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PREFACE

This thesis investigates control, methods for robotics th a t are applied 

within a hierarchy. The nature of the robot hierarchy is assumed to be "intelli­

gent" in some sense. Each level may be termed adaptive. The difference between 

"adaptive" and "intelligent" is intended by this author as a m atter of legitimate 

difference in degree rather than  mere semantics.

The term  "adaptive" may be seen as connoting such attributes as "compli­

ant" or "adjustable". The conglomerate result of many separate adaptive mod­

ules or agents acting in concert as has been postulated by Minsky ['86], Brooks 

[’88-9la], Hofstadter [’79], and others is tha t some activity resembling intellect 

can emerge from the synergistic combinations of the activities of all these modu­

lar parts. The agents differ in these various authors’ methods, but the sense 

each author conveys is th a t the combined result is somehow greater than  the 

sum of the parts.

Minsky and Hofstadter present a descriptive approach explicative of colo­

nies of organisms they have observed, while Brooks takes a more "ontogenic", or 

bottom-up approach. Brooks claims that, in essence, ju st by doing w hat we engi­

neers do best, i.e., by being careful to do the right thing a t every step, and by 

starting a t the very bottom we can not help but eventually invent a robust, ca­

pable, more or less autonomous system. The resultant system may not be very 

"smart" except in some primitive but perhaps important way, e.g. in survival 

skills.
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It is the addition of the descriptor "autonomous" th a t s ta rts  to describe 

what is m eant herein by the difference between adaptive and intelligent.

In all 3 systems mentioned, a global world model is not important to the 

emergence of intelligence. Brooks takes the extreme view, Brooks [91a], in tha t 

he demands no representation of the external world be implemented. Minsky 

and Hofstadter on the other hand just do not require it. Brooks holds th a t plan­

ners at every level up to and including the cybernetic "pilot" of the  system can be 

removed and replaced with some highly complex collection of layered agents. 

The agents in Brooks’s hierarchy are cunningly interconnected by subsumptive 

and inhibitory communications relays. One could well argue th a t a Brooksian 

system does in fact have a world model embedded in  it, and the layout, enu­

meration and interconnection of these relays is an implementation of it. This 

view begs the question of just where the data and the algorithm lie in such a 

system. An extreme Brooksian scholar might conversely argue th a t an  AI imple­

m entation of an intelligent system is equivalent to some Brooks-style subsump­

tion implementation in th a t it is implemented with millions of low level switches 

and logic gates th a t implement the opcodes comprising the computation and in­

ferences of the system, and tha t there is a ridiculous superfluity of them  due to 

the inefficiency of a lot of semantic fluff implemented high up in the system at 

the LISP or PROLOG level.

These two are extreme views. Bellingham and Consi [90, 91], Schudy and 

Duarte [’90], Bellingham and Beaton [*89] argue for a middle approach.

The objection to Brooks's view th a t applies here is more a convenience 

than a power issue. Consider, for instance, tha t a Hiring machine has the same 

computational power as a modem computer with a C++ compiler. It is nonethe­



less ludicrous to argue th a t the former is a practical replacement for the latter. 

It seems th a t though a purely subsumptive control system might be implement- 

able, given enough insight into the microstructure of the behavioral fabric of a 

particular, highly complex system woven by the Brooksian behaviorist, the con­

venience of a system built by subsumptive revisionists like Bellingham et al (or 

this author) is critical, thereby allowing programmability in ways th a t the 

purely subsumptive system disallows

Clearly, subsumptive style systems have some enticing and useful attrib­

utes that make the systems robust and compliant. Each layer is independent 

and sufficient for the generation of a behavior (though not necessarily the right 

one), so a failure a t a high level does not stop the creature in its tracks; it just 

might make it behave in a less adequate fashion. The layers are more relaxed 

than say a traditional computer network, or a parallel sort algorithm. It would 

be entirely sufficient for perhaps 10% of the packets sent by one layer to reach 

their destinations a t lower layers. Thus, large amounts of time and effort on the 

part of the system are not wasted on handshaking. The effect of this is that 

higher layers do not command lower ones, they simply attem pt to influence 

them.

Tbp down is not the only direction of data flow. Albus F81] and Houk [’88] 

both argue for ascending data flows in their two quite different cerebellar mod­

els. A combined strategy consisting of ascending and descending data flows 

through a complex multi-level system is much more like the leaky but adequate 

neural channels for control found in nature than  in most engineering solutions. 

Such a technique is highly robust. Other techniques, like carefully tailored ana-



lytical ones can suffer from brittleness, a lack of adaptability, and even stability 

problems in the face of long and variable tim e delays.
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ABSTRACT

A NEURAL NETWORK BASED TRAJECTORY PLANNER 
FOR

REDUNDANT SYSTEMS USING DIRECT INVERSE MODELING

by

Franklin J. Rudolph  
University of New Hampshire, December, 1992

Redundant (i.e., under-determined) systems can not be trained effectively 

using direct inverse modeling with supervised learning, for reasons well out­

lined by Michael Jordan at MIT. There is a "loop-hole", however, in Jordan's pre­

conditions, which seems to allow just such an architecture. A robot path planner 

implementing a cerebellar inspired "habituation" paradigm with such an archi­

tecture will be introduced. The system, called ARTFORMS, for "Adaptive Re­

dundant Trajectory Formation System" uses on-line training of multiple 

CMACS. CMACs are locally generalizing networks, and have an a priori deter­

ministic geometric input space mapping. These properties together with on-line 

learning and rapid convergence satisfy the loop-hole conditions. Issues of stabil­

ity/plasticity, presentation order and generalization, computational complexity, 

and subsumptive fusion of multiple networks are discussed.

Two implementations are described. The first is shown not to be "goal di­

rected" enough for ultim ate success. The second, which is highly successful, is 

made more goal directed by the addition of secondary training, which reduces 

the dimensionality of the problem by using a set of constraint equations. Run­

ning open loop with respect to posture (the system metric which reduces dimen-



sionality) is seen to be the root cause of the first system’s failure, not the use of 

the direct inverse method. In fact, several nice properties of direct inverse mod­

eling contribute to the system’s convergence speed, robustness and compliance.

The central problem used to demonstrate this method is the control of tra ­

jectory formation for a planar kinematic chain with a variable num ber of joints.

Finally, this method is extended to implement adaptive obstacle avoidance.
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INTRODUCTION

The broad discussion of the preface infers th a t actions apparently intelli­

gent or purposeful can be synthesized by composition of a collection of rather 

primitive activities. The complex activity this dissertation will discuss is the ac­

tivity of a robotic manipulator arm. This is a classic control problem with many 

applications in manufacturing, hazardous waste management, assembly and 

manipulation of structures in space, etc.

In order to meaningfully compose primitive behaviors into complex ones, 

we m ust first decompose complex ones conceptually to know which tasks to as­

sign to individual modules in an overall system. The simplest such decomposi­

tion is to grossly decompose the complete process into three levels:

• TASK level or intentional level: This level decides w hat work space 
objects to m anipulate, and in what order, and assigns spatial 
coordinates to the  target objects.

• Primitive or elemental move level (PRIhVEMOVE): This level figures 
out how to form trajectories. It decides how to move the end effector of 
the arm  from one ultim ate target to another, and perhaps elects 
interm ediate targets between the TASK appointed ones. From here, 
joint angle trajectories are output to the lowest level.

• SERVO level: This level tu rns desired joint space commands into 
moves of the arm. It is much like a traditional tracking controller.

The method developed here the activity of the middle level. Its principal 

task is to find a meaningful mapping from the target space, i.e., locations of
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things to be manipulated, to the joint space, the space wherein the direct means 

of controlling the articulator are embedded. Many such mapping methods have 

been proposed. (See section 1.2). Some are analytical methods which are compu­

tationally expensive and require exhaustive knowledge of the analytical form of 

the model. Others are neural network based, and though they don't require de­

tailed analytical model explication, are computationally expensive because of 

the nature of the neural network models used. (See section 2.6).

Thus the middle level task decomposer niche is ripe for an implementation 

which purports to solve its problem in a fashion th a t is

• fast enough to be capable of real-time operation, and
• not dependent on knowledge of the analytical form of the  p lant 

model.

The high level (TASK) decomposer is not treated here because it may not 

be implementable by means other than  symbolic methods requiring the deep re­

cursive (back-track) search of logic programming, formal languages and artifi­

cial intelligence,

Barto [*89] subdivided modem adaptive methods into two classes:

• vector space methods and
• articulated methods.

Connectionist methods are of the former and symbolic AI methods are of 

the latter type.

Some limited back-track search capabilities Eire embodied in Sutton’s tem ­

poral difference method, and in a method proposed here, called temporal looka­

head method. (See section 6.4.2.2). Both these are arguably connectionist

2



methods, but they are certainly vector space methods. At this time these m eth­

ods don’t  appear to be general enough to implement the deep search necessary 

to tackle the TASK level, so the TASK level rem ains outside the scope of this 

work.

The SERVO level is also not treated here because th a t level has been fully 

treated by Miller et al [’86-’92].

So the purpose of my system is to perform just the middle level task de­

composition and to produce a stream  of data to send to a SERVO level system 

based on input it receives from a higher level TASK module both of which are 

external to this development.

Here, we shall discuss tha t the system’s task  be performed after a fashion 

of simply trying things in a constrained trial and error method wherein the re­

sults of nearly all trials become training instances whereby the system incre­

mentally learns how to accurately predict what joint moves are necessary to 

accomplish desired work space moves suggested by the TASK level.

W hat makes this mapping difficult to achieve is th a t the class of articula­

tors we shall discuss are redundant ones, for which no analytical means of com­

puting the required work space to joint space mapping in closed form exists. (See 

section 1.1.2). The analytical method is then doomed to some computationally 

burdensome iterative process unless a fast "reflexive" method like the one about 

to be proposed can suffice. (See page 10 and section 3.4 for discussion of the 

term, reflexive).

We shall discuss a neural network based adaptive method ra ther than  the 

well known linear adaptive methods (which would also provide a fast "reflexive"
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implementation), because the kinematic plant model is too non-linear for the 

latter to suffice.

There is a widely accepted view concerning redundant inverse models, 

which holds that training should not come from direct experience because there 

are potentially conflicting experiences in which differing inverse model inputs 

can generate the same inverse model outputs. These differing inputs may be 

widely disparate and non-linearly related, so the ir averages may actually not 

even be solutions.

On the other hand, direct training of inverse models (or controllers) for 

non-redundant systems has proven to be fast and effective, making it desirable 

to use similar techniques for redundant systems.

This dissertation will show th a t direct training during on-line learning, 

with heuristic guidance, can give fast effective adaptation for redundant sys­

tems, thereby avoiding the pitfalls just described.

In addition, we shall see that different heuristics (i.e. joint motion con­

straints) can lead to different solutions in a robot’s joint space which satisfy 

identical requirements in the hand space. Taking advantage of this property, a 

method will be developed in which spatially varying heuristics can be stored 

that can be used to provide different motion characteristics (in the joint space) 

for different regions of the operating space. Finally, this method will be applied 

to the problem of work space obstacle avoidance.

Chapter 1 discusses other authors’ approaches to similar problems.
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Chapter 2 discusses general issues related to these other approaches and 

how these issues guided me to the current development.

Chapter 3 describes an initial approach toward the end of direct inverse 

learning for redundant systems. This method didn’t  work out well, but it helped 

refine basic concepts which were later exploited successfully in the modified 

technique described in chapter 4.

Chapter 5 describes the basic obstacle avoidance problem and how it can 

be approached by modifying training heuristics.

Chapter 6 discusses near term  improvements and broad conclusions.

Chapter 7 is a synopsis of direct conclusions from the main body of the dis­

sertation and a discussion future work.

Appendix A is a more speculative and long term  discussion of future direc­

tions for this and related adaptive systems.

Several other appendices are included as support for various arguments in 

the text.
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Chapter I

Background

1.1 What Makes a  Good Trajectory
Planner?

1.1.1 The Middle Level Of Control

Path  planning for robotics is a particularly thorny problem, in  th a t it is dif­

ficult to define. Wavering et al [’88] represent path  planning as 3 levels: world 

model/task decomposition (TASK) elemental move level (E-MOVE) and primi­

tive level (PRIM). If one constructs a hierarchical model composed of these three 

modules, one will have all of the brain functions emulated above approximately 

the brain stem/spinal cord reflex level of a complex organism. The most primi­

tive reflex or servo level (SERVO) would then complete the system.

It is doubtful a t the current level of artificial neural network development 

th a t the TASK level, which might also be called the "intentional" level, can be 

implemented using other than  "traditional" (symbolic) AI techniques. Houk [*90] 

and Albus [*81] have each proposed cerebellar models of relevance to the lower 

and middle hierarchical levels. Houk talks about the cerebellum as an array of 

adjustable central pattern generators. This model gives insight into the nature 

of E-MOVE and PRIM level path planning activities. Albus has proposed and 

implemented a simple CMAC (Cerebellar Model Arithmetic Computer) neural 

network model th a t has been developed and refined here a t UNH. The CMAC 

model has proven itself to be extremely computationally efficient and exhibits 

adaptive properties. CMAC has proven to be an excellent adaptive element for 

implementing SERVO level control functions.
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In this dissertation, we shall discuss path planning as defined a t the PRIM 

level. This is exclusive of "intentional level" processing and the SERVO level 

processing as described by Wavering f88], but would include some of the proc­

essing proposed therein at the E-MOVE level. Notably, the inverse kinematics 

and redundancy resolution will be handled in this proposed adaptive model.

1.1.2 Varieties of Redundancy

A robot manipulator arm is a physical realization of a kinematic

transformation:

Under the appropriate constraints there may exist an inverse kinematic 

transformation:

X 1:

These transforms describe the response of the manipulator to joint postures and 

joint movements.

The "joint space", Hff, uniquely defines the posture of the arm, and coinci­

dentally uniquely defines the hand position1. There are n  joints in the kinematic 

linkage, and the hand space is m dimensional. One could then express the for­

ward kinematics as ^ = ^ 0 ) .

The inverse kinematics, expressed as 0 =  x \ X ^ ,  is a bit more problem­

atic. The m anipulator’s hand or actuator coordinates, X reside in the hand  

space or work space. The hand space, vC, uniquely defines the hand position, but 

not necessarily the arm posture. The hand space may be 2 or 3 dimensional, de-

1 11 is possible to define more complex hand spaces, for instance in the cases where the hand has additional
degrees o f  freedom, like orientation or the degree to which a terminal manipulator is open or closed. In 
this dissertation, only 2 or 3 dimensional positioning o f  a "point hand" w ill be considered.
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o
pending on whether the arm  linkage is planar. The issue of linkage redun­

dancy addresses whether or not this inverse kinematic transform exists.

For any configuration and any values of m,n*0, given 0 , Xh is uniquely 

defined. If m = n  the arm  is non-redundant, and the inverse kinematic trans­

form exists. If m * n, however, things get more complicated. In general, if m <n
Q

the arm is said to be redundant. In other words, for a simple linkage, whenever 

the num ber of joints exceeds the degrees of freedom of the hand, no unique in­

verse kinematic solution exists. Any arm  is called redundant if no unique in­

verse kinematic solution exists.

There are actually 2 kinds of redundancies involved in manipulators: path 

redundancy and postural redundancy. For a path redundant manipulator, m ulti­

ple paths exist between any two hand (endpoint) positions. A posturally redun­

dant mechanism can m aintain the same endpoint position for many different 

postures, or settings of the joints. A 

two link arm similar to the 3 link 

arm in figure 1.1 is only path redun­

dant. A two link arm, however, that 

has 2 prismatic (sliding) joints as in 

figure 1.2, is posturally redundant.

It seems obvious tha t the sliding 

joint mechanism may be less resis­

tan t to analysis than  one with rota- . __ ,
Figure 1.1: A 2D P lanar Redundant

Articulator

2 A planar linkage is one in which all the links and joints can be contained in a plane for all possible settings 
o f  the joint angles.

3 The term "simple" refers to a linkage in which the joints are all independent. N o  two or more joints can be  
coupled.

Hand Position 
(x,y) g
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tional joints, and yet the two link arm with prismatic joints is posturally redun­

dant as is the 3 link rotationally jointed mechanism. Unfortunately, however, 

the prismatic system is a linear system, and thus is not very interesting.

Since nearly all practical manipulators are path  redundant, for the rest of 

this dissertation, the term redundant, unless specified otherwise, will denote 

postural redundancy.

A redundant arm  system both poses and solves problems. The problem it 

solves is th a t with postural redundancy, an infinite num ber of postures of the

The target position is a linear
combination of the input coordinates.

Figure 1.2: A Prism atic Linkage 
joints is possible given a particular hand position, which gives the linkage power

and flexibility in finding paths th a t avoid obstacles. The problem it poses is that

it requires, given a hand position, th a t a posture be found via an  iterative search

or constraint satisfaction procedure, because the inverse kinematics cannot be

solved in the straightforward fashion of computing a matrix inverse as is the

case with a non-redundant arm.

It is possible to consider differential forms of these transforms: 5 ^ ” 60), 

and 60  = *(5Xh). The "path finding" problem still applies for the differential
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case which is used to describe gross movements as sequences of small move­

ments rather than  as pairs of trajectory endpoint postures and the torques it 

takes to move from one to the other.

A trajectory specified in hand space as a series of hand positions, , is a

reasonable form of problem specification. The corresponding series in joint 

space 0^ m ust be derived using whatever method is available. The objective in

the rem ainder of this dissertation is to determine a method for a solution 

th a t will have knowledge about obstacles "reflexively" embedded in a[ X ' — ►[ 0 .1h.X I

hyperspatial representation of the transform, ra ther th an  being declarative in 

nature and thus requiring th a t we execute a search whenever a solution is re­

quired. The terms declarative and reflexive in this context are used in the same 

sense as in the work of Handelman, Gelfand and Lane (Handelman rS9]). This 

is an important concept discussed further in section 3.5.

The actual solution will be to find the incremental series [60.) th a t sweeps 

out a series of postures, to generate an incremental series (S^J» given an initial
I

condition, X . , and target position X, . Tb develop the  incremental series, we 
o f

m ust develop inverse Jacobian m atrix solutions. A neural network will be used 

to learn local inverse Jacobian transformations, and the property of local gener­

alization within the network is essential for reasons th a t will be discussed at 

length.
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1.2 Previous Work

1.2.1 Degrees of O ptim ality

The term, optimal, is a relative (and often abused) term. In the following 

discussion, no attem pt will be made to describe precisely w hat quantity each 

method cited from the literature is purported to be optimal (or near optimal) 

with respect to. In some cases, like Kawato [*89, '89a]t it would be simple to do 

so, because in his case, optimality is with respect to torque exertion. In  other 

cases it is often not so easily stated. For instance Canney [*90], Korein ['85] and 

Lozano-Perez f87] treated such broad classes of problems th a t the methods 

could be said to be optimal with respect to many different measures, depending 

on the implementation. In general then, let us consider th a t each method is opti­

mal with respect to search effort within a model representational space.

A nearly optimal solution for a redundant arm  using a stochastic method 

combined with heuristic search was investigated by Mel [*89, *90], in a system 

called MURPHY. Others have solved the optimal problem in a minimum norm 

deterministic sense, e.g. Klein [’83], or a variety of constrained search methods 

(e.g. Canney [’87] and Korein [’85]) all of which are both highly computationally 

intensive and difficult to set up for any particular problem. Canney’s treatm ent 

of the generalized mover’s problem attacked a much wider class of trajectory 

planning problems than  will be discussed here.

Lozano-Perez [’87] used an A* search to find optimal trajectories after a 

geometric enumeration of all possible arm/obstacle configurations, but the meas­

ure of complexity was worse than  exponential in the num ber of degrees of free­

dom of the arm4, and the constraints placed on the arm  and work space were 

perhaps too restrictive for general applicability.
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Jordan ['88] used a constraint satisfaction method coupled with a stochas­

tic "pre-search". For a more complete discussion, see sections 1.3.4 and 2.2.1.

Kawato [’89, *90] proposed a method th a t was optimal (with respect to ex­

erted torque) within the scope of the simple trajectory model it implemented. 

The model was, however, so crude an approximation of both the tim e and space 

required for a trajectory formation tha t it was suboptimal with respect to most 

real world problems it solved. In this method time was converted to space by 

building (in simulation) a finite impulse response approximation of an  infinite 

impulse response5 closed loop system. A simulated feed-forward multi-layer per- 

ceptron (MLP) implemented each step of a trajectory (another space costly de- 

sign) and recurrent feed-forward and feedback loops provided constraints 

between time and space th a t can directly generated optimal torques. In his 

method, waypoints were explicitly clamped at any m of the n nodes in the net­

work, and the n-m  free nodes then developed waypoints th a t conformed to a 

minimum torque smoothness constraint. No means of acquiring specific desired 

waypoints was suggested, so his method (as well as Jordan's) is a different kind 

of trajectory planner than the one proposed here.

One can conclude early on in a study of the literature th a t a high computa­

tional cost and loss of generality are the price of an optimal method in this area!

k - l  2
4 H is complexity measure was O ( r (mn) ), where r  is the resolution o f  the joint encoder, k “ the number 

o f degrees o f freedom o f  the arm and m and n arc measures o f  the complexity o f  the arm and the work 
space.

5 A finite impulse response (FIR) system approximates an infinite impulse response (DR) system. A n OR is 
tike an analog feedback controller in that every input continues to affect the output response until its effect 
becom es undetectable. An FIR only considers the effect o f  an input over a fixed, finite number o f  time 
steps.

6  This is similar to the back propagation through time method advocated by Nguyen [’89] and W illiams 
[ ’89].
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1.2.1.1 O p tim a lity  Is N o t C en tra l To Success. O ther authors have 

developed methods of obstacle avoidance for path planning applications th a t are 

suboptimal. Reinforcement learning has been exhaustively studied by Barto 

[’83] and Sutton [’90]. These reinforcement learning methods can be classified 

as suboptimal because they culminate in an approximation of dynamic program­

ming, which is, when implemented exactly, an optimal method. P art of the first 

generation solution developed here involves a crude form of reinforcement learn­

ing tha t is simpler than  the method of Barto and Sutton’s work. In this method, 

a specific cost function is not modeled; ra ther an incremental response to a non­

specific punishment signal is implemented.

Bullock [’88] developed a biologically inspired approach th a t synthesized 

some of Grossberg’s neural network modeling ideas with neuromuscular junc­

tion models. In his work, it was shown th a t fixed, simple algorithms attempting 

a clearly suboptimal solution produced similar trajectories to the ones generated 

by the optimal techniques like Jordan's and Kawato’s, but with a lot less work.

Many of these suboptimal solutions (e.g. Hogan [*80, '84, '84a, ’85], Khatib 

[’85, '86], Flash [’85] and Hwang [’88]) are based on so called "potential field" or 

"impedance" methods. The potential field methods ultimately implement a 

nearly reflexive mechanism in tha t they eliminate search during trajectory plan­

ning, but they require a lot of computation to resolve the constraints imposed on 

the arm by the repellent potential fields of all the obstacles and the attractive 

fields of the targets. Furthermore, for this method to be effective, a complete and 

comprehensive world model m ust exist th a t models the locations of all obstacles. 

No means of model acquisition is proposed, and this is problematic, because tha t 

means the system either m ust operate in a benign constructed environment or
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else a complex search process m ust be used to acquire the world model tha t ex­

ists externally.

How then, do we resolve the problem of world modeling without an ex­

haustive search-based world model acquisition method?

Stopping far short of Brooks’s outright rejection of representation, if we 

could construct a robust methodology th a t operates on incomplete information, 

this would reduce reliance on the world model. This methodology could be a 

layer in a more comprehensive subsumptivq/hierarchical system. The intent is 

to model something akin to an animal’s kinesthetic sense or the reflexive obsta­

cle mapping world model of a blind person, which for obvious reasons, is incom­

plete.

We shall discuss a system th a t consists of interconnected CMAC elements, 

which can compute relaxed spatial trajectories and which uses a cerebellar ha­

bituation paradigm to adaptively learn to generate these specific trajectories 

given the right input context vectors. This system level is called ARTISTS, for 

"Adaptive Redundant Trajectory Information Storage System". A higher level 

layer of the system recognizes world-imposed constraints. Features correspond­

ing to these constraints are embedded into the hyperspatial representation of 

the robot’s kinematic coordinate system originally formed by ARTISTS. The 

higher level system is called ARTFORMS for "Adaptive Redundant Trajectory 

Formation System". This hyperspatial representation of analog features will 

largely replace the symbolic state of the world model used in symbolic AI sys­

tems which consists of discrete tokens embedded in an  articulated repre­

sentation (i.e. a digital database, blackboard, expert system, etc.). The result is 

a relaxed suboptimal search method.
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The proposed method is similar to both MURPHY and the potential field 

methods. It is a weaker planner than  MURPHY, and th is is appropriate, because 

its role is to fill a less ambitious niche th an  MURPHY’S. Unlike MURPHY, ART- 

FORMS is blind, but the ARTFORMS concept assumes th a t higher up in the hi­

erarchy, there will be more powerful, perhaps sighted, planners th a t can present 

suggestions to ARTFORMS upon which it can habituate, th a t allow it to learn 

trajectory habits th a t may violate gradient descent rules. Gradient descent vio­

lation, i.e. moving the hand away from a target for a time, is sometimes required 

to get out of local potential "wells" in which potential field methods can get 

stuck. ARTFORMS also suffers from this problem without higher level help. 

However, given the property that ARTISTS has of forming habits, good or bad, it 

will tend to persist in habitual modes of behavior until a higher level system ac­

tivity intervenes (by suggesting a violation of current rules) to change th a t be­

havior. The intervention described in chapter 3 is a  punishm ent signal. In 

chapter 4, adaptive constraint satisfaction causes a behavioral change. Input for 

other changes, external to ARTFORMS is also allowed.

So we must view ARTFORMS as augmenting MURPHY in a fashion that 

should make MURPHY-like systems more computationally efficient and robust. 

ARTFORMS is, however, proposed as a complete replacement for the potential 

field methods, because it is more efficient. ARTFORMS is in a sense more pow­

erful as well. Potential field methods settle into solutions th a t are a compromise 

among the potential fields of fixed attractive targets and repellent obstacles. 

