
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2008

Bi-directional Dcm Dc-to-dc Converter For Hybrid Electric Vehicles Bi-directional Dcm Dc-to-dc Converter For Hybrid Electric Vehicles

Michael Pepper
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Pepper, Michael, "Bi-directional Dcm Dc-to-dc Converter For Hybrid Electric Vehicles" (2008). Electronic
Theses and Dissertations, 2004-2019. 3587.
https://stars.library.ucf.edu/etd/3587

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F3587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3587?utm_source=stars.library.ucf.edu%2Fetd%2F3587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

BI-DIRECTIONAL DCM DC-TO-DC CONVERTER
FOR HYBRID ELECTRIC VEHICLES

by

MICHAEL JAMES PEPPER
B.S. University of Central Florida, 2004

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2009

Major Professor: Issa Batarseh

ii

© 2008 Michael James Pepper

iii

ABSTRACT

With the recent revival of the hybrid vehicle much advancement in power

management has been made. The most popular hybrid vehicle, the hybrid electric

vehicle, has many topologies developed to realize this hybrid vehicle. From these

topologies, as sub set was created to define a particular group of vehicles where the

converter discussed in this thesis has the most advantage. This sub set is defined by two

electric sources of power coupled together at a common bus. This set up presents many

unique operating conditions which can be handled seamlessly by the DC-to-DC converter

when designed properly.

The DC-to-DC converter discussed in this thesis is operated in Discontinuous

Conduction Mode (DCM) of operation because of its unique advantages over the

Continuous Conduction Mode (CCM) operated converter. The most relevant being the

reduction of size of the magnetic components such as inductor, capacitor and

transformers. However, the DC-to-DC converter operated in DCM does not have the

inherent capability of bi-directional power flow. This problem can be overcome with a

unique digital control technique developed here. The control is developed in a

hierarchical fashion to separate the functions required for this sub set of hybrid electric

vehicle topologies. This layered approach for the controller allows for the seamless

integration of this converter into the vehicle.

The first and lowest level of control includes a group of voltage and controller

regulators. The average and small signal model of these controllers were developed here

iv

to be stable and have a relatively fast recovery time to handle the transient dynamics of

the vehicle system.

The second level of control commands and organizes the regulators from the first

level of control to perform high level task that is more specific to the operation of the

vehicle. This level of control is divided into three modes called hybrid boost, hybrid

buck and electric vehicle mode. These modes are developed to handle the specific

operating conditions found when the vehicle is operated in the specific mode.

The third level of control is used to command the second level of control and is left

opened via a communication area network (CAN) bus controller. This level of control is

intended to come from the vehicle’s system controller.

Because the DC-to-DC converter is operated in DCM, this introduces added voltage

ripple on the output voltage as well as higher current ripple demand from the input

voltage. Since this is generally undesirable, the converter is split into three phases and

properly interleaved. The interleaving operation is used to counteract the effects of the

added voltage and current ripple.

Finally, a level of protection is added to protect the converter and surrounding

components from harm. All protection is designed and implemented digitally in DSP.

v

Remember

Even when you forget to teach by example…you are still doing it.

vi

ACKNOWLEDGMENTS

I would like to thank all of the people and organizations who made this work

possible. I would like to thank my advisor Dr. Issa Batarseh, for all of his support

through out the project. This work was a collaborative effort by APECOR and the John

Deere Company. I would especially like to thank all of the team members at APECOR

for all of their hard work and long hours on this project: Rene Kersten, Khalid Rustom,

Keith Mansfield, and Sean Elmes. I would also like to thank my early mentor in power

electronics Dr. Hussam Al-Atrash for all of his guidance and inspiring discussions. I am

also very grateful to my committee members for their feedback on this work, Drs. Issa

Batarseh, John Shen, and Michael Haralombous.

I am very thankful to my parents, Jim and Barbara Pepper, for their unwavering

support though out all of my educational career. I would also like to thank my girlfriend

Amanda Felton for her support and understanding during this work.

Michael Pepper

August 2008

vii

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES.. xii

CHAPTER ONE: INTRODUCTION... 1

Typical Topologies ... 3

Series Hybrid .. 4

Parallel Hybrid .. 5

Combined Hybrid.. 6

CHAPTER TWO: LITERATURE REVIEW... 8

Battery Voltage ... 8

Non Idealities .. 9

The DC-to-DC Converter Solution... 10

CHAPTER THREE: SYSTEM DESIGN... 11

System Overview.. 11

Level 1 Control ... 15

Average Model.. 16

Verify Average Model .. 21

Small Signal Analysis ... 24

Level 2 Control ... 29

Modes of Operation .. 32

Interleaving ... 39

Protection .. 47

DCM Explained .. 49

viii

Communication Interface (Level 3 Control)... 51

CANRX... 53

Command values (CMD) – Mailbox 1 ... 53

Data values (DATA) – Mailbox 1 .. 53

Data values (DATA) – Mailbox 2 .. 54

CANTX... 55

State of the Converter (STATUS) – Mailbox 3 .. 55

Data values (DATA) – Mailbox 3 .. 55

Data values (DATA) – Mailbox 4 .. 57

User Interface.. 59

CHAPTER FOUR: EXPERIMENTAL RESULTS.. 62

Converter Prototype .. 62

Experimental Results .. 64

CHAPTER FIVE: CONCLUSION... 73

APPENDIX A: FLOW CHARTS... 76

Main .. 78

Initialize DSP.. 79

Call ADC .. 80

Control Manager ... 81

Load Values from CAN.. 82

Transmit Values to CAN .. 83

Check for Faults.. 84

Fetch State... 85

ix

Standby Handler.. 86

Set Polarity.. 87

Reset Handler.. 88

Run Handler .. 89

APPENDIX B: DSP CODE.. 90

Settings.h... 92

Sys_fun.h .. 93

JD_PowerUnit.h.. 96

Sys_fun.c... 96

JD_PowerUnit.c .. 113

APPENDIX C: EQUATIONS .. 120

LIST OF REFERENCES.. 122

x

LIST OF FIGURES

Figure 1 Definition of Hybrid Vehicle... 1
Figure 2 Series Hybrid Topology 1 .. 4
Figure 3 Parallel Hybrid Topology 1.. 6
Figure 4 Combined Hybrid Topology 1 ... 7
Figure 5 Power Flow of Series Hybrid Topology.. 13
Figure 6 Power Flow of Combined Hybrid Topology... 14
Figure 7 First Level of Control .. 15
Figure 8 Boost Mode Inductor Current.. 17
Figure 9 Boost Converter.. 17
Figure 10 Boost Converter Mode I .. 18
Figure 11 Boost Converter Mode II... 19
Figure 12 Boost Converter Mode III ... 20
Figure 13 Boost Converter Average Model... 21
Figure 14 Boost Converter Switching Model .. 22
Figure 15 Boost Converter Average and Switching Model... 23
Figure 16 Verify Average Model Simulation Output .. 23
Figure 17 Control Loop ... 27
Figure 18 Calculated Frequency Responses .. 28
Figure 19 Measured Frequency Response ... 29
Figure 20 Level 2 Control.. 30
Figure 21 Single Switching Leg .. 31
Figure 22 Boost Operated Switching Leg.. 31
Figure 23 Buck Operated Switching Leg... 32
Figure 24 Hybrid Boost Vehicle Mode Flow Chart... 34
Figure 25 Hybrid Buck Vehicle Mode Flow Chart ... 35
Figure 26 Electric Vehicle Mode Flow Chart.. 37
Figure 27 Modified Output Voltage Regulator Operation... 38
Figure 28 Semikron Module .. 39
Figure 29 Three Paralleled Buck Converters... 41
Figure 30 Three Interleaved Inductor Current Waveforms ... 42
Figure 31 Capacitor Current of Three Phase Interleaved Converters.............................. 43
Figure 32 PWM Architecture... 44
Figure 33 Three Phase PWM Module Diagram .. 45
Figure 34 Three Interleaved PWM Ramp Signals... 47
Figure 35 Buck Converter Critical Inductance Plot... 50
Figure 36 Boost Converter Critical Inductance Plot.. 51
Figure 37 User Interface .. 60
Figure 38 User Interface with Test Running Capabilities ... 61
Figure 39 3D-Design of Power Filter Board.. 62
Figure 40 Power Filter Board Prototype.. 63
Figure 41 Final Prototype .. 64
Figure 42 Power Sweep of Buck and Boost Modes .. 65
Figure 43 Bus Voltage Regulation During Load Transient ... 66
Figure 44 Inductor Current Regulation During Load Steps... 67

xi

Figure 45 Inductor Current Regulation During Input Voltage Steps............................... 68
Figure 46 Commanded Mode Change Buck to Boost ... 69
Figure 47 Hybrid Boost Start Up... 70
Figure 48 Experimental Inductor Current Interleaving ... 71
Figure 49 Over Voltage Fault Shut Down ... 72

xii

LIST OF TABLES

Table 1 System Specifications .. 14
Table 2 List of Implemented Fault Protections... 48

1

CHAPTER ONE: INTRODUCTION

A hybrid vehicle is defined as a vehicle that uses two or more distant power

sources to propel it. While idea of hybrid vehicles might have been around for centuries,

the first reported hybrid vehicles appeared in the Paris Salon in 1899 [10]. These hybrid

vehicles had much different design goals than the hybrid vehicles we picture today. In

many cases the, internal combustion engine was not powerful enough to propel the

vehicle. So the electric motor was added, not to reduce fuel consumption, but to increase

over the total vehicle power.

 While the technology of hybrid vehicles has come a long way, the basic idea can

still be seen. One of the most well known hybrid vehicles today is the Toyota Prius. The

Prius utilizes power from a standard internal combustion engine and a battery pack.

While the Prius uses only two distinct power sources, others may have more sources as

shown in Figure 1.

Figure 1 Definition of Hybrid Vehicle

Power Source 1

Power Source 2

Power Source n

Vehicle . . .

2

There are many power sources that are utilized to propel today’s hybrid vehicles

including wind, compressed air, batteries, super capacitors, hydraulic, diesel, and

gasoline. While any combination of these power sources would make a viable hybrid

vehicle, the most common combination seen in the commercial market today is gasoline

and batteries. These power sources, utilized for the purpose of reducing gasoline

consumption, yield what is known as a hybrid electric vehicle (HEV).

Since their introduction, hybrid electric vehicles have become increasingly

popular. One of the engineering challenges associated with these vehicles is increasing

the efficiency of the motor drives and electronics. One method of achieving this goal is

to replace the low voltage drive motors with higher voltage versions. This change

reduces the high currents associated with driving the low voltage motors. Lower drive

current reduces losses which results in improved efficiency.

Since hybrid electric vehicles are designed to have a certain battery capacity,

adding more batteries to boost the voltage can adversely affect the overall design of the

vehicle. For example, the Toyota Prius utilizes 228 Ni-MH cells to achieve the desired

capacity. In order to obtain the highest possible voltage, all 1.2 V cells are strung in

series. This results in a total battery voltage of 273.6 V [7]. While adding more cells in

series will increase the battery voltage, it will also increase volume, weight, and cost of

the battery pack. This is an unacceptable solution in most cases. An alternative solution

to increase the voltage supplied to the motor drive electronics is to add in a DC-to-DC

converter.

 There are many configurations or topologies for hybrid electric vehicles. Some of

the more common used in practice are known as series, parallel, and combined or series

3

parallel. Each topology yields advantages and disadvantages that make it more or less

suitable for a given design. However, while these are very different topologies there are

some distinct similarities between them.

 In this thesis, some similarities will be shown and a sub group of HEVs will be

created. The need for power electronics will be explored and shown how a DC-to-DC

converter is needed in today’s topologies. The converter and all controllers are designed

to be universally acceptable for the sub group of topologies to be defined in the following

chapters. Issues of tight space requirements in the vehicle will be discussed and designed

accordingly. A layered controller architecture is designed to handle commonly

encountered modes of operation. A level of protection is designed to protect the

converter and its surrounding components. Finally, the highest level of control is

designed to be open ended for easy integration into a HEV.

Typical Topologies

 While any realistic topology could be used to realize a hybrid electric vehicle, the

three most used in today’s vehicles are the series, parallel, and combined hybrid vehicle

topologies. These topologies organize the multiple power sources in a specific manner

that categorizes them into one of these three groups. From these groups a sub group will

be classified where the DC-to-DC converter will have its specific application.

4

Series Hybrid

There are a number of papers describing the topologies of hybrid electric vehicles

[8]. The first topology to be examined is what is known as the series hybrid as depicted

in Figure 2. The series hybrid is one of the first hybrid topologies to be used in

commercial vehicles. This is because there is no mechanical coupling of the power

sources. The commonly used power sources are gasoline internal combustion engine and

batteries.

Figure 2 Series Hybrid Topology 1

 In Figure 2, the reservoir represents the gas tank which supplies the internal

combustion engine to generate mechanical power. It is then used to drive an electric

generator, which converts the mechanical power to electrical power. Traditionally, the

charge unit is an electronic device that can be as simple as turning off the generator when

the battery voltage reaches a set limit. The charger ensures the batteries maintain a

certain level of energy. The battery power is then converted back to mechanical power

via the converter and motor. The converter is typically referred to as a motor drive. The

electric motor is then used to propel the vehicle.

5

 It can be seen that there is no mechanical coupling of the internal combustion

engine and the electric motor. This greatly simplifies the mechanical design of the

vehicle. However, it suffers from major loss in efficiency. This is due to the number of

conversions the power must go thru before reaching the wheels of the vehicle and the fact

that no power conversion is completely ideal. This means there is some power loss each

time the power is converted. In this case two conversions take place: mechanical to

electrical and electrical back to mechanical.

 The product of two or more sub-system efficiencies will always result in a

number less than the original numbers. So, generally speaking, it is usually desired to

reduce the number of conversion processes to help keep the efficiency high. However, if

the product of the efficiencies is greater than the efficiency of a separate single

conversion process it is still possible to achieve higher overall efficiency with a multi-

stage process.

Parallel Hybrid

 Another hybrid electric vehicle topology is known as the parallel hybrid as seen in

Figure 3. Similar to the series hybrid, the battery power is converted to mechanical

power thru the converter and electric motor. The reservoir represents the gas tank and is

used to supply the internal combustion engine. However, in a parallel hybrid topology

the location for coupling of the power sources is done mechanically. This can be through

a differential gear box or through a common drive shaft. Since the battery power only

goes through one conversion process and the mechanical power of the internal

6

combustion engine does not go through a conversion, the overall efficiency of the system

is potentially high. However, this is not always the case as described previously.

