectifiers, Photovoltaic
Systems, Fuel Cells, Batteries, Supercapacitors, and, in some cases, Wind Energy Systems.
Fundamentally, MIMO converters are implemented according with two structures: sharing
a high voltage or low voltage common DC bus; and sharing one or more transformers; or
both architectures are also possible.

MIMO isolated configurations use a multi-winding transformer to transfer the energy
from the primary side to the secondary side and to couple the different sources and loads,
with several power switches and centralized or distributed control signals. Several con-
figurations can be derived from Full-Bridge, Half-Bridge Push–Pull Forward and Flyback
topologies, and other such as those shown in Figure 11 [81,82]. These converters consist
of Boost, Half-Bridge, or the called Boost–Dual-Half-Bridge (BDHB) topologies. In these
converters, the conversion ratio and output voltages depend on the control strategy of the
power switches, operation modes, and the turns ratio between the transformer windings.
Normally, the power switches are controlled by phase-shifted PWM operating at 50% duty
cycle, in CCM and DCM. Table 7 shows some features of the MIMO isolated converters.
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Figure 11. MIMO isolated. (a) Boost parallel converter. (b) Boost ports converter. (c) Half-Bridge
converter. (d) Boost–Half-Bridge converter combination.

Table 7. Comparative summary of MIMO DC–DC Converters Isolated.

Type
Converter

Number
Switches

Number
Components

Voltage
Stress

Transformer
Utility

Floating
Switches

Input/Output
Feature

Boost
parallel High High Medium Good Yes Continuous input currents

Continuous output currents

Boost ports High High Medium Good Yes Continuous input currents
Continuous output currents

Half-Bridge High Medium Medium Good Yes Continuous input currents
Continuous output currents

Boost–Half
Bridge High High Medium Good Yes Continuous input currents

Continuous output currents

2.4. MIMO DC–DC Converters Non-Isolated

In the same sense, for MIMO transformerless configurations, based on high-voltage or
low-voltage common DC bus, two architectures are established: independent and/or inte-
grated DC–DC converters. MIMO non-isolated integrated uses a single conversion stage,
simplifying architecture and control, and have been proposed as an alternative to inde-
pendent architecture connection. These converters are based on single-input single-output
configurations such as: Boost, Buck, Buck–Boost, SEPIC, and Ćuk, as well as combina-
tions of these configurations, with common ground [83–85] or series connections [44,86],
as shown in Figure 12. Table 8 summarizes some features of the non-isolated MIMO
DC–DC Converters.
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Table 8. Comparative summary of MIMO DC–DC Converters Non-Isolated.

Type
Converter

Number
Switches

Number
Components

Voltage
Stress

Floating
Switches

Input/Output
Feature

Series outputs Medium Low High Yes Discontinuous input/
output currents

Series inputs and
series outputs Medium High High Yes Discontinuous input/

output currents

Compared with independent architecture connection, integrated MIMO DC–DC con-
verters have the advantage of smaller size, fewer power conversion stages, and lower cost.
On the other hand, both the series inputs and the series inputs and series outputs connec-
tion, with a single inductor, require a complex control system to avoid cross-regulation
problems, and the simultaneous application of different voltages coming from the input
sources, which limits the connection of a large number of sources and loads.

The current trend in the development of DC–DC converters with multiple outputs
follows general aspects, such as low losses, high-power density, and high efficiency, as well
as the development of new architectures and control strategies. Certainly, simple structures
with a reduced number of components and power switches will be one of the new trends,
especially to reduce the size. However, the incorporation of devices with a Wide Band Gap
(WBG), particularly Gallium Nitride (GaN) and Silicon Carbide (SiC), will establish future
trends, advantages and disadvantages, in the development and applications of DC–DC
converters with multiple outputs.