These objects can move around, but the influences of the fields they generate fix 

the behavior of the system. ARTFORMS can adapt to obstacles and targets in a 

more flexible fashion. The obstacles have only local effects, so between local re­

gions, there is more latitude in the selection of a solution. The challenge is to
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design this system in such a way th a t this additional flexibility, which may allow 

ARTFORMS to be able to recover from some of the  potential well problems tha t 

thw art potential field methods does not become a detriment. The detrim ent tha t 

ARTFORMS risks is th a t in solving the problem in  this fashion, residual redun­

dancy is left in the problem. Controlling th is redundancy so th a t consistent solu­

tions result, while still allowing the freedom to select among trajectories, some 

of which are "dead ends", is a problem th a t is not entirely resolved in this disser­

tation. Resolution of these dead ends requires back track search, and is left to 

future work. Since the policies th a t are used to resolve the  redundancies in re­

gions not affected by the obstacles are based not on the obstacles and targets, 

but on rules th a t can easily be specified in the system of constraints and heuris­

tics used in the system, fewer dead ends are likely.

1.3 Whv This Thesis is a n  Im provem en t On  
F orm er Work

Computational efficiency is the prime motivation for this work. The poten­

tial field methods and the "classical" closed form methods with constraint satis­

faction are computationally burdensome and reliant on a relatively complete 

world model. This method suffers from neither detriment.

Since redundant arms have no unique transform in the inverse direction, 

from world to joint space, many path planners use "pseudo-inverse" techniques, 

tha t find matrix "inverses" to transform world space incremental movement vec­

tors into joint space incremental vectors, given some disambiguating constraint. 

Two problems arise in this process. First, the pseudo-inverse is computationally
o n

expensive, being a t best CKd ) complex , where d  is the square of the num ber of 

degrees of freedom. Secondly, it is not conservative, i.e., the  transform of a
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"move" in world space to joint space and back to world space may diverge signifi­

cantly (Klein f83]).

1.3.1 Analytical Methods

Reducing the dimensionality of a redundant solution does not entirely 

solve difficulties encountered in iterative analytical solutions. Consider the for­

ward kinematics of a simple 3 link arm  like figure 1.1, page 8. Some direct solu­

tions based on setting 2 or more joint increments equal and linearizing the 

differential kinematics might be used to seed an iterative solution. It would be 

unwise to do so without exercising considerable discretion, for reasons discussed 

below.

1.3.1.1 Chaos in Newton Raphson Method. Recent results from Kra­

mer [’92] indicate th a t simple iterative solution techniques like Newton-Raph- 

son may not give good results, and in fact the method could be chaotic. This 

means that the algebraic approach could require the use of higher order "quasi- 

Newton" methods like Levenberg-Marquardt, conjugate gradient, etc., a t the ex­

pected higher computational cost, and a t the expense of having to know 

accurately what the mathematical model of the plant is. This is clearly unpleas­

ant, especially for "long" kinematic chains! (And the problem is exacerbated seri­

ously by extending the method to kinetics rather than  just kinematics). In 

figure 1.3 a simple "2 sticks" problem is shown. The idea is to find the solution 

where the two endpoints are coincident. There are 2 solutions, one above and 

one below the "floor". Kramer’s results summarized in his figure 7.5 show that 

in the (a.p) phase plane there are large regions over which very nearby initial

7 Which cosi is in addition to the search cost for the world model, which is in general exponential in the size 
o f the model.
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conditions can result in different solutions. This notion of postural switching is 

discussed further in section 4.4.L1. The interesting result is th a t ju st being 

very near a solution before iteration does not necessarily m ean that solution will 

be the ultimate result. Chaotic results in a non-redundant problem like this one 

bode extremely ill for the prospects of a redundant solution using such a 

method. On the other hand, a simple, linearized pseudo-inverse may be a useful 

heuristic for ARTISTS.

1.3.2 Explicit Obstacle Avoidance is Essential

"Upper" solution

•  "Lower" solution

Figure 1.3: The 2 Sticks Problem 

Kawato's method has no explicit obstacle acquisition method. Jordan’s 

method is elegant and robust, but also lacks an  explicit obstacle acquisition 

method.
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1.3.3 C o m p u ta tio n a l E xpense

Kawato’s method simply has too much time and space complexity to merit 

further discussion as a practical system. One suspects (in the absence of sure 

knowledge of his exact implementation) Jordan’s method is also computationally 

expensive. Even if th a t were not so, there is still a front end price to be paid in 

his method tha t stems from a central thesis he holds, namely th a t direct inverse 

modeling does not work with supervised learning in redundant systems. (See 

sections 2.2.1 in addition to the next.)

1.3.4 Jordan’'s Argument Against the Direct Inverse Method

Jordan contends th a t redundant, or excess degree of freedom systems can 

not be trained effectively using the direct inverse modeling method of supervised 

learning for the following reason: if and x^ are both inputs th a t produce a de­

sired output y, then by repeatedly presenting the training pairs (y,x )̂ an d fy ,^ ), 

to a neural network during training of tha t network, the network will eventually 

learn to produce a vector, x, for which £ ( r - r . )  is minimized. Unfortunately,

in this least mean square (LMS) derivation, x is not, in general, a valid solution. 

Increasing goal directedness is Jordan’s solution to the dilemma. (See section 

2.3.)

1.3.4.1 L in e a r ity  o f  D iffe re n tia l Inverse  K inem atics . As Mel [’90] 

points out, though, inverse differential kinematics (used extensively in this 

treatise) is, by definition, linear. The discussion in Appendix C shows th a t this 

holds rather broadly, not just for infinitesimal increments. If the solution for a 

trajectory planner could be devised so as to exploit this linearity, the general a r­
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gument against the LMS x  being a solution would not hold. Otherwise, the LMS 

solution fails for MLP networks as well as for CMAC networks. With MLPs, 

however, generalization is a priori arbitrary, and only becomes determined after 

the weights converge. Since the initializations of the weights are random, con­

vergence to a final pattern may require extensive training, because the generali­

zation inherent in the initialization of the weights may not fit the geometry of 

the problem. The result is th a t geometrically "dissimilar" inputs may general­

ize. This feature of MLPs is useful in cases where one might wish "dissimilar" 

inputs to generalize for some novel, and as yet undetermined reason, i.e., when 

the structure of the model being trained is not well known. In many control ap­

plications, it would be better to use a network with a known, deterministic, geo­

metric mapping that dictates how generalization within the system's state space 

occurs. Further discussion of this topic is in section 2.6.

1.3.4.2 "R ea so n a b len G enera liza tion . Reasons for generalization 

among postures are easily determined for a manipulator. If two postures are 

close in a state space constructed from postural degrees of freedom (with a rea­

sonable metric determining closeness) then they should generalize. If they are

not close, they should not. (See 

figure 1.4).

a. Dissimilar Postures b. Similar Postures

Figure 1.4: Postural Generalization.

By containing generaliza­

tion to roughly coincide with 

differential regions around pos­

tures in state  space, the linear­

ity of inverse differential 

kinematics should favor conver­

gence of trajectory formation.
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This is because we thereby reduce the tendency to average non-linearly related 

inputs th a t are distant one from the other in the input space and yet produce 

very similar outputs. The "reasonableness" of the degree of generalization in 

ARTISTS is discussed in Appendix C, and compared to the results of section 

4.8.6.

1.3.4.3 Reasonable Input Mapping, If generalization occurs only lo­

cally within the state space, then the pair of positions in figure 1.4b should gen­

eralize, while the pair in figure 1.4a should not. It m ust be pointed out here that 

our postural mapping is not quite the same as the one usually chosen for ma­

nipulators, in th a t the absolute hand position is not part of the input vector. In­

stead, we shall use joint angles, together with the desired hand move. Details of 

this structured mapping, and the input and output vectors are described in sec­

tion 2.4.2.

By modeling inverse Jacobian matrices rather than  inverse static posture
Q

maps, the degree of redundancy is reduced , and together with the absence of 

the hand position from the input vector, this removes any geometric reason for 

the dissimilar postures of figure 1.4a to generalize, in spite of equal hand posi­

tions. Analytical means applied to this problem are well developed (Klein f83]), 

but it is hoped th a t a neural network implementation could be considerably 

faster after training than the analytical method, and with a locally optimizing 

network, should be faster even during training with on-line learning engaged.

1.3.4.4 C onvergence C riteria . The postulated conditions for which 

supervised training of a direct inverse model network will converge on a consis-

8 Because we compute m oves incrementally, not from one end o f  a trajectory to the other.
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ten t trajectory formation solution for excess as well as necessary degrees of free­

dom are: (1) on-line training, and (2) local generalization. The reason for the for­

mer is tha t on-line training during performance of trajectories favors goal 

directedness simply because only goal directed steps are presented as training 

exemplars. The reason for the latter is th a t local generalization largely prevents 

LMS averaging of highly non-linearly related trajectory step solutions.

1.3.5 Keenin& This Work In Perspective

Keep in mind th a t I am not attempting to contravene Jordan’s thesis, but 

am rather exploiting a "loophole" in his preconditions. The payback for this ex­

ploitation is considerable, namely the removal of the necessity of "pretraining" a 

forward model of the robot into an MLP before the model can even start to a t­

tack the problem of learning trajectories. My model trains on-line from the very 

start, thus acquiring the inverse model and trajectories simultaneously. (See sec­

tion 2.2.1.) If a forward model is required, th a t too can be acquired incremen­

tally and concurrently with the trajectory formation. (See section 6.3.)

This is a nice computational windfall, bu t an even deeper problem that it 

addresses is the avoidance of dependency on Jordan’s (unavoidably) imperfect 

forward model. This method also allows the equivalent of retraining the forward 

model to account for changes in its physical properties over time. Jordan’s for­

ward model might be on-line retrainable, but based on considerable study of con­

vergence and retrainability problems with MLPs, e.g. Fahlm an [*90], this seems 

unlikely. Since Jordan’s model relies on the perfection of his forward model, it is 

unlikely, if it were not comprehensively trained up front, th a t meaningful behav­

ior would emerge from training in specific trajectories with on-line training of 

the forward model engaged. This argument is carried further in section 2.6.1.
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The ultim ate goal of this work is not just to implement robust efficient tra ­

jectory formation, but to include therein an  inherent and robust obstacle avoid­

ance methodology. This is developed in chapter 5.

Finally, Appendix A tries to put this work in context relative to neurophysi­

ology, clearly a broad and speculative vista, but one which I argue portends cer­

tain advantages for the design engineer of the future.

1.3.6 Required Vindication of Results

A necessary part of this thesis will be to demonstrate th a t the underlying 

storage method, ARTISTS, stably leams trajectories presented to it. Through 

many repeated simulations, it has been observed th a t this system, with and 

without obstacle avoidance, can reliably learn consistent, repeatable trajectories.

A systematic empirical search for adequate system param eters tha t guar­

antee success and the experimental results are discussed in  section 4.8, page 

105.

A rigorous convergence and stability proof using an  analytical Lyapunov 

method is beyond the scope of this dissertation, but a discussion of a less rigor­

ous "Lyapunov-like" argument is presented in section 4.9, page 136.

A convincing demonstration of ARTISTS converging on a stable learned set 

of trajectories taken from a pathologically redundant set of such trajectories, 

will be to demonstrate th a t this method handles adequately a t least a redun­

dant model similar to the one that Jordan proposed, and th a t it can learn simi­

lar trajectories.
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1.3.6.1 Computational Advantage Over Forward Modeling.

Showing th a t ARTISTS converges on the trajectory ensemble just described is 

important because direct inverse modeling is more computationally efficient 

than forward modeling for reasons described in sections 1.3.3,1.3.5 and 2.2.1.
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Chapter II

Issues

2.1 S u perv ised  L ea rn in e

The term s "supervised" and "unsupervised" learning are ra ther vague. It is 

unclear in the context of the current literature just where the boundary line lies 

between a supervised and an unsupervised learning paradigm. In  some refer­

ences, notably Mel [”87], unsupervised models are defined as ones not requiring 

an intelligent teacher. One would suppose this to be a human, but it might more 

generally be an "artificially intelligent" automaton or agent providing the input.

More demanding theorists, e.g. Rivest and Shapire [*87], would require 

th a t even a simple "black box" like the forward kinematic transform th a t pro­

vides the essence of the ARTISTS/ARTFORMS robot simulator is considered a 

teacher, and so let us call this model a supervised learning paradigm. We shall 

then reserve the nomenclature unsupervised learning for such paradigms as Ko- 

honen maps, Grossberg’s adaptive resonance systems, etc. However, an argu­

m ent might arise th a t says such a self organizing system uses itself as teacher, 

and is thus supervised. This argument can clearly get out of hand!

Let us retain  a rather strict definition. Supervised learning is the act of 

presenting to a system of equations, or other repository of information, such as a 

memory of the discrete or "fuzzy" variety, a set of n  vector pairs, where v is 

a context or input vector and t is a target or exemplar vector. The system is exer­

cised to produce an output t, such th a t the error t - t  can be computed. An ad­

justm ent of the param eters of the system th a t produced the output is then
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attem pted to reduce the error term  over a series of n  such vector pairs. The 

usual technique is to compute a gradient and descend along the gradient to re ­

duce the squared error over the training set. Jordan [*88] gives a nice develop­

ment of the general vector description of the method. Another development is 

shown here in section 4.6.4 (page 97).

2.2 D irec t Inverse M odeling

0 (n-1)
, ,

’ r

............. p Inverse A6 (n-1)
PLANT

A x(n)
A xd (n) Model

(a) The Direct Inverse Model

0 (n-1)

PLANT

AQ(n-l)

(b) Training it

Figure 2.1: The Direct Inverse Method of Modeling 

The following discussion is based largely on descriptions of direct inverse 

modeling versus forward modeling put forth by Jordan f90].

Consider a mechanism, like a robot arm, which takes a joint position vec­

tor, 0, and outputs a hand position vector, x(Q). If we cause the joints to move by
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AG, then  we may rightly expect the hand to move by Ax. If we wish to move the 

hand (a typical robot task) by some amount, Ax, we m ust know w hat value of A0 

will cause such a hand move.

It would be nice to have a black box like the one labeled "Inverse Model" in 

figures 2.1 and 2.2 which could provide us with a reliable estimate, AG, for tha t 

desired input. Figure 2.1a shows a direct inverse system th a t has the intermedi­

ate value, AG, provided by ju st such a black box. Figure 2.1b shows how we 

would in practice tra in  such a  model. The dashed diagonal line indicates a gradi­

ent based adjustm ent of the model as is the case in other figures in this docu­

ment. The im portant feature of this method is th a t the inverse model is trained 

(or adjusted) based on direct observations of actions of the plant. This direct ob­

servation method may be term ed a world as model method.

Q,x(n~l)

pseudo-error 

(a) The Direct Inverse Model

Q,x(n-1)

A x(n)

(b) Acquiring the forward model

Inverse
Mhjlel

Forward
ModM

PLANT

Forward 
Model 

of PLANT

Figure 2.2: The Forward Modeling Approach.
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2.2.1 "Pre-training" a Forward, Model

In the case of forward modeling, a mathem atical model of the forward 

kinematics of the plant m ust be acquired. This is done by exhaustively training 

a neural network from direct observations of random moves of the plant. This 

phase should be complete before training of the inverse model can ensue. This is 

the phase term ed "pre-training" in this dissertation. During trajectory forma­

tion, the error observed between the actual plant moves, Ax(n), and the desired 

moves, Ajc j,n), is back propagated through the forward model, as indicated by 

the dashed line in figure 2.2a. This produces a "pseudo-error" signal tha t can be 

used to adjust the inverse model. For a thorough and understandable reference 

on back propagation. (See Wasserman T88], chapter 3.)

The direct inverse model can be trained earlier in the process, based on di­

rect observation of the plant, and so constructs the inverse model faster than  the 

forward modeling method. However, Jordan argues th a t the forward modeling 

method is goal directed and as such can, via the gradient descent in figure 2.2a 

adjust the inverse model to solve for a particular solution out of a myriad of 

many-to-one solutions. In general, the direct inverse method can not find tha t 

solution, as was discussed in section 1,3.4.

In this dissertation we shall see, as mentioned in section 1.3.4.4, th a t local 

generalization and on-line learning capabilities of the CMAC allow a solution to 

be found via direct inverse modeling. We shall also discuss methods to force di­

rect inverse modeling to be goal directed, both by the use of goal directed heuris­

tics and by the use of constraint satisfaction. A discussion of the important 

aspects of CMAC are found in sections 2.5 and 2.6.
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2.3 G oal D irectedness

Direct Inverse modeling is not goal directed. W hat this really means is 

tha t it is opportunistic, in tha t it simply learns from what it observes. A goal di­

rected method tends to force the system to behave in  a m anner th a t reliably re ­

duces some goal oriented error metric. An example of such a metric is distance to 

target, direction to target or postural configuration, i.e. the relative magnitudes 

of an articulator’s joint angles.

It is true th a t if a direct inverse system only trains randomly, without re­

gard to any goal (as is the case in forward model "pre-training") there is no ten­

dency to favor goal directed moves over goal divergent ones.

The direct experiential nature of direct inverse modeling assures th a t ex­

emplars match the plant exactly; this should favor convergence on a repre­

sentation th a t is a true plant model more rapidly than  an  indirect method (like 

forward modeling) could achieve. By contrast, indirect methods, though they can 

be crafted to m aintain fidelity to goals, and may be better a t adhering to goal di­

rected policies, they may have desired ra ther than  actual observed moves 

latched into the inputs during training. Thus these indirect methods will not 

only capture a true plant model more slowly, but in fact may risk attempting to 

train  based on impossible actions (which is clearly not an  efficient thing to do). If 

we can force strong goal directed policies th a t are efficiently computable upon 

the direct inverse method, an all around better solution is likely.

Chapter 3 will discuss the use of goal directed heuristics, and chapter 4 the 

use of constraint satisfaction to impose goal directedness on the system. In
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short, it will be argued tha t it is the use of constraints in Jordan’s method th a t 

provides goal directedness to a larger extent than  the use of forward modeling. 

Furthermore, if the goal directedness influences what the direct inverse model 

uses as training exemplars, then the same resultant success should be achiev­

able by direct inverse modeling.

2.4 The Problem  S ta tem en t

The central problem this dissertation project addresses is th a t of how to 

control the trajectory generation of an arbitrarily long planar kinematic chain. 

The system is a simulation of a simple planar robotic arm, and the software is 

described in detail in Appendix F. The arm may be redundant or non-redundant. 

The object in each experiment is to start with an initial posture and generate a 

sequence of unit length hand moves tha t moves the hand from th a t posture to 

within a unit distance of a target. This action is called one path segment. More 

path segments are dictated by specifying multiple targets. The path segments 

can be chained by moving the hand along segments extending from target to 

target or they can be executed radially by always starting from the original 

(home) posture. The difference between the trajectories in these two cases be­

came a pivotal concern in this study.

During execution of these experiments many conclusions were derived 

subjectively from observing the arm  in motion and other conclusions were de­

rived from studying the error metric data files the program wrote out during 

execution.
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2.4.1 A Brief Synopsis of the Software Solution

More details are in Appendix F. An initialization file containing x  = y  

statem ents where x  is a variable name and y  the desired initial value is read in 

and in te rp re ted  by the simulator program. Over 50 system param eters can be 

adjusted in th a t fashion so experiments can be ru n  without recompilation. 

Drawings of the arm  are generated automatically in PostScript, and error data 

logged into a series of data files. These files contain logs of error metrics written 

out at the end of each "path segment". Up to 40 targets have been implemented 

in long sequences of experiments crafted by creating multiple initialization files 

and executing the program, "ARTFORMS", once for each initialization. These 

initialize and execute sequences were chained together in batch files, so that 

overnight runs could generate large collections of data for later analysis. These 

data were then used to determine adequate system parameterizations to meet 

the desired criteria of

• Paths th a t were nearly rectilinear in the  work space.
• Minimal convergence tim e in epochs. (1 train ing  epoch = 1 

path  segment).
• Minimal RMS error in postural constraints.
• Minimal CMAC memory saturation. (See section 4.8.2.7).
• Completion of the experiment (i.e. not getting stuck in 

unrecoverable postures).
• Avoiding mechanically disadvantageous postures.
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2.4.2 The Details of the ARTISTS Maomnsi

ARTISTS is implemented to store trajectories for a 2D planar arm  as 

shown in figure 2.3. We shall discuss the minimally redundant, 3 link, 3 joint 

case here, but experiments with other humbers of joints have been conducted.

The three joint angles are a, p , and 7. The forward kinematic transform, % 

is straightforward1,

x = T  * cos(a) - H * cos(a+P) + F * cos(a+p+7)

y = T  * sin(a) - H * sin(a+p) + F * sin(a+p+7).

No attem pt to model the ki­

netic response of this robot arm was 

made. The kinematic response is 

suitably non linear, to demonstrate 

th a t CMAC is a sufficiently powerful 

computational model to solve a hard 

supervised learning problem. The ex­

tension to kinetics is a straightfor­

ward m atter of increase of 

dimensionality.

A CMAC implements a mapping: X 1: (a,P,7,6r ,5y ) -* (5a,5p,&y), where 

all are the obvious quantities, except (6x, 6y), which will be treated  as a unit vec­

1 With perhaps misguided anthropomorphic intent, the symbols were intended originally as F -  forearm, H 
-  humerus, and T -  torso.

Target

Hand Position N 
(x.y)

P

Figure 2.3: Simple Redundant P lanar 
Articulator
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tor along a desired trajectory. So the input vector provides a desired straight- 

line trajectory direction, along with the current joint posture in order to excite a 

response, and the learning will tra in  in the observed response a t the actual ob­

served trajectory step. Forcing the steps to be unit vectors results in an  attem pt 

a t a constant velocity solution, and simplifies the input addresses for a more 

uniform input mapping -- only orientation information is contained in this 2 di­

mensional component. For obstacle constraints, the input vector might be 

changed to include 2 dimensions for path segment endpoint location. This could 

allow radically different policies to be used for forming trajectories aimed a t 2 

different target points along a straight line separated by an obstacle.

2.4.3 The Heuristic Criteria

Let S  = (a,p,y,8jc,8y). The primary "weak gradient" heuristic rule is: If the 

CMAC returns d ? f J (S) « (0,0,0), try  a step, g  (perhaps a random one), and ob­

serve the result, S  = R ). There are 2 possibilities: the step generated an

§  -  (bx,by) component

such th a t the dot product

§  ■ §  >= 0. In  tha tx,y x,y

case, tra in  on the step 

(i.e. tra in  the CMAC at 

S. ' not a t §), but not for 

the former case, because 

it moves the hand in the 

wrong direction.

TARGET

.. i&ewed cone
HAND

Figure 2.4: Gradient Descent Critic Criterion.
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This first heuristic criterion accepts randomly generated heuristic steps 

only if they have between 0 and 90 degrees deviation from a straight line hand 

to target path. This heuristic allows the hand to deviate from the target but 

never move such tha t its distance to the target increases. A more general dot 

product critic algorithm is installed which can bracket acceptable steps by the 

generalized angles and as shown in figure 2.4. This more general crite­

rion can variably constrain the hand moves (perhaps using a spatially distrib­

uted constraint parameterization) within the "allowed cones" shown in the 

figure. Note th a t this extension not only allows heuristic steps th a t diverge from 

the target, to allow back-track searching to find a path around an obstacle, but 

can actually force such heuristic steps by setting <Pq>0. Spatially distributed

parameterizations are discussed in sections 3.3.1.2,4.8.1.1 and A .I.1.1.

2.5 Whv Use CMACs For This P u rpose?

This section discusses both historical and theoretical reasons for using 

CMACs in the current development. Afterwards, section 2.6 contrasts and com­

pares CMACs with an alternate and widely used type of neural network, the 

multi-layer perceptron (MLP), in an attem pt to strengthen this argument.

2.5.1 Historical Continuity

During the past 6 years, the Robotics Laboratory a t the University of New 

Hampshire (UNH) has conducted a series of simulations and real time studies 

probing the use of highly regularized neural network arrays called CMACs, for 

"Cerebellar Model Arithmetic Computer", inspired by the seminal work of Jam es 

Albus [’79] and David M arr [’69]. CMACs have very successfully given our in­

dustrial robot controllers and simulators the ability to perform both repetitive
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and non-repetitive actions defined by desired actions in the sensor space, while 

requiring only qualitative knowledge of kinematics or dynamics.

No exhaustive description of CMACs will be included here; a comprehen­

sive tutorial and descriptive article is Miller T90d]. Of course Albus [*81] is also 

good, but not as germane, given the specificity of the former to the problem at 

hand. Im portant discussions of generalization, quantization and memory size 

are included in section 2.6.2.2 and in the comparative discussion of generaliza­

tion for MLPs and CMACs in section 2.6.2. The CMACs used in this series of 

experiments vary from Albus’s original design in two major ways; the CMACs 

use: (1) linearly tapered receptive fields, and (2) An's optimal receptive field dis­

tribution. Both these aspects were covered in An T91]* Some experiments using 

rectangular fields were tried and though they may have been adequate for the 

system, the linear tapered field model worked better. No further comprehensive 

comparative study was engaged outside this subjective assessment. An’s ar­

rangement for 2D inputs is shown in figure 2.7, page 43.

2.5.2 The SERVO Level Controller

Tb date, the Robot Lab’s robot control systems have contained a crude fixed 

gain linear controller. This controller was completely insensitive to the base line 

or time dependent dynamic param eters of the system, and thus was incapable of 

generating anything other than  very crude, clumsy and inaccurate moves of the 

articulator arms under control. Adaptive CMAC modules, operating in parallel 

with the fixed gain controller in both the feed-forward and feedback paths, al­

lowed the system to learn the highly non-linear error function th a t emerged 

when the actual and desired trajectories were compared. The results were grati­

fying and, as the series progressed, the system was deemed completely sufficient
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Figure 2.5: Simplified Diagram of UNH SERVO Controller

for the job of on-line real-time adaptation of these brain stem (SERVO) functions

in the absence of an analytical model of the robot dynamics (Miller, et al f86 -
o

’90e]), but the problems were posed using only non-redundant mechanisms.

2.5.2.1 C o n ver tin g  F eedback  to F eed forw ard  A n tic ip a tio n . In

spite of the lack of plant redundancy, the relevant feature of the 

Miller/GlansyTCraft controller is th a t it effectively turned feedback control of a 

non-linear plant into a largely feed-forward operation; (see figure 2.5). The exist­

ence of long time delays in biological systems has forced nature to develop just 

such strategies as this. There are similarities between this method and the ones 

Houk [’90] describes. He describes a kind of evolutional^ adaptation called a 

quasi-feedforward process. In  a quasi-feedforward process there is only limited 

reliance on feedback, much of control being performed in a feedforward fashion. 

After failure, the feedback mechanism he characterizes as being much like back- 

propagation adjusts parameters retrospectively. Without the feedforward

2 See section 1.1.2, "Varieties o f  Redundancy".
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activation of this method, feedback loops controlling non-linear plants with long 

time delays could go unstable.