Figure 3 Parallel Hybrid Topology 1

Combined Hybrid

A third topology known as the combined hybrid topology or the series parallel

hybrid topology is a combination of the series and the parallel hybrid topologies. An

example of this topology can be seen in Figure 4. The combined hybrid topology reduces

the complexity of the mechanical coupling but still has the double conversion losses

when processing power thru the electric motor from the internal combustion engine. The

generator in this case can simply be an oversized alternator which can be coupled to the

engine thru a typical belt and flywheel. The generator is used to keep the charge of the

batteries at a specified level. The batteries are then used to supply the converter and

electric motor to produce mechanical power. The electric motor is usually directly

coupled to the drive shaft but can be done thru a differential as well.

7

Figure 4 Combined Hybrid Topology 1

This thesis will look into more detail of the combined hybrid topology and the

series hybrid topology. These two topologies share a unique characteristic which creates

a sub category of hybrid topologies. That is they both have two electric sources of power

coupled together at a common bus. This can be seen in Figure 2 and 4 where the output

of the charger is coupled with the terminals of the batteries. This presents many design

considerations, which will lead to the definition of standard modes of operation. These

modes of operation can be used for any topology which falls into this sub group.

8

CHAPTER TWO: LITERATURE REVIEW

 It is important to understand why the DC-to-DC converter is a good solution for

this application. However, the DC-to-DC converter designed in this thesis has unique

features designed specifically for the hybrid vehicle application.

Battery Voltage

 Traditionally, the battery voltage is designed to supply the motor drive converter

with the necessary voltage in order to operate properly. However, in later designs this

has not been the case. This is due to the fact that the motor drive converters and the

electric motors used in new designs are of higher voltage. One reason for doing this is to

reduce the losses in the motor at high loads. Given a certain power level, if the voltage is

increased the current can be decreased. This can be seen in Equation 1.

() ⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=∴

⋅=⋅=

⋅=

k
IVkPower

VkVIVPower
IVPower

in
in

innewnewnew

inin

Equation 1

Where Vin and Iin are the initial voltage and current applied to the input of a

system. Vnew and Inew are the new voltage and current values. If the power is to be kept

constant and If Vnew is proportional to Vin by a factor of k then it can be seen to maintain

a constant power, Iin must be modified by a factor of k as well.

9

Non Idealities

 Since there is no such thing as an ideal wire, the wires used to build the motor will

always have some resistance. Hence, resulting in a reduced overall efficiency of the

system as given by Equation 2.

wRloss RiP ⋅= 2

Equation 2

Where, Ploss, is the power loss defines a cross the wire resistor, Rw, with vR and iR

represent the resistor voltage and current, respectively. By substituting vR from the

second equation into the first equation the power loss as a function of iR and Rw is

revealed. Therefore, the power loss in the motor will increase exponentially with higher

currents. This leads to the need to bring the current in the motor down but still

maintaining the power output of the motor. This reveals the need for high bus voltages

for the electric motor.

 The battery pack of a hybrid electric vehicle is typically designed to have a certain

energy capacity. To maximize the output voltage of the battery pack, all voltage cells are

generally connected in series. A higher bus voltage can be achieved by increasing the

voltage of the batteries. However, this is typically not a suitable solution. This means to

increase the output voltage of the battery pack, more cells would be needed to connect in

series. This would result in a larger physical size and larger energy storage size of the

battery. While larger energy storage capacity is not a negative side affect, it is not an

acceptable solution if it increases the physical size of the battery pack. This is because in

any vehicle application, size is a scarce commodity. Minimizing the size of the battery

10

pack as well as any other mechanical and electrical sub-systems in the vehicle is always a

major design criterion.

The DC-to-DC Converter Solution

 A better solution would be to add a DC-to-DC converter in between the existing

battery pack and the motor drive converter to boost the voltage to the necessary level.

Traditionally, the non-isolated bi-directional DC-to-DC converter has been used to

perform the task mentioned above. This configuration can achieve higher conversion

efficiencies than other common non-isolated DC-to-DC converters such as the Ćuk and

SEPIC converters [1, 5].

Operating as a synchronous buck/boost converter, the bi-directional power flow is

an inherent property of this topology [4]. Since the converter is typically operated in

continuous conduction mode (CCM), its design requires a larger valued filter inductor. A

larger inductance can result in an increase in physical size of the inductor, which is not

desirable. This large filter inductor can also slow down the transient response of the

converter as well as slow down any type of mode transitioning.

If the converter is designed to operate in discontinuous conduction mode (DCM)

the value of the inductor can be greatly reduced. Also, the efficiency of the converter at

very light load can be increased since there is no negative current in the inductor which

produces more conduction losses.

11

CHAPTER THREE: SYSTEM DESIGN

 After reviewing the existing topologies for hybrid electric vehicles it can be seen

that there is a clear need for power electronics conversion and motor drive sub-systems.

In most popular designs, this power converter is designed as a synchronously switched

buck or boost converter that operates in CCM. However, in the vehicle application there

is a need to reduce the size of all components to be integrated into the system. A DCM

converter has the advantage of reducing the inductance value of the power filter, which

helps to improve power density. DCM operated converters are typically not chosen for

this application since they are not inherently bi-directional.

 A DC-to-DC converter intended for this application must have a series of

controllers which are derived from the needs of the system. Since the DC-to-DC

converter interfaces the battery to the motor drive’s bus voltage, bi-directional

capabilities are a necessity. The battery must be able to supply power to the motor drive

system and it must be able to take power back to the battery for charging. The DC-to-DC

converter will be controlled by the vehicle system controller (VSC) which is not very fast

relative to the dynamics of the system. Because of this, a layered approach for the

controllers is appealing since the DC-to-DC converter can safely operate without the

intervention from the VSC.

System Overview

In order to properly design the controllers and system modes, it is necessary to

take a closer look at the system power flow for the sub set of HEV’s discussed in

Chapters one and two. This sub group includes the series hybrid and the combined

hybrid topology but is not limited to them. It applies to any hybrid topology that couples

12

the DC-to-DC converter with a voltage source. This voltage source is usually a generator

but could be any other voltage source including another DC-to-DC converter operated in

voltage controlled mode, ultra capacitor, or fuel cell [6].

The generator in Figure 5 is driven by an internal combustion engine (ICE) and

has a regulated output voltage. During hybrid operation, the DC-to-DC converter must

supplement the generator’s power to the motor drive system. Since the bus voltage is

regulated by the generator, one method to regulate the power from the DC-to-DC

converter is to regulate the output current. This reveals that the first parameter the VSC

will want to command: output current. However, since the VSC controller is relatively

slow and the dynamics of the motor drive system can change suddenly, the DC-to-DC

converter might want to change its regulation mode to prevent the bus voltage from

increasing to unsafe levels. This can be easily illustrated as follows: If the VSC knows

there is a high demand for power to the motor drive system, it will command a large

current command from the DC-to-DC converter. Now, if that load suddenly is not there

any more (ie. The vehicle stops accelerating), the DC-to-DC converter acts like a current

source into the bus capacitance with very low load. This will cause the bus voltage to

increase to an unsafe level. In this case, the DC-to-DC converter would switch to a bus

voltage regulation mode at a voltage set point slightly above the voltage set point of the

generator. This is the second parameter the VSC would need to control. Alternately, if

the VSC would like to charge the battery pack, either from the generator or from

regenerative braking operation, the power flow with respect to the DC-to-DC converter

has now flipped. In order to charge the battery with the proper charging algorithm, the

DC-to-DC converter will need to regulate the battery current. Once the batteries are fully

13

charged the DC-to-DC converter enters what is known as float charge. This means the

batteries have reached their fully charged voltage and the DC-to-DC converter then

regulates this voltage. Once the converter has entered float charge the amount of current

flowing to the battery is dependent on the battery and is typically smaller than the initial

current commanded by the VSC. This mode reveals the next two parameters the VSC

will want to control: battery current and voltage.

One feature that many strong hybrid vehicles have is the ability to shut down the

ICE to conserve fuel. This means all of the power delivered to the motor drive system

must come from the batteries through the DC-to-DC converter. It also means the

generator is no longer regulating the bus voltage to the motor drive system, so it is now

the responsibility of the DC-to-DC converter to regulate the bus voltage.

Battery Dc-Dc
Converter Motor Drive Motor

200-300 Vdc 700 Vdc

Generator

Regenerative Braking

Powering the MotorBattery Charging

Powering the Motor

ICE

Figure 5 Power Flow of Series Hybrid Topology

The electrical behavior of the DC-to-DC converter in the combined hybrid topology is

identical to the series hybrid topology discussed above. Hence, all of the modes and

14

control parameters are assumed to be the same. This can be seen from the power flow

diagram of the combined hybrid topology in Figure 6.

Battery Dc-Dc
Converter Motor Drive Motor

200-300 Vdc 700 Vdc

Generator

Regenerative Braking

Powering the MotorBattery Charging

Powering the Motor

ICE

Figure 6 Power Flow of Combined Hybrid Topology

 The specifications for the DC-to-DC converter designed here are taken from

typical specifications for a system of this nature. The battery voltage will reside between

200V and 300V dependent on state of charge and loading or charging conditions. The

bus voltage will fall between 650V and 725V. The maximum power to be pushed to the

motor drive system (boost direction) and to the batteries (buck direction) will be 12kW

and 6kW, respectively. These specifications are provided in Table 1.

Table 1 System Specifications

Criteria Minimum Typical Maximum Unit
Battery Voltage Range 200 270 300 Volts
Main Bus Voltage Range 650 700 725 Volts
Boost Power Rating 0 6 12 kW
Buck Power Rating 0 4 6 kW

15

Level 1 Control

 The first level of control is actually the lowest level and acts as a base of

controllers for the system, where the level above issues commands to the level below it.

This concept is illustrated in Figure 7. Since the control loops are implemented in the

DSP, it is important to sample the control parameters and execute the controller code at a

fixed frequency. This allows the use of standard digital control theory and sampling

theory. The control loops were designed using a direct digital design method which can

be found in [3].

Figure 7 First Level of Control

 In the first level of control, there are three parameters that need to be controlled:

the average inductor current, the input voltage, and the output voltage (bus voltage). By

controlling the inductor current it is possible to regulate the current to the battery and the

current to the motor drive system. Since the inductor is connected to the low side

Level 1

Level 2

Level 3

16

voltage, the average inductor current is the battery current. When the average current in

the inductor is supplying the motor drive system, this current is proportional to the motor

drive current. This allows the inductor current regulation to be used for the motor drive

current as well. Since the direction of the current is dependent on which mode of

operation the converter is set, it can be assumed that if the mode is known then the

direction of the current is known. Because of this fact, the absolute value of the current

measurement is used as the controlling parameter. Since all loops are designed digitally

and implemented in a DSP, an offset is added to the average inductor current

measurement. This value is then sampled by the analog to digital converter (ADC). The

offset is then removed in the DSP by subtracting the digital value that corresponds to the

offset added to the current measurement.

Average Model

 When the converter is supplying power to the motor drive system, it must operate

in the boost mode to meet the bus voltage specifications. To help design the controller

the equations for the average inductor current are developed here. By looking at the

waveform of the inductor current in a converter that is operating in DCM, a few variables

can be defined. The peak current (Ipeak) is the value of the current in the inductor after it

has been connected across the input voltage. D is the duty cycle and D1 is the percentage

of the period (Ts) when current is flowing in the inductor Mode I and II.

17

Figure 8 Boost Mode Inductor Current

The boost converter circuit can be found in Figure 9. In order to find the average

values for the inductor current and output voltage it is helpful to break the circuit up into

its different modes as can be seen in Figure 10 thru Figure 12.

Figure 9 Boost Converter

This is known as mode I of the converter and can be seen in Figure 10. Mode one

occurs when the lower switch is on and the time duration lasts for DTs of the switching

period, Ts.

Loadi

ci
iLa

AvgDiodei

Lavgi

battV LoadR

0 DTs D1Ts Ts

Ipeak

Inductor Current Waveform

Time (s)

C
ur

re
nt

 (A
)

18

Figure 10 Boost Converter Mode I

 Therefore the peak inductor current can be derived as follows.

() ()

L
DTVI

tv
dt

tdiL

sbatt
peak

L
L

=

=

Equation 3

At the end of mode I, the inductor is switched across the input and output

voltages, and since the output voltage is greater than the input voltage, the inductor

current starts discharging into the output capacitor and load. Also, since the converter is

operating in DCM, when the inductor current reaches zero it remains there and is not

allowed to go in the negative direction. The duration of mode two lasts for a period of

(D1-D)Ts, as illustrated in Figure 8.

()tiL ()tiLoad

+

−
()tvbus

+

−

()tvL

19

Figure 11 Boost Converter Mode II

From here the equations for mode two can be defined as followed.

() ()

() ()

() ()battbus

batt

sbusbatt
peak

L
L

VV
DVDDD

L
DDTVVI

tv
dt

tdiL

−
=−=′

−−−
=

=

1

1

Equation 4

By substituting Ipeak and D’, the equation for the average inductor current can be

derived as follows.

()

L
VV

VTDV
I

DDI
I

battbus

bus
sbatt

avg

peak
avg

2

2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

′+
=

Equation 5

()tiL +

−
()tvbus

+ −()tvL

Loadi

20

Where Iavg is the average inductor current over one switching cycle. Vbus is the

average capacitor voltage over one switching cycle. Vbatt is the input voltage to the boost

converter

Now that the equation for the average inductor current has been derived, it can be

used to help derive the equations for the output voltage. The output voltage is defined by

the voltage of the output capacitor. The current into the capacitor, iC is the difference

between the diode and load current as seen from Figure 9.

Figure 12 Boost Converter Mode III

Using the proprieties of the Laplace transform, the equations for the output

voltage can then be defined as follows.

() ()

() ()
()

sC
sI

sV

VVssVCsI
dt

tdV
Cti

c
c

iniinicc

c
c

=

=→−=

=

)(

0)(

Equation 6

Loadi+

−
()tvbus

21

Verify Average Model

 Now that the average model equations for a boost converters inductor current and

capacitor voltage have been derived as seen in Equation 7, have been derived, they can be

used in simulation software to help design and verify the controllers. To verify the

average model, the equations were implemented in a Simulink Matlab simulation. The

simulation blocks for the average model can be seen in Figure 13.

