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Preface to “Visual Servoing in Robotics”

Today, computer vision systems are integrated into a wide range of industrial applications as

a means of detecting defects in production lines, of object/pattern recognition, and as a surface

scanning method, among other uses. Within these industrial applications, it is important to highlight

visual servoing systems for the guidance of robotic manipulators. The main goal of visual servoing

systems is the use of computer vision as a method for the guidance of robots. These control systems

are fed with the information acquired by one or several cameras; this controller then determines the

control actions to move the manipulator in order to carry out its task. Visual servoing approaches can

be applied for the guidance of not only robot manipulators but also different kinds of robots, such as

mobile robots, aerial robots, or parallel robots. This book includes different areas of research where

visual servoing approaches are applied for the guidance of mobile manipulators, parallel robots, or

even teleoperated robots.

As is evident throughout the book, visual servoing systems are widespread and extensively

applied, not only in research laboratories but also in a wide range of additional applications,

from industrial robotics to service robotics. This book also includes papers that describe new and

interesting applications of visual servoing systems. One notable application is the use of visual

servoing in apple-picking robots. The image-based visual servo control method is adopted to control

the manipulator in order to improve the robot’s grasping accuracy during the picking process.

Additionally, a spatial trajectory optimization method for a spray-painting robot is presented in

this book.

One factor which has favored the growth of visual servoing systems, their diffusion, and the

extension of their application is the increase in the capture and processing capabilities of today’s

cameras (such as the RGBD cameras presented in this book), as well as the equipment used for

processing data. This has allowed for the computation of vast amounts of information in less time,

avoiding possible delays and helping to guide the robot in a smooth manner. Despite the efforts of

the last decade dedicated to improving different aspects of the development of these visual servoing

systems, even nowadays, there is considerable ongoing research to investigate means of increasing

the robustness of such systems. Consequently, this book includes an image feature reconstruction

algorithm based on the Kalman filter to handle feature loss during tracking.

Jorge Pomares

Editor
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1. Introduction

Visual servoing is a well-known approach to guide robots using visual information. Image
processing, robotics and control theory are combined in order to control the motion of a robot
depending on the visual information extracted from the images captures by one or several cameras.
With respect to vision issues, different problems are currently under research such as the use of different
kinds of image features (or different kinds of cameras), image processing at high velocity, convergence
properties, etc. Furthermore, the use of new control schemes allows the system to behave more robustly,
efficiently, or compliantly with less delays. Related issues such as optimal and robust approaches,
direct control, path tracking or sensor fusion allows the application of the visual servoing systems in
different domains.

In so-called image-based visual servoing systems, the control law is calculated using directly
visual information. These last systems do not need a complete 3D reconstruction of the environment.
For tasks that require high precision, speed or response, several works suggest that it may be beneficial
to take into account the dynamics of the robot when designing visual servoing control laws. The type
of visual control systems that consider the dynamics of the robot in the control law are often referred to
as direct or dynamic visual control systems. However, for simplicity, indirect visual servoing schemes
are mostly used in the literature.

Nowadays, the application fields of the visual servoing systems are very wide, and include
research and application fields such as navigation and localization of mobile robots, guidance of
humanoid robots, robust and optimal control of robots, manipulation, intelligent transportation,
deep learning and machine learning in visual servoing and visual guidance of field robotics (aerial
robots, assistive Robots, medical robots, etc.).

2. The Present Issue

This special issue consists of eight papers covering important topics in the field of visual servoing.
In [1], an enhanced switch image-based visual servoing system for a 6 degrees of freedom industrial
robot is proposed. An image feature reconstruction algorithm based on the Kalman filter is presented
to handle feature loss during the tracking. Visual servoing approaches can be applied for the guidance
of different kinds of robots such as mobile robots, aerial robots or parallel robots. The latter is the
case described in [2], where an optical coordinate measuring machine is employed to stabilize parallel
robots. In this case, the dynamic model parameters are identified by using a non-linear optimisation
technique. In [3], a direct image-based visual servoing system is used for the guidance of a mobile
manipulator. This approach considers not only kinematic properties of the robot, but also dynamic
ones for guiding both the robot base and the manipulator arm. An optimal control approach is used in
this paper.

This special issue also includes papers that describe new and interesting applications of the visual
servoing systems such as the ones described in [4] or [5]. In [4], a visual servoing system is applied
to an apple-picking robot. The image-based visual servo control method is adopted to control the

Electronics 2019, 8, 1298; doi:10.3390/electronics8111298 www.mdpi.com/journal/electronics1



Electronics 2019, 8, 1298

manipulator in order to improve the grasping accuracy in the picking process. The joint control
performance of the control system has been improved by the proposed adaptive fuzzy neural network
sliding-mode control algorithm. Additionally, in [5], a spatial trajectory optimization method of a
spray-painting robot is proposed.

Additionally, visual servoing approaches are very related with the necessity of estimating
parameters or variables used in the control process. For example, in [6], a visual-based method to
estimate robot orientation with RGB-D cameras is proposed. In [7], the reaction force of the end effector
and second link of a three-degree of freedom hydraulic servo system with master–slave manipulators
sliding mode control is determined with a sliding perturbation observer. Also, bilateral control is used
to estimate the reaction force of the master device which is provided to the operator to handle the
master device. Finally, in [8] a novel measurement system to visualize the motion-to-photon latency
with time-series data in real time is proposed.

3. Future

While visual servoing systems have been an important field of research in the last years, several major
challenges still remain. Tasks such as tracking, positioning, detection, segmentation, and localization play
a critical role in visual servoing and different research is currently ongoing to increase the robustness of
visual controllers. Additionally, new control approaches such as optimal control, robust control, dynamic
control or predictive control will provide this kind of system with new dynamic properties. Furthermore,
new computer vision systems, electronics, computers, etc., will offer new and interesting capabilities for
the application of visual servoing in new kinds of robotics systems such as autonomous driving cars,
humanoid robots, aerial robots, service robotics, UAV, parallel robots, space robotics, etc.
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Abstract: In this paper, an enhanced switch image-based visual servoing controller for a six-degree-
of-freedom (DOF) robot with a monocular eye-in-hand camera configuration is presented. The switch
control algorithm separates the rotating and translational camera motions and divides the image-based
visual servoing (IBVS) control into three distinct stages with different gains. In the proposed method,
an image feature reconstruction algorithm based on the Kalman filter is proposed to handle the situation
where the image features go outside the camera’s field of view (FOV). The combination of the switch
controller and the feature reconstruction algorithm improves the system response speed and tracking
performance of IBVS, while ensuring the success of servoing in the case of the feature loss. Extensive
simulation and experimental tests are carried out on a 6-DOF robot to verify the effectiveness of the
proposed method.

Keywords: image-based visual servoing; image feature loss; industrial robots; switch control

1. Introduction

Visual servoing has been employed to increase the deftness and intelligence of industrial robots,
especially in unstructured environments [1–4]. Based on how the image data are used to control the robot,
visual servoing is classified into two categories: position-based visual servoing (PBVS) and image-based
visual servoing (IBVS). A comprehensive analysis of the advantages and drawbacks of the aforementioned
methods can be found in [5]. This paper focuses on addressing some issues in IBVS.

Many studies have been conducted to overcome the weaknesses of IBVS and improve its
efficiency [6–9]. However, the performance of most reported IBVS is not sufficiently high to meet the
requirements of industrial applications [10]. An efficient IBVS feasible for practical robotic operations
requires a fast response with strong robustness to feature loss. One obvious way to increase the speed of
IBVS is to increase the gain values in the control law. However, there is a limitation on the application
of this strategy because the high gain in the IBVS controller tends to create shakiness and instability in
the robotic system [11]. Moreover, the stability of the traditional IBVS system is proven only in an area
around the desired position [5,12]. Furthermore, when the initial feature configuration is distant from
the desired one, the converging time is long, and possible image singularities may lead to IBVS failure.
To address this issue, a switching scheme is proposed to switch the control signal between low-level
visual servo controllers, i.e., homography-based controller [13] and affine-approximation controller [14].

Electronics 2019, 8, 903; doi:10.3390/electronics8080903 www.mdpi.com/journal/electronics
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In our previous work [15,16], the idea of switch control in IBVS was proposed to switch the controller
between end-effector’s rotating and translational movements. Although it has been demonstrated that the
switch control can improve the speed and tracking performance of IBVS and avoid some of its inherent
drawbacks, feature loss caused by the camera’s limited FOV still prevents the method from being fully
efficient and being applicable to real industrial robots.

The visual features contain much information such as the robots’ pose information, the tasks’ states,
the influence of the environment, the disturbance to the robots, etc. The features are directly related to the
motion screw of the end-effector of the robot. The completeness of the feature set during visual servoing is
key to fulfilling the task successfully. Many features have been used in visual servoing such as feature
points, image moments, lines, etc. The feature points are known for the ease of image processing and
extraction. It is shown that at least three image points are needed for controlling a 6-DOF robot [17].
Hence, four image points are usually used for visual servoing. However, the feature points tend to leave
the FOV during the process of visual servoing. A strategy is needed to handle the situation where the
features are lost.

There are two main approaches to handle feature loss and/or occlusion caused by the limited FOV of
the camera [18]. In the first approach, the controller is designed to avoid occlusion or feature loss, while in
the second one, the controller is designed to handle the feature loss.

In the first approach, several techniques have been developed to avoid the feature loss or occlusion.
In [19], occlusion avoidance was considered as the second task besides the primary visual servoing task.
In [20], a reactive unified convex optimization-based controller was designed to avoid occlusion during
teleoperation of a dual-arm robot. Some studies have been carried out in visual trajectory planning
considering feature loss avoidance [21–23]. Model predictive control methods have been adopted in visual
servoing to prevent feature loss due to its ability to deal with constraints [24–28]. In [29], predictive control
was employed to handle visibility, workspace, and actuator constraints. Despite the success of the studies
on preventing feature loss, they suffered from the limited maneuvering workspace of the robot, due to the
conservative design required to satisfy many constraints.

In the second approach, the controller tries to handle the feature loss instead of avoiding it. When the
loss or occlusion of features occurs, if the remaining visible features are sufficient to generate the
non-singular inverse of the image Jacobian matrix, the visual servoing task can still be carried out
successfully. In this situation, the rank of the relative Jacobian matrix must be the same as the degrees of
freedom [30]. However, this method is no longer effective when the number of remaining visible features
become too small to guarantee the full-rankness of the image Jacobian matrix. As studied in [31], another
solution is to foresee the position of the lost features and to continue the control process using the predicted
features until they become visible again. This method allows partial or complete loss or occlusion of the
features. In the second approach [30,31], the classical IBVS control is employed as the control method,
which does not usually provide a fast response.

In this paper, an enhanced switch image-based visual servoing (ESIBVS) method is presented in
which a Kalman filter-based feature prediction algorithm is proposed and is combined with our previous
work [15,16] to make the switch IBVS control robust in reaction to feature loss. The feature prediction
algorithm can predict the lost feature points based on the previously-estimated points. The switch control
with the improved tracking performance along with the robustness to feature loss makes it more feasible for
industrial robotic applications. To validate the proposed controller, extensive simulations and experiments
have been conducted on a 6-DOF Denso robot with a monocular eye-in-hand vision system.

The structure of the paper is given as follows. Section 2 gives a description of the problem. In Section 3,
the feature reconstruction algorithm is presented. In Section 4, the controller design algorithm is developed.
In Section 5, the simulation results are given. Experimental results are presented in Section 6, and finally,
the concluding remarks are given in Section 7.

4
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2. Problem Statement

In IBVS, the object with (X, Y, Z) coordinates with respect to camera has the projected image
coordinates (x, y) in the camera image (Figure 1). The feature’s positions and the desired ones for
the nth feature in the image plane can be denoted by:

sn = [xn yn]
T , sdn = [xdn ydn]

T (1)

Thus, the vector of s and sd is defined as:

s =

⎡⎢⎣s1
...

sn

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

y1
...

xn

yn

⎤⎥⎥⎥⎥⎥⎥⎦ , sd =

⎡⎢⎣sd1
...

sdn

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
xd1
yd1

...
xdn
ydn

⎤⎥⎥⎥⎥⎥⎥⎦ . (2)

The goal of the IBVS task is to generate camera velocity commands such that the actual features and
the desired ones are matched in the image plane. The velocity of the camera is defined as Vc(t). The camera
and image feature velocities are related by:

ṡ = JimgVc, (3)

where,

Jimg =

⎡⎢⎣ Jimg(s1, Z1)
...

Jimg(sn, Zn)

⎤⎥⎦ , (4)

which is called the image Jacobian matrix and Z1, . . . , Zn are the depths of the features s1, ..., sn. In this
study, the system configuration is set as eye-in-hand, and the number of features is n = 4. Furthermore,
it is assumed that all the features share the same depth Z. Considering these assumptions, the image
Jacobian matrix for the nth feature is given in [17]:

Jimg(sn) =

⎡⎣ f
Z 0 − xn

Z − xnyn
f

f 2+x2
n

f −yn

0 f
Z − yn

Z
− f 2−y2

n
f

xnyn
f xn

⎤⎦ , (5)

where f is the focal length of the camera.
The velocity of the camera can be calculated by manipulating (3):

Vc =
+

Jimgṡ, (6)

where
+

Jimg is the pseudo-inverse of the image Jacobian matrix. The error signal is defined as e = s − sd.
If we let ė = −Kae, the traditional IBVS control law may be designed as:

Vc = −Ka
+

Jimge, (7)

where Ka is the proportional gain.

5
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Figure 1. Schematic of the camera model.

While guiding the robot end-effector to make the desired image features match the actual ones,
some unexpected situations may occur in IBVS. The first case is feature loss: i.e., some or all of the image
features may go beyond the camera’s FOV (Figure 2). The second case is feature occlusion: i.e., some or all
of the image features temporarily become invisible to the camera due to obstacles. The goal of this paper is
to improve the performance of IBVS in terms of response time and tracking performance, while dealing
with the feature loss situation. To reach this goal, the performance of the switch method in our previous
work [15,16] is enhanced when it is combined with the proposed feature reconstruction algorithm.

Figure 2. Desired and initial feature positions inside and outside the camera’s field of view.

3. Feature Reconstruction Algorithm

The velocity of the camera Vc ∈ R
(6×1) can be divided into the translational velocity V ∈ R

(3×1) and
rotating velocity ω ∈ R

(3×1). Therefore, it can be expressed as:

VC =

[
V
ω

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Vx

Vy

Vz

ωx

ωy

ωz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

6
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Furthermore, for the nth feature (n = 1, 2, .., 4), the image Jacobian matrix in (5) can be divided into
the translational part Jt(sn) and the rotating part Jr(sn):

Jimg(sn) =
[

Jt(sn) Jr(sn)
]

, (9)

where,

Jt(sn) =

[
f
Z 0 − xn

Z
0 f

Z − yn
Z

]
(10)

and:

Jr(sn) =

⎡⎣− xnyn
f

f 2+x2
n

f −yn
− f 2−y2

n
f

xnyn
f xn

⎤⎦ , (11)

where xn and yn are the feature coordinates in the image space.
In the design of the switch controller, the movement of the camera during the control task is divided

into three different stages [15,16]. In the first stage, the camera has only pure rotation. In the second
stage, the camera has only translational movement. Finally, in the third stage, both camera rotation and
translation are used to carry out the fine-tuning.

Considering (3), (8), (10) and (11), the feature velocity in the image plane can be expressed as:
In the pure translational stage (first stage):⎧⎪⎨⎪⎩

ẋn = f
Z Vx − xn

Z Vz

ẏn = f
Z Vy − yn

Z Vz.
(12)

In the pure rotating stage (second stage):⎧⎨⎩ẋn = − xnyn
f ωx +

f 2+x2
n

f ωy − ynωz

ẏn = − f 2+y2
n

f ωx +
xnyn

f ωy + xnωz
, (13)

and in the fine-tuning stage (third stage):⎧⎪⎪⎨⎪⎪⎩
ẋn = f

Z Vx − xn
Z Vz − xnyn(t0)

f ωx +
f 2+x2

n
f ωy − ynωz

ẏn = f
Z Vy − yn

Z Vz − f 2+y2
n

f ωx +
xnyn

f ωy + xnωz

. (14)

To remove the noise in the image processing and feature extraction, a feature state estimator is
designed based on the Kalman filter algorithm.

In the formulations below, k denotes the current time instant and k + 1 the next time instant, while Ts

represents the sampling time. The estimated states are denoted by ˆ notation. Considering four features,
the feature state at the current instant (kth sample) is defined as:

X(k) = [x1(k), y1(k), ...x4(k), y4(k), ẋ1(k), ẏ1(k), ..., ẋ4(k), ẏ4(k)]T , (15)

or with consideration of (2):

X(k) = [s(k), ṡ(k)], (16)

7
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where the elements of the vector can be obtained from (12), (13), or (14). Furthermore, the measurement
vector represents the vector of the image feature points’ coordinates extracted from the images of
the camera:

M(k) = [xm1(k), ym1(k), ...xm4(k), ym4(k), ẋm1(k), ẏm1(k), ..., ẋm4(k), ẏm4(k)]T (17)

First, the prediction equations are:

X̂(k|k − 1) = AX̂(k − 1|k − 1)

P(k|k − 1) = AP(k − 1|k − 1)AT + Q(k − 1),
(18)

where A is a 16 × 16 matrix whose diagonal elements equal one, Ai,i+8(i = 1, 2..., 8) are equal to sampling
time Ts, and the rest of the elements are zero, P(k|k − 1) represents the current prediction of the error
covariance matrix, which gives a measure of the state estimate accuracy, while P(k − 1|k − 1) is the
previous error covariance matrix, and Q(k − 1) represents the process noise covariance computed using
the information of the time instant (k − 1).

Second, the Kalman filter gain D(K) is:

D(k) = P(k|k − 1)(P(k|k − 1) + R(k − 1)−1, (19)

where R(k − 1) is the previous measurement covariance matrix.
Third, the estimation update is given as follows:

X̂(k|k) = X̂(k|k − 1) + D(k)(M(k)− X̂(k|k − 1)

P(k|k) = P(K|k − 1)− D(k)P(k|k − 1),
(20)

When the features are out of the FOV of the camera (i.e. xmj(k) = 0, ymj(k) = 0, j = 1, 2...4), the feature
reconstruction algorithm is proposed to provide the updated estimation vector under this circumstance.
Since the features are out of FOV, the measurement vector will have some elements with zero values.
This measurement vector will not lead to a satisfactory performance of switch IBVS. In order to improve
the performance, instead of having zero values of the elements of M(k) in (17), it is reasonable to assume
that the nth feature that goes outside of FOV keeps its velocity at the moment (t0) of leaving (ṡn(t0))
during the period of feature loss. Hence, its position (i.e., point coordinates sn(t0) = [xmn(t0), ymn(t0)])
can be generated by integrating the velocity over the time. This means that the elements of M(k) can be
represented by this formulation:

M(k) = [(Kad

b

∑
l=0

ṡn(t0)Ts + sn(t0)), ṡn(t0)], (21)

where (l = 0, 1, 2, .., b) represents the number of time samples during the feature loss period, Ts is the
sampling period, and kad is an adjusting coefficient. Once the feature is visible to the camera again,
the actual value of M(k) provided by the camera is used to replace the state estimation (21).

4. Controller Design

The IBVS controller was designed using the switch scheme. This method can set distinct gain values
for the stages of the control law to achieve a fast response system while preserving the system stability.

8
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In order to design the switch controller, the movement of the camera during the control task was
divided into three different stages [15,16]. A criterion was needed for the switch condition between stages.
In [15], the norm of feature errors was defined as the switching criterion. In this paper, a more intuitive
and effective criterion is used [16]. As is shown in Figure 3, the switch angle criterion α is introduced as
the angle between actual features and the desired ones. As soon as the angle α meets the predefined value,
the controller law switches to the next stage.

Figure 3. Switch angle criteria α: the angle between the desired and actual features.

Based on this criterion, the switching control law is presented as follows:⎧⎪⎨⎪⎩
Vcs1 = −K1 J+r e(s), |α| ≥ α0

Vcs2 = −K2 J+t e(s), α1 ≤ |α| < α0

Vcs3 = −K3 J+imge(s), otherwise
, (22)

where Vcsi (i = 1, 2, 3) is the velocity of the camera in the ith stage, Ki is the symmetric positive definite
gain matrix at each stage, and α0 and α1 are two predefined thresholds for the control law to switch to the
next stage. The block diagram of the proposed algorithm is shown in Figure 4. Furthermore, the flowchart
of the whole process of feature reconstruction and control is illustrated in Figure 5.

It was expected that in comparison with switch IBVS, the proposed method would ensure the
smooth transition of the visual servoing task in the case of the feature loss and provide a better
convergence performance.

9
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Figure 4. Block diagram of the proposed enhanced switch image-based visual servoing (IBVS) controller.

Figure 5. Flowchart of the Kalman filter feature reconstruction and control algorithm.

10
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5. Simulation Results

To evaluate the performance of the proposed method, simulation tests were carried out by using
MATLAB/SIMULINK software with the Vision and Robotic Toolbox. A 6-DOF DENSO robot with a camera
installed in eye-in-hand configuration was simulated. The coordinates of the initial and desired features in
the image space are given in Table 1. The camera parameters are as shown in Table 2.

Table 1. Test 1: simulation. Initial (I) and desired (D) feature point positions in pixels.

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 1
I 376 757 202 621 20 814 218 969

D 612 312 612 512 812 512 812 312

Table 2. Camera parameters.

Parameter Value

Focal length (m) ( f ) 0.004
x axis scaling factor (pixel/m) (β) 110,000
y axis scaling factor (pixel/m) (β) 110,000

Principal point of x axis (pixel) (cu) 120
Principal point of y axis (pixel) (cv) 187

The task was to guide the end-effector to match the actual features with the desired ones in the
camera image space. To simulate the condition where the features go outside FOV of the camera in real
applications, the FOV of the camera was defined as the limited area shown in Figure 6a,b. When the
features were in the defined FOV, they had actual position coordinates, and when they went outside FOV,
the position coordinates of the features were set to zero. In this case, the proposed feature reconstruction
algorithm was activated, and an estimate of the feature positions was generated. The norm of feature
errors (NFE) is defined as below,

NFE =
4

∑
n=1

√
(xn − xdn)2 + (yn − ydn)2, (23)

where xn and yn are the nth feature coordinates and xdn and ydn are the nth desired feature coordinates in
the image plane.

In the simulation test, we set the initial feature coordinates and the desired ones in a way that the
image features were out of FOV. Figures 6 and 7 demonstrate the performance comparison of the two
methods. The paths of image features in the image space are given in Figure 6a,b. Figure 7a,b shows how
the feature errors change with time in the proposed ESIBVSand switch method. Figure 7c,d demonstrates
the norm of the feature errors’ change with time in both methods. As shown in the figures, ESIBVS was
able to reduce the norm of the errors to the preset threshold, while in the switch method, the norm of the
errors did not converge. The summary of the simulation test is shown in Table 3. The results demonstrate
how the proposed method was able to handle the situation in which the features went outside of the
camera’s FOV and completed the task successfully, while the switch method was unable to do so.
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Table 3. Test 1: Comparison of simulation results between ESIBVSand switch IBVS.

Time of Convergence (s) Final Norm of Feature Errors (Pixel)

ESIBVS Switch IBVS ESIBVS Switch IBVS

Test 1 12 Does not converge 1.5 Does not converge

(a) (b)

Figure 6. Test 1: simulation. Image space feature trajectory comparison of enhanced switch IBVS and
switch IBVS. (a) Image space feature trajectory in enhanced switch IBVS; (b) image space feature trajectory
in switch IBVS.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Test 1: simulation. Performance comparison of enhanced switch IBVS vs. switch IBVS. (a) Feature
errors in enhanced switch IBVS; (b) feature errors in switch IBVS; (c) norm of feature errors in enhanced
switch IBVS; (d) norm of feature errors in switch IBVS.

6. Experimental Results

In this section, to further verify the effectiveness of the proposed method, some experiments were
carried out, and the results are presented. The experimental testbed included a 6-DOF DENSOrobot with
a camera (specifications shown in Table 2) installed on its end-effector (Figure 8a). The camera model was
a Logitech Webcam HD 720p, which captures the video with a resolution of 1280 × 720 pixels.

Two computers were used for the experimental tests. One computer carried out the image processing
(PC2 in Figure 9) and sent the extracted feature coordinates to the other computer (PC1 in Figure 9),
where the control algorithm was executed. Then, the control command (velocity of the end-effector) was
sent to the robot controller. The image data taken by the camera were sent to an image processing program
written by using the Computer Vision Toolbox of MATLAB. This program extracted the center coordinates
of the features and sent them as feedback signals to the visual servoing controller in the sampling period of
0.001 s. Four feature points were used in the control task. The detailed information of the image processing
and feature extraction algorithm can be seen in our previous work [32]. The goal was to control the
end-effector so that the actual features matched the desired ones (Figure 8b).

To evaluate the efficiency of ESIBVS, its performance was compared to that of the switch IBVS method.
In all the tests, the threshold value of NFE was set to 0.005 (equivalent to four pixels). When NFE reached
this value, the robot stopped, and the servoing task was fulfilled. The initial angle α between the actual
and desired features (Figure 3) was 50◦. K1, K2, and K3 in (22) were set to 1, 0.4, and 0.3, respectively.

Test 2: In this test (The video can be found in the Supplementary Materials), the initial and desired
features were set such that they went outside of the FOV of the camera during the test. The initial and
desired feature coordinates in the test are given in Table 4. Figure 10 demonstrates the movement of
actual features during the test of ESIBVS. It illustrates how the features went outside of FOV, then were
reconstructed, went back to FOV, and finally matched the desired features.
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(e) (f)

Figure 8. (a) Experimental testbed, 6-DOF DENSO robot. (b) Actual and desired image features.

Figure 9. Structure of the experimental testbed.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Test 2: Snap shots of the camera image during the enhanced switch IBVS test: (a) Desired and
actual feature positions at the start. (b) Actual features are out of FOV. (c–e) Features are reconstructed and
returned to FOV. (f) Final match of the desired and actual features.

Table 4. Test 2: experiment, Initial (I) and desired (D) feature point positions in pixels.

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 2
I 251 132 278 102 306 127 279 157

D 232 82 272 82 272 119 233 119

Figures 11–13 show the comparison results between ESIBVS and switch IBVS. Figure 11 shows the
paths of features in the image space from the initial positions to the desired ones, as well as the camera
trajectory in Cartesian space. In the proposed method, the actual and desired features matched, while in
switch IBVS, the actual features did not converge to the desired ones. Figure 12 demonstrates the robot
joint angles in ESIBVS and switch IBVS. Figure 13 shows the comparison regarding the feature errors.
The feature errors and the norm of feature errors in the proposed method successfully converged to
the desired values (Figure 13a,c), while in the switch IBVS, the task could not be completed, and thus,
the feature errors did not converge (Figure 13b,d).

In order to further validate the performance of ESIBVS regarding the repeatability, the same test
was repeated in 10 trials. The time of convergence and the final norms of feature error are shown in
Table 5. The variations of feature error norms with time in 10 trials of ESIBVS are illustrated in Figure 14.
As shown in the results, ESIBVS was able to overcome the feature loss and complete the task in each trial,
while Switch IBVS was stuck in a point and did not converge.
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(a) (b)

(c) (d)

Figure 11. Test 2: experiment: Image space feature trajectory and 3D camera trajectory in enhanced switch
IBVS and switch IBVS. (a) Image space feature trajectory in enhanced switch IBVS; (b) image space feature
trajectory in switch IBVS; (c) camera 3D trajectory in enhanced switch IBVS; (d) camera 3D trajectory in
switch IBVS.

(a) (b)

Figure 12. Test 2: experiment. Robot joint angles in enhanced switch IBVS and switch IBVS. (a) Joint angles
(degree) in enhanced switch IBVS; (b) joint angles (degree) in switch IBVS.
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(a) (b)

(c) (d)

Figure 13. Test 2: experiment. Comparison of the feature errors and the norm of feature errors in enhanced
switch IBVS and switch IBVS. (a) Feature errors in enhanced switch IBVS; (b) feature errors in switch IBVS;
(c) norm of feature errors in enhanced switch IBVS; (d) norm of feature errors in switch IBVS.

Table 5. Test 2: experiment. Repeatability comparison results.

Time of Convergence (s) Final Norm of Feature Errors (Pixel)

ESIBVS Switch IBVS ESIBVS Switch IBVS

Trial 1 19.95 Does not converge 3.4 Does not converge

Trial 2 18.99 Does not converge 3.1 Does not converge

Trial 3 17.75 Does not converge 2.8 Does not converge

Trial 4 17.94 Does not converge 3.7 Does not converge

Trial 5 19.37 Does not converge 3.6 Does not converge

Trial 6 18.29 Does not converge 2 Does not converge

Trial 7 20.34 Does not converge 3.1 Does not converge

Trial 8 19.03 Does not converge 3.4 Does not converge

Trial 9 18.77 Does not converge 2.4 Does not converge

Trial 10 18.74 Does not converge 3.4 Does not converge
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Figure 14. Test 2: experiment. The time variations of feature error norms in 10 trials of ESIBVS.

Test 3: In this test, the performance of ESIBVS was compared with that of switch IBVS in the situation
where the features did not leave the FOV of the camera. The initial and desired features were set in a way
such that the features did not go outside of FOV (Table 6). Similar to the previous tests, ESIBVS and
switch IBVS were compared, and the results are shown in Figures 15–17 and Table 7. As shown in the
figures, ESIBVS had a 38% shorter convergence time than switch IBVS did, which was owed to the superior
noise-filtering ability of the designed Kalman filter.

Table 6. Test 3: Experiment. Initial (I) and desired (D) feature point positions in pixels.

Point 1 Point 2 Point 3 Point 4

(x, y) (x, y) (x, y) (x, y)

Test 3
I 108 127 130 97 136 148 158 118

D 232 82 272 82 272 119 233 119

Table 7. Test 3: Comparison of experimental resuts between ESIBVS and Switch IBVS.

Time of Convergence (s) Final Norm of Feature Errors (Pixel)

ESIBVS Switch IBVS ESIBVS Switch IBVS

Test 3 8 12.5 3.4 3.6

The experimental results showed the efficiency of ESIBVS in dealing with feature loss while
keeping the superior performance of the switch IBVS over traditional IBVS. As already shown in our
previous work [15,16], the switch method was proven to have a better performance in its response time
and its tracking performance, making it more feasible for industrial applications in comparison with
the conventional IBVS. However, it suffered the drawback of weakness in dealing with feature loss.
The proposed ESIBVS solved this problem and made switch IBVS more robust by using the Kalman filter
to reconstruct the lost features.
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(a) (b)

(c) (d)

Figure 15. Test 3: experiment. Image space feature trajectory and 3D camera trajectory in enhanced switch
IBVS and switch IBVS. (a) Image space feature trajectory in enhanced switch IBVS; (b) image space feature
trajectory in switch IBVS; (c) camera 3D trajectory in enhanced switch IBVS; (d) camera 3D trajectory in
switch IBVS.

(a) (b)

Figure 16. Test 3: experiment. Robot joint angles in enhanced switch IBVS and switch IBVS. (a) Feature
errors in enhanced switch IBVS; (b) feature errors in switch IBVS.
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(a) (b)

(c) (d)

Figure 17. Test 3: experiment. Comparison of feature errors and the norm of feature errors in enhanced
switch IBVS and switch IBVS. (a) Feature errors in enhanced switch IBVS; (b) feature errors in switch IBVS;
(c) norm of feature errors in enhanced switch IBVS; (d) norm of feature errors in switch IBVS.

7. Conclusions

This paper proposed an enhanced switch IBVS for a 6-DOF industrial robot. An image feature
reconstruction algorithm based on the Kalman filter was proposed to handle feature loss during the
process of IBVS. The combination of a three-stage switch controller and feature reconstruction algorithm
improved the system response speed and tracking performance of IBVS and simultaneously overcame
the problem of feature loss during the task. The proposed method was simulated and then tested on
a 6-DOF robotic system with the camera installed in an eye-in-hand configuration. Both simulation and
experimental results verified the efficiency of the method. In the future, we may extend the method to
make it more robust to uncertainties such as the depth of features and camera parameters. In addition,
the effect of different sampling periods on the performance of the proposed ESIBVS will be investigated.
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Abstract: Parallel robots present outstanding advantages compared with their serial counterparts;
they have both a higher force-to-weight ratio and better stiffness. However, the existence of
closed-chain mechanism yields difficulties in designing control system for practical applications,
due to its highly coupled dynamics. This paper focuses on the dynamic model identification of the
6-DOF parallel robots for advanced model-based visual servoing control design purposes. A visual
closed-loop output-error identification method based on an optical coordinate-measuring-machine
(CMM) sensor for parallel robots is proposed. The main advantage, compared with the conventional
identification method, is that the joint torque measurement and the exact knowledge of the built-in
robot controllers are not needed. The time-consuming forward kinematics calculation, which is
employed in the conventional identification method of the parallel robot, can be avoided due to
the adoption of optical CMM sensor for real time pose estimation. A case study on a 6-DOF RSS
parallel robot is carried out in this paper. The dynamic model of the parallel robot is derived based on
the virtual work principle, and the built dynamic model is verified through Matlab/SimMechanics.
By using an outer loop visual servoing controller to stabilize both the parallel robot and the simulated
model, a visual closed-loop output-error identification method is proposed and the model parameters
are identified by using a nonlinear optimization technique. The effectiveness of the proposed
identification algorithm is validated by experimental tests.