It may be argued tha t electronic systems are fast enough to have outgrown 

nature’s requirement here. The counter to this argument is th a t with the addi­

tion of synthetic vision and heuristic back-track search in path  planning, dic­

tated by the existence of redundant mechanisms operating in the presence of 

obstacles, such time delays in fact do occur. So this proposed method strives to 

capture this reduction of reliance on feedback in the conversion of feedback of 

observed movements into a feedforward process of movement anticipation dur­

ing path planning.

2.5.3 T he  E xistence  o f  CMAC H ardw are

In a recent development, hardware implementations of CMACs have be­

come a reality (Miller [’90b, ’90c]). The prototype hardware design developed at 

UNH has been commercially developed by Klein Associates of Salem, New 

Hampshire. The commercial systems provide sufficient speed (>1 KHz) and stor­

age capacity (1 Mbyte) for most anticipated problems in robotic control.

2.5.4 Multiple Interacting Neural Networks

The obstacle avoidance implemented in this study involves no explicit 

world model. It requires simply tha t CMACs implemented in parallel learn by 

experience the inverse kinematic transform of a simulated robot arm  with bi­

ases embedded in it to represent obstacles in a coarse fashion. The outputs of 

these CMACs blend together to generate the system’s control signal, a string 

of elemental move commands to be passed down to a servo level controller 

(like the Miller/Glanz/Kraft controller, Miller et al f86 - '90], shown schemati­
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cally in figure 2.5), which then tracks the path. The networks here m ust be 

roughly equal in timeliness, so fast convergence is essential.

Q
In ARTFORMS-1, reinforcement learning is used to tra in  a  short term  

memory (STM) of what not to do in certain contexts irrespective of why not to do 

it, but the locality around this context point in state space is important. When 

an obstacle is encountered, the system receives a non-specific diffuse punish­

m ent signal, called SLAP, which engages training in the STM whose output 

serves as a bias to the output of the long term  memory (LTM) and ultim ately be­

comes part of the training signal for the LTM. The LTM contains an  inverse4 ki­

nematic (i.e. inverse Jacobian) mapping for the arm.

ARTFORMS-2 does something similar, by using a constraint satisfaction 

paradigm, which is moderated by a STM projection tha t can alter the constraint 

equations in a meaningful way.

The STM module in either case m ust have a very high learning rate5, so it 

captures its data quickly, and in the absence of an obstacle-indicative input it 

decays by being trained using a zero valued exemplar vector, and a lower learn­

ing rate.

The LTM does not have a decay process. It simply has a continuous dialog 

presented to it, consisting of:

• the current context (current position and target position),

3 Sec section 3.4, "Reinforcement Learning".

4  It should be kept in mind that there is  no Inverse model o f  the arm kinematics because o f  postural 
redundancy, but the proposed mapping provides a non-unique mapping from desired kinematic response 
to the joint perturbations that cause such a response, and so is  'lik e ' an inverse model.

5 Learning rate, denoted by the symbol, r|, determines how fast a neural network converges on a solution. In 
other iterative methods, this might be termed 'step size'. Its value can range from 0  to 1.0.
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• what is commanded including  the STM bias and
• the resu ltan t action (feed back of the observed response of the 

system one time step in the future).

So whatever moves the robot makes, for whatever reasons, are simply ob­

served and trained into a hyperspatial representation of the robot's kinematics. 

If such an "observe and mimic" methodology can be implemented and shown to 

be a stable repository of trajectories, it will implement a localized motor pro­

gram "habituation" paradigm. It has been postulated by Albus, Marr, and Houk 

tha t this is the function of the cerebellum. This forms one argument, albeit 

metaphorical, for the use of CMACs to implement the method. More practically 

however, the properties of local generalization and fast on-line training are the 

underlying reasons. Habituation is discussed in greater detail in section 3.3.1.1, 

on page 65.

2.6 CMACs versus MLPs

It is true tha t many control systems and trajectory planners have been im­

plemented with multi-layer perceptrons. There are some serious concerns re­

lated to the use of MLPs in the current context th a t are outlined in the 

comparison of CMACs and MLPs found in this section. As with CMACs, de­

tailed descriptive treatm ent of MLPs is omitted. Many descriptions are avail­

able, e.g. Wasserman [’88].

2.6.1 Some Worrisome Properties of MLPs

My concern for the feasibility of a less than  exhaustively trained MLP used 

as a forward model stems from the m anner in which an MLP solves a "surface- 

fitting" problem versus the way in which a CMAC does.
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Figure 2. Comparative evaluation of learning rates and approximation capabili­
ties: (a) surface to be learned, consisting of two Gaussians; (b) back-propaga- 
lion net with 48 nodes in the hidden layer; (c) functional-link flat net with 48 
enhancement nodes; (d) functional-link flat net with 200 enhancement nodes. 
Learning time in (d) is 0.14 that of (a).

Figure 2.6: How an MLP Converges 
Copyright (Q  1992, IEEE Computer.

A CMAC solves a problem, quickly everywhere in state space th a t it visits 

and leaves a very low level residual error everywhere. See figure 3.5, on page 69
g

and contrast it with figure 2.6. The latter result, reprinted with permission 

from Pao and Takefuji [*92], shows the readout of a network called a functional 

link network, which is one of many variations of backpropagated MLPs, and is 

one tha t has an order of magnitude faster convergence rate  than  standard back- 

propagation. Even so, there are regions wherein the network approximation is 

highly accurate and other regions where it is quite inaccurate. So testing the ro­

bustness of such a system by applying uniform low level noise everywhere, as

6 Copyright IEEE Computer.
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Jordan  [’88] did, does not really model the inherent deficiencies of the MLP as 

system model.

An MLP can not hope to be a suitable fit for a problem unless it has "suffi­

ciently" many nodes with the "right" connections. For the general case this 

means many nodes. For the specific case it means custom tailored MLPs to fit 

the architecture, i.e., ju st the sort of thing we are trying to avoid by moving 

away from purely analytical methods.

Contrarily, robustness in the presence of low level noise is consonant with 

the manner in which a CMAC tends to solve a problem and arguments pre­

sented in section 4.8.7 tell of how CMACs in this architecture contribute to an 

innate robustness. Memory consumption and inherent noise are directly related. 

An upper bound on the worst case inherent noise a CMAC imposes on its host 

system are discussed in Appendix B, and results in section 4.8.7 indicate a wide 

range of system design latitude to allow an effective tradeoff between system 

performance and memory consumption.

2.6.2 Local and Global Generalization in MLPs and CMACs

The concept of generalization can be stated from two vantage points.

• The connectionist’s definition: The degree to which a neural 
network learns about novel situations from fam iliar ones, i.e. 
ones upon which it has been trained. In other words, if a 
supervised learning system is presented w ith exemplar x, how 
well can it predict a response to exemplar x\ which is 
purported to be "similar".

• The local ist's definition: The degree to which the  receptive 
fields of local basis function networks can overlap. W ith a 
radial basis function, th is quantity  is expressed as the radius
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of the receptive fields. With a CMAC, it is expressed as an 
integer quantity representing the num ber of discrete sta te  
space points in a receptive field, corresponding to weights 
stored in memory locations.

2.6.2.1 Deterministic CMAC Generalization. For a CMAC, these 

two definitions are more or less equivalent. If there is a large receptive field (i.e. 

many weights) then other receptive fields can share many or almost none of 

these weights. The number of weights in a CMAC receptive field is, by conven­

tion, represented by the variable, C. Since the state space points are widely and 

uniformly distributed throughout the state space, it is possible then for widely 

separated inputs to overlap, and thus generalize. If there is a small receptive 

field, the probability of two fields sharing weights is small, unless the inputs cor­

responding to the two receptive fields are very close together, hence only very 

similar inputs share weights, and thus little generalization occurs. In fact if 

C=l, we have table lookup and no generalization occurs. For the simple case of a 

one dimensional CMAC, the effect of broader or narrower generalization can be 

seen in figure 2.7, which shows how differing values of the generalization pa­

ram eter might affect function approximation of a sinusoid. Segee [*92] discussed 

how the width and profile of the receptive field affects learning speed as a func­

tion of the spatial frequency of the exemplar function. This result together with 

the observations of Appendix D will connect the methods of ARTISTS/ART- 

FORMS with previous traditional methods of non-linear control. See section 6.2.

2.6.2.2 Generalization and Quantization in CMAC. The term  co­

don representation is found in M arr ['69]. It refers to the degree of coarseness of 

the input vector coding. Coarse coding is a term  also used in reference to 

CMACs. The input vector m ust be discretized for a CMAC, and so scaled inte-
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The relative receptive Held extents 
with different generalization 
parameters for a one dimensional 
CMAC approximating a sinusoid. 
Quantization “ 1/20.

0.0

S/20

♦

An's "uniform" 
receptive field 
distributionThe spatial distribution of the 

points in typical receptive fields 
with generalization of 8, (i.e.
C-8), for an Albus-style CMAC 
with 2 dimensional input

Figure 2.7: Generalization and Receptive Field E xtent 

gers are used. The scaling can be as high resolution as necessary to assure an 

accurate simulation model. But if the resolution is very fine, the CMAC virtual 

memory space can become unworkably large. Since a change of 1 unit in this 

representation does not necessarily result in even a measurable change in the 

output of the CMAC, it is very wasteful to leave m atters thusly. In order to re­

duce memory consumption, the CMAC can further discretize an input vector to 

the degree th a t a single unit increment or decrement does produce a measurable 

output change (on average). This discretization control can be exerted in 

UNH_CMAC by using an array called qnt_vec[ ]. This vector contains in each
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corresponding component the number of units change in the input vector compo­

nent that will ensure a new weight is enlisted in (and thus an old one dropped 

from) the receptive field. This allows a simple adjustm ent on a per coordinate 

basis of discretization th a t is independent of the plant simulation discretization.
n

One unit of change a t this coarse level is called a codon unit . In  figure 2.7, for 

example, each codon unit is V20 linear units (lu). If the plant were discretized 

with 1 bit representing 0.01 lu then a codon unit would be 5 plant simulation 

quanta,

2.6.2.3 N on -de term in ia tic  G en era liza tio n  in  a n  M LP, Multi-lay- er 

perceptions, on the other hand, can exhibit very broad and almost uncon­

trollable generalization. Figure 2.8 shows a typical 3 layer multi-layer percep-

3 Layer Multilayer Perceptron 
With 2 Inputs and Scalar Output

( bias

bias bias bias

Layer 1 Layer 2 Layer 3

Figure 2.8: A 3 Layer Multi-Layer Perceptron

7 After Marr [ '69|.
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Commonly used as the "non-linearity" in multi-layer perceptrons, this sigmoid is drawn 
Tor T ■ 0.2 and the bias, b -  0.0. z is just a weighted sum of the inputs. Training is 
accomplished by adjustment of the weights using backpropagation to solve the credit 
assignment problem related to the weights. This unit will be sensitive to large values of 
z, so if the weights attached to its inputs are all large, this unit will be saturated in an ON 
state, even for modest input values. Since its derivative is also small there, its weights 
will not likely change in response to training exemplars that drive its inputs high. This 
can be interpreted as a kind of local generalization.

Figure 2.9: The Sigmoid Non-linearity 

tron. The sigmoid non-linearity of figure 2.9 is the heart of an M LFs ability to 

approximate functions or act as a pattern classifier. These two capabilities are in 

a sense equivalent operations. If a network can approximate a function, then the 

surface represented by th a t function will have closed features (i.e. simple humps 

or depressions) or open features (i.e. ridges or valleys) which can be intersected 

by hyperplanes to form boundaries of respectively closed or open decision re­

gions. Unfortunately for an MLP, the network size and interconnectivity deter­

mine the kinds of functions (or decision region sets) a particular network is 

capable of computing.

1.6.2.4 T he  M LP  a s G enera l F u n c tio n  A pp ro x im a to r . Homik, 

Stinchcombe and White [*89] showed conclusively th a t a  3 layer MLP is capable 

of approximating any Borel measurable function from n-space to m-space, for 

any n,m natural numbers. This class encompasses virtually all useful functions

M
♦
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encountered in engineering applications. They did not however define a method 

of training such a network. In other words, figure 2.8, given enough units in 

each layer, can be a general function approximator. But getting it to adjust to 

approximate th a t function is not a well defined procedure. Their argum ent was 

more general in th a t it allowed other than  sigmoid non-linearities, but con­

straining the discussion to just the sigmoid class of networks, their argument 

can be summarized as follows.

First, observe th a t one node from figure 2.8 is able to separate a hyper­

space into two half-spaces, because the input function is ju st the dot product of 

two vectors, the input vector and the weight vector, the la tter of which is the 

normal vector to the dividing hyper-plane. The transition between the two 

halves of the divided space can be as abrupt or as gentle as you please by adjust-

M ulti layer perceptron topology used by  L apedes and  Farber 
to  predict a  chaotic  tim e sequence.

VV

w,

bias “ 1.0w.

bias bias

wb2 through
bias

Figure 2.10: Lapedes and  F arber’s Chaotic Sequence 
Predictor Network
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ing the slope of the sigmoid, by changing the param eter T  of figure 2.9. So the 

orientation of the separation plane is defined by the weight vector and its dis­

placement from the center of the space by the bias weight. If there are two such 

units in the same layer, they can project onto a single unit in the second layer 

which can, by conjoining the outputs of the two units in the first layer divide the 

space into 2 open regions. If the first layer has 3 such units, only then  is it possi­

ble for the second layer target unit to enclose a convex region in the input space, 

or approximate a surface with one "bump" on it. In fact more and more units in 

the first layer all projecting onto a single unit in the second layer can define any 

convex region you please. Suppose there are multiple such groups of units in the 

first layer, and each group projects onto one unit in the second layer. Any con­

nected region (a conjoint of convex regions), or arbitrary shaped bump, or any 

disjoint set of convex regions (or collection of simple convex bumps) but not both, 

can be approximated by the target node in the second layer. The th ird  layer can 

then conjoin and disjoin regions (features) output by the second layer, which is 

equivalent to computing any arbitrarily complicated surface or function. And 

furthermore, backpropagation or a variant thereof can (hopefully) tra in  it (even­

tually).

It is these two parenthesized conditionals th a t pose the problem. We are 

faced with the prospect that there is just no good way ahead of time to decide 

how to size or connect such a network in order to perform a given job without 

undergoing a thorough analysis of the nature of the function in hand, in which 

case it is probably not necessary to use a neural network to perform the compu­

tation. So what is really needed is a generalized three layer network, which can 

reliably map arbitrary functions without exhaustive a priori analysis of the
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function, which may not be a known quantity. Throughout this dissertation, tha t 

is precisely the role in which CMAC is cast.

2.6.2.5 MLP and CMAC Equivalence. A CMAC can be shown to be 

equivalent to a three layer multi-layer perceptron, in which the first two layers 

are hardwired (i.e., have fixed interconnection weights). These first two layers 

define the topology of the function the network is capable of approximating, and 

are called hidden layers. A major problem with an MLP is th a t it m ust perform 

two jobs simultaneously: train  the hidden layers to understand the space, and 

train  the output layer to understand the function. All the hidden layers should 

be doing is dividing the input space up into local compartments. The output 

layer can then conjoin or disjoin these to form arbitrary sets of convex regions, 

and then weight these component regions to finish defining the output. The 

equivalent of a CMAC could be built using a three layer MLP if a nearly infinite 

number of sigmoid units could be connected together in a regular pattern  such 

that groups of these units could each subtend limited regions of the input space. 

Each of these little subnets would then fulfill the role of a CMAC receptive field. 

Fahlman [’90] attempted to do just such a thing adaptively in his cascade corre­

lation architecture.

2A.2.6 Local and Global Generalization in a One Dimensional 
Problem.

Lapedes and Farber [*89] wrote a paper on chaotic time sequence predic­

tion. Their network simply learned the internal representation of chaotic se­

quence generator which operated by feeding back the output of a quadratic 

logistic function as its next input. By cycling this generator repeatedly, an ap­

parently random sequence resulted. If a network observes the sequence of in­

puts and outputs of the generator and trains in supervised learning fashion, all
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Lapedes and Farber's chaotic time series experiment duplicated. The light gray arrows show the 
approximate direction of convergence of the backpropagation algorithm. This rather rapidly 
convergent experiment is a fast learner principally because it has a carefully chosen architecture, 
and weight initialization. In other words, it "fits the problem". Other initializations proved to be 
more than two orders of magnitude slower even with the same network topology.

MS Error Per Epoch

17.898361 
11590284 
9.934926 
8.574083 
7.331949

6.207622
5.205238
4.324663
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2.912544

2366761
1.932657
1.732864
1557949
1.401226

1.260756
1.135156
1.023141
0.923478
0.834997

Figure 2.11: Convergence of a Sequence Predictor 
with an MLP

it is really doing is learning a quadratic. Such a function has one smooth hump, 

and so the topology of figure 2.10 should suffice. I used an MLP of th a t topology 

and standard backpropagation, with a heuristic cycling of the  learning rate, to 

attem pt to learn the function as Lapedes and Farber had done. The results are 

seen in figure 2.11. What I discovered in the process of this effort was th a t the 

weight initialization was critical. If I initialized the weights as large weights 

with a wide variance (weights range from +/-5.0) the result was figure 2.11. 

When I used the "conventional wisdom" of small magnitude random weights
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Figure 2.12: Convergence of a Sequence Predictor 
with a CMAC

(ranging from +/-0.5) the result was th a t the function converged several hundred 

times more slowly, and the original approximation (similar to the first trace of 

figure 2.11) persisted for hundreds of epochs with only minor changes in down­

ward concavity to try and approximate the quadratic. Why might this be? I con­

tend th a t it is due to overgeneralizing during training.

If all the weights of an MLP are similar and small, then  on average all the 

sigmoid units attached to the summers will tend to be presented with weighted 

summed inputs th a t are near the centers of the sigmoid functions. T hat happens
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to be where each sigmoid has maximal slope, so gradient descent changes every 

unit on every training step. Fahlm an f90] calls th is situation herd effect. This ef­

fect is a kind of global generalization: a system-wide response to a  single gradi­

ent adjustment. Furthermore, if most weights are similar and small, then it is 

probable th a t many or all of the units will tend to respond strongly to a particu­

lar input, which is a form of global generalization: a system-wide response to a 

single input vector. Both these global generalization affects are problematic, in 

th a t they slow learning down. If the initial weights are set with a wider vari­

ance, however, then there is a higher probability th a t a limited subset of the 

units will respond strongly to a particular input, while others will ignore it due 

to having sigmoid inputs negative. If these two subnets of sigmoids units are 

driven into the saturation region, they will persist there in spite of training ad­

justm ents due to having near zero slopes. This represents a form of localization, 

or the emergence of local generalization in the MLP network, albeit a rather 

haphazard one. My final weights and Lapedes and Farber's both exhibited a 

rather broad variance.

A further slowdown of learning is caused by the fact th a t MLP weights are 

not changed after every iteration because so called incremental learning tends 

not to work well for MLPs. Rather, batch learning is typically used, wherein the 

errors encountered in the training steps are summed throughout an entire ep­

och of training exemplars, and the weights are all adjusted a t the end. The need 

for this is due in part to global generalization. CMACs on the other hand toler­

ate incremental learning well due to their innate localization capabilities, and 

this is essential to on-line learning, which requires th a t the system learn at 

every iterative step. The speed of convergence of CMAC versus MLP is dram ati­

cally demonstrated by a comparison of figures 2.12 and 2.11 wherein it can be
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noted th a t CMAC accomplishes in 5 epochs a degree of accuracy of function ap­

proximation th a t will take the MLP almost 500 epochs to match, and this is 

with a carefully crafted MLP with a particular weight initialization. With a less 

serendipitous initialization, the MLPs learning rate  slows down by up to 2 or­

ders of magnitude.

So in summary, the promise th a t "similar inputs generate similar outputs" 

that is mistakenly attributed to MLPs is in fact the m ain strength of radial basis 

functions, sparse distributed memories and CMACs, i.e. the set of local basis 

networks. MLPs "generate similar inputs" under rather ill-defined conditions.

2.6.2.7 CMAC-like MLPs. Extensions to the cascade correlation archi­

tecture (a variant of the generic MLP postulated by Fahlm an [’90]) can be de­

vised tha t can adaptively "grow" state space detectors, or locally receptive fields, 

similar to those inherent in the CMAC architecture. But this does not improve 

the time complexity problem for the MLP which still requires a complete for­

ward activation of the network. This can be so costly th a t if the  problem gets 

harder than  the simple one posed in Lapedes and Farber, notably with higher 

dimensional representations, a massively parallel computer would be essential 

for a reasonable implementation. The MLP is exponential in the dimensionality 

of the problem and number of layers while CMAC has a computational complex­

ity that is linear in the generalization param eter, C, and dimensionality. It 

should be remembered that, if the MLP is well fit to the  problem, as a modified 

cascade correlation architecture could be, and in the  end could produce some­

thing very much like the CMAC architecture, it would have some properties like 

smoothness of function representation th a t CMAC lacks. So here is grist for a 

tradeoff decision, where the detriment of computational complexity m ust be 

weighed against the need for smooth function approximation. For control appli­
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cations, where immediacy of response is often more im portant th an  accuracy, 

and as is often quoted, th a t "sign is more important th an  value", it should be ap­

parent tha t CMAC will usually win in this tradeoff decision.

2 .7  Conclusion: CMACs Are Appropriate

The results of sections 2.5 and 2.6 are summarized as follows: Since no 

neural model except CMAC exhibits the necessary speed of convergence to do 

on-line incremental learning (a requirement for real-time adaptation), and since 

only local basis function networks (of which CMAC is a kind) exhibit the neces­

sary localization property, and given the milieu of CMAC activity and experience 

in the Robotics Lab, it makes sense to study how these CMAC modules might be 

used to implement path planning  actions. The goal is obviously to provide a 

front end trajectory planner for SERVO trackers like figure 2.5 (page 36). A re­

dundant arm  will be used (for its obstacle avoidance capability). No adjunct 

fixed gain linear controller will be implemented to provided the CMACs with 

guidance as in the experiments of Miller et ai, since generalized path planning 

has no underlying linear model, it may not be very helpful to do so. The goal will 

be plan trajectories for an unknown robot configuration, given only the ability to 

observe the joint angles and hand position.
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Chapter I I I

The First Generation Solution

In this chapter, a trajectory planner is developed th a t exploits an  errone­

ous assumption, but nonetheless involves basic concepts th a t become the basis 

for the successful implementation of chapter 4.

3.1 A P review

In addition to this preview, the reader may find section 3.4.1 instructive. In 

that section, a very much simplified system called 2DTFORMS is introduced 

that is analogous to ARTFORMS, but is of lower dimensionality and hence is 

easier to understand.

source 0
source I

f' f

control
signal
(select line)

output

signal

source 0

source 1

M U X

outputcontrol
signal
(select line)

(a) A typical dataflow 
diagram  "m ultiplexer"

(b) A simplified dataflow multiplexer 
based on circuit element symbol

Figure 3.1: A Dataflow M ultiplexer
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Figure 3.2: Overview of ARTFORMS-1 

As a notational convenience, in the dataflow diagrams of this dissertation, 

the circuit symbol for a multiplexer (MUX) is used to replace a module like the 

truth-gat^Talse-gate dataflow construct of figure 3.1a. The purpose of a m ulti­

plexer is to allow alternate dataflows from one module to another th a t is control­

led by some condition. For instance, in figure 3.2, the reinforcement signal, 

SLAP, controls the training into both the short term  memory (STM) CMAC and 

the inhibitor CMAC. When the SLAP signal is dormant, the inhibitor CMAC re­

ceives a data signal of 1 as its exemplar value and is trained with a small leam-
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ing ra te1 of n =■ 1.0. Whenever SLAP is active, exemplar data  of 0.0 with a learn­

ing rate of 1.0 is gated through the MUX as an exemplar.

On the left-hand side of figure 3.2, input vectors flow in. These input vec­

tors establish a  context for the articulator th a t consists of a postural vector, £, 

and a target vector, Ah = (bx, by), consisting of direction cosines pointing from 

the hand to the target.

Direct inverse response vectors, A0, are then trained into the LTM CMAC 

near the center of figure 3.2. This CMACs output will become A0, the estimate 

of an inverse differential kinematic solution.

At the same time, a second CMAC, the INHIBITOR, learns the constant 

function, 1.0, with a small learning rate, as a function of the same input (con­

text) vectors. This CMACs output becomes a measure of the amount of experi­

ence the LTM CMAC has acquired as a function of the input vectors, and is used 

to compute a learning rate  for the LTM CMAC. In this fashion, the INHIBITOR 

causes a gradual reduction of the plasticity of the long term  memory (LTM) 

CMAC, by altering the la tter’s learning rate, or can quickly increase the learn­

ing rate of the LTM CMAC in response to an obstacle, in an effort to make the 

LTM more plastic. Without this plasticity control, the system’s redundancy 

would allow it to drift from one valid trajectory solution to another. The act of 

settling on a particular trajectory in a particular context is a form of habitu­

ation.

I Learning rate, r], is  a measure o f  step size during the iterative convergence caused by execution o f  
the delta rule. See section 4.6.4.S on page 102 for discussion o f  the CM AC delta rule.
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The method used to modify such acquired habits is provided by the rein­

forcement signal, SLAP, and its associated short term  memory, the STM CMAC. 

In its normal mode, SLAP provides a zero vector as training exemplar for the 

STM CMAC, which enforces a gradual STM decay of any information th a t was 

already in the STM. The gradual nature of the decay is a result of a small learn­

ing rate  for the STM training. If, however, a collision signal engages SLAP, the 

most recent inverse model supplied moves of the ROBOT are negated and 

trained into the STM CMAC with a large learning rate, of q -  1.0. The STM 

CMAC then emits a non-zero output to be summed into the forward activation 

supplied by the LTM CMAC as input to the ROBOT. The STM meanwhile de­

cays to zero, via the normal mode of STM training just mentioned, so this per­

turbation triggered by SLAP will be transient. During the transient 

perturbation of the model, it is assumed th a t the system will be forced to learn 

some alternate solution for the inverse kinematics. Whenever a solution results 

in collision with an obstacle, it is perturbed from th a t solution, until some trajec­

tory solution th a t is obstacle free becomes a habit in  the given context.

Heuristics are used to generate suggested moves whenever the LTM either 

has no information trained into the memory associated with the current context, 

or if the LTM’s suggested move violates goal directed conditions. The goal di­

rected conditions impose a Lyapunov-like convergence condition on the system, 

by only allowing training with exemplars th a t reduce the hand to target dis­

tance, while discarding any non-convergent moves.