3. Multiple-Output DC–DC Converters Applications and Solutions

In this section, we present the applications of multiple-output DC–DC converters.
Although it’s impossible to list all type of applications, we try to present a wide variety
that can represent the most important types of applications and solutions that use multiple-
output DC–DC converters. Figure summarizes some DC–DC converters’ applications,
grouped in three major categories: High Power, Medium Power, and Low Power. Again,
a partition like this will never be straightforward or even definitive, but it represents the
typical mindset when one thinks of general DC–DC converters.
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Also, in Figure 13, we can identify areas of applications like: telecommunication,
medical, automotive, energy and power, robotic, UAVs, and drones. In the next sections,
some of these areas are detailed, giving concrete examples of applications and solutions
used with multiple DC–DC converters.
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Figure 13. Multiple-Output DC–DC Converters Applications.

3.1. Converters for More Electric Aircraft

In an airplane, the necessary power generated by an engine is converted into four
types of energy: hydraulic, mechanical, pneumatic, and electrical. In addition to the
power required for pushing, the current trend is to replace mechanical, pneumatic, and
hydraulic systems with an electric alternative [87,88]. This has led to a significant increase
in the electrical power of an aircraft, reaching values of the order of megawatts in some
models [89]. As a consequence, the electrical system has increased in complexity with a
large number of electronic converters, electrical machines, switches, protections, and a
variety of loads [90,91]. These systems are similar to a ground-based microgrid, although
there are some differences that make them unique. In this sense, a system with a high level
of reliability and safety is required with the advantage of having more predictable loads,
changing their priority during the flight.
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The electrical power system of an airplane is a system of multiple voltage levels,
connected through electronic power converters. The different voltage levels are standard-
ized [92]:

- DC Voltages: 28 V, 270 V (±135 V) and 540 V (±270 V); and
- AC Voltages: 230/115 V with fixed frequency of 400 Hz and 230/115 V with variable

frequency (350–800 Hz).

There are different configurations of power systems for this type of application, one of
them is the one shown in Figure 14. The two generators (coupled to each motor) and the
Auxiliary Power Unit (APU) are connected to a three-phase AC 230 V network at variable
frequencies (350–800 Hz). Several AC–DC converters supply the ±270 V DC bus from this
network. High power loads are directly fed from this bus, a low-voltage DC bus (28 V) and
an AC network at a frequency of 400 Hz, by means a DC-AC converter.
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In theses type of applications, the converters used are numerous and different, but they
all have in common that they are reliable, that they have high efficiency, and in their designs
the weight and size of the converter must be reduced [93,94]. In this sense, multi-port
converters are a solution that meets these design restrictions [95–97].

3.2. Converters for All Electric Ships

Recently, in ship design, the concept of All Electric Ship (AES) has emerged [98,99].
These types of applications include different loads, electric generators governed by diesel
engines, energy storage systems, renewable energy sources, and a distribution network
that manages the energy of the entire system [100].

Traditionally, systems based on the AC system have been used, however, recently,
there is a trend towards the use of DC distribution systems, due to the advantages that
these present compared to AC distribution systems [101–103].

An example of a ship’s electrical system topology based on a DC distribution is shown
in Figure 15. Generally, the main power source is based on Synchronous Generators (GS)
driven by diesel engines (fuel). The AC-DC converters feed the DC network that can
be monopolar or bipolar [104]. Virtually the entire system is powered from the DC bus.
Through DC–DC converters, the Renewable Energy Sources (RES), Energy Storage System
(ESS), and different loads of the DC type are connected. The Electric Propulsion (EP) system
is connected via a DC–AC converter. This can also have a small isolated AC network.
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Therefore, the electrical system of an AES is made up of a microgrid where the power
converters are a fundamental part of the system [105,106]. An adequate control allows the
system to function properly, with suitable DC bus voltage regulation and balancing the
power flow between sources and loads. In this sense, the use of multiple-output converters
plays an important role since they allow the control of the system when the DC network
is bipolar type or to establish a common power strategy to different loads through the
converter itself.

3.3. Converters for Electric/Hybrid Vehicles

The number of electric/hybrid vehicles is increasing considerably every year. In this
type of application, power electronics plays a fundamental role, both from the point of
view of efficiency and having lighter and smaller systems [107,108].

