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ABSTRACT 

 

With the recent revival of the hybrid vehicle much advancement in power 

management has been made.  The most popular hybrid vehicle, the hybrid electric 

vehicle, has many topologies developed to realize this hybrid vehicle.  From these 

topologies, as sub set was created to define a particular group of vehicles where the 

converter discussed in this thesis has the most advantage.  This sub set is defined by two 

electric sources of power coupled together at a common bus.  This set up presents many 

unique operating conditions which can be handled seamlessly by the DC-to-DC converter 

when designed properly. 

The DC-to-DC converter discussed in this thesis is operated in Discontinuous 

Conduction Mode (DCM) of operation because of its unique advantages over the 

Continuous Conduction Mode (CCM) operated converter.  The most relevant being the 

reduction of size of the magnetic components such as inductor, capacitor and 

transformers.  However, the DC-to-DC converter operated in DCM does not have the 

inherent capability of bi-directional power flow.  This problem can be overcome with a 

unique digital control technique developed here.  The control is developed in a 

hierarchical fashion to separate the functions required for this sub set of hybrid electric 

vehicle topologies.  This layered approach for the controller allows for the seamless 

integration of this converter into the vehicle. 

The first and lowest level of control includes a group of voltage and controller 

regulators.  The average and small signal model of these controllers were developed here 
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to be stable and have a relatively fast recovery time to handle the transient dynamics of 

the vehicle system. 

The second level of control commands and organizes the regulators from the first 

level of control to perform high level task that is more specific to the operation of the 

vehicle.  This level of control is divided into three modes called hybrid boost, hybrid 

buck and electric vehicle mode.  These modes are developed to handle the specific 

operating conditions found when the vehicle is operated in the specific mode. 

The third level of control is used to command the second level of control and is left 

opened via a communication area network (CAN) bus controller.  This level of control is 

intended to come from the vehicle’s system controller. 

Because the DC-to-DC converter is operated in DCM, this introduces added voltage 

ripple on the output voltage as well as higher current ripple demand from the input 

voltage.  Since this is generally undesirable, the converter is split into three phases and 

properly interleaved.  The interleaving operation is used to counteract the effects of the 

added voltage and current ripple. 

Finally, a level of protection is added to protect the converter and surrounding 

components from harm.  All protection is designed and implemented digitally in DSP. 
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Even when you forget to teach by example…you are still doing it. 
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CHAPTER ONE: INTRODUCTION 

A hybrid vehicle is defined as a vehicle that uses two or more distant power 

sources to propel it.  While idea of hybrid vehicles might have been around for centuries, 

the first reported hybrid vehicles appeared in the Paris Salon in 1899 [10].  These hybrid 

vehicles had much different design goals than the hybrid vehicles we picture today.  In 

many cases the, internal combustion engine was not powerful enough to propel the 

vehicle.  So the electric motor was added, not to reduce fuel consumption, but to increase 

over the total vehicle power. 

 While the technology of hybrid vehicles has come a long way, the basic idea can 

still be seen.  One of the most well known hybrid vehicles today is the Toyota Prius.  The 

Prius utilizes power from a standard internal combustion engine and a battery pack.  

While the Prius uses only two distinct power sources, others may have more sources as 

shown in Figure 1. 

 

 

Figure 1  Definition of Hybrid Vehicle 
 

Power Source 1 

Power Source 2 

Power Source n 
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There are many power sources that are utilized to propel today’s hybrid vehicles 

including wind, compressed air, batteries, super capacitors, hydraulic, diesel, and 

gasoline.  While any combination of these power sources would make a viable hybrid 

vehicle, the most common combination seen in the commercial market today is gasoline 

and batteries.  These power sources, utilized for the purpose of reducing gasoline 

consumption, yield what is known as a hybrid electric vehicle (HEV). 

Since their introduction, hybrid electric vehicles have become increasingly 

popular.  One of the engineering challenges associated with these vehicles is increasing 

the efficiency of the motor drives and electronics.  One method of achieving this goal is 

to replace the low voltage drive motors with higher voltage versions.  This change 

reduces the high currents associated with driving the low voltage motors.  Lower drive 

current reduces losses which results in improved efficiency. 

Since hybrid electric vehicles are designed to have a certain battery capacity, 

adding more batteries to boost the voltage can adversely affect the overall design of the 

vehicle.  For example, the Toyota Prius utilizes 228 Ni-MH cells to achieve the desired 

capacity.  In order to obtain the highest possible voltage, all 1.2 V cells are strung in 

series.  This results in a total battery voltage of 273.6 V [7].  While adding more cells in 

series will increase the battery voltage, it will also increase volume, weight, and cost of 

the battery pack.  This is an unacceptable solution in most cases.  An alternative solution 

to increase the voltage supplied to the motor drive electronics is to add in a DC-to-DC 

converter. 

 There are many configurations or topologies for hybrid electric vehicles.  Some of 

the more common used in practice are known as series, parallel, and combined or series 
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parallel.  Each topology yields advantages and disadvantages that make it more or less 

suitable for a given design.  However, while these are very different topologies there are 

some distinct similarities between them. 

 In this thesis, some similarities will be shown and a sub group of HEVs will be 

created.  The need for power electronics will be explored and shown how a DC-to-DC 

converter is needed in today’s topologies.  The converter and all controllers are designed 

to be universally acceptable for the sub group of topologies to be defined in the following 

chapters.  Issues of tight space requirements in the vehicle will be discussed and designed 

accordingly. A layered controller architecture is designed to handle commonly 

encountered modes of operation.  A level of protection is designed to protect the 

converter and its surrounding components.  Finally, the highest level of control is 

designed to be open ended for easy integration into a HEV. 

 

Typical Topologies 

 While any realistic topology could be used to realize a hybrid electric vehicle, the 

three most used in today’s vehicles are the series, parallel, and combined hybrid vehicle 

topologies.  These topologies organize the multiple power sources in a specific manner 

that categorizes them into one of these three groups.  From these groups a sub group will 

be classified where the DC-to-DC converter will have its specific application. 
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Series Hybrid 

There are a number of papers describing the topologies of hybrid electric vehicles 

[8].  The first topology to be examined is what is known as the series hybrid as depicted 

in Figure 2. The series hybrid is one of the first hybrid topologies to be used in 

commercial vehicles.  This is because there is no mechanical coupling of the power 

sources.  The commonly used power sources are gasoline internal combustion engine and 

batteries. 

 

 

Figure 2  Series Hybrid Topology 1 

 

 In Figure 2, the reservoir represents the gas tank which supplies the internal 

combustion engine to generate mechanical power.  It is then used to drive an electric 

generator, which converts the mechanical power to electrical power.  Traditionally, the 

charge unit is an electronic device that can be as simple as turning off the generator when 

the battery voltage reaches a set limit.  The charger ensures the batteries maintain a 

certain level of energy.  The battery power is then converted back to mechanical power 

via the converter and motor.  The converter is typically referred to as a motor drive.  The 

electric motor is then used to propel the vehicle. 
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 It can be seen that there is no mechanical coupling of the internal combustion 

engine and the electric motor.  This greatly simplifies the mechanical design of the 

vehicle.  However, it suffers from major loss in efficiency.  This is due to the number of 

conversions the power must go thru before reaching the wheels of the vehicle and the fact 

that no power conversion is completely ideal.  This means there is some power loss each 

time the power is converted.  In this case two conversions take place: mechanical to 

electrical and electrical back to mechanical. 

 
 The product of two or more sub-system efficiencies will always result in a 

number less than the original numbers.  So, generally speaking, it is usually desired to 

reduce the number of conversion processes to help keep the efficiency high.  However, if 

the product of the efficiencies is greater than the efficiency of a separate single 

conversion process it is still possible to achieve higher overall efficiency with a multi-

stage process. 

 

Parallel Hybrid 

 Another hybrid electric vehicle topology is known as the parallel hybrid as seen in 

Figure 3.  Similar to the series hybrid, the battery power is converted to mechanical 

power thru the converter and electric motor.  The reservoir represents the gas tank and is 

used to supply the internal combustion engine.  However, in a parallel hybrid topology 

the location for coupling of the power sources is done mechanically.  This can be through 

a differential gear box or through a common drive shaft.  Since the battery power only 

goes through one conversion process and the mechanical power of the internal 
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combustion engine does not go through a conversion, the overall efficiency of the system 

is potentially high.  However, this is not always the case as described previously. 

 

 

Figure 3  Parallel Hybrid Topology 1 

 

 

Combined Hybrid 

A third topology known as the combined hybrid topology or the series parallel 

hybrid topology is a combination of the series and the parallel hybrid topologies.  An 

example of this topology can be seen in Figure 4.  The combined hybrid topology reduces 

the complexity of the mechanical coupling but still has the double conversion losses 

when processing power thru the electric motor from the internal combustion engine.  The 

generator in this case can simply be an oversized alternator which can be coupled to the 

engine thru a typical belt and flywheel.  The generator is used to keep the charge of the 

batteries at a specified level.  The batteries are then used to supply the converter and 

electric motor to produce mechanical power.  The electric motor is usually directly 

coupled to the drive shaft but can be done thru a differential as well. 
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Figure 4  Combined Hybrid Topology 1 

 

This thesis will look into more detail of the combined hybrid topology and the 

series hybrid topology.  These two topologies share a unique characteristic which creates 

a sub category of hybrid topologies.  That is they both have two electric sources of power 

coupled together at a common bus.  This can be seen in Figure 2 and 4 where the output 

of the charger is coupled with the terminals of the batteries.  This presents many design 

considerations, which will lead to the definition of standard modes of operation.  These 

modes of operation can be used for any topology which falls into this sub group. 
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CHAPTER TWO: LITERATURE REVIEW 

 It is important to understand why the DC-to-DC converter is a good solution for 

this application.  However, the DC-to-DC converter designed in this thesis has unique 

features designed specifically for the hybrid vehicle application. 

 

Battery Voltage 

 Traditionally, the battery voltage is designed to supply the motor drive converter 

with the necessary voltage in order to operate properly.  However, in later designs this 

has not been the case.  This is due to the fact that the motor drive converters and the 

electric motors used in new designs are of higher voltage.  One reason for doing this is to 

reduce the losses in the motor at high loads.  Given a certain power level, if the voltage is 

increased the current can be decreased.  This can be seen in Equation 1. 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=∴

⋅=⋅=

⋅=

k
IVkPower

VkVIVPower
IVPower

in
in

innewnewnew

inin

 

Equation 1 
 

Where Vin and Iin are the initial voltage and current applied to the input of a 

system.  Vnew and Inew are the new voltage and current values.  If the power is to be kept 

constant and If Vnew is proportional to Vin by a factor of k then it can be seen to maintain 

a constant power, Iin must be modified by a factor of k as well. 
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Non Idealities 

 Since there is no such thing as an ideal wire, the wires used to build the motor will 

always have some resistance.  Hence, resulting in a reduced overall efficiency of the 

system as given by Equation 2. 

wRloss RiP ⋅= 2
 

Equation 2 
 

Where, Ploss, is the power loss defines a cross the wire resistor, Rw, with vR and iR 

represent the resistor voltage and current, respectively.  By substituting vR from the 

second equation into the first equation the power loss as a function of iR and Rw is 

revealed.  Therefore, the power loss in the motor will increase exponentially with higher 

currents.  This leads to the need to bring the current in the motor down but still 

maintaining the power output of the motor.  This reveals the need for high bus voltages 

for the electric motor. 

 The battery pack of a hybrid electric vehicle is typically designed to have a certain 

energy capacity.  To maximize the output voltage of the battery pack, all voltage cells are 

generally connected in series.  A higher bus voltage can be achieved by increasing the 

voltage of the batteries.  However, this is typically not a suitable solution.  This means to 

increase the output voltage of the battery pack, more cells would be needed to connect in 

series.  This would result in a larger physical size and larger energy storage size of the 

battery.  While larger energy storage capacity is not a negative side affect, it is not an 

acceptable solution if it increases the physical size of the battery pack.  This is because in 

any vehicle application, size is a scarce commodity.  Minimizing the size of the battery 
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pack as well as any other mechanical and electrical sub-systems in the vehicle is always a 

major design criterion. 

The DC-to-DC Converter Solution 

 A better solution would be to add a DC-to-DC converter in between the existing 

battery pack and the motor drive converter to boost the voltage to the necessary level.  

Traditionally, the non-isolated bi-directional DC-to-DC converter has been used to 

perform the task mentioned above.  This configuration can achieve higher conversion 

efficiencies than other common non-isolated DC-to-DC converters such as the Ćuk and 

SEPIC converters [1, 5]. 

Operating as a synchronous buck/boost converter, the bi-directional power flow is 

an inherent property of this topology [4].  Since the converter is typically operated in 

continuous conduction mode (CCM), its design requires a larger valued filter inductor.  A 

larger inductance can result in an increase in physical size of the inductor, which is not 

desirable.  This large filter inductor can also slow down the transient response of the 

converter as well as slow down any type of mode transitioning. 

If the converter is designed to operate in discontinuous conduction mode (DCM) 

the value of the inductor can be greatly reduced.  Also, the efficiency of the converter at 

very light load can be increased since there is no negative current in the inductor which 

produces more conduction losses. 
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CHAPTER THREE: SYSTEM DESIGN 

 After reviewing the existing topologies for hybrid electric vehicles it can be seen 

that there is a clear need for power electronics conversion and motor drive sub-systems.  

In most popular designs, this power converter is designed as a synchronously switched 

buck or boost converter that operates in CCM.  However, in the vehicle application there 

is a need to reduce the size of all components to be integrated into the system.  A DCM 

converter has the advantage of reducing the inductance value of the power filter, which 

helps to improve power density.  DCM operated converters are typically not chosen for 

this application since they are not inherently bi-directional. 