Keywords: parallel robot; dynamic model; visual servoing; closed-loop output-error identification;
optical CMM sensor

1. Introduction

Parallel robots are closed-chain mechanisms in which the end-effector is supported by a series of
independent computer-controlled serial chains linked to the base platform. Parallel robots present
some outstanding advantages in higher force-to-weight ratio and better stiffness compared with
serial manipulators. Specifically, 6-DOF parallel robots have been used in various applications
(e.g., flight simulators [1], manufacturing lines [2] and medical tools [3]). Due to the manufacturing
tolerances and deflection in the robot structure, the typical positioning discrepancy between a virtual
robot in simulation and a real robot can be 8–15 mm [4], which does not meet the precision requirement
of many potential applications. The low absolute accuracy of the robot is the main problem for the
off-line programming based applications where tens of thousand points or continuous trajectories are
to be reached or tracked.

The existence of closed-chain mechanism and multiple moving parts in the parallel robots,
for example, in a 6-DOF Gough-Stewart platform consisting of 13 moving bodies (12 legs and one
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end-effector), yields difficulties in dynamic analysis of parallel robots. Moreover, the dynamic model
plays an important role in the model-based controller designs, especially in applications where high
positioning and tracking accuracy is needed. In contrast to serial robots, where the joint angles are
used as the state variables for modeling, the parallel robots are preferably modeled and controlled
in the operational (workspace) coordinates where the pose of the end-effector and its derivatives are
used as the state variables [5]. The main reason is that there is almost no analytical expression for
the forward kinematic model of 6-DOF parallel robots. For example, there are 40 forward kinematics
solutions [6] mapping the joint coordinates to the pose of the end-effector platform in a Gough-Stewart
platform. In addition, to this day, there is no effective method to determine the pose of the platform
from multiple solutions. The dynamic models of 6-DOF Gough-Stewart parallel robot have been built
by several approaches such as Newton-Euler [7], Lagrangian formulation [8] and the principle of
virtual work [9]. Newton-Euler formulation can provide the internal forces for each individual body of
the parallel robot, which can benefit the mechanical design process of the parallel robot. However,
the computational load is high due to the large amount of equations. In contrast, the Lagrangian and
virtual work methods are more efficient and suitable for the control design purpose since the reaction
forces between the bodies of the parallel robot are not considered. The published research work on
6-DOF RSS parallel robots is considerably scarcer compared with that on Gough-Stewart parallel robot.
The dynamic models of one type of 6-DOF RSS parallel robot, in which the active rotation axes are
coplanar, are built based on Newton-Euler equations [10] or Lagrangian formulation [11] for dynamic
analysis and tracking control purpose respectively. In this paper, the dynamic model of a 6-DOF RSS
parallel robot, where the active rotation axes are parallel to each other, is built based on the virtual
work principle, and the explicit form of the dynamic model is derived for identification and dynamic
model-based visual servoing purposes.

The dynamic parameters are normally unknown or approximately derived from manufacturer
specifications, which are not accurate enough for the dynamic model-based controller design.
System identification is an effective method to perceive the uncertain parameters in the dynamic
model of the system, and has been applied to many engineering practices [12]. As a highly coupled
multi-input/multi-output (MIMO) nonlinear system, industrial robots aroused great interest and
challenge for the identification method. The literatures on the state-of-the-art identification methods
can be found in [13–15]. For the industrial robots, the dynamic identification is normally performed in
closed-loop, since the robotic system is open loop unstable. In [16], a MIMO closed-loop identification
based on weighted least square estimation has been applied to an industrial serial robot used in a
planar configuration. In addition, other closed-loop identification methods with maximum likelihood,
instrumental variable and related implementation issues on industrial serial robots are addressed
in [17,18]. A new closed-loop output-error identification scheme has been adopted for the serial
robots [19]. The output-error identification method aims at finding the dynamic model parameters by
minimizing the output deviation between the actual and simulated systems subjecting to the same
input [20]. In [19], the identification procedure is implemented in a closed-loop control structure and
the joint torque is the measured output, which avoids the estimation of the velocity and acceleration
from the measured joint position.

One potential issue of the above-mentioned identification methods is that joint torque
measurement or a related control signal is needed for identification, which is not always available
for the industrial robots, since the built-in controllers of many industrial robots are unaccessible and
do not provide the torque actuation mode [21]. The input of built-in controllers is the position or
velocity command, and the output is the joint torque which is unaccessible to the users. Hence the
torque and current of the motors cannot be derived directly and it is not easy to install additional
torque sensors to get the direct measurement. The unknown controller can be identified along with
the dynamic parameters as introduced in [22]. However, joint torque measurement is still needed for
identification purposes.
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In [13,23–25], identification issues in parallel robots have been discussed. Most research works on
dynamic identification of parallel robots are based on a simplified dynamic model, such as in [26–28].
Nevertheless, the systematic derivation of the full inverse dynamic model is proposed based on
Jourdain’s principle in [24]. In addition, the identification procedure is carried out in two steps:
1. identifying inertial parameters and 2. estimating the friction coefficients. In [23], the full parameters
of robots’ dynamic model and the joint drive gains are identified based on the total least square
method, and the method is tested on a 3 DOF Orthoglide parallel robot. Many identification methods
for 6 DOF parallel robots in [23–25] come directly from those of serial robots. By rewriting the
inverse dynamic model and friction model into a linear form with respect to the dynamic and friction
parameters, the identification of the unknown parameters can be done through least squares technique.
However for 6 DOF parallel robots, to avoid solving forward kinematics, the regression matrix
of the dynamic model is constituted of the pose state variables in the operational space. In [25],
only joint space state variables are measured and estimated. Therefore the state variables in operational
space should be calculated through numerical computation of the forward kinematics, which is
quite time-consuming.

One way to avoid computing the forward kinematics in the identification process is to directly
measure the pose of the end-effector in the operational space based on vision sensors. In [28],
a camera-based dynamic identification procedure is given for a 4-DOF parallel robot with a heavily
simplified dynamic model by considering only the inertia of the end-effector. Also, a vision sensor
based dynamic identification has been carried out on serial robots [29] and cable robots [30], but seldom
on parallel robots. The optical CMM sensor is a dual camera based vision sensor, which can provide
the real-time pose information of the targets. The coordinates of target reflectors in the field of view
(FOV) can be directly measured by the sensor. By observing four non-collinear reflectors on the
platform, the pose of the end-effector can be measured. The optical CMM sensor has been applied to
the kinematics calibration [31] and the path tracking controller design [32] for the robots. To increase
the flexibility and tracking accuracy, vision can also be incorporated into the feedback control loop of
the parallel robot systems to form the so-called visual servoing control. The pose of the end-effector
can be acquired on-line by using the optical CMM sensor, i.e., C-track from Creaform Inc. (Levis, QC,
Canada). The visual servoing controller for parallel robot is superior to the joint space controller due to
the fact that the kinematic errors introduced from transforming the desired trajectory in the operational
space into the one in the joint space in the joint controller can be avoided. The measured pose together
with the visual servoing controller allows using the closed-loop output-error identification method [20]
to identify the dynamic model of the parallel robot.

Upon the above discussions, a closed-loop output-error identification method based on a CMM
sensor is proposed for parallel robots in this paper. The end-effector pose is measured by the optical
CMM and served as the output of the real plant. The same outer loop visual servoing controller and
reference trajectory are employed in both actual robot and simulation model for model identification.
The forward kinematics of parallel robots, which is usually solved by using time-consuming numerical
algorithm, can be avoided. The exact knowledge of the built-in controller and the joint torque are not
needed. The dynamic model parameters are identified by using nonlinear optimization technique.
The experimental tests validate the identification results.

This paper is organized as follows. Section 2 describes the dynamic model of a 6-RSS parallel robot.
The closed-loop output-error identification method is proposed and the procedure of the identification
is presented in Section 3. The dynamic model validation based on simulation and the experiment
results of the identification are given in Section 4. Finally, the conclusion is drawn in Section 5.

2. Dynamic Modeling

In this section, the kinematic analysis of a 6 RSS parallel robot is conducted and the dynamic
model is derived based on the virtual work principle.

25



Electronics 2019, 8, 836

2.1. Kinematic Analysis

The motivation of kinematic analysis is to determine geometry mapping from the motion of
end-effector frame w.r.t the base frame (operational space motion) to the rotation of the actuators, as
regarding the revolute joint frames (joint space motion). Based on the geometry mapping, the link
Jacobian matrix is derived for building the dynamic model. As shown in Figure 1a, the 6-RSS
parallel robot consists of six identical serial branch chains. Each serial branch, illustrated in Figure 1b,
consists of a wrench, a link, an active revolute joint (R) and two passive spherical joints (S). One
spherical joint is used to connect the wrench and the link. The revolute joint is driven by actuators
and connects the wrench and the base platform, while the spherical joint is employed between
the link and the end effector. The base frame ΣO is assigned at the symmetric center of the base
platform and the end-effector frame ΣE is also attached at the symmetric center, while E denotes the
coordinate vector of the frame origin regarding the base frame. The coordinate vectors of revolute
joint centers regarding the base frame are marked by Bi(i = 1, 2, . . . , 6) while the rotation centers of
spherical joints are represented as Ti and Ai respectively. In the subsequent kinematic and dynamic
analysis, the coordinates of the parts of parallel robot are defined regarding the base frame by default.
The moving wrench and link frames ΣWi and ΣLi are attached to the wrenches and links respectively
as depicted in Figure 1b. The coordinate vectors of the centers of mass of the wrenches and links are
denoted as cwi and cli respectively. The vector θ = [θ1, θ2, . . . , θ6]

T represents the rotation angles of the
actuators. The coordinate vector from E pointing to Ai regarding the end-effector frame is denoted as
ai. And the coordinate vectors wi and li represent the directions and length of the wrench and link.
The pose vector of the end-effector frame is expressed as χE = [h, φ]T , where h = [x, y, z]T represents
the position of the end-effector frame origin, while φ = [α, β, γ]T represents the Euler-angle rotation of
the frame. The rotation matrix, R, is given by

R = Rx(α)Ry(β)Rz(γ) =

⎛⎜⎝ cβcγ −cβsγ sβ

cαsγ + cγsβsα −sβsαsγ + cαcγ −cβsα

sαsγ − cαcγsβ cαsβsγ + cγsα cβcα

⎞⎟⎠ , (1)

where Rx, Ry, Rz are the orthonormal rotation matrices for the rotation about X, Y, Z axes respectively.

The vector χ̇E =
[

ḣT , φ̇T
]T

and χ̈E =
[

ḧT , φ̈T
]T

are the first and second order time derivatives of

χE. The vector vE =
[

ḣT , ωT
]T ∈ R6×1 denotes the linear and angular velocities of the end-effector

frame. Then v̇E is the acceleration vector. The relationship between the Euler angle rate φ̇ and angular
velocity ω is expressed as follows

ω = Je φ̇, (2)

where Je =

⎡⎢⎣1 0 sβ

0 cα −cβ sα

0 sα cβ cα

⎤⎥⎦ is the analytical Jacobian matrix, s and c stand for sin and

cos respectively.
The following assumptions are made for kinematic and dynamic analysis of a 6-RSS parallel robot:

• The end-effector platform, wrenches and links are symmetric with respect to their axes.
• The links do not rotate about its symmetric axes.

As shown in Figure 1a,b, the closure loop position relationship between the end-effector frame
and the base frame can be expressed as the following:

E + ai − Ai = 0 and (3)

Bi + wi + li − Ai = 0, i = 1, 2, . . . , 6. (4)
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Then the linear velocity can be derived by combining Equations (3) and (4) and taking the
time derivative:

ḣ + ω × ai = ω1 × wi + ω2 × li, i = 1, 2, . . . , 6, (5)

where ω1 and ω2 are the angular velocity of frame ΣWi and ΣLi regarding ΣO respectively.
Then, dot multiplying li on both sides of Equation (5) yields:

liḣ + (ai × li)ω = (wi × li) · ω1, i = 1, 2, . . . , 6. (6)

Since the wrench rotates around a fixed axis which is denoted as ŝ = [0, 0, 1]T , the Jacobian matrix
mapping from the end-effector Cartesian velocity to joint velocity can be derived by the following:

Ja1θ̇ = Ja2vE, (7)

where Ja1 = diag((w1 × l1) · ŝ, (w2 × l2) · ŝ, . . . , (w6 × l6) · ŝ), Ja2 =

⎡⎢⎣ lT
1 (a1 × l1)

T

...
...

lT
6 (a6 × l6)T

⎤⎥⎦.

When the robot works in the singularity-free operational space, the Jacobian matrix Jad can be
derived as follows:

θ̇ = J−1
a1 Ja2vE = JadvE. (8)

Then the translational velocity of the center of mass of the wrench ˙cwi can be obtained from Equation (9).

˙cwi = θ̇i ŝ × cwi = JauvE, (9)

where Jau = (ŝ × cwi )Jadi ∈ R3×6, and Jadi is the ith row of Jad. Then the link Jacobian Ja mapping vE

to the velocity of the center of mass of the ith wrench v1 = [ ˙cwi
T , ωT

1i]
T can be derived as

v1 =

[
˙cwi

ω1i

]
=

[
Jau

ŝJadi

]
vE = JavE. (10)

Equation (11) can be deduced by right cross multiplying li on the both sides of Equation (5) and
using Lagrange’s rule.

(ω2 · li) · li − (li · li) · ω2 = ḣ × li + (ω × ai)× li − (ω1 × wi)× li. (11)

Since the link does not rotate about its longitudinal axis, ω2 · li = 0 holds.
Rearranging Equation (11), the following equation can be derived:

‖ li ‖2 ω2 = [li]X ḣ − [li]X [ai]X ω + [li]X [wi]X ω1, (12)

where the operator [·]X and ‖ · ‖ represents the cross product operation and Euclidean
norm respectively.

By combining Equations (8) and (12), the following Jacobian matrix Jbd mapping from the
end-effector Cartesian velocity to the angular velocity of the link frame can be deduced:

ω2 = JbdvE,

Jbd =
1

‖ li ‖2 {
[
[li]X − [li]X [ai]X

]
+ [li]X [wi]X ŝJadi}.

(13)

The translational velocity of the center of mass of the link ˙cli can be obtained as follows:

˙cli = −[wi]Xω1 − [cli ]Xω2 (14)
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By substituting Equations (10) and (13) into Equation (14), the following velocity relationship can
be derived:

˙cli = (−[wi]X ŝJadi − [cli ]X Jbd)vE = JbuvE (15)

Hence the link Jacobian Jb mapping vE to the velocity of the center of mass of the ith link v2 can
be derived.

v2 =

[
˙cli

ω2i

]
=

[
Jbu
Jbd

]
vE = JbvE (16)
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Figure 1. (a) The sketch of 6-RSS parallel robot, (b) Single serial branch.

2.2. Dynamic Modeling

In contrast to serial robots, the dynamic modeling of parallel robots is more complicated due to
its closure geometrical structure and difficulties in deriving the forward kinematics. The principle of
virtual work is employed to derive the explicit form of the dynamic model in terms of the operational
coordinates and their time derivatives as shown in Equation (17) for 6-DOF RSS robot, which is useful
for dynamic model-based controller design.

τg = M(χE)v̇E + C(χE, vE)vE + G(χE) + τf , (17)

where τg denotes the general force acting on the end-effector frame, τf is the friction, M(χE) is the
mass matrix, C(χE, vE) is Coriolis and centrifugal matrix, and G(χE) denotes the gravity. In order to
avoid solving the forward kinematics of the parallel robot which may not have analytical solutions,
the pose in the coordinates of the end-effector and its time derivatives are employed in Equation (17).

The balance equation of virtual work principle for a moving rigid body, ∗, can be expressed
as follows:

F̄∗ · δχ∗ = (Fext∗ + F̃∗) · δχ∗ = 0, (18)

in which F̄∗ contains the static balance force and torque, Fext∗ = [ f T
ext∗ , τT

ext∗ ]
T is the external force

( fext∗ ) and torque (τext∗ ) exerted on the center of mass of the body respectively, δχ∗ denotes the virtual
displacement, and the fictitious force and torque are:

F̃∗ =
[

m∗g − m∗ḧ∗
−(I∗ω̇∗ + ω∗ × I∗ω∗)

]
, (19)
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where m∗ is the mass of the body, g is the gravity vector, ḧ∗ is the linear acceleration of center of mass
of the body, I∗ is the moment of inertia, ω∗ and ω̇∗ denote the angular velocity and acceleration of the
moving body frame. Further, F̄∗ can be represented in the form similar to Equation (17):

F̄∗ = Fext∗ + M∗v̇∗ + C∗v∗ + G∗, where

M∗ =
[

−m∗E3×3 03×3

03×3 −I∗

]
, C∗ =

[
03×3 03×3

03×3 −ω∗ × I∗

]
,

G∗ =
[

m∗g
03×1

]
, v̇∗ =

[
ḧ∗
ω̇∗

]
, v∗ =

[
ḣ∗
ω∗

] (20)

in which E3×3 ∈ R3×3 denotes the identity matrix. For a 6-DOF RSS parallel robot, there are 13 moving
bodies including the end-effector, 6 wrenches and 6 links. Therefore the balance equation of the 6-DOF
parallel robot can be rewritten as Equation (21):

F̄p · δχe +
6

∑
i=1

F̄li · δχli +
6

∑
i=1

F̄wi · δχwi = 0, (21)

where F̄p, F̄li and F̄wi contain the static balance force and torque exerted on the centers of mass of the
platform, links and wrenches respectively and can be represented in the same form as Equation (20),
δχe, δχli , and δχwi are the virtual displacements accordingly.

In addition, the following relations hold for the velocity analysis:

δθ = Jadδχe, δχwi = Jaδχe, δχli = Jbδχe. (22)

Substituting Equation (22) into Equation (21), the terms in Equation (17) can be derived as
the following:

M(χE) =Mp +
6

∑
i=1

(JT
ai

Mwi Jai + JT
bi

Mli Jbi
),

C(χE, vE) =Cp +
6

∑
i=1

(JT
ai

Cwi Jai + JT
ai

Mwi
˙Jai + JT

bi
Cli Jbi

+ JT
bi

Mli
˙Jbi
),

G(χE) =Gp +
6

∑
i=1

(JT
ai

Gwi + JT
bi

Gli ),

τg =JT
adτa,

(23)

where τa = [τa1 , τa2 ...τa6 ]
T is the actuator torque vector applying on the revolute joints, and the details

of Equation (23) are given in Appendix A. The joint friction is described by Coulomb model [33] that
has been used in the modelings of both parallel robots [24] and serial robots. Based on this friction
model, the friction τf in Equation (17) can be represented as:

τf = JT
ad

⎡⎢⎢⎢⎣
fc1 sign(Jad1 vE) + fv1 Jad1 vE

fc2 sign(Jad2 vE) + fv2 Jad2 vE

...
fc6 sign(Jad6 vE) + fv6 Jad6 vE

⎤⎥⎥⎥⎦ , (24)

where fci and fvi are the Coulomb and viscous friction parameters of the ith revolute joint.
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2.3. Dynamic Model Simplification

Since the kinematic parameters of parallel robots can be obtained from the manufacturer
specifications or by calibration [31], only inertia and friction parameters are considered for the
model identification of parallel robots. Considering the heavy computation load of solving inverse
dynamic model for the dynamic identification and visual servoing purpose, a reduction of the dynamic
parameters with the trade-off between the computation load and accuracy should be implemented.
The geometry feature of the parallel robot can be considered for simplification. For the 6-RSS parallel
robot, it is assumed that the wrenches, links and end-effector are symmetric. Furthermore, the center of
mass is assumed to be located in the symmetric center. Therefore, the dynamic parameters for each body
of the wrenches, links and end-effector can be reduced to ξ∗ = [m∗, Ix∗ , Iy∗ , Iz∗ ]. Then Equation (17)
can be rewritten as the linear form w.r.t. the dynamic parameters and the friction coefficients:

τg = Γ(χE, vE, v̇E)Ξ, (25)

where Ξ = [ξT
p, ξT

w1, ξT
w2, . . . , ξT

w6, ξT
l1, ξT

l2, . . . , ξT
l6, fc1 , fc2 , . . . , fc6 , fv1 , fv2 , . . . , fv6 ]

T is a R64×1 vector
of dynamic parameters and the friction coefficients, and Γ(χE, vE, v̇E) is the regressor matrix,
which consists of the kinematic parameters, state variables and their derivatives. Γ(χE, vE, v̇E) can be
derived using the Symbolic Math Toolbox of Matlab. Given an exciting trajectory as a reference input
to the robot, which will be introduced in Section 3.3, Equation (26) can be obtained by reorganizing
Equation (25). ⎡⎢⎢⎢⎢⎣

τg1

τg2

...
τgn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Γ(χE1

, vE1
, v̇E1

)

Γ(χE2 , vE2 , v̇E2)
...

Γ(χEn , vEn , v̇En)

⎤⎥⎥⎥⎥⎦Ξ = HΞ, (26)

where n is the number of the sampled poses from the given trajectory. By feeding various testing
trajectories to the robot, the regression matrix H is of full rank which means all elements of Ξ can
be identified.

3. Closed-Loop Output-Error Identification Based on Vision Feedback

3.1. Pose Estimation Using Optical CMM

As shown in Figure 2, a dual-camera optical CMM C-track 780 is employed to measure the pose
of end-effector for the identification of the dynamic model in this research. The pose measurement
principle of the optical CMM sensor is presented in this subsection. The target reflectors are taken as the
point features. The homogeneous coordinates of the reflectors w.r.t. the sensor frame can be obtained by
using triangulation principle [34]. Given a group of non-collinear reflectors pi(i = 1, 2, . . . , n) attached
on the end-effector platform, the homogeneous coordinates in the sensor frame can be measured
and denoted as CPi = [xpi, ypi, zpi, 1]T . In addition, the homogeneous coordinates of the reflectors
w.r.t. the end-effector frame ΣE denoted as EPi = (Exi, Eyi, Ezi, 1) are known from the definition of
the end-effector frame ΣE. Correspondingly, the transformation equation of ith feature point can be
written as:

CPi =
CTE

EPi, (27)

where CTE is the homogeneous transformation matrix mapping from ΣE to ΣC. In order to derive
CTE, at least three non-collinear feature points are required [35]. However, as indicated in [36], at least
four coplanar feature points are needed for obtaining a unique solution while additional non-coplanar
feature points can be used to improve the estimation accuracy with measurement noise. Similarly,
the homogeneous transformation matrix mapping from ΣO to ΣC, CTO, can be derived. Then the
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pose of the end-effector frame w.r.t. the base frame, χE, can be obtained from the homogeneous
transformation matrix OTE given by Equation (28).

OTE = CT−1
O

CTE. (28)

By using the proprietary software VXelements provided by Creaform Inc., the target frames can be
defined based on the selected reflectors on the surface of the end-effector and base frame respectively.
The real-time position and rotation information of the end-effector frame w.r.t. the base frame can be
acquired, recorded or displayed simultaneously. In addition, the computation associated with the pose
estimation of the target frame is carried out by VXelements.
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Figure 2. The pose measurement system of a 6-RSS parallel robot.

3.2. Closed-Loop Output-Error Identification Method

The basic idea of output error identification is to use nonlinear optimization technique to minimize
the squared error between the output of the real plant and the simulated model. Since the motor torque
is unaccessible, the pose of the end-effector, χE, measured by optical CMM is used as the output of the
system. Hence the closed-loop output-error identification method is adopted [19]. In conventional
closed-loop output-error identification method, the controllers should be exactly known and applied to
both the real plant and the simulated model. However for an industrial robot, the built-in controllers
are usually unknown and need to be identified.

The closed-loop output-error identification approach for vision based robotic system, as depicted
in Figure 3, is proposed in this paper. For the built-in controller of the 6-RSS parallel robot, a PID
controller is used to control the joint angle of each revolute joint. However the three gains of PID
controller are unknown and needed to be identified. During the process of identification, the gains
and dynamic parameters are updated in each iteration of nonlinear optimization, which may make the
simulated model unstable. Hence, an outer loop visual servoing controller is added to stabilize both
real robot and simulated model. The visual servoing controller and the built-in controller construct a
cascade PID controller. As stated in [37,38], the cascade controller yields better dynamic performance in
terms of stability and working frequency compared with single loop controller. With a well-tuned outer
loop visual servoing controller, both the real and simulation systems can have a better performance
and stability.
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Figure 3. The block diagram of closed-loop control system for model identification of 6-RSS parallel robot.

In Figure 3, for both the real plant and simulated model, the same exciting trajectory is given as the
input χd(t). Then the outer loop visual servoing controller is designed as Equation (30). The inverse
kinematic Jacobian Jθ is used to transform the velocity in operational space to that in joint space.
By combining Equations (2) and (8), Jacobian matrix Jθ is derived as shown in Equation (29) and the
joint position control signal Uθ(t) is generated as shown in Equation (30).

θ̇ = Jad

[
E3×3 03×3

03×3 Je

]
χ̇E = Jθ χ̇E. (29)

Uθ(t) =Jθ [kp(χd(t)− χm(t)) + kd(χ̇d(t)− χ̇m(t)) + ki

∫
(χd(t)− χm(t))dt], (30)

where ki, kp, kd are constants, and χm(t) is the visual feedback obtained from VXelements software,
while in the simulation χm(t) is replaced by χs(t) which is the pose calculated by using the forward
dynamic model.

In addition, then the PID controller, given in Equation (31), is used to describe the built-in joint
controller in each joint and is employed in the simulated model.

τa(t) = lp(Uθ(t)− θs(t)) + ld(U̇θ(t)− θ̇s(t)) + li
∫
(Uθ(t)− θs(t))dt, (31)

where li, lp, ld are the PID parameters to be identified, and θs(t) is the joint positions, which can be
obtained by analytically solving the inverse kinematics.

The real plant output Ym = [χm(1), χm(2), · · · , χm(k), ]T and the simulation output
Ys = [χs(1), χs(2), · · · , χs(k)]T are fed to the optimization process. The parameters to be identified,
Λ, can be denoted as Λ = [ΞT , lp, li, ld]T . Accordingly the identification of Λ can be converted to
solving the following nonlinear optimization problem:

Minimize Φ(Λ) = ‖ Ym − Ys ‖ 2. (32)

Then the updating formula for Λ is given as follows:

Λr+1 = (JT
Φ JΦ)

−1 JT
ΦΦ(Λr) + Λr (33)

where Λr is the value of Λ in the rth iteration and JΦ is the Jacobian matrix of Φ(Λ) w.r.t. Λ given as:

JΦ =
[

∂Φ(Λ)
∂Λ1

∂Φ(Λ)
∂Λ2

· · · ∂Φ(Λ)
∂Λ67

]
, (34)
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where Λi denotes the ith column of Λ. The terminate criteria is given as:

‖ Φ(Λr+1)− Φ(Λr) ‖
‖ Φ(Λr) ‖ ≤ tol1

max
i=1,··· ,n

∣∣∣∣∣Λr+1
i − Λr

i
Λr

i

∣∣∣∣∣ ≤ tol2,
(35)

where | · | denotes the absolute-value norm operation, tol1 and tol2 are the thresholds to be chosen for
tuning the accuracy. A compromise should be made between the convergence speed and accuracy
when choosing thresholds. To achieve good results in solving the nonlinear optimization problem,
a proper initial guess of Λ is needed. For the dynamic parameters of the parallel robots, the initial
guess can be calculated from manufacturer specifications. Then a priori PID parameters are obtained
based on the simulation model.

3.3. Modified Exciting Trajectory

The exciting trajectories for the dynamic model identification of the serial robots based on the
inverse dynamic model have been well studied in [39]. The Finite Fourier series-based exciting
trajectory has been tested in a large amount of research works for identification purpose [40]. For serial
robots, it can be represented by the following:

θi(t) =
n

∑
l=1

[
sin(2π f0lt)

2π f0l
sl

i −
cos(2π f0lt)

2π f0l
cl

i ] + θ0i

θ̇i(t) =
n

∑
l=1

[cos(2π f0lt)sl
i + sin(2π f0lt)cl

i ]

θ̈i(t) =
n

∑
l=1

[−2π f0lsin(2π f0lt)sl
i + 2π f0ltcos(2π f0lt)cl

i ],

(36)

where θi(t) is the ith joint angle trajectory of serial robots, n is the harmonics number, f0 is the
fundamental frequency, and sl

i , cl
i , θ0i are the trajectory parameters to be optimized. Instead of choosing

the joint space states (θ, θ̇, θ̈) for serial robots, the pose in the operational space is used for the dynamic
identification of parallel robots. A modified Finite Fourier series-based exciting trajectory for parallel
robots is proposed as:

χi(t) =
n

∑
l=1

[
sin(2πω0lt)

2πω0l
sl

i −
cos(2πω0lt)

2πω0l
cl

i ] + χ0i (37)

where χi(t) is the ith column of the pose trajectory. Therefore 2n + 1 parameters
δi = [s1

i , c1
i , · · · , sn

i , cn
i , χ0i ]

T can be estimated by solving a nonlinear optimization problem.
The singularity check should be implemented for each sampled pose. According to previous research
work [31,41], the maximum wrench rotation range inside the singularity-free domain of the 6-RSS
parallel robot is (−0.9948 rad, 0.9948 rad). The inverse kinematic model is used to map the poses into
the joint space and to check if the joint angles stay inside the singularity-free domain. To obtain the
operational space states in the regression matrix H, the time derivatives of the Euler-angle should be
converted to the angular velocity and acceleration, as shown in Equations (2) and (38).

ω̇ =

⎡⎢⎣ α̈ + γ̈sβ + β̇γ̇cβ

cα(β̈ − α̇γ̇cβ) + sα(β̇γ̇sβ − β̇α̇ − γ̈cβ)

sα(β̈ − α̇γ̇cβ) + cα(β̇α̇ + γ̈cβ − β̇γ̇sβ)

⎤⎥⎦ . (38)

As shown in Equation (26), the observability index of H should be maximized to achieve a good
identification result for given the exciting trajectories. The observability index Oin used in [31] is chosen
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as the criteria. Therefore the optimal exciting trajectory can be obtained by solving the following
nonlinear optimization problem:

Maximize Oin(δ) =
ς√σ1σ2 · · · σς√

m
=

ς
√

det(
√

HT H)√
m

(39)

where the singular values of H are denoted by σ1 ≥ σ2 ≥ · · · ≥ σς, m is the number of sampled poses
of the trajectory, ς is the number of dynamic parameters to be identified.

3.4. The Procedure of Identification

The whole procedure of the proposed closed-loop output-error identification method is given
in Figure 4. Firstly, the dynamic model of the parallel robot is derived as Equations (17) and (25).
Then the optimized exciting trajectory, χd(t), can be generated by using the method mentioned in
previous subsection. By using χ(t) as reference input signal to the outer loop visual servoing control
systems of both the real plant and the simulated model, the measured output pose χm(t) of the parallel
robot by the optical CMM sensor is compared with that of the simulated model. The identification of
the parameters Λ is carried out by solving the nonlinear optimization problem. Lastly, the identified
model can be validated by feeding several testing trajectories to the systems.

Model Derivation

Begin

Model derivation

Optimize the 
Exciting 

Trajectory

Experiment

Identification 
Process

Identified Result 
Validation

`

Over

 

 

 

 

Figure 4. Sketch of the identification procedure.

4. Simulation and Experiment Results

In this section, the dynamic model is verified by the simulation using Matlab/SimMechanics.
In addition, the closed-loop output-error identification is carried out on a 6-RSS parallel robot. An outer
loop visual servoing controller is implemented on the real plant and the simulated model individually.
The C-track 780 from Creaform Inc. is adopted to measure the pose of the end-effector of parallel robot.

4.1. Model Validation

The analytical dynamic model is rather complex and it is a non-trival task to ensure that the
code of dynamic model is mistake free. A simulation verification method is used to verify the built
mathematical dynamic model. A mechanical model of the 6-RSS parallel robot is built by using the
Multibody SimMechanics Toolbox of Matlab/Simulink. The SimMechanics model is constructed by
choosing the parts from SimMechanics library as shown in Figure 5. The coordinates frames and
physical parameters of rigid body blocks can be specified in the setting option. The revolute and
spherical joints are used to connect the rigid bodies. The body sensor part can provide the position
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and orientation of the coordinate frames. The entire model is directly actuated by the torque of the
motors, and 3D animation shown in Figure 6 can be provided by SimMechanics. It should be noted
that SimMechanics model can only simulate the forward dynamics and cannot be used for controller
design. However, it is relatively easy and intuitive to build SimMechanics model with high fidelity [42].
To validate the mathematical dynamic model Equation (17), the explicit form of the forward dynamic
model obtained by Equation (40) is employed to compare with the SimMechanics model.

v̇E = M(χE)
−1(τg − C(χE, vE)vE − G(χE)− τf ), (40)

The mathematical dynamic model is built by using S-function of Simulink. The initial dynamic
model parameters of both SimMechanics and mathematical models are derived from manufacturer
specifications and are given in Table 1.

End-effector

Base Platform

6 Serial Links

Figure 5. Mechanical model of 6-RSS parallel robot built by SimMechanics.

Figure 6. 3D animation of 6-RSS parallel robot. https://youtu.be/HXtCvgkn2jw.
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Table 1. Initial dynamic model parameters of 6-RSS parallel robot.

Dynamic Model Parameters Initial Value

mp (kg) 24.0

Ixp 10−2 (kg · m2) 17.8

Iyp 10−2 (kg · m2) 17.8

Izp 10−2 (kg · m2) 35.0

mwi 10−2 (kg) 68.5

Ixwi
10−5 (kg · m2) 22.9

Iywi
10−5 (kg · m2) 22.9

Izwi
10−5 (kg · m2) 60.5

mli (kg) 1.31

Ixli
10−5 (kg · m2) 52.3

Iyli
10−5 (kg · m2) 52.3

Izli
10−4 (kg · m2) 21.3

As shown in Figure 7, a simple PID controller is used to stabilize both mathematical and
SimMechanic models with the same PID gains. The exciting trajectory χd(t) derived from Equation (36)
is used as the reference input signal. The outputs of the SimMechanics and mathematical dynamic
model (Equation (40)) are χ_s(t) and χ_m(t) respectively. The difference between χ_s(t) and χ_m(t)
is shown in Figure 8. The maximum position and angle errors are around 1.25 mm and 3.25× 10−3 rad,
which occur at the beginning of the simulation, and are often caused by the kinematic error. The largest
steady-state errors are about 0.1 mm in the position and 0.25 × 10−3 rad in the angle, which can prove
the correctness of the mathematical model. The validated mathematical model can be used in the
simulation part for the subsequent identification.