()
()

() ()
()()

()
CsR

sV
VsVCLs
sDTVsV

L
VsV

sVTDV
I

Load

bus

battbus

sbatt
bus

battbus

bus
sbatt

avg

−
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

2

2
22

2

Equation 7

Figure 13 Boost Converter Average Model

22

 By using a switching model toolbox known as PLECS in Simulink Matlab, the

switching model of the boost converter is added to the simulation. The switching model

can be seen in Figure 14 and can be used to simulate the controller response of the

system. However, it is very time consuming since the time constants of the controller are

much larger than the switching frequency.

Figure 14 Boost Converter Switching Model

 The switching model and the average model were then put into the same

simulation and run with the same inputs. The output voltage and the inductor current

were then fed to the same scope capture output to verify that the average model correctly

models the average characteristics of the switching model. This simulation can be seen

in Figure 15.

23

Figure 15 Boost Converter Average and Switching Model

It can be seen in Figure 16 that the average output voltage and the average

inductor current correctly model the average characteristics of the switching model since

the average model signal in yellow seems to take on the average value of the switching

simulation signal in red.

Figure 16 Verify Average Model Simulation Output

24

Small Signal Analysis

 One method to design the control loops is to obtain frequency and phase response

plots for the entire loop and adjust the phase and gain margin to desired values in order to

make the loop stable. The average model derived in the previous section is used as the

base model of the plant. However, to find the frequency response the circuit model must

be linear. Since the average model has higher order terms, the average model must be

linearized around given operating conditions. This is done by perturbing the ac time

varying signals and then small signal assumptions around steady state operating

conditions are made to eliminate the higher order terms. It can be shown that the small

signal model is found in Equation 8. See APPENDIX C for further details.

() ()
()()

()

()
()

LCLsR
VV

DRTV

d
v

dDsD

vVsV
CsR

sV
VsVCLs

sDTVsV

Load

battbus

Loadsbatt

bus

busbusbus

Load

bus

battbus

sbatt
bus

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

+=

+=

−
−

=

2
~

~

~
~

2

2

22

Equation 8

 Once the small signal transfer functions between the duty-cycle to output are

found, then the frequency responses of the entire closed loop can be obtained.

In the feedback path there is a voltage divider which scales the output voltage to a

range which is suitable to be sampled by the ADC. Since the maximum output voltage

for this system is 725V, the maximum voltage seen at the input of the ADC should be set

to a safe level above this value. In this system, the voltage divider is designed so that an

25

output of 1000V results in 3V at the input to the ADC, where 3V is the maximum voltage

the ADC can convert.

There is also a low pass filter at the input of the ADC. The actual filter implemented

is a simple RC filter designed with a cutoff frequency around the switching frequency.

This filter is sometimes referred to as an anti-aliasing filter. The filter helps to filter out

some of the switching frequency ripple seen on the output voltage. This is important

since the output voltage is only sampled once every switching cycle. If the output

voltage is large, then these frequencies would be aliased into the lower frequency

components after the signal is sampled. Also, because of the high switching frequency

radiated and conducted noise, a carefully placed filter very close to the input of the ADC

pin on the DSP can be used to minimize this noise.

After the ADC samples the voltage, the value is converted to a digital value between

0 and the maximum resolution of the ADC. The ADC used in this system has a

maximum resolution of 12 bits. This means the maximum value converted by the ADC

has a digital value given by Equation 9.

40951212
max =−=ADC

Equation 9

In this system, the ADC was set to left adjust the ADC measurement into a 16 bit

register. This means the converted value from the ADC is stored in the upper 12 bits of

this 16 bit register. Therefore the ADC gain can be calculated as in Equation 10.

()
21840

3
65520

3
2

3
2 4

max
1216

max ==
⋅

=
⋅

=
− ADCADC

ADCgain

Equation 10

26

 The controller must hold the value for the duty cycle once it reaches steady state.

When the control loop has reached steady state the output voltage is equal to the

reference voltage. This means the loop error signal at steady state is zero. In order to

hold the output value at the proper value, a digital integrator is used. This is one of the

simplest but very effective methods to design an initial control loop. Any digital

integrator can be used. In this system the backwards Euler integrator is used because the

difference equation implemented in the DSP is in a form which has a small number of

computations. This can be seen from the difference equation in Equation 11 since the

difference equation can be directly transferred into C code for the DSP.

() ()
()

()() () () () ()zYzzXzYzXzzY
zzX

zYzH EI

⋅+=⇒=−

−
==

−−

−

11

1

1
1

1

Equation 11

 The unit delay and zero order hold are added to model the characteristics of the

PWM module. Since the DSP takes some time to calculate the value for the duty cycle,

the value is held until the start of the next switching cycle before it takes affect. This is

the reason for added unit delay. The zero hold is added since the analog signal for the

duty cycle does not change over one switching cycle, effectively bringing the sampled

digital signal back to the analog domain.

 Finally, the modulator and the controller gains are added. The modulator gain

transforms the digital value to the actual duty cycle value. This gain is found to be the

one over the maximum counter value. The maximum counter value is discussed in more

detail in the interleaving section. The controller gain is used to design the cross over

27

frequency of the control loop in order to make the system stable. The entire control loop

is illustrated in Figure 17.

Figure 17 Control Loop

 All components are then added to a Matlab program. To find the frequency

response of both components in the S domain and the Z domain, the following

relationships to frequency are used, where Ts is the sampling period. In this case the

sampling period is equal to the period that the control loop runs at. The controller gain is

then designed to give a stable control loop response, which can be seen in Figure 18.

sfTjez

fjs
π

π
2

2

=

=

Equation 12

28

Figure 18 Calculated Frequency Responses

 All control loop parameters are then programmed into the DSP and run in the

actual system. Then a frequency response analyzer is added to the control loop to perturb

it with small signals. This effectively produces the bode plots of the actual systems

control loop. This plot was then used to fine tune the frequency response using digital

zeros. The form of the digital zero was also chosen to minimize calculation time and can

be found in Equation 13.

()

() 21

1

121

111

−−

−

+⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

zz
b

zH

z
a

zH

oComplexZer

Zero

Equation 13

10
0

10
1

10
2

10
3

10
4

-100

-50

0

50

M
ag

ni
tu

de
 (d

B
)

X: 72.34
Y: 0.007935

100 101 102 103 104
-200

-100

0

100

200

P
ha

se
 (D

eg
re

es
)

Frequency (Hz)

DCM vs CCM

2940 ohms
245 ohms
123 ohms

29

 The complete controller function is simply a combination of the digital zero,

digital integrator, and gain. Since the controller design was done entirely in the z domain,

there is no need to converter any of the controller functions into the s domain. This is

one of the major advantages of the direct digital design approach. The final frequency

response can be seen in Figure 19. The control was optimized to maximize overshoot

and undershoot without increasing the settling time by too much.

Figure 19 Measured Frequency Response

 It can be seen that the cross over frequency of the calculated and measured results

match very well, crossing over around 50Hz. The phase plots match fairly well with a

phase margin of about 90 degrees and a phase cross over around 600Hz.

Level 2 Control

 The second level of control is used to set up and control the first level of control.

This is important because it alleviates some of the functions and time demand for the

30

vehicle system control. This means that the vehicle system controller does not have to be

very involved or react very fast to changes in the system, which is usually the case. The

vehicle system controller can then command modes of operation with regulation set

points and let the converter run in a safe manner. It also provides the mechanism that

allows the converter to operate in DCM mode while still maintaining bi-directional power

flow.

Figure 20 Level 2 Control

 In this system, the IGBT is used as the switching device. Each IGBT package is

also equipped with an anti-paralleling diode which makes the overall package behave like

a MOSFET (bidirectional conduction, unidirectional blocking). The schematic for a

single phase of the system can be seen in Figure 21.

Level 1

Level 2

Level 3

31

Figure 21 Single Switching Leg

 However, if these switches are synchronously switched, the converter will operate

in CCM, which is not desired in this design. In order to ensure the converter operates in

DCM in boost mode the inductor current must be blocked from going in the negative

boost direction. To do this, the driving of the upper switch is deactivated when the

converter is operated in boost most. The anti-paralleling diode is then utilized to block

the negative boost current in the inductor. This can be seen in Figure 22.

Figure 22 Boost Operated Switching Leg

32

 Similarly, when the converter is desired to operate in the buck direction the

negative buck current must be blocked to ensure DCM operation. By deactivating the

driving of the lower switch and utilizing the anti-paralleling diode the converter can now

be operated in DCM in the buck direction. This schematic is illustrated in Figure 23.

Figure 23 Buck Operated Switching Leg

Modes of Operation

 Now that the mechanism for bidirectional and DCM operation has been defined,

the modes of operation, that the vehicle system controller would normally command, will

be defined. All modes are defined by analyzing situations that will be present in the

actual system. The modes include Hybrid Boost Vehicle Mode, Hybrid Buck Vehicle

Mode, and Electric Vehicle Mode. To help design the code in the DSP for the second

level of control an interactive system of flow charts was designed in Visio. Each function

block which contains not trivial functions can be double clicked to reveal the underlying

function. By double clicking the return block in the function it redirects the view back to

33

the place where the function was called. This emulates the way the code would actually

be designed in the DSP and helps making an easy transition from the flow chart to the

actual DSP code. The flow chart in its entirety can be found in APPENDIX A. The DSP

code generated from the flow charts can be found in APPENDIX B.

 During hybrid boost vehicle mode the high side bus voltage is regulated by the

generator and the DC-to-DC converter is used to supplement the power to the motor drive

system. The power to be delivered to the motor drive system is proportional to the

average inductor current. This means, under normal operating conditions the converter

will operate in inductor current regulation mode. The set point is commanded by the

vehicle system controller along with an over voltage regulation set point. This is

important if the dynamics of the vehicle change before the vehicle system controller has

time to respond. To put this into an example: if the motor drive system requires a large

amount of power, the DC-to-DC converter will receive a large inductor current reference

to regulate to. If the load suddenly drops out (ie. someone takes their foot off the gas

pedal) then the converter acts as a current source into the output capacitors with little to

no load. This means the output voltage will increase very fast. If it reaches the over

voltage regulation set point the converter will then switch to output voltage regulation

mode at that set point. The converter will remain at this safe operating condition until the

vehicle system controller has time to respond to the situation. This mode is exemplified

in Figure 24.

34

Figure 24 Hybrid Boost Vehicle Mode Flow Chart

 In hybrid buck vehicle mode the converter is used to regulate the current to the

battery in order to perform the proper charging algorithm. So in normal operation the

converter is operated in inductor current regulation in the buck direction. The high side

bus voltage is regulated by the generator. The vehicle system controller commands a

current regulation set point with an over voltage regulation set point. Since the batteries

are connected to the low side voltage of the converter, voltage over shoot is not too much

of a concern. However, what is known as the float charge voltage can be programmed as

the over voltage regulation set point. This means once the batteries are fully charged and

35

they have reached the float voltage, the converter switches to input voltage regulation

mode. During this mode the current supplied to the battery is smaller than the

commanded current. The flow chart describing this mode can be found in Figure 25.

Figure 25 Hybrid Buck Vehicle Mode Flow Chart

 Electric vehicle mode is the most complex out of the three modes. In this mode

the generator is disabled, so the converter is now responsible for regulating the high side

bus voltage. This means the converter is operated in output voltage regulation during

normal operations. If the motor drive system requires an unsafe current from the

converter it will switch to inductor current regulation mode at the commanded over

36

current regulation set point. Also, if a regenerative braking operation is preformed on the

motor drive system, the resulting power must be processed by the converter back to the

batteries. The current from the motor drive system back to the bus capacitors will try to

increase the voltage on the high side bus. The output voltage regulator will reduce the

duty cycle in order to maintain regulation of the high side bus voltage. If the duty cycle

reaches zero and the bus voltage continues to increase, the converter will switch the

operation of the converter to buck mode and continue to increase the duty cycle in the

buck direction. Similarly, if the current to the batteries reaches an unsafe level the

converter will switch to inductor current regulation in the buck direction at the

commanded over current regulation set point. The flow chart for this mode of operation

can be found in Figure 26. To perform this task in a seamless manner a modified version

of the output voltage regulator was created. The output of the modified controller is

allowed to go to negative values. Normally negative values on the output of the

controller would not make sense since the output of the controller is used to command the

duty cycle. However, by using the sign of the output of the controller to dictate which

direction the converter should set the switches, it can be used to provide a smooth

transition between buck and boost mode.

37

Figure 26 Electric Vehicle Mode Flow Chart

 To elaborate more on the modified output voltage regulator, refer to Figure 27.

When the output of the regulator is negative the converter is set to operate in buck mode,

deactivating the driving for the lower switch, and the absolute value of the output of the

regulator is passed to the driving of the duty cycle of the active switch. Similarly, when

the output of the regulator is positive, the driving of the upper switch is deactivated,

setting the converter to run in boost mode. The output of the regulator is then sent to the

duty cycle of the active switch.

38

Figure 27 Modified Output Voltage Regulator Operation

 The actual hardware used to realize the converter was a modified Semikron

SKAI3001GD12-1452W module. The module was modified to take the TI DSP

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.5

1

Boost Switch Drive Signal

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.5

1

Buck Switch Drive Signal

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100
Duty Cycle

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100
OVR Output

39

TMS320F2808. This module can be seen in the red box in Figure 28. This module is

originally intended to be used as a three phase motor controller. However, by attaching

the three power filter inductors to the three phases and to the filter capacitors, the

converter can now be controlled as three paralleled buck or boost converters, using the

techniques discussed here.

L1

L2

L3

Q1

Q2 Q4

Q3 Q5

Q6

CBus

CBatt

VBus

VBatt

Driving Circuit
VBus

Sensing
IL

Sensing

VBatt
Sensing DSP Controller (TI2808)

Figure 28 Semikron Module

Interleaving

 Since the converter designed here is running in DCM the output voltage ripple is

expected to be greater than that of a converter designed to run in CCM. This is a known

phenomenon in DC-to-DC converter design. One method to counteract the additional

voltage ripple is to interleave multiple converters. Interleaving is the process of aligning

the inductor current waveforms in a way to minimize the ripple current into the output

40

capacitor [4]. Since the input current ripple to the output capacitor is reduced, the losses

in this component are also reduced [2].