 A DC-to-DC converter intended for this application must have a series of 

controllers which are derived from the needs of the system.  Since the DC-to-DC 

converter interfaces the battery to the motor drive’s bus voltage, bi-directional 

capabilities are a necessity.  The battery must be able to supply power to the motor drive 

system and it must be able to take power back to the battery for charging.  The DC-to-DC 

converter will be controlled by the vehicle system controller (VSC) which is not very fast 

relative to the dynamics of the system.  Because of this, a layered approach for the 

controllers is appealing since the DC-to-DC converter can safely operate without the 

intervention from the VSC. 

System Overview 

In order to properly design the controllers and system modes, it is necessary to 

take a closer look at the system power flow for the sub set of HEV’s discussed in 

Chapters one and two.  This sub group includes the series hybrid and the combined 

hybrid topology but is not limited to them.  It applies to any hybrid topology that couples 
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the DC-to-DC converter with a voltage source.  This voltage source is usually a generator 

but could be any other voltage source including another DC-to-DC converter operated in 

voltage controlled mode, ultra capacitor, or fuel cell [6]. 

The generator in Figure 5 is driven by an internal combustion engine (ICE) and 

has a regulated output voltage.  During hybrid operation, the DC-to-DC converter must 

supplement the generator’s power to the motor drive system.  Since the bus voltage is 

regulated by the generator, one method to regulate the power from the DC-to-DC 

converter is to regulate the output current.  This reveals that the first parameter the VSC 

will want to command: output current.  However, since the VSC controller is relatively 

slow and the dynamics of the motor drive system can change suddenly, the DC-to-DC 

converter might want to change its regulation mode to prevent the bus voltage from 

increasing to unsafe levels.  This can be easily illustrated as follows:  If the VSC knows 

there is a high demand for power to the motor drive system, it will command a large 

current command from the DC-to-DC converter.  Now, if that load suddenly is not there 

any more (ie. The vehicle stops accelerating), the DC-to-DC converter acts like a current 

source into the bus capacitance with very low load.  This will cause the bus voltage to 

increase to an unsafe level.  In this case, the DC-to-DC converter would switch to a bus 

voltage regulation mode at a voltage set point slightly above the voltage set point of the 

generator.  This is the second parameter the VSC would need to control.  Alternately, if 

the VSC would like to charge the battery pack, either from the generator or from 

regenerative braking operation, the power flow with respect to the DC-to-DC converter 

has now flipped.  In order to charge the battery with the proper charging algorithm, the 

DC-to-DC converter will need to regulate the battery current.  Once the batteries are fully 
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charged the DC-to-DC converter enters what is known as float charge.  This means the 

batteries have reached their fully charged voltage and the DC-to-DC converter then 

regulates this voltage.  Once the converter has entered float charge the amount of current 

flowing to the battery is dependent on the battery and is typically smaller than the initial 

current commanded by the VSC.  This mode reveals the next two parameters the VSC 

will want to control: battery current and voltage. 

One feature that many strong hybrid vehicles have is the ability to shut down the 

ICE to conserve fuel.  This means all of the power delivered to the motor drive system 

must come from the batteries through the DC-to-DC converter.  It also means the 

generator is no longer regulating the bus voltage to the motor drive system, so it is now 

the responsibility of the DC-to-DC converter to regulate the bus voltage. 

 

Battery Dc-Dc 
Converter Motor Drive Motor

200-300 Vdc 700 Vdc

Generator

Regenerative Braking

Powering the MotorBattery Charging

Powering the Motor

ICE

 

Figure 5  Power Flow of Series Hybrid Topology 
 

The electrical behavior of the DC-to-DC converter in the combined hybrid topology is 

identical to the series hybrid topology discussed above. Hence, all of the modes and 
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control parameters are assumed to be the same.  This can be seen from the power flow 

diagram of the combined hybrid topology in Figure 6. 

 

Battery Dc-Dc 
Converter Motor Drive Motor

200-300 Vdc 700 Vdc

Generator

Regenerative Braking

Powering the MotorBattery Charging

Powering the Motor

ICE

 

Figure 6  Power Flow of Combined Hybrid Topology 
 

 The specifications for the DC-to-DC converter designed here are taken from 

typical specifications for a system of this nature.  The battery voltage will reside between 

200V and 300V dependent on state of charge and loading or charging conditions.  The 

bus voltage will fall between 650V and 725V.  The maximum power to be pushed to the 

motor drive system (boost direction) and to the batteries (buck direction) will be 12kW 

and 6kW, respectively.  These specifications are provided in Table 1. 

Table 1 System Specifications 
 

Criteria Minimum Typical Maximum Unit 
Battery Voltage Range 200 270 300 Volts 
Main Bus Voltage Range 650 700 725 Volts 
Boost Power Rating 0 6 12 kW 
Buck Power Rating 0 4 6 kW 
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Level 1 Control 

 The first level of control is actually the lowest level and acts as a base of 

controllers for the system, where the level above issues commands to the level below it.  

This concept is illustrated in Figure 7.  Since the control loops are implemented in the 

DSP, it is important to sample the control parameters and execute the controller code at a 

fixed frequency.  This allows the use of standard digital control theory and sampling 

theory.  The control loops were designed using a direct digital design method which can 

be found in [3]. 

  

 

Figure 7  First Level of Control 
 

 In the first level of control, there are three parameters that need to be controlled: 

the average inductor current, the input voltage, and the output voltage (bus voltage).  By 

controlling the inductor current it is possible to regulate the current to the battery and the 

current to the motor drive system.  Since the inductor is connected to the low side 

Level 1 

Level 2 

Level 3 
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voltage, the average inductor current is the battery current.  When the average current in 

the inductor is supplying the motor drive system, this current is proportional to the motor 

drive current.  This allows the inductor current regulation to be used for the motor drive 

current as well.  Since the direction of the current is dependent on which mode of 

operation the converter is set, it can be assumed that if the mode is known then the 

direction of the current is known.  Because of this fact, the absolute value of the current 

measurement is used as the controlling parameter.  Since all loops are designed digitally 

and implemented in a DSP, an offset is added to the average inductor current 

measurement.  This value is then sampled by the analog to digital converter (ADC).  The 

offset is then removed in the DSP by subtracting the digital value that corresponds to the 

offset added to the current measurement. 

 

Average Model 

 When the converter is supplying power to the motor drive system, it must operate 

in the boost mode to meet the bus voltage specifications.  To help design the controller 

the equations for the average inductor current are developed here.  By looking at the 

waveform of the inductor current in a converter that is operating in DCM, a few variables 

can be defined.  The peak current (Ipeak) is the value of the current in the inductor after it 

has been connected across the input voltage.  D is the duty cycle and D1 is the percentage 

of the period (Ts) when current is flowing in the inductor Mode I and II. 
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Figure 8  Boost Mode Inductor Current 
 

The boost converter circuit can be found in Figure 9.  In order to find the average 

values for the inductor current and output voltage it is helpful to break the circuit up into 

its different modes as can be seen in Figure 10 thru Figure 12. 

 
Figure 9 Boost Converter 

 

This is known as mode I of the converter and can be seen in Figure 10.  Mode one 

occurs when the lower switch is on and the time duration lasts for DTs of the switching 

period, Ts. 
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Figure 10  Boost Converter Mode I  
 

 Therefore the peak inductor current can be derived as follows. 
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Equation 3 
 

At the end of mode I, the inductor is switched across the input and output 

voltages, and since the output voltage is greater than the input voltage, the inductor 

current starts discharging into the output capacitor and load.  Also, since the converter is 

operating in DCM, when the inductor current reaches zero it remains there and is not 

allowed to go in the negative direction.  The duration of mode two lasts for a period of 

(D1-D)Ts, as illustrated in Figure 8. 
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Figure 11  Boost Converter Mode II 
 

From here the equations for mode two can be defined as followed. 
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Equation 4 
 

By substituting Ipeak and D’, the equation for the average inductor current can be 

derived as follows. 
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Where Iavg is the average inductor current over one switching cycle.  Vbus is the 

average capacitor voltage over one switching cycle.  Vbatt is the input voltage to the boost 

converter 

Now that the equation for the average inductor current has been derived, it can be 

used to help derive the equations for the output voltage.  The output voltage is defined by 

the voltage of the output capacitor.  The current into the capacitor, iC is the difference 

between the diode and load current as seen from Figure 9. 

 

 

Figure 12  Boost Converter Mode III 
 

Using the proprieties of the Laplace transform, the equations for the output 

voltage can then be defined as follows. 
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Verify Average Model 

 Now that the average model equations for a boost converters inductor current and 

capacitor voltage have been derived as seen in Equation 7, have been derived, they can be 

used in simulation software to help design and verify the controllers.  To verify the 

average model, the equations were implemented in a Simulink Matlab simulation.  The 

simulation blocks for the average model can be seen in Figure 13. 
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Equation 7 
 

 

Figure 13  Boost Converter Average Model 
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 By using a switching model toolbox known as PLECS in Simulink Matlab, the 

switching model of the boost converter is added to the simulation.  The switching model 

can be seen in Figure 14 and can be used to simulate the controller response of the 

system. However, it is very time consuming since the time constants of the controller are 

much larger than the switching frequency. 

 

 

Figure 14  Boost Converter Switching Model 
 
 The switching model and the average model were then put into the same 

simulation and run with the same inputs.  The output voltage and the inductor current 

were then fed to the same scope capture output to verify that the average model correctly 

models the average characteristics of the switching model.  This simulation can be seen 

in Figure 15. 
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Figure 15  Boost Converter Average and Switching Model 
 

It can be seen in Figure 16 that the average output voltage and the average 

inductor current correctly model the average characteristics of the switching model since 

the average model signal in yellow seems to take on the average value of the switching 

simulation signal in red. 

 

Figure 16  Verify Average Model Simulation Output 
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Small Signal Analysis 

 One method to design the control loops is to obtain frequency and phase response 

plots for the entire loop and adjust the phase and gain margin to desired values in order to 

make the loop stable. The average model derived in the previous section is used as the 

base model of the plant.  However, to find the frequency response the circuit model must 

be linear.  Since the average model has higher order terms, the average model must be 

linearized around given operating conditions.  This is done by perturbing the ac time 

varying signals and then small signal assumptions around steady state operating 

conditions are made to eliminate the higher order terms.  It can be shown that the small 

signal model is found in Equation 8.  See APPENDIX C for further details. 
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Equation 8 
 

 Once the small signal transfer functions between the duty-cycle to output are 

found, then the frequency responses of the entire closed loop can be obtained. 

In the feedback path there is a voltage divider which scales the output voltage to a 

range which is suitable to be sampled by the ADC.  Since the maximum output voltage 

for this system is 725V, the maximum voltage seen at the input of the ADC should be set 

to a safe level above this value.  In this system, the voltage divider is designed so that an 
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output of 1000V results in 3V at the input to the ADC, where 3V is the maximum voltage 

the ADC can convert. 

There is also a low pass filter at the input of the ADC.  The actual filter implemented 

is a simple RC filter designed with a cutoff frequency around the switching frequency.  

This filter is sometimes referred to as an anti-aliasing filter.  The filter helps to filter out 

some of the switching frequency ripple seen on the output voltage.  This is important 

since the output voltage is only sampled once every switching cycle.  If the output 

voltage is large, then these frequencies would be aliased into the lower frequency 

components after the signal is sampled. Also, because of the high switching frequency 

radiated and conducted noise, a carefully placed filter very close to the input of the ADC 

pin on the DSP can be used to minimize this noise. 

After the ADC samples the voltage, the value is converted to a digital value between 

0 and the maximum resolution of the ADC.  The ADC used in this system has a 

maximum resolution of 12 bits.  This means the maximum value converted by the ADC 

has a digital value given by Equation 9. 

40951212
max =−=ADC  

Equation 9 
 

In this system, the ADC was set to left adjust the ADC measurement into a 16 bit 

register.  This means the converted value from the ADC is stored in the upper 12 bits of 

this 16 bit register.  Therefore the ADC gain can be calculated as in Equation 10. 
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 The controller must hold the value for the duty cycle once it reaches steady state.  

When the control loop has reached steady state the output voltage is equal to the 

reference voltage.  This means the loop error signal at steady state is zero.  In order to 

hold the output value at the proper value, a digital integrator is used.  This is one of the 

simplest but very effective methods to design an initial control loop.  Any digital 

integrator can be used.  In this system the backwards Euler integrator is used because the 

difference equation implemented in the DSP is in a form which has a small number of 

computations.  This can be seen from the difference equation in Equation 11 since the 

difference equation can be directly transferred into C code for the DSP. 
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Equation 11 
 

 The unit delay and zero order hold are added to model the characteristics of the 

PWM module.  Since the DSP takes some time to calculate the value for the duty cycle, 

the value is held until the start of the next switching cycle before it takes affect.  This is 

the reason for added unit delay.  The zero hold is added since the analog signal for the 

duty cycle does not change over one switching cycle, effectively bringing the sampled 

digital signal back to the analog domain. 

 Finally, the modulator and the controller gains are added.  The modulator gain 

transforms the digital value to the actual duty cycle value.  This gain is found to be the 

one over the maximum counter value.  The maximum counter value is discussed in more 

detail in the interleaving section.  The controller gain is used to design the cross over 
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frequency of the control loop in order to make the system stable.  The entire control loop 

is illustrated in Figure 17. 