Critical to this system is the notion th a t a  habituated trajectory will, in 

the redundant case, happenstantially often be appropriate to the  problem being 

solved, and tha t the weighted summer th a t mixes the outputs of the various
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sources of trajectory information can be crafted in such a way th a t the selective 

disturbance of trajectories will also be appropriate. Both these assumptions 

have proved over-optimistic.

3.2 B ack-track  S earch  is N o t a n
E xp lic it P a r t o f ARTFORM S

The ARTISTS/ARTFORMS system is a shallow search method, having no 

explicit back-track capability. It uses hill-climbing or gradient descent as its 

principal goal direction mechanism. At any point, a heuristic or adaptive move 

suggestion for what to do next is required th a t will be critiqued by a heuristic 

critic or a training critic^ based on whether or not the distance to the target has 

been reduced. If the proposed move will not reduce the distance, the suggestion 

is rejected. This criterion can be relaxed to some extent, bu t full blown back­

track search is left to be addressed by a higher level in the planning architec­

ture.

3.2.1 H ow  H eu ris tic s  E n te r  The System

Heuristic search is thus exploited and then turned into a feedforward acti­

vation process by simply presenting steps postulated by a heuristic "suggestion" 

generator. As this process progresses, ARTISTS observes each move and its asso­

ciated context vector, and trains the direct inverse LTM with th a t move as exem­

plar. This method, if viewed upstream of the  heuristic critic, is clearly not goal 

directed; this objection has been raised by Jordan r90]. If the heuristic move 

suggestions were merely randomly generated ones, serendipity would dictate 

whether any observed heuristic move would in fact be germane to the issue of 

decreasing the distance to the goal state. But if the heuristics used are goal di-

2 The two types o f  critics are described shortly.
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rected, this objection loses strength. (See section 2.3.) After the critics' evalu­

ations, goal directedness is stronger yet.

Any appropriate biasing influence, including obstacle avoidance sugges­

tions, can easily be "piped in" from AI layers, impedance control modules, vision 

systems, minimum norm optimal methods, heuristic search methods like MUR­

PHY, etc. Such sophisticated adjunct control modules are not necessary for 

merely adequate behavior. Each can simply subsume the heuristic suggestion 

generator whenever a higher level collision detector engages. In the event that 

the adequacy of this system’s behavior is deemed insufficient, higher level help 

could be blended in to the level necessary to bring the behavior's adequacy up to 

some desired level. In th is fashion a balance can be struck: only as much compu­

tational load as is minimally necessary need be added to achieve the desired 

level of competency.

3.2.2 G oal D irected  H eu ris tic s

Heuristics th a t are applied before the plant is moved are a priori heuris­

tics. Another set of a posteriori heuristics are applied after the fact by the heuris­

tic and training critics. Two types of a priori heuristics have been successfully 

and extensively used: Random flailing and the Berkinblitt synergy.

3.2.2.1 R a n d o m  F la ilin g . Whenever the system has no previously 

learned knowledge a t a particular state space location (i.e. when the LTM 

CMAC returns a near zero activation level) or if other methods have failed, n 

random numbers within certain limits are cast. These become an n dimensional 

joint change vector (for n  joints). This is not goal directed per se, bu t goal direc­

tion is imposed on the system by a critic as described in section 3.2.3, which pre­

vents the system being distracted by erroneous random moves.
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Figure 3.3: The Berkinblitt Synergy
3.2.2.2 T he  B e r k in b lit t  S vneray. The Berkinblitt synergy is based on

observations of a spinal frog's wiping reflex. (See Handelman [*90] and Berkin­

blitt [’86].) It approximates straight line hand movement with approximately 

minimal total torque exertion, which would be important in a kinetics capable 

extension of this system. The algorithm is an  approximate, qualitatively goal di­

rected heuristic th a t computes very rapidly, and presents, open loop, a sugges­

tion th a t reduces the hand-to-target distance.

3.2.2.3 D escrip tion  o f  th e  B e r k in b li t t  A lg o r ith m . The Berkinblitt 

synergy is described concisely in figure 3.3 At first glance it appears to be a so­

lution to the inverse kinematics problem, but it is not. It is simply an interesting 

rule of thumb tha t gives a correct suggestion for any one-joint-only move, tha t 

will best reduce the hand-to-target distance, but when more than  one joint is 

moved a t a time, though the result will most always reduce the distance, it may 

not do so optimally. Consider, for instance, the example in the figure. By com­
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puting the cross products shown, it is clear th a t joints a  and (J should be ad­

justed by small negative angles. Angle y should rem ain unchanged. Viewed 

statically and in isolation, each of these suggestions seem reasonable, but if a  is 

decreased slightly, it is obvious th a t a slight simultaneous increase in p best re­

duces the hand-to-target distance.

3.2.2.4 O th er  a Priori H euristics . Other heuristics, besides random 

flailing, which are more goal directed, but still more efficient th an  search or con­

strain t methods were tried, such as:

• Requiring a sufficient set of the joint angles' changes to be 
equal, so th a t the inverse problem becomes a non-redundant 
one.

• Exploiting synergies like opposite signs for selected pairs of 
neighboring joints (Hinton [’84]). This can, for instance, allow 
elbows to move while keeping the same hand position.

In fact these did not appear to be any more effective th an  random training, 

and the clear winner was the Berkinblitt algorithm. The policy th a t was finally 

implemented was to use Berkinblitt unless its suggestion was rejected by the 

critic, and then to revert temporarily to the random policy, which would always 

(eventually) succeed.

A th ird  set of policies are discussed in sections 4.2 and 5.2.2 as the pos­

tural constraint and the central obstacle avoidance mechanism. The rules used 

to devise the objective functions for these constraint satisfactions are simply 

other forms of heuristics. Although these constraint rules are designed into the 

system a prion, their application occurs concurrently with training (and move­

ment), thus their effect is neither a priori nor a posteriori.
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If more heuristic policies were available, a flexible policy could be imple­

mented tha t could intelligently select from among heuristic methods as need 

dictates. This policy could even be selected by a spatially distributed param eteri­

zation. (See sections 3.3.1.2,4.8.1.1, A.l.1.1 and A.l.1.3).

3.2.2.S R e la x a tio n  o f  G oal D irectedness: H a n d  C onstra in ts . The

heuristic goal direction is modified by changing the values of the hand con­

straint parameters <p0 and th a t were discussed in section 2.4.3. The adjust­

ment of these angles can allow the search for trajectories to proceed using 

heuristic moves tha t vary from the rectilinear hand move constraint by any ar­

bitrary amount. A very interesting qualitative result was observed: for non-re- 

dundant arms (i.e. 2 joints) any values of ip^, worked. For large values of cp^, 

the resultant search process was quite curious to watch. In those cases, the hand 

at first followed bizarre looping trajectories and seemed unlikely to settle on rea­

sonable trajectories. After a single pass around the targets, however, the arm 

settled down into trajectories th a t were nearly rectilinear and improved rapidly. 

The amount of saturation of memory went up during the peculiar looping exer­

cises in such cases. (See the discussion of memory usage in section 4.8.10.)

3.2.3 T h e  H eu ris tic  C ritic

The heuristic critic predicts (as described in section 2.4.3) whether or not a 

heuristically or randomly derived move suggestion will result in a desired de­

gree of goal directedness. An analytical model of the forward plant provides a 

perfect prediction each time, but this need not be so. (See section 4.8.12 on page 

132 and section 6.3 on page 159).

3.2.3.1 A ssu m p tio n  o f  a  N e a rly  R eversib le  P la n t, The use of the

plant as model for the critic is perfectly acceptable if there is a reversible plant.
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If the plant is not exactly reversible, it will not be a problem unless reversal of a 

move causes goal divergence tha t sweeps out completely virgin state space (i.e., 

state space th a t is previously unvisited directly or through generalization). In­

deed, it may be problematic for a physically realized ARTFORMS system if the 

physical p lant were not a t least nearly reversible for small incremental moves.

On the other hand, it may be quite acceptable to just allow the plant to 

make goal divergent moves without bothering to reverse them. It suffices to say 

tha t the current ARTFORMS-1 and ARTFORMS-2 are intended to be idealized 

limiting cases for such planning systems, hence the use of the analytical forward 

model in the critics. The development of more realistic systems is left as future 

work, with the discussions of section 4.8.12 on page 132 and section 6.3 on 

page 159 finishing the current discussion.

3.2.4 T he  T ra in in s t C ritic

The training critic is activated to critique every move th a t has been read 

from the LTM to determine if it is appropriate. The same world as model para­

digm is used for the training critic as was used for the heuristic critic. It was ob­

served in all successful simulations th a t piily during the first few segments did 

the training critic fail, so its absence is not a problem after early training. It is 

needed in two situations:

• During early training, before the  LTM converges.
• During very late training if memory has been so saturated  

th a t hashing damage occurs. Such occurs when the  CMAC 
memory is sized too small. For discussion of when the hashing 
damage is transien t and relative innocuous, see section 4.8.10.
For a discussion of experimental results using an inaccurate
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model for both the heuristic and train ing  critics, see sections 
4.8.12, and 6.3.

3.2.4.1 S te p  S iz e  C ontrol. Associated with the training critic, there is a 

need to ensure th a t hand moves are uniform length, as a cue for when to reject 

low grade data whose genesis might be an artifact of hashing collisions. To this 

end, and also to the end of providing a more uniform addressing of state space, 

any move th a t is postulated by the CMAC or the heuristic move generator is 

tested on the plant to see if it in fact generates a unit length hand move. If the 

move is outside certain limits around a nearly unit length then an iterative 

process of scaling the joint move until these limits are satisfied is executed. This 

is a flagrant appeal to the linearity of inverse differential kinematics in which 

Appendix C gives us some faith. It was determined experimentally th a t 0.8 to

1.2 were acceptable limits for approximate unit length of steps. Tighter limits 

caused too much time to be wasted in iteration. Looser limits may have been ac­

ceptable, but these limits worked well in practice.

3.3 M u ltip le  CMACs:
S o a tia llv  D is tr ib u ted  P a ra m eter iza tio n s

The concept of a spatially distributed param eterization is a crucial concept 

of this dissertation. The idea will be visited over and over again. The rest of this 

chapter describes the first generation attem pt a t an implementation of obstacle 

avoidance using this means. In section 4.4 the problems th a t led to rejection of 

the first generation solution are described. Some readers may wish to skip im­

mediately to chapter 4 and proceed to the ultim ate second generation system. 

Tb preserve the chronology of th is development, the first generation solution is 

left in. It still contains many solid concepts, especially relative to spatially dis­
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tributed parameterizations. The first such param eterization we shall discuss is 

a spatially distributed plasticity mechanism.

3.3.1 H a b itu a tio n

This supervised learning system incorporates three CMACs, trained con­

currently using the same inputs. The first one learns the inverse model. Another 

one, the inhibitor, is used to stabilize the first such th a t it robustly learns sub- 

optimal trajectories through hand space. The th ird  CMAC network is involved 

in obstacle avoidance.

A successful trajectory goes from sta rt point to target point without getting 

stuck in between, and without violating some imposed conditions. Assume that 

whenever a successful trajectory is observed it is "recorded" in the inverse model 

network. Suppose the trajectory can be reliably "replayed" by simply starting at 

a point on that trajectory and asking the inverse model network to recall the se­

quence of moves of tha t trajectory. If this can occur for any arbitrary successful 

trajectory, then the system clearly can learn sub-optimal trajectories.

3.3.1.1 The In h ib ito r  N etw ork . A good definition of habituation is the 

tendency to execute a particular action in a given context only because that 

same action or one similar to it has been done before in the same or similar con­

text.

Habituation is strengthened over time by the activity of a second, "inhibi­

tor" network, which stabilizes the inverse model network. It schedules the in­

verse model’s learning rate down in high usage regions of state space while 

leaving the rate large (i.e. 0.5 or so) elsewhere. This may not allow final conver­

gence of a particular sub-optimal trajectory, which is a desirable and exploitable
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feature of this method, because an adequate trajectory with an obstacle present 

may be far  from the optimal trajectory aimed a t the same target but without the 

obstacle. The mechanism is simple: the inhibitor is presented with the same in­

put vector as the inverse model. It is trained with the scalar response function 

r(0)=l.O. The inhibitor network’s learning rate, is small. This allows the in­

verse model network time to develop trajectories before the trajectory is fully ha­

bituated or "frozen". The larger H  the faster trajectories habituate.

Obviously selecting a value of t\.nh is critical. The inhibitor will then  output 

O£n(0)5l-O, which is used to construct the learning rate, q-l-r{0), for the next 

training cycle of the inverse model.

3.3.1.2 S tr u c tu r a lly  E q u iv a le n t CMACa. The inhibitor network op­

erates concurrently with the inverse model network and is structurally identical 

to the inverse model network, in th a t it has the same input vector, 0, as the in­

verse model (i.e. it then has the same number of degrees of freedom). It has the 

same "internal wiring", by virtue of having the same generalization, hashing al­

gorithm, and address decoding algorithm. So, instead of actually allocating a 

second CMAC, a more efficient implementation may entail including the inhibi-

a. with 0 2 5 6  b. with C*64

Figure 3.4: Effect of Generalization on Trajectories
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tion level as a fourth component of the response vector trained into the  inverse 

model network.

It may, however, be argued th a t the inhibitor network should have less 

generalization than  the inverse model, requiring a separate CMAC for its imple­

mentation. See figures 3.4a and b. For the  case of large generalization, the for­

mation of the first trajectory strongly influences the formation of the second. In 

instances where two nearby trajectories should be pulled apart due to an inter­

stitial obstacle we would want the first trajectory to influence bu t not dictate 

th a t nearby trajectories emulate its form. In other words, by making C. ^<C^tm 

we are attem pting to prevent regions tha t have been visited only through gener­

alization and not direct exemplar training to rem ain plastic longer. This notion 

of a spatially distributed plasticity measure is a central theme of this thesis and 

is one of its major original contributions. In fact, a CMAC is an  ideal tool for a 

field representation for any spatially distributed parameterization. This method 

is a significant means for increasing the power and flexibility of parameteriza­

tion for adaptive systems in general. Tb date, the only similar application is 

Moody's [’89] method of cooperative interconnection of multiple resolution 

CMACs. Moody’s method was put forth only as a learning speedup mechanism.

3.4 R einforcem ent Learning:
Modifying Habits

The ARTISTS architecture becomes ARTFORMS with the addition of rein­

forcement learning. A third, "repeller", network is subsumptively connected to 

the other two. In  the presence of a reinforcement signal (SLAP) it is trained on 

exemplars th a t are the negations of the most recent inverse model moves, and 

its learning rate is large (near 1.0). It locally inhibits the inhibitor network (i.e. 

trains it to zero, with a learning rate  of 1.0), while summing a negated move into
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the inverse model’s training example. This action, taken repetitively, overcomes 

habituation in a local area and causes the system to relearn  new trajectories 

when obstacles are encountered. Succinctly this network learns to "do the oppo­

site" of whatever was recently done th a t tended to get the system into trouble, 

as indicated by the reinforcement signal. Since the inhibitor network has been 

trained down to a near zero inhibition level in th is neighborhood, and since the 

output is summed with the training signal for the inverse model, then on sub­

sequent training passes, the reverse action emitted by the repeller is propagated 

backward and forward along the trajectory to the extent th a t generalization al­

lows. This repeller CMAC can be viewed as a short term  memory module, 

(STM). In addition to the training described above, it is being trained a t every 

visited state space point with a zero vector as training exemplar and a small 

learning rate in order to effect the memory decay necessary for an  STM. The di­

rect inverse model is a long term  memory, (LTM).

This "habituation" paradigm stops and starts convergence toward sub-op­

timal trajectories, to allow the "elbows" to migrate around, with or without hand 

disturbance, to avoid obstacles as the repeller STM’s information is transferred 

to the LTM. This allows the joint postures to naturally assume positions related 

to recently visited postures via generalization. The final result is th a t obstacle 

avoidance maneuvers eventually become part of an overall direct inverse model 

of the inverse kinematics, consisting of three networks operating in parallel. 

Figure 3.2 shows this model. It is instructive, however, to consider a simpler 

analog of the model, as follows.
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Figure 
3.5: STM 

to 
LTM 

projection

(a) STM memory before 
reinforcement training 
has been triggered.

(b) STM memory after 
a reinforcement trained 
feature is trained in

(d) LTM m e m o r y  after 
initial training

(e) LTM memory during 
reinforcemen train­
ing * no change yet.

(c) STM memory after the 
reinforcement training 
feature has decayed away

(f) LTM memory after the fea 
ture or "bump" has projec- 
ted from STM to LTM.



3.4.1 A Sim plified "Introductory" System

lb  more clearly explain the ARTFORMS system, a  system is presented 

that is called 2DTFORMS whose postural dimensionality is 2, so tha t the LTM 

can be easily visualized using plots like those in figure 3.5. Unfortunately this 

system is not posturally redundant, so it's input problem will not be a perfect 

idealization of the task tha t ARTFORMS m ust perform, but it will suffice to il­

lustrate the basic concept involved in the STM -► LTM projection. Under­

standing of this should lead to a complete understanding of the ARTISTS + 

ARTFORMS system as summarized in figure 3.10 for 2DTFORMS, and ulti­

mately in figure 3.2 of page 55 for ARTFORMS-1.

X
ob

o b

Xob

Figure 3.6: Form ation of a Feature in STM

3.4.2 A Short Term Memory Obstacle Representation

Consider figure 3.6. This illustrates a convex perturbation or bump func­

tion being formed in the STM state space around a perceived obstacle in 2-space. 

Now consider figure 3.5: the first two panels on the bottom are approximations 

of the function z(x,y)=sin(x)sin(y). The figure is actually the output, z(x,y) of a 

CMAC th a t has been trained on a limited range of (xy) inputs. By training this 

direct inverse model as shown in figure 3.8, z(xy) becomes a very close approxi-
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Figure 3.7: A 2D Non-Redundant 
Trajectory Planner.

m ation of 2(x,y), and can serve as 

an  LTM of a trajectory model. The 

trajectories th a t it can produce are 

like those in figure 3.9, which are 

phase portraits of the tim e re­

sponse of the direct inverse system 

shown in figure 3.7. The forward 

model is ju st the pair of difference 

equations shown in figure 3.7. The 

bell shaped trajectories produced 

by th is simple system take the 

state point from a negative value 

of x to a target point which is any 

point on the  right m argin of the x- 

y plane shown in figure 3.9. This 

should not be confused with any 

robotic manipulator; it is purely a 

mathematical exercise. Suppose 

for some reason we wish to disturb 

the regular set of trajectories emit­

ted by th is model. All we desire is 

th a t if the state point moves along 

the trajectory T  as shown in figure 

3.9, before the obstacle a t O is en­

countered, the system should 

change modes so as to jump to a 

"neighboring" bell shaped trajec-
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0.0

-2n X

Figure 3.9: Phase Portraits of 2DTFORMS

to avoid obstacle O whenever encountered.

tory. So the system m ust 

learn a bump function 

th a t will perturb the tra ­

jectory from T to a neigh­

boring trajectory. The 

system m ust then stably 

remember to do the same 

thing whenever it encoun­

ters a point near th a t ob­

stacle, so th a t T  and very 

nearby trajectories will all 

jump up to "higher" (in the 

phase portrait) trajectories

The difference equations of figure 3.7 are equivalent to:

*y
1 0
0 -sin(x)sin(y)

S.  , -  S.+At-Ji+l i xy

and

(3.2)

where At is the step size along the trajectory, J  is the Jacobian of the trajectory 

ensemble and S. is the ith point, (x,y) along the trajectory. Clearly there are 

many paths from (rQ,y0) to the target point (2rc,y,p). Equation (3.2) defines

adequate (but certainly not unique) trajectories meeting this criterion.
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3.4.3 Training the LTM

We may sta rt training our system with a null LTM. At every step, we train  

as we step along trajectories. In early training, performance may be erratic. In 

fact we may choose to only "think about" executing trajectories at first. In the 

event this were a planner for a physical actuator, th is would avoid damaging a 

device th a t may be intolerant of or unable to realize the  trajectories so formed. 

During this time we would then be relying on the "world as model" by actually 

computing the forward model each time, since it is easily computable. We should 

eventually arrive at a stable trajectory set, because sin(x)sin(y) is deterministic 

and single valued. At some point along the way we should be able to rely on the 

output of the LTM. Training so far has proceeded as in figure 3.8.

3.4.4 Training the STM

Suppose th a t we have a second CMAC th a t is to model an  STM. It is in­

itially null. We always tra in  the STM on the function f(x,y)=0, with a slow learn­

ing rate  of about 0.1 (for instance). This would represent a constant STM decay. 

Let us assume th a t the direct inverse training has t\=0.5. If during trajectory 

formation an obstacle is encountered, the STM is trained using as exemplar the 

function, f(x,y) = k, for constant k, with a learning rate  of to cause rapid 

formation of the STM "bump" or perturbation function as shown in figure 3.6. 

The actual feature trained into the CMAC would not be as smooth as the bump 

shown, but it should suffice as an approximation of a convex perturbation func­

tion. The important point is th a t it does not affect trajectory states anywhere 

more than  r a C codon units away from the obstacle, ( x ^  y ^ ,  where C is the 

generalization param eter of the STM CMAC. Codon unit is defined in section 

2.6.2.2.
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Figure 3.10: A 2D Simplified Analog of ARTFORMS-1 

3.4.5 Projecting the S T M  onto the L T M

Rather than  referencing the LTM, we reference LTM(j;y)+STM(j;y). At the 

same time, we tra in  the LTM based on the observed moves along the trajectory. 

In the process of this training, what happens is th a t the bump function is tran s­

ferred into the LTM in a m anner described by the time sequence in figure 3.5. It 

is critical to adjust the learning rate  during training in such a way tha t the 

bump function transfers from the STM to the LTM before the STM decays to 

zero and th a t the STM decays to zero soon enough th a t its presence in the 

summed value th a t becomes the training signal for the  LTM does not unneces­

sarily amplify the magnitude of the perturbation. It is clear th a t the weighted 

summer box of figure 3.10 is more complex than  the figure indicates! This box is 

responsible for using only the sin(x)sin(y) function as an exemplar when the 

LTM is untrained. The weighting for the summer is controlled by having a con­

text sensitive variable learning rate, nfoy)- This context sensitivity is provided 

by another CMAC. This CMAC is the inhibitor CMAC. It is trained in parallel
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with the LTM (using the same input state vector) and is trained with 1.0 as ex­

emplar function. So if INHfoy) = 0 it indicates th a t n for the LTM should be 

large at that point. If on the other hand INHfoy) = 1.0 it indicates th a t n for the 

LTM should — 0, which establishes a condition of absolute trajectory stability 

for tha t context, and other values of INHfoy) indicate intermediate values of

^inh'

3.4.6 Habituation Can Be Disturbed

When a condition of absolute trajectory stability is established a t a point, 

foy), there are still 2 mechanisms whereby the value of LTM(x,y) could be per­

turbed:

First, consider the effect of overlapping locally receptive fields along a tra ­

jectory: if a state vector (x+S, y+e) occurs during training, where 5+e < Cltm’ and 

Cj is the LTM generalization, then  training a t LTM(x+6, y+e) could affect 

LTM(^y).

Secondly, during training a t any  point, it is possible, as discussed in section 

4.3, th a t hashing collisions could cause spurious generalization th a t can, over 

time, affect LTMfcy). The former cause is not a problem, in fact it simply rein­

forces an innate smoothness constraint th a t CMAC provides the model through 

generalization. The latter cause is problematic though in th a t over time a trajec­

tory may drift due to hashing, as more and more trajectories are learned. This 

means th a t constant vigilance is necessary. The sensors th a t feed the SLAP sig­

nal can never go to sleep. As long as the physical memory is large enough, 

though, the occurrence of SLAP should, on average, decrease over time. If this 

last condition is not met, the remedy is to enlarge physical memory of the LTM.
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3.4.7 Discussion of2DTPORMS

Taken as a whole, the system just described causes trajectories th a t pass 

near the obstacle, O, in figure 3.9 to be deflected as shown in th a t figure. This 

overall behavior is very similar to the desired behavior of ARTFORMS.

By now other properties of the system become apparent:

• The magnitude of Cstm determines by how much trajectories 
will be deflected from nominal when SLAP occurs. The same 
reasoning applies here as in section 3.3.1.2 regarding how old 
trajectories can distort new ones through generalization.

• There is an innate smoothness constraint imposed on a  system 
relian t on a locally generalizing memory, because 
generalization will propagate postural suggestions forward 
and backward in time along the trajectory. This causes the 
following: after trajectory T has been learned and obstacle O is 
first encountered, during subsequent practice of T, the 
deflection will occur before the obstacle, and thus before SLAP 
occurs.

• If we th ink  of the extrapolation of th is system to a controller 
for a physical m anipulator, the  resolution of the  STM can 
probably be much coarser th an  for the  LTM, because the effect 
of obstacles should on average be less fine grained th an  the 
desired precision of the mechanism. The reason for th is is th a t 
any mechanism probably has members th a t are thicker than  
the smallest move the end point is intended to make. Thus, if 
an  obstacle affects it similarly for a given posture, it will affect 
it for postures near th a t point by a distance equal to a t least 
the thickness of the mechanical links.
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If an obstacle occurs a t (xq^  yob) the STM quickly learns to avoid it by vir­

tue of training in a convex function centered about (xq^  yQb) in the STM model. 

The radius of the function should be r  « c/2  so it can be learned virtually com­

pletely in a single training instance with learning rate  of 1.0. As the bump is 

trained into the LTM by reinforcement learning, th a t region of the  STM is al­

lowed to decay back to null by retraining it with the  exemplar function 0.0. Dur­

ing this reinforcement learning, the LTM and STM are summed to form 

exemplars for retraining the LTM. In this fashion, the LTM retains the superim­

posed image of the bump while the bump disappears from the STM.

The analogy between the simple 2D STM -* LTM projection model 

(2DTFORMS) and ARTFORMS breaks down here. Since ARTFORMS is postu- 

rally redundant, and not just path redundant, it has multiple stable trajectories 

between any 2 state points th a t can be formed and used as training exemplar 

sources, directly from the plant, whereas 2DTFORMS does not. By having to ar­

tificially rely on the analytical sin(x)sin(y) model to tra in  the LTM, the analytical 

model can not be used to train  the LTM once a "bump" has been superimposed 

on the LTM image of the sin(x)sin(y) model, because if such were the case, the 

bump would decay from the LTM just as it does from the STM.