PID 
controller SimMechanics

+

-

PID 
controller S-function

+

-

 

Forward dynamics model 

Forward dynamics model

 

 

 

  

 

Figure 7. Dynamic model verification block diagram of 6-RSS parallel robot.

0 5 10 15
Time/s

-2

0

2

4

6

8

10

12

14

Po
si

tio
n 

Er
ro

r/m

×10-4

x-direction
y-direction
z-direction

(a)

0 5 10 15
Time/s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

An
gl

e 
Er

ro
r/r

ad

×10-3

α-direction
β-direction
γ-direction

(b)

Figure 8. Simulation results of SimMechanics model. (a) Position error; (b) Angle error.

36



Electronics 2019, 8, 836

4.2. Identification Experiment

The experiment setup is shown in Figure 9. The 6-RSS parallel robot with 6 built-in joint controllers
is provided by Servo & Simulation Inc. (Sanford, FL, USA). The built-in controllers communicate with
the robot control computer through two Quanser MultiQ-PCI (Sensoray Model 626) data acquisition
cards provided by Quanser Inc. (Markham, ON, Canada). Quanser’s QUARCTM software is running
on the robot control computer with Windows 7.0 32-bit operating system and Intel Core Processor
i7-3770 3.4 GHz. QUARCTM software is capable of generating real-time application though Simulink
based controllers and implementing the application in real time on the Windows target. The C-track
780 provided by Creaform Inc. (Levis, QC, Canada) is used to obtain the image data of the reflectors
attached on the robot. The reflectors provided by Creaform Inc. are magnetic stickers which are
easily fixed on the robots and are used as the feature points. In another Windows 7.0 64-bit computer
with Intel Xeon Processor E5-1650 v3 3.5 GHz and NVIDIA Quadro K2200 (Santa Clara, CA, USA)
professional graphics board, Vxelements software is used to process the image data and transmit the
pose of the end-effector to the robot control computer.

Figure 9. Architecture of the Experiment System.

As shown in Figure 10, the reflectors are stuck on the surface of the moving platform. At least
three non-collinear points on each plane of Plane A, Plane B and Plane C are employed to build up the
equations of planes based on Cramer’s rule. Then the intersection lines and points of three planes can
be used to define the x direction of ΣE, and z direction is aligned with the norm of Plane A. The origin
point of ΣE is derived from the intersection point of l1 and l2. Then, the obtained ΣE in the optical
CMM sensor frame is directly used as the target frame. The base frame of the parallel robot is defined
by following the similar procedure.

To eliminate the high frequency noise of the pose measurement from the optical CMM,
measurement data is filtered by the zero-phase forward and reverse 8th order Butterworth filter
with the cut-off frequency 60 Hz. The filtering process is carried out by the Zero-phase digital filtering
function of Maltab, f ilt f ilt.
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Figure 10. Measurement of ΣE.

The optimization of the exciting trajectory is carried out by using the GA function of the
Optimization Toolbox of Matlab. The GA algorithm uses binary code to represent the harmonic
parameters. The fundamental frequency f0 is selected as 0.1 Hz and the harmonics number n is chosen
as 5. By taking the observation index as the fitness function, the binary code is updated to maximize the
fitness value in each step. The starting value of the observation index Oin is 0.38 and the stop criteria
is set as 10−10. The algorithm stops after 324 iterations with the maximum Oin 1.345. The derived
optimal exciting trajectory is given in Figure 11.
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Figure 11. Optimal exciting trajectory. (a) Positional trajectory; (b) Angular trajectory.

The identification procedure is implemented off-line through simulation illustrated in Section 3.2.
The optimization procedure is carried out by using optimization functions in Matlab R2016a.
The minimal performance requirements of the computation platform are given as: 4 cores Inter
or AMD Processor; 6 GB disk space; 4 GB RAM. The same outer loop visual servoing controller,
Equation (30), is employed in the simulation. The gains of the visual servoing controller are obtained
through trial and error in the extensive experimental tests. The well-tuned gains are given as
kp = 0.3, kd = 0.001, ki = 2.4. and the built-in joint PID controllers, Equation (31), are also implemented
in the simulation. The dynamic parameters derived from manufacturer specifications are used as
initial values, and the initial values of the PID gains in Equation (31) are obtained through trial and
error based on the simulation model. During the tuning, in the simulation system, the inertial and
friction parameters are set as the values based on the manufacturer specifications, and the visual
servoing controller gains are set as the same values of the controller of the real system. The identified
parameters, given in Table 2, are derived by using lsqnonlin function of the Optimization Toolbox
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of Matlab after 8 iterations. A total of 50 out of 67 parameters are identified, and are used in the
simulation model, Equation (40), to capture the dynamic characteristic of the parallel robot. The other
parameters either do not contribute to or have slight impact on the dynamics of the parallel robot.
Those parameters can be eliminated by using QR decomposition on the regression matrix H [23,43].
If any diagonal elements of R are smaller than the pre-defined small number, i.e., Rii < ε, where ε

is chosen as 10−3 in the paper, the corresponding columns of the regression matrix H are deleted.
By doing so, the matrix H is better conditioned and the identification procedure is sped up.

Then, the pose trajectories are generated by using the identified parameters in the simulation,
and are compared with the pose measurement, as shown in Figure 12. Table 3 shows the
root-mean-square (RMS) levels of the pose trajectory errors.

Table 2. Identified parameters of 6-RSS parallel robot.

Parameters Initial Value Identified Value Parameters Initial Value Identified Value

mp (kg) 24.0 23.5 ml4 (kg) 1.31 1.24
Ixp 10−2 (kg · m2) 17.8 16.1 Ixl4

10−5 (kg · m2) 52.3 12.9
Iyp 10−2 (kg · m2) 17.8 14.4 Iyl4

10−5 (kg · m2) 52.3 39.2
Izp 10−2 (kg · m2) 35.0 33.7 ml5 (kg) 1.31 1.33

mw1 10−2 (kg) 68.5 67.1 Ixl5
10−5 (kg · m2) 52.3 30.7

Izw1
10−5 (kg · m2) 60.5 69.4 Iyl5

10−5 (kg · m2) 52.3 49.7
mw2 10−2 (kg) 68.5 68.7 ml6 (kg) 1.31 1.34

Izw2
10−5 (kg · m2) 60.5 10.0 Ixl6

10−5 (kg · m2) 52.3 47.0
mw3 (kg) 10−2 (kg) 68.5 68.0 Iyl6

10−5 (kg · m2) 52.3 50.9
Izw3

10−5 (kg · m2) 60.5 22.6 fc1 0 0.104
mw4 10−2 (kg) 68.5 67.7 fv1 0 0.148

Izw4
10−5 (kg · m2) 60.5 76.0 fc2 0 0.111

mw5 (kg) 10−2 (kg) 68.5 68.3 fv2 0 0.187
Izw5

10−5 (kg · m2) 60.5 44.1 fc3 0 0.0336
mw6 (kg) 10−2 (kg) 68.5 68.4 fv3 0 0.0993
Izw6

10−5 (kg · m2) 60.5 69.6 fc4 0 0.147
ml1 (kg) 1.31 1.33 fv4 0 0.854

Ixl1
10−5 (kg · m2) 52.3 63.0 fc5 0 0.104

Iyl1
10−5 (kg · m2) 52.3 68.4 fv5 0 0.0803
ml2 (kg) 1.31 1.32 fc6 0 0.0828

Ixl2
10−5 (kg · m2) 52.3 60.7 fv6 0 0.0349

Iyl2
10−5 (kg · m2) 52.3 71.8 lp 10 10.5
ml3 (kg) 1.31 1.25 li 12 11.4

Ixl3
10−5 (kg · m2) 52.3 22.4 ld 0.1 0.164

Iyl3
10−5 (kg · m2) 52.3 35.5
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Figure 12. Cont.
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Figure 12. The pose trajectories of the parallel robot: the measurement of the real plant (black dot),
the output of the simulation with initial parameters (green line), the output of the simulation with
identified parameters (blue line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction;
(d) Around α Axis; (e) Around β Axis; (f) Around γ Axis.

Table 3. The RMS levels of the pose trajectory errors.

Before Identification After Identification

x direction (mm) 1.26 0.408
y direction (mm) 1.16 0.235
z direction (mm) 1.55 0.494

α direction 10−3 (rad) 2.52 0.956
β direction 10−3 (rad) 3.58 0.797
γ direction 10−3 (rad) 2.80 0.725

4.3. Identified Results Validation

To verify the identified parameters, ten more trajectories are generated according to Equation (36)
with random harmonic parameters under the singularity constraint. The generated trajectories are
used as desired trajectories, and are fed to the parallel robot and the identified model in the simulation
respectively. The RMS levels of the pose trajectory errors are given in Table 4, and the measurement and
the simulated pose trajectories are given in Figure 13 according to the 1st desired trajectory. The RMS
of the position and orientation errors for all ten trajectories are below 0.8 mm and 1.4 × 10−3 rad
respectively, which validate the identified results of previous subsection. In addition, the proposed
identification procedure is implemented based on the ten trajectories to analyze the statistic property
of the identification results. After deriving ten more groups of identified parameters, the variation
measure of the identification results are given in Table 5. The highest relative variation of the parameter
is below 25%, which is acceptable. It has been stated that less than 30 percent in the variation measure
of the parameters gives a good match to the real system [44].
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Table 4. The RMS levels of the ten validation trajectory errors.

x (mm) y (mm) z (mm) α 10−3 (rad) β 10−3 (rad) γ 10−3 (rad)

1st 0.517 0.384 0.709 1.091 0.963 0.966
2nd 0.273 0.410 0.522 1.157 1.071 0.932
3rd 0.381 0.403 0.600 1.242 0.830 1.143
4th 0.341 0.511 0.617 1.136 0.814 1.161
5th 0.322 0.394 0.464 1.219 0.877 0.835
6th 0.310 0.301 0.441 1.195 1.111 1.040
7th 0.360 0.402 0.455 1.263 1.176 1.024
8th 0.418 0.483 0.460 1.251 1.211 1.015
9th 0.342 0.510 0.557 1.411 1.156 0.711
10th 0.318 0.379 0.473 1.219 1.023 0.905
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Figure 13. The pose trajectories of the parallel robot: the measurement of the real plant (black dot),
the output of the simulation with identified parameters (blue line), (a) Along X Direction; (b) Along Y
Direction; (c) Along Z Direction;(d) Around α Axis; (e) Around β Axis; (f) Around γ Axis.
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Table 5. Variation measure of the identification result.

Parameters Variation Measure Parameters Variation Measure

mp (kg) 0.48% ml4 (kg) 19.1%
Ixp (kg · m2) 5.0% Ixl4

(kg · m2) 0.16%
Iyp (kg · m2) 24.9% Iyl4

(kg · m2) 0.06%
Izp (kg · m2) 8.6% ml5 (kg) 10.1%

mw1 (kg) 0.56% Ixl5
(kg · m2) 0.15%

Izw1
(kg · m2) 6.6% Iyl5

(kg · m2) 0.01%
mw2 (kg) 1.5% ml6 (kg) 12.9%

Izw2
(kg · m2) 1.4% Ixl6

(kg · m2) 0.17%
mw3 (kg) 3.4% Iyl6

(kg · m2) 0.02%
Izw3

(kg · m2) 5.0% fc1 15.9%
mw4 (kg) 3.7% fv1 11.7%

Izw4
(kg · m2) 3.8% fc2 21.4%

mw5 (kg) 6.6% fv2 13.9%
Izw5

(kg · m2) 6.6% fc3 9.0%
mw6 (kg) 0.79% fv3 16.4%

Izw6
(kg · m2) 1.7% fc4 17.8%

ml1 (kg) 4.1% fv4 15.2%
Ixl1

(kg · m2) 0.04% fc5 15.1%
Iyl1

(kg · m2) 0.11% fv5 21.8%
ml2 (kg) 5.2% fc6 23.4%

Ixl2
(kg · m2) 0.05% fv6 13.0%

Iyl2
(kg · m2) 0.12% lp 2.82%

ml3 (kg) 20.9% li 0.44%
Ixl3

(kg · m2) 0.09% ld 3.7%
Iyl3

(kg · m2) 0.17%

Therefore by using the proposed visual closed-loop output-error identification method,
the identified dynamic model can approximate the real plant with acceptable accuracy.

5. Conclusions and Further Works

In this paper, a visual closed-loop output-error identification method based on an optical CMM
sensor for parallel robots is proposed. An outer loop visual servoing controller is employed in both the
real plant and the simulation model to stabilize the two systems. The benefits of the proposed method
are summarized as follows: elimination of the need for the joint and torque measurements, the exact
knowledge of the built-in joint controller of the industrial robots, and the time-consuming forward
kinematics calculation. The correctness and accuracy of the built dynamic model are validated by the
Matlab/SimMechanics simulation. The experimental test results show that the identified dynamic
model can capture the dynamics of the real parallel robot with satisfactory accuracy. The proposed
method can be easily applied to other types of industrial parallel robots with unknown PID built-in
controller or its variant, such as 6 DOF Stewart platforms, 6 UPS and 6 RUS parallel robots etc.
The complexity of those dynamic models is similar to that of the 6-RSS parallel robot. Since the
analytical solution of the forward kinematics of those 6 DOF parallel robots does not exist, the proposed
visual identification method does not need the forward kinematic model and hence has a lot of
advantages. The proposed identification method can also be applied to parallel robots with less
DOF than 6 DOF. Taking the advantages of the visual sensor, the dynamic model can be identified
for the visual servoing purpose. In the future, the advanced model-based visual servoing control
method will be further studied to improve the tracking performance of parallel robots based on the
identification results.
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Appendix A

The derivative of the wrench Jacobian, J̇ai , is given as follows:

J̇ai =

[
J̇aui

ŝ J̇adi

]
, (A1)

where

J̇adi
= − ṁ

m2 [ lT
i (ai × li)

T ] +
1
m

[
(ω2i × li)

T ([ai]X [ω2]Xli)
T − ([li]X [ω]Xai)

T
]

, (A2)

and
m = (wi × li) · ŝ

ṁ = ([wi]X [ω2]Xli − [li]X [ω1]Xwi) · ŝ

J̇aui = ([ŝ]X [ω1]Xcwi )Jadi
+ ([ŝ]Xcwi ) J̇adi

(A3)

In addition, the link Jacobian J̇bi
is obtained by:

J̇bi
=

[
J̇bui

J̇bdi

]
(A4)

in which
J̇bdi

=
1

‖li‖2 {[ω2 × li]X [wi]X ŝJadi
+[

[ω2 × li]X [li]X [ω × ai]X − [ω2 × li]X [ai]X

]
+ [li]X [ω1 × wi]X ŝJadi

+ [li]X [wi]X ŝ J̇adi
},

(A5)

and
J̇bui

= −[ω1 × wi]X ŝJadi
− [wi]X ŝ J̇adi

− [ω2 × li]X Jbdi
− [cli ]X J̇bdi

(A6)
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Abstract: This paper presents a direct image-based controller to perform the guidance of a mobile
manipulator using image-based control. An eye-in-hand camera is employed to perform the guidance
of a mobile differential platform with a seven degrees-of-freedom robot arm. The presented approach
is based on an optimal control framework and it is employed to control mobile manipulators during
the tracking of image trajectories taking into account robot dynamics. The direct approach allows us
to take both the manipulator and base dynamics into account. The proposed image-based controllers
consider the optimization of the motor signals sent to the mobile manipulator during the tracking
of image trajectories by minimizing the control force and torque. As the results show, the proposed
direct visual servoing system uses the eye-in-hand camera images for concurrently controlling both
the base platform and robot arm. The use of the optimal framework allows us to derive different
visual controllers with different dynamical behaviors during the tracking of image trajectories.

Keywords: visual servoing; optimal control; mobile manipulator; dynamic control

1. Introduction

This paper proposes a direct image-based visual servoing system for the guidance of a mobile
manipulator. As described throughout the paper, the visual information is employed to guide both
the robot manipulator and the base platform for the tracking of image trajectories. A common
classification for visual servoing systems based on position and image is established [1]. Within
the field of position-based visual servoing systems, it is worth mentioning some classic works [2]
as well as some more recent ones such as the works of Huang et al. [3]. Besides these two works,
it is worth mentioning other remarkable ones such as the works of Park et al. [4], which describes
the use of vision for a robot’s positioning with regard to an object whose position was previously
determined. Position-based systems are those where the reference of the control system is in a desired
tridimensional position and orientation. In contrast to position-based approaches, image-based visual
servoing systems determine the reference in the image space. This strategy is the one used in this
paper. Although the literature regarding image-based visual servoing is quite extensive, works,
such as the presented in [1,5], perform a review of the classical approaches and problems related to
indirect image-based controllers. One of the elements which most affects the behavior of image-based
visual servoing controllers is the interaction matrix, which is employed by the controller and depends
on several parameters. The interaction matrix Js is employed by the image-based visual servoing
controllers for relating velocities in a tridimensional point with velocities of a corresponding point
in the image space. Deep learning approaches are currently in development for image-based control
of robot manipulators (see e.g. [6,7]). When this kind of approaches has to be applied to a mobile
manipulator, it is necessary to consider not only the manipulator but also the mobile platform, having
a redundant system. When dealing with stability problems, it is worth mentioning those that stem
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from dealing with a redundant robot [8]. In this case, it is not only necessary to correctly perform the
end effector guidance, but also to solve the redundancy by establishing the most appropriate joint
configuration for each situation.

Another useful classification depending on the control strategy of visual servoing systems divides
them in direct and indirect visual servoing. In indirect visual servoing, the control action is specified
as velocities to be applied at the robot’s end effector and does not take robot dynamics into account. In
this case, the internal robot controller is used and translates these velocities into torques and forces for
the joints. When applying an indirect controller to a task only kinematic aspects of the robot are taken
into account. However, in direct controllers, the control action is usually given as forces and torques
applied directly to the manipulator joints. By using this approach, the internal feedback control loop
for the servomotors is removed, and the visual information is used to directly generate the currents or
torques to be applied to the motors of the robot’s every joint. Some direct visual control systems for
redundant robots with chaos compensation have been developed to avoid robotic chaotic behaviors
with new architectures to improve systems maintainability and traceability [9,10]. Within the field of
direct image-based visual servoing systems it is worth mentioning works such as [11] that considers
a FPGA (Field Programmable Gate Arrays) implementation, or [12] that extends the previous direct
visual servoing for the optimal control of robot manipulators.

Within the field of indirect visual servoing, several approaches can be found for the guidance of
mobile robots or mobile manipulators. In [13], a homography-based 2D approach for visual control
of a mobile manipulator that does not need any measure of the 3D structure of the observed target
has been proposed. A task-space sensing and control system designed to control the end effector
motion of a mobile manipulator in the presence of dynamic and unknown base motion is proposed
in [14]. In [15], an image-based approach with redundancy resolution is proposed for the guidance of
a mobile manipulator. An indirect position-based visual control approach is described in [16] for the
guidance of a mobile manipulator. In [17], a control scheme that uses image-based visual servoing was
developed along with a functional mobile manipulator platform, where a hybrid camera configuration
composed of monocular and stereo vision cameras was integrated into the system.

In contrast with previous approaches, the one proposed in this paper employs a direct visual
servoing system for guiding mobile manipulators. In this case, the controller directly generates the
torques, forces, and moments to be applied to the manipulator and base platform taking into account
the robot dynamics. In the previous indirect approaches, the controller assumes that the guided device
is a perfect positioning system, and therefore its dynamics is not considered. However, the use of a
direct visual servo approach allows for the manipulator and base dynamics to be taken into account.
The result is a faster and more accurate control that reacts more quickly to abrupt changes in the
image trajectories. Additionally, an optimal control approach is used for the definition of the proposed
controllers. This control approach considers the optimization of the motor signals sent to the mobile
manipulator during the tracking of image trajectories. Using this optimal approach, different visual
controllers with different dynamic properties can be derived.

The paper is divided into the following sections. First, Section 2 describes the robotic system and
main coordinate frames. The system kinematics is described in Section 3 and the dynamics in Section 4.
Section 5 describes the optimal controller and the visual servoing of the mobile manipulator. Finally, in
Section 6, the main results obtained in the application of the proposed optimal controller are described.

2. System Architecture and Nomenclature

Figure 1 represents the main components of the mobile manipulator (TIAGo robot from PAL
Robotics). The robot is composed of a mobile differential platform with a 7-DOF (degrees-of-freedom)
arm, a RGB-D camera which is not employed in this paper, and an additional eye-in-hand camera.
Frame Fp is attached to the mobile robot platform and Fm is the manipulator arm coordinate system
attached to the base of the robot arm. The origin of Fm is translated with respect to the frame Fp a
vector (xpm, ypm, zpm). The world coordinate frame is called Fo. The end effector frame Fe is attached
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to the manipulator end effector, and frame Fc is the eye-in-hand camera frame. In this paper we
consider an eye-in-hand camera system where Fc = Fe. The orientation of the mobile platform is
considered as α, i.e., the angle between de X-axis of the frame Fp and the X-axis of the frame Fo and
the origin of Fp is at the position (xop, yop, zop) with respect to Fo. From the manipulator kinematics we
can obtain the position of Fe with respect to Fm as (xme, yme, zme) and (φxme, φyme, φzme), respectively.

Figure 1. System components.

Regarding the visual system, an eye-in-hand camera observes a set of four visual features located
on the surface of the tracked object. As Figure 1 shows, a black pattern with four white points
is located in the tracked object. Therefore, the computer vision extracts four visual feature points,

s =
[
f1,f2,f3,f4,

]T
that correspond to the center of these white points. Figure 2 shows the different

modules that compose the computer vision system. The first step preprocesses the image in order to
obtain a single format of the image no matter what camera is employed (e.g., image conversion from
RGB to gray scale, image resizing, noise filtering, etc.). In the second stage, the image is binarized
through a thresholding process. The result is a binary image with all the essential data of the pattern.
The third step is an erosion operation. This is a morphological operation on the image that removes
the pixels located on the edge of any object in the image. This step is mainly used to reduce the noise
of the image. The fourth phase is the most important stage of the vision module: blob detection. The
purpose of this module is to detect the connected pixels which form an object in the image and then
assign a label to them. Finally, the vision module has to provide the pixel coordinates of the center of
gravity of the visual features. The fifth submodule (area and centroid computation) accomplishes this
task. In [12], a detailed description of the computer vision components required to determine the set
of visual features is presented.

Figure 2. Computer vision components.

3. System Kinematics

The main components and coordinate frames of the robotic system are presented in Section 2.
This section describes the kinematic formulation required for the definition of the proposed controllers.
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qT
m ∈ 	m represent the generalized joint coordinates of the manipulator (in our case, m = 7) and

qT
p ∈ 	np are the generalized coordinates of the platform. The generalized coordinates of both

manipulator and platform can be represented as q =
[

qT
p qT

m

]
. In a general case, the computer

vision system extracts k visual feature points from the observed object s =
[
f1,f2, . . . , fk

]T ∈ R
k (k = 4

in the experiments, see Figure 1). Therefore, the image-based direct visual controller must perform
the guidance of the mobile manipulator to track the desired trajectory in the image space, sd(t). The
visual servoing control approach allows the control of the manipulator joints and base using k visual
features, using an eye-in-hand configuration, where a camera is held by the end effector. Considering
an image feature point, fi,, the relationship between velocities in the camera image space,

.
fi, and the

velocity twist
.
rc =

[
vc ωc

]T
of the camera (expressed in its own frame), is given by:

.
fi= Jfi

(fi, Zi)

[
vc

ωc

]
(1)

where Z is the depth of the image feature and the value of Jfi can be found in [1]. From a kinematic
point of view, the motor commands are considered as a set of platform command velocities, up ∈ R

p,
and manipulator command velocities, um ∈ R

m, therefore

u=
[

uT
p uT

m

]T
(2)

In the above equation the manipulator motor commands are the joint velocities, i.e.,
.
qm = um,

and from the kinematic model of the mobile platform the following relation can be considered:

.
qp = ψ

(
qp

)
up (3)

where, usually, up =
[

v ω
]T

is the platform linear and angular velocities and the function ψ spans
the admissible velocity space at each mobile platform configuration. In this paper, an image-based
approach will be employed for the guidance of the mobile manipulator, therefore, an image Jacobian,
Ji, must be defined which relates the differential mapping between the motor commands u and the
time derivative of the set of image features s:

.
s = Jiu (4)

where Ji will be defined throughout the paper as the product of the matrices Js and Jc, therefore,
Ji = JsJc. The interaction matrix Js ∈ R

2k×6 for the set of image features points, s, is the stack of k
matrices J f i for each feature:

.
s = Js(s, Z)

[
vc

ωc

]
=

⎡⎢⎢⎣
J f 1(f1, Z1)

...
J f k(fk, Zk)

⎤⎥⎥⎦
[

vc

ωc

]
(5)

where Z =
[

Z1 . . . Zk

]T ∈ R
k is a depth vector for each image feature. The matrix Jc relates

the end effector velocity with respect to the camera coordinate frame
[

vc ωc

]T
and the motor

command u: [
vc

ωc

]
= Jc(q)u (6)
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As previously described, the mobile manipulator is composed of a differential drive platform and
a 7-DOF robot arm with an eye-in-hand camera. In order to derive the value of the matrix Jc , first the
position and orientation of the camera with respect to the world coordinate Fo is defined as

r =
[

tT(q) φT(q)
]T

=
[

tx ty tz φx φy φz

]T
(7)

where tT(q) represents the position and φT(q) is the minimal parametrization of the camera orientation
by Euler angles. From the robot kinematics and the system architecture presented in Section 2, it is
possible to obtain

tx =
(
xme + xpm

)
cosα − (

yme + ypm
)
cosα + xop (8)

ty =
(
xme + xpm

)
sinα +

(
yme + ypm

)
cosα + yop (9)

tz = zme + zpm (10)

From the previous equations we can obtain the time derivatives of r, i.e.,
[

vT ωT
]T

. First, the

components of the translation velocity,
.
t

T
(q), can be defined as

.
tx =

.
xmecosα − (

xme + xpm
)
sin(α)ω − .

ymesinα − (
yme + ypm

)
cos(α)ω + vcosα (11)

.
ty =

.
xmesinα +

(
xme + xpm

)
cos(α)ω +

.
ymecosα − (

yme + ypm
)
sin(α)ω + vsinα (12)

.
tz =

.
zme (13)

Therefore, the motion of the manipulator end depends not only on the joint positions and
velocities of the manipulator arm but also on the motion of the mobile platform and its orientation α.

Additionally, the components of the angular speed,
.

φ
T
(q) of the robot can be computed as [15]

.
φx =

.
φxmecosα − .

φymesinα (14)

.
φy =

.
φxmesinα − .

φymecosα (15)
.
φz =

.
φzme + ω (16)

From Equations (11)–(16) the values of
[

vT ωT
]T

=
[ .

tx
.
ty

.
tz

.
φx

.
φy

.
φz

]T
are

obtained with respect to the motor commands. Using the rotation matrix Rc, which represents the

orientation frame Fc with respect to Fo, the values of
[

vT ωT
]T

can be expressed with respect

to the frame Fc,
[

vT
c ωT

c

]T
. Appendix A describes the computation of the numerical values of

matrix Jc.
Another useful kinematic relationship for the definition of the proposed controllers is the image

acceleration or second time derivative of s. This relationship is obtained by the definition of Ji (Equation
(4)) and differentiating w.r.t.

..
s = Ji

.
u +

.
Jiu (17)

4. System Dynamics

This section describes the main dynamic equations for the robotic system. The dynamic equations
of motion of the mobile manipulator can be written as[

Fb
τ

]
=

[
Mbb Mbm
M T

bm Mmm

][ .
up
..
qm

]
+

[
cb
cm

]
(18)
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where
..
qm ∈ 	m is the set of joint accelerations of the robot manipulator,

.
up =

[ .
v

.
ω

]T
is

the platform linear and angular accelerations, Mbb ∈ 	p×p is the inertia matrix of the platform,
Mbm ∈ 	p×m is the coupled inertia matrix of the base and the manipulator, and Mmm ∈ 	m×m is the
inertia matrix of the manipulator; cb and cm are a velocity/displacement-dependent, nonlinear terms
for the base and manipulator, respectively, Fb is the force and moment exerted on the base, and τ is
the applied joint torque on the robot manipulator. From a dynamic point of view, the motion of the
mobile manipulator is governed by the applied torques on the manipulator joints and by the force and
moment exerted on the base. Hence, Equation (18) can be written in the following compact form.

τ̃ = M̃
.
u + C̃ (19)

where τ̃ =

[
Fb
τ

]
, M̃ =

[
Mbb Mbm
M T

bm Mmm

]
,

.
u =

[ .
up
..
qm

]
, and C̃ =

[
cb
cm

]
.

5. Optimal Control of the Mobile Manipulator

5.1. Optimal Control Definition

In complex high dimensional systems, several tasks can be accomplished simultaneously taking
advantage of the robot redundancy. This paper considers a system with μ constrains that represents
the task for the mobile manipulator to be executed. These constraints can be represented as

A (t)
.
u = b(t) (20)

where A (t) ∈ 	μ×(p+m) and b (t) ∈ 	μ×1. An advantage of this task formulation is that
nonholonomic constraints can be treated in the same general way. In order to reduce the energy
required for performing the visual servoing task, the proposed optimal controller is designed to
minimize the control torque for the mobile manipulator, considering the following cost function.

Ω(t) = τ̃TW(t)τ̃ (21)

where W(t) is a time-dependent weight matrix.
Let us assume that the robot model presented in the previous section and a constraint formulation

are given. In this case, the optimal controller has to guarantee that the task is perfectly achieved,
i.e., that A (t)

.
u = b(t) holds at all times. Additionally, the minimization of the control command

with respect to some given metric, i.e., Ω(t) = τ̃TW(t)τ̃, is intended at each instant of time. The
solution to this pointwise optimal control problem [18] can be derived from a generalization of Gauss’
principle, as originally suggested in [19]. It is also a generalization of the propositions in [20,21], where
the following control action is obtained considering the general expression for the dynamic model
expressed in Equation (19) (for the sake of clarity the time dependences are not indicated):

τ̃ = W−1/2
(

AM̃
−1

W−1/2
)+·(b + AM̃

−1
C̃
)

(22)

where the symbol + denotes the pseudo inverse of a general matrix. As it can be seen in Equation (22),
the matrix W is an important factor in the control law that can be used to determine how the control
efforts are distributed over the joints and the robot base.

5.2. Optimal Direct Visual Servoing

Once the optimal control framework is presented in Section 5.1, this section describes its
application for the optimal control of the mobile platform. First, we define

..
sr as the reference image
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accelerations that will be employed by the optimal controller. The value of these image accelerations can
be obtained from Equation (17). This last expression can be expressed into the form of Equation (20) as

Ji
.
u =

..
sr −

.
Jiu (23)

This way, the visual servoing task is defined by the following relationships.

A = Jib =
..
sr −

.
Jiu (24)

Therefore, with the given definition of A and b, the optimal control will minimize the motor commands
while performing the tracking in the image space. The final control law can be obtained replacing
these variables into the function that minimizes the motor signals described by Equation (22):

τ̃ = W−1/2
(

JiM̃
−1

W−1/2
)+·(..

sr −
.
Jiu+JiM̃

−1
C̃
)

(25)

As it can be seen, the visual controller represented by (25) implicitly depends on the weighting
matrix W, and different values of this matrix can be used to coordinate the motion of the base and of
the manipulator. The diagram of the considered control loop is depicted in Figure 3.

Desired trajectory

, , K K
Optimal

controller

Robot Kinematics and Dynamics

J M C

Visual feedback ,

ROBOT

Figure 3. Diagram of the control scheme for the mobile manipulator robot.

Considering W = M̃
−2

and replacing this value in the control framework expressed in Equation
(25), the result yields

τ̃ = M̃J+i ·
(..

sr −
.
Jiu+JiM̃

−1
C̃
)

(26)

This controller represents a direct visual servo control using inversion of the dynamic model.
Additionally, new controllers can be obtained using different values of W. For example, an important

value for W, due to its physical interpretation, is W = M̃
−1

, since it is consistent with the principle of
d’Alembert:

τ̃ = M̃
1/2

(
JiM̃

−1
M̃

1/2
)+·(..

sr −
.
Jiu+JiM̃

−1
C̃
)

(27)

Now, the definition of the reference control,
..
sr, is described considering the eye-in-hand camera

system that extracts a set of k image feature points. The task description as a constraint is given by the
following equation in the image space.(..

sd − ..
s
)
+ KD

( .
sd − .

s
)
+ KP(sd − s) = 0 (28)

where
..
sd,

.
sd, and sd are the desired image space accelerations, velocities, and positions, respectively.

KP and KD are proportional and derivative gain matrices, respectively. This equation can be expressed
in regards to image error in the following way.

..
sd+ KD

.
es+ KPes =

..
sr (29)
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where es and
.
es are the image error and the time derivative of the image error, respectively. As stated,

the variable
..
sr denotes the reference image accelerations of the proposed image space based controller.

Substituting this variable into the dynamic visual servo controller in Equation (25), the control law is
set by the following relationship.