 This is seen easiest in the example of a buck converter. Since the inductor is

connected directly to the output capacitor the capacitor current is equal to the sum of the

inductor current and the load current tied in parallel with the output capacitor. Since the

output voltage is assumed to be in steady state, the load current is also assumed to be

relatively constant. In this example the load is defined as an output resistor. The current

thru the resistor is considered to be at DC because the output voltage is at steady state.

This means the majority of the ripple current comes from the inductor. If three

converters are connected in parallel the capacitor current is equal to the sum of the three

inductor currents over time and the load current which is assumed to be DC. This

schematic can be seen in Figure 29.

41

Figure 29 Three Paralleled Buck Converters

 If the inductor current waveforms are synchronized in a way to distribute the

ripple current evenly over the switching period, the effect of the ripple current into the

output capacitor is minimized. Since the output capacitor voltage is a function of the

capacitor current, minimizing the capacitor current ripple also minimizes the output

voltage ripple. The three inductor currents, properly interleaved, can be seen in Figure

30.

iL3

iL2

iL1 iLoad

iC

42

Figure 30 Three Interleaved Inductor Current Waveforms

 Ignoring the DC load current, the capacitor current waveform can be seen in

Figure 31. It is important to note that the frequency of the capacitor current has increased

to 3 times the switching frequency. In addition, the peak to peak current values have

been reduced since the capacitor current does not go to zero, like the inductor current

does.

0 Ts

Ipeak

Three Phase Inductor Current

Time (s)

C
ur

re
nt

 (A
)

43

Figure 31 Capacitor Current of Three Phase Interleaved Converters

 To properly interleave the inductor current, it is important to understand in more

detail how the pulse width modulated (PWM) signals are generated in the DSP. These

are the signals that are generated from the duty cycle command from the controllers. The

DSP used for this converter is the TMS320F2808 DSP from Texas Instruments. The

PWM architecture used in this DSP utilizes a high frequency counter to generate what is

known as the ramp signal. The ramp is counted up to a maximum counter value where it

is reset to zero and the counting starts again. A very low resolution version of this PWM

architecture can be seen in Figure 32.

0 Ts

Ipeak

Sum of Three Phases

Time (s)

C
ur

re
nt

 (A
)

44

Figure 32 PWM Architecture

 Since the counter is incremented once every clock period, the clock period should

be greater than the switching period of the PWM signals. In addition there should also be

a sufficient number of steps between zero and the maximum counter value to provide a

good resolution for the duty cycle. The duty cycle value is compared to the ramp signal.

If the value of the current value of the ramp is less than the compare value the PWM

module outputs a high signal to drive the active switch. If the current value of the ramp

is greater than the compare value the PWM module outputs a low signal to turn off the

active switch. This is how the duty cycle command generates the PWM signals. The

maximum counter value must then be designed to produce the proper switching period.

The value is designed using Equation 14.

0 1/Fclk 1/Fs

MaxCount
PWM Waveform

Time (s)

C
ou

nt
 V

al
ue

45

switching

clk

clk

period

clkperiod

clk
clk

switching
period

F
F

T
T

MaxCount

MaxCountTT
F

T

F
T

==

=

=

=

1

1

Equation 14

 There are multiple PWM modules in this DSP and they are utilized to generate the

six PWM signals for the three interleaved converters. Each module has its own ramp

signal which is also called a timer. It is important to note that all timers are driven from

the same clock. Because of this, once the timers are initialized and running, the ramp

signal will not drift from one another. Therefore the assigned initial phase shift will be

kept at all times throughout their uninterrupted operation. A diagram of this set up can be

seen in Figure 33.

Q1 Gate Signal

Q2 Gate Signal

Q3 Gate Signal

Q4 Gate Signal

Q5 Gate Signal

Q6 Gate Signal
Duty Compare

Timer_1

Timer_3

CLK Timer_2

Output Logic

Output Logic

Output Logic

Upper
Driver
Lower
Driver

Upper
Driver
Lower
Driver

Upper
Driver
Lower
Driver

Enable

DSP Controller (TI2808)

Figure 33 Three Phase PWM Module Diagram

46

 The inductor current waveforms will be properly interleaved since they are

directly related to the properly interleaved PWM signals. Since the initial phase shift of

the ramp signal that generates the PWM signal is maintained, it is only necessary to

design the proper initial conditions of the ramp to properly interleave the inductor current

throughout their operation. The initial values of the ramp signals are calculated using

Equation 15.

()

()

()
3

20

3
0

00

3

2

1

MaxCountCounter

MaxCountCounter

Counter

=

=

=

Equation 15

 It can be seen that the three ramp signals are properly interleaved in Figure 34 by

setting the initial conditions appropriately.

47

Figure 34 Three Interleaved PWM Ramp Signals

Protection

 It is important to protect the converter in the event of an unavoidable situation.

All protection functions were programmed in code in the DSP. The location of the fault

checking can be found in APPENDIX A. If any fault condition is detected, the converter

will enter a standby state. The standby is used as an intermediate state between normal

run and normal shut down. This is important because it allows the converter to remain in

standby until the vehicle system controller can respond properly to the fault and reset it.

The fault is reset by commanding the converter to a normal shutdown. All PWM signals

are disabled during standby and shutdown.

0 Ts/3 2*Ts/3
Counter1(0)

Counter2(0)

Counter3(0)

PWM Waveform

Time (s)

C
ou

nt
 V

al
ue

48

 A list of the fault conditions implemented in this converter can be found in Table

2. If for some reason the voltage on the low side exceeds and unsafe level for the

batteries the converter will enter standby to prevent damaging the batteries. Similarly, if

the voltage on the bus reaches an unsafe level the converter will go to standby to prevent

damaging the bus capacitors, motor drive system, and generator. This could happen if

the load dynamics are too fast for the over voltage regulation set point to regulate. If the

inductor current reaches an unsafe level because of a short on the output, the converter

will enter standby to protect the converter. There are multiple temperature sensors in the

hardware module. These sensors are used to monitor the temperature of the IGBTs. If

the IGBT temperature reaches an unsafe level the converter will enter standby in order to

protect the converter. Finally, if the communication to the vehicle system controller is

lost for more than 250ms the converter enters standby and waits for the communication

link to be reestablished.

Table 2 List of Implemented Fault Protections

Over voltage low side

Over voltage high side

Over current in the inductor

Over temperature

Loss of communication

49

DCM Explained

 In level 2 control the mechanism for allowing the converter to operate in DCM

was discussed. Dependent on which direction the converter is set to push power, a switch

is deactivated, utilizing the anti paralleling diode to block the negative current. However,

if the inductance value and switching frequency are not designed properly, the converter

could still operate in CCM.

 The minimum inductance value needed to insure the converter operates in CCM is

known as the critical inductance value. For the buck and boost converter the critical

inductance value is dependent on the steady state duty cycle, switching period and the

load resistance. The equation for the critical inductance for the buck converter can be

found in Equation 16.

Loadscritical RTDL ⋅⋅
−

=
2

1

Equation 16

 The switching frequency of the converter is set to 20 kHz. This is mainly do to

the maximum frequency driving capabilities of the driving circuit on the physical

hardware. Assuming a constant switching frequency of 20 kHz, the critical inductance

value is plotted over the full range of duty cycles for different load resistors, Figure 35. It

is important to note that the DCM region for the lower valued resistors is always included

in the DCM region for higher valued resistors. This means if the inductance value is

designed to operate in DCM at the highest possible load, then the converter will also

50

operate in DCM for any load lighter load condition. This is how the inductance value is

designed for this converter.

Figure 35 Buck Converter Critical Inductance Plot

 Similarly, the equation for the boost converter’s critical inductance is examined,

Equation 17. The plot of the critical inductance value for the boost converter shows

similar characteristics in Figure 36. The DCM region for higher load conditions is

included in the region for lighter load conditions. The minimum inductance value

from the two methods is then chosen to insure the converter operates in DCM during

all modes of operation.

() DDRTL Loads
critical ⋅−⋅

⋅
= 21

2

Equation 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10-4 DCM vs CCM

Duty Cycle

In
du

ct
an

ce

 5 ohms
10 ohms
20 ohms

DCM

CCM

51

Figure 36 Boost Converter Critical Inductance Plot

The calculation of the inductance value was based on the fact that the inductor

current must always operate in DCM. The final value for the three experimental

inductors was 140 µH. The battery side capacitor value was 160 µF with a low ESR.

The high side bus capacitor was 1000uF.

Communication Interface (Level 3 Control)

 The third level of control is assumed to be the vehicle system controller. While

this controller is not designed here, it is necessary to simulate inputs from the controller

in order to properly send commands to the second level of control. To do this, and

interface was developed to send these commands and reference values through the CAN

bus. CAN stands for communication area network.

 The CAN module in the DSP was implemented to retrieve the information. The

module was set up for a communication rate for 250 kbps. The module utilizes a number

of mailboxes to transmit and receive information with little intervention from the central

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10-5 DCM vs CCM

Duty Cycle

In
du

ct
an

ce

 5 ohms
10 ohms
20 ohms

DCM

CCM

52

processing unit (CPU). This is important, because the CPU is responsible for a number

of time critical operations such as the level one and level two controls. The mailboxes

are can transmit or receive 8 bytes at a time. In order to transmit all of the information it

was split up into 4 mailboxes: 2 for sending and 2 for receiving. One byte of information

is used to transmit the current status of the converter. This contains information about the

mode of operation and running state of the converter. Five more bytes in that same

mailbox are used to transmit the measurement for the temperature, high side bus voltage,

and the status of all the faults. Each fault is assigned a bit location. If that bit is high, it

indicates the fault has occurred, if it is low it means the fault has not occurred. The

measurements for the three inductor currents and the total average current are sent in

eight bytes of another mailbox. Similarly, the commands received by the converter

occupy one byte of another mailbox. Four more bytes in the same mailbox are used to

transmit the low side and high side bus voltage set points. The remaining byte is left

empty. In another mailbox the current set point for the average buck and boost current is

sent in four bytes. The break down of all the communication can be found in the

following tables.

53

CANRX

Command values (CMD) – Mailbox 1

7 4 3 2 1 0

Expandable Mode1 Mode0 State1 State0

Bits Name Description
7:4 NA Expandable
3:2 Mode 00 – EV
 01 - Hybrid Boost
 10 - Hybrid Buck
 11 - Not Used
1:0 State 00 – Run
 01 - Standby/Safe (Default)
 10 – Reset
 11 - Not Used

Data values (DATA) – Mailbox 1

Low side bus voltage (LSVBUS)

15 8

LSVBUS
7 0

LSVBUS

Bits Name Description
15:0 LSVBUS Low Side DC Bus voltage: 0-400V
 If voltage exceeds X, reg. zero current

54

High side bus voltage (HSVBUS)

15 8

HSVBUS
7 0

HSVBUS

Bits Name Description
15:0 HSVBUS High Side Bus Voltage Regulation/Limit: 0-725V
 Regulation set point in EV
 Voltage limit for Hybrid Boost

Data values (DATA) – Mailbox 2

Average Current Command Buck (AVGBUCK)

15 8

AVGBUCK
7 0

AVGBUCK

Bits Name Description
15:0 AVGBUCK Average Current Command Buck (Low side): 100A

 Current Commands are Current LIMITS when in EV
mode

Average Current Command Boost (AVGBOOST)

15 8

55

AVGBOOST
7 0

AVGBOOST

Bits Name Description
15:0 AVGBOOST Average Current Command Boost (Low side): 100A

 Current Commands are Current LIMITS when in EV
mode

CANTX

State of the Converter (STATUS) – Mailbox 3

7 4 3 2 1 0

Expandable Mode1 Mode0 State1 State0

Bits Name Description
7:4 NA Expandable
3:2 Mode 00 – EV
 01 - Hybrid Boost
 10 - Hybrid Buck
 11 - Not Used
1:0 State 00 – Run
 01 - Standby/Safe (Default)
 10 – Resetting
 11 – Fault

Data values (DATA) – Mailbox 3

Heat sink temperature (HSTEMP)

7 0

56

HSTEMP

Bits Name Description
7:0 HSTEMP Heat sink temperature: -40C-120C

High side DC Bus voltage (HSVBUS)

15 8

HSVBUS

7 0

HSVBUS

Bits Name Description
15:0 HSVBUS High Side DC Bus voltage: 0-900V

Faults (FAULTS.ALL)

15 8

FAULTS.ALL

7 0

FAULTS.ALL

Bits Name Description
15:0 FAULTS.ALL A list of all faults masked into 16 bits

57

Data values (DATA) – Mailbox 4

Average low side current (AVGCURLOW)

15 8

AVGCURLOW

7 0

AVGCURLOW

Bits Name Description

15:0 AVGCURLOW Average current determined by internal sensors (low side): -
100/+100A

Average current Phase 1 (AVGCURPH1)

15 8

AVGCURPH1

7 0

AVGCURPH1

Bits Name Description
15:0 AVGCURPH1 Average Phase 1 current: -100/+100A

Average current Phase 2 (AVGCURPH2)

58

15 8

AVGCURPH2

7 0

AVGCURPH2

Bits Name Description
15:0 AVGCURPH2 Average Phase 2 current: -100/+100A

Average current Phase 3 (AVGCURPH3)

15 8

AVGCURPH3

7 0

AVGCURPH3

Bits Name Description
15:0 AVGCURPH3 Average Phase 3 current: -100/+100A

59

 To help code and decode the mailboxes in the DSP, custom data types were

designed to fill the proper memory space locations with the corresponding information.

The data types consist of a struct of all relevant bits. This struct allowed the access of

single bits with out affecting other bits in the memory location. This is important to

speed up coding time and execution time. The struct memory space was then joined in a

union with a memory location that takes covers all of the bit locations. This allows the

ability to affect all of the bits with a single instruction. For instants, the resultant data

type could be used to set the fault bits individually with a single instruction, while still

being able to clear all bits with a single instruction. These data types can be found in

APPENDIX B.

User Interface

 The user interface allows the simulation of the third level of control. The third

level of control is intended to be the vehicle system controller. Since the vehicle system

controller is not designed here, there must be a way to simulate inputs and test the

converter under different operating conditions.