3.5 H eu ristics a n d  H abits:
A n A ction  C om piler

The weighted summer for 2DTFORMS m ust cause the training examples 

for the LTM to be the ideal model sin(x)sin(y) whenever the LTM is immature 

and SLAP is not present, and to be the LTMfoy) + bump(o;y) if the LTM is m a­

ture or SLAP is present. In the case of the robot arm, there is no ideal function 

to refer to. Rather this role is fulfilled by any heuristics th a t are presented, deux
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ex machina fashion from a higher level. The heuristic th a t is applied may be an 

analytical solution (which is heuristic because it must, by definition, have a  heu­

ristic constraint satisfaction applied to get an  inverse solution of the redundant 

problem), or it may be supplied by an AI system th a t has common-sense rules 

embedded in a knowledge base or blackboard, or it could be random "flailing" 

around suggestions, in the event th a t nothing more interesting can be contrived 

in the current instance. This is a form of action compilation whereby difficult 

symbolic or analytic computations used to arrive a t desirable activities can be 

converted into reflexive actions. Handelman, et al [ ^ l ,  investigated a related 

method. We exploit certain properties of CMAC modules here, forming a larger 

scheme that mimics what is actually done in a cerebellum. Simply stated, an­

other central idea of this thesis is: the conversion o f heuristics into habits is an 

effective planning and learning paradigm. Tb th a t extent, this system is seen to 

be based on a biological metaphor.

Suppose tha t ARTISTS has successfully habituated on a trajectory, T l. As 

ARTFORMS tries to deform trajectory T l into T2, the system naturally  habitu­

ates on T2 by sculpting "hyper-bumps" superimposed on the trajectory forming 

hypersurface in the LTM to cause trajectories to conform to the suggestions 

passed down from higher levels, including the reinforcement signal. But there is 

more going on here — The system under control imposes its own innate ascend­

ing constraints on the system in th a t the dialog ARTFORMS observes is what 

the robot actually does in the current context, not what was requested, so 

SERVO level response limitations and physical postural limitations are auto­

matically learned by the system. (See section 4.4.1.2.) T hat is to say T2 gets 

transformed into T2\ which may have features in it th a t do not conform to the 

robot's hierarchy. This characteristic of the system is viewed as subsumptive in
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nature, in th a t ascending, lateral and descending flows of information from 

largely autonomous sources merge together in a  fashion such th a t one or more 

sources can subsume the data flow path into the control surface.

3.6 Som e C onclusions A bout The F irst  
G eneration  S o lu tion

In practice, ARTISTS was successful. Detailed experimental results are in 

the next chapter. There were problems associated with development of consis­

ten t trajectories and problems getting a reasonable implementation of ART- 

FORMS (ARTISTS + obstacle avoidance) to work a t all. These deficiencies and a 

better 2nd generation architecture, called ARTFORMS-2 are discussed in the 

next chapter.

It is important to remember th a t what the robot does m ust be similar to 

what was requested for generalization to allow any meaningful learning to take 

place. This is a restatem ent of the need for goal directedness to be present in the 

training exemplars.
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Chapter IV

The Second G eneration  S o lu tion

The failure of ARTFORMS-1 to live up to expectations led to the develop­

m ent of ARTFORMS-2. The sources of deficiencies and the necessary implemen­

tation of postural constraint satisfaction are developed in this chapter.

4.1 Preview: A Concise D escrip tion
o f the A rch itectu re

This chapter introduces a new planning method based on some of the prin­

ciples introduced in chapter 3. In this chapter, however, the postural ambiguity 

is dealt with in a structured way so that trajectory formation becomes consistent 

and repeatable.

Figure 4.1 consists of an upper region labeled ARTISTS and a lower re­

gion, th a t consists of a gradient descent computation which is used, as described 

later in this chapter, to reduce the degrees of freedom and allow consistent in­

verse kinematic solutions for generating trajectories. The upper part is very 

closely related to the ARTISTS level described in chapter 3. everything above 

the dotted line in the figure is essentially preserved from the first generation so­

lution.

Figure 3.2 on page 55 is similar to figure 4.1, with the principal exception 

th a t the latter is more detailed. A similar diagram appears in chapter 5, and 

there it will include a module th a t provides obstacle avoidance. In addition to 

the MUX elements used here, as in figure 3.2, there are also OR gates used 

where multiple control signals may affect the behavior of other elements.
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Starting in the upper left comer of the figure, note th a t a target computa­

tion generates a desired hand move (direction vector) which becomes part of the 

input stream  to MUX1 and the heuristics generator.

The training and heuristic critic modules mutually inhibit one another. 

This should only be interpreted to m ean th a t one or the other module may 

evaluate a move. Both modules would never evaluate the same move. This is be­

cause the heuristic critic evaluates moves suggested by the heuristics generator, 

and the training critic evaluates moves suggested by the LTM CMAC. The out­

put control lines from these two critics control the training signal gate and the 

heuristics generator. The control outputs are positive logic success or failure in­

dicators.

Success for the critic means a suggested move m et the current heuristic 

criteria. (See section 2.4.3., on page 33.) If the heuristic critic fails, then the heu­

ristics generator is activated, causing a new move suggestion to be generated. If 

the heuristic critic succeeds, it enables the training signal gate, allowing the 

next move of the robot (which will be the result of its trying the current heuristi- 

cally generated move suggestion) to become a training exemplar (provided that 

the training critic doesn't block its use as an exemplar).

The training critic receives data directly from the robot or a model of the 

forward mechanics of the robot, and evaluates whether a real or imagined move 

m et the current criteria for success. If so, th a t move becomes part of the input 

data for the next training cycle and the training gate is enabled.

If the LTM CMAC receives input, it will be activated to output its current 

contents of the memory vectors associated with the current context; this phase is
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called lookup. If the LTM CMAC is activated and a t the same time, the training 

gate is enabled, the training signals are gated in and a training cycle ensues; in 

other words, the CMAC is not required to output a signal, only to update the 

memory vectors associated with the current context using the  current exemplar 

observed from the robot's behavior.

The input to the robot (or robot model) is multiplexed by MUX2. Thus its 

input can come either from a heuristically generated move, or from the LTM 

CMAC. If the data comes from the LTM CMAC, a  stepsize control critic evalu­

ates the M anhattan length of the step. If it is above a threshold size, indicating 

th a t it is true data, and not just a weak collateral generalization effect or hash­

ing collision generated data, the AGC module is enabled and the step is scaled 

up to represent a near unit length in the hand space. If the heuristic critic is in­

active, this data will become the next step. If the threshold logic failed, the AGC 

module is blocked and a new heuristic step is requested by activating the heuris­

tics generator.

The lower right pa rt of the diagram performs a postural gradient computa­

tion, which supplies a training step th a t is based on the  current context (0p and 

a constant curvate arm  constraint vector, K. This module will, on every training 

step, insert a training cycle th a t attem pts to adjust the value of Ath formed from 

the contents of the currently selected LTM memory vectors, to cause Q. to meet 

the curvate constraint.
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4.2 W eaknesses o f the F irst G en eration  
Im plem en ta tion

The three weaknesses of ARTFORMS-1 are the stable trajectory problem, 

postural drift and a complete lack of goal directedness in the obstacle avoidance 

method. All these problems are discussed separately below.

4.3 S ta b le  T ra jec tory  Problem :
T ra jec tory  D rift

In both CMAC and MLP architectures there is some degree of distant 

point generalization th a t makes on-line learning problematic. Suppose an MLP 

uses a particular weight, w, in training for a posture p. The same weight, w, 

may then be enlisted during training for a geometrically distant posture, p'. This 

will require regular reinforcement of p, even when it is not an  application rele­

vant training example, ju st to prevent new training from disturbing old train ­

ing. This becomes exponentially problematic as on-line training progresses. 

Weight competition is exacerbated for reasons related to global generalization by 

the need to scale down an MLP to a minimal size for computational speed. 

Though there is local generalization in MLPs as well as global (see section 

2.6.2), there is competition for weights in response to training exemplars th a t is 

inherent in having to model large input spaces in small networks. This network 

scaling problem is central. When one considers th a t typically MLPs model doz­

ens of nodes with perhaps hundreds of weights, the problem of selecting a net­

work small enough to be practical, but large enough to prevent the weight 

competition just mentioned clearly reduces the feasibility of on-line training for 

MLPs.

A CMAC can also exhibit this kind of competition for weights, as a result of 

the hashing randomization tha t allows hundreds of thousands or even millions
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of "virtual" weights to be modeled in tens of thousands of physical weights, but it 

is a very low grade effect and only becomes im portant when the CMAC memory 

size is scaled too small for the problem. However, over time, this may cause fully 

habituated trajectories to drift. Having fully habituated, ARTFORMS-1 will be 

unable to correct this drift through further training. This sort of drift is unavoid­

able, and detection and correction of it poses a computational problem for ART­

FORMS-1.

4,4 P o stu ra l D rift

The central failing of ARTFORMS-1 was th a t it exhibited postural drift. 

When I first implemented ARTISTS, I always designed trajectories tha t started 

from a common initial posture and sequentially reached from th a t posture to 

each of the targets in turn. This method produced uniformly good results. In 

these cases, I also routinely started  the simulations from a normal curvate pos­

ture. A typical result looked like the animation panels of figure 4.2. At th a t point 

I thought ARTISTS had achieved stable trajectory formation. Then I installed 

trajectory chaining, and the trouble began!

Trajectory chaining is essential for a robot th a t is behaving in a reasonably 

free form mode and performing general tasks in its workspace. These chained 

trajectory segments have targets sequenced as in figure 4,2, bu t the targets are 

visited one after the other without the respite of returning to a common home 

position. This technique caused the system to attem pt a closed trajectory tha t 

m ust be repeatable to achieve stable trajectory formation. Unfortunately, using 

this mode of operations, ARTISTS's first results looked like figure 4.3. In tha t 

figure it is apparent th a t posture evolved over time to one th a t scarcely resem-
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Initial posture is bold gray.

a. 1st pass b. 2nd p ass

c. 3rd pass d. A fter 120  ep och s

A sequential reaching experiment without postural constraints 
genl = 64 quant = 4,8 memsize = 20K 

Final memory vector count = 756

Figure 4.2: Sequential Reaching W ithout Constraints
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b. 2nd passa. 1st pass

c. 3rd pass d. After 120 epochs

A chained trajectory experim ent w ithout postural constraints 
genl = 64 quant = 4,8 m em size = 20K.

Final m em ory vector count = 2039

Figure 4.3: Chained Trajectories W ithout Constraints
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b. 2nd passa. 1st pass

c. 3rd pass d. After 120 epochs
A chained trajectory experiment without postural constraints 

genl = 64 quant = 4,8 memsize = 20K 
Final memory vector count = 1215

Figure 4.4: Chained, Posturally Constrained 
Trajectories
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A sequential reaching experiment with postural constraints 
genl = 64 quant = 4,8 memsize = 20K 

Final memory vector count = 739

Figure 4.5: Posturally Constrained Sequential Reaching
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bled the initial posture. In reaching from the home position to any one target, as 

in figure 4.2, no such evolution had been immediately obvious.

W hat I concluded from this was th a t when approached from the home po-
iL

sition, the posture a t the i target was not necessarily the same one th a t re­

sulted from target i being approached from the i-lst target.

Panels a through c of figure 4.3 each show a single pass around the ta r­

gets starting from the home position. In each case, the initial curvate posture 

had been more or less preserved from targets 1 through 4, with angle p decreas­

ing only slightly. As the trajectory proceeded through targets 5 and 6, the pos­

ture became noticeably different and by the time path 6 -* 7 was executed, the 

posture was quite different, even though we might have expected a retu rn  to an 

earlier posture, since this path segment passed very near target 1.

I reasoned that if a stable repeatable posture existed in the closed trajec­

tory, then stable trajectory formation might result. This is what happened in 

panel d: angle p finally drifted down during 120 path segments with no return to 

any common grounded posture until it reached 10°, from which point no further 

drift was possible, because angle p struck a joint stop there. Since angle p be­

came a constant there, then in a region around th a t posture, dimensionality of 

the search problem locally reduced to 2, a non-redundant situation, which guar­

anteed a unique trajectory solution in tha t neighborhood!

This grounded the closed trajectory and prevented further drift from occur­

ring. In general, trajectory drift will continue until such a grounding instance oc­

curs. Memory use will increase too, because state space location is a function of 

posture. If posture differs slightly each time a trajectory passes through a par-
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Figure 4.6: Kinking, an  Extreme Case of Postural Drift

Normal curvate poaCure

Figure 4.7: Reversal of Curvature, Another Problem
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ticular target’s neighborhood, the posturally generated address vector there will 

differ and so a slightly different set of CMAC weights will be adjusted to have 

non-zero values. So each pass around the targets, more CMAC weights will be 

non-zero until the trajectory stably repeats.

This interpretation was further reinforced by the following evidence:

• If an initial posture like th a t in figures 4.4 and 4.5 was used, 
the resu ltan t chained trajectory always looked like panel d of 
figure 4.3 even during pass 1. This can be explained by 
observing th a t the new recumbent initial posture and the 
postures at targets 4 and 5 in panel d are similar.

• The amount of memory used by the unconstrained trajectories 
of figure 4.3 was large compared to th a t consumed by the 
unconstrained sequential reaching task  of figure 4.2. This is 
reasonable because the sequential reaching task  was grounded 
by the mechanism of starting at a common home position each 
time. The short trajectory from there to each targe t did not 
allow the opportunity for the posture to drift across large 
regions of state  space.

The postural drift observed in these 4 figures became more problematic 

with longer kinematic chains. With more joints, there was more redundancy and 

ultimately situations like figures 4.6 and 4.7 occurred. In a real robot arm the 

kinking problem can not happen for obvious reasons, but the simulator I built 

was not capable of detecting this degenerate posture. It just became mechani­

cally disadvantaged. In some cases, the kinking or reversal of curvature became 

extreme enough th a t without back track search capability, the simulation got 

stuck in a local minimum while seeking the next target and could not proceed.
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I installed a postural constraint method, which will be developed in detail 

in section 4.6. Once th a t was perfected, figures 4.4 and 4.5 resulted, in which 

case smaller amounts of memory were consumed, and postures like figure 4.4 

resulted, regardless of chaining or initial condition.

So it would seem th a t in all these cases, a t some point there is a grounding 

of the posture, by the home position for the sequential reaching tasks, and by 

the term inal drift condition of the target 4 and 5 postures for the unconstrained 

chained trajectories of figure 4.3.d. These groundings locally reduced the de­

grees of freedom of the system

Altogether, the deficiencies inferred by the preceding experiments required 

the development of a stronger methodology. T hat stronger method involves a t­

tem pting to ground the posture everywhere. This causes a reduction in dimen­

sionality similar to th a t advocated by Hogan [’92]. (See section 4.6.1.)

4,4.1 P o stu ra l F eedback .

Postural drift allows an arm  to evolve the posture of its initial condition 

into a degenerate posture. Two factors th a t exacerbate this problem are trajec­

tory chaining and longer kinematic chains, i.e., more joints.

ARTFORMS-1 operates open-loop with respect to posture and this is prob­

lematic. It results in postures drifting into mechanically disadvantageous con­

figurations from which it may even be th a t no recovery is possible within the 

constraints imposed by the critic modules. Postural feedback is imposed by the 

postural constraint satisfaction discussed in section 4.6.

4.4.1.1 J o in t  S to p  R atchetinsr. Jo int stop ratcheting was another use­

ful method of preventing degenerate postures, since even with postural con­
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straints, kinking and reversal of curvature became a problem for longer kine­

matic chains. This technique simply involved variable joint stops th a t could al­

low the arm to start out in a degenerate posture, like the starting position of 

figure 4.22 on page 134, but once the posture opened up into one th a t was not in 

violation of strictly curvate joint stops and thus was within the range of allowed 

postures, the joint stops became effective.

Consider figure 4.20 on page 130. The initial posture was highly enfolded. 

Some joints were 10°, while other were > 180°. The ratcheting condition said 

tha t once the posture extended into a curvate form such th a t all joints (except 

the base, which is a free variable) were set such th a t 90° ^ 0 £ 180° then 90° and 

180° became hard lower and upper joint stops. The upper limit effectively pre­

vented reversal of curvature and the lower limit (remarkably) prevented "kink­

ing". The reason for this result is simply th a t the joints stops blocked any 

adaptive moves tha t descended the postural gradient in the "wrong direction". 

The reason for needing the 180° ratcheted stop was th a t even with postural con­

stra in t satisfaction making solutions non-redundant, I still had to worry about 

the kinds of postural switching redundancies mentioned in section 1.3.1.1. 

Whenever joints were near 180°, the alternate solution th a t caused reversal of 

curvature became as nearly likely as the one tha t favored the normal curvate 

posture.

4.4.1.2 O bserva tions A bou t C om pliance. There are implications for 

direct inverse systems brought to light by this notion of joint stop ratcheting 

that deserve mention. When the joint stops prevent incursion into a postural 

"forbidden-zone", if the robot repeatedly tried to enter th a t zone, excessive wear 

could result. But by using direct inverse modeling, the robot will never, under
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adaptive control, try  to train  a move into th a t forbidden zone. Since the robot 

can not do it, the direct inverse method can not train  such a thing into the sys­

tem. This means th a t the robot will, on average, tend to avoid the joint stops. I 

have observed th a t the arm shows no anomalous behavior upon encountering 

joint stops. The remarkable success of the 6 and 9 link arms in rapidly forming 

trajectories of curvate postured arms starting from very degenerately shaped in­

itial postures bears witness to th is state of affairs.

When a joint stop is encountered, one component of an  incremental joint 

move vector will be decreased. This means tha t a move th a t was originally pos­

tulated as a unit length step in the work space will become shorter. The AGC 

mechanism will linearly scale th a t move up. (See section 3.2.4.1). It should be 

clear then tha t longer kinematic chains will behave more nicely upon encounter­

ing joint stop impingement because the linear scaling will be more near unity 

than  for a joint obstruction of a shorter kinematic linkage.

4.5 The ARTISTS Laver Preserved

ARTFORMS-2 preserved in toto all of ARTISTS. The implementation of 

postural constraints and obstacle avoidance was added as a layer of additional 

training which merely added term s to the training of the LTM CMAC.

4.6 P o stu ra l C on stra in ts

The postural feedback mechanism tha t was mentioned before is imple­

mented by installing postural constraint satisfaction in the system. Some effects 

of these constraints are discussed.
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4.6.1 P oatural C on stra in ts D ecrease D im en sio n a lity

The central motivation for use of the postural constraint is to make the re­

dundant problem less redundant. Hogan [’92] argues th a t hum ans solve redun­

dant kinematics problems by adapting to kinematic constraints which reduce 

the degrees of freedom of the system. Though not stated  so succinctly, Jordan's 

work consists of constraint application that essentially does the same thing.

4.6.2 P o stu ra l C o n stra in ts  Increase  G oal D irec tedness

The postural constraints provide an immediate goal for the system to work 

toward. By assuring more continuity of postures along trajectories, it tends to 

force the direct inverse system to operate in state space locations similar to the 

locations of interest relative to what’s being done at the  time. In other words it 

tends to increase the overlap of adjacent receptive fields along the trajectory. 

(See section 4.8.2.6 on generalization slew rate, and section 5.2.2 concerning ro­

bustness of postural constraint training.)

4.6.3 P o stu ra l C o n stra in ts  D ecrease M em ory S a tu r a t io n

It was observed tha t for all experiments in which constrained arm  moves 

were studied alongside unconstrained experiments, with all other aspects of the 

experiments being equal, the constrained system used less available CMAC 

memory than  the unconstrained experiments.

The reason for this phenomenon is easily understood. During training, if 

the movements are constrained, then fewer kinds of different postures will be 

searched, and thus smaller regions of state space will be swept out during the 

search. Also the search will take less time, and it could be argued th a t since 

memory usage is a monotonically increasing function for CMAC, the longer 

early training takes, the more memory will be consumed.
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4,6.4 D evelopm ent o f P ostu ra l C on stra in t E qu ation s

The postural constraint equations will be developed by first stating the ob­

jective functions F\6) which are functions of the constrained angles (i.e. the ones 

other than  the base angle). Next, a positive definite (in fact diagonal) L  matrix is 

defined and the expression F ^L F  is used to develop a least squares derivation to 

arrive at the software implementation of the gradient descent equations.

4.6.4.1 The O bjective F unctions. The objective functions are just a set 

of linear constraints among the n joints. Each constraint is of the general form 

fe/0. -  The objective of each constraint is the constraint equation 

k ; Q .  -  k .  .* 0 .  ,  = 0 .i i t+1 i+l

For a normal curvate arm, all the ks would be equal, causing all the joints 

beyond the base to be more or less equal. The assumption th a t the absolute con­

dition of equality is an ideal and may not be met within the training require­

ments of the system, gives rise to the "more or less" clause. For k. * k., the two

k.
joints i and j are related by the ratio, ~r.

re.
)

4.6.4.2 M in im u m  N orm  D eriva tion . If all the joints were constrained,

including the base, the constraint equations generalize to the cyclic form

fe.-0. -  k/Qj = 0, where j  = (i+l mod n)+l. This just adds the equation

k  -0 -  k - Q ,  = 0 , for base angle 0., and nth joint = 0 . In  such a case, the sys- n n 1 1  n j
tern is overspecified, because it reduces the num ber of free variables to 1 (if, of 

course f.(Q) = 0, (V i) could actually be satisfied, where f.(Q) is the itfl compo-I I
nent, corresponding to joint i, of the vector function F(0)). This is unnecessary 

and in fact undesirable, because if the constraints are always converged upon
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by gradient descent, the solution will never settle down, because eventually, for 

a fixed learning rate, a limit cycle will always be reached. On the other hand, if 

we heed Jo rdans suggestion and use a declining rate  to achieve a so called mini­

mum norm solution for all these constraints, then ultimately we will have 

thrown out the postural feedback mechanism th a t this whole effort was all 

about! Clearly it is not desirable for on-line learning systems to have as a goal a 

system th a t operates open loop with respect to any important param eter. If the 

system were ultimately intended to reach stasis, and every param eter of the sys­

tem fixed forever because we have exhaustively learned the system, th a t might 

be a good time to consider such a reduction to open loop operation, but th a t is 

not what we are trying to do here. At the risk of being tedious, I might suggest 

another spatially distributed parameterization to allow the learning rate  for a 

minimum norm derivation to be tied to the experience level of the system as a 

function of state space location. (See section 3.3.1.2.) My efforts to implement 

minimum norm tended to reach a state of rather bad postural oscillation, which 

is what the above discussion predicted for a large constant learning rate, so the 

method tha t has as its goal an exactly specified system was finally chosen for 

ARTFORMS-2.

With this goal in mind, consider the following expression for the constraint 

equations:

(IK - I  K) 0 = 0 where I  is the  first superdiagonal identity m atrix
S S

and K  is a diagonal m atrix  where K.. -  k..

In other words,
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(4.1)

(4.2)

Now, define L  =

'  A . ,0 ... 0  '

0  X. ... 01
0  0 .. . 0

0  0 ... Xn /,

as a weight m atrix for the constraints.

Setting any A.. = 0 ignores constraint i. The complete set of constraint equations 

can be concisely expressed as

W ) L  = (I  -  /  )KQL = 0s

X (k  0 -fe.) rr n n V

(4.3)

Now we m ust specify the L matrix. The base angle is set off as being quali­

tatively different in th a t it is grounded. So it seems a logical step to allow it to be 

a free variable and let the other n-1 joints be related by F(0)L.
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Letting f.(Q) be the components of F(Q), then every X. th a t contains 0,I t 1

should be set to 0, all others are set to the relative importance of the constraint 

to which they correspond. Therefore, X.=0 for i = 1 and n.

4.6.4.3 C om autinst the  G ra d ien t o f  th e  O bjective F unction . This 

section describes the gradient of the objective functions and how to train  the 

CMAC to incorporate an additional level of training to respond to it.

Constructing the least squares form of the functional (i.e. set of objective 

functions) as F^LF, we recall tha t the complete derivative of this form is

So the gradient of the functional, V JF“ 2 F L  — , and adjustm ents to the
0 Gt0

joints to enforce the postural constraints will be: 60 - -  q c’ VQf^ 0 ) , where nc is a

constraint learning rate not to be confused with the CMAC learning rate  q. In 

fact, on the assumption that X. = X. = X , for all i j  * 1 and i j  * n , then X can be

factored out leaving 60 = -  X .

Now observe th a t since all the constraints are linear, from equation 4.3 we 

can derive the Jacobian matrix,
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dF
de

fel ~k2 0 ... 0 1

0 k2 -*3 - 0

0 0 *3 - 0

0 0 0 ... -k n

- fel 0 0 ... kn J

-  Q K - i p (4.5)

So, substituting equation (4.5) into equation (4.4), we find th a t

0

“V 2

k J  0-k  - f  ,n-1 n-2 n-1 n-1
k f  i n n-1

(4.6)

Substituting = fe.6. -  fe.+10i+1 into equation (4.6), we finally get the form,

0

50 = - XV QF- -X

^2^292
W 2‘ 2W W

fe4<fe3e3 '2fc484+W

k Ak  o0 „-2fe .0 .+& 0 )n-1 n-2 n-2 n-1 n-1 n n '
(k .0 *~k 0 )n n-1 n-1 n n

(4.7)

•thIn the implementation of equation 4.7, note th a t the leading k. in each i 

term  of the 60 vector simply provides an additional weighting on each of the 

term s in the vector. It is unclear at this point whether it would m atter if the fac­

tored out leading coefficients were all set to unity, leaving only the ones inside 

the parentheses variable. Experiments seemed to indicate th a t this would not
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matter, but the extra computational burden of leaving them  all variable is so mi­

nor th a t we may as well stay with exactly equation 4.7.

4.6.4.4 A pp ly ing  the  G ra d ien t o f  th e  O bjective F u n c tio n . In this 

section, the actual method used to incorporate the system’s training is discussed. 

In figure 4.1, page 81, there are 3 training sources impinging on the direct in­

verse CMAC: direct inverse, postural and smoothness. These are listed here in 

order of application. The method used is to train  each separately. The nature of 

the delta rule (first seen in figure 3.8) shows each training instance to be a sum­

mation into the direct inverse model. Jordan [*88] and others describe con­

straints used in gradient descent training being arbitrated by simply forming a 

training term th a t is a sum of constraint terms. Adding new constraints means 

adding new terms to the negative gradient expression. This is equivalent to the 

separate application of each training step as discussed below.

The smoothness constraint discussed in section 4.7 was never actually im­

plemented. These experiments worked adequately without it, but its inclusion 

may have shortened the training time required for long kinematic chains.

4.6.4.5 S tep  1: th e  D irect Inverse  T r a in in g  S tep . The following dis­

cussion is embodied in the C file try21em.c (which is excerpted in Appendix F). 