τ̃ = W−1/2
(

JiM̃
−1

W−1/2
)+·(..

sd+ KD
.
es+ KPes −

.
Jiu+JiM̃

−1
C̃
)

(30)

In order to demonstrate the asymptotic tracking of the control law, some operations must be done.
First, the closed-loop behavior is computed from Equation (19) as

M̃
.
u + C̃ = W−1/2

(
JiM̃

−1
W−1/2

)+·(..
sd+ KD

.
es+ KPes −

.
Jiu+JiM̃

−1
C̃
)

(31)

Equation (31) can be simplified by premultiplying its left and right sides by
(

JiM̃
−1

W−1/2
)

W1/2:

Ji
.
u =

..
sd+ KD

.
es+ KPes −

.
Jiu (32)

Finally, using the relationship expressed in (23), it can be concluded that

..
es = − KD

.
es − KPes (33)

Therefore, when Ji is full-rank, an asymptotic tracking is achieved by the visual servo controller
expressed in Equation (30) for the tracking of an image trajectory.

6. Results

This section presents the system behavior during the tracking of different trajectories. The robot is
guided by an eye-in-hand camera system. The parameters of a Gigabit Ethernet TM6740GEV camera
is considered, which acquires 200 images every second with a resolution of 1280 × 1024 pixels. The
eye-in-hand camera extracts four visual features from the four corners of the target.

Three different experiments are presented in this section. In these experiments the value of W =
M−1 is considered. Figure 4a,b represents the initial configuration employed in all of the experiments.
Figure 4a represents the target and the mobile manipulator with the eye-in-hand camera system. The
initial position of the visual features is represented in Figure 4b. The desired trajectory employed
in the first experiment is a linear trajectory that represents a lateral translation of 200 px. in x and y
directions in the image from the initial position of the visual features. As it can be seen in Figure 4d,
the image-based controller correctly carries out the tracking and a straight line is obtained in the
image space. Figure 4c represents the final pose of the mobile manipulator. The second experiment,
represented in Figure 4e,f, evaluates the tracking when a displacement in depth must be performed.
As it can be seen in Figure 4e, a displacement in depth is carried out and, once the experiment ends,
the mobile manipulator is closer to the target. Figure 4f represents the obtained image trajectory.
This trajectory corresponds to the desired trajectory specified as a linear increase in depth from the
initial image configuration. Finally, the experiment represented in Figure 4g,h requires a change in
orientation of the eye-in-hand camera with respect to the observed target. To do this, the desired image
trajectories for the visual features are represented by a straight line between the initial and the final
ones defined as s∗ = [f1d = (503, 584), f2d = (612, 600), f3d = (523, 472), f4d = (630, 477)]T px. As in
the previous experiments, Figure 4g represents the final robot pose once the experiment ends and
Figure 4h represents the image trajectory. As the experiments show, the proposed controller allows the
concurrent guidance of both the manipulator and robotic platform during the tracking of the desired
image trajectory.

54



Electronics 2019, 8, 374

(g) (h)

(e) (f)

(c)
(d)

(a) (b)

Figure 4. Robot pose and image trajectories in the experiments. (a) 3D initial pose of the mobile
manipulator and target. (b) Initial visual features extracted by the eye-in-hand camera. First experiment:
(c) 3D final pose. (d) Image trajectory. Second experiment: (e) 3D final pose. (f) Image trajectory. Third
experiment: (g) 3D Final pose. (h) Image trajectory.
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Figure 5 represents the joint torques applied to the manipulator (m = 1 . . . 7) and force and
moments applied to the robot platform during the first and second experiments. As it can be seen in
Figure 5a (first experiment), the torques, force, and moment remain low, and a smooth behavior is
obtained during the tracking. For the second experiment, Figure 5b represent the joint torques applied
to the manipulator and force and moment applied to the base platform during the robot motion in
depth. It is worth noting that the reduction of the distance between the two bodies (target and robot)
is obtained by modifying both the base platform pose and the robot manipulator joint configuration.
Finally, as in the previous experiments, Figure 6 represents the joint torques applied to the manipulator
and force and moment applied to the base platform during the third tracking experiment. The desired
relative orientation is achieved by controlling both the orientation of the base platform and the robot
manipulator joint configuration.

(a) (b)

Figure 5. (a) Experiment 1: Joint torque and moment and force exerted on the base platform.
(b) Experiment 2: Joint torque, moment, and force exerted on the base platform.

Figure 6. Experiment 3: Joint torque, moment, and force exerted on the base platform.

One of the main advantages of the proposed controller is the possibility to define new direct
image-based controllers by modifying the value of the matrix W of the optimal controller (see Equation
(25)). A different controller with different dynamic behavior during the tracking of image trajectories
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can be obtained by modifying this matrix. In order to evaluate the proposed framework, in Table 1 we
represent the obtained image error during the tracking of a repetitive image trajectory defined by the
following equation.

sd =

[
fxd
fyd

]
=

[
320 + 166cos(ωt + π/4)
265 + 160sin(ωt + π/4)

]
(34)

Table 1. Mean image error in pixels (mm) during the tracking of the image trajectory.

W ω = 0.5rad/s ω = 1rad/s ω = 2rad/s

W = M̃
−2 2.14 px (0.59 mm) 2.21 px (0.61 mm) 3.84 px (1.04 mm)

W = M̃
−1 2.12 px (0.58 mm) 2.95 px (0.8 mm) 2.39 px (0.66 mm)

W = I 3.81 px (1.03 mm) 3.22 px (0.87 mm) 4.4 px (1.2 mm)
Previous 2.25 px (0.62 mm) 3.2 px 0.85 mm) 4.12 px (1.09 mm)

Table 1 represents the mean error in pixels and mm during the tracking of the image trajectory
considering different tracking velocities. As it can be seen in this table, different tracking errors are

obtained and the best behavior at high velocities is obtained considering W = M̃
−1

. Additionally, the
performance of the controllers is compared with respect to previous controllers only based on inverse
dynamics [22] (indicated as “previous” in Table 1).

7. Conclusions

This paper presents a direct image-based visual servoing system for the guidance of mobile
manipulators. This approach is based on an optimal framework that considers the optimization of the
motor signals sent to the mobile manipulator during the tracking of image trajectories. The stability of
the controller has been proved analytically, and different dynamical behavior can be obtained by using
different values of the matrix W.

As a result, an adaptive and flexible tool has been obtained, allowing for concurrent control of
both the base platform and manipulator during the tracking of trajectories. With the given definition
of A and b, the optimal control can minimize the motor commands while performing the tracking
of trajectories in the image space. The viability of the controller has been tested in a variety of test
case experiments, including approaches to an object, as well as different positioning tasks that require
modifying the position and/or the orientation of the mobile manipulator. In all such cases, the
experiments and trajectories have been accomplished.
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Appendix A

As described throughout the paper, the motor commands are u=
[

uT
p uT

m

]T
=[

v ω
.
qT

m

]T
. First, the robot Jacobian is used to convert the joint velocities to Cartesian velocities:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
ω

.
xme
.
yme.
zme.

φxme.
φyme.
φzme

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
I2×2 02×6

06×2 J6×6

]
u. (A1)

The relation between the previous Cartesian velocities and
[

vT ωT
]T

can be obtained by
using Equations (11)–(16):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.
tx.
ty.
tz.
φx.
φy.
φz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Jc13×8
Jc23×8

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
ω

.
xme
.
yme.
zme.

φxme.
φyme.
φzme

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A2)

Where,

Jc1 =

⎡⎢⎣ cosα

sinα

0

−xmesinα − xpmsinα

xmecosα + xpmcosα

0

cosα

sinα

0

−sinα

cosα

0

0
0
1

0
0
0

0
0
0

0
0
0

⎤⎥⎦
Jc2 =

⎡⎢⎣ 0
0
0

0
0
1

0
0
0

0
0
0

0
0
0

cosα

sinα

0

−sinα

−cosα

0

0
0
1

⎤⎥⎦
(A3)

Finally, by using the rotation matrix Rc which represents the orientation frame Fc with respect to

the fame Fo, the values of
[

vT ωT
]T

can be expressed with respect to the frame Fc,
[

vT
c ωT

c

]T
.

[
vc

ωc

]
=

[
RT

c 0

0 RT
c

][
v
ω

]
(A4)

Therefore, the value of Jc is equal to

Jc =

[
RT

c 0

0 RT
c

][
Jc13×8
Jc23×8

][
I2×2 02×2

06×2 J6×6

]
(A5)
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Abstract: Through an analysis of the kinematics and dynamics relations between the target positioning
of manipulator joint angles of an apple-picking robot, the sliding-mode control (SMC) method is
introduced into robot servo control according to the characteristics of servo control. However, the
biggest problem of the sliding-mode variable structure control is chattering, and the speed, inertia,
acceleration, switching surface, and other factors are also considered when approaching the sliding die
surface. Meanwhile, neural network has the characteristics of approaching non-linear function and
not depending on the mechanism model of the system. Therefore, the fuzzy neural network control
algorithm can effectively solve the chattering problem caused by the variable structure of the sliding
mode and improve the dynamic and static performances of the control system. The comparison
experiment is carried out through the application of the PID algorithm, the sliding mode control
algorithm, and the improved fuzzy neural network sliding mode control algorithm on the picking
robot system in the laboratory environment. The result verified that the intelligent algorithm can
reduce the complexity of parameter adjustments and improve the control accuracy to a certain extent.

Keywords: visual servoing; fuzzy neural network; sliding mode control; picking robot

1. Introduction

With the development of science and technology, robot technology has acquired unprecedented
achievements. In agriculture, the development of fruit-picking robots has become a hotpot project
due to the rising labor costs and the huge output of apples and citrus. The apple-picking robot
is an integrated system that integrates environmental perception, dynamic decision-making, and
behavior control; motion control is therein the most basic and important link. At present, there are
two main kinds of visual servo control for picking robots: one is image-based visual servo control,
and the other is a position-based visual servo control system [1]. The picking robot manipulator is a
typical non-linear system, because it is composed of multiple joints and has time-varying uncertainty
during the picking process. This indicates that traditional control methods would not meet the
control requirements. Image feedback-based visual servo control is a real-time feedback control for
the manipulator according to the visual acquisition image, and it also shows strong self-adaptability
to the change of external environment and system parameters so that it reduces the complexity of
manipulator in the control process.

At present, most visual servo control systems based on image feedback adopt traditional control
schemes such as adaptive control [2], PID control [3], and sliding model control [4], etc., or intelligent
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control algorithms [5] such as neural network and fuzzy theory [6], etc. There are some defects in
adopting a single control method. Adaptive control is a strategy to deal with structural uncertainties,
which provides good performance to a certain extent [7]. PID control has better control performance
for the position and joint angle parameters of the manipulator end-effector [8]. Sliding-mode control
(SMC) has excellent robustness and good anti-jamming ability to the uncertainties of the system,
especially in the control of non-linear systems [9]. Neural network (NN) has the ability to learn and
approximate non-linear functions [10]. It is often used to compensate unstructured uncertainties in
robot controller modeling. Fuzzy control [11] imitates human reasoning and decision-making processes
on the basis of not depending on the precise mathematical model of the controlled object. Fuzzy logic
is adopted in robot controllers to achieve good control performance under uncertain conditions. In the
reference [12], a robust adaptive control method based on the dynamic structure of the fuzzy wavelet
neural network is proposed, which is used to track the trajectory of the robot with uncertainties and
disturbances by the adaptive sliding-mode control. Mehta and Ton et al. introduced a continuous
terminal sliding mode visual servo controller to adjust the camera to the desired position, but this has
many requirements for the camera, and requires the correction of the camera position [13]. In the field
of robotic citrus picking, there is a non-linear robust image visual servo controller that can adjust the
end effector to the fruit position under the condition of unknown fruit movement, but the speed of the
picking process is slow, and is not conducive to agricultural application [14]. The fuzzy neural network
(FNN) learning algorithm [15,16] is a superior system identification method that utilizes non-linear
control. There is no need to get the prior knowledge about the uncertainty and a sufficient amount of
observed data. Efe and Devesh et al. used the novel particle swarm optimization (PSO)–SMC hybrid
learning algorithm to train the FNN effectively, but instead of using the visual servo control of picking
robots, they realized the flattening and rotation control of the four-rotor configuration for agricultural
purposes [17].

A great deal of research has been devoted to these intelligent algorithm scholars, but there are
few applications in the field of agricultural picking robots. In this paper, a joint visual servo control
algorithm based on an improved sliding mode and kinematics and dynamics equation is presented
that appears to have good robustness in a non-linear system. However, sliding-mode control always
requires detailed system information and corresponding uncertainty bounds to ensure stability [18].
Even though the stability requirements are met, there will still be problems such as jitter [19]. Therefore,
fuzzy and adaptive neural network control algorithms are introduced and combined with sliding-mode
control to suppress the sliding-mode jitter problem. However, the traditional neural network model is
complex and computationally intensive, with a high probability of over-fitting. To prevent over-fitting,
we increased the dropout rate for the dropout layer [20].

According to the characteristics of apple-picking robot motion control, the image-based robot
visual servo control method is combined with the improved fuzzy neural network sliding mode control
algorithm to make use of the non-linear and non-system-dependent mechanism model of the fuzzy
neural network. Combined with sliding mode variable structure control, the sliding mode chattering is
eliminated, and the stability of the control system is improved. In this paper, the algorithm is applied
for the first time in the field of agricultural fruit-picking robots, which improves the extraction speed
of apple-picking robots.

The research aim of this paper is mainly to verify the visual servo control of the sliding-mode
control algorithm based on the improved fuzzy neural network through the apple-picking robot.
The article is divided into three parts, Firstly, we establish the kinematics and dynamics equations of
the picking robot. Secondly, visual positioning is introduced to calculate the position of the target point,
and an image-based visual control algorithm is used. Finally, the sliding-mode control algorithm and
the improved fuzzy neural network control algorithm are combined to carry out simulation analysis,
and the algorithm is verified on the picking robot. It is concluded that the improved fuzzy neural
network sliding mode control algorithm can improve the efficiency of the robot arm servo control and
has higher stability.
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2. Picking Robot Structure and Model Establishment

2.1. Manipulator Structure Design

Since the apple trees are relatively high and the fruits are disperse, the higher degree of freedom
of the picking robot manipulator brings not only the kinematics algorithm complexity, but also the
waste of joint freedom degree, which is disadvantageous to the practicality of agriculture. This reduces
the requirements of the manipulator and minimizes the usage of freedom degrees. So, this paper
introduces the self-designed five degrees of freedom (DOF) manipulator, which is shown in Figure 1.
Figure 2 is a schematic view of the picking robot manipulator. The manipulator gripping device adopts
a curved design in order to reduce the damage of the apple during the process of picking up the apple.
Figure 3 shows a wheeled picking robot.

Figure 1. Manipulator structural drawing of picking robot (1: picking robot platform; 2: platform; 3:
robot base; 4: lift platform; 5: servo motor; 6: robot lumbar; 7: lumbar rotating shaft; 8: main arm joint;
9: main arm; 10: small arm joint; 11: small arm; 12: rotating shaft; 13: grasp hand installation seat).

Figure 2. Schematic diagram of picking robot manipulator.
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Figure 3. Picking robot physical map.

Fruit-picking robots are mainly composed of two parts. The first part is a chassis platform, and the
second part is a manipulator. Therein, the five DOF manipulator is a PRRRP joint structure. The first
degree of freedom is the lifting platform. Its main function is to lift the whole manipulator. The second
degree of freedom is the waist rotation joint of the manipulator. The third degree of freedom is the
swing axis of the arm, the fourth degree of freedom is the swing axis of the arm, and the fifth degree of
freedom is the rotating axis of the manipulator with the function of adjusting the grasping posture
according to the picking requirement.

2.2. Kinematics Equation of Manipulator

The manipulator is a complex system, since it includes various disciplines such as kinematics
and dynamics. Kinematics analysis is used to model according to the relationship between the spatial
posture and the angle of each joint of the manipulator. The designed structural kinematics parameters
of the manipulator are shown in Table 1. In the table, αi is the torsion angle, ai is the length of the
connecting rod, θi is the joint angle, di is the offset of the connecting rod, σ = 0 is the rotating joint, σ
= 1 is the direct acting joint, and di is the other constant. The use of the D–H rule to determine the
coordinate position of the connecting rod is shown in Figure 4.

Table 1. Kinematic parameters of manipulators.

Joints i αi/(
◦) ai/(

◦) θi/(
◦) di/(

◦) σ Variable Range

1 0 0 90 d1 1 d1(0.63 to 1.3)
2 −90 0.133 θ2 0 0 θ2 (−180◦ to 180◦)
3 0 1 θ3 0 0 θ3 (–142◦ to −36◦)
4 −90 0 θ4 0 0 θ4 (−180◦ to 180◦)
5 0 0 θ5 0 0 θ5 (0◦ to 360◦)
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Figure 4. Manipulator D–H model.

The homogeneous coordinate transformation matrix is used in the above-mentioned establishment
of connecting the rod D–H coordinate system and kinematics mode.

0
1T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 1 d1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ2 0 −sinθ2 0.133 cosθ2

sinθ2 0 cosθ2 0.133 sinθ2

0 −1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2
3T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ3 −sinθ3 0 cosθ3

1 cosθ3 0 sinθ3

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3
4T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ4 0 −sinθ4 0
sinθ4 0 cosθ4 0

0 −1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
4
5T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d5

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Therein, i−1
i T presents the homogeneous matrix of translation and rotation from the i − 1 joint

coordinate system to the i joint coordinate system. The total transformation matrix of the end effector
relative to the robot coordinate system is:

0
5T = 0

1T1
2T2

3T3
4T4

5T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)
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The end effector position equation is:

px = d5 sinθ2sin(θ3 + θ4) − sinθ2cosθ3 − 0.133 sinθ2

py = −d5 cosθ2sin(θ3 + θ4) + cosθ2cosθ3 + 0.133 cosθ2

pz = −d5 cos(θ3 + θ4) − sinθ3 + d1

(3)

The end effector posture equation is:

px = d5 sinθ2sin(θ3 + θ4) − sinθ2cosθ3 − 0.133 sinθ2

py = −d5 cosθ2sin(θ3 + θ4) + cosθ2cosθ3 + 0.133 cosθ2

pz = −d5 cos(θ3 + θ4) − sinθ3 + d1

(4)

2.3. Dynamic Model of Manipulator

According to the analysis of manipulator joints [21], the five degrees of freedom of the manipulator
are respectively the lifting base, waist rotation axis, arm joint, and wrist rotation. The lifting base only
works when the length of the manipulator is insufficient, while the waist rotation and wrist rotation
axis are tentatively defined as not playing a key role in the visual recognition and picking process;
therefore, the manipulator is simplified as a two-joint manipulator with only a big arm and a small
arm. Meanwhile, a dynamic model is established, as shown in Figure 5.

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = τ (5)

Figure 5. Simplified schematic diagram of two-joint manipulator.

Herein, q =
[
q1 q2

]T
, τ = [τ1 τ2]

T. In the formula, q,
.
q,

..
q are respectively the joint angle position,

velocity, and acceleration vectors of the manipulator. M(q) ∈ Rn×n is a positive definite mass inertia
matrix. C

(
q,

.
q
)
∈ Rn×n represents the centrifugal force and Coriolis force. G(q) ∈ Rn is gravity vector.

τ ∈ Rn is the control moment input from each part of the joint. τd∈Rn is the unknown external
disturbances. Therein, Formula (1) satisfies the following characteristics:

(1) Positive definite symmetry: For any q matrix, M(q) is a positive definite symmetric.
(2) Boundedness: Matrix functions M(q) and C

(
q,

.
q
)

are uniformly bounded for all q,
.
q.

(3) Skew symmetry: The matrix function M(q) − 2C
(
q,

.
q
)

is a skew symmetric matrix, i.e., for any

vector α, there is αT
(
M(q) − 2C

(
q,

.
q
))
α = 0.

3. Visual Servo Control

The visual servo control structure can be divided into position-based control and image-based
control according to different feedback signals. The feedback signal of position-based control is defined
in coordinate form in three-dimensional task space. Its basic principle is to estimate the target in a
three-dimensional Cartesian coordinate system by extracting the image features and combining the
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geometric model of the known target, and then planning the trajectory and calculating the control
quantity according to the position comparison between the end effector and the target of the manipulator.
For the image-based control, the control quantity is calculated directly from the error signal in the
image, and the task is completed by driving the manipulator [22]. In this paper, the image-based
control method is used to output control signals after image calculation, and the sliding-mode control
parameters are adaptively adjusted by the fuzzy neural network algorithm so as to improve the
robustness and stability of the manipulator grasping.

3.1. Visual Target Location

According to the visual servo control system working process of fruit picking robots, the
relationship between the position information of the robot and its joints should be determined first.
The mapping relationship between the image plane coordinates and the three-dimensional coordinates
in the real space can be established by the perspective model of the small hole so that the coordinate
position of the target can be calculated [23]. Due to the vision camera adopted in this paper being
the target localization of the monocular robot, its camera is installed at the end of the manipulator.
According to the principle of the optical imaging of the camera, the model of monocular vision
localization is established as shown in Figure 6, in which the mapping relation of two-dimensional
image coordinates and coordinates in three-dimensional space is established by the transformed
geometric coordinates.

Figure 6. Visual model of camera imaging.

Here, we assume that the target fruit coordinate in the coordinate system of the manipulator is
(Xa, Ya, Za) and its coordinate in the camera coordinate system is (Xc, Yc, Zc). The relationship between
the 3D coordinates (Xc, Yc, Zc) of the target in the camera coordinate system and its two-dimensional
(2D) coordinates (X1, Y1) on the camera imaging plane is obtained.⎧⎪⎪⎨⎪⎪⎩ X1 =

Xc f
Zc

Y1 =
Yc f
Zc

(6)

In the formula, f is the camera focal length. The coordinate transformation formula between
the camera coordinate system and manipulator coordinate system can be obtained by the geometric
analytic method shown in Figure 2.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X =

√
L2

2+L2
3−2L2L3 cos(π−θ3)−(L2 sinθ2+L3 sin(θ2+θ3))

2

1+tan2 θ1

Y = X tanθ1

Z = L1 + L2 sinθ2 + L3 sin(θ2 + θ3)

(7)

In the formula, L1—Waist length

L2—Big arm length
L3—Small arm length
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θ1—one DOF joint angle of manipulator
θ2—two DOF joint angle of manipulator
θ3—three DOF joint angle of manipulator

From Formula (3), the relationship between the target fruit coordinate in the manipulator
coordinate system (Xa, Ya, Za), and the fruit coordinate in the camera coordinate system (Xc, Yc, Zc)
can be obtained: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xc = Xa −X
Yc = Ya −Y
Zc = Za −Z

(8)

The relationship between the robot angle change of each joint and the plane coordinate change of
the target fruit imaging is obtained.

3.2. Visual Servo Control

Since the fruit picking robot works in unknown and uncertain environments and the visual servo
control system has the characteristics of time-varying, strong coupling, and non-linearity, therefore, the
visual servo control system based on images is used due to its advantages regarding insensitivity to
errors. The structure of the image-based visual servo system is shown in Figure 7.

Figure 7. Image-based visual servo system structure.

In this system, the picking robot captures the target image with a camera installed by eye-in-hand
mode, and the position information of the target fruit is obtained by an image processing system.
The angle of each joint of the robot can be obtained by coordinate transformation. In order to improve
the motion performance of the manipulator, a visual servo algorithm based on fuzzy neural network
adaptive sliding mode control is adopted to overcome the uncertainty of the system so as to improve
the robustness of the servo control of the manipulator.

4. Complex Fuzzy Neural Network Sliding Mode Control

4.1. Model Design of Sliding Mode Algorithms

Sliding-mode [24] variable structure control mainly uses a high-speed control rate under non-linear
conditions. It can reach the predetermined sliding mode control track in a short time and move along
the track according to the variable dynamic control system. The sliding mode control scheme is shown
in Figure 8.
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Figure 8. Structural diagram of the sliding-mode control (SMC) controller.

First, we set the ideal angle instruction to qd(t), and track the error of the sliding-mode controller:

e(t) = q(t) − qd(t) (9)

Then, we design the sliding surface as:

s(t) =
..
e + Λ1

.
e + Λ2e (10)

Therein, Λ = diag(λi1,λi2, . . . ,λin), λij > 0, i = 1, 2, j = 1, 2, . . . , n.
Then, we set the Lyapunov function to:

V =
1
2

sTMs (11)

Therefore:
.

V =
1
2

.
sTMs +

1
2

sT
.

Ms +
1
2

sTM
.
s (12)

Bring the characteristics of the manipulator dynamics equation into the formula:

.
V = sTM

.
s + sTC

.
s = sT

(
M
(...

q − ...
q d + Λ1

..
e + Λ2

.
e
)
+ C
(..
e + Λ1

.
e + Λ2e

))
(13)

According to:
τ. + Λτ = ΛUSMC (14)

Find:
.

V = sT(H + ΛUSMC) (15)

Therein:
H = M

(
Λ1

..
e + Λ2

.
e− ...

q d
)
+ C
(
Λ1

.
e + Λ2e− ...

q d
)
−
( .
M + ΛM

)..
q

−
( .
C + ΛC

) .
q−
( .
G + ΛG

) (16)

Then, we design the SMC system as:

USMC = −Λ−1(H + ηsgn(s)) (17)

Find:
.

V = −ηsTsgn(s) = −η||s|| ≤ 0 (18)

According to the LaSalle invariant set theorem, when t→∞ , s → 0 , then q̃→ 0 ,
.
q̃→ 0 .

4.2. Sliding-Mode Control Based on Complex Fuzzy Neural Network

The fuzzy neural network is a kind of special neural network that is a hybrid intelligent system
formed by the combination of neural network and fuzzy logic. It combines the two kinds of techniques
by combining the human-like reasoning of fuzzy systems with the learning and connection structure of
neural networks [25,26]. In a nutshell, the fuzzy neural network (FNN) assigns a conventional neural
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network to fuzzy input signals and fuzzy weights. Its function is to use the fuzzy neural network
structure to implement fuzzy logic reasoning.

In order to improve the control accuracy of the two-joint manipulator, a fuzzy neural network
control algorithm, the fuzzy neural network (FNN) is constructed to optimize the conventional sliding
mode control because of the chattering phenomenon in the conventional sliding-mode control [27–30].
The system consists of an input layer, an adaptive fuzzy rule layer, a rule layer, and an output layer.
The structure of the system is shown in Figure 9. The input is a sliding surface, and the output is a
control quantity. The following is the main flow chart of the FNN algorithm:

Figure 9. Structure of fuzzy neural network system.

Step 1: Input the layer data initialization of the fuzzy neural network, and transfer the sliding-mode
vector variable si(i = 1, 2, . . . , n) to the next layer.

Step 2: The nodes in each layer represent the membership functions of the members, which use
Gauss function as an input:

μ
j
i (si) = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
si − xj

i

)2
(
σ

j
i

)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (i = 1, 2, . . . , n; j = 1, 2, . . . , m) (19)

In the formula, n represents the number of input variables, and m is the number of member
functions. xj

i and σ j
i represent the j level node of the i input from si to the Gauss function.

Step 3: The rule layer represents the fuzzy reasoning mechanism of the neural network, and the
data results are obtained by multiplying the input signals of the layer. The formula is as follows:

gk =
n∏

i=1

ωk
jiμ

j
i (si) (20)

Herein, gk represents the Kth output of the rule layer.
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Step 4: The fourth layer is the output layer, in which each node represents an output variable.
It integrates the output into the sum of all the input signals. The execution output of this layer
deblurring is as follows:

y0 =

Ny∑
k=1

ω0
k gk (21)

By adding FNN online cyclic training, inheriting the traditional sliding mode control system, and
relaxing the requirement of system information, the SMC jitter problem can be eliminated. However,
the traditional neural network training method mentioned above makes the learning speed of the
algorithm slow and may fall into local minimum problem, etc. Therefore, a dropout layer is added on
this basis to prevent over-fitting by randomly hiding layer nodes. The improved fuzzy neural network
is expressed in vector form:

y = UNFNN(e, x, σ, W, l, p) = Wg (22)

In the formula, W is the weight matrix of the hidden layer and the output layer. e is the tracking
error vector and the input vector of the system. l represents the fuzzy rules. p represents the dropout
layer parameters of Bernoulli distribution.

Therefore, the equivalent control law of the optimal output estimation sliding surface is obtained.

USMC = U∗NN(e, x∗, σ∗, W∗, l∗, p∗) + ε = W∗g∗ + ε (23)

Herein, ε represents the error vectors of the network. W∗, x∗,σ∗, l∗, p∗ are the optimal parameters of
network. Then, the sliding mode control law of the improved fuzzy neural network can be expressed as:

U(t) = ÛNN
(
e, x̂, σ̂, Ŵ, l̂, p̂

)
+ Ur (24)

Herein, ÛNN is the improved fuzzy neural network controller, which is used to estimate the
sliding mode control law. Ur is an additional value of robustness, which ensures that the system would
be on the sliding surface when t ≥ 0. x̂, σ̂, Ŵ, l̂, p̂ represent the neural network parameter estimation.

Ũ = USMC −U = W∗g∗ + ε− Ŵĝ−Ur = W̃g∗ + Ŵg̃ + ε−Ur (25)

In the formula, W̃ = W∗ − Ŵ, g̃ = g∗ − ĝ, g̃ can be expressed by Taylor expansion due to g being a
non-linear activation function.

g̃ = gxx̃e + gσσ̃e + om (26)

Herein, x̃ = x∗ − x̂, σ̃ = σ∗ − σ̂ can be expressed as:

g∗ = ĝ + gxx̃e + gσσ̃e + om (27)

Bringing Formula (22) into Formula (20), then we find:

Ũ = W∗g∗ + ε− Ŵĝ−Ur

= W∗(ĝ + gxx̃e + gσσ̃e + om) + ε− Ŵĝ−Ur

=
(
W∗ − Ŵ

)
ĝ +
(
W̃ + Ŵ

)
gxx̃e +

(
W̃ + Ŵ

)
gσσ̃e + ε−Ur + W∗om

= W̃ĝ + Ŵgxx̃e + Ŵgσσ̃e−Ur + P

(28)

Herein: P = W̃gxx̃e + W̃gσσ̃e + W∗om + ε, ||P|| < r, r is a minimal positive number.

4.3. Stability Analysis

Next, we improve the fuzzy neural network sliding mode control algorithm according to the
dynamics and kinematics equation of the manipulator to make the manipulator reach the prescribed
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sliding surface in the closed-loop control of the visual servo system, and reduce and eliminate the
chattering problem of sliding-mode control, so as to ensure the long-term stability of the system.

Set:
Ŵ = η1

(
ĝST
)T

(29)

x̂ = η2
(
eSTŴgx

)T
(30)

σ̂ = η3
(
eSTŴgσ

)T
(31)

Ur =
τ0sgn(S)∑n

i=1 S2
i

(32)

Define the Lyapunov function as:

V =
1
2

STS +
1

2η1
tr
(
W̃W̃T

)
+

1
2η2

tr
(
x̃x̃T
)
+

1
2η3

tr
(̃
σσ̃T
)

(33)

Find the derivation:

=
1
2

ST
.
S− 1

η1
tr
(
W̃W̃T

)
− 1
η2

tr
(
x̃x̃T
)
− 1
η3

tr
(̃
σσ̃T
)

(34)

Since
.
S = Ũ, we introduce Formulas (6)–(15) and (6)–(17) and find:

.
V = ST

[
W̃ĝ + Ŵgxx̃e + Ŵgσσ̃e−Ur + P

]
− 1

η1
tr
(
W̃W̃T

)
− 1

η2
tr
(
x̃x̃T
)
− 1

η3
tr
(̃
σσ̃T
)

= tr
(
W̃
(
ĝST − 1

η1
W̃T
))
+ tr
(
eSTŴgx − 1

η2
x̃T
)
+ tr
(
eSTŴgσ − 1

η3
σ̃T
)
+ ST(−Ur + P)

(35)

According to Formulas (24), (27) and (30), we transform
.

V to:

.
V = ST(−Ur + P) ≤ ||ST || × || −Ur + P|| = −α||ST || ≤ 0 (36)

Herein, α is a positive, sliding-mode control system based on the improved fuzzy neural network,
and is asymptotically stable according to the Lyapunov stability principle. When t→∞ , s → 0 .

5. Simulation Analysis and Experiment

The adaptive sliding-mode controller is simulated by matlab. The AC servo motor is used in the
robot joint. The corresponding parameters are set according to the physical parameters of the picking
robot arm as shown in Table 2.

H =

[
α+ 2ε cos(q2) + 2η sin(q2) β+ ε cos(q2) + η sin(q2)

β+ ε cos(q2) + η sin(q2) β

]

C =

[
(−2ε sin(q2) + 2η cos(q2))

.
q2 (−ε sin(q2) + η cos(q2))

.
q2

(ε sin(q2) − η cos(q2))
.

q1 0

]

G =

[
εe2 cos(q1 + q2) + ηe2 sin(q1 + q2) + (α− β+ e1)e1 cos q1

εe2 cos(q1 + q2) + ηe2 sin(q1 + q2)

]
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Table 2. Structure parameters of picking robot.

m1 10.8 kg lce 0.42 m

l1 0.58 m Ie 0.4 kg

lc1 0.29 m δe 0

I1 0.9 kg e1 –0.58

me 8.2 kg e2 9.81

Herein, α, β, η, ε is constant. α = I1 + m1l2c1 + Ie + mel2ce + mel21, β = I1 + mel2ce, ε = mel1lcecos(δe),

η = mel1lcesin(δe). Take a =
[
α β ε η

]T
, â is an estimation of a, set ã = â − a, and a is constant,

so
.
ã ≈ .

â.
Set the angle instruction of joint 2 as qd1 = sin(2πt), qd2 = sin(2πt),

.
qd1 and

.
qd2 are respectively

the angular velocities of joints 1 and 2. Take Λ =

[
15 0
0 15

]
, Λ1 =

[
5 0
0 5

]
, Λ2 =

[
50 0
0 50

]
,

Kd =

[
100 0

0 100

]
. Set the gain of the adaptive fuzzy neural network to η1 = 20; η2 = 5; η3 = 2.