 Two versions of the interface were developed. The first version allows direct

control of all of the parameters seen in Figure 37. These parameters include low voltage

side set point, high voltage side set point, average inductor current set point in the buck

direction, average inductor current set point in the boost direction, state, and mode. The

command state of the converter includes run, standby, and reset. The modes include

electric vehicle mode, hybrid boost vehicle mode, and hybrid buck vehicle mode. All

commanded values are set on the left side of the interface. The data received back from

60

the converter is displayed on the right side of the interface. This includes the current

state and mode of the converter. As well as the high voltage side, temperature, average

inductor current measurements.

Figure 37 User Interface

 The second version of the user interface is almost identical to the first versions in

appearance. All received data is displayed in the same way as the first version, however

the commanded values can not be set in the user interface directly. A pre compiled tab

delimited file is generated prior to running the converter. The file contains all of the

commanded values for a given time step size. In this case all commanded values are

updated every 100ms, since the converter expects to receive new information on this time

interval. This is very important if it is desired to test the converter when the input

61

commands from the level three control is updated much faster than a human could enter

them into the interface. The test running capable interface can be seen in Figure 38.

Figure 38 User Interface with Test Running Capabilities

62

CHAPTER FOUR: EXPERIMENTAL RESULTS

Converter Prototype

A 3D-model was constructed of the input filter and used to help build the entire

board assembly including, components, devices, battery connections and the rest of the

DC-to-DC Converter. The power filter board was designed to minimize the space

requirements. The fact that the power filter components are designed on a separate board

allows the ability to store them in a separate physical location than the Semikron unit.

This allows for the separation of the size requirement for the entire converter. Since heat

dissipation is always an issue in the automotive world, the power filter board was also

designed with notches cut in the PCB material to allow the inductor core material to

protrude through. This allows for direct cooling of the core material on the top and

bottom. The 3D-model and prototype is shown in Figure 39.

Figure 39 3D-Design of Power Filter Board

63

 It can be seen in that the actual prototype very closely resembles the 3D-model as

shown in Fig. 39. The two large black wires are connected to the battery pack at the low

voltage side. The small black wire at the bottom of the Figure 40 is the common ground

connection shared with the DC-to-DC converter. Finally, the three red wires seen in the

top of the figure are connected to the three phases on the Semikron unit.

Figure 40 Power Filter Board Prototype

 The final prototype can be seen in Figure 41. The Semikron unit can be found in

top right hand side of the figure. The Semikron unit is equipped with three internal hall

effect current sensors for each phase. However, these sensors were bypassed by the three

blue external hall effect sensors seen in the Figure 41. This was done to increase the

resolution of the current measurement for the inductor current regulation loop discussed

in Chapter 3.

64

Figure 41 Final Prototype

Experimental Results

All control loops and modes of operation were implemented on the prototype

mentioned above. The bi-directional capabilities were tested in both Hybrid Mode and

Electric Vehicle Mode. All control loops were tested under a range of load conditions and

voltage configurations.

In Figure 42, the converter is first held in standby and then ramped up to full

power in the buck direction by increasing the current reference set point in the buck

direction. Next the reference is ramped back down to zero. The mode then changes to

the boost direction and the reference is ramped to full power and back down again. This

tests an extreme case for the converter that is usually not seen in normal operation. One

instance that the converter could experience is during a massive regenerative braking

65

action followed immediately by a full throttle command. The yellow signal Figure 42

represents the inductor current of one of the phases, whereas, the orange signal is a

zoomed in version of the inductor current to show how the transition between buck and

boost is done in a seamless manner.

Figure 42 Power Sweep of Buck and Boost Modes

In Figure 43, the converter is operated in electric vehicle mode where the voltage

on the high side is regulated to 700V, represented by the red signal. Then the load was

increased to represent a higher demand from the motor drive system. This effect can be

seen in the inductor current in yellow and the battery current seen in green. It can be seen

how the voltage controller returns to the regulated set point after a transient period. The

load was then reduced to simulate less of a demand from the motor drive system. The

blue signal represents the input voltage from the batteries

Inductor
Current

Zoomed
Inductor
Current

66

Figure 43 Bus Voltage Regulation During Load Transient

 In Figure 44, the converter is running in hybrid boost mode and the average

inductor current is regulated. The battery current is seen in green is representative of the

average inductor current since it is the filtered inductor current. The load is then

increased representing a higher demand from the motor drive system. In the actual

system the high side voltage, seen in red, would be regulated by the generator discussed

in previous chapters. However, in this test the voltage was left unregulated, so it can be

seen how the voltage drops because of the increased load. After a short time interval, the

load is returned to the previous value, simulating a reduction in demand from the motor

drive system. It can be seen how average inductor current is regulated during the load

steps. The blue signal represents the battery voltage.

Inductor
Current

High
Side

Voltage

Load
Current

Battery
Voltage

67

Figure 44 Inductor Current Regulation During Load Steps

 In Figure 45, the converter is running in hybrid boost mode, where the average

inductor current is regulated seen in green. Next, the input voltage, seen in blue, is

stepped from 200V to 250V to simulate fluctuations in the battery voltage. In the real

system the fluctuations would never be this dramatic however testing under this extreme

case verifies the converter can maintain regulation during changes in the input voltage.

Inductor
Current

High
Side

Voltage

Load
Current

Battery
Voltage

68

Figure 45 Inductor Current Regulation During Input Voltage Steps

 In Figure 46, the converter is initially running in hybrid buck mode. The average

inductor current is regulated as shown by the yellow waveform, the inductor current of

one phase, since the peak current is held constant. Then, from the user interface, the

converter is commanded to hybrid boost mode. After the command is received the

converter switches to hybrid boost mode and ramps the current reference up to the

commanded value in the boost direction. This simulates the vehicle system controller

commanding the converter to stop charging the batteries and start pushing power to the

motor drive system. It can be seen that in inductor current does indeed operate in DCM

since the inductor current never goes negative with respect to the mode.

Inductor
Current

High
Side

Voltage

Load
Current

Battery
Voltage

69

Figure 46 Commanded Mode Change Buck to Boost

 In Figure 47, the converter is initially in standby. From the interface the converter

is command to hybrid boost mode. The average inductor current set point is ramped up

to the regulation set point, seen in the green waveform. In this test the voltage on the

high side is regulated by an external voltage source tied in parallel with a resistive load

bank, seen in the yellow signal. The method of ramping the reference up to the set point

is known as soft starting. This helps to reduce high peak demands from the converter

during start up and makes the start up a much smoother process.

Inductor
Current

70

Figure 47 Hybrid Boost Start Up

 The inductor current of each of the three phases can be seen in Figure 48. It is

shown how the inductor current is properly interleaved by spacing out the inductor

current waveforms equally over the switching period. The converter is running in hybrid

boost mode with a small reference for the inductor current regulator. The additional

ringing seen when the inductor current should be zero is due to the added parasitic

capacitance in the IGBT module. This is common and seen in all converters that operate

in DCM.

Inductor
Current

High
Side

Voltage

71

Figure 48 Experimental Inductor Current Interleaving

 In Figure 49, the converter is running in hybrid boost mode with a high set point

for the inductor current regulator. The load seen on the high side is initially sufficient

enough to make the output voltage less than 800V. Then the load is taken away. This

simulates an initial high demand from the motor drive system and then a sudden loss of

load. The converter continues to try and regulate the current until the voltage reaches the

over voltage regulation set point. However, in this case the rise in voltage is so dramatic,

seen in red, the output voltage regulator is not fast enough to respond and regulate a safe

over voltage value. The voltage then reaches the protection level of 800V where the

converter detects this and shuts the converter down, putting it in standby.

Inductor
Current
Phase A

Inductor
Current
Phase B

Inductor
Current
Phase C

72

Figure 49 Over Voltage Fault Shut Down

Inductor
Current

High
Side

Voltage

73

CHAPTER FIVE: CONCLUSION

Since the introduction of modern hybrid electric vehicles in 1899 [10], there have

been many major advances in technology in terms of devices, ICs, DPS and circuits. A

number of topologies have been discovered and implemented in today’s hybrid electric

vehicles. From these current topologies a subset of topologies has been classified and

evaluated in this work. It has been found that an addition of a bi-directional DC-to-DC

converter has much to benefit for this subset of topologies.

The advantages of a DCM converter were discussed to reduce the physical size of the

inductors. This is an important design criterion since space is a limited commodity in the

vehicle world. The converter design presented in this work is applicable for any subset of

the topologies discussed here in which DCM operation is required.

A series of operational modes were discussed, derived from real world operating

conditions present in the subset of hybrid electric vehicle topologies. Together, these

modes along with the requirement for DCM operation define functions necessary for the

level two controller. Complex functions are used to control the driving of the switches in

a way that guaranties DCM operation while still maintaining the bi-directional power

flow of the converter. The second level of control was designed to be open-ended, so the

vehicle system controller would be able to send generalized commands to the converter.

This allows the converter to operate in safe manner without to much intervention from

the vehicle system controller. This is important since the vehicle system controller is

relatively slow compared to the system dynamics.

74

Keeping true to the hierarchical design of the controllers, the first level of control

accepts commands from the second level of control. The first level of control is

comprised of all control loops which directly control the sensed parameters. This

includes inductor current regulation in buck and boost modes, high voltage side

regulation, and low voltage side regulation. All controllers were designed using a direct

digital designed and implemented in a DSP.

Two versions of the computer interface were developed to simulate inputs from the

third level of control. This allowed the test of the converter under all real world cases.

The user interface also provided a means to acquirer and display digital data already

present in the DSP. While the first version of the interface allows the direct control over

all system parameters in real time, the second version of the interface allowed for the use

of precompiled test scenarios to be run.

A system of fault protections were identified and implemented into the digital

controller. While hierarchical design is intended to protect the converter from unsafe

operations, sometimes these situations are unavoidable. In this case, it is important to

have a series of protections to prevent damage to the converter and surrounding

components.

The use of interleaving was investigated and shown how it can alleviate the added

voltage ripple present in DCM operated converters. After analyzing the PWM modules

preset in the implemented DSP, a method was developed to properly interleave the

inductor currents in the three paralleled converters. The interleaved inductor currents

were then verified experimentally

75

The system as a whole was designed as a drop in unit for today’s hybrid electric

vehicles. Since a converter with these advanced controller techniques is not available for

the automotive world, this converter is a major advancement for this application.

76

APPENDIX A: FLOW CHARTS

77

 Main This is where the code first starts, initializes

 modules, and shows the branch for the

 main controller interrupt.

 Initialize DSP Steps to initialize the DSP

 Call ADC Function used to trigger ADC and average

 results.

 Control Manager Controller structure

 Load Values from CAN Fetches current results from the CAN

 Transmit Values to CAN Sends updated values to the CAN

 Check for Faults Checks any new fault conditions

 Fetch State Determines the appropriate state of the

 converter.

 Standby Handler Functions need to hold converter in

standby mode

 Set Polarity Sets the polarity of the switches

 Reset Handler Functions needed to hold the converter in

 reset mode

 Run Handler Functions needed to hold the converter in

 run mode

78

Main

79

Initialize DSP

Enter

Initialize the
System

Setup High Speed
Clock

Initialize the
GPIOs

Disable all
interrupts

Initialize the
interrupt vector

table

Clear all interrupt
mask and flag bits

Configure
interrupts to be

used

Copy program
from flash to ram

Initialize ADC,
PWMs, and CAN

Enable Interrupts

Configure the CAN
and ADC

Return

80

Call ADC

81

Control Manager

82

Load Values from CAN

83

Transmit Values to CAN

84

Check for Faults

85

Fetch State

86

Standby Handler

87

Set Polarity

88

Reset Handler

89

Run Handler

90

APPENDIX B: DSP CODE

91

 Settings.h Contains defines used to easily adjust parameters in

 the code

 Sys_fun.h Function prototypes for DSP specific functions

 JD_PowerUnit.h Function prototypes for application specific

 functions

 Sys_fun.c Function definitions for DSP specific functions

 JD_PowerUnit.c Function definitions for application specific

 functions

92

Settings.h

#ifndef SETTINGS_H
#define SETTINGS_H

 // adc pin definitions
 #define HS_VBUS_PIN 0x7
 #define LS_VBUS_PIN 0xF
 #define IL_AVG1_PIN 0x0
 #define IL_AVG2_PIN 0x1
 #define IL_AVG3_PIN 0x2
 #define HS_TEMP_PIN 0xA
 #define SPARE_ADC_PIN 0xD

 // define maximum values for faults
 #define HS_VBUS_MAX (const long)800*59 //
800 V
 #define LS_VBUS_MAX (const long)300*20 //
300 V
 #define IL_BUCK_AVG_MAX (const long)35*1200 // 35 A
 #define IL_BOOST_AVG_MAX (const long)65*1200 // 65 A
 #define HS_TEMP_MAX (const long)100*143+32476
 //100 C
 #define SPARE_ADC_MAX 1000

 // timer definitions
 #define TPERIOD 2500 //2500=20kHz //2940 = 17kHz
.. clk 50MHz
 #define ADC_PERIOD 100 //500
 // 100MHz/1MHZ = 1000/2 ? why need /2
 #define DUTY_MAX 1875 // 1875 = 75% duty
 #define DUTY_MIN 5

 // controller settings
 #define VB_REF_LIM (long)300*20
 #define VO_REF_LIM (long)725*20*3
 #define IO_REF_LIM (long)65*20*60

 #define VSET 0x7ffff
 #define ISET 0x7ffff

 #define IGAIN 1
 #define VGAIN 3

 #define INT_SAT_UPPER (long)DUTY_MAX<<8 //629146

 // CAN addresses
 #define CAN_ADD_1 10
 #define CAN_ADD_2 11
 #define CAN_ADD_3 10
 #define CAN_ADD_4 11

 // miscellaneous
 #define true 1
 #define false 0

93

 // Offsets
 #define HS_VBUS_OFFSET 90
 #define HS_TEMP_OFFSET 27655
 #define CUR_OFFSET1 32980
 #define CUR_OFFSET2 32960
 #define CUR_OFFSET3 32620
 #define CUR_OFFSET
 (long)(CUR_OFFSET1+CUR_OFFSET2+CUR_OFFSET3)

#endif

Sys_fun.h

// header file for sys_fun.c
#ifndef SYS_FUN_H
#define SYS_FUN_H

 #define FLASH // comment this line and use RAM linker
file to program to RAM

 // mask adc conversion results
 #define HS_VBUS_R1 AdcRegs.ADCRESULT0
 #define HS_TEMP_R1 AdcRegs.ADCRESULT1
 #define HS_VBUS_R2 AdcRegs.ADCRESULT2
 #define HS_TEMP_R2 AdcRegs.ADCRESULT3