 

Figure 17  Control Loop 
 

 All components are then added to a Matlab program.  To find the frequency 

response of both components in the S domain and the Z domain, the following 

relationships to frequency are used, where Ts is the sampling period.  In this case the 

sampling period is equal to the period that the control loop runs at.  The controller gain is 

then designed to give a stable control loop response, which can be seen in Figure 18. 
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Figure 18  Calculated Frequency Responses 
 

 All control loop parameters are then programmed into the DSP and run in the 

actual system.  Then a frequency response analyzer is added to the control loop to perturb 

it with small signals.  This effectively produces the bode plots of the actual systems 

control loop.  This plot was then used to fine tune the frequency response using digital 

zeros.  The form of the digital zero was also chosen to minimize calculation time and can 

be found in Equation 13. 
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Equation 13 
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 The complete controller function is simply a combination of the digital zero, 

digital integrator, and gain. Since the controller design was done entirely in the z domain, 

there is no need to converter any of the controller functions into the s domain.  This is 

one of the major advantages of the direct digital design approach.  The final frequency 

response can be seen in Figure 19.  The control was optimized to maximize overshoot 

and undershoot without increasing the settling time by too much. 

 

Figure 19  Measured Frequency Response 
 

 It can be seen that the cross over frequency of the calculated and measured results 

match very well, crossing over around 50Hz.  The phase plots match fairly well with a 

phase margin of about 90 degrees and a phase cross over around 600Hz. 

Level 2 Control 

 The second level of control is used to set up and control the first level of control.  

This is important because it alleviates some of the functions and time demand for the 
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vehicle system control.  This means that the vehicle system controller does not have to be 

very involved or react very fast to changes in the system, which is usually the case.  The 

vehicle system controller can then command modes of operation with regulation set 

points and let the converter run in a safe manner.  It also provides the mechanism that 

allows the converter to operate in DCM mode while still maintaining bi-directional power 

flow. 

 

Figure 20  Level 2 Control 
 

 In this system, the IGBT is used as the switching device.  Each IGBT package is 

also equipped with an anti-paralleling diode which makes the overall package behave like 

a MOSFET (bidirectional conduction, unidirectional blocking).  The schematic for a 

single phase of the system can be seen in Figure 21. 

Level 1 

Level 2 

Level 3 
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Figure 21  Single Switching Leg 
 

 However, if these switches are synchronously switched, the converter will operate 

in CCM, which is not desired in this design.  In order to ensure the converter operates in 

DCM in boost mode the inductor current must be blocked from going in the negative 

boost direction.  To do this, the driving of the upper switch is deactivated when the 

converter is operated in boost most.  The anti-paralleling diode is then utilized to block 

the negative boost current in the inductor.  This can be seen in Figure 22. 

 

Figure 22  Boost Operated Switching Leg 
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 Similarly, when the converter is desired to operate in the buck direction the 

negative buck current must be blocked to ensure DCM operation.  By deactivating the 

driving of the lower switch and utilizing the anti-paralleling diode the converter can now 

be operated in DCM in the buck direction.  This schematic is illustrated in Figure 23. 

 

Figure 23  Buck Operated Switching Leg 
 

Modes of Operation 

 Now that the mechanism for bidirectional and DCM operation has been defined, 

the modes of operation, that the vehicle system controller would normally command, will 

be defined.  All modes are defined by analyzing situations that will be present in the 

actual system.  The modes include Hybrid Boost Vehicle Mode, Hybrid Buck Vehicle 

Mode, and Electric Vehicle Mode.  To help design the code in the DSP for the second 

level of control an interactive system of flow charts was designed in Visio.  Each function 

block which contains not trivial functions can be double clicked to reveal the underlying 

function.  By double clicking the return block in the function it redirects the view back to 
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the place where the function was called. This emulates the way the code would actually 

be designed in the DSP and helps making an easy transition from the flow chart to the 

actual DSP code.  The flow chart in its entirety can be found in APPENDIX A.  The DSP 

code generated from the flow charts can be found in APPENDIX B. 

 During hybrid boost vehicle mode the high side bus voltage is regulated by the 

generator and the DC-to-DC converter is used to supplement the power to the motor drive 

system.  The power to be delivered to the motor drive system is proportional to the 

average inductor current.  This means, under normal operating conditions the converter 

will operate in inductor current regulation mode.  The set point is commanded by the 

vehicle system controller along with an over voltage regulation set point.  This is 

important if the dynamics of the vehicle change before the vehicle system controller has 

time to respond.  To put this into an example: if the motor drive system requires a large 

amount of power, the DC-to-DC converter will receive a large inductor current reference 

to regulate to.  If the load suddenly drops out (ie. someone takes their foot off the gas 

pedal) then the converter acts as a current source into the output capacitors with little to 

no load.  This means the output voltage will increase very fast.  If it reaches the over 

voltage regulation set point the converter will then switch to output voltage regulation 

mode at that set point.  The converter will remain at this safe operating condition until the 

vehicle system controller has time to respond to the situation.  This mode is exemplified 

in Figure 24. 
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Figure 24  Hybrid Boost Vehicle Mode Flow Chart 
 

 In hybrid buck vehicle mode the converter is used to regulate the current to the 

battery in order to perform the proper charging algorithm.  So in normal operation the 

converter is operated in inductor current regulation in the buck direction.  The high side 

bus voltage is regulated by the generator.  The vehicle system controller commands a 

current regulation set point with an over voltage regulation set point.  Since the batteries 

are connected to the low side voltage of the converter, voltage over shoot is not too much 

of a concern.  However, what is known as the float charge voltage can be programmed as 

the over voltage regulation set point.  This means once the batteries are fully charged and 
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they have reached the float voltage, the converter switches to input voltage regulation 

mode.  During this mode the current supplied to the battery is smaller than the 

commanded current.  The flow chart describing this mode can be found in Figure 25. 

 

Figure 25  Hybrid Buck Vehicle Mode Flow Chart 
 

 Electric vehicle mode is the most complex out of the three modes.  In this mode 

the generator is disabled, so the converter is now responsible for regulating the high side 

bus voltage.  This means the converter is operated in output voltage regulation during 

normal operations.  If the motor drive system requires an unsafe current from the 

converter it will switch to inductor current regulation mode at the commanded over 
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current regulation set point.  Also, if a regenerative braking operation is preformed on the 

motor drive system, the resulting power must be processed by the converter back to the 

batteries.  The current from the motor drive system back to the bus capacitors will try to 

increase the voltage on the high side bus.  The output voltage regulator will reduce the 

duty cycle in order to maintain regulation of the high side bus voltage.  If the duty cycle 

reaches zero and the bus voltage continues to increase, the converter will switch the 

operation of the converter to buck mode and continue to increase the duty cycle in the 

buck direction.  Similarly, if the current to the batteries reaches an unsafe level the 

converter will switch to inductor current regulation in the buck direction at the 

commanded over current regulation set point.  The flow chart for this mode of operation 

can be found in Figure 26.  To perform this task in a seamless manner a modified version 

of the output voltage regulator was created.  The output of the modified controller is 

allowed to go to negative values.  Normally negative values on the output of the 

controller would not make sense since the output of the controller is used to command the 

duty cycle.  However, by using the sign of the output of the controller to dictate which 

direction the converter should set the switches, it can be used to provide a smooth 

transition between buck and boost mode. 
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Figure 26  Electric Vehicle Mode Flow Chart 
 

 To elaborate more on the modified output voltage regulator, refer to Figure 27.  

When the output of the regulator is negative the converter is set to operate in buck mode, 

deactivating the driving for the lower switch, and the absolute value of the output of the 

regulator is passed to the driving of the duty cycle of the active switch.  Similarly, when 

the output of the regulator is positive, the driving of the upper switch is deactivated, 

setting the converter to run in boost mode.  The output of the regulator is then sent to the 

duty cycle of the active switch. 
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Figure 27  Modified Output Voltage Regulator Operation 
 

 The actual hardware used to realize the converter was a modified Semikron 

SKAI3001GD12-1452W module.  The module was modified to take the TI DSP 
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TMS320F2808.  This module can be seen in the red box in Figure 28.  This module is 

originally intended to be used as a three phase motor controller.  However, by attaching 

the three power filter inductors to the three phases and to the filter capacitors, the 

converter can now be controlled as three paralleled buck or boost converters, using the 

techniques discussed here. 
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Figure 28  Semikron Module 
 

Interleaving 

 Since the converter designed here is running in DCM the output voltage ripple is 

expected to be greater than that of a converter designed to run in CCM.  This is a known 

phenomenon in DC-to-DC converter design.  One method to counteract the additional 

voltage ripple is to interleave multiple converters.  Interleaving is the process of aligning 

the inductor current waveforms in a way to minimize the ripple current into the output 
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capacitor [4].  Since the input current ripple to the output capacitor is reduced, the losses 

in this component are also reduced [2]. 

 This is seen easiest in the example of a buck converter.  Since the inductor is 

connected directly to the output capacitor the capacitor current is equal to the sum of the 

inductor current and the load current tied in parallel with the output capacitor.  Since the 

output voltage is assumed to be in steady state, the load current is also assumed to be 

relatively constant.  In this example the load is defined as an output resistor.  The current 

thru the resistor is considered to be at DC because the output voltage is at steady state.  

This means the majority of the ripple current comes from the inductor.  If three 

converters are connected in parallel the capacitor current is equal to the sum of the three 

inductor currents over time and the load current which is assumed to be DC.  This 

schematic can be seen in Figure 29. 
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Figure 29  Three Paralleled Buck Converters 
 

 If the inductor current waveforms are synchronized in a way to distribute the 

ripple current evenly over the switching period, the effect of the ripple current into the 

output capacitor is minimized.  Since the output capacitor voltage is a function of the 

capacitor current, minimizing the capacitor current ripple also minimizes the output 

voltage ripple.  The three inductor currents, properly interleaved, can be seen in Figure 

30. 
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Figure 30  Three Interleaved Inductor Current Waveforms 
 

 Ignoring the DC load current, the capacitor current waveform can be seen in 

Figure 31.  It is important to note that the frequency of the capacitor current has increased 

to 3 times the switching frequency.  In addition, the peak to peak current values have 

been reduced since the capacitor current does not go to zero, like the inductor current 

does. 
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Figure 31  Capacitor Current of Three Phase Interleaved Converters 
 

 To properly interleave the inductor current, it is important to understand in more 

detail how the pulse width modulated (PWM) signals are generated in the DSP.  These 

are the signals that are generated from the duty cycle command from the controllers.  The 

DSP used for this converter is the TMS320F2808 DSP from Texas Instruments.  The 

PWM architecture used in this DSP utilizes a high frequency counter to generate what is 

known as the ramp signal.  The ramp is counted up to a maximum counter value where it 

is reset to zero and the counting starts again.  A very low resolution version of this PWM 

architecture can be seen in Figure 32. 
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Figure 32  PWM Architecture 
 

 Since the counter is incremented once every clock period, the clock period should 

be greater than the switching period of the PWM signals.  In addition there should also be 

a sufficient number of steps between zero and the maximum counter value to provide a 

good resolution for the duty cycle.  The duty cycle value is compared to the ramp signal.  

If the value of the current value of the ramp is less than the compare value the PWM 

module outputs a high signal to drive the active switch.  If the current value of the ramp 

is greater than the compare value the PWM module outputs a low signal to turn off the 

active switch.  This is how the duty cycle command generates the PWM signals.  The 

maximum counter value must then be designed to produce the proper switching period.  

The value is designed using Equation 14. 
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Equation 14 
 

 There are multiple PWM modules in this DSP and they are utilized to generate the 

six PWM signals for the three interleaved converters.  Each module has its own ramp 

signal which is also called a timer.  It is important to note that all timers are driven from 

the same clock.  Because of this, once the timers are initialized and running, the ramp 

signal will not drift from one another.  Therefore the assigned initial phase shift will be 

kept at all times throughout their uninterrupted operation.  A diagram of this set up can be 

seen in Figure 33. 
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Figure 33  Three Phase PWM Module Diagram 
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 The inductor current waveforms will be properly interleaved since they are 

directly related to the properly interleaved PWM signals.  Since the initial phase shift of 

the ramp signal that generates the PWM signal is maintained, it is only necessary to 

design the proper initial conditions of the ramp to properly interleave the inductor current 

throughout their operation.  The initial values of the ramp signals are calculated using 

Equation 15. 
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Equation 15 
 

 It can be seen that the three ramp signals are properly interleaved in Figure 34 by 

setting the initial conditions appropriately. 
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Figure 34  Three Interleaved PWM Ramp Signals 
 

 

Protection 

 It is important to protect the converter in the event of an unavoidable situation.  

All protection functions were programmed in code in the DSP.  The location of the fault 

checking can be found in APPENDIX A.  If any fault condition is detected, the converter 

will enter a standby state.  The standby is used as an intermediate state between normal 

run and normal shut down.  This is important because it allows the converter to remain in 

standby until the vehicle system controller can respond properly to the fault and reset it.  

The fault is reset by commanding the converter to a normal shutdown.  All PWM signals 

are disabled during standby and shutdown. 
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 A list of the fault conditions implemented in this converter can be found in Table 

2.  If for some reason the voltage on the low side exceeds and unsafe level for the 

batteries the converter will enter standby to prevent damaging the batteries.  Similarly, if 

the voltage on the bus reaches an unsafe level the converter will go to standby to prevent 

damaging the bus capacitors, motor drive system, and generator.  This could happen if 

the load dynamics are too fast for the over voltage regulation set point to regulate.  If the 

inductor current reaches an unsafe level because of a short on the output, the converter 

will enter standby to protect the converter.  There are multiple temperature sensors in the 

hardware module.  These sensors are used to monitor the temperature of the IGBTs.  If 

the IGBT temperature reaches an unsafe level the converter will enter standby in order to 

protect the converter.  Finally, if the communication to the vehicle system controller is 

lost for more than 250ms the converter enters standby and waits for the communication 

link to be reestablished. 

