1,129 research outputs found

    Weighted feature selection criteria for visual servoing of a telerobot

    Get PDF
    Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB

    Get PDF
    In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator

    Development of a reusable top-level control architecture for a robotic manipulator

    Get PDF
    The capabilities of a robotic system are strongly constrained by the capabilities of its control software. The development of this software represents a substantial fraction of the development effort of the overall system, due in part to the difficulty of reusing software written for previous robotic applications. A reusable software control architecture therefore has enormous potential to expedite the development and reduce the cost of this development process. This thesis presents a component-based reusable architecture for the top-level control of a robotic manipulator, developed within the Open Robot Control Software (Orocos) framework. This framework enables the development of software components that are applicable to a variety of robotic manipulators. The software is implemented on an existing manipulator platform as a demonstration of basic functionality. Simulations are conducted to verify adaptability to other kinematic arrangements

    Visual servo control on a humanoid robot

    Get PDF
    Includes bibliographical referencesThis thesis deals with the control of a humanoid robot based on visual servoing. It seeks to confer a degree of autonomy to the robot in the achievement of tasks such as reaching a desired position, tracking or/and grasping an object. The autonomy of humanoid robots is considered as crucial for the success of the numerous services that this kind of robots can render with their ability to associate dexterity and mobility in structured, unstructured or even hazardous environments. To achieve this objective, a humanoid robot is fully modeled and the control of its locomotion, conditioned by postural balance and gait stability, is studied. The presented approach is formulated to account for all the joints of the biped robot. As a way to conform the reference commands from visual servoing to the discrete locomotion mode of the robot, this study exploits a reactive omnidirectional walking pattern generator and a visual task Jacobian redefined with respect to a floating base on the humanoid robot, instead of the stance foot. The redundancy problem stemming from the high number of degrees of freedom coupled with the omnidirectional mobility of the robot is handled within the task priority framework, allowing thus to achieve con- figuration dependent sub-objectives such as improving the reachability, the manipulability and avoiding joint limits. Beyond a kinematic formulation of visual servoing, this thesis explores a dynamic visual approach and proposes two new visual servoing laws. Lyapunov theory is used first to prove the stability and convergence of the visual closed loop, then to derive a robust adaptive controller for the combined robot-vision dynamics, yielding thus an ultimate uniform bounded solution. Finally, all proposed schemes are validated in simulation and experimentally on the humanoid robot NAO

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    A neural network-based trajectory planner for redundant systems using direct inverse modeling

    Get PDF
    Redundant (i.e., under-determined) systems can not be trained effectively using direct inverse modeling with supervised learning, for reasons well out-lined by Michael Jordan at MIT. There is a loop-hole , however, in Jordan\u27s preconditions, which seems to allow just such an architecture. A robot path planner implementing a cerebellar inspired habituation paradigm with such an architecture will be introduced. The system, called ARTFORMS, for Adaptive Redundant Trajectory Formation System uses on-line training of multiple CMACS. CMACs are locally generalizing networks, and have an a priori deterministic geometric input space mapping. These properties together with on-line learning and rapid convergence satisfy the loop-hole conditions. Issues of stability/plasticity, presentation order and generalization, computational complexity, and subsumptive fusion of multiple networks are discussed. Two implementations are described. The first is shown not to be goal directed enough for ultimate success. The second, which is highly successful, is made more goal directed by the addition of secondary training, which reduces the dimensionality of the problem by using a set of constraint equations. Running open loop with respect to posture (the system metric which reduces dimensionality) is seen to be the root cause of the first system\u27s failure, not the use of the direct inverse method. In fact, several nice properties of direct inverse modeling contribute to the system\u27s convergence speed, robustness and compliance. The central problem used to demonstrate this method is the control of trajectory formation for a planar kinematic chain with a variable number of joints. Finally, this method is extended to implement adaptive obstacle avoidance

    Visual guidance of unmanned aerial manipulators

    Get PDF
    The ability to fly has greatly expanded the possibilities for robots to perform surveillance, inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics was mature enough to allow active interactions with the environment. The robots responsible for these interactions are called aerial manipulators and usually combine a multirotor platform and one or more robotic arms. The main objective of this thesis is to formalize the concept of aerial manipulator and present guidance methods, using visual information, to provide them with autonomous functionalities. A key competence to control an aerial manipulator is the ability to localize it in the environment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or IR cameras), restricting the real applications. Furthermore, localization methods with on-board sensors, exported from other robotics fields such as simultaneous localization and mapping (SLAM), require large computational units becoming a handicap in vehicles where size, load, and power consumption are important restrictions. In this regard, this thesis proposes a method to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by means of on-board, low-cost, light-weight and high-rate sensors. With the physical complexity of these robots, it is required to use advanced control techniques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the possibility to accomplish not only with mobility requirements but with other tasks simultaneously and hierarchically, prioritizing them depending on their impact to the overall mission success. In this work we present such control laws and define a number of these tasks to drive the vehicle using visual information, guarantee the robot integrity during flight, and improve the platform stability or increase arm operability. The main contributions of this research work are threefold: (1) Present a localization technique to allow autonomous navigation, this method is specifically designed for aerial platforms with size, load and computational burden restrictions. (2) Obtain control commands to drive the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary tasks during flight. These tasks are specific for aerial manipulators and they are also provided. All the techniques presented in this document have been validated throughout extensive experimentation with real robotic platforms.La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques de vigilància, inspecció o generació de mapes. Tot i això, no és fins fa pocs anys que la recerca en robòtica aèria ha estat prou madura com per començar a permetre interaccions amb l’entorn d’una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment combinen una plataforma multirotor i un braç robòtic. L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar mètodes de guiatge, utilitzant informació visual, per dotar d’autonomia aquest tipus de vehicles. Una competència clau per controlar un manipulador aeri és la capacitat de localitzar-se en l’entorn. Tradicionalment aquesta localització ha requerit d’infraestructura sensorial externa (GPS, càmeres IR, etc.), limitant així les aplicacions reals. Pel contrari, sistemes de localització exportats d’altres camps de la robòtica basats en sensors a bord, com per exemple mètodes de localització i mapejat simultànis (SLAM), requereixen de gran capacitat de còmput, característica que penalitza molt en vehicles on la mida, pes i consum elèctric son grans restriccions. En aquest sentit, aquesta tesi proposa un mètode d’estimació d’estat del robot (posició, velocitat, orientació i acceleració) a partir de sensors instal·lats a bord, de baix cost, baix consum computacional i que proporcionen mesures a alta freqüència. Degut a la complexitat física d’aquests robots, és necessari l’ús de tècniques de control avançades. Gràcies a la seva redundància de graus de llibertat, aquests robots ens ofereixen la possibilitat de complir amb els requeriments de mobilitat i, simultàniament, realitzar tasques de manera jeràrquica, ordenant-les segons l’impacte en l’acompliment de la missió. En aquest treball es presenten aquestes lleis de control, juntament amb la descripció de tasques per tal de guiar visualment el vehicle, garantir la integritat del robot durant el vol, millorar de l’estabilitat del vehicle o augmentar la manipulabilitat del braç. Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una tècnica de localització per dotar d’autonomia el robot. Aquest mètode està especialment dissenyat per a plataformes amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control necessàries per guiar el vehicle a partir d’informació visual. (3) Integrar aquestes accions dins una estructura de control jeràrquica utilitzant la redundància del robot per complir altres tasques durant el vol. Aquestes tasques son específiques per a manipuladors aeris i també es defineixen en aquest document. Totes les tècniques presentades en aquesta tesi han estat avaluades de manera experimental amb plataformes robòtiques real
    • …
    corecore