Firstly, the tracking curves of angular position and velocity of joints 1 and 2 are obtained by using
sliding mode control without adding the fuzzy neural network algorithm, as shown in Figures 10–12.

From Figure 10, it can be seen that the angular position switching motion of common SMC joints
without the fuzzy neural network is continuous and smooth. From Figure 12, it can be seen that joint 2
is more likely to be disturbed due to the need to deal with the conductive force from joint 1, so the
output buffeting is relatively large.

The simulation results of a manipulator system with an improved fuzzy neural network
sliding-mode control algorithm are shown in Figures 13–15. From Figure 15, it can be seen that
compared with the traditional SMC scheme, the proposed fuzzy neural network sliding-mode control
algorithm effectively eliminates the control chattering phenomenon. Meanwhile, the angular velocity
tracking of joint 1 and joint 2 is more robust. It realizes high-precision control without detailed system
information, and embodies the superiority of the improved fuzzy neural sliding-mode control algorithm.

Figure 10. Angle tracking of joints 1 and 2.
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Figure 11. Angular velocity tracking of joints 1 and 2.

Figure 12. Joint 1 and 2 control inputs without neural network sliding mode.

In order to further verify the effectiveness of the sliding-mode algorithm of the fuzzy neural
network system, the self-developed picking robot system is shown in Figure 16. The control system
of the manipulator that is used in the experiment is an industrial computer with an Intel processor.
The motion control system of the manipulator is connected with the host computer through serial
communication, and the C control code generated by Matlab is imported into the control system.

The control instruction is generated according to the results of image recognition, so we process
the control instructions by the sliding-mode algorithm of the fuzzy neural network and dynamic
joint angle, output the dynamic joint angle, and bring into the kinematics equations related to the
manipulator and output manipulator motor control instruction so as to control the manipulator gripper
to reach the target position. Intensive experiments are performed on the apple-picking robot using
the conventional PID algorithm, the sliding-mode control algorithm, and the improved fuzzy neural
network sliding mode control on the robot arm servo control in the same experimental environment.
Comparing the above three different algorithms on the picking-robot system on the grab speed and the
grab accuracy, Table 3 is the data comparison using different algorithms.
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Figure 13. Position tracking of joints 1 and 2.

Figure 14. Angular velocity tracking of joints 1 and 2.

Table 3. Experimental results.

Algorithm Success Rate
Starting Position to the End of

the Crawl Time(s)

Conventional PID algorithm 88.2% 15.8

Sliding mode control algorithm 74.0% 13.0

improved fuzzy neural network
sliding mode control algorithm 91.2% 13.8
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Figure 15. Control input of joints 1 and 2 after adopting the intelligent control scheme.

  
(a) (b) 

Figure 16. (a) Representing the movement process of the robot arm of apple-picking robot;
(b) Representing that the picking machine recognizes the target and controls the robot arm to
grasp the target through the algorithm presented in this paper.

Through the comparison of experimental data, it can be known that the conventional PID algorithm
captures a long time, while the sliding mode control algorithm can effectively reduce the grab time,
but there is a lower catch success rate, and the improved fuzzy neural network algorithm is adopted.
The sliding mode control algorithm not only improves the grabbing efficiency, but also greatly
improves the success rate of the capture. It is shown in the result of the visual servo motion of the
manipulator that the fruit-picking robot based on the improved fuzzy neural network sliding-mode
algorithm has good stability and robustness. Figure 14 shows that the fruit-picking robot completes
the visual servo control process of the manipulator using an improved algorithm.

6. Conclusions

In this paper, based on the self-developed apple-picking robot, the kinematics and dynamics
equations of the robot are established. The image-based visual servo control method is adopted to
control the manipulator in order to improve the grasping accuracy in the picking process. Then, the joint
control performance of the control system has been improved by the adaptive fuzzy neural network
sliding-mode control algorithm. Finally, the superiority of the algorithm is verified by simulation and
experiment. The results show that the method improves the shortcomings of the common sliding
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mode control for the training control jitter in the actual robotic arm visual servo system to a certain
extent, and improves the stability of the servo control.

Due to the low stability of the mechanical design of the current picking robot end effector, the
existing mechanical structure of the picking robot will be improved in future work, and continue to
verify the superiority of the current algorithm on the basis of the new terminal actuator, and complete
the picking experiment in the real environment of the apple-picking robot.
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Abstract: In this research, a novel method of space spraying trajectory optimization is proposed
for 3D entity spraying. According to the particularity of the three-dimensional entity, the finite
range model is set up, and the 3D entity is patched by the surface modeling method based on FPAG
(flat patch adjacency graph). After planning the spray path on each patch, the variance of the paint
thickness of the discrete point and the ideal paint thickness is taken as the objective function and
the trajectory on each patch is optimized. The improved GA (genetic algorithm), ACO (ant colony
optimization), and PSO (particle swarm optimization) are used to solve the TTOI (tool trajectory
optimal integration) problem. The practicability of the three algorithms is verified by simulation
experiments. Finally, the trajectory optimization algorithm of the 3D entity spraying robot can
improve the spraying efficiency.

Keywords: spray painting robot; FPAG; GA; ACO; PSO; TTOI problem

1. Introduction

With the development of the social economy and the improvement of life, people have higher
requirements for product quality and product appearance. Moreover, some products with higher
surface spraying quality, such as furniture, automobiles, and artworks, determine the quality of the
product appearance and the competitiveness of products in the market. Therefore, people pay more
and more attention to surface spraying technology [1]. The traditional spraying technology is that the
spraying workers with spraying guns directly spray the workpiece to be sprayed. During spraying,
the paint mist diffuses into the surrounding environment, which not only pollutes the environment,
but also seriously harms the physical and mental health of spraying workers. To solve the problems
caused by traditional spraying, automatic spraying systems have been developed. As a typical table
of spraying automation equipment, a spraying robot has many advantages, such as good uniformity
of the coating thickness, high repetitive positioning accuracy, wide applicability, and high efficiency.
At the same time, spraying robots can free workers from a toxic, flammable, and explosive working
environment [2].

In many fields of industrial production, the surface spraying of the workpiece is an essential step,
and the types of workpiece modeling are becoming more and more abundant. During the spraying
operation, the workpiece may have multiple spraying surfaces, and the curvature of each spraying
surface is different. Usually, a three-dimensional (3D) entity modeling method is needed to form these
parts, as shown in the 3D entity diagram in Figure 1. In recent years, due to the wide application of 3D
solid modeling in various fields, scholars have made remarkable achievements in the research of 3D
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solid modeling [3–7]. The spraying of 3D solid modeling has a certain novelty because the spraying is
more interested in the surface shape of the workpiece. For the research of this paper, we use the finite
spraying modeling technology and the surface modeling method based on the plane patch adjacency
graph (FPAG) for modeling. It should be pointed out that the 3D entities mentioned in this paper are
not the same as polyhedra. A polygon is a spatial geometry surrounded by several planar polygons,
each of which is a plane. However, each face of a 3D entity can be a free-form curved surface. In this
sense, the polyhedron is only a subset of the 3D entity.

Figure 1. (a) 3D entities with concave surfaces. (b) 3D entities with convex surfaces.

In addition, research on trajectory optimization for spray painting robots oriented to 3D entities is
immature. Existing trajectory optimization methods can only be applied to 3D entities with convex
surfaces, as shown in Figure 1b. For a 3D entity with concave surfaces (Figure 1a), the research on the
trajectory optimization for the robot in this field is still a blank as the shape of the entity is complex
and the robot is required to be extremely flexible in automatic spray painting operation. The trajectory
optimization method for the spray painting robot introduced in this paper can only be applied to 3D
entities with convex surfaces.

The idea of trajectory optimization for a spray painting robot oriented to a 3D entity is:
First, a simple mathematical model of the paint deposition rate is established by the experimental
method and the 3D entity is sliced by using the FPAG surface modeling method [8–10]. Secondly,
after planning the painting path on each patch, the spray painting trajectory is optimized on each patch
with the objective function of the variance of the paint thickness at discrete points and the ideal paint
thickness. Finally, the spray painting trajectories on the individual patches are optimized, and the
optimized trajectories of the spray painting robot on the 3D entities are formed eventually.

2. The Establishment of the Mathematical Model

The spraying mathematical model mainly includes the position and direction of the end-effector
and the paint deposition rate model.

The establishment of the paint deposition rate model is an important problem in trajectory
optimization for spray painting robots. Considering that the expressions of these models are rather
complex, it is not applicable to build the mathematical model of the paint deposition rate on 3D
entities. Therefore, in this paper, the specific mathematical expression of the finite range model
takes the following factors into account: The distance and direction from the gun to the working
surface, the curvature of the workpiece surface, and the angle of the paint gun (i.e., the cone angle
corresponding to the paint flow).

Before building a finite-scope model, we made the following assumptions: The paint particles
sprayed by the paint gun form a cone in space. Suppose the opening angle, ϕ, is half of the angle, ϕ,
and the opening angle, ϕ < 90◦. The definition of the opening angle, ϕ, can be seen in Figure 2.

80



Electronics 2019, 8, 74

Figure 2. The finite range model.

Considering that the amount of paint to be obtained is smaller when the distance, L(L > 0),
from the point, s(x, y, z) ∈ S, on the surface to the gun increases. Additionally, the amount of paint
obtained at the points on the surface is also decreased when the angle, θ(θ < ϕ), is gradually increasing.
The amount of the paint obtained at the point, s, on the workpiece surface can be expressed by the
following equation:

c(θ, φ)

L2 (1)

Among which:

c(θ, ϕ)

{
> 0, θ < ϕ

= 0, θ ≥ ϕ
(2)

L =
√
(x − px(t))

2 + (y − py(t))
2 + (z − pz(t))

2 (3)

px, py, and pz express, respectively, the coordinates of the gun on the X-axis, Y-axis, and Z-axis.
Assuming that the workpiece surface is a curved surface, the paint deposition rate of a point,
s(x, y, z) ∈ S, on the surface is proportional to the inner product of the following two vectors (shown
in Figure 2): First, the unit normal vector, n(s), of the point. Second, the unit direction vector, d(p(t), s),
of the gun and the point, s. The function, d(p(t), s), is defined as follows:

d(p(t), s) =
(x − px(t))i +

(
y − py(t)

)
j + (z − pz(t))k

L
(4)

where, i, j, and k denote unit vectors in the positive direction of the X, Y, and Z axis, respectively.
Based on the above assumptions, we can derive the paint deposition rate function of a point, s,

on the surface of the workpiece:

•
f (s, p(t), t) =

⎛⎝ c(θ, ϕ)

(x − px(t))
2 + (y − py(t))

2 + (z − pz(t))
2

⎞⎠ · d(p(t), s) · n(s) (5)
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The variable, θ, in Equation (5) is not significant. In the equation, θ is the angle of the gun and
a point, s, on the workpiece surface and the axis of the gun. It is related to the coordinates of the
point, s, on the workpiece surface, the position, p(t), and direction, o(t), of the paint gun, which can be
defined as:

θ = cos−1(d(p(t), s) · o(t)) (6)

The selection of function, c(θ, ϕ), depends on the basic spray characteristics of the gun and some
parameter settings, such as the air pressure of the gun and the velocity of the paint flow. In the
usual case, the function, c(θ, ϕ), reaches its maximum when θ = 0 (that is, it just below the paint gun).
When θ → ϕ , c(θ, ϕ) → 0 . The following gives a concrete model of function, c(θ, ϕ):

c(θ, ϕ) =

⎧⎨⎩α
cos(θ)−cos(ϕ)

(1−cos(ϕ))2 θ ≤ ϕ

0 otherwise
(7)

The painting velocity of the paint gun and air pressure can be adjusted by changing the values of
the parameters, α and ϕ, in the formula above, respectively. It can also be seen from the formula above
that the values of the parameters, α and ϕ, are related to the maximum of the function, c(θ, ϕ).

The finite-range model here is circular on the plane corresponding to the paint distribution
model. When the workpiece surface has a certain curvature, the paint distribution should become
oval. For surfaces with small curvatures, the paint distribution, which is actually elliptical, can be
approximated as a circular. In addition, the paint deposition rate model also illustrates that the total
amount of paint sprayed to the workpiece surface (the total amount of paint sprayed from the gun) has
nothing to do with the surface shape of the workpiece and the distance from the gun to the workpiece
surface, which is in line with the actual situation.

3. Segmentation for 3D Entity

To obtain the optimal trajectory on the 3D solid surface, the first step is to model the workpiece
surface. Second, due to the particularity of the spraying surface, trajectory optimization of the spraying
robot is relatively difficult in a practical application. To obtain a good spraying effect, the finite range
model modeling method is adopted. The third step is to use the FPAG surface modeling method to
simplify the plane patch adjacency graph. As shown in Figure 3, the specific steps are as follows:
(1) Divide the triangular grid of the 3D solid surface. (2) Set the maximum normal vector threshold
and connect the triangle surface into a smaller flat area according to the triangle connection algorithm.
(3) Each patch is approximately planar, and at least one side of each patch is part of the 3D solid ridge.

Figure 3. Step diagram of the surface modeling method based on the flat patch adjacency graph (FPAG).
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4. Trajectory Optimization on Each Patch

The geometric properties of 3D entity surfaces are more complex compared with two-dimensional
planar surfaces and regular curved surfaces. Therefore, to simplify the problem, we will describe a
relatively simple and practical trajectory optimization method in the following. This method is fast
and the process is simple. It can meet the actual needs completely.

The trajectory of a spray painting robot mainly consists of two factors: Path and velocity. In the
spray painting process, the painting path can be obtained by determining the width of the overlapping
areas formed by two paint strokes. Therefore, to determine the trajectory of a spray painting robot,
we only need to determine the velocity of the paint gun and the width of the overlapping area formed
by two paint strokes. x represents the distance from a point, s, to the first path in the painting radius,
d represents the width of the overlapping area formed by two paint strokes, R represents the distance
from the surface point to the spray direction, o(t), O is the TCP (tool center point). Then, the paint
thickness at point, s, is:

qs(x) =

⎧⎪⎨⎪⎩
lq1(x) 0 ≤ x ≤ R − d
q1(x) + q2(x) R − d < x ≤ R
q2(x) R < x ≤ 2R − d

(8)

q1(x) and q2(x) are the paint thickness at point s when spray painting on two adjacent paths,
respectively. The formulas of q1(x) and q2(x) are:

q1(x) = 2
∫ t1

0
f (r1)dt, 0 ≤ x ≤ R (9)

q2(x) = 2
∫ t2

0
f (r2)dt, R − d ≤ x ≤ 2R − d (10)

among which, t1 =
√

R2 − x2/v, t2 =
√

R2 − (2R − d − x)2/v, r1 =
√
(vt)2 + x2,

r2 =
√
(vt)2 + (2R − d − x)2. t1 and t2 represent half of the spray painting time that the gun paints in

two adjacent painting paths at point s, respectively. r1 and r2 represent the distance from point s to the
central projection point of TCP in two adjacent painting paths, respectively, t is the time that the gun
moves from point O to point s’. s’ is the projection of the point, s, on the painting path. The following
expression can be obtained from (9) and (10):

qs(x, d, v) =
1
v

J(x, d) (11)

where, J is a function of x and d. To make the paint thickness on the surface as uniform as possible,
the difference between the actual paint thickness and the variance of ideal paint thickness at point s
are taken as the optimization objective function:

min
d∈[0,R],v

E1(d, v) =
∫ 2R−d

0
(qd − qs(x, d, v))2dx (12)

In the equation above, qd is the ideal paint thickness. Since the maximum paint thickness, qmax,
and the minimum paint thickness, qmin, determine the uniformity of the paint thickness on the
workpiece surface, and qmax and qmin also need to be optimized:

min
d∈[0,R],v

E2(d, v) = (qmax − qd)
2 + (qd − qmin)

2 (13)

It can be obtained from Equations (11)–(13) that:

min
d∈[0,R],v

E(d, v) =
1

2R − d
E1(d, v) + E2(d, v) (14)
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Additionally, from Equations (9) and (10), the expressions of the maximum paint thickness and
minimum paint thickness can be described as:

qmax =
1
v

Jmax(d) (15)

qmin =
1
v

Jmin(d) (16)

Let ∂E(d,v)
∂v = 0, it can be obtained from Equations (11), (14)–(16) that:

v =
1

2R−d

∫ 2R−d
0 J2(x, d)dx − J2

max(d)− J2
min(d)

qd[
1

2R−d

∫ 2R−d
0 J(x, d)dx + Jmax(d) + Jmin(d)]

(17)

It can be seen that the spray painting rate, v, can be expressed as a function of the width, d, of
the paint overlapping area formed by two painting strokes. Therefore, the minimum value of E(d, v)
is only related to d. The golden section method [11] can be used to obtain the optimization value,
d, so that the optimized trajectory on each patch can be obtained too.

5. Tool Trajectory Optimal Integration on 3D Entity

After the track optimization of each patch, the optimal combination of trajectories connecting each
patch should also be considered to speed up the spraying speed of the spraying robot. The first step is
to transform and model the TTOI problem. TTOI problem is represented by the Hamiltonian diagram.
In the second step, the corresponding optimization algorithm is used to solve the TTOI problem.
The third step, through simulation and spray painting experiments, verification, and comparison,
identifies the advantages and effectiveness of the algorithm.

5.1. The Transformation and Modeling of Tool Trajectory Optimal Integration

As is shown in the Figure 4, the TTOI (tool trajectory optimal integration) on each patch after
the 3D entity segmentation is expressed [12]. To make the problem less complicated, the trajectories
are considered as an edge. The ultimate purpose of the TTOI problem is to spray patches on the
workpiece surface to make the spraying path of the robot the shortest. According to graph theory,
a non-directional connection graph, G, is assumed (V, E, R, ω: E→Z+), among which V denotes
the vertex set, E denotes the edge set, R denotes any subset of E, and ω denotes the weight of the
edge (the length of the actual spray path). The problem of TTOI is to find a path passing all edges
only once with the shortest distance in graph, G. Similar to the traveling salesman problem (TSP),
which is a common problem in the optimization problem, the TTOI problem is also a typical NP
(non-polynomial) problem.

Figure 4. Tool trajectory optimal integration on each patch.

Suppose that D = {dij} (i, j = 1, 2, . . . , n), the shortest distance between vertex i and vertex j, which
are not on the same edge in graph G, the distance between the vertices can be calculated according to
the Floyd algorithm. To make the problem less complicated, the TTOI problem can be expressed by the
Hamiltonian method. As shown in Figure 5, a vertex is used to represent an edge of the original graph
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G to form a complete Hamiltonian [12]: g (VH, EH, ωH), among which VH denotes the vertex set,
EH denotes the edge set, and ωH denotes the weight of the edge and ωH∈D. In the graph, g, the weight
of each edge is not fixed. Its value is determined by the order of vertices on the same edge in the
original graph, G. Suppose that the order of the vertices set, VH = {v1, v2 . . . . . . vn}, in graph g is
T = (t1, t2 . . . . . . tn) ti∈VH (i = 1, 2, . . . , n), and the TTOI problem can be defined as Equation (18):

minL =
n

∑
i=1

ωi +
n−1

∑
j=1

ωH
j (18)

where ωi is the weight of the edges in the primitive graph, G, corresponding to vertices, t1, t2 . . . . . . tn,
in graph g and ωH

j denotes the weight of the edge in graph g. Since the weight, ωi, of each edge in the
original graph, G, is considered to be a fixed value in this problem, the above optimization problem
can be reduced to Equation (12):

minL =
n−1

∑
j=1

ωH
j (19)

Figure 5. Transformation of the original graph, G, into the Hamiltonian graph, g.

The spraying robot is the most complex one in the control of the industrial robot because of
its many parameters. Especially, the trajectory optimization of the spraying robot on the complex
surface makes the actual operation difficult. Therefore, finding the arrangement of all vertices in
the Hamilton diagram makes the path, L, of the painting robot the shortest, which becomes a
TTOI problem. Because of the large number of parameters, spray robots are the most complex
control of industrial robots. Especially, the trajectory optimization of the spraying robot on the
complex surface makes the actual operation difficult. Therefore, finding the arrangement of all
vertices in the Hamilton diagram makes the shortest path, L, of the painting robot a TTOI problem.
To solve the TTOI problem, the improved genetic algorithm, ant colony algorithm, and particle swarm
optimization (PSO) proposed in this paper can be used to optimize the trajectory of a spraying robot on
complex surfaces. In the process of fragmentation, these intelligent algorithms can solve the trajectory
optimization problem between patches. For the first time, these intelligent algorithms have been used
for spraying complex surfaces. The previous links between patches are random combinations. Finally,
the advantages and disadvantages of each algorithm are illustrated by experiments.

5.2. Solving the TTOI Problem with the Genetic Algorithm

Genetic algorithm (GA) is a method to search for the optimal solution by simulating the natural
evolution process. Therefore, this algorithm has good effects on the NP (non-polynomial) problem in
combinatorial optimization and can be used to solve the TTOI problem. According to the particularity
of TTOI [13–15], GA needs a special individual code and crossover, mutation, and other genetic
manipulation methods.

(1) Individual code: The length of the individual code is |VH|. Since each vertex in the Hamilton
graph represents one edge of the original graph, G, to distinguish the start and end points of each
edge. The individual code contains the binary code, Psi, representing the direction of each edge in the
original graph, G.

(2) Fitness function: The values of fitness function are used to determine which individuals can
enter the next round of evolution and which individuals need to be removed from the population.
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To facilitate the selection operation in the genetic algorithm, the optimization of the minimum value
is usually converted to optimization of the maximum value, and the fitness function can be taken
as: F = U − L, where U should be selected as an appropriate number, to make the fitness of all
individuals positive. In the process of population evolution, to select the individuals with high fitness,
the population size is maintained as the value, Psize. According to the fitness function rule, the Psize
individuals with the highest fitness are passed to the next generation.

(3) Crossover: Crossover is the process of exchanging the partial codes between two individuals
with a certain probability to generate new individuals. Here, order crossover (OX) is used on Pi while
two-point crossover is used on Psi. OX ensures that the original order of each vertex is almost the
same when the effective sequence of the individual itinerary is modified [16]. The main idea of OX is:
A conventional two-point crossover is performed, followed by an effective sequence modification of
the individual itinerary. When modifying, the original relative access order of each point should be
maintained as much as possible. Basic steps of OX are as follows:

(a) In the individual code strings, Px and Py, representing the spray painting order, the positions
after the two loci, i and j, are randomly selected as the intersection. That is, each locus between the
(i + 1)-th locus and the j-th locus is defined as an intersection area, and the contents of the intersection
region are respectively memorized to Wx and Wy.

(b) According to the mapping relation in the intersection area, find all Pxq − Pxq (p = i + 1, i + 2,
. . . , j) loci q in the individual Px and set them as vacancies. Find all Pxq − Pxq (p = i + 1, i + 2, . . . , j)
loci, r, in the individual, Py, and set them as vacancies.

(c) The individuals, Px, Py, are left-shifted circularly until the first vacancy in the code string is
moved to the left end of the intersection area. Then, all the vacancies are concentrated in the intersection
area, and the original gene values in the intersection area are sequentially moved backward.

(d) Exchange the content in Wx and Wy and put them into the intersection area of individual Px,
Py. The result is a new spray painting order.

(4) Mutation operation: Pi is subjected to inversion mutation to generate a new individual.
A basic variation is applied to Psi, where one or more loci are randomly selected for individual code
and the gene values of these loci are inverted.

Thus, the genetic algorithm of the TTOI problem is shown in Figure 6.

Figure 6. Flow chart of the GA (Genetic algorithm) of the TTOI (tool trajectory optimal
integration) problem.
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Taking 3D entities as spray objects, simulation experiments were carried out using genetic
algorithm programming to verify the effectiveness of the TTOI problem. According to the segmentation
method of the 3D entity, a 3D entity is divided into seven patches; that is, the individual code, Pi and
Psi, are seven bits in the genetic algorithm. The parameters of the algorithm are as follows: Population
size, Psize = 100; crossover probability, xrate = 0.20; mutation probability, mrate = 0.05; and the maximum
number of evolutionary generation, T = 100. The corresponding evolutionary processes of different
solutions are shown in Figure 7. As can be seen from the figure, the value of the objective function
of the optimal individual decreases monotonously with the evolution process and eventually tends
to be constant. After about 70 generations of evolution, the average fitness remains stable and the
algorithm converges.

Figure 7. The simulation result of solving the TTOI problem with GA.

5.3. Solving the TTOI Problem with the Ant Colony Algorithm

Ant colony optimization (ACO) is a probabilistic intelligent algorithm for finding the optimal
path. It originated from the behavior of ants to find the path in the process of searching for food.
It has strong anti-interference ability, strong compatibility, and other characteristics. The algorithm
initializes the following individual information: Not visited vertices (NVV), not visited edges (NVE),
visited edges (VE), and tour length (TL). Through the memory function of the population, individual
information is constantly updated and adjusted. Taking the connection graph, G, shown in Figure 5 as
an example, if the algorithm starts when the ant is at the vertex, 1, the initialization information is:

NVV [1] = {1,2,3,4,5,6,7,8,9,10}.
VV [1] = {}.

NVE [1] = {(1,2),(3,4),(5,6),(7,8),(9,10)}
VE [1] = {}.
TL [1] = 0.0

After time, Δt, the pheromone on trajectory (i, j) i adjusted as follows:

τij(t + Δt) = ρτij(t) + Δτij (20)

where ρ represents the volatilization rate of pheromone, τij(t) represents the accumulation amount of
pheromone on the track (i, j) at time t, Δτij represents the increment of the pheromone on the trajectory
(i, j) after the time, Δt, which can be calculated as follows:
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Δτij =
m

∑
k=1

Δτk
ij (21)

Δτk
ij denotes the pheromone on the trajectory (i, j) during the searching process of the k-th ant,

the expression of which is:

Δτk
ij =

{
Q

TL[k] , ant k pass path (i, j)
0, else

(22)

Among which, Q is a constant. The pheromones on each trajectory during initialization are:
Δτij = 0. At the time, t, the transition probability of an ant, k, from vertex x to other feasible vertices is:

pk
ij =

⎧⎪⎨⎪⎩
(τij(t))

α(ηij(t))
β

∑
s∈alowedk

(τis(t))
α(ηis(t))

β , j ∈ alowedk

0, otherwise
(23)

where ηij denotes the visibility on track (i, j), which reflects the degree of heuristic from vertex i to
vertex j. Here, let ηij = 1/dij, dij is the distance from vertex i to vertex j. The parameters, α and β,
denote the influence weights of τij(t) and ηij(t) on the whole transition probability. alowedk denotes
the feasible neighborhood of the ant k at vertex i (end of the edge in the list NVE). Thus, the ant colony
algorithm of the TTOI problem is shown in Figure 8.

Figure 8. Flow chart of the ACO of the TTOI problem.
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In the following, the validity of using ACO to solve the TTOI problem is verified by simulation
experiments. Assuming that a 3D entity workpiece is divided into five patches, the number of edges in
the connected graph, G, is five and the number of vertices is m = 10. The parameters of the algorithm
are chosen as follows: α = 1, β = 5, ρ = 0.5, Q = 100 and the maximum number of cycles is Nmax = 100.
Figure 9 shows the evolution of the optimal solution obtained from the algorithm. It can be seen from
the figure that the length of the spray painting trajectory decreases monotonically with the evolutionary
process. After about 70 generations of evolution, the length of the trajectory no longer changes and the
algorithm converges.

Figure 9. Simulation result of the ACO algorithm.

5.4. Solving the TTOI Problem with Particle Swarm Optimization

Particle swarm optimization (PSO) is easy to implement and there is no need to adjust a lot of
parameters compared with other optimization algorithms. Also, it does not need gradient information,
which is an effective tool to solve the optimal combination [17–19]. In the algorithm, each individual
is a particle, and each particle represents a potential solution. Assuming that zi = (zi1, zi2, ..., ziD) is
the D-dimensional position vector of the i-th particle, the current fitness value of zi can be calculated
according to the fitness function so that the position of the particle can be measured. The process of
calculating the minimum length of the spray path length can be selected as the fitness function in the
TTOI problem. vi = (vi1, vi2, ..., viD) is the flying speed of particle i; that is, the distance of particle
movement. pi = (pi1, pi2, ..., piD) is the optimal position of the particle to date. pg =

(
pg1, pg2, ..., pgD

)
is the optimal position of the particle swarm to date. In each iteration, the velocity and position of the
particles can be updated according to:

vk+1
id = vk

id + c1r1(pid − zk
id) + c2r2(pgd − zk

id) (24)

zk+1
id = zk

id + vk+1
id (25)

where i = 1, 2, . . . , m, d = 1, 2 . . . D, r1 and r2 are random numbers between [0, 1], and c1 and c2 are
learning factors. Thus, the particle swarm algorithm of the TTOI problem is shown in the Figure 10.

Assuming that the 3D entity artifact is divided into five patches, the number of edges in the
connection graph, G, shown in Figure 5 is five and the number of vertices is m = 10. To guarantee the
precision of the algorithm, the maximum number of cycles is Nmax = 100. To ensure that the particle
does not skip the optimal solution and can search the search space sufficiently, let ε = 1000. To ensure
accuracy and reduce the amount of calculation, take the number of particles as 20. The learning factors,
c1 and c2, can make the particles have self-summary and the ability to learn from the outstanding
individuals in the group, to be close to the best in their own history and the history within the group.
These two parameters have little effect on the convergence of the algorithm, but if we adjust these
two parameters properly, we can reach the convergence faster. After adjusting the values of c1 and
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c2 several times and analyzing the effect of c1 and c2 on the optimal fitness, we can conclude that
c1 = c2 = 2 is a better choice for the TTOI problem. Figure 11 shows the evolution of the optimal
solution obtained from the algorithm. It can be seen from the figure that the length of the spray
painting trajectory decreases monotonously with the evolutionary process, and finally tends to a
definite value. As the spray painting robot does not consider the obstacle avoidance during the
working process, the environment information is known and is relatively simple, so the particle swarm
algorithm converges faster. It can be seen from Figure 11 that after about 80 generations of evolution,
the length of the spray painting trajectory does not change and the algorithm converges.

Figure 10. Flow chart of the PSO of the TTOI problem.

Figure 11. Simulation result of the PSO algorithm.
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5.5. Comparison of Algorithms

In this paper, according to the built coating accumulation model: The finite range model,
then FPAG (flat patch adjacency graph) is used to treat spraying workpiece, and the workpiece
surface is divided into numerous patches. In each patch, the trajectory optimization algorithm in part
3 is used to obtain the trajectory. Finally, the genetic algorithm, ant colony algorithm, and particle
swarm optimization algorithm are respectively used to obtain the optimal path to connect all patches
to complete the spraying work. Assuming the ideal paint thickness of qd = 50 μm, the maximum
allowable deviation of paint thickness of qw = 10 μm, the bottom radius of the cone paint sprayed by
the gun is R = 60 mm. The cumulative rate of the paint is obtained from the spray test data on the
plate [12]:

f (r) =
1
15

(R2 − r2)μm/s (26)

After generating and optimizing the spray painting trajectories on the plate, the spray painting
rate (at uniform speed) and the width of the overlapping area of the paint for each of the two spray
strokes are obtained, which are v = 256.3 mm/s, d = 50.2 mm, respectively.

As shown in Figure 12, taking the experimental workpiece as an example, the workpiece can
be regarded as a 3D entity. In the experiment, suppose the vertical distance from the gun to the
workpiece surface is H, the bias algorithm can be used to obtain the spray path. Each spray parameter
setting in the optimal algorithm of the spray painting trajectory are as follows: The ideal paint
thickness is qd = 50 μm, the maximum allowable deviation of thickness is qw = ±10 μm, the spray
radius is R = 60 mm, the spray distance is H = 100 mm, and the velocity of the spray is v = 256.3 mm/s.
The workpiece surface is divided into five patches after the modeling work and the path at the
junction of the two patches is the PA-PA mode. GA, ACO, and PSO are used to carry out experiments
when solving the TTOI. The parameters of the GA algorithm are set as: Population size is Psize = 100,
crossover probability is xrate = 0.20, mutation probability is mrate = 0.05, and the maximum number of
evolutionary generation is T = 100. The parameters of the ACO algorithm are set as: The number of
ants is m = 10, parameter α = 1, parameter β = 5, the volatilization rate of the pheromone is ρ = 0.5,
constant Q = 100, and the maximum number of iterations is Nmax = 100. The parameters of the PSO
algorithm are set as: The maximum speed threshold is ε = 1000, the number of particles is 20, learning
factors are c1 = c2 = 2, and the maximum number of iterations is Nmax = 100.

Figure 12. The experimental workpiece.

The self-developed offline programming system of the spray painting robot is used for the spray
test [20,21]. The part of the optimized trajectories of different patches on the workpiece surface are
shown in Figure 13. The paint thicknesses of 400 discrete points are measured by the paint thickness
gauge after the spray painting operation. The paint thickness at the sample point after spray painting
in the optimized trajectory is shown in Figure 14, among which the maximum paint thickness is
qmax = 55.6 μm, and the minimum paint thickness is qmin = 45.5 μm. It can be seen that all the paint
thicknesses at the sampling point are within the maximum allowable deviation of the paint thickness
qw, which is in line with the requirements of the spray quality.
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Figure 13. (a) Optimized trajectory at the side of the patch; (b) optimized trajectory at the top of
the patch.

Figure 14. The paint thickness at the sampling points.