 #define IL_AVG1_R1 AdcRegs.ADCRESULT4
 #define IL_AVG2_R1 AdcRegs.ADCRESULT5
 #define IL_AVG3_R1 AdcRegs.ADCRESULT6
 #define IL_AVG1_R2 AdcRegs.ADCRESULT7

 #define IL_AVG2_R2 AdcRegs.ADCRESULT8
 #define IL_AVG3_R2 AdcRegs.ADCRESULT9
 #define IL_AVG1_R3 AdcRegs.ADCRESULT10
 #define IL_AVG2_R3 AdcRegs.ADCRESULT11

 #define IL_AVG3_R3 AdcRegs.ADCRESULT12
 #define IL_AVG1_R4 AdcRegs.ADCRESULT13
 #define IL_AVG2_R4 AdcRegs.ADCRESULT14
 #define IL_AVG3_R4 AdcRegs.ADCRESULT15

 #define min(a,b) (a<b?a:b)
 #define max(a,b) (a>b?a:b)
 #define limit(a,b,c) min(max(a,b),c)

 // function prototypes for system related functions
 void sys_init();
 void adc_replenish();
 void epwm_replenish();
 void InitEPwm1Example(void);
 void InitEPwm2Example(void);
 void InitEPwm3Example(void);
 void InitEPwm4Example(void);
 unsigned polarity(unsigned int);
 void load_can_data();

94

 void trans_can_data();
 unsigned int current_duty(void);
 signed long OVR_Z(signed long, long, int);
 signed long OVR_N(signed long, int);
 signed long IVR(signed long, int);
 signed long ICR(signed long int, int);
 void heartBeat_LED(int);
 void call_ADC();
// unsigned int freq_resp(unsigned int);

 // redirect interrupt service routines
 interrupt void adc_isr(void);
 interrupt void epwm1_timer_isr(void);
 interrupt void ecan0inta_isr(void);
 interrupt void ecan1inta_isr(void);
 interrupt void ecan0intb_isr(void);
 interrupt void ecan1intb_isr(void);

 // CAN stuff
 extern void DSP280x_ECanConfig(void);//MQ
 extern void DSP280x_ECanaConfig(void);//MQ
 extern void DSP280x_InterruptsConfig(void); //MQ
 extern void DSP280x_CANA_RX(int MBOXnumber);//MQ
 extern void DSP280x_CANB_RX(int MBOXnumber);//MQ
 extern void DSP280x_CANA_TX(unsigned char *Message, int
MBOXnumber);//MQ
 extern void DSP280x_CANB_TX(unsigned char *Message, int
MBOXnumber);//MQ
 extern void DSP280x_ECanbConfig(void);//MQ

// Custom structers ///////////
 //////////////Faults/////////////////
 struct FAULT_FLAGS_BITS { // bits description

 Uint16 soft_fault_0:1;
 Uint16 soft_fault_1:1;
 Uint16 soft_fault_2:1;
 Uint16 soft_fault_3:1;

 Uint16 COMM_ERR:1;
 Uint16 LS_OV:1;
 Uint16 TEMP:1;
 Uint16 IL_OC:1;

 Uint16 crit_fault_0:1;
 Uint16 crit_fault_1:1;
 Uint16 crit_fault_2:1;
 Uint16 crit_fault_3:1;

 Uint16 crit_fault_4:1;
 Uint16 crit_fault_5:1;
 Uint16 START_UP:1;
 Uint16 HS_OV:1;
 };

95

 union FAULT_FLAGS {
 Uint16 all;
 struct FAULT_FLAGS_BITS bit;
 };
 extern volatile union FAULT_FLAGS fault;

 ///////////////CAN DATA///////////////////
 struct CAN1_RX_CMD_BITS {

 unsigned char state:2;
 unsigned char mode:2;
 };

 union CAN1_RX_CMD {

 unsigned char all;
 struct CAN1_RX_CMD_BITS bit;
 };

 struct STATS_BITS {

 unsigned char STATE:2;
 unsigned char MODE:2;
 };

 union STATS {

 unsigned char all;
 struct STATS_BITS bit;
 };

 struct TEMP_STATUS {

 unsigned char HSTEMP;
 union STATS STATUS;
 };

 struct CAN_TX {

 Uint16 FAULTS;
 Uint16 HSVBUS;
 struct TEMP_STATUS other;
 Uint16 AVGCURLOW;
 Uint16 AVGCURPH1;
 Uint16 AVGCURPH2;
 Uint16 AVGCURPH3;
 };
 extern volatile struct CAN_TX tx;

 struct CAN_RX {

 Uint16 HSVBUS;
 Uint16 LSVBUS;
 union CAN1_RX_CMD cmd;
 int16 AVGCURBOOST;
 int16 AVGCURBUCK;
 };

96

 extern volatile struct CAN_RX rx;

 extern volatile unsigned int comm_cnt;

// pototype
 extern volatile unsigned int HS_VBUS;
 extern volatile unsigned int LS_VBUS;
 extern volatile unsigned int IL_AVG1;
 extern volatile unsigned int IL_AVG2;
 extern volatile unsigned int IL_AVG3;
 extern volatile long int IL_AVG;
 extern volatile unsigned int HS_TEMP;

#endif

JD_PowerUnit.h

// header file for JD_PowerUnit.c
#ifndef JD_PowerUnit_H
#define JD_PowerUnit_H

 // define states
 #define RUN 0
 #define STANDBY 1
 #define RESET 2
 #define FAULT 3

 // define modes
 #define EV 0
 #define HBOOST 1
 #define HBUCK 2
 #define SHUTDOWN 3

 // function prototypes for application related functions
 void check_faults();
 long int control_manager(void);
 unsigned int fetch_state(void);
 long int run_handler(void);
 unsigned int reset_handler(void);
 unsigned int standby_handler(void);

#endif

Sys_fun.c

// ApECOR
// John Deere Bi-Directional Power Unit
// Michael Pepper
// Septempber 27, 2006

#include "DSP280x_Device.h" // DSP280x Headerfile Include File
#include "DSP280x_Examples.h" // DSP280x Examples Include File

97

#include "JD_PowerUnit.h" // Contains application specific
information
#include "sys_fun.h" // Contains converter specific
information
#include "settings.h" // Settings and general defines

#include "DSP280x_CAN_GlobalVariableDefs.h" //MQ: DSP28 MailBoxes
Data Messages File

#ifndef FLASH
#include "DSP280x_PieVect.h" // MQ
#endif

#ifdef FLASH
// Murad Qahwash: These are defined by the linker (see F2808.cmd)
extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;

// Functions that will be run from RAM need to be assigned to
// a different section. This section will then be mapped using
// the linker cmd file.
#pragma CODE_SECTION(ecan0inta_isr, "ramfuncs");
#pragma CODE_SECTION(ecan1inta_isr, "ramfuncs");
#pragma CODE_SECTION(ecan0intb_isr, "ramfuncs");
#pragma CODE_SECTION(ecan1intb_isr, "ramfuncs");
#pragma CODE_SECTION(epwm1_timer_isr, "ramfuncs");
#pragma CODE_SECTION(adc_isr, "ramfuncs");

//End MQ
#endif

void DSP280x_CANA_TX();

void main(void)
{
 sys_init();

// Wait for inturpts
 for(;;)
 ;
}

interrupt void ecan0inta_isr(void)
{
// Insert ISR Code here
 int iMBox;
 iMBox = ECanaRegs.CANGIF0.bit.MIV0 ;

 // michael added
 comm_cnt = 0;

//

/* Begin Receiving */
 while(ECanaRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for
RMPi to be set. i = 16:31 "RX MBoxes"

98

 ECanaRegs.CANRMP.all |= iMBox;
 DSP280x_CANA_RX(iMBox);

 // To receive more interrupts from this PIE group, acknowledge this
interrupt
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;
}

interrupt void ecan1inta_isr(void)
{
// Insert ISR Code here
 int iMBox;
 iMBox = ECanaRegs.CANGIF1.bit.MIV1 ;

 // michael added
 comm_cnt = 0;

/* Begin Receiving */
 while(ECanaRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for
RMPi to be set. i = 16:31 "RX MBoxes"
 ECanaRegs.CANRMP.all |= iMBox;
 DSP280x_CANA_RX(iMBox);

 // To receive more interrupts from this PIE group, acknowledge this
interrupt
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;
}

interrupt void ecan0intb_isr(void)
{
// Insert ISR Code here
 int iMBox;
 iMBox = ECanbRegs.CANGIF0.bit.MIV0 ;

/* Begin Receiving */
 while(ECanbRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for
RMPi to be set. i = 16:31 "RX MBoxes"
 ECanbRegs.CANRMP.all |= iMBox;
 DSP280x_CANB_RX(iMBox);

 // To receive more interrupts from this PIE group, acknowledge this
interrupt
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;
}

interrupt void ecan1intb_isr(void)
{
// Insert ISR Code here
 int iMBox;
 iMBox = ECanbRegs.CANGIF1.bit.MIV1 ;

/* Begin Receiving */
 while(ECanbRegs.CANRMP.all != ((long)1<<iMBox)) {} //MQ: wait for
RMPi to be set. i = 16:31 "RX MBoxes"
 ECanbRegs.CANRMP.all |= iMBox;
 DSP280x_CANB_RX(iMBox);

99

 // To receive more interrupts from this PIE group, acknowledge this
interrupt
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;
}

interrupt void epwm1_timer_isr()
{
// Define local varaibles
 static signed int duty = 0;

// Trigger an ADC converstion
 call_ADC();

// Load previously calculated duty cycle
 EPwm1Regs.CMPA.half.CMPA = duty;
 EPwm2Regs.CMPA.half.CMPA = duty;
 EPwm3Regs.CMPA.half.CMPA = duty;

// Call control manger, returns new duty cycle values
 duty = control_manager();

// Duty cycle conditioning
 if(duty > DUTY_MAX)
 duty=DUTY_MAX;
 if(duty < DUTY_MIN)
 duty=DUTY_MIN;

// Blink the heart beat LED
 heartBeat_LED(0x7FF);

// Reset the pwm timer interrupt
 epwm_replenish();

 return;
}

void call_ADC()
{
// Start ADC and average results
 AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1;
 while(AdcRegs.ADCTRL2.bit.SOC_SEQ1)
 {} // wait for SOC

 IL_AVG1 = ((long)IL_AVG1_R1+IL_AVG1_R2+IL_AVG1_R3+IL_AVG1_R4)>>2;
 IL_AVG2 = ((long)IL_AVG2_R1+IL_AVG2_R2+IL_AVG2_R3+IL_AVG2_R4)>>2;
 IL_AVG3 = ((long)IL_AVG3_R1+IL_AVG3_R2+IL_AVG3_R3+IL_AVG3_R4)>>2;
 HS_VBUS = ((long)HS_VBUS_R1+HS_VBUS_R2)>>1;
 HS_TEMP = ((long)HS_TEMP_R1+HS_TEMP_R2)>>1;

 IL_AVG = ((long)IL_AVG1+IL_AVG2+IL_AVG3);

// adc_replenish();
}

interrupt void adc_isr()
{

100

 adc_replenish();

 return;
}

signed long OVR_Z(signed long vo_ref, long u_limit, int reset)
{
 // Define local variables
 static long vo_meas=0;
 static long diff=0,output=0,comp_diff=0,u1=0,u2=0;

 if(reset)
 {
 output=0;
 u1 = 0;
 u2 = 0;
 }
 else
 {
 // Subtract any offset
 vo_meas=(long)HS_VBUS-(long)HS_VBUS_OFFSET; //
r16: 0.0 -> 1.0

 // difference between ref and feedback
 diff=(long)vo_ref-(long)vo_meas; //
r15: -1.0 -> 1.0

 // compensated difference
 comp_diff= ((long)diff<<10) //
r23: -3.0 -> 3.0
 -((long)u1<<11)
 +((long)u1)
 +((long)u2<<10);

 u2=u1;
 u1=diff;

 // gain and integrator
 output+=((comp_diff>>10)<<VGAIN); //
r15:

 // limitation (OVR limit to ZERO and variable uppper limit)
 if(output<0)
 output=0;
 if(output>INT_SAT_UPPER)
 output=INT_SAT_UPPER;
 }

 return(output);
 // output r15:
}

signed long OVR_N(signed long vo_ref, int reset)
{
 // Define local variables
 static long vo_meas=0;
 static long diff=0,output=0,comp_diff=0,u1=0,u2=0;

101

 if(reset)
 {
 output=0;
 u1 = 0;
 u2 = 0;
 }
 else
 {
 // Subtract any offset
 vo_meas=(long)HS_VBUS-(long)HS_VBUS_OFFSET; //
r16: 0.0 -> 1.0

 // difference between ref and feedback
 diff=(long)vo_ref-(long)vo_meas; //
r15: -1.0 -> 1.0

 // compensated difference
 comp_diff= ((long)diff<<10) //
r23: -3.0 -> 3.0
 -((long)u1<<11)
 +((long)u1)
 +((long)u2<<10);

 u2=u1;
 u1=diff;

 // gain and integrator
 output+=((comp_diff>>10)<<VGAIN); //
r15:

 // limitation (OVR can be negitive)
 if(output<-629146)
 output=-629146;
 if(output>INT_SAT_UPPER)
 output=INT_SAT_UPPER;
 }

 return(output);
 // output r15:
}

signed long IVR(signed long vo_ref, int reset)
{
 // Define local variables
 static long vo_meas=0;
 static long diff=0,output=0;

 if(reset)
 {
 output=0;
 }
 else
 {
 // difference between ref and feedback
 vo_meas=(long)rx.LSVBUS;
 // r16: 0.0 -> 1.0

102

 diff=(long)vo_ref-(long)vo_meas;//<<4);
 // r20: -1.0 -> 1.0

 // gain and integrator
 output+=(diff>>VGAIN);
 // r20

 // limitation (OVR can be negitive)
 if(output<0)
 output=0;
 if(output>INT_SAT_UPPER)
 output=INT_SAT_UPPER;
 // r20
 }

 return(output);
 // output r20
}

signed long ICR(signed long io_ref, int reset)
{
 // Define local variables
 static long io_meas=0;
 static long diff=0,output=0,comp_diff=0,u1=0,u2=0;

 if(reset)
 {
 output=0;
 u1 = 0;
 u2 = 0;
 }
 else
 {
 // take the absolute value of io_ref
 if(io_ref<0)
 {
 io_ref=-io_ref;
 }

 io_meas = (long)IL_AVG - (long)CUR_OFFSET;

 if(io_meas<0)
 {
 io_meas=-io_meas;
 }

 // difference between ref and feedsback
 diff=(long)io_ref-(long)io_meas; // r15: -1.0 ->
1.0