As a first principle, the delta rule is reprinted (and paraphrased) from figure 3.8:

( A ^ - A 0 )  n 
Aw  ------- ^ -------  (4.8)

This rule is applied twice. The first application is the direct inverse training 

step, with AT = A0, where A0 is is the observed change in the robot’s joints and 

A0 is the direct inverse estimate already present in the CMAC at the current
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state space point. This operating point is defined by the input vector, inp_vec[ ], 

which is used to activate the robot to generate this change in  joint angles. Aw is 

automatically generated and added to the weights of the receptive field by a call 

to the function, learn(int cmac_id, int inp_vec[ ], in t de ltajo in tf ], int eta), 

provided by UNH_CMAC. ( delta jo in tf ] is A0 during training and A0 after 

lookup.)

4.6.4.6 S te p  2: th e  P o stu ra l C o n stra in t T r a in in g  S tep . In the sec­

ond, or constraint satisfaction step, the delta rule is applied to cause the learned 

A0 to be adjusted to favor the postural constraint satisfaction. In this step the 

negative gradient of F, 80, is used so AT -  A0+50. The details of the second 

training step involve recalling A0, given the same inp_vec[ ] as a t the just com­

pleted direct inverse training step, via a call to the UNH_CMAC function 

rembr(cmac_id, inp_vec, deltajoint). Now delta_joint[ ] is modified by a call to 

the function SatisfyPosturalConstraints(0), This incorporates equation 4.7. For 

now, just consider kv[ ] to be the diagonal of the constant K  m atrix of th a t equa­

tion. In section 5.2.2, this vector becomes non-constant, so the code th a t manipu­

lates kv[ ] may become clearer after studying th a t section. The purpose there, as 

will be seen, is obstacle avoidance.

So now the A0 vector is modified to favor the arm  posture embodied in K  

and equation 4.7. That is A0 -  A0 + 50. All th a t remains to complete the  job is a 

call to leam () just like the one in section 4.6.4.5 which trains with the new A0 as 

exemplar. A similar sequence of steps could be performed to learn the temporal 

constraints discussed in section 4.7.
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4.6.4.7 R o b u stn ess  o f  C o n s tra in t T r a in in g  W ith  R espec t to
Learn insr R ate. The system was not overly sensitive to the

value of X discussed above, which contrasts with most gradient descent based

methods in the past. This issue is discussed further in section 5.2.2.

4.7  A Discussion of Temporal Constraints

It has been previously argued in sections 3.4.6 and 3.4.7 th a t the overlap­

ping receptive fields CMAC provides neighboring trajectory steps imposes an 

implicit smoothness constraint on trajectories. It is a simple extension of the 

system (not implemented a t this time) to add the explicit smoothness constraint 

shown in figure 4.1 and 5.1 on pages 81 and 143, respectively. This would entail 

saving the "last" incremental joint move learned during the previous trajectory 

step and using it as a training exemplar at the current step. The learning rate 

used for this training instance would be like a momentum term  parameter. A 

large learning ra te  would prejudice the system to strongly favor the same action 

as was recently taken. A stiffness term  can be added by training an incremental 

joint move that favors the posture of the previous time step rather than  the 

move of the recent step. Neither of these are implemented, but would make in­

teresting future work.

Sutton’s temporal difference method applies such temporal constraints, 

but requires back-propagation of errors through an analytical* model. There is a 

variation on the temporal difference method I call n th  order temporal looka­

head, th a t may be useful to parameterize systems capable of performing back­

track search in a reflexive manner. Ideas concerning this as future work are 

discussed in section A. 1.1.2.

1 A multilayer perceptron is an "analytical” model o f  sorts, though not directly a model o f  the plant.

104



4.8 E xperim ental R esu lts

This section describes the method of selection of the system gross parame­

terization, discusses the error metric formulas, and makes conclusions about the 

adequacy of the ARTISTS system with respect to robustness from a number of 

different vantage points

4.8.1 S e lec tio n  o f  A d eq u a te  P aram eters

This section discusses how the gross system param eterization (i.e. settings 

for generalization and quantization) were evaluated to find nearly optimal para- 

meterizations.

4.8.1.1 D e fin itio n  o f  Gross P a ra m e ter iza tio n . A system parame­

terization includes all possible parameters tha t characterize the physical system 

and the problem it solves. Among these for an articulator are number of joints, 

linkage lengths, and even the adaptive values in the neural networks, which are 

viewed as fine grained variable parameterizations. Much of this dissertation 

talks about a spatially distributed parameterization stored in the latter. In  order 

for the networks to provide a reliable mapping, the network’s gross param eteri­

zation must be appropriate. This parameterization is defined as an ordered 

quadruple, P  = (C, q ^  q^ M), where C = generalization, qh = quantization of 

the hand space target direction vector part of the input vector, q. = quantization 

of the joint components of the input vector, and M  = the physical memory size, 

in vectors. It seemed highly appropriate to have different values of qh and qy 

but probably unnecessary to distinguish the individual joints’ quantizations one 

from the other. The directed search used to find an adequate parameterization 

involved about 250 experimental setups. Varying quantization on a joint by joint 

basis would have had an exponential effect on that search.
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4.8.1.2 M em ory S ize . The physical memory size is clearly an important 

system parameter. Large memories of > 20,000 vectors seemed to always be 

adequate. Small ones of < 5,000 vectors usually gave poorer results, but it is im- 

pprtant to pick a minimal adequate memory size based on the problem, so data 

has been collected over a wide range of memory sizes. A consideration of innate 

noise tha t is related to memory size is discussed in section 4.8.7.

4.8.2 T he E rror M etrics

During execution of trajectory formation for an 8 target, repetitive trajec­

tory ensemble for a 3 joint redundant arm, several error metrics were tracked. 

These data were written out to files during trajectory formation, a t the end of 

each path segment. The experiments all ran  for 1000 path segments.

Each metric was computed as a root m ean square or absolute summed 

value as appropriate, and scaled by dividing by the path segment length, so tha t 

the error function became a density function over the trajectory. Each was also 

scaled and offset so the error functions could be plotted afterwards on a CRT for 

visual evaluation. A comprehensive visual review of all the data allowed several 

settings to immediately be disqualified. Beyond that, the visual inspection 

method became too ambiguous, so a batch evaluation method was devised.

The data were then all assumed to eventually reach steady state. Under 

the steady state assumption, each error metric, for each experiment, had its 

mean and variance computed over the last 100 path segments.

All trials th a t resulted in  a non-zero heuristic step density after the first 

100 epochs were disqualified. The means and variances were entered into a 

spreadsheet, so tha t all 250 experiments could be evaluated. The importance of
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each error metric was weighted and the means and variances of the error met­

rics were sorted in tu rn  for each metric. The top 11 experiments for each ranking 

were selected and the conjunction of the top ranked sets were subjected to a 

weighted sum test to determine a best parameterization for all the experiments. 

Details of the rankings are discussed in section 4.8.4.1.

From this final list emerged 4 candidate parameterizations, P j  = 

(32,4,8,M), P 2 = (32,8,8,AO, P g = (64,4,4,AO and P 4 = (64,4,8,Af). Next, a se­

quence of experiments was run  in which the means and variances for each P. 

was determined for a wide range of Af. The plots in figures 4.8, 4.9, 4.10, and 

4.11, plot several important metrics, and the important point to note is th a t in 

general the system is robust with respect to physical memory size, with poorer 

performance for smaller memory size, and better for large. However, for reason­

able memory sizes > 10,000 vectors there is virtually no difference in the per­

formance metrics for a good parameterization (like P 4> for instance).

Figures 4.8 and 4.11 seem to be problematic, though. In these figures 

there is a curious dependence on memory size. An increase in physical memory 

size should in all cases make the average error metrics go down. But these para­

meterizations did not conform strictly to tha t rule. Section 4.8.9 will discuss in 

detail an explanation of this phenomenon.

Below are detailed definitions of the error metrics used to evaluate the 

adequacy of gross system parameterizations.

4.8.2.1 P o stu ra l E rror D ensity. This metric computes the summed 

difference between the posture at each step and w hat is desired. In other words 

the RMS sum of the postural constraint objective functions. The factor of 1/10 

compensates for the 1/100° scaling of the input mapping.
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pahtaipli

4.8.2.2 J o in t  E ffo r t D ensity. This metric measures the RMS value of 

the total joint angle increment at each step.

e =
path -  i-1
£  [ £ ,  ( A 6 j / ]  (4.9)

pathleneth

e* -  £ h i  <4 i °>
pathlength

a = new distance to target 

c = old distance to target

s = hand step

target

Using the law of cosines, the instantaneous 
hand error can be computed as follows:hand

2 2 „2
0 = cos'l

2 sc

and all these quantities are readily available as a side effect of the 
execution of the simulation.

Figure 4.12 Computing H and Error
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4.8.2.3 H a n d  E ffo r t D ensity. In this metric, the law of cosines is ap­

plied to the desired and actual hand move vector at each step. The perpendicu­

lar displacement of the hand from the desired rectilinear path a t each step is 

summed. Straight summing is sufficient here because this value, h, is always 

positive. This is a measure of the curvature of the trajectory. Figure 4.12 de­

scribes the derivation of hand effort and the instantaneous hand error, h. whichI
is the perpendicular deviation of the actual hand move from the desired hand to 

target vector.

4.8.2.4 S tep  S ize  D ensity. The steps in work space were intended to be 

of unit length. The actual length was computed and its RMS sum was stored. 

This value is computed as in equation 4.11.

e = (it o f steps) pathlength (4.11)

This value should be nominally 1.00, though in practice it had a value of 

slightly more, and it did not tu rn  out to be a reliable measure of performance, 

because it measured just what the heuristic step generator dictated and an 

automatic gain control mechanism was built in which scaled every step to 

within some tolerance of 1.00. This measure then was always consistent and 

seemed to be more or less independent of the goodness of fit of the trajectory to 

the trajectory formation goals.

4.8.2.5 H eu ris tic  S te p  D ensity. The total num ber heuristic steps were 

counted on each path and the count was divided by the path length. This metric 

should go to zero in the steady state, and did so for all successful experiments.

4.5.2.6 G e n era liza tio n  S le w  R a te  D ensity. This is a difficult metric 

to describe. It is a measure of how much overlap there is between the receptive
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fields of adjacent trajectory steps. If the slew rate  is 0%, it means th a t receptive 

field is the same for this step as for the last. If the slew rate  is 100%, the two 

steps have exactly disjoint receptive fields. Slew rates of > 100% indicates tha t 

the receptive fields are even farther apart in the state space. Equation 4.12 de­

scribes this quantity, with v !  being the ith component of the scaled integer input
. f # iL

vector for the j  step in the trajectory. <?. is the i component of the quantiza­

tion array; larger values of q. denote coarser codon representation.

e = max
i « path

X 1 0 0  (4.12)

4.8.2.7 Memorw S a tu ra tio n . This metric is simply the cumulative 

memory usage of the CMAC. The measure is provided by the UNH_CMAC soft­

ware. The value returned is the count of the non-zero-valued memory vectors in 

the physical memory allocated to a particular CMAC. This gives an  approximate 

measure, U, of the num ber of the physical memory vectors actually used. A dis­

cussion of the inaccuracy of this metric is in section 4.8.10.2.

The value u = U /M  is the degree of saturation of the CMAC, and it has 

been determined by our cumulative results in the Robotics Lab th a t when u is 

small, CMAC function approximation is good. When u > ^ max for 

Umax -  ^  or Performance suffers. This subject is discussed at greater 

length in section 4.8.8.

4.8.3 D iscussion  o f  the  Groas P a ra m e te r iza tio n  R esu lts

Appendix E, page 210, contains plots of selected experimental results. Fig­

ure E.O contains plots of all the important error metrics for a single experiment,
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with parameterization P  = (64,4,8,20000). In figure E.O there is a set of plots for 

an experiment with the same parameterization but with each path segment re­

peated 5 times before the next path segment is executed. The effect of this is 

th a t it spreads the plots out left to right to show the near periodicity of certain 

error metrics more clearly.

The original reason, however, th a t I contrived experiments of the latter 

type was tha t I reasoned: if a path segment could be executed over and over 

again before a new path segment was tried, the result would be less postural 

drift and a faster learning of the overall trajectory. As is discussed in section 

4.8.9, this turned out not to always be true, but by the time I had realized this, 

the selection of a "best" parameterization was completed. Re-running all those 

experiments with non-repeating path segments was deemed not worth the ef­

fort.

The multi-trace plots of Appendix E show clearly the rapid convergence of 

the error metrics upon which were based the selection of gross system parame­

terization. Some selections of memory size, generalization param eter and quan­

tization were much better than others at finding a solution rapidly and reliably.

Approximately 250 experiments were crafted as described in section 4.8.2. 

After the data was collected in a series of files (one set for each experiment) 

these files were analyzed based on a steady state assumption for the last 100 

path segments, and the following set of observations were made:
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4.8.4 D eta ils  o f  th e  R a n k in *  o f  P a ra m e te r iza tio n s

4.8.4.1 T he  F irst O rder R a n k in s .  8 separate rankings of the means 

and variances of all the 250 experiments were made using the sort records fea­

ture of the Quattro-Pro spreadsheet program. Each ranking was based on a dif­

ferent error metric.

4.8.4.2 Gross E lim in a tio n s  B ased  o n  H e u ris tic  "Need". Any para­

meterization whose experiment had non-zero heuristic step density during the 

terminal or "steady state" phase of the experiment was disqualified. This re­

moved 7 experiments from the list. Of the remaining experiments, the topmost 

11 experiments were selected, in each of the 8 rankings.

4.8.4.3 S tro n g  C orrela tions Amorist th e  M etrics. It was noted tha t 

hand effort, joint effort, memory usage (and percentage memory usage) and pos­

tural error were strongly correlated. The same set of experiments tended to be 

the best experiments in each ranking, as they were ranked, metric by metric.

4.8.5 S u b jec tive  W eight inns

The following reasons were used for setting the weights attached to the 

ranks in each of the 8 lists as relatively high, low or unimportant. The weight 

was a number between 1 and 10.

4.8.5.1 S te p  S ize . Step size density was given a low weight of 1 because 

it appeared to be only weakly correlated to success.

4.8.5.2 P ercen tage  o f  M em ory Used. Memory saturation was an am­

biguous measure of success, because, by using large physical memory (even 

when it was not necessary to do so), this quantity could look good even when 

other measures were mediocre or terrible.
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4.8.5.3 N u m b er o f  M em ory Vectors. This metric was more reliable, 

because since all setups performed the same task, one might reasonably expect 

similar memory usage as an absolute vector count.

For instance, consider a setup not coarse coded enough, like P y = 

(32,2,2,20000). 19817 vectors were used, as compared to 1500 to 2000 vectors for 

the best performers, and its performance was, as expected, bad. On the other 

hand, P q = (32,16,16,5000) resulted in only 699 vectors being used, but tha t 

setup had twice the m ean and variance of the best hand effort and postural er­

ror statistics achieved. P q approaches (rather distantly of course) the limiting 

case of storing all the information in the same location, degenerating the CMAC 

into a simple integral controller, which by itself we would not expect to do a good 

job at this task.

Though much can be inferred by vector count, its ambiguity gave me cause 

to give it a low importance, but one higher than  either percentage memory 

saturation or step size density.

4.8.5.4 G e n era liza tio n  S le w  R a te . The assumption th a t P q "over-gen­

eralized" is confirmed in that case by the fact th a t the generalization slew rate 

for th a t experiment was the minimum value of all the experiments.

At the other extreme, when the quantization is too small, under-generali­

zation occurs. P  , for instance, showed a generalization slew ra te  of >500%, 

and performed worse than table lookup. This setup did not have a sufficiently 

large memory space to leam  a t all. With table lookup, learning should occur, al­

beit slowly. With 99.1% memory saturation, however, this setup was clearly dis­

tracted from accomplishing learning by an excess of hashing collisions. In fact,
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as is discussed in section 4.8.8, we might reasonably conclude th a t such a sys­

tem  would approach an expected value of hashing collisions tha t is 90% or more 

of its receptive field size every time it maps an input, because the large generali­

zation slew rate  indicates a considerable reduction in  the correlation between 

adjacent lookups along the trajectory.

Although generalization slew rate  is important, neither a least nor a maxi­

mal value infers a particularly good parameterization, so slew ra te  was not in­

cluded as a ranking metric; rather, all experiments with generalization slew 

rates > 30% were eliminated. Appendix C contains some analysis to validate 

tha t the observed slew rate  of < 20% for the best parameterizations is a reason­

able and necessary result. This result is important for the conclusion in section 

6.2, concerning the view of ARTFORMS as an extension of traditional lineariza­

tion methods.

4.8.5.5 J o in t  E ffo rt. Jo in t effort was given a  relatively low weight, be­

cause, as has already been mentioned, it did not correlate well with success. It 

can be observed in figure E.0, th a t joint effort is more or less a periodic function 

th a t develops early and independently of the other metrics. The reason for this 

is tha t joint effort is dictated by the heuristics generator. It always postulates 

displacements selected with the goal of unit length hand moves. Thus, when the 

arm is extended, the joint effort is small, and when the arm  is tightly enfolded, 

the joint effort is large, all based on the moment arm  of the articulator. This ex­

tension and retraction rhythm is clearly visible in the plot. We m ust also keep in 

mind tha t the AGC mechanism (see section 3.2.4.1) tha t scales all attempted 

moves to generate unit length hand moves is a tight loop feedback mechanism 

tha t ensures joint effort will be a mediocre measure of performance relative to
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learning. So joint effort is given a ra ther small weight, similar to the  weight as­

signed to memory vector count.

4.8.5.6 H a n d  E ffo r t a n d  P o stu ra l E rror . These two metrics were 

given the highest weights, because they represent direct measures of what the 

direct inverse training step and the postural constraint training step are actu­

ally learning. As is argued in section 4.4, the latter error measure ultimately 

measures the stability of the system’s storage and retrieval capabilities when 

the problem is redundant.

4.8.6 The F in a l C onclusion  o f  th e  R a n k in g s

The net result of these ranking tests was th a t no m atter what values of 

the weights I assigned, within the general guidelines of the last 6 subsections, 

the following parameterizations always won: P^ = (32,4,8,M), = (32,8,8,M),

P 3 = (64,4,4,M) and P 4 = (64,4,8,M).

4.8.7 In n a te  R obustness in  th e  P resence o f  N oise

Figures 4.8 through 4.10 clearly show th a t there is a  robustness in this 

methodology that, subject to the caveats in section 4.8.9, can be seen as a func­

tion of memory size. For any reasonable parameterization (especially P 4) the 

only poor performance th is methodology shows is selection of a too small mem­

ory space, and tha t once a threshold memory size is achieved, the error metrics 

rem ain quite robustly low for all memory sizes. There is an inherent principle 

hidden in these results th a t I will try  to articulate.

Jordan [’88] showed th a t his forward modeling method was robust in the 

presence of noise by injecting random noise in the forward model after trajectory 

formation had converged. The result was th a t it still performed (though with no­
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ticeable degradation of performance especially relative to posture). Contrarily, in 

my methodology, I contend th a t there is an innate and quantifiable level of noise 

that can be observed directly as texture in simpler CMAC mappings like figure

3.5 on page 69. This noise level is of course related to hashing collisions; it is 

quantifiable using the  methods of Appendix B, and it is inherent and unavoid­

able. The fact th a t from an external observation the performance of most well 

parameterized experiments with memory sizes above 5000 vectors were virtu­

ally indistinguishable one from the other shows th a t this methodology is quite 

immune to this inherent noise. Only when the noise is turned up to very high 

levels does the mapping suffer as in the far left hand side of the plots of figures

4.8 through 4.10. In an investigation of the nature of the heuristic and training 

critics, I further disturbed the system by injecting noise into the internal model 

of the plant used as a predictor (not as a control effort source) and it showed 

graceful degradation in the face of that noise,too. (See section 4.8.12.)

4.8.8 A  L in e a r  U pper B o u n d  o n  H a sh in g  C o llis io n  D am age

Tb a limited extent, the probabilities of hashing collisions given prior train­

ing, i.e. how badly hashing collisions are likely to disturb old data  by the intro­

duction of new data, can be analyzed. Simple analytical methods are developed 

in Appendix B. In th a t Appendix, I show tha t in fact the expected value of the 

number of constituent points in a receptive field th a t point to already prior used 

data is strictly a function of memory saturation. The surprising result is th a t the 

function is linear. A proof by construction therein shows th a t this value



is really just E ^ u  , Q  = u-C. This represents a very loose, worst case situation

for random input sequences. Experimental results in th is study of course 

represent highly correlated sequences of data, and so of the "collisions" incurred 

by adjacent mappings along a trajectory, most are intentional. In fact, for P 4 

with its maximum generalization slew rate  falling in the range of < 10%, then 

90% or more of those collisions are probably intentional, due to the large overlap 

of adjacent receptive fields. This signifies th a t the upper bound, u-C, is 

extremely loose, and the actual useful memory capacity may be profoundly 

large. Section 4.8.11.1 indicates th a t 44,000 vectors under the 

parameterization is more than  sufficient for virtually any set of trajectories 

definable for a planar arm of up to 6 joints.

4.8.9 A  S u r p r is in g  D ependence on  P hysica l M em ory S iz e

In section 4.8 .21 mentioned some interesting points concerning the plots of 

figure 4.8. The observation th a t it was possible to see a significant, measurable 

degradation of performance in a system by increasing memory size was some­

what disturbing. A new series of experiments was devised, in which the gross 

parameterization was P  = (32,4,8,M), for M ranging over all integer values over 

the range (23990,... 24010). The results of the experiments indicate a possible 

dependence of performance metrics on memory size th a t had far smaller granu­

larity than  was expected (granularity = 1 vector out of 24,000).

The observed performance disturbance was of low magnitude, but it 

points out a possible source of significant error for systems th a t are trying to be 

very frugal with respect to physical memory allocation. Once the phenomenon 

was observed, I started probing that experiment to see if I could isolate the
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cause of the measurably different trajectories. I t turned out th a t the  perform­

ance problem was easily observed in this experiment.

Figures 4.13 and 4.14 show the behavior th a t gave rise to this error. All ex­

periments in the series were subject to equiangular joint constraints. But, in 

moving from target 7 to 8, joints 2 and 3 showed noticeable constraint violation. 

The error corrected itself in going from target 8 to 1. Along the paths from target 

3 to target 4 and 4 to 5, another minor but noticeable postural switching oc­

curred.

This error appears to contradict our ideas of CMAC memory capacity until 

we realize th a t hashing collision error predictions are based on expected values. 

So over vast numbers of training instances the effect of hashing collisions should 

be very small if u is small. Consider th a t we have an actual instantiation of a 

CMAC trained with the information of this experiment. There are hashing colli­

sions. When the input mapping algorithm executes, it generates target ad­

dresses in the physical memory space by randomizing each of the n+2 

coordinates of the input vector using a fixed, randomizing lookup table. The n+2 

coordinates are then added together to generate a virtual address. Now th a t vir­

tual address, A is limited via a modulus operation A’v = A^ modulo memory 

size.

The effect of the modulus operation is th a t it "folds" the virtual memory 

space back on itself however many times the virtual memory space is divisible

sv
by memsize. This folding operation defines m partitions, where m = |^nems£zej * 

Now any hashing collisions tha t exist in the mapping are fixed and act like im-
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Figure 4.13: Anomalous Behavior for Memory Size 
of 24,002 Vectors
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Figure 4.14: Anomalous Behavior for Memory Size 
of 24,002 Vectors
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pulse functions in the state space. If one or more hashing collisions occur at a 

point exactly k  codon units up from a fold caused by the modulus, but in differ­

ent partitions of the virtual memory space, they will potentiate one another’s ef­

fect. If the value of memsize is changed by one vector, tha t potentiation will 

disappear, because those hashing collisions will no longer be coincident in the 

physical memory.

The error seen in one of the "bad" experiments, e.g. memory size=24002, 

corresponding to the plots of figure 4.15 decreases significantly for the following 

actions:

• move targets 7 or 4 even by a small amount (figures 4.17 and 
4.18),

• change the num ber of memory vectors by +/- 1 vector (figures 
4.15 through 4.18) or

• change from chained trajectories with repeated path  segments 
to ones without path segment repeating (figures 4.16 and 
4.18 ).

The first of these action serves to move the trajectory away from a state re­

gion damaged by hashing collisions. The second action causes these hashing col­

lisions to no longer be coincident in the physical memory space. The th ird  action 

points out tha t the repeated path segment strategy is not as helpful as originally 

assumed (see section 4.8.3) because it reduces the migration of training data 

from one path segment the next one via the generalization overlap a t the target. 

This generalization overlap only gets exercised every 5th pass, and so the two 

neighboring path segments are much more likely to develop different solutions if 

perturbed by a hashing collision near the target point. Interestingly, the pos-
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tural difference between these two path segments does converge out after about 

3000 epochs.

4.8.9.1 N o n -u n ifo rm  D is tr ib u tio n  o f  H a sh in g  C o llis ions fo r  H itth  
D im en sio n a l System s. The previous discussion led to an in-

depth consideration of the distribution of hashing collisions in the physical 

memory. In higher dimensional systems (e.g. 12 or more dimensions) the as­

sumed uniform distribution of hashing collisions becomes gaussian over the vir­

tual address space due to the summation of many samples from uniform 

distributions, one for each coordinate of the input vector. This consequence of 

the central limit theorem changes the hashing collision expectations discussed 

in Appendix B.

This indicates th a t the amelioration derived from increasing physical 

memory size is not a uniform effect. The expected number of hashing collisions

150

100 -

f.
j

20 40 60 SO 1000 120

j

Figure 4.19: Gaussian Distribution of Hashing 
Collisions
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th a t occur as memory size increases goes down, but as the memory size ap­

proaches its theoretical maximum, the fraction of these collisions th a t are "mul­

tiple collision" sites (and thus more damaging) goes up as the distribution 

becomes gaussian, because in the gaussian case, some weights are more likely to 

be collision sites than  others. This may in part explain why, in the previous sec­

tion, we found th a t some physical memory sizes are better than  others, even if 

they are larger. This observation may have implications th a t deserve further 

study.

Figure 4.19 is an illustrative example only; it is not directly related to the 

system under study. It resulted from constructing 12 uniform random sample 

sets from the interval (0,1) and summing them  together generating a sample set 

ranging over (0,12.00). The plot is a 120 bin histogram of the resultant data.

4.8.10 Memory Capacity

Here the ultimate capacity of a CMAC is discussed for trajectory storage 

problems. The notions of data age and bitmapping will be discussed.