From the point of view of spray painting efficiency, the compared results of GA, ACO, PSO,
and random combination are shown in Table 1. It can be seen from the results that the total length
of the spray trajectory using the PSO algorithm is the shortest, the spray painting time is the least,
and the execution time of the system operation is the longest, which is within the allowable range in
the practical application. For the workpiece, the spray painting time was reduced by 23% compared to
a random combination. The total trajectories of GA and ACO are shorter than those of the random
combination, and the spray painting time are reduced by 16% and 20%, respectively. It should be
noted that the workpiece used here is only divided into five patches. For the workpiece, which is more
complex and has more patches, the advantages of using the PSO algorithm in saving painting time will
be more obvious, but the execution time of the offline programming system will be longer. Therefore,
if the real-time performance of the system operations can meet the practical application requirements,
the PSO algorithm will be the best choice. Otherwise, the GA algorithm or ACO algorithm can be
taken into consideration.

Table 1. The compared results of different algorithms.

GA ACO PSO Random Combination

Total length of Spray Path (m) 28.4 27.6 26.8 29.8
Spray painting Time of Robot (s) 94 89 86 112
Execution Time of Operation (s) 0.23 0.35 0.52 0.10

5.6. Spray Painting Experiment

As shown in Figures 15–18, taking the automotive body of a brand is as the paint objective.
The thickness of the coating on each sampling point is shown in Figure 19. Each spray parameter
settings in the optimal algorithm of the spray painting trajectory are as follows: The ideal paint
thickness is qd = 50 μm, the maximum allowable deviation of the thickness is qw = ±10 μm, the spray
radius is R = 60 mm, the spray distance is H = 80 mm, and the velocity of the spray is v = 389 mm/s.
The left side of the car surface is divided into 15 patches and the trajectory of each patch is in a different
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color. GA, ACO, and PSO are used to carry out experiments when solving the TTOI. The parameters
of the GA algorithm are set as: Population size is Psize = 100, crossover probability is xrate = 0.20,
mutation probability is mrate = 0.05, and the maximum number of evolutionary generation is T = 200.
The parameters of the ACO algorithm are set as: The number of ants is m = 10, parameter α = 1,
parameter β = 5, the volatilization rate of pheromone is ρ = 0.5, constant Q = 100, and the maximum
number of iterations is Nmax = 200. The parameters of the PSO algorithm are set as: The maximum
speed threshold is ε = 1000, the number of particles is 20, learning factors c1 = c2 = 2, and the maximum
number of iterations is Nmax = 200.

Figure 15. An automobile paint line composed by several spray-painting robots.

Figure 16. Spray painting trajectory on the roof part of the automobile.

Figure 17. Spray painting trajectory on the left part and the left rear part of the automobile.
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Figure 18. Spray painting trajectory on the right part and the right rear part of the automobile.

Figure 19. The paint thickness at the sampling points on the automobile body.

From the point of view of spray painting efficiency, the compared results of the GA, ACO, PSO,
and random combination are shown in Table 2. It can be seen from the results that the total length
of the spray trajectory using the PSO algorithm is the shortest, the spray painting time is the least,
and the execution time of the system operation is the longest, which is within the allowable range in
the practical application.

Table 2. The compared results of different algorithms.

GA ACO PSO

Total length of Spray Path (m) 124.2 116.9 103.6
Spray painting Time of Robot (s) 282 270 253
Execution Time of Operation (s) 0.9 1.1 1.5
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6. Conclusions

In this paper, the spatial trajectory optimization method of a spray painting robot for 3D entity
objects was proposed. Firstly, the finite range model of the paint deposition rate was established,
and the 3D entity was sliced by the surface modeling method according to FPAG. Then, after planning
the spray path on each patch, the variance of the paint thickness of the discrete point and the ideal paint
thickness was taken as the objective function and the trajectory on each patch was optimized. The path
at the junction of two patches was the PA-PA (parallel-parallel) mode. The improved GA algorithm,
ACO algorithm, and PSO algorithm were used to solve the TTOI problem. The practicability of the
algorithms was verified by simulation experiments. Finally, spraying experiments were conducted
on the off-line programming experimental platform of the spraying robot, and the results of the
three algorithms were studied. The results of the automobile body spraying experiments showed
that the proposed trajectory optimization of the 3D entity spraying robot can completely satisfy
the requirements of uniformity of the spraying thickness. More experimental data please see the
Supplementary Materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9292/8/1/74/s1.
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Abstract: Orientation estimation is a crucial part of robotics tasks such as motion control, autonomous
navigation, and 3D mapping. In this paper, we propose a robust visual-based method to estimate
robots’ drift-free orientation with RGB-D cameras. First, we detect and track hybrid features (i.e.,
plane, line, and point) from color and depth images, which provides reliable constraints even in
uncharacteristic environments with low texture or no consistent lines. Then, we construct a cost
function based on these features and, by minimizing this function, we obtain the accurate rotation
matrix of each captured frame with respect to its reference keyframe. Furthermore, we present a
vanishing direction-estimation method to extract the Manhattan World (MW) axes; by aligning the
current MW axes with the global MW axes, we refine the aforementioned rotation matrix of each
keyframe and achieve drift-free orientation. Experiments on public RGB-D datasets demonstrate the
robustness and accuracy of the proposed algorithm for orientation estimation. In addition, we have
applied our proposed visual compass to pose estimation, and the evaluation on public sequences
shows improved accuracy.

Keywords: visual compass; orientation estimation; hybrid features; plane tracking; vanishing
direction; Manhattan World; RGB-D camera

1. Introduction

Robust orientation estimation is of great significance in robotics tasks such as motion control,
autonomous navigation, and 3D mapping. Orientation can be obtained by utilizing carried sensors like
the wheel encoder, inertial measurement unit (IMU) [1–4], or cameras [5–7]. Among these solutions,
the visual-based method [8–11] is effective, as cameras can conveniently capture informative images to
estimate orientation and position. In the past decades, many simultaneous localization and mapping
(SLAM) systems [12,13] and visual odometry (VO) methods [14,15] have been proposed. Payá et al. [5]
proposed a global description method based on Radon Transform to estimate robots’ position and
orientation with the equipped catadioptric vision sensor. These methods show good performance in
estimating orientation from captured images. However, local and global maps’ construction or loop
detection is needed in these approaches to reduce drift error.

For most indoor environments, there exist many parallel and orthogonal lines and planes (called
the Manhattan World (MW) [16]). These structural regularities are exploited in studies to estimate
drift-free rotation without previous complex techniques (map reconstruction and loop closure) [17–19].
Since 3D geometric structures can easily be calculated by using the camera that provides both depth
information and color image with 3 channels (red, green, and blue), called the RGB-D camera. The
RGB-D camera has become a popular alternative to monocular and stereo cameras for the purpose
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of rotation estimation, and estimation accuracy has been prominently improved by using the MW
assumption with a RGB-D camera [20–23]. However, a major disadvantage of these MW-based
methods is that the number of lines and planes used for tracking the MW axes must be no less than 2,
which is the minimal sampling for 3 degrees of freedom (DoF). In practice, robots often encounter harsh
environments without lines, and only one plane can be visible, resulting in failure in tracking MW axes
to estimate the camera orientation. To address these issues, we select some frames as keyframes and
exploit hybrid features (i.e., plane, line, and point) to compute the rotation matrix of each captured
frame with respect to its reference keyframe instead of directly aligning with the global MW axes.

In this paper, we propose a robust and accurate approach for orientation estimation using RGB-D
cameras. We detected and tracked the normal vectors of multiple planes from depth images, and we
detected and matched the line and point features from color images. Then, by utilizing these hybrid
features (i.e., plane, line, and point), we constructed a cost function to solve the rotation matrix of each
captured frame. Meanwhile, we selected keyframes to reduce drift error and avoid directly aligning
each frame with the global MW. Furthermore, we extracted the MW axes based on the normal vectors
of orthogonal planes and the vanishing directions of parallel lines, and by aligning the current MW
axes with the global MW axes, we refined the aforementioned rotation matrix of each keyframe and
achieved drift-free orientation. Experiments showed that our proposed method produces lower drift
error in a variety of indoor sequences compared to other state-of-the-art methods.

Our algorithm exploits hybrid features and adds a refinement step for keyframes, which can
provide robust and accurate rotation estimation, even in harsh environments, as well as general indoor
environments. The contributions of this work are as follows:

• We exploited the hybrid features (i.e., plane, line, and point), which provides reliable constraints
in solving the rotation matrix for the majority of indoor environments.

• We refined keyframes’ rotation matrix by aligning the current extracted MW axes with the global
MW axes, which achieves drift-free orientation estimation.

• We evaluated our proposed approach on the ICL-NUIM and TUM RGB-D datasets, which showed
robust and accurate performance.

2. Related Work

Pose estimation obtained by VO or V-SLAM systems has been extensively studied for the purpose
of meaningful applications, such as autonomous robots and augmented reality. Rotation estimation
is usually considered as a subproblem of pose estimation that consists of rotational and translation
components. It has been gradually recognized by researchers that the main source of VO drift is
inaccurate rotation estimation [19,20]. In the following discussion, we focus on rotation-estimation
methods that exploit structural regularities with RGB-D cameras. These methods utilize surface
normals, vanishing points (vanishing directions), or mixed constraints to compute camera orientation.

Surface-normal vectors were exploited to estimate camera orientation because their distribution
on the unit sphere (or called Gaussian sphere) is regular and more likely around plane-normal
vectors in the current environment, as shown in Figure 1. The work of Straub et al. [21] introduced
the Manhattan-Frame model in the surface-normal space and proposed a real-time maximum a
posteriori (MAP) inference algorithm to estimate drift-free orientation. Zhou et al. [23] developed
a mean-shift paradigm to extract and track planar modes in surface-normal vector distribution on
the unit sphere, and achieved drift-free behavior by registering the bundle of planar modes. In the
work of Kim et al. [24], orthogonal planar structures were exploited and tracked with an efficient
SO(3)-constrained mean-shift algorithm to estimate drift-free rotation. These surface-normal-based
methods can provide stable and accurate rotation estimation if the number of observed orthogonal
planes is not less than two.
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(a) RGB-D image pairs (b) 3D point cloud (c) Distribution of surface normals

Figure 1. Single RGB-D frame and distribution of surface normals corresponding to its 3D point
cloud. (a) Frame 85 in ’LivingRoom0’ sequence of ICL-NUIM dataset. (b) 3D point cloud obtained by
back-projecting the depth information and coloring with aligned RGB pixels. (c) Distribution of surface
normals on the unit sphere.

A vanishing point (VP) of a line is obtained by intersecting the image plane with a ray parallel to
the world line and passing through the camera center, and it depends only on the direction of a line [25].
Two parallel lines determine a vanishing direction (VD), and the Euclidean 3D transformation of a
VD is influenced only by rotation; the geometric relationships are shown in Figure 2, so VPs and VDs
have been widely used for estimating rotation. Bazin et al. [17] proposed a three-line random-sample
consensus (RANSAC) algorithm with the VP orthogonality constraint to estimate rotation. The work of
Elloumi et al. [26] proposed a real-time pipeline for estimating camera orientation based on vanishing
points for indoor navigation assistance on a smartphone. VP-based methods need a sufficient number
of lines for estimating rotation, and accuracy performance is greatly affected by line-segment noise.

Gaussian sphere

Center of projection

Great circles of the 
two line segments

Normal vectors of the 
great circles

Two parallel line segments 
detected in RGB image

Vanishing direction

3D direction vector 
for parallel lines

Figure 2. Three-dimensional geometric relationship between parallel lines and their vanishing direction.
Gaussian sphere is a unit sphere on the center of a camera projection. Two parallel lines are projected
onto the Gaussian sphere as two great circles, and vanishing direction is obtained by the cross project of
these two great circles’ normal vectors. Two parallel lines and their corresponding vanishing direction
are drawn with red.

Hybrid approaches use both surface normals obtained in depth image and vanishing directions
extracted in the RGB image to estimate rotation, which shows more robust performance. The method
proposed by Kim et al. [22] exploited both line and plane primitives to deal with degenerate cases
in surface-normal-based methods for stable and accurate zero-drift rotation estimation. In the
work of Kim et al. [27], only a single line and a single plane in RANSAC were used to estimate
camera orientation, and refinement is performed by minimizing the average orthogonal distance
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from the endpoints of the lines parallel to the MW axes once the initial rotation estimation is
found. Bazin et al. [17] introduced a related one-line RANSAC for situations where the horizon
plane is known.

3. Proposed Method

We propose a robust visual compass that exploits hybrid features (i.e., plane, line, and point) to
estimate camera orientation with the RGB and depth-image pairs. Our proposed method has two main
steps: (1) rotation matrix is estimated by tracking the hybrid features for each frame with respect to the
reference keyframe (tracking step); and (2) refine the keyframe’s initial rotation matrix by aligning with
the global MW axes to achieve drift-free orientation (refinement step). The overview of our proposed
method is shown in Figure 3.

New Frame

Depth Image

RGB Image

Surface Normal Extraction

Line&Point Extraction

Multiple Planes Tracking

Line&Point Matching

Last Frame

Reference KeyFrame

Hybrid Features Based
Rotation Estimaiton

Is  Keyframe?

no

yes

Plane Detection

Parallel Lines Cluster

Current MW Extraction

Orientation Update

Tracking Step

Refinement Step

Figure 3. Overview of our visual compass. We estimate camera rotation by tracking the plane, line,
and point features. We refine the keyframe orientation by aligning the current Manhattan World (MW)
axes with the global MW axes. Global MW axes is extracted from the first captured RGB-D frame.

3.1. Rotation Estimation with Hybrid Features

We simultaneously tracked multiple planes, lines, and points in the current environment, and we
utilized tracked hybrid features to construct a cost function for estimating the current rotation matrix
relative to its reference keyframe. This can provide camera rotation even in uncharacteristic scenes
where there are no rich texture or no consistent visible lines.

3.1.1. Multiple-Plane Detection and Tracking

We detected multiple planes from the depth image with a fast plane extraction algorithm [28].
The algorithm first constructs an initial graph that uniformly divides the depth image’s point cloud
into a set of nodes with size H × W in the image space. It then performs agglomerative hierarchical
clustering on this graph to merge nodes belonging to the same plane. It final refines the extracted
planes using pixel-wise region growing. With this approach, we obtain planes Pi : (ni, di), i = 1, ..., m,
where ni is the unit normal vector of the i-th plane, and di is the distance to the origin of the camera
co-ordinate system for the current frame.

We tracked the normal vector of each detected plane with a mean shift algorithm [23] that operates
based on the density distribution of initial nodes’ normals on the Gaussian sphere, as shown in Figure 4.
We calculated the normal vector of each initial node by the least-square fitting method, and the depth
image was preprocessed by a box filter to obtain the stable vectors. We used the previous frame’s
tracked (detected) normal vectors as an initial value, and then performed the mean shift algorithm
in the tangent plane of the Gaussian sphere to obtain the tracked results. It should be noted that
the parallel planes have the same plane normal vector; we class them as the same plane cluster for
rotation estimation.
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If we only have plane primitives to estimate rotation, rotation matrix R with three degrees of
freedom can be computed from no less than two such tracked norm vectors that are not parallel
because each normal vector represents two independent constraints on R.

R = argmin ∑
i=1,...,m

∥∥∥R · n
re f
i − nk

i

∥∥∥2

2
(1)

where n
re f
i represents the i-th detected plane normal vector in the reference keyframe, and nk

i represents
the tracked result of the i-th plane in frame k.

(a) Depth image (b) Tracked normal vectors (c) Corresponding plane primitives

Figure 4. Result of tracking planes: (a) Depth image of Frame 741 in the ‘LivingRoom2’ sequence of
the ICL-NUIM dataset. (b) Tracked normal vectors from the Gaussian sphere; black dots represent
the normals of initial nodes. (c) Plane primitives in current frame. Tacked normal vectors and their
corresponding planes in image domain are represented with the same color.

3.1.2. Line and Point Detection and Matching

We used a linear-time Line Segment Detector (LSD) [29] to extract 2D line segments on the
color image and obtain 2D line segments set l = {li, i = 1, 2, ..., n}, where li is the i-th line segment:
y = kix + bi, with starting point usi = (usi, vsi) and ending point uei = (uei, vei). Pixels belonging to
the line segment li are: 	̃ = {u|u ∈ li ∧ u ∈ Ω}, Ω is the image domain. Then, we reconstructed their
corresponding 3D points set: Pl = {p|p = π−1(u, d(u)), p ∈ R3 ∧ u ∈ 	̃}, where d(u) represents the
corresponding depth value of pixel u in the color domain, and π−1(u, d(u)) = d(u)( u−cx

fx
, v−cy

fy
, 1)T is

the inverse projection function for a camera model, with fx, fy being the focal lengths on the x axis and
y axis, and (cx, cy)T is the camera’s centre co-ordinates. Finally, the RANSAC method is used to fit
3D lines LLLi : (di, pi), where di represents the i-th line’s 3D direction, and pi represents a point in this
3D line.

We match the lines that were respectively extracted from the current frame and the reference
keyframe based on the Line Band Descriptor (LBD) [30], and two pairs of matching lines that are not
parallel are needed to estimate the rotation matrix in case that there are only line primitives obtained
in the current environment.

R = argmin ∑
i=1...n

∥∥∥R · d
re f
i − dk

i

∥∥∥2

2
(2)

where d
re f
i represents the i-th detected 3D line direction in the reference keyframe, and dk

i represents
the matching line direction in frame k.

In addition to the plane and line features, we extracted and matched the oriented fast and rotated
brief (ORB) features for point tracking, as these features are extremely fast to compute and match, and
they present good invariance to camera autogain, autoexposure, and illumination changes. We used
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the epipolar constraint method to optimize the initial matching pairs by ORB descriptors; the optimized
results can provide reliable constraints to estimate the camera pose.

R = argmin ∑
i...N

∥∥∥(R · π−1(u
re f
i , d(ure f

i )) + t)− π−1(uk
i , d(uk

i ))
∥∥∥2

2
(3)

where u
re f
i represents the 2D position of i-th detected ORB point feature in the reference keyframe

and uk
i represents the 2D position of the matching point in frame k. It should be noted that translation

component t could be obtained by solving Equation (3), but we did not consider it, as our visual
compass mainly focused on camera orientation.

3.1.3. Robust Rotation Estimation

We jointly utilized the tracked planes, lines, and points in the current environment to estimate the
rotation matrix with respect to the reference keyframe. Rotation matrix R can be computed by solving:

R = argmin( ∑
i=1...m

λP
i

∥∥∥R · n
re f
i − nk

i

∥∥∥2

2
+ ∑

i=1...n
λL

i

∥∥∥R · d
re f
i − dk

i

∥∥∥2

2
+ ∑

i=1...N

∥∥∥(R · Pre f
i + t)− Pk

i

∥∥∥2

2
) (4)

where λP
i represents the number of pixels contained in the i-th tracked plane, and λL

i represents

the number of pixels contained in the i-th tracked line, 3D points Pre f
i = π−1(u

re f
i , d(ure f

i )), and
Pk

i = π−1(uk
i , d(uk

i )).
Cost function Equation (4) contains three parts, corresponding to plane, line, and point constraints.

A stable and accurate rotation matrix can be solved by minimizing Equation (4) with line and plane
constraints jointly in the texture-less environment that few points tracked, and the point constraints
ensure that the rotation estimation is reliable in the scenes that no consistent lines or only one plane to
be visible.

Keyframe Selection: By the tracking step, we constantly know the number of the tracked planes,
lines and points for each frame. If there is only one tracked plane with the condition that the number of
normal vectors on the Gaussian sphere around this tracked normal vector is too low, and the number
of tracked points is less than a threshold, we reuse the fast plane extraction method and Line Segment
Detector (LSD) method to detect planes and lines in the current frame. If the number of redetected
orthogonal planes and lines is larger than 2, this frame is selected as a keyframe and performs the
following refinement step.

3.2. Drift-Free Orientation Estimation

The previous tracking step estimates the rotation matrix between the current frame and its
reference keyframe, and it is obvious that the accuracy of the reference keyframe’s orientation directly
affects the accuracy of the current frame’s rotation matrix. To reduce drift error, we sought global MW
axes in the first frame and refined each keyframe’s orientation by aligning the current extracted MW
axes with the global MW axes to achieve drift-free rotation in MW scenes. We sought current and
global MW axes based on the plane normal vectors, and the vanishing directions of the parallel lines.
Plane normal vectors can be directly obtained by the previous fast plane extraction method, and we
propose a novel vanishing direction extraction method as follows.

3.2.1. Vanishing Direction Extraction

To extract accurate VDs, we need to cluster lines that are parallel in the real world. We used
the simplified Expectation–Maximization (EM) clustering method to group image lines and compute
their corresponding 3D direction vectors. The original EM algorithm iterates the expectation and the
maximization steps. In our simplified algorithm, we skip the expectation phase and roughly cluster
the lines based on the K-means method [31], with the Euclidean distance of all extracted lines’ 3D
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directions that are represented as 3D points. In the maximization phase, direction vectors are estimated
by maximizing the objective function:

dv
k = argmax∏

i
p(dv

k |l(k)i ) (5)

where l
(k)
i represents the i-th 2D line segment in the k-th initial classification, dv

k represents the VD of

the k-th initial classification to be optimized, and the p(dv
k |l(k)i ) represents the posterior likelihood of

the VD.
Using the Bayes formula, the posterior likelihood of the VD is expressed as:

p(dv
k |l(k)i ) =

p(l(k)i |dv
k)p(dv

k)

p(l(k)i )
(6)

where p(l(k)i |dv
k) represents the prior probability of the VD, and p(dv

k) models the potential knowledge
of the VD before we obtain the measurement. If we know nothing, p(dv

k) is defined as uniform
distribution with a constant value. Therefore, the VD can be obtained by maximizing prior probability:

dv
k = argmax∏

i
p(dv

k |l(k)i ) = argmax∑
i

log p(l(k)i |dv
k) (7)

Prior probability p(l(k)i |dv
k) is defined as:

p(l(k)i |dv
k) =

1√
2πσ2

k

(
−(l

(k)T

i Kdv
k)

2

2σ2
k

) (8)

where K represents the internal camera parameters. Equation (8) reflects the fact that the vanishing
direction is perpendicular to the plane normal of a great circle that is determined by an image line l

(k)
i

and the center of the projection of the camera, as shown in Figure 2.
Maximizing objective function Equation (7) is equivalent to solving a weighted least-squares

problem for each dv
k :

dv
k = argmin∑

i

length(l(k)i )

max(length(l(k)))
· (l(k)Ti Kdv

k)
2 (9)

where length(l(k)i ) represents the length of the i-th line, and max(length(l(k))) represents the maximum
line length in rough cluster k. Length coefficient is considered in the term because the longer the lines
are, the more reliable they are. By solving Equation (9), we can obtain the initial vanishing direction
and the residual for each line. To obtain a more accurate vanishing direction, we discarded lines with
a larger residual than a threshold and added additional optimization. Optimized parallel lines are
used to estimate the final vanishing directions. Figure 5 shows two results of parallel-line clustering
obtained by our proposed method.
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(a) (b)

Figure 5. Results of parallel-line clustering that are used to compute vanishing directions: (a) the 120-th
image in ‘Living Room 2’ sequence. (b) the 64-th image in ‘Office Room 1’ sequence. Lines with the
same color are parallel in the real world. The vanishing directions obtained by these parallel lines can
provide accurate and reliable constraints for MW extraction.

3.2.2. Global Manhattan World Seeking

The Manhattan World assumption is suitable in human-made indoor environments, and we
sought global MW axes based on plane normal vectors and the vanishing directions from the first
frame. MW axes can be expressed as columns of a 3D rotation matrix R = [r

g
1 r

g
2 r

g
3 ] ∈ SO(3).

We first set the the detected plane normal vectors and the vanishing directions from the parallel
lines as the candidate MW axes, which return a redundant set. In fact, most of the pixels in the frame
typically belong to the planes and lines that determine the dominant MW axes, and we sought the
plane that contained the largest pixels, and set its plane normal vector r1 as the first MW axis. The
remaining two axes r2 and r3 are determined based on the orthogonality constraint with the first axis
and the number of the pixels belonging to the detected planes or the parallel lines.

If we detect three mutually orthogonal planes in the first frame, we directly set their plane-normal
vectors as the MW axes. In the case that there are only two orthogonal planes, the third axis is
determined by the vanishing direction from the parallel lines that is orthogonal with the two previous
plane-normal vectors. Similarly, if only one plane is detected in the first frame, we sought the remaining
two MW axes by the vanishing directions from the orthogonal parallel lines.

Initial MW axes [r1 r2 r3], obtained by the previous step, are not strictly orthogonal. We maintained
orthogonality by reprojecting the MW axes onto the closest matrix on SO(3). Each axis is reweighted
by a factor λi that is determined by the number of pixels belong to this axis’ corresponding planes or
parallel lines. The final global MW axes are obtained by using singular=value decomposition (SVD):[

r
g
1 r

g
2 r

g
3

]
= UVT (10)

where [U, D, V] = SVD([λ1r1 λ2r2 λ3r3]) and factor λi describes how certain the observation of a
direction is.

3.2.3. Keyframe Orientation Refinement

For each keyframe, we refined its rotation matrix by aligning the current extracted MW axes with
the global MW axes. We first used the fast plane-extraction algorithm and our proposed spatial-line
direction estimation method to extract plane-normal vectors and vanishing directions in the current
keyframe. We then extracted the current MW axes (rc

i , i = 1, 2, 3) by using the same method that we
used to extract global MW axes. We finally determine the corresponding pairs based on the Euclidean
distance between vector rc

i and Rr
g
j , where R represents the rotation matrix obtained by tracking steps

for the current keyframe. Refined rotation matrix Rr is computed by solving:

Rr = argmin ∑
i=1,2,3

∥∥∥Rrr
g
i − rc

i

∥∥∥2

2
(11)
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where r
g
i and rc

i represent the i-th global MW axis and the current extracted corresponding MW axis.

4. Results

We evaluate our proposed approach on the synthetic dataset (ICL-NUIM [32]), real-world dataset
(TUM RGB-D [33]), and pose-estimation application, respectively. All experiments were run on a
desktop computer with an Intel Core i7, 16 GB memory, and Ubuntu 16.04 platform.

• The ICL-NUIM dataset is a collection of handheld RGB-D camera sequences within synthetically
generated environments. These sequences were captured in a living room and an office room with
perfect ground-truth poses to fully quantify the accuracy of a given visual odometry or SLAM
system. Depth and RGB noise models were used to alter the ground images to simulate realistic
sensor noise. There are sequences that are captured in the environment with low texture and only
one visible plane, which makes it hard to estimate rotation for whole images in this sequence.

• The TUM RGB-D dataset is a famous benchmark to evaluate the accuracy of a given visual
odometry or visual SLAM system. It contains various indoor sequences captured from the Kinect
RGB-D sensor. The sequences were recorded in real environments at a frame rate of 30 Hz with
a 640 × 480 resolution, and their ground-truth trajectories were obtained from a high-accuracy
motion-capture system. The TUM dataset is more challenging than the ICL dataset because it has
some blurred images and inaccurate alignment image pairs that make it difficult to estimate the
rotation matrix.

We compared our proposed approach with two state-of-the-art MW-based methods proposed
by Zhou et al. [23] and Kim et al. [27], namely, orthogonal planes based rotation estimation (OPRE)
and 1P1L. OPRE estimates absolute and drift-free rotation by exploiting orthogonal planes from depth
images. 1P1L estimates 3DoF drift-free rotational motion with only a single line and plane in the
Manhattan world. We used the average value of the absolute rotation error (ARE) in degrees as the
performance metric for the entire sequences:

ARE.average =
1
N

N

∑
i=1

arccos(
tr(RT

i · R
g
i )− 1

2
)× 57.3 (12)

where tr() denotes the trace of a matrix, Ri and R
g
i represent the estimated and ground rotation matrix

for the i-th frame, respectively, and N represents the number of frames in the tested sequence.

4.1. Evaluation on Synthetic Dataset

We first tested the performance of our proposed algorithm on the ICL-NUIM dataset, and
measured the average ARE in degrees for each sequence; evaluation results are shown in Table 1.
The smallest average ARE values are bolded, which reveals that our proposed method is more accurate
than the two other methods. For example, in ‘Office Room 0’, the average ARE of our proposed
method is 0.16 degrees, while that of 1P1L and OPRE is 0.37 and 0.18 degrees, respectively. Our
method outperformed the others in all cases in the ICL-NUIM benchmark. The main reason is that
we jointly exploited the plane, line, and point features to estimate camera orientation even when the
camera moves in scenes with no consistent lines, or where only one plane is visible; this is illustrated
in Figure 6. In ‘Living Room 0’, the OPRE method failed to estimate the rotation for the entire sequence
because only one plane can be visible in some frames; we marked the result as ‘×’ in Table 1. The last
column in Table 1 shows the number of frames in the current sequence.
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Figure 6. Results of camera orientation estimated by our proposed method on the ICL-NUIM dataset:
(a) ‘Living Room 0’ sequence. (b) ‘Office Room 0’ sequence. The estimated orientation of each frame
is shown in the bottom of the RGB image. Colored thick and thin lines respectively denote current
orientation and global MW axes (determined in the first frame); black lines represent ground orientation.

Table 1. Comparison of average absolute rotation error (ARE, degrees) on the ICL-NUIM dataset.

Sequence Proposed No Refinement 1P1L OPRE Frames

Living Room 0 0.22 0.53 0.31 × 1508
Living Room 1 0.25 0.55 0.38 0.97 965
Living Room 2 0.23 1.26 0.34 0.49 880
Living Room 3 0.35 1.69 0.35 1.34 1240

Office Room 0 0.16 1.32 0.37 0.18 1507
Office Room 1 0.17 0.44 0.37 0.32 965
Office Room 2 0.26 1.29 0.38 0.33 880
Office Room 3 0.14 0.43 0.38 0.21 1240

The MW assumption is sufficiently suitable for the ICL-NUIM benchmark and we used the
refinement step to achieve a drift-free rotation matrix. To clearly show the effect of the refinement
step, we measured the ARE values in degrees for all sequences by our method without a refinement
step, which corresponds to the ‘No Refinement’ column in Table 1. We recorded the values of absolute
rotation error (ARE) for each frame in the ‘Living Room 0’ sequence, and the final rotation drift
with and without refinement was 0.34 and 1.43 degrees, respectively, as shown in Figure 7. This
demonstrates that the refinement step can effectively reduce rotation drift.
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Figure 7. Performance evaluation for refinement on the ’Living Room 0’ sequence: (a–c) Roll, pitch,
and yaw angles estimated by the proposed method with and without a refinement step for each frame.
(d) Absolute rotation errors for our proposed methods with and without a refinement step. This shows
that the refinement step can effectively reduce rotation drift.

4.2. Evaluation on Real-World Data

We compared the performance of our proposed algorithm with other two methods on seven
real-world TUM RGB-D sequences that contained structural regularities. Comparison results are
shown in Table 2. We provide the average ARE for rotation estimation, and the smallest values are
indicated in bold. Our proposed method showed better performance in low-texture environments such
as ‘fr3_struc_notex’ and ‘fr3_cabinet’ because we used hybrid features to estimate orientation, as shown
in Figure 8. Our method can also provide a more accurate rotation matrix in an environment with
imperfect MW structure like ‘fr3_nostruc_tex’ and ‘fr3_nostruc_notex’, whereas OPRE fails because it
requires at least two orthogonal planes to estimate camera orientation.

Table 2. Comparison of average ARE (degrees) on TUM RGBD Dataset.

Sequence Proposed No Refinement 1P1L OPRE Frames

fr3_nostruc_notex 1.22 1.22 1.51 × 90
fr3_nostruc_tex 1.89 1.89 2.15 × 448
fr3_struc_notex 1.20 1.62 1.96 3.01 965

fr3_struc_tex 0.74 1.03 2.92 3.81 905
fr3_cabinet 1.48 2.78 2.48 2.42 926

fr3_large_cabinet 1.87 3.95 2.04 36.34 980
fr3_long_office 1.51 3.58 1.75 4.99 2486

The result of refinement performance on the ‘fr3_cabinet’ sequence is shown in Figure 9. Final
rotation drift with and without refinement was 1.30 and 1.62 degrees, respectively. It is clear that
our refinement step can effectively reduce drift error. The average ARE values computed by our
proposed algorithm with and without refinement step were the same in sequences ‘fr3_nostruc_tex’
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and ‘fr3_nostruc_notex’. The reason is that there were no perfect global MW axes extracted in the first
frame, and the refinement step was not implemented.
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Figure 8. Results of camera orientation estimated by our proposed method on the TUM RGB-D dataset:
(a) ‘fr3_cabinet’ sequence. (b) ‘fr3_struc_notex’ sequence. Estimated orientation of each frame is shown
in the bottom of the RGB image. Colored thick and thin lines respectively denote current orientation
and global MW axes (determined in the first frame); black lines represent ground orientation.
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Figure 9. Performance evaluation for refinement on the ‘fr3_cabinet’ sequence: (a–c) Roll, pitch, and
yaw angles estimated by our proposed method with and without a refinement step for each frame.
(d) Absolute rotation errors for the proposed methods with and with refinement step. This shows that
the refinement step can effectively reduce rotation drift.
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4.3. Application to Pose Estimation

To further verify the practicability of our proposed visual compass, we used it for pose-estimation
application and recorded the estimated trajectories. The three-dimensional pose has six degrees
of freedom (DoF) and it consists of 3-DoF rotation and 3-DoF translation. As our proposed visual
compass method can provide accurate rotation estimation, the key to performing pose localization is to
estimate the translation component. We first detected and tracked ORB feature points to obtain point
correspondences. Then, we recovered the 3-DoF translational motion of the images by minimizing:

t = argmin( ∑
i=1...N

∥∥∥(R f ixed · Pre f
i + t)− Pk

i

∥∥∥2

2
) (13)

where R f ixed represents the rotation matrix between the reference image and the current image, and it
is obtained by our proposed visual compass, Three-dimensional points Pre f

i and Pk
i are described in

Equation (4).
We tested pose estimation on four datasets, “Living Room 2”, “Office Room 3”, “fr3_struc_tex”,

and “fr3_nostruc_tex”. These datasets provide the ground-truth pose for each image; we measured
the root mean squared error (RMSE) of the absolute translational error (ATE) and compared it
with state-of-the-art approaches, namely, ORB_SLAM [12], dense visual odometry (DVO) [15], and
line-plane based visual odometry (LPVO) [22]. The comparison of ATE.RMSE is shown in Table 3; the
smallest error for each sequence is indicated in bold. Estimated trajectories are shown in Figure 10.
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Figure 10. Estimated trajectories with the proposed (red) and ground truth (black) on four sequences:
(a) Living Room2, (b) Office Room 3, (c) fr3_struc_tex, (d) fr3_nostruc_tex.
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Table 3. Comparison of ATE.RMSE (unit: m).