 // compensated difference
 comp_diff= ((long)diff<<6) // r21: -3.0 ->
3.0
 -((long)u1<<7)
 +((long)u1)
 +((long)u2<<6);

103

 u2=u1;
 u1=diff;

 // gain and limited integrator
 output+=((comp_diff>>6)<<IGAIN); // r15:

 // limitation (ICR cannot be negitave)
 if(output<0)
 output=0;
 if(output>INT_SAT_UPPER)
 output=INT_SAT_UPPER;
 }

 return (output); // r15:
}

void load_can_data()
{

 // Load recived CAN data into global variables
 rx.cmd.all = ECana_MBoxes_Data.MBOX26.MDL.byte.BYTE0;
 rx.HSVBUS = ECana_MBoxes_Data.MBOX26.MDH.word.HI_WORD;
 rx.LSVBUS = ECana_MBoxes_Data.MBOX26.MDL.word.LOW_WORD;
 rx.AVGCURBUCK = (32000-
ECana_MBoxes_Data.MBOX27.MDL.word.LOW_WORD);
 rx.AVGCURBOOST = (ECana_MBoxes_Data.MBOX27.MDH.word.HI_WORD-
32000);

 // Load transmitted CAN data into global variables
 tx.HSVBUS = (signed long)(HS_VBUS-HS_VBUS_OFFSET)/3;
 tx.other.HSTEMP = ((signed long)(HS_TEMP-HS_TEMP_OFFSET)/129);
 tx.AVGCURPH1 = (signed long)(((signed)(IL_AVG1-
CUR_OFFSET1)/60)+32000);
 tx.AVGCURPH2 = (signed long)(((signed)(IL_AVG2-
CUR_OFFSET2)/60)+32000);
 tx.AVGCURPH3 = (signed long)(((signed)(IL_AVG3-
CUR_OFFSET3)/60)+32000);
 tx.AVGCURLOW = (signed long)(((long)(IL_AVG-
CUR_OFFSET)/60)+32000);
 //tx.other.STATUS.bit.MODE = rx.cmd.bit.mode; // Update
these in different location in code
 //tx.other.STATUS.bit.STATE = rx.cmd.bit.state; // Update
these in different location in code

 // validate date
// if(rx.HSVBUS > HSVBUS_MAX)
// fault.bit.crit_fault_1 = 1; // invalid data
// if(rx.HSVBUS < HSVBUS_MIN)
// fault.bit.crit_fault_1 = 1; // invalid data

 return;
}

void trans_can_data()
{
 // define local variables
 unsigned char Message[8];

104

 Message[0]= tx.other.STATUS.all;
 Message[1]= tx.other.HSTEMP;
 Message[2]= tx.HSVBUS;
 Message[3]= tx.HSVBUS>>8;
 Message[4]= tx.FAULTS;
 Message[5]= tx.FAULTS>>8;
 Message[6]= 0;
 Message[7]= 0;

 DSP280x_CANA_TX(Message,10);

 Message[0]= tx.AVGCURLOW;
 Message[1]= tx.AVGCURLOW>>8;
 Message[2]= tx.AVGCURPH1;
 Message[3]= tx.AVGCURPH1>>8;
 Message[4]= tx.AVGCURPH2;
 Message[5]= tx.AVGCURPH2>>8;
 Message[6]= tx.AVGCURPH3;
 Message[7]= tx.AVGCURPH3>>8;

 DSP280x_CANA_TX(Message,11);

 return;
}

unsigned int current_duty()
{
 // return the current duty cycle
 return(EPwm1Regs.CMPA.half.CMPA);
}

void heartBeat_LED(int speed)
{
 static unsigned int cnt = 0;
 if(!(++cnt & speed))
 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; // toggle
heartBeat

 return;
}

unsigned polarity(unsigned int value)
{
 static unsigned current=0;

 switch(value)
 {
 case HBOOST: // Boost
 {
 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm1Regs.AQCTLA.bit.PRD = AQ_SET;
 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR;

105

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm2Regs.AQCTLA.bit.PRD = AQ_SET;
 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm3Regs.AQCTLA.bit.PRD = AQ_SET;
 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 current=value;
 // update current state
 return current;
 }
 case HBUCK: // Buck
 {
 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm1Regs.AQCTLB.bit.PRD = AQ_SET;

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm2Regs.AQCTLB.bit.PRD = AQ_SET;

 EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm3Regs.AQCTLB.bit.PRD = AQ_SET;

 current=value;
 // update current state
 return current;
 }
 case '?':
 {
 return current;
 }
 default: // ShutDown
 {
 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR;

106

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; //
Active low for lower switch
 EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; //
Disable upper switch
 EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 current=value;
 // update current state
 return current;
 }
 }
}

void InitEPwm1Example()
{

 EPwm1Regs.TBPRD = TPERIOD; //
Period
 EPwm1Regs.TBPHS.half.TBPHS = 0; // Set
Phase register to zero
 EPwm1Regs.TBCTR = 0x0000; // Clear
counter
 EPwm1Regs.CMPA.half.CMPA = 0; // set duty
cycle
 EPwm1Regs.CMPB = 25;

 EPwm1Regs.TBCTL.bit.FREE_SOFT = 0x10; // Free
running mode
 EPwm1Regs.TBCTL.bit.CTRMODE = 0; // Up count
 EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Master module
 EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; // Shadow
the period reg
 EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // Sync down-
stream module

 EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow
mode
 EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; // shadow
mode
 EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on
CTR=Zero
 EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on
CTR=Zero

 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // init
both PWMs forced low
 EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;

107

 EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 EPwm1Regs.DBCTL.bit.OUT_MODE = 00; // Disable
Dead-band module

 // Set up interupt
 EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on
Zero event
 EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable
INT
 EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT
on 1st event

 return;
}

void InitEPwm2Example()
{

 EPwm2Regs.TBPRD = TPERIOD; //
Period =
 EPwm2Regs.TBPHS.half.TBPHS = TPERIOD/3; // Phase =
120d
 EPwm2Regs.TBCTR = 0x0000; // Clear counter
 EPwm2Regs.CMPA.half.CMPA = 0; // set
initial duty cycle

 EPwm2Regs.TBCTL.bit.FREE_SOFT = 0x10; // Free
running mode
 EPwm2Regs.TBCTL.bit.CTRMODE = 0; // Up Count
 EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave
module

 EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; // shadow
period reg
 EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync
flow-through

 EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow
mode
 EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; // shadow
mode
 EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on
CTR=Zero
 EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on
CTR=Zero

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; // init
both PWMs forced low
 EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;
 EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 EPwm2Regs.DBCTL.bit.OUT_MODE = 0; // disable
Dead-band module

108

 return;
}

void InitEPwm3Example()
{

 EPwm3Regs.TBPRD = TPERIOD; //
Period =
 EPwm3Regs.TBPHS.half.TBPHS = 2*TPERIOD/3; // Phase = 240d
 EPwm3Regs.TBCTR = 0x0000; // Clear counter
 EPwm3Regs.CMPA.half.CMPA = 0; //
set duty cycle

 EPwm3Regs.TBCTL.bit.FREE_SOFT = 0x10; // Free
running mode
 EPwm3Regs.TBCTL.bit.CTRMODE = 0; // Up count
 EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave
module

 EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW; // shadow
the period reg
 EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync
flow-through

 EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow
mode
 EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; // shadow
mode
 EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on
CTR=Zero
 EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on
CTR=Zero

 EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; // init
both PWMs forced low
 EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;
 EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 EPwm3Regs.DBCTL.bit.OUT_MODE = 0; // disable
Dead-band module
 // fix this to give comp. signals

 return;
}

void InitEPwm4Example()
{

 EPwm4Regs.TBPRD = ADC_PERIOD; //
Period =
 EPwm4Regs.TBPHS.half.TBPHS = 0; //
Phase = 0
 EPwm4Regs.TBCTR = 0x0000; // Clear counter
 EPwm4Regs.CMPA.half.CMPA = ADC_PERIOD>>1; // set duty cycle

109

 EPwm4Regs.TBCTL.bit.FREE_SOFT = 0x10; // Free
running mode
 EPwm4Regs.TBCTL.bit.CTRMODE = 0; // Up count
 EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Slave module

 EPwm4Regs.TBCTL.bit.PRDLD = TB_SHADOW; // shadow
the period reg
 EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync
flow-through

 EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow
mode
 EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; // shadow
mode
 EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on
CTR=Zero
 EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on
CTR=Zero

 EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR; // init
both PWMs forced low
 EPwm4Regs.AQCTLA.bit.PRD = AQ_CLEAR;
 EPwm4Regs.AQCTLB.bit.CAU = AQ_CLEAR;
 EPwm4Regs.AQCTLB.bit.PRD = AQ_CLEAR;

 EPwm4Regs.DBCTL.bit.OUT_MODE = 0; // disable
Dead-band module

 // Start the conversrion for the ADC
// EPwm4Regs.ETSEL.bit.SOCAEN = 1; //
enable triggering
// EPwm4Regs.ETSEL.bit.SOCASEL = 6; // trigger
ADC on period
// EPwm4Regs.ETPS.bit.SOCAPRD = 1; //
trigger on first event

 return;
}

void sys_init()
{

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
 InitSysCtrl();

// For this example, set HSPCLK to SYSCLKOUT / 8 (12.5Mhz assuming
100Mhz SYSCLKOUT)
 EALLOW;
 SysCtrlRegs.HISPCP.all = 0x4; // HSPCLK = SYSCLKOUT/8
 EDIS;

// Step 2. Initalize GPIO:
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.

110

// InitGpio(); // Skipped for this example

// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
// These functions are in the DSP280x_EPwm.c file
 InitEPwm1Gpio();
 InitEPwm2Gpio();
 InitEPwm3Gpio();
 InitEPwm4Gpio();

 // Just initalize eCAN pins for this example
 // This function is in DSP280x_ECan.c
 InitECanGpio();

 EALLOW;
 // Set up the heartBeat_LED
 GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0; // select GPIO function
 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1; // Output

 // Set up spare GPIO
 GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 0; // select GPIO function
 GpioCtrlRegs.GPADIR.bit.GPIO8 = 1; // Output
 EDIS;

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
 DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP280x_PieCtrl.c file.
 InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
 IER = 0x0000;
 IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
 InitPieVectTable();

// Interrupts that are used in this example are found in
DSP280x_DefaultIsr.c.

 DSP280x_InterruptsConfig();
 //EnableInterrupts();

 EALLOW;
 PieVectTable.ADCINT = &adc_isr; // isr for avg
samples
 PieVectTable.EPWM1_INT = &epwm1_timer_isr; // isr for main section
of code
 PieVectTable.ECAN0INTA = &ecan0inta_isr;

111

 PieVectTable.ECAN1INTA = &ecan1inta_isr;
 PieVectTable.ECAN0INTB = &ecan0intb_isr;
 PieVectTable.ECAN1INTB = &ecan1intb_isr;
 EDIS;

#ifdef FLASH
 // Murad Qahwash. User specific code, enable interrupts:

// Copy time critical code and Flash setup code to RAM
// This includes the following ISR functions: epwm1_timer_isr(),
epwm2_timer_isr()
// epwm3_timer_isr and and InitFlash();
// The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart
// symbols are created by the linker. Refer to the F2808.cmd file.
 MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
 InitFlash();
#endif

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
 InitAdc();

 EALLOW;
 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
 EDIS;

 InitEPwm1Example();
 InitEPwm2Example();
 InitEPwm3Example();
 InitEPwm4Example();

 EALLOW;
 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
 EDIS;

 // In this case just initalize eCAN-A and eCAN-B
 // This function is in DSP280x_ECan.c
 InitECan();

// Step 5. User specific code, enable interrupts

// Enable ADCINT in PIE
 PieCtrlRegs.PIEIER1.bit.INTx6 = 1; // ADC
 PieCtrlRegs.PIEIER3.bit.INTx1 = 1; // PWM

 IER |= M_INT1; // Enable CPU Interrupt Level 1
 IER |= M_INT3; // Enable CPU INT3 which is connected to EPWM1-6 INT:
 IER |= M_INT9; // Enable CPU Interrupt Level 9
 EINT; // Enable Global interrupt INTM
 ERTM; // Enable Global realtime interrupt DBGM

 // configure the CAN
 DSP280x_ECanConfig(); //MQ

112

// Configure ADC
 AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 7;
 AdcRegs.ADCMAXCONV.bit.MAX_CONV2 = 7;

 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = HS_VBUS_PIN; // Setup 1st SEQ1
conv.
 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = HS_TEMP_PIN; // Setup 2nd SEQ1
conv.
 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = HS_VBUS_PIN; // Setup 3rd SEQ1
conv.
 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = HS_TEMP_PIN; // Setup 4th SEQ1
conv.