Table 2 List of Implemented Fault Protections 
 

Over voltage low side 

Over voltage high side 

Over current in the inductor 

Over temperature 

Loss of communication 
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DCM Explained 

 In level 2 control the mechanism for allowing the converter to operate in DCM 

was discussed.  Dependent on which direction the converter is set to push power, a switch 

is deactivated, utilizing the anti paralleling diode to block the negative current.  However, 

if the inductance value and switching frequency are not designed properly, the converter 

could still operate in CCM. 

 The minimum inductance value needed to insure the converter operates in CCM is 

known as the critical inductance value.  For the buck and boost converter the critical 

inductance value is dependent on the steady state duty cycle, switching period and the 

load resistance.  The equation for the critical inductance for the buck converter can be 

found in Equation 16. 

Loadscritical RTDL ⋅⋅
−

=
2

1
 

Equation 16 
 

 The switching frequency of the converter is set to 20 kHz.  This is mainly do to 

the maximum frequency driving capabilities of the driving circuit on the physical 

hardware.  Assuming a constant switching frequency of 20 kHz, the critical inductance 

value is plotted over the full range of duty cycles for different load resistors, Figure 35.  It 

is important to note that the DCM region for the lower valued resistors is always included 

in the DCM region for higher valued resistors.  This means if the inductance value is 

designed to operate in DCM at the highest possible load, then the converter will also 
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operate in DCM for any load lighter load condition.  This is how the inductance value is 

designed for this converter. 

 

Figure 35  Buck Converter Critical Inductance Plot 
 

 Similarly, the equation for the boost converter’s critical inductance is examined, 

Equation 17.  The plot of the critical inductance value for the boost converter shows 

similar characteristics in Figure 36.  The DCM region for higher load conditions is 

included in the region for lighter load conditions.  The minimum inductance value 

from the two methods is then chosen to insure the converter operates in DCM during 

all modes of operation. 

 

( ) DDRTL Loads
critical ⋅−⋅

⋅
= 21

2  

Equation 17 
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Figure 36  Boost Converter Critical Inductance Plot 
 

The calculation of the inductance value was based on the fact that the inductor 

current must always operate in DCM.  The final value for the three experimental 

inductors was 140 µH.  The battery side capacitor value was 160 µF with a low ESR.  

The high side bus capacitor was 1000uF.  

 

Communication Interface (Level 3 Control) 

 The third level of control is assumed to be the vehicle system controller.  While 

this controller is not designed here, it is necessary to simulate inputs from the controller 

in order to properly send commands to the second level of control.  To do this, and 

interface was developed to send these commands and reference values through the CAN 

bus.  CAN stands for communication area network. 

 The CAN module in the DSP was implemented to retrieve the information.  The 

module was set up for a communication rate for 250 kbps.  The module utilizes a number 

of mailboxes to transmit and receive information with little intervention from the central 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10-5 DCM vs CCM

Duty Cycle

In
du

ct
an

ce

 5 ohms
10 ohms
20 ohms

DCM

CCM



52 

processing unit (CPU).  This is important, because the CPU is responsible for a number 

of time critical operations such as the level one and level two controls.  The mailboxes 

are can transmit or receive 8 bytes at a time.  In order to transmit all of the information it 

was split up into 4 mailboxes: 2 for sending and 2 for receiving.  One byte of information 

is used to transmit the current status of the converter.  This contains information about the 

mode of operation and running state of the converter.  Five more bytes in that same 

mailbox are used to transmit the measurement for the temperature, high side bus voltage, 

and the status of all the faults.  Each fault is assigned a bit location.  If that bit is high, it 

indicates the fault has occurred, if it is low it means the fault has not occurred.  The 

measurements for the three inductor currents and the total average current are sent in 

eight bytes of another mailbox.  Similarly, the commands received by the converter 

occupy one byte of another mailbox.  Four more bytes in the same mailbox are used to 

transmit the low side and high side bus voltage set points.  The remaining byte is left 

empty.  In another mailbox the current set point for the average buck and boost current is 

sent in four bytes.  The break down of all the communication can be found in the 

following tables. 
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CANRX 

Command values (CMD) – Mailbox 1 

7    4      3      2      1   0 

Expandable Mode1 Mode0 State1 State0 
 

Bits Name Description 
7:4 NA Expandable 
3:2 Mode 00 – EV 
  01 - Hybrid Boost 
  10 - Hybrid Buck 
  11 - Not Used 
1:0 State 00 – Run 
  01 - Standby/Safe (Default)
  10 – Reset 
  11 - Not Used 
 

Data values (DATA) – Mailbox 1 

Low side bus voltage (LSVBUS) 

15           8 

LSVBUS 
7           0 

LSVBUS 
 

Bits Name Description 
15:0 LSVBUS Low Side DC Bus voltage: 0-400V  
  If voltage exceeds X, reg. zero current  
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High side bus voltage (HSVBUS) 

15           8 

HSVBUS 
7           0 

HSVBUS 
 

Bits Name Description 
15:0 HSVBUS High Side Bus Voltage Regulation/Limit: 0-725V 
  Regulation set point in EV 
  Voltage limit for Hybrid Boost 
 

 

Data values (DATA) – Mailbox 2 

Average Current Command Buck (AVGBUCK) 

15           8 

AVGBUCK 
7           0 

AVGBUCK 
 

Bits Name Description 
15:0 AVGBUCK Average Current Command Buck (Low side): 100A 

  Current Commands are Current LIMITS when in EV 
mode 

 

Average Current Command Boost (AVGBOOST) 

15           8 
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AVGBOOST 
7           0 

AVGBOOST 
 

Bits Name Description 
15:0 AVGBOOST Average Current Command Boost (Low side): 100A 

  Current Commands are Current LIMITS when in EV 
mode 

 

CANTX 

State of the Converter (STATUS) – Mailbox 3 

7   4  3     2       1       0 

Expandable Mode1 Mode0 State1 State0 
 

Bits Name Description 
7:4 NA Expandable 
3:2 Mode 00 – EV 
  01 - Hybrid Boost 
  10 - Hybrid Buck 
  11 - Not Used 
1:0 State 00 – Run 
  01 - Standby/Safe (Default)
  10 – Resetting 
  11 – Fault 
 

Data values (DATA) – Mailbox 3 

Heat sink temperature (HSTEMP) 

7           0 
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HSTEMP 
 

Bits Name Description 
7:0 HSTEMP  Heat sink temperature: -40C-120C 
 

High side DC Bus voltage (HSVBUS) 

15           8 

HSVBUS 
 

7           0 

HSVBUS 
 

Bits Name Description 
15:0 HSVBUS High Side DC Bus voltage: 0-900V        
 

Faults (FAULTS.ALL) 

15           8 

FAULTS.ALL  
 

7           0  

FAULTS.ALL 
 

Bits Name Description 
15:0 FAULTS.ALL A list of all faults masked into 16 bits 
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Data values (DATA) – Mailbox 4 

Average low side current (AVGCURLOW) 

15           8 

AVGCURLOW  
 

7           0 

AVGCURLOW  
 

Bits Name Description 

15:0 AVGCURLOW  Average current determined by internal sensors (low side): -
100/+100A 

 

Average current Phase 1 (AVGCURPH1) 

15           8 

AVGCURPH1  
 

7           0 

AVGCURPH1  
 

Bits Name Description 
15:0 AVGCURPH1  Average Phase 1 current: -100/+100A 
 

Average current Phase 2 (AVGCURPH2) 
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15           8 

AVGCURPH2  
 

7           0 

AVGCURPH2  
 

Bits Name Description 
15:0 AVGCURPH2  Average Phase 2 current: -100/+100A 
 

Average current Phase 3 (AVGCURPH3) 

15           8 

AVGCURPH3  
 

7           0 

AVGCURPH3  
 

Bits Name Description 
15:0 AVGCURPH3  Average Phase 3 current: -100/+100A 
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 To help code and decode the mailboxes in the DSP, custom data types were 

designed to fill the proper memory space locations with the corresponding information.  

The data types consist of a struct of all relevant bits.  This struct allowed the access of 

single bits with out affecting other bits in the memory location.  This is important to 

speed up coding time and execution time.  The struct memory space was then joined in a 

union with a memory location that takes covers all of the bit locations.  This allows the 

ability to affect all of the bits with a single instruction.  For instants, the resultant data 

type could be used to set the fault bits individually with a single instruction, while still 

being able to clear all bits with a single instruction.  These data types can be found in 

APPENDIX B. 

 

User Interface 

 The user interface allows the simulation of the third level of control.  The third 

level of control is intended to be the vehicle system controller.  Since the vehicle system 

controller is not designed here, there must be a way to simulate inputs and test the 

converter under different operating conditions. 

 Two versions of the interface were developed.  The first version allows direct 

control of all of the parameters seen in Figure 37.  These parameters include low voltage 

side set point, high voltage side set point, average inductor current set point in the buck 

direction, average inductor current set point in the boost direction, state, and mode.  The 

command state of the converter includes run, standby, and reset.  The modes include 

electric vehicle mode, hybrid boost vehicle mode, and hybrid buck vehicle mode.  All 

commanded values are set on the left side of the interface.  The data received back from 
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the converter is displayed on the right side of the interface.  This includes the current 

state and mode of the converter.  As well as the high voltage side, temperature, average 

inductor current measurements. 

 

 

Figure 37  User Interface 
 

 The second version of the user interface is almost identical to the first versions in 

appearance.  All received data is displayed in the same way as the first version, however 

the commanded values can not be set in the user interface directly.  A pre compiled tab 

delimited file is generated prior to running the converter.  The file contains all of the 

commanded values for a given time step size.  In this case all commanded values are 

updated every 100ms, since the converter expects to receive new information on this time 

interval.  This is very important if it is desired to test the converter when the input 
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commands from the level three control is updated much faster than a human could enter 

them into the interface.  The test running capable interface can be seen in Figure 38. 

 

Figure 38  User Interface with Test Running Capabilities 
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CHAPTER FOUR: EXPERIMENTAL RESULTS 

Converter Prototype 

 
A 3D-model was constructed of the input filter and used to help build the entire 

board assembly including, components, devices, battery connections and the rest of the 

DC-to-DC Converter. The power filter board was designed to minimize the space 

requirements.  The fact that the power filter components are designed on a separate board 

allows the ability to store them in a separate physical location than the Semikron unit.  

This allows for the separation of the size requirement for the entire converter.  Since heat 

dissipation is always an issue in the automotive world, the power filter board was also 

designed with notches cut in the PCB material to allow the inductor core material to 

protrude through.  This allows for direct cooling of the core material on the top and 

bottom.  The 3D-model and prototype is shown in Figure 39. 

 
Figure 39  3D-Design of Power Filter Board 
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 It can be seen in that the actual prototype very closely resembles the 3D-model as 

shown in Fig. 39.  The two large black wires are connected to the battery pack at the low 

voltage side.  The small black wire at the bottom of the Figure 40 is the common ground 

connection shared with the DC-to-DC converter.  Finally, the three red wires seen in the 

top of the figure are connected to the three phases on the Semikron unit. 

 

 
Figure 40  Power Filter Board Prototype 

 

 The final prototype can be seen in Figure 41.  The Semikron unit can be found in 

top right hand side of the figure.  The Semikron unit is equipped with three internal hall 

effect current sensors for each phase.  However, these sensors were bypassed by the three 

blue external hall effect sensors seen in the Figure 41.  This was done to increase the 

resolution of the current measurement for the inductor current regulation loop discussed 

in Chapter 3. 
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Figure 41  Final Prototype 
 

 

Experimental Results 

All control loops and modes of operation were implemented on the prototype 

mentioned above.  The bi-directional capabilities were tested in both Hybrid Mode and 

Electric Vehicle Mode. All control loops were tested under a range of load conditions and 

voltage configurations. 

In Figure 42, the converter is first held in standby and then ramped up to full 

power in the buck direction by increasing the current reference set point in the buck 

direction.  Next the reference is ramped back down to zero.  The mode then changes to 

the boost direction and the reference is ramped to full power and back down again.  This 

tests an extreme case for the converter that is usually not seen in normal operation.  One 

instance that the converter could experience is during a massive regenerative braking 
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action followed immediately by a full throttle command.  The yellow signal Figure 42 

represents the inductor current of one of the phases, whereas, the orange signal is a 

zoomed in version of the inductor current to show how the transition between buck and 

boost is done in a seamless manner. 