4.8.10.1 Asfiruf of Trairtirur Data. As trajectory data becomes "stale", 

i.e. its existence in the CMAC is the result only of training th a t occurred long 

ago, without recent reinforcement, it may be th a t it is there only because it was 

the result of sweeping out state space regions during convergence of early train ­

ing, which regions did not become part of the converged solutions, or it may be 

th a t it is there to describe how to do things the robot does not do anymore.

In either of these cases, the hashing damage th is stale data imposes on 

more recently trained data becomes innocuous, because it can be trained over 

with more recent data and its deleterious effect on the system will go away.
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In  a  series of experiments, 3 ,4  and 6 jointed arm s were trained to repeat a 

sequence of trajectories with 8 targets. After convergence of each, a set of 

chained trajectory moves was recorded to a disk file, so the disk file only con­

tained accurate, relevant arm  moves. The CMAC was erased and training was 

resumed using the recorded file to provide the sequence of moves for training. 

After the recorded file moves were learned, the arm  was allowed to tra in  nor­

mally on the whole target set until ultim ate convergence (4 or 5 passes). The 

memory saturation was then re-computed. In  all tria ls it was noted th a t the 

memory saturation level went down. The decrease was sometimes as high as

Ann Length Memory Size Original Memory 
Usage invectors

Memory use 
alter retraining

Percent 
memory Use 

Reduction

3 joints 20K vectors 1501 973 35

1013 33

1076 28

1028 32

4 joints 20K vectors 1400 1149 18

908 35

6 joints 30K vectors 2840 2698 5

1371 50

1600 44

Table 4.1: Memory Use Reduced By "Playback" Training
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50%. (See Table 4.1.) This indicates th a t of the state space swept out by the sys­

tem during trajectory convergence, about 30% to 50% of the state space used 

was used only during the irrelevant moves encountered in the search involved in 

early training, and the vectors associated with th a t phase of training eventually 

became "stale" and ultimately available for new training instances. The total 

num ber of vectors used in initial training in column 3 of table 4.1 is fixed for 

each arm  configuration because the initial training, given the param eters of the 

experimental setup, is deterministic. The re-training session is not, because 

there is no way of determining what the "best" training set to record and later 

play back for training purposes might be. Some of the training sequences 

learned via this "record and playback mode" were more goal directed than  oth­

ers. The ones th a t showed the least memory usage after convergence were stable 

(i.e., they repeated reliably for the same the target set) and so we would expect 

that these minimal memory usage statistics are sufficient for the problem. 

These same statistics would be more reliably reflected by a different method of 

computing memory usage, namely bitmapping.

4.8.10.2 Bitmanpirur. In UNH_CMAC, the level of saturation of a 

CMAC is computed by simply counting the num ber of non-zero memory loca­

tions in the physical memory. This measure is an approximation of how satu­

rated the CMAC is. It fails to account for actual 0 valued vectors; this is a minor 

effect because zero length move components are infrequent. More importantly, 

this method treats all "usage" of the memory as equal, even though stale data is 

irrelevant. An extension of the current UNH_CMAC software should include a 

bitmapping capability. This would allow each physical memory location to have 

an associated bit in a bit map. Every time a location is accessed, its bit is set. 

The bitmap can then be cleared and the system allowed to exercise through a
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comprehensive set of moves, during which time the bitmap could accumulate 

new data. Now memory usage can be computed accurately by counting the ones 

in the bit map. This method would ignore "stale" data.

4.8.11 Repetitive and Non-Reoetitive Trajectories

In this section, I describe the results of experiments for trajectory ensem­

bles th a t are non-repetitive. In this series of experiments, 40 targets were used 

and the system randomly disturbed each target when it became the active one, 

resulting in coverage of the workspace more or less uniformly for over 3000 ep­

ochs. The result was highly encouraging. Memory usage seemed to level off

Figure 4.20: Non-repetitive Trajectories Experiment
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asymtotically, with little recurrence of heuristic or training critic failures, which 

is in keeping with the prior observations about large memory capacity.

In  addition to the postural animation of figure 4.20, a  plot of the memory 

use and error metrics for the 3000+ epoch long non-repetitive experiment can be 

seen in figures E.3 through E.5 on pages 214 through 216.

4.8.11.1 C onclusions for N on-R enetitive  Tra jec tories. It seems that 

ARTISTS with constraint satisfaction is extremely robust to new information. 

After learning a rather sketchy set of trajectories, it continued to execute trajec­

tories th a t were novel (because the targets were randomly moving throughout 

the trials) th a t filled up the workspace quite thoroughly. Once early training 

was completed, the critics reported nearly zero errors. This is encouraging. It 

should also be noted tha t no attem pt to re-tune the parameterization for a 6 

jointed arm was attempted, other than  doubling the generalization parameter.

The fact th a t the critics found no failures in  most of the path segments of 

these experiments indicates tha t generalization in the connectionist’s sense (i.e. 

being able to handle novel situations based on prior ones th a t are similar) was 

broadly achieved. Some insight into the novel trajectories result can be seen in 

figure D.8, on page 205. In th a t figure, little qualitative difference can be seen 

between the control surface for this novel trajectory and the ones in the other 

figures of th a t appendix. Keep in mind th a t the receptive field for parameteriza­

tion P=(64,4,8,20000) can span as much as +/- 25° of joint angle around the oper­

ating point, if only one joint moves. Because quantization = 8, simulation 

resolution is 0.1°, and generalization = 64, so 8x0.1* 64 = 51.2°. This means that 

some influence of training is possible over a range of +/-51.2+2 = +/-25.60 

around the operating point as a result of training at th a t point, though the ef-
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feet is diminished a t the receptive field extrema due to the linear tapered profile 

of the receptive field. A full discussion of these issues can be found in An f91].

4.8.12 Results For Inaccurate Critics

In section 3.2.3, I talked about the critics used in ARTISTS. It should be 

noted th a t without the critics, goal directedness falls apart and the redundant 

system can not learn. The so-called training critic acts as a safety net to prevent 

inappropriate mappings from hashing collisions in later training from being ac­

cepted as valid moves.

In most of the experiments I used the analytical model of the p lant as the 

source of information for both critics. It may be argued th a t this is not fair. In 

fact a system able to successfully guess the effect of a move before trying it 

should be more robust. In an effort to probe this possibility, I devised a  series of 

3 joint arm  experiments using the parameterization, P=(64,4,8,20000). For each 

experiment, I added zero mean white noise to the numerical quantity th a t both 

critics used for evaluation. Recall th a t the critics tes t a new move to see tha t it 

generates a hand move whose orientation is within ( <pgQ~tpQ) of the desired rec­

tilinear hand space move, ((pg -̂cp )̂ is measured in cosine units. See section 

2.4.3. The dot product of the test move and the desired move m ust be within the 

range cos(cp )̂ to cos(<p^. The white noise was crafted in each of 6 1000 path
o

segment experiments to have a -  1, 5, 7,10, 15 and 20% of OpgQ-(Po)* For 20% 

variance noise, the systems proceeded to ask for heuristic help throughout all 

the experiments. For less, the system’s performance over the range of variances 

was little affected. This indicates a  significant degree of robustness in the critic 

mechanism, so we may find th a t the system could tolerate a crude forward 

model, perhaps containing an adaptive forward model estimator. The installa­
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tion of this new critic mechanism would reduce reliance on the reversible plant 

requirement discussed in section 3.2.3.1. See section 6.3 for details of the pro­

posed future work in this area.

4.8.13 Results For Manv-iointed Articulators

Many tests were run  for planar arms with 3, 4, 6 and 9 links. The results 

were all more or less equally successful. In this section I will discuss the trajec-

OBS

initial
posture

This sequence of postures results from 150 
segments of training of a 9 jointed arm. This 

means each target to target trajectory was 
executed 18 times.

Figure 4.21: Target Postures for a 9 Jo inted Arm
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^  initial hand position

Figure 4.22: The "Uncurling" of a 6 Jointed Arm 

tory formations represented by the postural sequence drawings generated in the 

simulations for 6 and 9 jointed arms.

Figure 4.21 shows the target postures from an experiment in which the in­

itial posture was quite dissimilar from the postural constraint requirements, yet 

in the first pass, the curvate constraint was achieved, and after 18 passes 

around the targets, the trajectories showed little or no variation from pass to 

pass. Figures 4.22 and 4.23 show remarkable and quite robust instances of 

training 6 and 9 jointed arms (respectively), using equi-angle joint constraints 

(and joint ratcheting during early training). It is remarkable th a t the postural 

constraint mechanism allows the articulator to so successfully "uncurl". Figure 

4.23 shows a trajectory th a t was trained only 5 times. It was one path segment 

out of an 8 target chained trajectory experiment like the ones in the exhaustive
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This trajectory of a highly 
curvate arm was only 

practiced 5 times!

Figure 4.23: The "Uncurling" of a 9 Jointed Arm 

3 jointed arm trajectory experiments used to establish appropriate generaliza­

tion and quantization.

No attem pt was made to fine tune the gross param eterization for 4.23. 

P={ 128,4,8.44) was selected, simply because it seemed th a t more generalization 

was required due to the existence of more joints and thus more input coordi­

nates.

4.8.13.1 C onclusions A bou t M a n v io in te d  A r tic u la to r  T ria ls . This 

series of experiments was a success. The many jointed articulators learned tra ­

jectories in a remarkably short time, and had robust performance th a t continued
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to improve over time. Joint stop ratcheting was used in most cases, simply be­

cause it reduced memory usage, by cutting down on "stale" data  from early 

training. During early training without ratcheting, the system swept out consid­

erably more state space, but in only a relatively few cases did postural switching 

occur, resulting in unrecoverable postures. (Postural switching is discussed in 

section 1.3.1.1 and 4.4.1.1).

4.9 A S tab ility  Argument

A rigorous Lyapunov stability proof for the convergence of trajectory for­

mation for the ARTISTS/ARTFORMS system would be useful. This would prove 

that for any trajectory formed, if the same initial condition and target were pre­

sented, then a trajectory very similar to the original would be guaranteed to 

emerge.

Tb accomplish this proof, first it would be necessary to neglect hashing col­

lision noise, and then  to find a Lyapunov function th a t emerges from the m athe­

matical definition of the system; the complexities of the CMAC make this 

difficult. Then we would need to show tha t this quantity decreases over time as 

an effect of the execution of the set of equations defining the system. Next, the 

hashing induced noise m ust be shown to have a tightly bounded effect on the 

system, so th a t the effects of hashing collisions could be reintroduced without 

destroying the ultim ate guarantee of convergence th a t the proof provides. Such 

a proof is not within the scope of this work. In fact, for the general case, it may 

not even be possible. The simple fact th a t the ARTFORMS critics impose a strict 

reduction of hand to target distance is a critical starting point for a more infor­

mal argument, however.
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4.9.1 A L vapu nov "Condition"

A Lyapunov condition is imposed upon the system, ra ther than  shown to 

emerge from the system equations. The Lyapunov condition, enforced by the 

heuristic and training critics says th a t no move will be allowed th a t violates the 

condition th a t the move m ust decrease the Lyapunov function,

L(5*,5y) = ■/"(6^+(5y)^, where 8jc and by are the two coordinates of the hand to

target distance. It would be nice if some aspect of the system training guaran­

teed convergence of this quantity, but tha t is not the case. In fact, a counter-ex­

ample for the general case is easily constructed. Consider the articulator in 

figure 4.24. Jo in t stops of 90° prevent the target shown in the figure from being

reached. Other obstacle or configu­

rational conditions might prevail 

th a t could prevent movement to­

wards the target, but which could 

be circumvented by back-tracking 

and trying a different approach. 

Such spurious local and global 

minimum problems we will term  

"non-convex obstacle situations" 

and will explicitly assume can't 

happen.

That having been said, we now know th a t reaching the target is possible 

from any initial condition. If th a t is so, then if we try  enough attem pts from any

T A R G E T

Figure 4.24: A Counter-example for the 
Lyapunov Proof
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given position, we will ultimately find a move th a t reduces the distance rem ain­

ing. Such a move will be acted upon and used as a training exemplar, others will 

be rejected. This disallows any increase of the Lyapunov function (by fiat), and 

since a move that decreases it can always be found, we have therefore assured 

that the Lyapunov function always decreases.

Thus we now have th a t the hand will absolutely converge on the target or 

get stuck somewhere in the attempt, which case is omitted by the exclusion of 

non-convex obstacle situations assumed above.

If the system were non-redundant, this should finish it, since the hand po­

sition is a single valued functional encoding of the joints, and the joints are a fi­

nitely valued relational encoding of the hand position. Local generalization 

favors convergence to single valued encodings of the inverse relation except 

where the joints are near 180 degrees, in which case alternate solutions are 

closer together in state space. The sets of alternate solutions allowed by the 

trigonometric functions (being odd or even periodic functions) are distant one 

from another in the state space, and thus the system is not subject to postural 

switching due to non-linear averaging provided th a t joints are not allowed to be 

near 180 degrees, in which case alternate solutions are closer together in state 

space. Empirical evidence shows th a t for low order arms (three or four joints) 

this postural switching problem hasn’t  been a problem for ARTFORMS, so we 

will also neglect the postural switching effect and assume th a t for the non-re- 

dundant case, the hand position is a single-valued functional encoding of the 

joints.

But ARTFORMS deals with redundant problems, so the constraint equa­

tions m ust enter the argument. The constraint equations are linear, so their
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least squares expression is quadratic. Thus, as long as the convergence step size 

is small enough to prevent limit cycling, divergence or chaos, an absolute error 

minimum in  the joint space will be reached by gradient descent. Once th a t hap­

pens, the system model degenerates into a non-redundant one. In other words, 

the system approaches non-redundancy a t the rate the postural error gradient 

descends.

4.9.L1 A Lyapunov "Arsrument"and Outline for a  Proof.

The problem rem ains th a t the joint space postural convergence can disturb 

the the progress of the hand towards the target, because the constraint equa­

tions are independent of the Lyapunov function. At least four arguments can put 

this objection to rest. None of these will be argued formally, so the strict 

Lyapunov proof is still left incomplete. Two of the four require a change in the 

system. The fourth requires considerable computational consideration, but is 

promising. The th ird  is a compelling approach and would probably be the best 

course to persue.

First, heuristic critics could evaluate postural training, and apply a 

Lyapunov condition to postural training, but th a t would require a change in the 

system.

Second, we could show th a t the hand convergence is robust in the presence 

of disturbances.

Third, since the postural constraint error will go to a global minimum, it is 

a decreasing function (though not necessarily monotonic) of time. The distur­

bance such a function can impose on the target convergence is a decreasing
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quantity. It should then be possible to bound th a t disturbance by a decreasing 

"envelope" around the trajectory.

Fourth, the effect th a t the postural error adjustment imposes on the target 

convergence is a non-linear function of joint angle changes, so an error term  can 

be constructed tha t is the sum of the Euclidean hand to target distance and the 

postural error correction term. Since this is an analytical expression, it may be 

possible to show that, given the old Lyapunov constraint imposed by the heuris­

tic and training critics, th a t this is an absolutely convergent function. Failing 

that, this error term  could simply become the function for a new Lyapunov "con­

dition" and we would then fall back on the first approach.

There is one final point concerning the Lyapunov stability of ARTFORMS 

trajectory formation deserving of comment. The input to the system contains a 

random activation component because random steps are used to search for good 

moves. Training persists indefinitely, so even if the random component of the 

heuristic suggestions ceases, random activation remains as a side effect of the 

hashing collisions in the CMACs, and persistent training will cause th a t random 

activation to persist indefinitely. This means th a t this system can be said to 

have input with persistent excitation. From a system identification standpoint 

this is desirable, because it means tha t the system is not limited to the identifi­

cation of a system of finite order. Some system designers, in an effort to assure 

Lyapunov stability of their systems, artificially inject low-level noise just to pro­

vide tha t excitation. Other designers go to great lengths to develop systems that 

are robust in the Lyapunov sense without persistent excitation, (Lozano-Leal 

[’89]). This innate persistent excitation in ARTFORMS favors the long term 

Lyapunov stability of trajectory formation by ARTFORMS.
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In the absence of a rigorous stability proof, the evidence of stability is th a t 

given a sufficient gross parameterization of the CMAC:

• With only sufficient degrees of freedom and no heuristic critic, 
the system formed consistent trajectories in all observed trials.

• With excess degrees of freedom th is  breaks down, and postural 
drift occurs and accumulates causing postures th a t either stop 
trajectory formation at a local m inimum or reach a condition 
of nearly sufficient degrees of freedom, a t which time 
trajectories become stably reproducible.

• With proper constraints on the trajectories, a variably 
specified condition of nearly sufficient degrees of freedom can 
be imposed.

• All the above holds robustly for memory sizes th a t are small 
enough to generate significant hashing noise, and the system 
can also tolerate noise in its decision rules (the critics) th a t is 
substantial.
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Chapter V

Obstacle Avoidance

This chapter marks the completion of ARTFORMS-2. In this chapter the 

development of the idea of a spatially distributed constraint vector field or a 

spatially distributed non-constant vector is chronicled. The K  vector becomes 

a non-linear field representation of obstacles encoded as spatially dependent 

postural constraints. The dataflow diagram of figure 5.1 is similar to the one on 

page 81 but an additional module is present in the lower left comer, which can 

adaptively modify the constraint vector th a t is used in the postural gradient de­

scent computation in the lower right comer of both these figures.

5 .1  Preview

The mechanism for this constraint vector modification is embodied in the 

the lower left quadrant of figure 5.1. An adaptive memory component (K-CMAC) 

there models the constraint vector, It receives input from a unit th a t is sensi­

tive to the proximity of a joint to an obstacle sensed in a retinal field of view 

model (R-CMAC). When such a proximity is sensed, the K-CMAC receives a sig­

nal tha t allows it to adjust its model of the vector to favor a slight change in 

posture, which in turn  is then passed on to the postural gradient computation 

module. A detailed description of the dataflow involved in this constraint vector 

modification is found in section 5.3. Before th a t detailed description ensues, 

however, we should first try  to justify th a t it is reasonable to expect th a t we can 

effectively control the adaptation of postural constraints.
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a. T he original uniform ly curvate arm  

for K =

b. A "pronate" posture results 

from K = [1,1,1.5,1]T

c. A "recumbent" posture results 
from K = [ ip .5 .1 ,llT

Figure 5.2: Postural Changes Due to K Vector Changes
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5.2 M odifyine P ostu ra l C on stra in ts

The postural constraints tha t are described extensively in section 4.6 sim­

ply place conditions on how the joints are linearly related in a fixed posture. So 

far this postural relationship is globally applied to the system.

5.2.1 Conservation of Memory Usaste

Experiments were performed in which a constant K  vector was used which 

defined the linear relationships between pairs of distal joints. A nominal value of 

(1,1,1,...1) constrains n-1 joints to be equal. (See figure 5.2a.) The memory satu­

ration level was observed and the vector was changed to a new value, K  = 

(1,1,1.5,...!), defining a more "pronate" posture (figure 5.2b), and more training 

accumulated. The new memory saturation was larger than  before. However 

when the original K  vector was restored, not only did the arm  rapidly resume 

the old posture, but the level of memory usage remained essentially unchanged,

3 Jointed Manipulator 4 Jointed Manipulator

K  V e c t o r M e m o r y
V e c t o r s

K  V e c t o r M e m o r y
V e c t o r s

[ 1 .0 ,1 .0 ,1 .0 ] 1 3 8 9 [ 1 .0 ,1 .0 ,1 .0 ,1 .0 1 1 0 7 2

1 1 .0 ,1 .0 ,1 .2 ] 1 4 9 4 [ 1 .0 ,1 .0 ,1 .5 ,1 .0 1 1 7 3 5

[ 1 .0 ,1 .0 ,1 .0 1 1 5 0 0 [ 1 .0 ,1 .0 ,1 .0 ,1 .0 1 1 7 5 5

[ 1 .0 ,1 .2 ,1 .0 1 1 6 0 8 [ 1 .0 ,1 .5 ,1 .0 ,1 .0 1 2 4 1 5

[ 1 .0 ,1 .0 ,1 .0 ] 1 6 0 9 [ 1 .0 ,1 .0 ,1 .0 ,1 .0 1 2 4 2 3

Table 5.1 Conservation of Memory Use vs. Posture
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indicating tha t no new state space was visited. Next, the i£  vector was disturbed 

significantly in the opposite sense, K  ~ (1,1,0.5,...!), to cause a deflection toward 

a more recumbent posture (figure 5.2c). Again, more state space was swept out, 

resulting in a significant increase in percent memory utilization, but again, 

when the £  resumed its original curvate value of (1,1,...1), the posture resumed 

its former state quickly (within 1 path segment) and no significant additional 

memory usage resulted.

This experiment was performed, with the results shown in table 5.1 for 

both 3 and 4 jointed arms. The same type of experiment was performed with 

many arm  configurations for 3,4,6 and 9 jointed arms, by manually changing the 

K  vector during execution of the arm, where the K  vector was deflected first one 

way and then another, always returning to a prior condition, and upon retu rn  to 

an old K  vector, memory usage proved to be a conserved quantity.

5.2,2 T he R obustness o f  C o n stra in t T r a in in g

The latter results are encouraging. They contain the seeds of the rest of 

the implementation. Before embarking on th a t story, I wish to digress and pon­

der some properties of the constraint trained data.

The postural constraint was met very quickly in every case. Usually pos­

tural error dropped to near zero values within a very few path segments. The 

hand effort error metric, however, persisted in a non-zero state long afterwards. 

When a new posture was dictated by a new &  vector, the new posture seemed to 

develop independently of the hand trajectories in spite of the fact tha t training 

with the postural constraints disturbs the trajectory data. Furthermore, when 

two postures were selected th a t were both previously learned, the switching
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time from one posture to the other was profoundly short, typically less than  1 

path segment.

This evidence is both understandable and perplexing. It is understandable 

because the postural constraint is direct and strictly goal oriented. In other 

words, the postural constraint says "change the arm  posture", and directly 

places data in the CMAC th a t could potentially do this in a single step, but for 

the value of X, whereas the direct inverse training requires feedback for evalu­

ation of success because it changes § in order to observe a change in fliQ). Recall 

that X is the step-size param eter or learning rate for constraint satisfaction 

training. Curiously, however, the constraint training works in  s p i t e  o f  i t s  b e i n g  

r e q u i r e d  to  t o l e r a t e  t h i s  l a c k  o f  g o a l - d i r e c t e d n e s s  o f  th e  d i r e c t  i n v e r s e  t r a i n i n g .  

Another intriguing point is that the value of X was not a critical parameter. X = 

0.05 and X = 0.5 were both robustly tolerated. The former simply resulted in a 

slightly slower convergence rate  in assuming the desired posture. This is at 

odds with the gradient descent methods used in most non-linear systems. In fact 

values of X = 1.0 were even tolerated (perhaps because the learning rate  of the 

underlying CMAC was set at 0.5). Only when values of X>3.0 were used did 

stability of trajectory formation become an issue.

The original notion (ARTFORMS-1) of obstacle avoidance was never suc­

cessfully implemented. The reason for th a t is th a t it depended too much on ser­

endipity. The old system perturbed trajectories away from the current posture 

whenever an obstacle was encountered, but no appropriate guidance was pro­

vided by the system to give an alternative posture. The result was th a t when an 

obstacle occurred, radical changes resulted, and large quantities of state were 

quickly consumed. An aggravating effect during tha t stage of development was
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that the ideal setting for generalization and quantization were not determined 

yet, and so the system was already operating a t a disadvantage.

5.3 E xp lo itin g  P ostu res For O bstacle
A voidance

All tha t is necessary for effective shallow search obstacle avoidance is now 

in place. The essence of the paradigm about to be described is tha t obstacles will 

be sensed on a 2 dimensional retina. This then causes a K  vector representation 

to be changed whenever an elbow enters the receptive field of an obstacle fea­

ture in the retina. This change will exploit joint pair synergies like those dis­

cussed by Hinton [’84].

Refer to the dataflow diagram of figure 5.1 for the following discussion, 

principally the section labeled "obstacle avoidance" which is enclosed in dashed 

lines at the lower left of the diagram.

5.3.1 The Retinal STM CMAC

A CMAC is allocated with 2 input dimensions and one output dimension. 

The input is computed by the mouse cursor location in the target manager mod­

ule. Whenever the left and right mouse buttons are depressed simultaneously, a 

circle with a radius approximately equal to the retinal CM AC's receptive field 

radius is drawn. That mouse cursor location, in scaled screen coordinates, is 

used to excite the retinal CMAC. The retinal CMAC (R-CMAC) is then trained 

with an exemplar value of 1.0 and q = 1.0, to allow the feature to be captured 

rapidly, with a single training instance. The R-CMAC is a short term  memory.
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5.3.2 T he  S p a tia l ly  D is tr ib u ted  K -vector

Now, whenever the arm is drawn, each time an elbow is drawn, the elbow 

coordinates are used to excite the R-CMAC. If an super-threshold value emerges 

from the R-CMAC, it becomes a scaled sub-unitary gain, g, applied to a 3 ele­

ment center surround vector, [1,-1,1], th a t is used to adjust the current K  vector, 

read from the postural constraint vector CMAC (K-CMAC).

thThe decoder generates an n-dimensional unit vector with its j  coordinate,

e. = 1, and others e. . = 0. This vector is then used as a mask to construct the 
; i* i

center surround vector, c.. , In the vector c., the j th element is -1, the ( j  ± 1 )st

element is 1 and all others are 0. The result of computing K £+1 = K ( + g c .  on

the system is to cause the j th joint to increase relative to its 2 neighbors for g>0 , 

and the decrease for g<0.

5.3.2.1 P ra c tica l C onsidera tions R e la te d  to th e  R-CMAC. The re­

sult of the training of the K-CMAC based on readouts from the R-CMAC is the 

creation of a spatially distributed K  vector. There is an effective 2 dimensional 

to n+2 dimensional projection of information from the R-CMAC STM to the K- 

CMAC LTM.

This STM -► LTM projection is an interesting feature of ARTFORMS-2 and 

it deserves study in its own right. It is a method of potential applicability for the 

propagation of constraints from one sub-system to another. We m ust realize, 

however, tha t its presence is an accommodation to the needs of a simulation 

platform. A real-world physical robot would be better served by a touch sensitive 

sheath surrounding the arm which would replace the R-CMAC, and provide ob­
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stacle avoidance information in the form of directly acquired "elbow proximity" 

information. The circuitry involved in this could also automatically disable all 

joint actuators from the disturbed elbow back to the base. This would give the 

arm some additional compliance, and based on the results in section 4.4.1.2 

(page 94) ARTFORMS should automatically handle the disturbance caused by 

this.

In the simulation, however, the touch sensitive sheath is very difficult to 

simulate, so the arm is allowed to collide with and even drive through obstacles, 

relying on the assumption that, in a physical implementation, the touch sensi­

tive circuitry just described would prevent damage*.