An important evolution has been the development of new semiconductor devices that
have made it possible to increase power, switching frequencies, and performance, at the
same time with reduced losses, weight, and cost [109,110].

Modern vehicles often have similar power schemes. Figure 16 represents a simplified
diagram of an electric vehicle. The main source of energy is the battery, which is usually
of relatively high voltage. This feeds the traction motor of the vehicle through a DC–
DC converter and the traction control converter [111,112]. These converters are usually
bidirectional to return energy in the event of vehicle braking [113,114]. In some cases, there
are several sources of energy storage (Li-Ion batteries, fuel cells, etc.) so the DC converter is
usually of the type of multiple input and single output [115,116].

A DC–DC converter makes it possible to supply vehicle auxiliary elements, such
as pumps, heaters, cooling system, lighting, etc., at lower voltages [117]. In addition, a
low-voltage auxiliary battery is usually included to power the entire control and safety
system of the vehicle.

In the case of electric or plug-in hybrid vehicles, the design of electronic systems for
charging batteries is of special interest. This has probably been one of the main reasons
why the electric vehicle has not been widely used in many countries. This has given
rise to research in two lines: the development of efficient and fast charging systems and
the development of network infrastructures that integrate the generation, transmission,
distribution, and charging of vehicles [118]. In this sense, the possibility of designing smart
battery charging systems that are bi-directional is being studied, so that they not only
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act as loads connected to the grid but at some point they can inject energy into the grid
and, thus, can contribute to the stability of the electrical system [119,120], such as Grid to
Vehicle (G2V) and Home to Vehicle (H2V), as well as Vehicle to Vehicle (V2V), Vehicle to
Home (V2H), Vehicle to Building (V2B), Vehicle to Grid (V2G), and Vehicle to Everything
(V2X) concepts.
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3.4. Converters for DC Microgrids

For almost a century, an electrical system model based on AC system has been fol-
lowed. In this model, the energy is generated in large power plants and is transported
through transmission networks to the places of consumption, which are usually far from
the production centers. The advantage of AC is that it is easy to modify the voltage levels,
which is necessary to reduce losses in energy transport.

With the proliferation of renewable energies, the electrical system has changed towards
a system in which small power generators are incorporated, located close to consumers.
This new model has been called a distributed generation system. Recently, a system has
been proposed in which consumers have a net balance of zero energy. For this, electrical
microgrids are proposed [121–123], where together with the loads and generators, energy
storage systems are added to make the system self-sufficient and manageable. In many
cases, the storage system is replaced by the public electricity grid so that energy is injected
into it if it exceeds the microgrid and is absorbed from the grid if necessary.

Microgrids can be of the AC or DC type [124,125]. In this case, the debate between these
two systems has been raised again, since most of the generation systems with renewable
energies work in DC and on the other hand, currently, most of the loads work in DC
form [126]. In addition, DC networks have the following advantages from a technical point
of view:

• DC networks are more efficient, they have less loss in the transmission of energy,
because the effective resistance, for equal section, is lower;

• Fewer conductors are required for distribution;
• They are more stable than AC networks;
• There are no line reactances, which results in lower voltage drops;
• The frequency is zero, thus eliminating the need for a synchronization system when

connecting a generation system to the grid;
• There is no transient stability problem as in AC networks; and
• No electromagnetic interference is generated.

However, from an implementation point of view, it has two clear drawbacks [127,128]:

• Currently there are no infrastructures for this type of networks; and
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• The protection of DC systems is usually more complex due to the constant value of
the voltage.

It can be concluded that DC networks can be an alternative to AC networks when
there are distributed generation systems and high quality and efficiency are sought in
the system.