 

 

Figure 42  Power Sweep of Buck and Boost Modes 
 

In Figure 43, the converter is operated in electric vehicle mode where the voltage 

on the high side is regulated to 700V, represented by the red signal.  Then the load was 

increased to represent a higher demand from the motor drive system.  This effect can be 

seen in the inductor current in yellow and the battery current seen in green.  It can be seen 

how the voltage controller returns to the regulated set point after a transient period.  The 

load was then reduced to simulate less of a demand from the motor drive system.  The 

blue signal represents the input voltage from the batteries 
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Figure 43  Bus Voltage Regulation During Load Transient 
 

 In Figure 44, the converter is running in hybrid boost mode and the average 

inductor current is regulated.  The battery current is seen in green is representative of the 

average inductor current since it is the filtered inductor current.  The load is then 

increased representing a higher demand from the motor drive system.  In the actual 

system the high side voltage, seen in red, would be regulated by the generator discussed 

in previous chapters.  However, in this test the voltage was left unregulated, so it can be 

seen how the voltage drops because of the increased load.  After a short time interval, the 

load is returned to the previous value, simulating a reduction in demand from the motor 

drive system.  It can be seen how average inductor current is regulated during the load 

steps.  The blue signal represents the battery voltage. 
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Figure 44  Inductor Current Regulation During Load Steps 
 

 In Figure 45, the converter is running in hybrid boost mode, where the average 

inductor current is regulated seen in green.  Next, the input voltage, seen in blue, is 

stepped from 200V to 250V to simulate fluctuations in the battery voltage.  In the real 

system the fluctuations would never be this dramatic however testing under this extreme 

case verifies the converter can maintain regulation during changes in the input voltage.  
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Figure 45  Inductor Current Regulation During Input Voltage Steps 
 

 In Figure 46, the converter is initially running in hybrid buck mode.  The average 

inductor current is regulated as shown by the yellow waveform, the inductor current of 

one phase, since the peak current is held constant.  Then, from the user interface, the 

converter is commanded to hybrid boost mode.  After the command is received the 

converter switches to hybrid boost mode and ramps the current reference up to the 

commanded value in the boost direction.  This simulates the vehicle system controller 

commanding the converter to stop charging the batteries and start pushing power to the 

motor drive system.  It can be seen that in inductor current does indeed operate in DCM 

since the inductor current never goes negative with respect to the mode. 
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Figure 46  Commanded Mode Change Buck to Boost 
 

 In Figure 47, the converter is initially in standby.  From the interface the converter 

is command to hybrid boost mode.  The average inductor current set point is ramped up 

to the regulation set point, seen in the green waveform.  In this test the voltage on the 

high side is regulated by an external voltage source tied in parallel with a resistive load 

bank, seen in the yellow signal.  The method of ramping the reference up to the set point 

is known as soft starting.  This helps to reduce high peak demands from the converter 

during start up and makes the start up a much smoother process. 
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Figure 47  Hybrid Boost Start Up 
 

 The inductor current of each of the three phases can be seen in Figure 48.  It is 

shown how the inductor current is properly interleaved by spacing out the inductor 

current waveforms equally over the switching period.  The converter is running in hybrid 

boost mode with a small reference for the inductor current regulator.  The additional 

ringing seen when the inductor current should be zero is due to the added parasitic 

capacitance in the IGBT module.  This is common and seen in all converters that operate 

in DCM. 
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Figure 48  Experimental Inductor Current Interleaving 
 

 In Figure 49, the converter is running in hybrid boost mode with a high set point 

for the inductor current regulator.  The load seen on the high side is initially sufficient 

enough to make the output voltage less than 800V.  Then the load is taken away.  This 

simulates an initial high demand from the motor drive system and then a sudden loss of 

load.  The converter continues to try and regulate the current until the voltage reaches the 

over voltage regulation set point.  However, in this case the rise in voltage is so dramatic, 

seen in red, the output voltage regulator is not fast enough to respond and regulate a safe 

over voltage value.  The voltage then reaches the protection level of 800V where the 

converter detects this and shuts the converter down, putting it in standby. 
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Figure 49  Over Voltage Fault Shut Down 
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CHAPTER FIVE: CONCLUSION 

 

Since the introduction of modern hybrid electric vehicles in 1899 [10], there have 

been many major advances in technology in terms of devices, ICs, DPS and circuits.  A 

number of topologies have been discovered and implemented in today’s hybrid electric 

vehicles.  From these current topologies a subset of topologies has been classified and 

evaluated in this work.  It has been found that an addition of a bi-directional DC-to-DC 

converter has much to benefit for this subset of topologies. 

The advantages of a DCM converter were discussed to reduce the physical size of the 

inductors.  This is an important design criterion since space is a limited commodity in the 

vehicle world.  The converter design presented in this work is applicable for any subset of 

the topologies discussed here in which DCM operation is required. 

A series of operational modes were discussed, derived from real world operating 

conditions present in the subset of hybrid electric vehicle topologies.  Together, these 

modes along with the requirement for DCM operation define functions necessary for the 

level two controller.  Complex functions are used to control the driving of the switches in 

a way that guaranties DCM operation while still maintaining the bi-directional power 

flow of the converter.  The second level of control was designed to be open-ended, so the 

vehicle system controller would be able to send generalized commands to the converter.  

This allows the converter to operate in safe manner without to much intervention from 

the vehicle system controller.  This is important since the vehicle system controller is 

relatively slow compared to the system dynamics. 



74 

Keeping true to the hierarchical design of the controllers, the first level of control 

accepts commands from the second level of control.  The first level of control is 

comprised of all control loops which directly control the sensed parameters.  This 

includes inductor current regulation in buck and boost modes, high voltage side 

regulation, and low voltage side regulation.  All controllers were designed using a direct 

digital designed and implemented in a DSP. 

Two versions of the computer interface were developed to simulate inputs from the 

third level of control.  This allowed the test of the converter under all real world cases.  

The user interface also provided a means to acquirer and display digital data already 

present in the DSP.  While the first version of the interface allows the direct control over 

all system parameters in real time, the second version of the interface allowed for the use 

of precompiled test scenarios to be run. 

A system of fault protections were identified and implemented into the digital 

controller.  While hierarchical design is intended to protect the converter from unsafe 

operations, sometimes these situations are unavoidable.  In this case, it is important to 

have a series of protections to prevent damage to the converter and surrounding 

components. 

The use of interleaving was investigated and shown how it can alleviate the added 

voltage ripple present in DCM operated converters.  After analyzing the PWM modules 

preset in the implemented DSP, a method was developed to properly interleave the 

inductor currents in the three paralleled converters.  The interleaved inductor currents 

were then verified experimentally 
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The system as a whole was designed as a drop in unit for today’s hybrid electric 

vehicles. Since a converter with these advanced controller techniques is not available for 

the automotive world, this converter is a major advancement for this application. 
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APPENDIX A: FLOW CHARTS 



77 

 
 Main      This is where the code first starts, initializes 

      modules, and shows the branch for the  

      main controller interrupt. 

 Initialize DSP     Steps to initialize the DSP   

 Call ADC     Function used to trigger ADC and average 

      results.   

 Control Manager    Controller structure 

 Load Values from CAN   Fetches current results from the CAN 

 Transmit Values to CAN   Sends updated values to the CAN 

 Check for Faults    Checks any new fault conditions 

 Fetch State     Determines the appropriate state of the 

      converter. 

 Standby Handler    Functions need to hold converter in  

standby mode 

 Set Polarity     Sets the polarity of the switches 

 Reset Handler    Functions needed to hold the converter in 

      reset mode 

 Run Handler     Functions needed to hold the converter in 

      run mode 
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Main 
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Initialize DSP 

Enter

Initialize the 
System

Setup High Speed 
Clock

Initialize the 
GPIOs

Disable all 
interrupts 

Initialize the 
interrupt vector 

table

Clear all interrupt 
mask and flag bits

Configure 
interrupts to be 

used

Copy program 
from flash to ram

Initialize ADC, 
PWMs, and CAN

Enable Interrupts 

Configure the CAN 
and ADC

Return
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Call ADC 
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Control Manager 
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Load Values from CAN 
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Transmit Values to CAN 

 

 

 



84 

Check for Faults 
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Fetch State 
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Standby Handler 
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Set Polarity 
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Reset Handler 
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Run Handler 
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APPENDIX B: DSP CODE 
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 Settings.h    Contains defines used to easily adjust parameters in 

     the code 

 Sys_fun.h    Function prototypes for DSP specific functions 

 JD_PowerUnit.h   Function prototypes for application specific 

     functions 

 Sys_fun.c    Function definitions for DSP specific functions 

 JD_PowerUnit.c   Function definitions for application specific 

     functions 
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Settings.h 

#ifndef SETTINGS_H 
#define SETTINGS_H 
 
 // adc pin definitions 
 #define HS_VBUS_PIN   0x7    
 #define LS_VBUS_PIN   0xF 
 #define IL_AVG1_PIN   0x0 
 #define IL_AVG2_PIN   0x1 
 #define IL_AVG3_PIN   0x2 
 #define HS_TEMP_PIN   0xA 
 #define SPARE_ADC_PIN  0xD 
 
 // define maximum values for faults 
 #define HS_VBUS_MAX   (const long)800*59 // 
800 V    
 #define LS_VBUS_MAX   (const long)300*20 // 
300 V 
 #define IL_BUCK_AVG_MAX  (const long)35*1200 // 35 A 
 #define IL_BOOST_AVG_MAX (const long)65*1200 // 65 A 
 #define HS_TEMP_MAX   (const long)100*143+32476
 //100 C 
 #define SPARE_ADC_MAX  1000 
 
 // timer definitions 
 #define TPERIOD     2500  //2500=20kHz  //2940 = 17kHz 
.. clk 50MHz 
 #define ADC_PERIOD   100   //500   
 // 100MHz/1MHZ  = 1000/2 ? why need /2 
 #define DUTY_MAX     1875 // 1875 = 75% duty 
 #define DUTY_MIN   5 
  
 // controller settings 
 #define VB_REF_LIM   (long)300*20 
 #define VO_REF_LIM   (long)725*20*3 
 #define IO_REF_LIM   (long)65*20*60 
 
 #define VSET    0x7ffff 
 #define ISET    0x7ffff  
 
 #define IGAIN    1 
 #define VGAIN    3 
 
 #define INT_SAT_UPPER  (long)DUTY_MAX<<8  //629146 
 
 // CAN addresses 
 #define CAN_ADD_1   10 
 #define CAN_ADD_2   11 
 #define CAN_ADD_3   10 
 #define CAN_ADD_4   11 
 
 // miscellaneous 
 #define true    1 
 #define false    0 
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 // Offsets 
 #define HS_VBUS_OFFSET  90 
 #define HS_TEMP_OFFSET  27655 
 #define CUR_OFFSET1   32980 
 #define CUR_OFFSET2   32960 
 #define CUR_OFFSET3   32620 
 #define CUR_OFFSET  
 (long)(CUR_OFFSET1+CUR_OFFSET2+CUR_OFFSET3)    
  
 
#endif 
 

Sys_fun.h 

// header file for sys_fun.c 
#ifndef SYS_FUN_H 
#define SYS_FUN_H 
  
 #define FLASH  // comment this line and use RAM linker 
file to program to RAM 
 
 // mask adc conversion results 
 #define HS_VBUS_R1    AdcRegs.ADCRESULT0 
 #define HS_TEMP_R1    AdcRegs.ADCRESULT1 
 #define HS_VBUS_R2       AdcRegs.ADCRESULT2 
 #define HS_TEMP_R2     AdcRegs.ADCRESULT3 
 
 #define IL_AVG1_R1    AdcRegs.ADCRESULT4 
 #define IL_AVG2_R1    AdcRegs.ADCRESULT5 
 #define IL_AVG3_R1    AdcRegs.ADCRESULT6 
 #define IL_AVG1_R2    AdcRegs.ADCRESULT7 
 
 #define IL_AVG2_R2    AdcRegs.ADCRESULT8 
 #define IL_AVG3_R2    AdcRegs.ADCRESULT9 
 #define IL_AVG1_R3       AdcRegs.ADCRESULT10 
 #define IL_AVG2_R3       AdcRegs.ADCRESULT11 
 
 #define IL_AVG3_R3    AdcRegs.ADCRESULT12 
 #define IL_AVG1_R4    AdcRegs.ADCRESULT13 
 #define IL_AVG2_R4    AdcRegs.ADCRESULT14 
 #define IL_AVG3_R4    AdcRegs.ADCRESULT15 
 
 #define min(a,b) (a<b?a:b) 
 #define max(a,b) (a>b?a:b) 
 #define limit(a,b,c) min(max(a,b),c) 
 
 // function prototypes for system related functions 
 void sys_init(); 
 void adc_replenish(); 
 void epwm_replenish(); 
 void InitEPwm1Example(void); 
 void InitEPwm2Example(void); 
 void InitEPwm3Example(void); 
 void InitEPwm4Example(void); 
 unsigned polarity(unsigned int); 
 void load_can_data(); 
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 void trans_can_data(); 
 unsigned int current_duty(void); 
 signed long OVR_Z(signed long, long, int); 
 signed long OVR_N(signed long, int); 
 signed long IVR(signed long, int); 
 signed long ICR(signed long int, int); 
 void heartBeat_LED(int); 
 void call_ADC(); 
// unsigned int freq_resp(unsigned int); 
 
 // redirect interrupt service routines 
 interrupt void adc_isr(void); 
 interrupt void epwm1_timer_isr(void); 
 interrupt void ecan0inta_isr(void); 
 interrupt void ecan1inta_isr(void); 
 interrupt void ecan0intb_isr(void); 
 interrupt void ecan1intb_isr(void); 
 
 // CAN stuff 
 extern void DSP280x_ECanConfig(void);//MQ 
 extern void DSP280x_ECanaConfig(void);//MQ 
 extern void DSP280x_InterruptsConfig(void); //MQ 
 extern void DSP280x_CANA_RX(int MBOXnumber);//MQ 
 extern void DSP280x_CANB_RX(int MBOXnumber);//MQ 
 extern void DSP280x_CANA_TX(unsigned char *Message, int 
MBOXnumber);//MQ 
 extern void DSP280x_CANB_TX(unsigned char *Message, int 
MBOXnumber);//MQ 
 extern void DSP280x_ECanbConfig(void);//MQ 
 
 
 
// Custom structers /////////// 
 //////////////Faults///////////////// 
 struct FAULT_FLAGS_BITS {    // bits  description 
 
  Uint16 soft_fault_0:1; 
  Uint16 soft_fault_1:1; 
  Uint16 soft_fault_2:1; 
  Uint16 soft_fault_3:1; 
   