Sequence Proposed ORB-SLAM2 DVO LPVO

Living Room 2 0.025 0.028 0.375 0.034
Office Room 3 0.021 0.065 0.079 0.030
fr3_struc_tex 0.017 0.024 0.048 0.174

fr3_nostruc_tex 0.046 0.052 0.073 ×

5. Conclusions

We proposed a visual-based method to estimate robot orientation with RGB-D cameras.
We exploited hybrid features providing reliable constraints to construct cost function for solving
the initial rotation matrix. We presented a vanishing direction extraction method based on parallel
lines and combined it with detected plane normals to seek global and current Manhattan World
axes. We refined the orientation matrix of the selected keyframe with respect to the global MW
axes, and achieved drift-free orientation. The proposed algorithm was tested on both synthetic as
well as real-world publicly available RGB-D datasets, and we compared it with two state-of-the-art
methods for orientation estimation. The results demonstrated the accuracy and robustness of our
proposed method. Furthermore, we applied the proposed algorithm to pose estimation and recovered
the translational motion by giving absolute camera orientation; evaluation on the public sequences
showed improved accuracy. In summary, the proposed algorithm showed good performance in
Manhattan World scenes, and it has significant applications on mobile robotics. In the future, we
will exploit hybrid features to perform pose location and 3D mapping that can provide maps with a
geometric structure and more robust pose estimation in less-textured and -structured environments,
and we will try to optimize the refinement step for not only pure Manhattan Worlds but also more
general environments like Mixtures of Manhattan Worlds [34].
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Abstract: This paper proposes a novel bilateral control design based on an estimated reaction force
without a force sensor for a three-degree of freedom hydraulic servo system with master–slave
manipulators. The proposed method is based upon sliding mode control with sliding perturbation
observer (SMCSPO) using a bilateral control environment. The sliding perturbation observer (SPO)
estimates the reaction force at the end effector and second link without using any sensors. The sliding
mode control (SMC) is used as a bilateral controller for the robust position tracking and control of
the slave device. A bilateral control strategy in a hydraulic servo system provides robust position
and force tracking between master and slave. The difference between the reaction force of the slave
produced by the effect of the remote environment and the operating force applied to the master
by the operator is expressed in the target impedance model. The impedance model is applied to
the master and allows the operator to feel the reaction force from the environment. This research
experimentally verifies that the slave device can follow the trajectory of the master device using the
proposed bilateral control strategy based on the estimated reaction force. This technique will be
convenient for three or more degree of freedom (DOF) hydraulic servo systems used in dismantling
nuclear power plants. It is worthy to mention that a camera is used for visual feedback on the safety
of the environment and workspace.

Keywords: Hydraulic Servo System; SMCSPO; Bilateral Control; Estimated Reaction Force; Master–Slave
Configuration and Nuclear Power Plant

1. Introduction

This is an era for computer science and technology; thus, automation and remote operation
requires time. The automated/remote system must consider, in detail, the manual operation to come
up with an alternative solution that provides better control for the operator with instrumental feedback.
Several conditions need to be considered when designing and implementing remote activities. These
conditions include a clear workspace for designed equipment, the environmental conditions of the
area of operation, handling of different types of materials, tool setup and change out among others.
The crux of the story is to replace manual tools with a suitable remote system. A simple example is to
modify grip operation by utilizing the end effector and implementing remote alignment and pinning
methods and using self-standing bails. A successful remote design always inherits a defined workspace
for equipment with minimum mechanical limitations to accomplish a task. Remote technology is
a broader area that could be subdivided into different fields such as dismantling equipment, cutting
tools, segmenting, sampling and workspace to handle the designed equipment. This field has some
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state-of-the-art applications, e.g., dismantling of nuclear facilities which require more safety. Several
articles in past research [1–8] have been published to address this problem. The Maestro robot system
was developed in France to dismantle inactive nuclear reactors [9,10].

An alternative for such activities is tele-operation systems which have human control to ensure
safety. In tele-operated systems, human personnel set visual/instrumental feedback from the
manipulator to decide future tasks. The controller, in this case, acts according to the master–slave
configuration. Bilateral control architecture is at favorable positions for such targets, and most
research has presented two-channel architecture such as position–position (P-P), position–force (P-F),
force–force (F-F) and force–position (F-P). Several other authors in the past [11–14] have presented
bilateral controllers with more than a two-channel architecture.

Several researchers in the past have discussed the improvement in control architecture and the
performance of controllers [15,16]. Yana et al. [17] have addressed the finite-time control problem for
the bilateral tele-operated environment through resulting feedback. They proposed an observer to
estimate a velocity profile by ensuring semi-global stability depending upon the resulting velocity
error. A promising feature of this method is that it only utilizes position information which forces
the master–slave synchronization error to approach null value in a defined time. Dinh et al. [18] have
presented the idea of utilizing a joystick controller to be used for construction machinery control.
The authors proposed a controller that is comprised of a force-reflecting gain tuner and a couple of
adaptive controllers, namely, master and slave. They implemented a fuzzy logic technique to design
local adaptive controllers. Additionally, they utilized an efficient optimization algorithm that provides
a real feeling of interaction for an operator at a remote site. Ollin et al. [19] introduced the idea of
communications delayed under-actuated mechanical systems under master–slave tele-operated control.
They proposed a solution resulting in a particular compiling matrix that ensures the error dynamics
refrained in the linear and non-linear parts inherit the matching condition to be satisfied. Later, these
linear and non-linear parts are utilized to design discontinuous casual controllers to achieve bilateral
co-ordination in position and time. Rabah et al. [20] proposed the idea of using a two adaptive fuzzy
controller. The proposed algorithm not only adjusts membership function by the compensatory
fuzzy controller but also implements a compensatory learning algorithm for optimal solutions.
The first controller is designed under a compensatory neural–fuzzy interface whereas the other
is designed under a compensatory adaptive neural–fuzzy interface system. The force–position scheme
is utilized by incorporating a two-channel bilateral tele-operated architecture. Finally, the stability and
transparency analysis is carried out under passivity framework [20]. Another design of a bilateral
controller is presented in Umar et al. [21]. The design is based upon the state of convergence and
was implemented for tele-operated systems. The authors applied Takagi–Sugeno’s (TS) fuzzy model
approach for approximation. The authors mentioned that SC-based bilateral controllers have several
advantages in modeling and control design. The most advantageous feature is the ease to implement.
The master–slave system in the modeling step can be performed by an n-th order differential equation.
Similarly, its control design step can easily identify the gains required for the desired closed loop
dynamics for a particular system.

Another novel control strategy is presented in [22], where the controller is not placed with the
system under experiment. The authors analyzed the stability and transparency of the proposed
tele-operators. They implemented PD-like controllers for fixed-time delays and P-like controllers for
time-varying delays. Another interesting study by Kamran et al. [23], which utilizes a robust controller
for master control and an adaptive back-stepping controller is designed for the slave controller.
The authors analyzed the scenarios of input-delay uncertainties in the parameters and multi-objective
optimization in implementing the robust master control. KD et al. [24] presented the estimating
methodology of reaction force for assembly work with a robot manipulator consisting of a three-link
dual-arm. They utilized sliding mode control with a sliding perturbation observer. In another study
by Tayfun et al. [25], the authors presented bilateral control of a tele-operated system consisting of one
master and two-slave systems. The master system was a 6DOF haptic robot while one of the slave
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systems was a virtual 6DOF robot and another real industrial robot. A visual user interface was created
to show the position and velocity profile for tele-operated control. They implemented Lyapunov
stability methodology to analyze stability and position localization. Shafiqul et al. [26] investigated
a bilateral control tele-operated scheme for a robotic system with unsymmetrical time-varying delays.
The authors implemented an adaptive algorithm to determine relating factors between human and
master manipulator and between slave and remote setup. Later, delayed estimated factors are fed back
to the master and slave systems. The authors estimated and analyzed the impedance properties of
the interaction between the human-based system and the remote environment. Further application of
bilateral control are electro-pneumatic actuators and mobile robot [27,28].

Xiao et al. [29] presented the model mediated tele-operated approach. This proposed scheme has
been designed to achieve stability and transparency while considering the random communication
delays. Da Sun et al. [30], proposed a novel approach for tele-operated systems utilizing an extended
prescribed performance control and a wave-based time domain passivity scheme. This scheme ensures
synchronization of velocity, force, and localization. The stability and performance of the system are
analyzed by the standard Lyapunov scheme. This methodology also ensures high tracking results
of localization, velocity, and force. Similarly Azimifar et al. [31] presented a strategy to estimate
the external force acting on master and slave systems. This scheme is advantageous with low-cost
features and ease of implementation as the force sensors requirement is eliminated. They proposed
a novel control for a nonlinear bilateral tele-operated system with time delays that estimates the
force accordingly. The stability of the system is analyzed through the famous Lyapunov stability
methodology. The tele-operation of remote system falls under the umbrella of bilateral control.
It includes a master robot system that is operated by human operators and controlled through electric
actuators whereas a slave robot system that is placed or installed at a remote location and is controlled
through hydraulic actuators. Thus, to achieve an efficient bilateral control, three key features are
necessary. The first is the coordinated control that is responsible for decoupling of position and force
controllers. Second, is the linearization of hydraulic actuators. Third, is the agreement of system order
of electric and hydraulic actuators by using a pseudo differentiator. Sho et al. [32] proposed a novel
method with an efficient and accurate tracking performance and is the most stable in a contact control
scenario among all three controllers.

Minou et al. [33] proposed a hybrid control algorithm for trajectory tracking with constant
force. A non-linear model is implemented for the position controller to achieve predictive tracking,
satisfying the input constraints. The authors analyzed the performance of the proposed controller
and concluded that position tracking has a proof-mean-square-error (RMSE) of 0.89 mm whereas
the catheter regulated the force with RMSE of 4.9 mN. Yaoyao et al. [34] presented a novel idea of
trajectory control of an underwater vehicle-manipulator system by implementing a discrete time
delay estimating methodology. Xia et al. [35] proposed a non-linear adaptive control algorithm
for a non-linear manipulator system with uncertainties in its dynamics. Their algorithm guarantees
accurate and efficient tracking. The proposed algorithm not only estimates the manipulator’s dynamics
but also determines the best fit dead-zone parameter in adaptation law. The estimated values are later
used in proposed control law. The authors claimed and showed results suggesting that tracking is
accurate and efficient even when both dynamics and dead-zone uncertainties appear at the same time.
There are several studies in the literature which have presented the idea of utilizing force sensors to
detect the outer forces in conventional bilateral control schemes, but such addition of force sensors has
certain problems. A simple explanation to it is that a manipulator system with a force sensor acts as
a two-mass resonant system. Thus, it is a bottleneck in realizing high-frequency force sensing [36,37].
The master and slave configuration of a manipulator system is highly applicable and suitable for
nuclear power plants, because of restricted human access. In addition to this, it also requires exact
control and dismantling/handling of a material/object with excessive load. Hydraulic systems are
best suitable for such an application as they offer high power actuators.
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In keeping a view of the above studies, in this study, we implemented the sliding mode control
with sliding perturbation observer (SMCSPO). It is an efficient and robust control algorithm that not
only estimates the reaction force of master and slave but also determines the bilateral control of the
hydraulic servo system of a 3DOF master–slave robot. The reason for using a hydraulic servo system is
that its power-to-weight ratio is better than any other type of actuated robot at the expense of positional
accuracy. In this study, the sliding perturbation observer (SPO) is implemented to estimate the reaction
force of the slave without using any sensor. The bilateral control scheme is implemented for efficient
and accurate position and force tracking b/w master–slave configuration with visual feedback. In the
bilateral controller, the difference of reaction force of the slave manipulator and operating force applied
to the master manipulator is designed to target the impedance model. The reaction force of the slave is
resultant of effects in the remote environment while operator force is applied by the operator (Human)
at the master manipulator. The experimental results of studies endorse that the slave efficiently follows
the position trajectory of the master system.

The manuscript is organized as follows: Section 2 of this paper presents the mechanical structure
and dynamics of a 3DOF hydraulic servo system that could be utilized in the dismantling of nuclear
power plants. Section 3 describes the sliding mode control with sliding perturbation observer
(SMCSPO), and the reaction force estimation method is also presented in the same section. Section 4 is
reserved for the description of mathematical details regarding bilateral control of master–slave 3DOF
hydraulic servo system, and Section 5 presents its experimental setup. Section 6 presents the results of
the performance of bilateral control through different experiments, and finally, Section 7 entails the
concluding remarks to this study.

2. Mechanical Design and Dynamics of Hydraulic Servo System

It is a well-known fact that hydraulic servo systems have a favorable position in applications
involving the machine tool industry. Some popular examples include handling hazardous material,
remote equipment, steel factories, mining of materials, the exploration of oil, and the testing of
automotive equipment, etc. A servo system is responsible, according to design, to control dynamical
properties, such as; force, pressure, acceleration, electrical properties, etc. The attractive features of
hydraulic servo systems include efficient response time, high torque and very few stroke characteristics.
The hydraulic system has several advantages, but most prominent are accurate tracking of localization
and acceleration, better stiffness features, null backlash, efficient response to sudden change, and less
wear rate, among others. The hydraulic system has a better position among robotic systems to
dismantle nuclear plants or hazardous plants. The hydraulic system, while used in nuclear plants,
could be divided into two major parts, the first consists of a couple of hydraulic cylinders which
formulate the vertical movement and the second consists of an AC servo motor responsible for
horizontal changes. Two cylinders with a hydraulic mechanism is provided in the first part as much
higher torque is required in the vertical direction. The mechanical design of shape and different sizes of
a hydraulic servo system utilized in nuclear power plants is shown in Figures 1 and 2. The modelling
of hydraulic actuator has been presented in Appendix A.
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Figure 1. Structure of the 3DOF hydraulic servo system.

 
Figure 2. The 3DOF hydraulic servo system.

The schematic design of an end effector is displayed in Figure 3 and the schematic diagram of a
hydraulic servo system’s base and secondary link is shown in Figure 4.

Figure 3. Schematic diagram of end effector.

119



Electronics 2018, 7, 256

Figure 4. Schematic diagram of base and second link.

It is a well-known fact that a robotic system dynamic is a cross-relation between different forces,
acceleration properties, and localization. Thus, the dynamical equation of a robotic manipulator in free
space could be represented mathematically as,

T = A(θ)
..
θ + B

(
θ,

.
θ
)
+ g(θ) (1)

where θ, A(θ), B
(

θ,
.
θ
)

, g(θ) and T are the vectors representing joints of angles, the matrix representing
mass or inertia, the centrifugal/Coriolis torque, the gravity torque in joint space, and the vector of
joint torques, respectively. Similarly, the equation repressing dynamical properties of different links in
a hydraulic servo system could be represented as

(Js1 + ΔJs1)
..
θ1 + (Ds1 + ΔDs1 + β1)

.
θ1 + 0.5Ms1L1g sin θ1 + τe1 = T1 (2)

(Js2 + ΔJs2)
..
θ2 + (Ds2 + ΔDs2)

.
θ2 + Ms2L2g cos θ2 + β2

.
x + τe2 + λ = T2 (3)

(Js3 + ΔJs3)
..
θ3 + (Ds3 + ΔDs3)

.
θ3 + 0.5Ms3L3g sin θ3 + τe3 = T3 (4)

where Js1, Js2 and Js3 represent the inertia of the base, second link, and end effector respectively,
similarly Ds1, Ds2 and Ds3 represents the damping characteristics of the base, second link, and end
effector respectively. The uncertainty is represented by Δ, β1, and β2 shows the viscosity of each
cylinder in the first part. Ms1, Ms2 and Ms3 represent the masses of the base, second link and end
effector, L1 and L3 are lengths of base and end effector, L2 represents the length from joint to the
centre of mass (COM) of the second link. τe1, τe2 and τe3 represent the reaction torque generated by
contact with the environment and joints 1, 2 and 3 respectively, λ represents the dynamical properties
regarding the base,

.
θ1 is the velocity of the first cylinder and

.
x is the velocity of the second cylinder,

and T1, T2 and T3 represent joint torques of the base, second link and end effector respectively.

120



Electronics 2018, 7, 256

3. Sliding Mode Control with Sliding Perturbation Observer (SMCSPO)

3.1. Sliding Mode Control

Several previous studies have shown that the implementation of a sliding perturbation observer
(SPO) and a sliding mode control (SMC) at the same time provides certain attractive features which
include efficient performance against perturbation by utilizing partial state feedback. The combination
of these two with such attractive properties is known as sliding mode control with sliding perturbation
observer [37]. In our previous work [38], we only estimated the reaction force of the slave at the
end effector. In this study, three-link robotic manipulator actuators are controlled by implementing
SMC, and the reaction force is determined by applying SPO. A generic mathematical representation of
n-degrees of freedom system inheriting second order dynamics is as follow,

..
xj = f j(x) + Δ f j(x) +

n

∑
i=1

[(bji(x) + Δbji(x))ui] + dj(t), j = 1, . . . , n (5)

where x
Δ
= [X1 . . . Xn]

T represents the state vector with Xj
Δ
= [xj,

.
xj]

T , the non-linear driving force is
represented by f j(x) with uncertainties Δ f j(x), the elements of the control gain matrix is represented
by bji with corresponding uncertainties Δbji, the external disturbance and control input is represented
by dj and uj; respectively, and f j, bji are well known continuous functions of state in literature [39].
All of the uncertainties could be summed up, to represent perturbation as follow,

ψj(x, t) = Δ f j(x) +
n

∑
i=1

[Δbji(x)ui] + dj(t) (6)

The objective of control is to force state x to a desired state xd
Δ
= [X1d . . . Xnd]

T in the presence of
perturbation. The upper bound for perturbation is defined by a known continuous function of state
as follows

Γj(x, t) = Fj(x) +
n

Σ
∣∣Φji(x)ui

∣∣
i=1

+ Dj(t) >
∣∣Ψj(t)

∣∣ (7)

where Fj >
∣∣Δ f j

∣∣, Φji >
∣∣Δbji

∣∣ and Dj >
∣∣dj

∣∣ represent the expected upper bounds of the uncertainties.
Let us suppose f j(x), defined in Equation (5), except perturbation of Equation (6) is represented as

f j(x̂) +
n

∑
i=1

bji(x̂)ui = α3juj (8)

where α3j is an arbitrary positive number, and uj is the new control variable. The equations of SPO are
derived as [39].

.
x̂1j = x̂2j − k1jsat(x̃1j) (9)

.
x̂2j = α3uj − k2jsat(x̃1j) + Ψ̂j (10)

.
x̂3j = α2

3j
(
uj + α3j x̂2j − x̂3j

)
(11)

ψ̂j = α3j(α3 x̂2j − x̂3j) (12)

where k1j, k2j, α3j are positive numbers and x̃ = x̂ − x is the estimation error of the measurable state.
ψ̂j is defined as the estimated perturbation of the robot manipulator. The “˜” and “ˆ” represent the
error in estimation and quantity estimated in result of the estimation respectively.

sat(x̃1j) =

{
x̃1j/

∣∣x̃1j
∣∣, i f

∣∣x̃1j
∣∣ ≥ ε0j

x̃1j/ε0j, i f
∣∣x̃1j

∣∣ ≤ ε0j
(13)
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The anti-chatter properties are formulated by a saturation function defined by Slotine et al. [40]
where the boundary layer of SMC control is represented by ε0j. Finally, the error dynamics of SPO are
mathematically defined as [39],

.
x̃1j = x̃2j − k1jsat(x̃1j) (14)

.
x̃2j = −k2jsat(x̃1j) + Ψ̃j (15)

.
x̃3j = −α2

3j
(
α3j x̃2j − x̃3j

)
+

.
Ψ/α3j (16)

After the observer sliding mode begins, x̃2j dynamics become

.
x̃2j +

(
k2j/k1j

)
x̃2j = Ψ̃j (17)

The frequency domain relation between Ψ̃j and Ψj is derived as

Ψ̃j(p) =
p
[
p2 +

(
k1j/ε0j

)
p + k2j/ε0j

]
p3 +

(
k1j/ε0j

)
p2 +

(
k1j/ε0j

)
p + α2

3j
(
k2j/ε0j

) (−Ψj(p)
)

(18)

and this is equivalent to a high-pass filter. The sliding function is defined as

sj =
.
ej + c1jej (19)

where ej = x1j − x1dj is the actual position tracking error, c1j > 0. As the sliding surface is reached,
we define

.
sj = 0 and sliding control is defined as

.
sj = −Kjsat(sj) (20)

where robust gain is represented by Kj and is supposed to be positive. The control input uj is
mathematically defined as follows,

uj = B−1Col(
..
x1dj + f j(x) + c

.
ej)j − Kjsat(sj) (21)

Similarly, the estimated sliding function is represented mathematically as

ŝj =
.
êj + cj1 êj (22)

where, the estimation error of localizing tracking is êj = x̂1j − x1dj and jth degree of freedom motion

[x1dj
.
x1dj]

T and cj1 > 0. Similarly, the estimation error in sliding function is mathematically represented
by s̃j = ŝj − sj. The estimation error in sliding function can be calculated by using Equations (19) and
(22) as

s̃j =
.
x̃1j + cj1 x̃1j (23)

The new control input uj is designed such that it forces
.
ŝŝ < 0 outside of the prescribed manifold.

The desired ŝj-dynamics is defined as
.
ŝj = −Kjsat(ŝj) (24)

Thus
.
ŝj can be calculated as follows

.
ŝj = α3juj −

[
k2j/ε0j + cj1

(
k1j/ε0j

)− (
k1j/ε0j

)2
]

x̃1j

−(
k1j/ε0j

)
x̃2j − ..

x1jd + cj1

(
x̂2j − .

x1jd

)
+ ψ̂j

(25)
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The control law to apply Equation (23) with x̃2j = 0 is defined as

uj =
1

α3j
{−Kjsat(ŝj) + [

k2j
ε0j

+ cj1
k1j
ε0j

− (
k1j
ε0j
)

2
]x̃1j

+
..
x1jd − cj1(x̂2j − .

x1jd)− ψ̂j}
(26)

where uj represents the control input of SMCSPO. Thus, the resulting ŝj-dynamics including the effects
of x̃2j could be mathematically represented as

.
ŝj = −Kjsat(ŝj)−

(
k1j/ε0j

)
x̃2j (27)

To ensure the outer part of the manifold
∣∣ŝj
∣∣ ≤ ε0j satisfies the inequality

.
ŝŝ < 0, the robust control

gain must be constrained to the following inequality

Kj ≥ k2
1j/ε0j (28)

Finally, the actual sj-dynamics within the boundary layer of
∣∣ŝj
∣∣ ≤ ε0j can be mathematically

expressed as
.
sj +

Kj
ε0j

sj =
[ k2j

ε0j
−
( k1j

ε0j
− Kj

ε0j

)(
cj1 − k1j

ε0j

)]
x̃1j

−
(

cj1 +
Kj
ε0j

)
x̃2j − ψ̃j

(29)

The estimation errors in state estimation and perturbation are the driving force for sj-dynamics.
The target of the designed SMCSPO is to minimize mismatch b/w the actual and desired trajectory.
The sliding perturbation observer is responsible for reducing the estimation error x̃j in the observer
part. Therefore, the sliding mode control is designed for error êj reduction b/w desired and actual
values of the trajectory. Thus, implementation of SMC and SPO simultaneously guarantee the accurate
results of trajectory tracking with a reduction of error.

The mechanical hardware limitations restrict the design procedure as described in Jairo et al. [39].
The instant when

∣∣ŝj
∣∣ ≤ ε0j, the observer design and sj-dynamics, can be represented in mathematical

form as below,⎡⎢⎢⎢⎢⎣
.
x̃1j.
x̃2j.
x̃3j
.
sj

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−k1j/ε0j 1 0 0

− k2j
ε0j

α2
3j −α3j 0

0 α3
3j −α2

3j 0
k2j/ε0j −

(
c − k1j/ε0j

)2 −(
2c + α2

3j
)

α3j −c

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
x̃1j
x̃2j
x̃3j
sj

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0
0
1
0

⎤⎥⎥⎥⎦ .
ψj/α3j (30)

where a square matrix of order 4 in Equation (30) represents the state matrix. Further suppose,
λ represents the eigen values of state matrix A, then its characteristic equation det |λI − A| = 0, can be
expressed as, [

λ + cj1
][

λ3 +
(
k1j/ε0j

)
λ2 +

(
k2j/ε0j

)
λ + α2

3j
(
k2j/ε0j

)]
= 0 (31)

By implementing the pole-placement method, let us introduce a desired characteristic polynomial
p(λd) = (λ + λd)

4 which leads to a design solution

k1j/ε0j = 3λdk2j/k1j = λdα3j =
√

λd/3c = Kj/ε0j = λd (32)

It is obvious that a reduction in error and an increase in the accuracy of observations could be
achieved with a large value of gain λd. But Jairo et al. [41] has categorically shown the limitation of
breakpoints of sliding function dynamics encircled in a manifold. They showed that it could not go
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beyond 1/5τhw, where h is a positive number, and frequency is represented by w. Another study by
Slotine et al. [42] also showed the same results. Thus, the optimal gain value could be selected as

λd =
1

15τhw (33)

3.2. Reaction Force Estimation Based upon Sliding Perturbation Observer (SPO)

The algorithm using SPO could be utilized to set an estimate of perturbation that leads to the
determination of reaction force. The perturbation’s estimation includes two factors, the first disturbance
that is regarded as an external force and another is the dynamic error that inherits non-linear terms and
viscous friction. The 3DOF robotic-manipulator defined in Equations (2) and (3) can be used to define
a perturbation estimate that would be used to determine the reaction force. The perturbation estimate
of the end-effector and second link are mathematically represented by an expression defined below,

ψ̂s1 = − 1
Js1

(τ̂e1)− 1
Js1

(0.5Ms1L1g sin θ1)− (
ΔJs1

Js1
)

..
θ1 − 1

Js1
(ΔBs1 + β1)

.
θ1 (34)

ψ̂s2 = − 1
Js2

(τ̂e2)− 1
Js2

(Ms2L2g cos θ2)− (
ΔJs2

Js2
)

..
θ1 − 1

Js2
(ΔBs2

.
θ2)− 1

Js2
(β2

.
x)− 1

Js2
(λ) (35)

The Equations (34) and (35) further used to calculate the reaction force as follows

τ̂e1 = Js1ψ̂s1 + 0.5Ms1L1g sin θ1 + ΔJs1
..
θ1 + (ΔBs1 + β1)

.
θ1 (36)

τ̂e2 = Js2ψ̂s2 + Ms2L2g cos θ2 + ΔJs2
..
θ1 + ΔBs2

.
θ2 + β2

.
x + λ (37)

where τ̂e1, τ̂e2 are the estimates of reaction torques generated as a result of contact with the environment
of the end-effector and second link respectively, Δ represents the uncertainty parameter. It is worthy to
mention that if the parameter is well estimated than the parameter of uncertainty could be considered
as well.

4. Bilateral Control Design between Master and Slave for 3DOF Hydraulic Servo System

4.1. Bilateral Control

The design purpose of bilateral control refers to a relation b/w the master and slave system
helping the system operator in a way that is as close as the actual environment. There are two
important factors that need to be considered while designing bilateral control. The first is that the slave
accurately follows the trajectory of the master system and the second that the system’s operator gets
a realistic feel of a reaction force. In this study, the master and slave system are 3DOF hydraulic servo
systems. The dynamical equations for these two systems are shown in Equations (38) and (39).

Jm
..
θm + Bm

.
θm = um + τh (38)

Js
..
θs + Bs

.
θs = us − τe (39)

where Jm, Js, um and us are inertia, position, and control input of master and slave of hydraulic servo
system respectively. τh represents the real/action force generated by the operator at the master device,
τe defines the reaction force of the slave system in a remote environment. A detailed workflow of the
control algorithm for bilateral control is presented in Figure 5.
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Figure 5. The work flow of control algorithm.

A simple fact is that as the master device is operated by a human operator, the slave system
follows the trajectory of the master system. The slave system of hydraulic servos follows the master’s
trajectory using a sliding mode control. The impedance control is implemented to transfer reaction
force during trajectory tracking. Therefore, no reaction force is observed by the operator while there
are no contact between the slave and environment.

4.2. Master Controller and Device

The design of the master system has been considered under two constraints. The first one is that
the reaction force is felt by the operator during the slave system and environment contact. The second
constraint is that the operator uses the master system with the minimal force possible. The design of
the impedance control is defined as,

Jd
..
θm + Bd

.
θm + Kdθm = τ̂h − k f τ̂e (40)

where Jd, Bd and Kd are the inertia, damping, and stiffness of the impedance control model respectively,
k f represents the scale factor of the reaction force. The scale factor k f scales the force ratio that is
converted from the master system to the slave system. For simplicity, in this study k f is considered
to be unity. The control input signal to the master system can be determined by replacing the
estimated/observed state variable to the original ones. Thus, the control input for a dynamical system
of Equation (38) and impedance control of Equation (40) can be mathematically presented as follows,

um = (Bm − Jm

Jd
Bd)

.
θ̂m + (

Jm

Jd
− 1)τ̂h − Jm

Jd
(k f τ̂e + Kθ̂m) (41)

where um,
.
θ̂m,

.
θ̂m are the control input, estimated speed and estimated position of the master system

by utilizing SPO, τ̂h represents the torque estimate that is produced by the operator while operating
the master device. The master device used in this research is presented in Figure 6.
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Figure 6. Master device.

4.3. Slave Controller and Device

The slave controller is designed to track the trajectory of the master system. The slave controller is
designed by utilizing SMCSPO for this study. The logic behind the SMCSPO design is to compensate
sliding mode control for the perturbation estimate. It is an additive quantity consisting of uncertainty,
disturbance, and non-linearity [39]. Thus, SMCSPO design efficiently removes the external disturbance
and uncertainty of parameters. The sliding function that is estimated can be expressed as

ŝ =
.
ê + cê (42)

where ê = θ̂s1 − θ̂m1 is the tracking error between the master and slave device, c is a positive constant.
By substituting the observed/estimated state in the sliding function defined above in Equation (42)
and the sliding perturbation observer of Equation (12), the differential of the estimated sliding surface
ŝ can be mathematically represented as

.
ŝ = αs3us − ks2

εs0
θ̃s1 − αs2θ̃s1 + ψ̂s − ks1

εs0

.
θ̃s1

−αs1

.
θ̃s1 −

..
θ̂m1 + c(

.
θ̂s1 −

.
θ̂m1)

(43)

It is found that αs1

.
θ̃s1, αs2θ̃s1 ≈ 0 when the phase is converged to the sliding surface and error

estimate θ̃s1 remains inside boundary layer. The impedance model Equations (40) and (43) are utilized
to obtain

.
ŝ. .

ŝ = α3us − [ ks2
εs0

+ c( ks1
εs0

)− ( ks1
εs0

)2]θ̃s1 − J−1
d (τ̂h

−k f τ̂e − Bd

.
θ̂m − Kd θ̂m) + ψ̂s + c(

.
θ̂s1 −

.
θ̂m1)

(44)

The new control variable us is chosen under the constraint i.e.,
.
ŝŝ < 0. Similarly,

.
ŝ dynamics is

chosen to satisfy the sliding mode condition

.
ŝ = −Ksat(ŝ) (45)

The new control input presented in Equation (8) can be found from Equations (44) and (45)

us = α−1
s3 {−Ksat(ŝ) + [ ks2

εs0
+ c( ks1

εs0
)− ( ks1

εs0
)2]θ̃s1

+J−1
d (Bd

.
θ̂m + Kd θ̂m − τ̂h + k f τ̂e)− c(

.
θ̂s1 −

.
θ̂m1)− ψ̂s}

(46)

126



Electronics 2018, 7, 256

Final control input for the slave system is mathematically defined as

us = Jsus + Bs

.
θ̂s (47)

5. Experimental Environment

The slave device for the experiment is shown in Figure 7. The hydraulic servo system consists of
two hydraulic cylinders and one AC servo motor. The first base axis is actuated by the AC servo motor.
The 2nd link and end effector are actuated by the hydraulic cylinder.

 

Figure 7. Slave device.

The experiments were performed on a 3DOF hydraulic servo system. Table 1, shows the
specifications of a hydraulic servo system.

Table 1. Hydraulic servo system.

S. No Items Specification

1 Hydraulic cylinder Piston and rod diameter = 0.04 m, 0.022
Stroke = 20 cm

2 Hydraulic pump P_max = 210 bar
Q_max = 20 1/min

3 Displacement transducer Stroke = 20 cm (10 V)
4 Propositional directional control valve D633-313A, Moog, Inc.
5 Relief valve P_set = 20 bar
6 Control board PC based MMC

In [43,44], the identification and robust control of a hydraulic servo system have been discussed.
The unknown parameters such as the inertia and damping coefficients of the system are obtained by
the signal compression method which can estimate the dynamics by obtaining an equivalent impulse
response [45]. The model dynamic is given by

..
x =

1
Ji

u − 1
Ji

Di
.
x, i = 1, 2, 3 (48)

where Ji, Di are the equivalent moments of inertia and damper respectively. Table 2, shows the values
of the dynamics.
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Table 2. Hydraulic servo system dynamics parameters.