There are three different topologies for DC networks: homopolar, bipolar, and monopo-
lar [69]. Among these topologies, the most versatile is the bipolar DC network, despite
presenting greater complexity. In a bipolar DC network, there are three conductors “+”,
“−”, and “0”, Figure 17. The loads can be connected to two voltage levels. This is interesting
in the case of loads with high consumption that, if connected to the highest voltage, reduce
the absorbed current by half. On the other hand, part of the network could continue to
function when a failure occurs in the other part. It is also interesting to note that the current
through the “0” conductor is much smaller than through the other conductors, so the
system could be designed for a smaller section of this conductor.
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For the connection of distributed generation systems to a bipolar network, reliable and
efficient DC–DC converters with a bipolar input and output are required. The converter
will make it possible to adapt the output voltage of the source and control the power flow
between the source and the microgrid. Its design and control play a fundamental role for
the proper functioning of the microgrid. There are many topologies proposed in the litera-
ture, both in their non-isolated and isolated versions, unidirectional or bidirectional, for
applications in DC microgrids [129–131]. There are also many control strategies proposed,
so as to ensure adequate power quality or the balance of system voltages [76,132].

3.5. Converters for LED Ilumination Systems

LED (Light Emitting Diode) lighting has become the main source of artificial light
today. It is expected to be the primary source for decades to come due to its long service
life, high luminous efficacy, and flexibility in color mixing. Above all this is the great energy
savings compared to traditional light sources that together with the reduction in the cost of
LEDs have made them widely used in the lighting of streets, buildings, homes, monuments,
traffic signs, screens, etc. [133].

In LED lighting, the driver circuit plays a fundamental role, mainly in the efficiency
of the system [134,135]. The driver circuit basically consists of a DC–DC converter and a
Power Factor Correction (PFC) circuit. A current loop is included in the converter in order
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to obtain a constant current control. The function of the PFC circuit is to eliminate possible
current harmonics and to correct the power factor, which turns out to be an indispensable
component in this type of system. Both circuits can be implemented in a single stage, in
two stages or in integrated stages. The single stage LED driver is a DC–DC converter with
constant current output that includes the power factor correction function [136–138]. The
two-stage LED driver consists of a PFC circuit plus a separate DC–DC converter [139,140].
As an example, Figure 18 presents a block diagram of a LED illumination system. In the
integrated stage topology, the PFC circuit and the DC–DC converter can be simplified in a
single stage, sharing the active power switches and the control circuits [141,142].

Electronics 2022, 11, x FOR PEER REVIEW 26 of 35 
 

 

DC converter with constant current output that includes the power factor correction 

function [136–138]. The two-stage LED driver consists of a PFC circuit plus a separate 

DC–DC converter [139,140]. As an example, Figure 18 presents a block diagram of a LED 

illumination system. In the integrated stage topology, the PFC circuit and the DC–DC 

converter can be simplified in a single stage, sharing the active power switches and the 

control circuits [141,142]. 

Multichannel LEDs are used to ensure a high intensity of illumination. In this way, 

high tensions of structures connected in series are avoided. This consists of several 

branches each made up of several LEDs connected in series (LED Matrix). In each 

branch the intensity is controlled from a DC–DC converter. There are several converter 

topologies that have been proposed, both in isolated and non-isolated versions, in order 

to obtain the maximum efficiency of the system [143–145]. In this situation it is where 

the DC–DC converters with multiple outputs can have a special relevance, which allows 

the power supply of each chain of LEDs and their control [146,147]. 

LED Matrix

Controller

LED Matrix

AC

LED Matrix

Driver

 

Figure 18. Block Diagram of LED illumination systems. 

3.6. Multiple-Output DC–DC Converters for Satellite and Aerospace Applications 

In aerospace and satellite applications, because it is an inhospitable and remote en-

vironment, power supplies should meet some important requirements, like size, weight, 

impossible/costly online repairs, severe radiation, a wide range of temperatures they 

have to withstand, and being a self-sustainable energy system, as the satellite should 

generate, distribute, and convert power to different levels in order to provide power to 

all the different blocks in the system, and they must have several different power-supply 

output voltage levels. Therefore, very often DC–DC converters with multiple outputs 

are used in this type of application. 