  Uint16 COMM_ERR:1; 
  Uint16 LS_OV:1; 
  Uint16 TEMP:1; 
  Uint16 IL_OC:1; 
 
    Uint16 crit_fault_0:1; 
    Uint16 crit_fault_1:1; 
    Uint16 crit_fault_2:1; 
    Uint16 crit_fault_3:1; 
 
    Uint16 crit_fault_4:1; 
    Uint16 crit_fault_5:1; 
    Uint16 START_UP:1; 
    Uint16 HS_OV:1; 
 }; 
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 union FAULT_FLAGS { 
    Uint16             all; 
    struct FAULT_FLAGS_BITS  bit; 
 }; 
 extern volatile union FAULT_FLAGS fault; 
 
 ///////////////CAN DATA/////////////////// 
 struct CAN1_RX_CMD_BITS { 
 
  unsigned char state:2; 
  unsigned char mode:2; 
 }; 
 
 union CAN1_RX_CMD { 
 
  unsigned char all; 
  struct CAN1_RX_CMD_BITS bit; 
 }; 
 
 struct STATS_BITS { 
 
  unsigned char STATE:2; 
  unsigned char MODE:2; 
 }; 
 
 union STATS { 
 
  unsigned char all; 
  struct STATS_BITS bit; 
 }; 
 
 struct TEMP_STATUS { 
 
  unsigned char HSTEMP; 
  union STATS STATUS; 
 }; 
 
 struct CAN_TX { 
 
  Uint16 FAULTS; 
  Uint16 HSVBUS; 
  struct TEMP_STATUS other; 
  Uint16 AVGCURLOW; 
  Uint16 AVGCURPH1; 
  Uint16 AVGCURPH2; 
  Uint16 AVGCURPH3; 
 }; 
 extern volatile struct CAN_TX tx; 
 
 struct CAN_RX { 
 
  Uint16 HSVBUS; 
  Uint16 LSVBUS; 
  union CAN1_RX_CMD cmd; 
  int16 AVGCURBOOST; 
  int16 AVGCURBUCK; 
 }; 
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 extern volatile struct CAN_RX rx; 
 
 extern volatile unsigned int comm_cnt; 
 
// pototype  
 extern volatile unsigned int HS_VBUS;  
 extern volatile unsigned int LS_VBUS; 
 extern volatile unsigned int IL_AVG1; 
 extern volatile unsigned int IL_AVG2; 
 extern volatile unsigned int IL_AVG3;     
 extern volatile long int IL_AVG;  
 extern volatile unsigned int HS_TEMP;  
 
 
  
#endif 
 

JD_PowerUnit.h 

// header file for JD_PowerUnit.c 
#ifndef JD_PowerUnit_H 
#define JD_PowerUnit_H 
 
 // define states 
 #define RUN     0 
 #define STANDBY    1 
 #define RESET    2 
 #define FAULT    3 
  
 // define modes 
 #define EV     0 
 #define HBOOST     1 
 #define HBUCK    2 
 #define SHUTDOWN   3 
 
 // function prototypes for application related functions 
 void check_faults(); 
 long int control_manager(void); 
 unsigned int fetch_state(void); 
 long int run_handler(void); 
 unsigned int reset_handler(void); 
 unsigned int standby_handler(void); 
  
#endif 
 

Sys_fun.c 

// ApECOR 
// John Deere Bi-Directional Power Unit 
// Michael Pepper 
// Septempber 27, 2006 
 
#include "DSP280x_Device.h"     // DSP280x Headerfile Include File 
#include "DSP280x_Examples.h"   // DSP280x Examples Include File 
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#include "JD_PowerUnit.h"  // Contains application specific 
information 
#include "sys_fun.h"   // Contains converter specific 
information 
#include "settings.h"   // Settings and general defines 
 
#include "DSP280x_CAN_GlobalVariableDefs.h"   //MQ: DSP28 MailBoxes 
Data Messages File 
 
#ifndef FLASH 
#include "DSP280x_PieVect.h"     // MQ 
#endif 
 
#ifdef FLASH 
// Murad Qahwash: These are defined by the linker (see F2808.cmd) 
extern Uint16 RamfuncsLoadStart; 
extern Uint16 RamfuncsLoadEnd; 
extern Uint16 RamfuncsRunStart; 
 
// Functions that will be run from RAM need to be assigned to  
// a different section.  This section will then be mapped using 
// the linker cmd file. 
#pragma CODE_SECTION(ecan0inta_isr, "ramfuncs"); 
#pragma CODE_SECTION(ecan1inta_isr, "ramfuncs"); 
#pragma CODE_SECTION(ecan0intb_isr, "ramfuncs"); 
#pragma CODE_SECTION(ecan1intb_isr, "ramfuncs"); 
#pragma CODE_SECTION(epwm1_timer_isr, "ramfuncs"); 
#pragma CODE_SECTION(adc_isr, "ramfuncs"); 
 
//End MQ 
#endif 
 
void DSP280x_CANA_TX(); 
 
void main(void) 
{ 
 sys_init(); 
 
// Wait for inturpts 
   for(;;) 
   ; 
}  
 
interrupt void ecan0inta_isr(void) 
{ 
// Insert ISR Code here 
  int iMBox; 
  iMBox = ECanaRegs.CANGIF0.bit.MIV0 ; 
 
 // michael added 
 comm_cnt = 0; 
 
//  
 
/* Begin Receiving */ 
 while(ECanaRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for 
RMPi to be set. i = 16:31 "RX MBoxes" 
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  ECanaRegs.CANRMP.all |= iMBox; 
 DSP280x_CANA_RX(iMBox); 
 
  // To receive more interrupts from this PIE group, acknowledge this 
interrupt  
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP9; 
} 
 
interrupt void ecan1inta_isr(void) 
{ 
// Insert ISR Code here 
  int iMBox; 
  iMBox = ECanaRegs.CANGIF1.bit.MIV1 ; 
 
 // michael added 
 comm_cnt = 0; 
 
/* Begin Receiving */ 
 while(ECanaRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for 
RMPi to be set. i = 16:31 "RX MBoxes" 
  ECanaRegs.CANRMP.all |= iMBox; 
 DSP280x_CANA_RX(iMBox); 
 
  // To receive more interrupts from this PIE group, acknowledge this 
interrupt  
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP9; 
} 
 
interrupt void ecan0intb_isr(void) 
{ 
// Insert ISR Code here 
  int iMBox; 
  iMBox = ECanbRegs.CANGIF0.bit.MIV0 ; 
 
/* Begin Receiving */ 
 while(ECanbRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for 
RMPi to be set. i = 16:31 "RX MBoxes" 
  ECanbRegs.CANRMP.all |= iMBox; 
 DSP280x_CANB_RX(iMBox); 
 
  // To receive more interrupts from this PIE group, acknowledge this 
interrupt  
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP9; 
} 
 
interrupt void ecan1intb_isr(void) 
{ 
// Insert ISR Code here 
  int iMBox; 
  iMBox = ECanbRegs.CANGIF1.bit.MIV1 ; 
 
/* Begin Receiving */ 
 while(ECanbRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for 
RMPi to be set. i = 16:31 "RX MBoxes" 
  ECanbRegs.CANRMP.all |= iMBox; 
 DSP280x_CANB_RX(iMBox); 
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  // To receive more interrupts from this PIE group, acknowledge this 
interrupt  
    PieCtrlRegs.PIEACK.all = PIEACK_GROUP9; 
} 
 
interrupt void epwm1_timer_isr() 
{ 
// Define local varaibles 
 static signed int duty = 0; 
  
// Trigger an ADC converstion 
 call_ADC(); 
 
// Load previously calculated duty cycle  
 EPwm1Regs.CMPA.half.CMPA = duty; 
 EPwm2Regs.CMPA.half.CMPA = duty; 
 EPwm3Regs.CMPA.half.CMPA = duty; 
 
// Call control manger, returns new duty cycle values  
 duty = control_manager(); 
 
// Duty cycle conditioning 
 if(duty > DUTY_MAX) 
  duty=DUTY_MAX; 
 if(duty < DUTY_MIN) 
  duty=DUTY_MIN; 
 
// Blink the heart beat LED  
 heartBeat_LED(0x7FF); 
 
// Reset the pwm timer interrupt 
 epwm_replenish(); 
  
 return; 
} 
 
void call_ADC() 
{ 
// Start ADC and average results 
 AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; 
 while(AdcRegs.ADCTRL2.bit.SOC_SEQ1) 
 {} // wait for SOC 
  
 IL_AVG1 = ((long)IL_AVG1_R1+IL_AVG1_R2+IL_AVG1_R3+IL_AVG1_R4)>>2; 
 IL_AVG2 = ((long)IL_AVG2_R1+IL_AVG2_R2+IL_AVG2_R3+IL_AVG2_R4)>>2; 
 IL_AVG3 = ((long)IL_AVG3_R1+IL_AVG3_R2+IL_AVG3_R3+IL_AVG3_R4)>>2; 
 HS_VBUS = ((long)HS_VBUS_R1+HS_VBUS_R2)>>1; 
 HS_TEMP = ((long)HS_TEMP_R1+HS_TEMP_R2)>>1; 
 
 IL_AVG = ((long)IL_AVG1+IL_AVG2+IL_AVG3); 
 
// adc_replenish(); 
}  
 
interrupt void adc_isr() 
{ 
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 adc_replenish(); 
 
   return; 
} 
 
signed long OVR_Z(signed long vo_ref, long u_limit, int reset) 
{ 
 // Define local variables 
 static long vo_meas=0; 
   static long diff=0,output=0,comp_diff=0,u1=0,u2=0; 
 
 if(reset) 
 { 
  output=0; 
  u1 = 0; 
  u2 = 0; 
 } 
   else 
 { 
    // Subtract any offset 
  vo_meas=(long)HS_VBUS-(long)HS_VBUS_OFFSET;  // 
r16:  0.0 -> 1.0 
   
  // difference between ref and feedback 
  diff=(long)vo_ref-(long)vo_meas;    // 
r15: -1.0 -> 1.0 
   
  // compensated difference   
  comp_diff=  ( (long)diff<<10   )    // 
r23: -3.0 -> 3.0  
     -( (long)u1<<11  ) 
     +( (long)u1   ) 
     +( (long)u2<<10  ); 
      
  u2=u1; 
  u1=diff; 
      
  // gain and integrator 
  output+=( (comp_diff>>10)<<VGAIN );    // 
r15: 
     
  // limitation (OVR limit to ZERO and variable uppper limit) 
  if(output<0) 
    output=0; 
  if(output>INT_SAT_UPPER) 
    output=INT_SAT_UPPER; 
 }          
 
 return(output);        
 // output r15: 
} 
 
signed long OVR_N(signed long vo_ref, int reset) 
{ 
 // Define local variables 
 static long vo_meas=0; 
   static long diff=0,output=0,comp_diff=0,u1=0,u2=0; 
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 if(reset) 
 { 
  output=0; 
  u1 = 0; 
  u2 = 0; 
 } 
   else 
 { 
    // Subtract any offset 
  vo_meas=(long)HS_VBUS-(long)HS_VBUS_OFFSET;  // 
r16:  0.0 -> 1.0 
   
  // difference between ref and feedback 
  diff=(long)vo_ref-(long)vo_meas;    // 
r15: -1.0 -> 1.0 
   
  // compensated difference   
  comp_diff=  ( (long)diff<<10   )    // 
r23: -3.0 -> 3.0  
     -( (long)u1<<11  ) 
     +( (long)u1   ) 
     +( (long)u2<<10  ); 
      
  u2=u1; 
  u1=diff; 
      
  // gain and integrator 
  output+=( (comp_diff>>10)<<VGAIN );    // 
r15: 
     
  // limitation (OVR can be negitive) 
  if(output<-629146) 
    output=-629146; 
  if(output>INT_SAT_UPPER) 
    output=INT_SAT_UPPER; 
 }          
 
 return(output);        
 // output r15: 
} 
 
signed long IVR(signed long vo_ref, int reset) 
{ 
 // Define local variables 
 static long vo_meas=0; 
   static long diff=0,output=0; 
 
 if(reset) 
 { 
  output=0; 
 } 
   else 
 { 
    // difference between ref and feedback 
  vo_meas=(long)rx.LSVBUS;      
 // r16:  0.0 -> 1.0 
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  diff=(long)vo_ref-(long)vo_meas;//<<4);   
 // r20: -1.0 -> 1.0 
     
  // gain and integrator 
  output+=(diff>>VGAIN);       
 // r20 
     
  // limitation (OVR can be negitive) 
  if(output<0) 
    output=0; 
  if(output>INT_SAT_UPPER) 
    output=INT_SAT_UPPER;       
 // r20 
 } 
 
 return(output);         
 // output r20 
} 
 
signed long ICR(signed long io_ref, int reset) 
{ 
 // Define local variables 
 static long io_meas=0; 
   static long diff=0,output=0,comp_diff=0,u1=0,u2=0; 
 
 if(reset) 
 { 
  output=0; 
  u1 = 0; 
  u2 = 0; 
 } 
   else 
 { 
  // take the absolute value of io_ref 
  if(io_ref<0) 
  { 
   io_ref=-io_ref; 
  } 
   
  io_meas = (long)IL_AVG - (long)CUR_OFFSET; 
 
  if(io_meas<0) 
  { 
   io_meas=-io_meas; 
  } 
 
  // difference between ref and feedsback 
    diff=(long)io_ref-(long)io_meas;  // r15: -1.0 -> 
1.0 
   
  // compensated difference   
  comp_diff=  ( (long)diff<<6    )  // r21: -3.0 -> 
3.0  
     -( (long)u1<<7  ) 
     +( (long)u1   ) 
     +( (long)u2<<6   ); 
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  u2=u1; 
  u1=diff;  
 