 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = IL_AVG1_PIN;
 AdcRegs.ADCCHSELSEQ2.bit.CONV05 = IL_AVG2_PIN;
 AdcRegs.ADCCHSELSEQ2.bit.CONV06 = IL_AVG3_PIN;
 AdcRegs.ADCCHSELSEQ2.bit.CONV07 = IL_AVG1_PIN;

 AdcRegs.ADCCHSELSEQ3.bit.CONV08 = IL_AVG2_PIN;
 AdcRegs.ADCCHSELSEQ3.bit.CONV09 = IL_AVG3_PIN;
 AdcRegs.ADCCHSELSEQ3.bit.CONV10 = IL_AVG1_PIN;
 AdcRegs.ADCCHSELSEQ3.bit.CONV11 = IL_AVG2_PIN;

 AdcRegs.ADCCHSELSEQ4.bit.CONV12 = IL_AVG3_PIN;
 AdcRegs.ADCCHSELSEQ4.bit.CONV13 = IL_AVG1_PIN;
 AdcRegs.ADCCHSELSEQ4.bit.CONV14 = IL_AVG2_PIN;
 AdcRegs.ADCCHSELSEQ4.bit.CONV15 = IL_AVG3_PIN;

 AdcRegs.ADCTRL1.bit.CONT_RUN = 0; // Set ADC
to start/stop mode
 AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // Cascade
Seq1 and 2
 //AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1; // Enable SOCA
from ePWM to start SEQ1
 //AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1
interrupt (every EOS)

// Initilize with a fault to force start up in standby
 rx.cmd.bit.state=0;
 ECana_MBoxes_Data.MBOX26.MDL.byte.BYTE0=0;
 fault.bit.START_UP=1;

}

void adc_replenish()
{
// Reinitialize for next ADC sequence
 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
 AdcRegs.ADCTRL2.bit.RST_SEQ2 = 1; // Reset SEQ2
 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
 // PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge
interrupt to PIE
}

void epwm_replenish()
{

113

// Clear INT flag for this timer
 EPwm1Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
//===
======
// No more.
//===
======

JD_PowerUnit.c

// code for digital control of John Deere's power unit
// ApECOR
// Created August 25, 2006
//--

#include "DSP280x_Device.h" // DSP280x Headerfile Include File
#include "DSP280x_Examples.h" // DSP280x Examples Include File
#include "DSP280x_CAN_GlobalVariableDefs.h" //MQ: DSP28 MailBoxes
Data Messages File

#include "settings.h"
#include "JD_PowerUnit.h"
#include "sys_fun.h"

// First fuction to be called
// All control starts from here
// Function returns a refrence
// for Duty in R20 format
long int control_manager()
{
// Define local variables
 static signed duty = 0;
 static signed soft = 0;
 static unsigned tx_cnt = 0;

// Transmit data to CAN
 if(++tx_cnt == 0xFFF) // 2000 = 100ms at 20kHz
 {
 GpioDataRegs.GPATOGGLE.bit.GPIO8 = 1;
 trans_can_data();
 tx_cnt=0;
 }

// Load values recived from CAN
 load_can_data();

// Check for fault conditions
 check_faults();

//
 switch (fetch_state())

114

 {
 case RUN: //run
 {

 // duty = (((long)TPERIOD*run_handler())>>20);
 duty = run_handler()>>8;

 //return(duty);

 ++soft; // increment the soft start

 if(soft<0) // limit the soft start
 soft=0;
 if(soft>(DUTY_MAX<<3))
 soft=(DUTY_MAX<<3);

 return(min(duty,soft>>3));
 }
 case RESET: //reset
 {

 duty = current_duty();

 --soft; // increment the soft start

 if(soft<0) // limit the soft start
 {
 soft=0;
 reset_handler();
 }
 if(soft>(DUTY_MAX<<3))
 soft=(DUTY_MAX<<3);

 return(min(duty,soft>>3));
 }
 default: //standby
 {

 duty = current_duty();

 --soft; // increment the soft start

 if(soft<0) // limit the soft start
 {
 soft=0;
 standby_handler();
 }
 if(soft>(DUTY_MAX<<3))
 soft=(DUTY_MAX<<3);

 return(min(duty,soft>>3));
 }
 }
}

unsigned int fetch_state()
{

115

// Define local variables
unsigned int state=rx.cmd.bit.state; //init at recived value

 tx.other.STATUS.bit.STATE=state;

// If fault is present update mode to
// standby and trasmitte a FAULT
 if(fault.all)
 {
 state=STANDBY;
 tx.other.STATUS.bit.STATE=FAULT; // tx a fault
 }

// If a RESET command is sent ignore the
// fault and set state to reset
 if(rx.cmd.bit.state == RESET)
 {
 state=RESET;
 tx.other.STATUS.bit.STATE=RESET;
 // might tx data later
 }

 return(state);
}

long int run_handler()
{
// define local variables
int reset = 0;

// Select mode recived from the CAN
 switch(rx.cmd.bit.mode)
 {
 case EV: // EV
 {
 // define local variables
 static long io_ref=0,vo_ref=0;
 static long io_out=0,vo_out=0;

 if(tx.other.STATUS.bit.MODE == EV)
 reset=0;
 // run in normal mode
 else
 {
 reset=1;
 // reset the controller
 tx.other.STATUS.bit.MODE = EV;
 }

 // set voltage regulation reference and run OVR_N
(negitive output enabled)
 vo_ref=(long)rx.HSVBUS*3;

 vo_out=OVR_N(min(VO_REF_LIM,vo_ref),reset);

 // update polarity based on current command
 if(vo_out>0)

116

 {
 // set current regulation reference
 io_ref=(long)rx.AVGCURBOOST*60; //
check this scaling
 polarity(HBOOST);
 }
 else
 {
 // set current regulation reference
 io_ref=(long)rx.AVGCURBUCK*60; //
check this scaling
 polarity(HBUCK);
 }

 io_out=ICR(min(IO_REF_LIM,io_ref),reset);

 if(vo_out<0)
 vo_out=-vo_out;

 return(min(io_out,vo_out));
 }
 case HBOOST: // HBOOST
 {
 // define local variables
 static long io_ref=0,vo_ref=0;
 static long io_out=0,vo_out = 0;

 if(tx.other.STATUS.bit.MODE == HBOOST)
 {
 reset=0; // run in normal
mode
 polarity(HBOOST); // set polarity to
HBOOST
 }
 else
 {
 reset=1;
 // reset the controller
 tx.other.STATUS.bit.MODE = HBOOST;
 polarity(SHUTDOWN); // set polarity
to SHUTDOWN
 }

 // set current command
 io_ref=(long)rx.AVGCURBOOST*60; //
check this scaling

 io_out=ICR(min(IO_REF_LIM,io_ref),reset);

 // set over voltage regulation
 //vo_ref = freq_resp((long)rx.HSVBUS*3);
 vo_ref=(long)rx.HSVBUS*3;

 vo_out=OVR_Z(min(VO_REF_LIM,vo_ref),io_out,reset);

 return(min(io_out,vo_out));
 }

117

 case HBUCK: // HBUCK
 {
 // define local variables
 static long io_ref=0,vo_ref=0;
 static long io_out=0,vo_out=0;

 // reset controllers if first time entering HBUCK
mode
 if(tx.other.STATUS.bit.MODE == HBUCK)
 {
 reset=0; // run in normal
mode
 polarity(HBUCK); // set polarity to
HBUCK
 }
 else
 {
 reset=1;
 // reset the controller
 tx.other.STATUS.bit.MODE=HBUCK;
 polarity(SHUTDOWN); // set polarity
to SHUTDOWN
 }

 // set current regulation reference
 io_ref=(long)rx.AVGCURBUCK*60; //
check this scaling

 if(io_ref)
 io_out=ICR(min(IO_REF_LIM,io_ref),reset);
 else
 io_out=ICR(min(IO_REF_LIM,io_ref),reset);

 // set voltage regulation reference
 vo_ref=280*20; // check
this scaling
 vo_out=IVR(min(VB_REF_LIM,vo_ref),reset);

 return(min(io_out,vo_out));
 }
 default: // invalid state
 {
 fault.bit.crit_fault_0 = 1;
 // report invalid state error
 return(current_duty());
 // do not change duty cycle
 }
 }
}

unsigned int reset_handler()
{
 fault.all = 0x0000;
 polarity(SHUTDOWN);
 return(0);
}

118

unsigned int standby_handler()
{
 polarity(SHUTDOWN);
 return(0);
}

void check_faults()
{
 // define local variables
 long curr_meas=IL_AVG;

 curr_meas=(long)IL_AVG-(long)CUR_OFFSET;

// if(curr_meas<0)
// curr_meas=-curr_meas;

 // check all ADC for fault conditions
 // critical faults
 if(polarity('?')==HBOOST)
 {
 if((-curr_meas) > IL_BOOST_AVG_MAX)
 {
 //polarity(SHUTDOWN);
 fault.bit.IL_OC=1;
 }
 }
 else
 {
 if(curr_meas > IL_BUCK_AVG_MAX)
 {
 // polarity(SHUTDOWN);
 fault.bit.IL_OC=1;
 }
 }

 if(HS_TEMP > HS_TEMP_MAX)
 {
 // polarity(SHUTDOWN);
 fault.bit.TEMP=1;
 }

 // non critical faults
 if(HS_VBUS > HS_VBUS_MAX)
 {
 polarity(SHUTDOWN);
 fault.bit.HS_OV=1;
 }

 if(rx.LSVBUS > LS_VBUS_MAX)
 {
 fault.bit.LS_OV=1;
 }

 // check communication
 if(++comm_cnt>5000) // 5000 = 250ms at 20kHz

119

 {
 comm_cnt--;
 fault.bit.COMM_ERR = 1;
 }
 //else
 // fault.bit.COMM_ERR = 0;

 return;
}

// end of file

120

APPENDIX C: EQUATIONS

121

() ()
()()

()

()
()

()
()

()() ()

()() ()

() ()22222

222

22

22

22

~~222~~~2

~~222~~

2

~11~~

~
~2

~
~

~
~

2

ddDDTV
R

LCLsvvVVVvVV

ddDDTV
R

LCLsVvVvV

CLs
dDTV

CsR
VvVvV

CsR
vV

VvVCLs
dDTVvV

dDsD

vVsV
CsR

sV
VsVCLs

sDTVsV

sbatt
Load

busbusbattbattbusbusbusbus

sbatt
Load

battbusbusbusbus

sbatt

Load
battbusbusbusbus

Load

busbus

battbusbus

sbatt
busbus

busbusbus

Load

bus

battbus

sbatt
bus

++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−+

++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−++

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−++

+
−

−+
+

=+

+=

+=

−
−

=

Cancel pure DC and higher order terms

()

()

() ()

LCLsR
VV

DRTV

d
v

LCLsR
RdDTVVVv

R
LCLs

dDTVVVv

dDTV
R

LCLsvVvV

Load

battbus

Loadsbatt

bus

Load

Loadsbatt
battbusbus

Load

sbatt
battbusbus

sbatt
Load

busbattbusbus

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

+
=−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

2
~

~

~
2~

22

~22~

~222~~2

2

2

2

2

Equation 8

122

LIST OF REFERENCES

[1] “Comparing DC-DC converters for power management in hybrid electric vehicles”
Schupbach, R.M.; Balda, J.C.; Electric Machines and Drives Conference,
IEMDC'03. IEEE International Volume 3, June 2003 Pp1369–1374.

[2] “Interleaving optimization in synchronous rectified DC/DC converters” Gerber, M.;

Ferreira, J.A.; Hofsajer, I.W.; Seliger, N.; Power Electronics Specialists
Conference, 2004. IEEE 35th Annual Volume 6, 20-25 June 2004 Page(s):4655 -
4661 Vol.6

[3] “Digital Controller Design for a Practicing Power Electronics Engineer” Al-Atrash,

H.; Batarseh, I.; Applied Power Electronics Conference, - Twenty Second Annual
IEEE Feb. 2007 Page(s):34 – 41

[4] “Automotive DC-DC bidirectional converter made with many interleaved buck

stages,” Garcia, O., Zumel, P., de Castro, A., Cobos, A., Power Electronics, IEEE
Transactions on Volume 21, Issue 3, May 2006 Page(s):578 – 586

[5] “Bidirectional buck-boost converter with variable output voltage” Krishnamachari,

B.; Czarkowski, D.; Circuits and Systems, 1998. ISCAS '98. Proceedings of the
1998 IEEE International Symposium on Volume 6, 31 May-3 June 1998
Page(s):446 - 449 vol.6

[6] “High Efficiency Energy Storage System Design for Hybrid Electric Vehicle with

Motor Drive Integration” Shuai Lu; Corzine, K.A.; Ferdowsi, M.; Industry
Applications Conference, 2006. Conference Record of the 2006 IEEE Volume 5, 8-
12 Oct. 2006 Page(s):2560 – 2567

[7] “Battery usage and thermal performance of the Toyota Prius and Honda Insight

during chassis dynamometer testing” Kelly, K.J.; Mihalic, M.; Zolot, M.; Battery
Conference on Applications and Advances, 2002. The Seventeenth Annual 15-18
Jan. 2002 Page(s):247 – 252

[8] “Topological overview of hybrid electric and fuel cell vehicular power system

architectures and configurations” Emadi, A.; Rajashekara, K.; Williamson, S.S.;
Lukic, S.M.; Vehicular Technology, IEEE Transactions on Volume 54, Issue 3,
May 2005 Page(s):763 – 770

[9] “A multiphase dc/dc converter for automotive dual-voltage power systems” A.

Consoli, M. Cacciato, G. Scarcella, A. Testa, IEEE Industry Applications
Magazine, Nov|Dec 2004

[10] “Modern Electric, Hybrid Electric, and Fuel Cell Vehicles” M. Ehsani, Y. Gao, S.

E. Gay, A. Emadi, CRC Press LLC, 2005

123

1 Image reprinted under the Creative Commons license agreement

http://creativecommons.org/licenses/by-sa/2.5/

	Bi-directional Dcm Dc-to-dc Converter For Hybrid Electric Vehicles
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	Typical Topologies
	Series Hybrid
	Parallel Hybrid
	Combined Hybrid

	CHAPTER TWO: LITERATURE REVIEW
	Battery Voltage
	Non Idealities
	The DC-to-DC Converter Solution

	CHAPTER THREE: SYSTEM DESIGN
	System Overview
	Level 1 Control
	Average Model
	Verify Average Model
	Small Signal Analysis

	Level 2 Control
	Modes of Operation

	Interleaving
	Protection
	DCM Explained
	Communication Interface (Level 3 Control)
	CANRX
	Command values (CMD) – Mailbox 1
	Data values (DATA) – Mailbox 1
	Data values (DATA) – Mailbox 2

	CANTX
	State of the Converter (STATUS) – Mailbox 3
	Data values (DATA) – Mailbox 3
	Data values (DATA) – Mailbox 4

	User Interface

	CHAPTER FOUR: EXPERIMENTAL RESULTS
	Converter Prototype
	Experimental Results

	CHAPTER FIVE: CONCLUSION
	APPENDIX A: FLOW CHARTS
	Main
	Initialize DSP
	Call ADC
	Control Manager
	Load Values from CAN
	Transmit Values to CAN
	Check for Faults
	Fetch State
	Standby Handler
	Set Polarity
	Reset Handler
	Run Handler

	APPENDIX B: DSP CODE
	Settings.h
	Sys_fun.h
	JD_PowerUnit.h
	Sys_fun.c
	JD_PowerUnit.c

	APPENDIX C: EQUATIONS
	LIST OF REFERENCES