Satellites are usually equipped with solar panels and rechargeable battery cells as 

their energy source and storage. Both are complementary to each other during two al-

ternate phases. First, when a satellite faces the sun, photovoltaics in solar panels convert 

sunlight into electrical energy; the generated power is supplied to the satellite’s sub-

systems, and, then, the remaining power is stored in battery cells. On the other hand, 

during the eclipse phase (or the sun phase with a peak power demand), the stored ener-

gy in battery cells is used to operate the satellite sub-systems [148]. Moreover, power 

management is critical because power demands must never exceed the generated power. 

Regarding the energy usage in satellites, each sub-system’s power consumption is, 

typically, a periodic consumption task, repeatedly in a specified amount of time. As 

satellites are indispensable for navigation, weather forecast, broadcast, and many other 

applications, several switching and linear regulators are used, according to the sub-
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Multichannel LEDs are used to ensure a high intensity of illumination. In this way,
high tensions of structures connected in series are avoided. This consists of several branches
each made up of several LEDs connected in series (LED Matrix). In each branch the intensity
is controlled from a DC–DC converter. There are several converter topologies that have
been proposed, both in isolated and non-isolated versions, in order to obtain the maximum
efficiency of the system [143–145]. In this situation it is where the DC–DC converters with
multiple outputs can have a special relevance, which allows the power supply of each chain
of LEDs and their control [146,147].

3.6. Multiple-Output DC–DC Converters for Satellite and Aerospace Applications

In aerospace and satellite applications, because it is an inhospitable and remote en-
vironment, power supplies should meet some important requirements, like size, weight,
impossible/costly online repairs, severe radiation, a wide range of temperatures they have
to withstand, and being a self-sustainable energy system, as the satellite should generate,
distribute, and convert power to different levels in order to provide power to all the dif-
ferent blocks in the system, and they must have several different power-supply output
voltage levels. Therefore, very often DC–DC converters with multiple outputs are used in
this type of application.

Satellites are usually equipped with solar panels and rechargeable battery cells as their
energy source and storage. Both are complementary to each other during two alternate
phases. First, when a satellite faces the sun, photovoltaics in solar panels convert sunlight
into electrical energy; the generated power is supplied to the satellite’s sub-systems, and,
then, the remaining power is stored in battery cells. On the other hand, during the eclipse
phase (or the sun phase with a peak power demand), the stored energy in battery cells is
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used to operate the satellite sub-systems [148]. Moreover, power management is critical
because power demands must never exceed the generated power.

Regarding the energy usage in satellites, each sub-system’s power consumption is,
typically, a periodic consumption task, repeatedly in a specified amount of time. As
satellites are indispensable for navigation, weather forecast, broadcast, and many other
applications, several switching and linear regulators are used, according to the sub-system
to which they provide power. Figure 19 represents a typical block diagram of an Electric
Power Supply subsystem of a satellite, in this case the CUBEsat [149]. As it can be seen, the
Electric Power Supply subsystem contains solar panels, Boost converter with Maximum
Power Point Tracker (MPPT), switching and linear regulators, over voltage protection and
different load switches on the input of each subsystem. Boost converter steps up the solar
panel voltage (4.4 V) to Power Distribution Bus (PDB) voltage level (14 ± 2 V). MPPT
operates solar cells at maximum power point. Over voltage protection circuit keeps the
PDB voltage within the operation limits. Switching and linear regulators step down the
PDB voltage to different voltage levels required for all the subsystem components. Load
switches supply and cutoff power from the subsystems through enable signal from an
on-board processor.
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3.7. Multiple-Output DC–DC Converters in Computer Applications

Computer systems are probably the most important and widely used systems nowa-
days. Like any other electronic systems, computer systems need a Power Supply Unit (PSU)
to convert an input voltage into one or several power supply voltages appropriate for its
circuits. Systems like data centers, modems and communication networks, or even desk-
top computers, include some of the major applications and give support to the inter-net,
provide data storage, support websites and databases, and support virtually almost every
corporation and institution.