    // gain and limited integrator 
  output+=((comp_diff>>6)<<IGAIN);  // r15:  
 
  // limitation (ICR cannot be negitave) 
  if(output<0) 
    output=0; 
  if(output>INT_SAT_UPPER) 
    output=INT_SAT_UPPER; 
 } 
 
   return (output);      // r15: 
}  
 
void load_can_data() 
{ 
 
 // Load recived CAN data into global variables 
 rx.cmd.all = ECana_MBoxes_Data.MBOX26.MDL.byte.BYTE0; 
 rx.HSVBUS = ECana_MBoxes_Data.MBOX26.MDH.word.HI_WORD; 
 rx.LSVBUS = ECana_MBoxes_Data.MBOX26.MDL.word.LOW_WORD; 
 rx.AVGCURBUCK = (32000-
ECana_MBoxes_Data.MBOX27.MDL.word.LOW_WORD); 
 rx.AVGCURBOOST = (ECana_MBoxes_Data.MBOX27.MDH.word.HI_WORD-
32000); 
 
 // Load transmitted CAN data into global variables 
 tx.HSVBUS = (signed long)(HS_VBUS-HS_VBUS_OFFSET)/3; 
 tx.other.HSTEMP = ((signed long)(HS_TEMP-HS_TEMP_OFFSET)/129); 
 tx.AVGCURPH1 = (signed long)(((signed)(IL_AVG1-
CUR_OFFSET1)/60)+32000); 
 tx.AVGCURPH2 = (signed long)(((signed)(IL_AVG2-
CUR_OFFSET2)/60)+32000); 
 tx.AVGCURPH3 = (signed long)(((signed)(IL_AVG3-
CUR_OFFSET3)/60)+32000); 
 tx.AVGCURLOW = (signed long)(((long)(IL_AVG-
CUR_OFFSET)/60)+32000); 
 //tx.other.STATUS.bit.MODE = rx.cmd.bit.mode;    // Update 
these in different location in code 
 //tx.other.STATUS.bit.STATE = rx.cmd.bit.state;  // Update 
these in different location in code 
  
 // validate date 
// if(rx.HSVBUS > HSVBUS_MAX) 
//  fault.bit.crit_fault_1 = 1;  // invalid data 
// if(rx.HSVBUS < HSVBUS_MIN) 
//  fault.bit.crit_fault_1 = 1;  // invalid data 
 
 return; 
} 
 
void trans_can_data() 
{ 
 // define local variables 
 unsigned char Message[8]; 
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 Message[0]= tx.other.STATUS.all; 
 Message[1]= tx.other.HSTEMP; 
 Message[2]= tx.HSVBUS; 
 Message[3]= tx.HSVBUS>>8; 
 Message[4]= tx.FAULTS; 
 Message[5]= tx.FAULTS>>8; 
 Message[6]= 0; 
 Message[7]= 0; 
 
 DSP280x_CANA_TX(Message,10); 
 
 Message[0]= tx.AVGCURLOW; 
 Message[1]= tx.AVGCURLOW>>8; 
 Message[2]= tx.AVGCURPH1; 
 Message[3]= tx.AVGCURPH1>>8; 
 Message[4]= tx.AVGCURPH2; 
 Message[5]= tx.AVGCURPH2>>8; 
 Message[6]= tx.AVGCURPH3; 
 Message[7]= tx.AVGCURPH3>>8; 
 
 DSP280x_CANA_TX(Message,11); 
 
 return; 
} 
 
unsigned int current_duty() 
{ 
 // return the current duty cycle 
 return(EPwm1Regs.CMPA.half.CMPA); 
} 
 
void heartBeat_LED(int speed) 
{ 
 static unsigned int cnt = 0; 
 if( !(++cnt & speed) ) 
  GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1;  // toggle 
heartBeat 
 
 return; 
} 
 
unsigned polarity(unsigned int value) 
{ 
 static unsigned current=0; 
 
 switch(value) 
 { 
  case HBOOST:  // Boost 
  { 
   EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm1Regs.AQCTLA.bit.PRD = AQ_SET;     
   EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR;   
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   EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm2Regs.AQCTLA.bit.PRD = AQ_SET;     
   EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
 
   EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm3Regs.AQCTLA.bit.PRD = AQ_SET;     
   EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR;   
 
   current=value;       
 // update current state 
   return current; 
  } 
  case HBUCK:  // Buck 
  { 
   EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;     
   EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm1Regs.AQCTLB.bit.PRD = AQ_SET;   
   
   EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR;     
   EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm2Regs.AQCTLB.bit.PRD = AQ_SET; 
 
   EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR;     
   EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm3Regs.AQCTLB.bit.PRD = AQ_SET; 
 
   current=value;       
 // update current state 
   return current;  
  } 
  case '?': 
  { 
   return current; 
  } 
  default: // ShutDown 
  { 
   EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;     
   EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR;   
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   EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR;     
   EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
 
   EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;  // 
Active low for lower switch 
   EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR;     
   EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;  // 
Disable upper switch 
   EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
 
   current=value;       
 // update current state 
   return current; 
  } 
 } 
} 
  
void InitEPwm1Example() 
{ 
      
    EPwm1Regs.TBPRD = TPERIOD;       // 
Period 
 EPwm1Regs.TBPHS.half.TBPHS = 0;     // Set 
Phase register to zero 
 EPwm1Regs.TBCTR = 0x0000;                   // Clear 
counter 
 EPwm1Regs.CMPA.half.CMPA = 0;     // set duty 
cycle 
 EPwm1Regs.CMPB = 25;     
 
 EPwm1Regs.TBCTL.bit.FREE_SOFT = 0x10;     // Free 
running mode 
 EPwm1Regs.TBCTL.bit.CTRMODE = 0;     // Up count 
 EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;   // Master module 
 EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW;   // Shadow 
the period reg 
 EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;  // Sync down-
stream module 
 
 EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;  // shadow 
mode 
 EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;  // shadow 
mode 
 EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
 EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
  
 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;    // init 
both PWMs forced low 
 EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;   
 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; 
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 EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
  
 EPwm1Regs.DBCTL.bit.OUT_MODE = 00;    // Disable 
Dead-band module 
 
 // Set up interupt 
  EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;      // Select INT on 
Zero event 
    EPwm1Regs.ETSEL.bit.INTEN = 1;      // Enable 
INT 
    EPwm1Regs.ETPS.bit.INTPRD = ET_1ST;           // Generate INT 
on 1st event 
 
 return; 
} 
 
 
void InitEPwm2Example() 
{ 
 
 EPwm2Regs.TBPRD = TPERIOD;      // 
Period = 
 EPwm2Regs.TBPHS.half.TBPHS = TPERIOD/3;   // Phase = 
120d   
 EPwm2Regs.TBCTR = 0x0000;                       // Clear counter 
 EPwm2Regs.CMPA.half.CMPA = 0;     // set 
initial duty cycle 
 
 EPwm2Regs.TBCTL.bit.FREE_SOFT = 0x10;   // Free 
running mode  
 EPwm2Regs.TBCTL.bit.CTRMODE = 0;     // Up Count 
 EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE;    // Slave 
module 
 
 EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW;   // shadow 
period reg 
 EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;   // sync 
flow-through 
  
 EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;  // shadow 
mode 
 EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;  // shadow 
mode 
 EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
 EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
  
 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;    // init 
both PWMs forced low 
 EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR;   
 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; 
 EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
  
 EPwm2Regs.DBCTL.bit.OUT_MODE = 0;     // disable 
Dead-band module 
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 return;           
} 
 
void InitEPwm3Example() 
{ 
 
 EPwm3Regs.TBPRD = TPERIOD;       // 
Period =  
 EPwm3Regs.TBPHS.half.TBPHS = 2*TPERIOD/3;  // Phase = 240d 
 EPwm3Regs.TBCTR = 0x0000;                       // Clear counter 
 EPwm3Regs.CMPA.half.CMPA = 0;       // 
set duty cycle 
 
 
 EPwm3Regs.TBCTL.bit.FREE_SOFT = 0x10;   // Free 
running mode  
 EPwm3Regs.TBCTL.bit.CTRMODE = 0;     // Up count 
 EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE;    // Slave 
module 
 
 EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW;   // shadow 
the period reg 
 EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;   // sync 
flow-through 
  
 EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;  // shadow 
mode 
 EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;  // shadow 
mode 
 EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
 EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
  
 EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;    // init 
both PWMs forced low 
 EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR;   
 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; 
 EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
  
 EPwm3Regs.DBCTL.bit.OUT_MODE = 0;     // disable 
Dead-band module          
  // fix this to give comp. signals 
    
 return; 
} 
 
void InitEPwm4Example() 
{ 
 
 EPwm4Regs.TBPRD = ADC_PERIOD;      // 
Period =  
 EPwm4Regs.TBPHS.half.TBPHS = 0;     // 
Phase = 0 
 EPwm4Regs.TBCTR = 0x0000;                       // Clear counter 
 EPwm4Regs.CMPA.half.CMPA = ADC_PERIOD>>1;  // set duty cycle 
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 EPwm4Regs.TBCTL.bit.FREE_SOFT = 0x10;   // Free 
running mode  
 EPwm4Regs.TBCTL.bit.CTRMODE = 0;     // Up count 
 EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE;   // Slave module 
 
 EPwm4Regs.TBCTL.bit.PRDLD = TB_SHADOW;   // shadow 
the period reg 
 EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;   // sync 
flow-through 
  
 EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;  // shadow 
mode 
 EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;  // shadow 
mode 
 EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
 EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;  // load on 
CTR=Zero 
  
 EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR;    // init 
both PWMs forced low 
 EPwm4Regs.AQCTLA.bit.PRD = AQ_CLEAR;   
 EPwm4Regs.AQCTLB.bit.CAU = AQ_CLEAR; 
 EPwm4Regs.AQCTLB.bit.PRD = AQ_CLEAR; 
  
 EPwm4Regs.DBCTL.bit.OUT_MODE = 0;     // disable 
Dead-band module 
  
 // Start the conversrion for the ADC 
// EPwm4Regs.ETSEL.bit.SOCAEN = 1;     // 
enable triggering 
// EPwm4Regs.ETSEL.bit.SOCASEL = 6;    // trigger 
ADC on period 
// EPwm4Regs.ETPS.bit.SOCAPRD = 1;     // 
trigger on first event 
  
 return; 
} 
 
void sys_init() 
{ 
 
// Step 1. Initialize System Control: 
// PLL, WatchDog, enable Peripheral Clocks 
// This example function is found in the DSP280x_SysCtrl.c file. 
   InitSysCtrl(); 
 
// For this example, set HSPCLK to SYSCLKOUT / 8 (12.5Mhz assuming 
100Mhz SYSCLKOUT) 
   EALLOW; 
   SysCtrlRegs.HISPCP.all = 0x4;  // HSPCLK = SYSCLKOUT/8 
   EDIS; 
 
// Step 2. Initalize GPIO:  
// This example function is found in the DSP280x_Gpio.c file and 
// illustrates how to set the GPIO to it's default state. 
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// InitGpio();  // Skipped for this example   
 
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3 
// These functions are in the DSP280x_EPwm.c file 
   InitEPwm1Gpio(); 
   InitEPwm2Gpio(); 
   InitEPwm3Gpio(); 
   InitEPwm4Gpio(); 
 
   // Just initalize eCAN pins for this example 
   // This function is in DSP280x_ECan.c 
   InitECanGpio(); 
    
   EALLOW; 
   // Set up the heartBeat_LED 
   GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0;  // select GPIO function 
   GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1;  // Output 
 
   // Set up spare GPIO 
   GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 0;  // select GPIO function 
   GpioCtrlRegs.GPADIR.bit.GPIO8 = 1;  // Output 
   EDIS; 
 
// Step 3. Clear all interrupts and initialize PIE vector table: 
// Disable CPU interrupts  
   DINT; 
 
// Initialize the PIE control registers to their default state. 
// The default state is all PIE interrupts disabled and flags 
// are cleared.   
// This function is found in the DSP280x_PieCtrl.c file. 
   InitPieCtrl(); 
    
// Disable CPU interrupts and clear all CPU interrupt flags: 
   IER = 0x0000; 
   IFR = 0x0000; 
 
// Initialize the PIE vector table with pointers to the shell Interrupt  
// Service Routines (ISR).   
// This will populate the entire table, even if the interrupt 
// is not used in this example.  This is useful for debug purposes. 
// The shell ISR routines are found in DSP280x_DefaultIsr.c. 
// This function is found in DSP280x_PieVect.c. 
   InitPieVectTable(); 
 
// Interrupts that are used in this example are found in 
DSP280x_DefaultIsr.c. 
 