S. No
Moment of Inertia

(Master) kg·m2
Moment of Inertia

(Slave) kg·m2 Damper (Master)
kg·m2

Damper (Slave)
kg·m2

1 1.35135 303.26 3.99 17,355.5
2 1.5 59.52 3.99 5241.66
3 0.74 355.91 3.99 2214

The experimental setup includes a master device, a slave device and a control system as shown
in Figure 8.

 
Figure 8. Experimental setup.

The master and slave device consist of three links each, in which the third link is connected
with the base. We can find the reaction force at end effector and the 2nd link. SMCSPO is used to
estimate the reaction force. Since the operator moves the master device to make the slave come in
contact with a hard object, a visual sensor is installed with the slave device. It is not relevant to
the control algorithm but provides visual feedback to the operator to avoid any inconvenience or
uncertain situations. Figure 9 provides a pictorial view of visual feedback which helps enhance the
safety during work.

 

Figure 9. Pictorial view of visual feedback.

128



Electronics 2018, 7, 256

6. Experimental Results

In our study, our system is non-linear, and therefore, a robust control scheme (i.e., SMCSPO)
was pursued. Since PID/PD controllers are not robust, comparatively to SMCSPO, to nonlinearities.
Therefore, their performance is not as good as that of the proposed SMCSPO. Figure 10 shows the
comparison between PID and SMCSPO.

Figure 10. Comparison between PID and SMCSPO.

Table 3 shows the values of the parameters used in the experiment by using SMCSPO.
The parameters used in the experiment are determined by using the Equations (32) and (33). Extensive
simulations were performed to find the best value of boundary layer width (εo) resulting in convergence
of the sliding surface to zero.

Table 3. Design parameters.

S. No Parameters Values

1 k · (End Effector) 25
2 k · (2nd Link) 250
3 k · (Base) 8
4 k1 39
5 k2 507
6 ε0 1
7 c 13
8 e 1
9 α3 (End Effector) 4.08

10 α3 (2nd Link) 10
11 α3 (Base) 2.58

Six different experiments are done by using SMCSPO: (i) Bilateral (Master–Slave manipulation)
control of the end effector (ii), estimated perturbation measured at the end effector of master and
slave (iii), bilateral (Master–Slave manipulation) control of the 2nd link (iv), estimated perturbation
measured at the 2nd link of master and slave (v), bilateral (Master–Slave manipulation) control of the
base (vi), and bilateral (Master–Slave manipulation) control of the end effector, 2nd link and base at
the same time.

The scenario of the experiment is set up such that the operator (human) moves the master device
and the slave device follows the trajectory of the master device using SMCSPO. Figure 11 shows
the experimental result of the master–slave trajectories for the end effector. The blue line shows the
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experimental result of the master device whereas, the red line shows the experimental result of the
slave device by using SMCSPO. It can be observed that the slave device can follow the master device.
The maximum value of the trajectory is 81 degree at 14 s. The end effector of the slave device can move
between 0 and 90 degrees.

Figure 11. Master–slave trajectories for end effector.

The error between the master–slave trajectories for the end effector is shown in Figure 12.
The maximum error between the master and slave trajectories is 0.62 degrees at 15.5 s. It can be
seen that the errors between the master and slave trajectories are very small.

Figure 12. Error between master–slave trajectories for end effector.

Figures 13 and 14 show the estimated perturbation of master and slave for the end effector.
The maximum estimated perturbation of the master is 67.56162 N*m at 14 s. While the maximum
estimated perturbation of the slave is 1516.7 N*m at 14 s.
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Figure 13. Estimated perturbation of master for end effector.

The value of the estimated perturbation for the slave is very high as compared to the master.
This is because of the hydraulic system for the slave. The dynamic value of the slave (i.e., 303.26)
is much bigger than the master (i.e., 1.35135). The pattern of the estimated perturbation of master
and slave is the same but in an opposite direction. To compare these two results, we normalized
the estimated perturbation of master and slave. The normalized estimated perturbation of master is
between 0 and 1 while the slave is between −1 and 0 using Equations (49) and (50).

Pnorm(Master) =
ai − min(a)

max(a)− min(a)
, i = 1 . . . N (49)

Pnorm(Slave) =
ai − max(a)

max(a)− min(a)
, i = 1 . . . N (50)

In the above equations, ai is the current value. Figure 15 shows the normalized estimated
perturbation for the master and slave of the end effector. The red line shows the normalized estimated
perturbation of the master device, whereas the blue line shows the normalized estimated perturbation
of the slave device.

Figure 14. Estimated perturbation of slave for end effector.
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Figure 15. Normalized estimated perturbation of master and slave for end effector.

Figure 16 shows the experimental result of the master–slave trajectories for the 2nd link. The blue
line shows the experimental result of the master device, whereas the red line shows the experimental
result of the slave device by using SMCSPO. The slave device can also follow the master device.
The maximum value of the trajectory is 60 degrees at 13.5 s. The 2nd link of the slave device can move
between 0 and 90 degrees.

Figure 16. Master–slave trajectories for 2nd link.

The error between master–slave trajectories for the 2nd Link is shown in Figure 17. The maximum
error between master and slave trajectories are 0.41 degree at 49 s.
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Figure 17. Error between master–slave trajectories for 2nd link.

Figures 18 and 19 show the estimated perturbation of master and slave for the 2nd link.
The maximum estimated perturbation of the master is 326.6367 N*m at 38.5 s. While the maximum
estimated perturbation of the slave is 1296.9 N*m at 38.5 s. The pattern of master and slave estimated
perturbation is the same but in opposite direction.

Figure 18. Estimated perturbation of master for 2nd link.

Figure 19. Estimated perturbation of slave for 2nd link.
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Figure 20 shows the normalized estimated perturbation for master and slave of the 2nd link.
The red line shows the normalized estimated perturbation of the master device, whereas the blue line
shows the normalized estimated perturbation of the slave device.

Figure 20. Normalized estimated perturbation of master and slave for 2nd link.

Figure 21 shows the experimental result of master–slave trajectories for the base axis. The blue
line shows the experimental result of the master device whereas, the red line shows the experimental
result of the slave device by using SMCSPO. It can be seen that the slave device can follow the master
device. The maximum value of the trajectory is 100 degrees at 13 s. The base of the slave device can
move between 0 and 360 degrees.

Figure 21. Master–slave trajectories for base.

The error between master–slave trajectories for the base is shown in Figure 22. The maximum
error between master and slave trajectories is 1.3 degrees at 26.5 s.
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Figure 22. Error between master–slave trajectories for base.

Figure 23 shows the experimental result of the master–slave trajectories for the end effector, 2nd
link and base by using SMCSPO. The blue line shows the experimental result of the master device
whereas the red line shows the experimental result of the slave device of the end effector. The grey
line shows the experimental result of the master device whereas the pink dotted line indicates the
experimental result of the slave device of the 2nd link. The blue-dotted line shows the experimental
result of the master device whereas the red dotted line shows the experimental result of the slave
device of the base. At the beginning only, the end effector can move until 49 s. Then, the end effector
and 2nd link moved simultaneously by 12 s (i.e., from 50 to 62 s). After that, the 2nd link moved
separately by 18 s (i.e., from 62 to 80 s). Then, the base can move by 32 s (i.e., from 81 to 113 s).
In the end, the end effector and 2nd link moved again simultaneously by 16 s (i.e., from 115 to 131 s).
The slave device followed the trajectory of the master device accurately. The maximum trajectories of
the end effector, 2nd link and base are 88, 27 and 52 degrees, respectively.

Figure 23. Master–slave trajectories for end effector, 2nd link and base.
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7. Conclusions

In this paper, we have estimated the reaction force of the end effector and 2nd link for
a three-degree of freedom hydraulic servo system with master–slave manipulators using SMCSPO
without using any sensors. By using an SMC-based bilateral control strategy and visual feedback,
the slave device followed the trajectory of the master device (human operator) with minimum error.
Also, bilateral control is used to estimate the reaction force of the master device which is fed back to
the operator to handle the master device.

From Figures 11, 16, 21 and 23, it is confirmed that the slave can follow the master trajectories and
an operator can easily handle the slave device by feeling the estimated reaction force using the applied
SPO when the slave touches an object even if a force sensor is not used.

The maximum error between master and slave for the end effector, 2nd link and base are
summarized in Table 4.

Table 4. Error between master–slave trajectories.

S. No Links Maximum Error (Degree) Maximum Trajectory (Degree)

1 End effector 0.62 81
2 Link 2 0.4 60
3 Base 1.3 100

This research is applied for dismantling nuclear power plants, and there are many situations
where a human cannot access due to the high degree of radiation and the very long half-lives of the
radioactive materials involved. Therefore, the slave device is used for such hazardous locations. It is
useful for activities such as transportation of active uranium in nuclear power plants, disposal of an
explosive, remote cutting for nuclear power plant dismantling, grinding, etc.
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Appendix

Figure A1 is showing the schematic of hydraulic servo system. In this figure, Ve is the volume of
the chamber of the cylinder, Ksv is coefficient between the input voltage and displacement of spool,xv is
the displacement of servo valve spool and Mp is the mass factor of the end of cylinder.
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Figure A1. Schematic of Hydraulic Actuator.

The fluid supplied flow rate of the forward chamber and return flow rate of the return chamber
are derived by Bernoulli equation respectively and expressed as follow

Q1 = Cdωxv

√
2(Ps − P1)/ρ (A1)

Q2 = Cdωxv

√
2(P2)/ρ (A2)

where, xv is displacement of servo valve spool, Cd is flow coefficient, ω is area gradient of spool valve,
ρ is density of fluid,Ps, P1, P2 is pressure of supplied fluid and pressure inside the two chambers of the
cylinder respectively.

The load pressure PL and load flow rate QL are expressed as follow.

PL = P1 − P2 (A3)

QL = (Q1 + Q2)/2 (A4)

By Using Equations (A3) and (A4), load flow rate of servo value is defined as follow

QL = αCdωxv

√
2(Ps − PL)/ρ (A5)

where
α =

1 + η√
2(1 + η2)

≤ 1 (A6)

Furthermore, the flux inside of hydraulic cylinder is defined as Equation (A7) by continuity equation.

QL = Ae
.
xp +

Ve

4β

.
PL (A7)

where, Ae is average area between piston and piston load, β is the effective flow coefficient modulus
and Ve is the volume of the chamber of the cylinder.

The dynamics equation of load system is obtained as

AePL = Mp
..
xp + Bp

.
xp + Fp (A8)
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where Mp is the total mass elements, Bp is the total damper elements between rod and cylinder, Fp is
the total friction elements and xp is the displacement of rod. To calculate the linearized load flow
dynamic equation, Equation (A5) can be linearized as follow

QL = kqxv − kpPL (A9)

where kq is load flow coefficient, kp is load flow pressure coefficient and defined as follow

kq = αCdωxv

√
(Ps − PL

∗)/ρ =
∂QL
∂xv

∣∣
PL=PL

∗ (A10)

kp =
Cdωxv

∗

2

√
1/ρ(PA − PL

∗) = ∂QL
∂PL

|xv=xv∗ (A11)

xv
∗ and PL

∗ in Equations (A10), (A11) are xv and PL near the operating point. Using Equation (A7),
linearized load flow dynamic equation can be rewritten as Equation (A12). The effective bulk modulus
of the fluid is much larger value than other constant parameters. There the pressure variation terms of
Equation (A7) is negligible.

Ae
.
xp = kqxv − kpPL (A12)

Combing Equations (A7) and (A12), 2nd order dynamic equation can be obtained as follow

Mp
..
xp + (Bp +

A2
e

kp
)

.
xp + Fe =

Aekq

kp
xv (A13)

After separating the non-linear term and parameter error from Equation (A13), the equation of
motion is derived as

MHT
..
xp + BTH

.
xp + ψ = KKsvVe (A14)

where MHT and BTH is the equivalent value of mass element and damper element respectively, ψ is the
summation of non-linear term, parameter error, friction and disturbance and K is the linear coefficient
of Aekq

kp
. The perturbation ψ, is defined as follow

ψ = M−1
HT [ΔKΔKsvuH − {

ΔMHT
..
xp + ΔBTH

.
xp + Fe

}
] (A15)
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Abstract: Because the interest in virtual reality (VR) has increased recently, studies on head-mounted
displays (HMDs) have been actively conducted. However, HMD causes motion sickness and
dizziness to the user, who is most affected by motion-to-photon latency. Therefore, equipment
for measuring and quantifying this occurrence is very necessary. This paper proposes a novel
system to measure and visualize the time sequential motion-to-photon latency in real time for HMDs.
Conventional motion-to-photon latency measurement methods can measure the latency only at the
beginning of the physical motion. On the other hand, the proposed method can measure the latency in
real time at every input time. Specifically, it generates the rotation data with intensity levels of pixels
on the measurement area, and it can obtain the motion-to-photon latency data in all temporal ranges.
Concurrently, encoders measure the actual motion from a motion generator designed to control
the actual posture of the HMD device. The proposed system conducts a comparison between two
motions from encoders and the output image on a display. Finally, it calculates the motion-to-photon
latency for all time points. The experiment shows that the latency increases from a minimum of
46.55 ms to a maximum of 154.63 ms according to the workload levels.

Keywords: head-mounted display; virtual reality; motion-to-photon latency

1. Introduction

Because the personal computer’s performance has been greatly improved, real-time rendering of
high-quality images has become possible, and virtual reality (VR) technology has become a reality [1].
According to this trend, a variety of VR devices utilizing 3D rendering and sensor-based technology
have been released. The head-mounted display (HMD) device, which is a system designed to improve
immersion by mounting a wide field-of-view display within the user’s sight, has been gaining
popularity [2]. However, because of the mismatch between visual and vestibular systems, users
wearing HMD devices experience motion sickness and dizziness, which can be an obstacle to the VR
market. The motion-to-photon latency, which is one of the causes for this mismatch, is the time delay
for a user movement to be fully reflected on a display screen [3]. Generally, three steps are required to
render an image, as shown in Figure 1. When head motion occurs, the motion detection unit samples the
orientation data for the view generation. After the motion detection, the visual processing unit renders
a 3D image. Finally, the rendered image is outputted to a display corresponding to the head orientation
of the user measured by the sensor. As these steps take time, the delay results in motion-to-photon
latency. In this case, the image does not exactly correspond to the actual head orientation of the user,
thereby causing the user to experience motion sickness [4]. Therefore, many HMD makers such as
Oculus VR have conducted studies to minimize the mismatch caused by the motion-to-photon latency.
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Numerous studies such as prediction techniques based on the data acquired by inertial measurement
unit (IMU) sensors [5] and asynchronous time warp (ATW) [6] have been conducted to overcome this
limitation. The quantitative evaluation of the above methods required the authors to measure the
motion-to-photon latency. They could then improve and evaluate these methods with reference data.

Figure 1. Image generation process in the HMD (head-mounted display) system.

To measure this motion-to-photon latency, the method of [7] presents a low-cost system with high
accuracy which measures the latency. However, it can be used for the mobile device. The method of [8]
proposes the measurement system and a technique to reduce the latency for the optical see-through
display. The authors had previously proposed a new measurement system by using multiple sensors
such as an optical sensor and encoders and by comparing the physical signal to the luminance signal
from a VR scene reflected on the display [9]. Figure 2 shows the overall architecture of this measurement
system. A rotary platform, which controls the physical motion, was proposed in that method to simulate
the rotation of the neck. It measured the change of the image brightness when the physical motion
commenced. The method could directly measure the motion-to-photon latency because it calculated
the time difference between the point at which the brightness startedchanging and that at which the
physical motion started However, although this method provided accurate measurement results, its
limitation was that the latency could only be measured when the physical motion began.

 

Figure 2. Overall architecture of the previously proposed motion-to-photon latency measurement system.
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In this paper, the authors propose a novel time sequential measurement system for the
motion-to-photon latency by comparing the physical motion and the motion reflected on the image
by 3D rendering. Therefore, it is possible to measure and record the time sequential latency more
precisely in real-time, while reflecting the change in workload over time, unlike the conventional
method mentioned in [9]. Specifically, the proposed method renders the rotation data with the intensity
levels of pixels on the measurement area, which is specially invented for the HMD system, and it can
obtain the motion-to-photon latency data in all temporal ranges. Therefore, it has a great advantage
over the existing method.

This paper is organized as follows. Section 2 describes the proposed latency measurement system
with five subsections. Section 3 presents the experimental environment and the results using the
proposed system. Section 4 presents the paper’s conclusion.

2. Proposed Method

Figure 3 shows the overall block diagram of the proposed system. The proposed method measured
the actual angular change of the encoder when physical movement occurred. Concurrently, when
the physical movement was measured by the IMU sensor, the rendered image was outputted to the
display reflecting the measured angle, and the corresponding angle value was converted into the
intensity image. The proposed method compared these two values. Specifically, a measurement
area, which was constructed with multiple 2D objects mapped with an intensity level converting the
rotation angle measured from the IMU, was implemented. Then, the photodetector converted the
luminance reflected in the measurement area into a voltage. Finally, the oscilloscope measured this
voltage value to determine the intensity level. At the same time, the pulse obtained from the encoder
was converted into a position value and compared with the luminance-based position value obtained
from the photodetector in real time. Finally, the motion-to-photon latency was calculated by measuring
the time difference at which the angle measured from the display reached the same rotation angle of
the encoder, as shown in Figure 3. The detailed processes are explained in following sections.
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Figure 3. Overall block diagram of the proposed system.
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2.1. Motion Generator-Based on Human Neck Movement

The authors used the rotary platform proposed in [9] to model the physical rotation of the user’s
neck. Specifically, in order to simulate a human neck, a two-degree-of-freedom rotary platform
was proposed, built with joints and links based on head kinematics. Therefore, the motion at the
end-effector could be estimated through the motion in each joint based on forward kinematics [10,11],
as shown in Figure 4.

Figure 4. Kinematics of the head-model-based measurement platform.

For this paper, the authors implemented the kinematic analysis of the model using the
Denavit–Hartenberg parameters [12], and the angle of the end-effector was estimated by calculating
the angle of each joint [13]. In the proposed method, the rotation of the end-effector was estimated
by performing rotation transformation on the displacement and rotation in the previous link, and
coordinate transformation with the translation matrix. The transformation was carried out on n
number of links with the following matrix multiplication:

[T] = [Z1][X1][Z2][X2] · · · [Xn][Zn], (1)

where [T] denotes the transformation matrix of the end-effector, [Zn] denotes a transformation matrix
at the n-th joint, and [Xn] denotes a transformation matrix of at the n-th link. The transformation
matrix of the i-th joint is as follows:

[Zi] =

⎡⎢⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di
0 0 0 1

⎤⎥⎥⎥⎦, (2)

where θi denotes the rotation angle between the previous joint and the next i-th joint along the z axis,
and di denotes the displacement between each joint. The transformation matrix of the i-th link is
as follows:

[Xi] =

⎡⎢⎢⎢⎣
1 0 0 ri,i+1
0 cos αi,i+1 − sin αi,i+1 0
0 sin αi,i+1 cos αi,i+1 0
0 0 0 1

⎤⎥⎥⎥⎦, (3)
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where αi,i+1 denotes an angle between each link along the x-axis, and ri,i+1 denotes the displacement
between each link. Finally, the transformation matrix for the forward kinematics from the (n − 1)-th
link to the n-th link is as follows:

Tn =

⎡⎢⎢⎢⎣
cos θn − sin θn cos αn sin θn sin αn rn cos θn

sin θn cos θn cos αn − cos θn sin αn rn sin θn

0 sin αn cos αn dn

0 0 0 1

⎤⎥⎥⎥⎦. (4)

Therefore, the Euler angles [14] of the end-effector were calculated from the inner rotation matrix.
The Euler angles were used in an interface of the proposed system.

2.2. Measurement Area Design

In the proposed method, photodetectors measured the rotation angles from the rendered image.
The advantage of photodetectors is that they can be measured more accurately while modeling the
human visual function owing to their fast response time. However, the photodetectors only measure
the intensity of light within the specific range. Hence, the authors proposed specially invented objects
that displayed the current rotation angle on a VR scene. Specifically, the objects did not have any
colors but had grayscale intensities, and the intensity levels represented the rotation angle with the
pre-defined conversion rule that converted the rotation angle with a float type into the intensity
value with an unsigned integer type. Therefore, by measuring the luminance for the objects in the
measurement area, the current rotation angle was obtained.

When designing the objects in the measurement area, the shapes of the object could influence
not only the rendering performance but also the measurement performance. In 3D rendering, there
is back-face culling in that the game engine does not calculate the region occluded by an object [15].
Therefore, due to occlusion in the measurement area, the rendering performance is changed. Since the
back-face culling affects the latency measurement, the size of the measurement area to be projected
into the display is optimally adjusted to minimize the back-face culling and to maximize the voltage
that the active layer of the photodetector can measure.

The brightness of the measurement area was determined by the rotation value calculated from
the IMU sensor of the HMD device when rendering the current frame. To enhance the measurement
accuracy, two objects represented the current rotation angle at a single rotation axis. Arrangement of
the four objects enabled both the yaw and pitch, which were the target rotation directions, to
be calculated.

The scanline of the display for the area to be measured should also be considered. Since the
entire image is not drawn at once but sequentially drawn along the scanline, there is a time difference
depending on the arrangement of the measurement area [16]. In order to estimate the correct angle,
two measurement areas must be synchronized considering the physical location.

2.3. Voltage Mapping Table

When a change in light is detected in the photodetector installed in the measurement area,
the current (the output voltage as a result) emitted by the internal photodiode changes. If the
experimental environment and parameters are controlled constantly, the output voltage of the
photodetector to the image luminance is constant. This means that the output voltage can be converted
back to the original luminance information. Therefore, if the conversion between the luminance and
the voltage is known in advance, the rotation angle applied in the rendering process can be estimated.
In the proposed method, the relationship between the voltage and luminance was acquired in advance,
and the mapping table for the relationship was obtained by using these data. Figure 5 shows how
to estimate intensity levels from the luminance of the measurement area on the display using the
mapping table.
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Figure 5. Luminance estimation from an object rendered by using the photodetector system and the
voltage mapping table.

The voltage of the photodetector is proportional to the luminance, and therefore, the low
luminance has a low output voltage. In this case, the amount of the voltage according to the brightness
was not distinguishable from the noise when the voltage outputted from the measurement region was
low at the stage of constructing the mapping table. Figure 6 illustrates the above problem. Therefore,
low voltage levels are excluded from the measurement, and the mapping table is estimated from the
upper level. Then, the current rotation value was inferred. There is a problem that if only the 128 levels
of intensity are used for 256 gray levels with an 8-bit depth, the measurement resolution is halved.
To compensate for this problem, an additional photodetector was used. An additional sensor restored
the resolution to the original resolution by using double photodetectors to measure one rotation of
the axis.

Luminance

Vo
lta

ge
(V

)

Measurable gapimmeasurable gap Error on measurement

Figure 6. Measurement error and noise for an output voltage in the photodetector system.

For double photodetectors, a new formula was needed which converted a rotation value into two
intensity levels. The rotation angle was split into two intensity levels, and these intensity levels were
reflected on the measurement area so that the photodetectors measured each intensity level to convert
them back to the rotation angle. The specific conversion formula is as follows:

Channel =

⎧⎨⎩ MSBs7bit

[
(θ+Meuler)

2Meuler
× 214

]
+ 127

LSBs7bit

[
(θ+Meuler)

2Meuler
× 214

]
+ 127

⎫⎬⎭, for |θ| ≤ Meuler, (5)
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where Meuler denotes the maximum Euler angle in the measurement system, θ denotes the current
angle measured from HMD, and MSBs7bit and LSBs7bit denote the upper and lower 7 bits of the
converted value, respectively. In the measurement area, 14-bit data were mapped onto the objects.

For example, as shown in Figure 7, the current rotation of the yaw axis and maximum Euler
angle are given. Then, these values were calculated with a conversion formula. The current rotation
angle was converted into binary data and split into two parts. Each part was the intensity level of the
measurement area. After estimating these intensity levels by the photodetectors, the reverse calculation
was performed with the inverse of the conversion formula. Finally, the current rotation was obtained,
which is used for the generation of a VR scene.

Figure 7. Example of the intensity level conversion and its inverse for measuring the current
rotation angle.

However, in some cases, accurate mapping tables could not be formed because of changes in
the external environment during the measurement process and changes in the output voltage due to
the electrical noise. To solve this problem, a polynomial regression to store the data was performed
from the voltage data obtained by repeated experiments. In the proposed method, an optimal curve
was obtained by repeatedly performing a polynomial regression of less than third-order to avoid
overfitting. Then, the obtained curve was used for the voltage estimation for a luminance level.

The third polynomial regression used in this paper is described below. The regression model is
as follows:

vi = a0 + a1 I1 + a2 I2
2 + a3 I3

3 + εi (i = 1, 2, 3, · · · , n), (6)

where n denotes the number of points, vi denotes an output voltage from the photodetector, Ii denotes
an 8-bit unsigned integer value of the intensity level projected on the measurement area, ai denotes a
curvature parameter, and εi denotes a random error. The polynomial curve is composed as follows.⎡⎢⎣ v1

v2

v3

⎤⎥⎦ =

⎡⎢⎣ 1 I1 I2
1 I3

1
1 I2 I2

2 I3
2

1 I3 I2
3 I3

3

⎤⎥⎦
⎡⎢⎣ a1

a2

a3

⎤⎥⎦+

⎡⎢⎣ ε1

ε2

ε3

⎤⎥⎦. (7)

In (7), if the random error term is excluded, the curvature parameters can be estimated after the
least-squares estimation [17]. The least-squares estimation of these parameters is as follows:

a =
(

ITI
)−1

ITv, (8)

where v denotes a vector composed of the output voltages from the photodetector, a denotes the
curvature parameter vector of the voltage–luminance curve, and I denotes the matrix of intensity
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levels from the repeated measurements. Using this regression model, the motion-to-photon latency
was measured and is described in the following section.

2.4. Measurement of Motion-to-Photon Latency

The output image on the display was rendered by rotating the HMD using a motion generator
designed to control the rotation of the HMD device. It controlled the HMD device with the desired
rotation angle using a highly accurate DC servo motor. An internal encoder in the motor, which was
used to control the motor, could also be used for measuring the current physical movement. However,
in order to more precisely measure the physical movement over time, the incremental type encoders,
additionally mounted on the axes, detected the rotation angles and outputted them as pulses.
Concurrently, by measuring the luminance of the objects, the current angle data could be obtained by
the conversion rule with the mapping table described above. The motion data about the current frame
outputted from the display and the motion data outputted from the motion generator were compared.
Due to the motion-to-photon latency, the rotation angle from the display was temporally lagged with
respect to the angle outputted from the motion generator. To quantify the motion-to-photon latency,
the proposed system calculated the time at which the angle, outputted from the display, matched
the angle outputted from encoders of the motion generator. Finally, it calculated the difference,
which was the motion-to-photon latency between the two time points that had the same rotation
angle. When calculating the time points, the authors found the indices of two rotation buffers with
the same rotation angles, as shown in Figure 8. To avoid finding multiple points of the same value,
the searching range was limited. There were multiple points that had the same value in all ranges.
By limiting the searching range, the method allowed the buffers to be searched in the limited range so
that only one same value was selected.
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Figure 8. Example of the motion-to-photon latency calculation.

2.5. Real-Time Measurement and Interface

The proposed method used buffers to store the data from the encoders and the display. Specifically,
it synchronized and stored all data in an oscilloscope, and the time delays were compared by searching
points that had the same values. Once each time difference was found, it was converted to a time
value to obtain the final motion-to-photon latency. In addition, a user interface was proposed to
control the system and to integrate and run several modules. Figure 9 shows the configuration of the
interface. The sequence-based motion generation part provided the information for controlling the
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motion generator. In the data plotting part, the graphs for the rotation angles are plotted. The latency
measurement part provides the current, mean, and max values for the motion-to-photon latency.

 

Figure 9. Proposed user interface of the motion-to-photon latency measurement system.

3. Experimental Results

The experimental environment is as follows. First, the authors used an Oculus Rift DK 2 HMD
device (Oculus VR, Menlo park, CA, USA) for the VR implementation [18]. To drive a motion generator,
two RE 40 (Maxon Motor, Sachseln, Switzerland) [19] were used as a DC motor along two axes, and the
same number of EPOS2 50/5 (Maxon Motor, Sachseln, Switzerland) were used as controllers to control
them [20]. However, since the position estimated from the motor itself had mechanical latency,
additional encoders (EIL 580 Baumer, Frauenfeld, Switzerland), which are of the incremental type with
500 steps/turn and 300 kHz frequency, were used to measure more accurate current rotation angles [21].
SM05PDs (THORLABS, Newton, NJ, USA) were used as the photodetectors, which have a spectral
range from 200 nm to 1000 nm [22]. A PicoScope 4824 (Pico Technology, Saint Neots, UK) was used to
measure the voltages from encoders and photodetectors [23]. It measured the voltages of the encoder
and photodetector with a sampling rate of 100,000 times per second and a bandwidth of 5.0 Gbps,
thereby allowing nearly continuous data description and processing in real time. To render the VR
scenes and drive the entire proposed system, a PC, which had an Intel i7-6700k @ 4.4 GHz CPU [24]
and an NVIDIA Geforce GTX 1080 graphic card [25], were used. The experiment was conducted by
the following two methods. First, the authors measured the changes in the latency according to the
change in the position sequence while the initial workload was fixed. In this case, the workload was
assigned the minimum level. The second method used only one of the motion sequences for different
initial workload levels. Figure 10 shows the overall experimental process described above.
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Figure 10. Overall experimental processes for calculating the motion-to-photon latency in (a) different
sequences and (b) different workload levels.

3.1. Position Sequence

Table 1 lists the position sequences defined in the experiment for the yaw and pitch axes. Six peak
points were inputted to the motion generator controlled by the input angle, and the system was
controlled according to the sequence shown in Figure 11. In this case, as shown in Table 2, the average
latency was up to 46.55 ms and the maximum latency was up to 63.72 ms. In this experiment, the
positions and shapes of the 3D objects in a VR scene were changed according to the orientation of
the HMD. By reflecting these changes of the objects, the rendering workload was changed with time,
thereby changing the motion-to-photon latency. As shown in Table 2, the motion-to-photon latency
was varied according to the motion sequence. These results show that the proposed system could
measure the motion-to-photon latency in all temporal ranges when the position sequence changed.

Table 1. Peak points of simulated head orientations in yaw and pitch directions.

Orientation Yaw Pitch

Number of Sequences 1 2 1 2

Peak point

1 0.00 0.00 0.00 0.00
2 19.10 13.50 −14.00 19.10
3 5.10 −14.20 −5.00 5.10
4 0.00 −15.00 13.50 0.00
5 −8.90 5.00 6.50 −8.90
6 0.00 0.00 0.00 0.00

Table 2. Minimum, maximum, and average motion-to-photon latencies by different position sequence.

Orientation Yaw Pitch

Number of Sequences 1 2 1 2

Min. (ms) 21.83 15.78 23.42 32.10
Max. (ms) 63.72 69.33 53.75 65.36

Average (ms) 46.55 47.42 43.87 49.45
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(a) (b) 

Figure 11. Sequences and peak points for simulated head orientations: the change of angles in (a)
sequence #1 and (b) sequence #2.

3.2. Different Workloads

The authors also measured the latency change while varying the initial rendering workload with
the fixed position sequence. The steps of each workload were determined by the number of vertices,
which is the minimum unit that constitutes the mesh that has the greatest influence on the computation
when rendering the image. In the workload of level 0, the minimum number of objects was two
and the number of vertices was 800,000. In the workload of level 3, the number of objects was 17,
and the number of vertices was 9.5 million. Table 3 summarizes the number of vertices per level.
An increase in the number of vertices also increased the computation time, which directly affected the
motion-to-photon latency. In the experiment, the minimum, maximum, and average motion-to-photon
latency were measured according to the workload level as shown in Table 4. In this case, the average
latency measured in the workload with level 0 was up to 46.55 ms, and the maximum latency was
up to 63.75 ms. On the other hand, the average latency measured in the workload with level 3 was
up to 154.63 ms, and the maximum latency was up to 198.24 ms. Figure 12 shows the results as a
function of the workload level. In the figure, the blue points are the rotation angles from a VR scene,
and the orange points are the angles from the motion generator. In the cropped image, the blue points
were lagged behind orange points, which are the current angles of the motion. As shown in both of
the cropped regions, the time delay of the two points was increased when the workload level was
increased. Therefore, when the workload level was changed, the time delay also changed significantly.

Table 3. Various rendering workloads and vertices.

Rendering Workload 0 1 2 3

Number of objects 2 7 12 17
Vertices 0.8 M 2.4 M 4.8 M 9.5 M

Table 4. Minimum, maximum, and average motion-to-photon latencies by different rendering
workload levels.

Rendering Workload 0 1 2 3

Min. (ms) 21.80 45.30 88.30 120.15
Max. (ms) 63.75 89.75 133.65 198.24

Average (ms) 46.55 63.22 101.29 154.63
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Figure 12. Profiled motion data measured from the physical motion and a virtual reality (VR) output
image: (a) workload level 0 and (b) workload level 3.

4. Conclusions

This paper proposed a novel measurement system to visualize the motion-to-photon latency
with time-series data in real time. The proposed system rotated the HMD device using a motion
generator based on the kinematics of a human neck to control its motions. In addition, we proposed
a measurement area, which includes four objects with intensity levels that are converted from an
IMU sensor data of the HMD, to acquire the current motion from the display. Finally, the motion
data obtained from the encoder were compared with the motion data obtained from the display to
calculate the motion-to-photon latency and visualize it on the dedicated interface. In the experiment,
the latency was changed from a minimum of 46.55 ms to a maximum of 154.63 ms according to the
workload levels.
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