A computer system power-supply unit is a good example of application of multiple-
output DC–DC converters, as every computer system needs to supply energy to different
modules and, typically, several DC output values are needed. The most common type of
today’s PSU for computer systems is the Switch Mode Power Supply (SMPS). Regarding
this type of PSU, there is a wide variety of topologies used by PSU manufacturers. However,
all topologies use the same basic concepts [150]. For example, considering the application
of DC–DC converters for a common desktop computer, Figure 20 presents a typical block
diagram of a PSU. Usually, it consists of a front-end Power Factor Correction (PFC) stage
and an isolated DC–DC stage [151]. The output blocks, as it can be seen, present multiple-
output converters where three output DC voltages are available: 3 V, 5 V, and 12 V.
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3.8. Multiple-Output DC–DC Converters in Systems-on-a-Chip (SoC)

The increase complexity of today’s Systems-on-a-Chip (SoC) imposes the need to inte-
grate in a single chip all the major features that in the past were only available in computer
systems, which includes a power-management unit and, most likely, DC–DC converters. In
fact, a SoC is an electronic circuit that can integrate all the necessary components present in
a computer and other electronic systems, like a GPU (graphics-processor unit), memory,
power management circuits, CPU (central processing unit), a USB controller, wireless radios
(2G/3G/4G LTE, GPS, WiFi, FM radio, and Bluetooth) and many more, but all integrated in
a single chip. Being a very complex circuit, an SoC needs a dedicated power-management
unit that can be similar to typical computer systems, but although all integrated in silicon.

Several publications present PMU for SoC applications that have similar architectures
to PSU in computer systems (e.g., [152]). Figure 21 presents a typical block diagram of a
SoC and we can see the need of several linear regulators to supply different building blocks
with different power-supply voltage levels.
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Figure 21. Block diagram showing general architecture of power supply in a SoC (System-on-a-Chip).
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However, to facilitate the integration of all blocks, other type of DC–DC convert-
ers are used, like Switched-Capacitor (SC) based DC–DC converters, because they allow
monolithic substrate integration due to the reduction of silicon surface required and size,
and contribute towards reduced electromagnetic effects and power losses. As an exam-
ple, in [153], Multiple-Output Switched-Capacitor DC–DC Combination Converters are
presented, for use in SoC focusing IoT applications.

Moreover, the need to reduce power consumption in today’s chips brings the use of
aggressive power-reduction techniques, and multi-domain power supplies are increasingly
being used to accomplish power reduction [154]. To achieve ultra-low-power consumption
levels, especially in new SoC for IoT, Dynamic Voltage and Frequency Scaling (DVFS)
techniques should be used, to work at different power-supply voltage (VDD) and clock
frequency levels (as explained in [155]). These new low-power techniques demand new
DC–DC converters, with adjustable output-voltage values, or with multiple simultane-
ous output values available. Therefore, SoC applications are a good example to show
that DC–DC converters with multiple outputs have still a long way ahead for research
and development.

4. Conclusions

In this paper, we present an overview of the most important topics related to multiple-
output DC–DC converters based on their main topologies and configurations, applications,
solutions, and trends. Our goal is to highlight a wide variety of configurations and topolo-
gies of multiple-output DC–DC converters. We show more than 30 topologies, isolated and
non-isolated, single and multiple switched, based on soft- and hard-switching techniques,
which are used in many different applications and solutions. However, the current trend
in the development of multiple-output DC–DC converters follows general aspects, such
as high-power density, high efficiency, and low losses, as well as the development of new
architectures and control strategies. Certainly, simple structures with a reduced number of
components and power switches are one of the new trends, especially to reduce the size.

Also, several applications of multiple-output DC–DC converters were presented in this
paper. A wide variety of examples were presented, to characterize the most important types
of applications and solutions that use these converters, showing High Power, Medium
Power, and Low Power application examples.
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