   DSP280x_InterruptsConfig(); 
   //EnableInterrupts(); 
 
   EALLOW; 
   PieVectTable.ADCINT = &adc_isr;    // isr for avg 
samples 
   PieVectTable.EPWM1_INT = &epwm1_timer_isr; // isr for main section 
of code 
   PieVectTable.ECAN0INTA = &ecan0inta_isr; 
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   PieVectTable.ECAN1INTA = &ecan1inta_isr; 
   PieVectTable.ECAN0INTB = &ecan0intb_isr; 
   PieVectTable.ECAN1INTB = &ecan1intb_isr;     
   EDIS; 
 
#ifdef FLASH 
   // Murad Qahwash. User specific code, enable interrupts: 
 
// Copy time critical code and Flash setup code to RAM 
// This includes the following ISR functions: epwm1_timer_isr(), 
epwm2_timer_isr() 
// epwm3_timer_isr and and InitFlash(); 
// The  RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart 
// symbols are created by the linker. Refer to the F2808.cmd file.  
   MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart); 
 
// Call Flash Initialization to setup flash waitstates 
// This function must reside in RAM 
   InitFlash(); 
#endif 
 
// Step 4. Initialize all the Device Peripherals: 
// This function is found in DSP280x_InitPeripherals.c 
// InitPeripherals();  // Not required for this example 
   InitAdc(); 
 
   EALLOW; 
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; 
   EDIS; 
 
   InitEPwm1Example();     
   InitEPwm2Example(); 
   InitEPwm3Example(); 
   InitEPwm4Example(); 
    
   EALLOW; 
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; 
   EDIS; 
 
   // In this case just initalize eCAN-A and eCAN-B 
   // This function is in DSP280x_ECan.c 
   InitECan(); 
    
// Step 5. User specific code, enable interrupts 
 
// Enable ADCINT in PIE 
   PieCtrlRegs.PIEIER1.bit.INTx6 = 1; // ADC 
   PieCtrlRegs.PIEIER3.bit.INTx1 = 1; // PWM 
 
   IER |= M_INT1;  // Enable CPU Interrupt Level 1 
   IER |= M_INT3; // Enable CPU INT3 which is connected to EPWM1-6 INT: 
   IER |= M_INT9;   // Enable CPU Interrupt Level 9 
   EINT;           // Enable Global interrupt INTM 
   ERTM;           // Enable Global realtime interrupt DBGM 
 
   // configure the CAN 
   DSP280x_ECanConfig(); //MQ 
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// Configure ADC 
   AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 7; 
   AdcRegs.ADCMAXCONV.bit.MAX_CONV2 = 7; 
 
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 = HS_VBUS_PIN;  // Setup 1st SEQ1 
conv. 
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 = HS_TEMP_PIN;  // Setup 2nd SEQ1 
conv. 
   AdcRegs.ADCCHSELSEQ1.bit.CONV02 = HS_VBUS_PIN;  // Setup 3rd SEQ1 
conv. 
   AdcRegs.ADCCHSELSEQ1.bit.CONV03 = HS_TEMP_PIN;  // Setup 4th SEQ1 
conv. 
    
   AdcRegs.ADCCHSELSEQ2.bit.CONV04 = IL_AVG1_PIN; 
   AdcRegs.ADCCHSELSEQ2.bit.CONV05 = IL_AVG2_PIN; 
   AdcRegs.ADCCHSELSEQ2.bit.CONV06 = IL_AVG3_PIN; 
   AdcRegs.ADCCHSELSEQ2.bit.CONV07 = IL_AVG1_PIN; 
 
   AdcRegs.ADCCHSELSEQ3.bit.CONV08 = IL_AVG2_PIN; 
   AdcRegs.ADCCHSELSEQ3.bit.CONV09 = IL_AVG3_PIN; 
   AdcRegs.ADCCHSELSEQ3.bit.CONV10 = IL_AVG1_PIN; 
   AdcRegs.ADCCHSELSEQ3.bit.CONV11 = IL_AVG2_PIN; 
 
   AdcRegs.ADCCHSELSEQ4.bit.CONV12 = IL_AVG3_PIN; 
   AdcRegs.ADCCHSELSEQ4.bit.CONV13 = IL_AVG1_PIN; 
   AdcRegs.ADCCHSELSEQ4.bit.CONV14 = IL_AVG2_PIN; 
   AdcRegs.ADCCHSELSEQ4.bit.CONV15 = IL_AVG3_PIN; 
       
   AdcRegs.ADCTRL1.bit.CONT_RUN = 0;    // Set ADC 
to start/stop mode 
   AdcRegs.ADCTRL1.bit.SEQ_CASC = 1;    // Cascade 
Seq1 and 2 
   //AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;  // Enable SOCA 
from ePWM to start SEQ1 
   //AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1;    // Enable SEQ1 
interrupt (every EOS) 
 
// Initilize with a fault to force start up in standby 
   rx.cmd.bit.state=0; 
   ECana_MBoxes_Data.MBOX26.MDL.byte.BYTE0=0; 
   fault.bit.START_UP=1; 
 
} 
 
void adc_replenish() 
{ 
// Reinitialize for next ADC sequence 
   AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;         // Reset SEQ1 
 AdcRegs.ADCTRL2.bit.RST_SEQ2 = 1;     // Reset SEQ2 
   AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // Clear INT SEQ1 bit 
  // PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge 
interrupt to PIE 
} 
 
void epwm_replenish() 
{ 
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// Clear INT flag for this timer 
 EPwm1Regs.ETCLR.bit.INT = 1; 
    
// Acknowledge this interrupt to receive more interrupts from group 3 
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 
} 
//=====================================================================
====== 
// No more. 
//=====================================================================
====== 
 

JD_PowerUnit.c 

// code for digital control of John Deere's power unit 
// ApECOR 
// Created August 25, 2006 
//---------------------------------------------------------------- 
 
#include "DSP280x_Device.h"     // DSP280x Headerfile Include File 
#include "DSP280x_Examples.h"   // DSP280x Examples Include File 
#include "DSP280x_CAN_GlobalVariableDefs.h"   //MQ: DSP28 MailBoxes 
Data Messages File 
 
#include "settings.h" 
#include "JD_PowerUnit.h" 
#include "sys_fun.h" 
 
 
// First fuction to be called 
// All control starts from here 
// Function returns a refrence 
// for Duty in R20 format 
long int control_manager() 
{ 
// Define local variables 
 static signed duty = 0; 
 static signed soft = 0; 
 static unsigned tx_cnt = 0; 
 
// Transmit data to CAN 
 if(++tx_cnt == 0xFFF) // 2000 = 100ms at 20kHz 
 { 
  GpioDataRegs.GPATOGGLE.bit.GPIO8 = 1; 
  trans_can_data(); 
  tx_cnt=0; 
 } 
  
// Load values recived from CAN 
 load_can_data(); 
 
// Check for fault conditions 
 check_faults(); 
 
//  
 switch (fetch_state()) 
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 { 
  case RUN:   //run 
  {  
 
  // duty = (( (long)TPERIOD*run_handler() )>>20); 
   duty = run_handler()>>8; 
 
   //return(duty); 
    
   ++soft;   // increment the soft start 
 
   if(soft<0)  // limit the soft start 
    soft=0; 
   if(soft>(DUTY_MAX<<3)) 
    soft=(DUTY_MAX<<3); 
    
   return(min(duty,soft>>3)); 
  } 
  case RESET:   //reset 
  { 
 
   duty = current_duty(); 
 
   --soft;   // increment the soft start 
 
   if(soft<0)  // limit the soft start 
   { 
    soft=0; 
    reset_handler(); 
   } 
   if(soft>(DUTY_MAX<<3)) 
    soft=(DUTY_MAX<<3); 
 
   return(min(duty,soft>>3)); 
  } 
  default:   //standby 
  { 
 
   duty = current_duty(); 
 
   --soft;   // increment the soft start 
 
   if(soft<0)  // limit the soft start 
   { 
    soft=0; 
    standby_handler(); 
   } 
   if(soft>(DUTY_MAX<<3)) 
    soft=(DUTY_MAX<<3); 
 
   return(min(duty,soft>>3)); 
  } 
 } 
} 
 
unsigned int fetch_state() 
{ 
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// Define local variables 
unsigned int state=rx.cmd.bit.state; //init at recived value 
  
 tx.other.STATUS.bit.STATE=state; 
 
// If fault is present update mode to 
// standby and trasmitte a FAULT 
 if(fault.all) 
 { 
  state=STANDBY; 
  tx.other.STATUS.bit.STATE=FAULT; // tx a fault 
 }  
 
// If a RESET command is sent ignore the  
// fault and set state to reset 
 if(rx.cmd.bit.state == RESET) 
 { 
  state=RESET; 
  tx.other.STATUS.bit.STATE=RESET; 
  // might tx data later 
 } 
 
 return(state); 
} 
 
long int run_handler() 
{ 
// define local variables 
int reset = 0; 
 
// Select mode recived from the CAN 
 switch(rx.cmd.bit.mode) 
 { 
  case EV: // EV 
  {  
   // define local variables 
   static long io_ref=0,vo_ref=0;   
   static long io_out=0,vo_out=0; 
 
   if(tx.other.STATUS.bit.MODE == EV) 
    reset=0;      
 // run in normal mode 
   else 
   { 
    reset=1;      
 // reset the controller  
    tx.other.STATUS.bit.MODE = EV; 
   }     
      
     // set voltage regulation reference and run OVR_N 
(negitive output enabled) 
   vo_ref=(long)rx.HSVBUS*3; 
        
   vo_out=OVR_N(min(VO_REF_LIM,vo_ref),reset); 
 
   // update polarity based on current command 
   if(vo_out>0) 
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   { 
    // set current regulation reference 
    io_ref=(long)rx.AVGCURBOOST*60;  // 
check this scaling 
    polarity(HBOOST); 
   } 
   else 
   {  
    // set current regulation reference 
    io_ref=(long)rx.AVGCURBUCK*60;  // 
check this scaling 
    polarity(HBUCK); 
   }  
 
   io_out=ICR(min(IO_REF_LIM,io_ref),reset); 
 
   if(vo_out<0) 
    vo_out=-vo_out; 
 
   return(min(io_out,vo_out)); 
  } 
  case HBOOST: // HBOOST 
  { 
   // define local variables 
   static long io_ref=0,vo_ref=0;  
   static long io_out=0,vo_out = 0; 
    
   if(tx.other.STATUS.bit.MODE == HBOOST) 
   { 
    reset=0;    // run in normal 
mode  
    polarity(HBOOST);  // set polarity to 
HBOOST 
   } 
   else 
   { 
    reset=1;      
 // reset the controller  
    tx.other.STATUS.bit.MODE = HBOOST; 
    polarity(SHUTDOWN);  // set polarity 
to SHUTDOWN 
   } 
  
   // set current command 
   io_ref=(long)rx.AVGCURBOOST*60;   // 
check this scaling 
    
   io_out=ICR(min(IO_REF_LIM,io_ref),reset); 
 
   // set over voltage regulation 
   //vo_ref = freq_resp((long)rx.HSVBUS*3);    
   vo_ref=(long)rx.HSVBUS*3; 
 
   vo_out=OVR_Z(min(VO_REF_LIM,vo_ref),io_out,reset); 
       
   return(min(io_out,vo_out));  
  } 
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  case HBUCK: // HBUCK 
  { 
   // define local variables 
   static long io_ref=0,vo_ref=0; 
   static long io_out=0,vo_out=0; 
 
   // reset controllers if first time entering HBUCK 
mode 
   if(tx.other.STATUS.bit.MODE == HBUCK) 
   { 
    reset=0;    // run in normal 
mode 
    polarity(HBUCK);  // set polarity to 
HBUCK 
   } 
   else 
   { 
    reset=1;      
 // reset the controller  
    tx.other.STATUS.bit.MODE=HBUCK; 
    polarity(SHUTDOWN);  // set polarity 
to SHUTDOWN    
   } 
    
   // set current regulation reference 
   io_ref=(long)rx.AVGCURBUCK*60;   // 
check this scaling 
 
   if(io_ref) 
    io_out=ICR(min(IO_REF_LIM,io_ref),reset); 
   else 
    io_out=ICR(min(IO_REF_LIM,io_ref),reset); 
 
   // set voltage regulation reference 
   vo_ref=280*20;     // check 
this scaling 
   vo_out=IVR(min(VB_REF_LIM,vo_ref),reset); 
 
   return(min(io_out,vo_out));  
  } 
  default: // invalid state 
  { 
   fault.bit.crit_fault_0 = 1;    
 // report invalid state error 
   return(current_duty());     
 // do not change duty cycle 
  } 
 } 
} 
 
unsigned int reset_handler() 
{ 
 fault.all = 0x0000; 
 polarity(SHUTDOWN); 
 return(0); 
} 
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unsigned int standby_handler() 
{ 
 polarity(SHUTDOWN); 
 return(0); 
} 
 
void check_faults() 
{ 
 // define local variables 
 long curr_meas=IL_AVG; 
 
 curr_meas=(long)IL_AVG-(long)CUR_OFFSET; 
 
// if(curr_meas<0) 
//  curr_meas=-curr_meas; 
  
 // check all ADC for fault conditions 
 // critical faults 
 if(polarity('?')==HBOOST) 
 { 
  if((-curr_meas) > IL_BOOST_AVG_MAX) 
  { 
   //polarity(SHUTDOWN); 
   fault.bit.IL_OC=1; 
  } 
 } 
 else 
 { 
  if(curr_meas > IL_BUCK_AVG_MAX) 
  { 
   // polarity(SHUTDOWN); 
   fault.bit.IL_OC=1; 
  } 
 } 
  
 
 if(HS_TEMP > HS_TEMP_MAX) 
 { 
 // polarity(SHUTDOWN); 
  fault.bit.TEMP=1; 
 } 
 
 // non critical faults 
 if(HS_VBUS > HS_VBUS_MAX) 
 { 
  polarity(SHUTDOWN); 
  fault.bit.HS_OV=1; 
 } 
 
 if(rx.LSVBUS > LS_VBUS_MAX) 
 { 
  fault.bit.LS_OV=1; 
 } 
 
 
 // check communication  
 if(++comm_cnt>5000)  // 5000 = 250ms at 20kHz 
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 { 
  comm_cnt--; 
  fault.bit.COMM_ERR = 1; 
 } 
 //else 
 // fault.bit.COMM_ERR = 0; 
  
 
 return; 
} 
 
 
 
// end of file 
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APPENDIX C: EQUATIONS 
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