S.3.2.2 In te r io r  a n d  E x ter io r  O bstacles. The obstacle avoidance 

paradigm th a t is implemented here only considers "exterior" obstacles. These 

are obstacles tha t are outside the region enclosed by the combination of the cur- 

vate arm and a straight line connecting the actuator to the base. The extension 

to interior obstacles should be straightforward, but will not be developed in this 

dissertation, because initial attempts were inconclusive, and time constraints 

led me to defer this to future work.

5.4 L im ita tio n s o f This M ethod

The use of direction cosines in the input vector ra ther than  absolute target 

locations imposes some limitations on ARTFORMS-2. The hand cannot be dis­

turbed from its rectilinear path during a trajectory in order to avoid obstacles. 

Only the "elbows" can migrate around. With the implementation of absolute ta r­

get location tha t may be changed. The result could be trajectories formed like

I So you, kind render, should not be troubled by this obvious violation o f physics in the simulation!
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Obstacle avoidance with 
hand disturbance can be 

achieved with ARTFORMS-2 
only by higher level help.
New targets generated to 

avoid the obstacle solve the 
problem.

f W  s t a r t

Figure 5.3 Obstacle Avoidance by H and Disturbance 

figure 5.3. See section 6.3.2 for more discussion of this possibility. The reason for 

this inability to disturb the hand is th a t ARTISTS will always train, via the di­

rect inverse training step, nearly rectilinear paths in the hand space. With ART­

FORMS-2, such hand disturbance would be handled by inserting new target 

locations in the workspace. Such a feat would have to be handled by a higher 

level in the system. Figure 5.3 shows the generation of a trajectory tha t avoids 

an obstacle by disturbing the hand. The experiment was successful in adjusting 

the most distal joint during the first iteration of the path segment to cause the 

joint to miss the obstacle, but as is shown in the figure, the hand was deflected 

by the (manual) insertion of several intermediate targets along the trajectory



that were placed to avoid the obstacle. Hogan [’92] argues th a t just such a 

mechanism goes on in hum an neuromuscular control in the formation of trajec­

tories, but since the trajectories he suggests are in fact bell-shaped in the work­

space, only very few intermediate points are required. If the direction cosine 

encoding in ARTFORMS-2 could successfully be replaced by endpoint target in­

formation as argued above, the hand deflections could be incorporated in ART­

FORMS-2. In fact, in the experiments I performed using endpoint data  rather 

than direction cosines, the hand trajectories were usually bell-shaped or sig­

moid. The problem with those somewhat ambivalent results was th a t too much 

memory use occurred during training, and the critics never went dormant.

5.5 E xperim en ta l R esu lts

Here I will discuss the experimental results, for various arms, of 4 or more 

joints.

For these experiments, the lower half of the dataflow diagram of figure 5.1 

was implemented and 2 additional CMACs were allocated, one to represent the 

retina and one to represent the constraint vector field. The R-CMAC and K- 

CMAC both used C=64, simply because th a t was the setting used for the main 

CMAC. I set the memory size of the R-CMAC to be half th a t of the others (this 

seemed reasonable due to smaller dimensionality). The R-CMAC used a quanti­

zation of 1. It took screen coordinates (1 codon = 1 pixel) so it could reasonably 

be viewed as a retinal model of the computer’s CRT a t the resolution of the 

screen. So on the screen, a receptive field was a square region with a 64 pixel di­

agonal.

The K-CMAC has the same gross parameterization as the m ain CMAC, 

except that its output dimension is n-1, ra ther than  n  (for n  joints). The reason
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Figure 5.4 A Chained Trajectory W ithout Obstacles

Figure 5.5 A Chained Trajectory W ith Obstacles
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is tha t the K vector need not affect the base joint since the base angle is a free 

variable, and thus there is no need to allocate an unused coordinate.

See figure 5.4 and figure 5.5 for before and after results of obstacle avoid­

ance experiments. The results generally were th a t in one or two presentations of 

the obstacles, these obstacles were successfully encoded in the K-CMAC. The re­

sults shown in the figure are entirely adequate, and the constraint did not seem 

to propagate into regions of the input space that were not directly related to the 

obstacle.

The results, in spite of the admittedly haphazard selection of a parame­

terization, were gratifying. This indicates the system is fairly insensitive to sys­

tem parameter changes, or I was very lucky (a most unlikely occurrence!).

Some cursory experiments were tried with other numbers of joints, with 

mixed results. Whenever the length of the arm  links were larger than  the (ap­

proximate) diameter of the receptive fields in the R-CMAC the results were 

good. In cases like figure 4.21, on page 133, when the obstacle was placed near 

the distal joints (nearest the hand) the results were poor. The reason for this is 

that if multiple joints enter the receptive field of the R-CMAC, the (1,-1,1) pat­

terns of the center surround vectors used to adjust the K-CMAC compete and 

therefore do not give good results. For these cases, in further developments of 

ARTFORMS-2, a longer center surround vector with a more complex shape that 

could excite multiple joints near the center and inhibit multiple ones in its pe­

riphery is needed. The number of joints to be affected would be a function of the 

size of the R-CMAC receptive field and the length of the arm  links. Of course, as 

was discussed in section 5.3.2.1, a touch sensitive sheath and a real robot would 

be even better!
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A more comprehensive probing into the robustness of the obstacle avoid­

ance layer of ARTFORMS similar to the level of investigation of the ARTISTS 

trajectory formation and robustness found in Chapter 4 is beyond the scope of 

this dissertation.
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CHAPTER VI

A Framework For Future Development

In the light of the results derived from the simulation described in the pre­

vious chapters, it is obvious tha t some improvements can be made th a t are 

rather straightforward changes in the system. It is also important to add some 

broader conclusions th a t are compelling and are not directly tied to the experi­

ments. These two areas are discussed in this chapter.

6,1 D irect Inverse M odeling is W idely
A pp licab le

Although this project was framed as a robotics problem, it embodies princi­

ples of a widely applicable methodology. There exist many applications in indus­

try, science, business and elsewhere in which processes behave in accordance 

with vector space definitions and in which a sufficient (i.e., adequate, though not 

necessarily optimal) setting for some param eters m ust be known in advance to 

assure the success of the process. Typically, the forward process transform is 

easy, but the solution of the matrix equations for the inverse transform (which 

would allow the a priori setting of the parameterization) can not be found be­

cause of the existence of non-invertible matrices in the system equations due 

either to singularities or under-determined systems. The adaptive method of 

learning a representation of an inverse transform may be of wide and profound 

interest to other industries and disciplines.
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6.2 Consonance W ith T ra d itio n a l
N on -linear A pproach es

One of the most powerful features of CMAC is its adjustable local generali­

zation capability. This local generalization capability allows systems like ART- 

FORMS to extend the traditional methods of non-linear analysis around stable 

operating points. ARTFORMS is consonant with those methods, and allows 

multidimensional models to be constructed th a t by their very nature act linearly 

around any operating point.

The "traditional" method of dealing with a non-linear plant is to develop 

the differential equations of the plant, determine what are stable operating 

points of the plant, and then linearize the equations and discuss the approxi­

mating properties of the resultant linear system. The assumption is then made 

tha t the plant will never leave a state space region around a stable operating 

point, and so the non-linear nature of the plant's operation far from th a t operat­

ing point becomes moot.

A CMAC, like a computer memory, is a non-linear system. (See section 

A. 1.1.4, page 175.) The CMAC delta rule is, however, a linear operation when 

viewed at the same operating point each time. Segee f92] talked about spectral 

methods of viewing the effect of CMAC training over a range of points, and used 

that view to explain observed slow learning scenarios for CMACs. In his discus­

sion, he found that the Fourier transform of the profile of the receptive field 

(linearly tapered in the system under discussion here) explained the  slow learn­

ing phenomena, because it had spectral nulls a t harmonics of 1/C. An [’91] and 

Carter [’90] found th a t slow learning occurred whenever the spatial frequency of 

the exemplar function was a harmonic of 1/C. My experiments performed during 

the research reported in Carter [’90] indicated tha t whenever the spatial fre*
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quency of the function was at one of these critical frequencies, the read-out of 

the CMAC representation exhibited aliasing and erratic results with rather high 

amplitudes, ra ther th an  exhibiting an absence of high frequency content. Thus 

the patch plots in Appendix D, by virtue of having no exhibition of higher spatial 

frequency content th an  1/C indicate th a t there probably is no such content. This 

means that, since all the observed patch plots exhibited features th a t fell within 

the extent of a single receptive field, then the learning capability of the  ART­

ISTS CMAC should be undiminished throughout the  system’s operating range, 

as has been repeatedly observed in practice.

Taking this evidence together, I hazard to suggest, in the absence of a rig­

orous development, th a t this CMAC based learning system and ones like it can 

reliably and stably build models of control surface representations provided tha t 

the CMAC meets the spatial frequency constraints just discussed, and the out­

puts developed cause a generalization slew rate th a t is small. (See section 

4.8.2.6.) If the generalization slew rate  is such th a t a small fraction of the recep­

tive field width is traversed in stepping from one iteration to the next along a 

trajectory, then we are assured th a t each incremental training step will linearly 

affect its immediately subsequent neighboring step via the  delta rule. Since we 

can see by inspection of figures D .l through D.8 th a t the shape of the control 

surface function is very nearly linear over sub-patches th a t are -  10-20% of the 

extent of a receptive field, this linear averaging is highly appropriate. By the 

time the operating point has moved sufficiently far along the trajectory th a t a 

distinctly non-linear relationship exists between the current "patch" and its an­

tecedent along the trajectory, a new and distinct set of weights are being used 

than  were used by th a t antecedent. So every point along the trajectory is in a
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sense operating the delta rule within a linearized region of the overall control 

surface.

6.3 A d a p tive  C ritics

The training critic discussed in section 3.2.4 is a fixed law module that cri­

tiques the adaptive steps, i.e. steps taken on the advice of the adaptive estimator 

(the LTM CMAC), to see if it is appropriate. The fixed law it uses is a simple 

analytical model of the forward mechanics of the articulator. It would be a sig­

nificant improvement to the system under discussion here to replace this mod­

ule, as well as the heuristic critic of section 3.2.3 with adaptive critic1 modules 

that do not know the exact forward mechanics of the plant.

Section 4.8.12 argued that the system shows sufficient robustness to be 

able to tolerate such a change in architecture, but for future work, the actual in­

stallation of one would be a significant area of study. As an aid to future re­

searchers, a suggested implementation is outlined below.

6.3.1 A Desism for an Adaptive Critic

Figure 6.1 outlines a module tha t replaces the analytical forward model 

used by the heuristic and training critics described in chapters 3 and 4. The only 

difference between the heuristic and training critics in the context of figure 6.1 

is that in the former case data from a heuristic source is input, and in the latter, 

data from the LTM is input to the critic. The critic consists of two CMACs, a for­

ward model CMAC and a confidence CMAC, implemented in parallel data paths

] Note ihai this is intended to refer to a "generic" concept o f  an "adaptive critic" which is distinguished from 
Paul Werhos's [ '90 | more restricted definition o f  an adaptive critic. Here, I am simply denoting a module 
that is adaptive and whose purpose is to critique actions.
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Figure 6.1: An Adaptive Critic Module

and interconnected in a fashion such tha t the confidence CMAC influences the 

way the system interprets the output of the forward model CMAC.

Every time the robot is activated, the input to the robot is also applied to 

the forward model CMAC, and the robot’s response to the input is used as the 

forward model’s training exemplar. Take note th a t this is a single valued, non- 

redundant transformation, and can thus be learned quickly and reliably by this 

direct inverse method.

In the ill-fated implementation of Chapter 3, a "distributed plasticity" 

CMAC was implemented for the purpose of providing a learning rate  for another
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CMAC with which it was interconnected. In this case, however, the distributed 

plasticity CMAC becomes a distributed confidence measure for the adaptive for­

ward model. It is a "grain of salt" generator, if you will, th a t tells the system (as 

a function of state space location) just how reliable the forward model is.

Recall now how the heuristic criterion works. There is an "allowed cone" 

angle, cp^, which defines by how much the hand may diverge from the desired

(8;t,8y) target direction vector. If a prediction of the forward model falls outside 

that cone, the step is deemed a failure. Suppose the critic is very bad. In such a 

case, the critic may tell us tha t a move is a failure when in fact it is fine. This is 

not a happy occurrence, because that move will be rejected as a training exem­

plar and if many such failures occur, learning will be very slow. If the critic tells 

us that a move is a success when in fact it is bad, then we may temporarily learn 

to do the wrong thing. The former case is worse than  the latter because, in the 

latter case, we are at least learning something and eventually, as the forward 

model improves, we will more and more often learn the "right" thing. So the best 

policy is to be very gullible at first, and as the critic becomes more knowledge­

able, be more and more restrictive. The method used to implement this is to ex­

pand the allowed cone to encompass any angle if the confidence CMAC reads out 

a zero value (indicating a naive critic) and use the predefined 9^  value as the

outer limit of the allowed cone if the confidence CMAC reads out a 1.0 (indica­

tive of a near perfect forward model). So there is a new variable value of 9qq,

called 'Pgond;’ *s a ^near function of a, the output of the  confidence CMAC,
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and has boundary conditions of 180° and tp^. Solving for the boundary condi­

tions of

^90 ad;
f 180° if a = 0 

^90 if  a  = 1-0

gives rise to the equation

%><«#• 180“ '  a 18°° + °  ' ’’90

which is the dataflow module in the lower right hand part of figure 6.1. This 

adjusted angle is compared to the difference between the outputs of the target 

computation (the desired direction) and the critic, in order to generate a success 

or failure signal.

Early in the training session, the critics will make lots of mistakes and this 

will obfuscate things, but in fairly short order these mistakes will decrease in 

frequency until they eventually go away entirely. In section 4.8.12, we saw that 

the ARTFORMS-2 system was very tolerant of artificially imposed obfuscatory 

noise injected into the critic that never went away. We can be reasonably as­

sured, then, th a t the noise the adaptive critic imposes on the system, which de­

creases over time, will be less troublesome than  the former noisy critic. The 

prediction I hazard to make a t this point is th a t once implemented, ART- 

FORMS-2 with an adaptive forward model critic will perform as well as the 

ideal ARTFORMS-2 with an analytical forward model critic, but will be com­

pletely independent of knowledge of the analytical form of either the forward or 

inverse models! This, of course, makes the issue of a reversible plant require­

ment moot. (See section 3.2.3.1.)
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6.3.2 Usinsr Workspace Position Rather Than Orientation

The point has been made by numerous researchers, like Houk f92], Hogan 

[’92] and Massone [’89], tha t target endpoint information is what drives real 

muscular activation systems. This may m ean th a t ARTISTS can be improved 

upon by making a modification that replaces the direction cosines in the input 

vector by absolute coordinates of the target. Such an approach is outlined in sec­

tion 5.4. ARTISTS was designed to use direction cosines because it originally 

seemed an obvious, easy, consistent and uniform mapping, and it spanned the
o

necessary space . More discussion of this is found in section 7.2 on page 166.

A cursory attem pt at endpoint control produced results tha t were not con­

clusive. In general terms, the error metrics did not converge as nicely as for the 

case of target directed direction cosines, and the critics did not go dormant, they 

just contributed less and less over time, which is not sufficient. My assumption 

going into tha t experiment was tha t since ARTISTS was tailored to the solution 

with direction cosines, expectations of a success by simply changing the map­

ping was overly optimistic. So tha t too is left as an effort for future work. If it 

can be accomplished, this would make the extension of ARTFORMS obstacle 

avoidance into a larger class of problems (consisting of those problems men­

tioned in section 5.4) complete.

2 ii has the same number o f  degrees o f  freedom as the arm plus the target position.
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CHAPTER VII

C onclusions a n d  F uture Work

7.1 C onclusions

These major conclusions were formed in this dissertation:

• Multiple CMACs can be used to model complex systems in a 
subsumptive fashion. Spatially distributed representations in one can 
indirectly affect the other. Examples are:
• spatially distributed plasticity,
• constraint representation for obstacle avoidance, and
• spatially distributed confidence measures.

• Direct inverse methods can be used very effectively for redundant 
systems, given (1) local generalization and (2) on-line training.

• Goal directedness can be forced on direct inverse methods via 
constraints whose goal is to reduce the dimensionality of the  problem. 
The result is a robust system. This reduction of dimensionality via 
constraints is probably the root cause of Jordan 's forward model 
successes.

• It is possible th a t by increasing memory size by as little as 1 vector can 
result in a measurable change in function approximation accuracy with 
CMACs, under certain conditions.

• The use of CMACs in control systems can be viewed as consonant with 
and an extension of the traditional method of non-linear control via 
linearization around stable operating points
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Some more minor conclusions were also made:

• There is a loose linear upper bound on hashing collision damage for 
CMACs.

• The summation of CMAC address coordinates th a t have been 
uniformly randomized distorts the distribution of the randomized 
samples from uniform to near Gaussian.

Finally, some slightly speculative results were also asserted:

• A Lyapunov stability argum ent seems to hold for ARTFORMS-2 
trajectory formation, and a rigorous proof may be possible.

• The ARTFORMS-2 system is robust in the presence of noise and this 
discovery led to a persuasive (though untested) design for a system 
based on an adaptive critic th a t will be entirely model independent.

7.2 F uture Work

Future work for which this dissertation set the stage includes:

• Installing Adaptive Critics: In section 6.3 the notion of installing 
adaptive critics was discussed. The current implementation is really an 
idealization of a practical implementation of the ARTFORMS 
trajectory planner. By removing the analytical forward model, the 
construction of a fully general adaptive planner for simple planar 
kinematics is complete.

• Installing Smoothness Constraints: Installation of smoothness 
constraints with stiffness and/or momentum term s as discussed in 
section 4.7 should be implemented to determine how effectively they
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improve (or thw art) convergence of trajectory formation. This should be 
especially helpful for long kinematic chains.

• Using Endpoint Control: The minimum dimensionality of an input 
space m ust accommodate every im portant aspect of the input data. In 
the case of ARTISTS, tha t dimensionality is 2+n for n  joints. At any 
point in the state space, the posture (and thus the hand position) is 
well defined by the n joints, but the sta te  space input vector m ust have 
2 additional coordinates like (bx, by), which provide disambiguation for 
the case where two trajectories cross in the  hand space, and thus have 
equal joint postures, to define two distinct trajectories in the input 
space upon which those two points lie, for the case of two distinct 
targets. If the values of (5:*; Sy) are not equal for these two points, then 
we may rightly expect th a t these represent two points upon 2 distinct 
trajectories aimed at different targets even though the postures are 
equal. This seems to infer th a t the representation spans the necessary 
vector space of the problem. It is an open question whether absolute 
target position ra ther than  direction cosines will suffice for tha t 
spanning. Clearly, the number of dimensions is sufficient.

• Construction of a rigorous Lyapunov stability proof for trajectory 
formation within the ARTFORMS-2 system.

• Multiple cooperating ARTFORMS-2 systems th a t have binocular vision 
input for depth perception, more sophisticated obstacle recognition and 
can operate multiple cooperating arms in 3 dimensions.
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APPENDIX A

Future Directions: A Longer Term View

The next logical step in this research progression is to put ARTFORMS 

into context, and to broaden the scope of this research to consider a more inter­

disciplinary approach.

A.l Two Differing Approaches for
Interdisciplinary Research

There are two possible directions a biologically inspired motor control 

paradigm may follow: a philosophical approach and a physiological approach.

The philosophical approach receives deep biological inspiration and insight 

and proceeds to design on engineering principles which then  operate more or 

less open loop with respect to physiology, once the initial inspiration is complete, 

This method is exemplified by Albus's [’81] approach.

The physiologist’s approach is exemplified by Houk [*90], who persists in 

adhering to physiological models throughout. The agenda here is clearly first the 

goal of explication of real neurological systems and only secondarily, engineering 

systems.

Another approach, the analytical approach, which contains a "symbolic AI 

approach" as a subset, is a variant of the philosophical approach. This may take 

a cue from nature, or it may proceed entirely from a mathematical formalism, 

but it usually attacks a problem at a very high level. The objective becomes to 

use whatever means are a t our disposal to assure as nearly optimal performance
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with as nearly minimal time complexity as possible. A problem th a t arises is 

that these two requirements are strongly a t odds with one another. The result is 

often neither a satisfying application nor a palatable computational budget.

The former two methods are in some ways qualitatively more powerful 

than the analytical approach because they build on evolutionarily proven sys­

tems, without having to reinvent evolution in a bottle, as genetic methods do, 

which is computationally burdensome. Evolutionary successes can be very in­

structive engineering parables for the control theorist and engineer. Some adap­

tive control theorists have argued against emulating nature in complex systems 

for a num ber of good reasons. For instance: nature is very inefficient and so 

blind adherence to models that mimic nature risks inefficiency. Our counter-ar­

gument to this class of objections is th a t there are cases where a system m ust be 

designed to be fault tolerant of crude, inaccurate components used in a system 

in an effort to be frugal, and there are cases where long time delays in systems 

cause problems that can be ameliorated by "quasi-feedforward" methods that 

mimic Houks cerebellar model.

I am not saying th a t "no engineering solution exists th a t can not beat evo­

lution a t low cost with a lower resolution", nor am I saying th a t the "evolution­

ary way" is the only way. It is just simply the case tha t if a system must tolerate 

crude components (because tha t is what a cheap design has forced upon it) those 

inaccurate, noisy, low resolution components pose a problem for the system. Na­

ture has had to handle just those sorts of problems because biological compo­

nents are inaccurate, noisy and low resolution. One solution (perhaps not the 

only one) tha t has worked with a low computational budget (since no computers 

were involved) is the "quasi-feedforward" solution postulated by Houk. Systems
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like mine are very similar in strategy, not design, to Houk’s, by providing an 

adaptive feed forward predictive capability in place of tight loop feedback con­

trol. Another argument in favor of these kinds solutions is th a t well designed 

analytical solutions will not likely be as portable from one implementation to 

the next unless they are highly adaptive and try, via this adaptivity, to be gen­

eral purpose solutions, ra ther than  each being specifically tailored to a given ap­

plication. This latter point suggests th a t analytical solutions may have problems 

just from one manufactured unit to the next because of loose tolerances making 

these different units start to look like different designs.

Finally, the innate time delays of complex systems have deleterious effects 

as mentioned in section 2.5.2.1, and again, nature has dealt with these problems 

using solutions like Houk’s quasi-feedforward processes.

A. 1.1 Moving Toward More Biologically Inspired Systems

A. 1.1.1 The Philosophical Approach . First, we would like to consider 

some obvious extensions of ARTFORMS under the philosophical approach in­

tended to develop cerebellar methods th a t can subsume higher level functions.

At the least these would include:

• the fusion of multiple ARTFORMS systems to plan for 
multiple articulators or other mechanisms.

• the addition of more useful vector representations of 
articulators’ joint spaces, e.g. from vision data  extracted from 
an image processing system th a t gets input from a binocular 
vision system, facilitating 3 dimensional postural perception.

But the ultimate target of this method would be to develop systems that 

resemble Albus’s three level hierarchy of the mammalian brain (Albus [*81], p.
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184). MacLean [’73] and others have postulated a triune brain hypothesis in 

which higher levels in the hierarchy exert control on lower ones by inhibition of 

innate primitive behavior tha t left alone would proceed in a feed forward fashion 

(for instance Brooks’sr88] walking behaviors).

The hierarchy consists, a t the most primitive level, of the reptilian brain, 

with an old mammalian brain in the middle, and finally a new mammalian 

brain occupies the uppermost layer. ARTFORMS now operates a t the old mam­

malian level with incursions into the reptilian level. The Miller/Glanz/Kraft con­

troller might be said to operate at the reptilian level. If your view of reptiles 

precludes adaptivity, consider Brooks's modified FSMs as an example. MURPHY 

(Mel [’90]) operates at the new mammalian level.

It is possible to extend spatially distributed param eter systems similar to 

ARTFORMS well into the new mammalian level. What ARTFORMS is missing 

is something like a parametric understanding of back-track search. Tb develop 

this, some sort of time history capability m ust be developed.

The incorporation of a more sophisticated Purkinje cell model in the 

CMAC implementation to conform Houk's (Houk [’89,’90,’91], Sinkjaer [’91]) ob­

servation of a hysteresis loop involved in Purkinje deactivation might be a valid 

approach: delaying the deactivation of receptive fields in CMAC would cause 

some "smearing" of the receptive fields along trajectories rather th an  just having 

a fixed generalization around any state space point as if it existed in static isola­

tion from the dynamics of the system. The result of this time delayed deactiva­

tion might be faster learning of trajectories and a better capture of the dynamics 

of the motion of the mechanism. Such a method of smearing the generalization 

region would tend to potentiate movement commands when arm  velocity is

170



large, which seems appropriate. However, this low level modification may not be 

necessary, and further, it would only capture past time history, whereas a 

method of forward prediction is desirable as well.

A.l.1.2 T em pora l L o o ka h ea d  M ethod . Consider figure A.I. In this 

section, a method of using CMACs to implement a temporal lookahead method

t (‘+*0 Time
* * N .

x(t) ! x(t+£.t)

/ ( • )

^ — > J ( X ( 0 )  I

AjJX(x) AJJX(x)

Figure A.l: First Order Temporal Lookahead Method 

will be discussed. Temporal lookahead is similar to Sutton's temporal difference 

method in that multiple networks are used to learn the temporal consequences 

of actions, i.e., what outcomes result from those actions. To have a single time 

step lookahead, two CMACs would be required; to have an n  step lookahead, 

n+1 CMACs are required.

By contrast, Sutton’s temporal difference method would train  the new in­

formation into the same network. The latter method is appropriate for dynamic 

programming solutions where an action is thrown out based on a reduction in
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cost of a newly searched path through the given state space point, bu t the tem ­

poral lookahead method does not throw out the prior actions, ra ther it keeps a 

complete (spatially distributed) "tree" of consequences active, so th a t multiple 

policies can be used to search the same state space. Note in figure A .l th a t nei­

ther x  nor f  are explicit functions of time, because the CMAC models here model 

autonomous systems. The AUX CMAC learns the implicit time relationship be­

tween adjacent steps along the trajectory.

The final suggestion for building on the philosophical approach is to at­

tempt, to mimic Houk’s [’91] quasi feed-forward control. (See section 2.5.2.1 on 

page 36.) Moderation of predictive and proprioceptively sensed state information 

can lead to alleviation of problems related to the deficiencies of closed loop feed 

back control in the presence of obstacles. A feedback system, when thwarted, 

tends to "push harder" to move its plant under control toward a target. Houk 

lias determined that there is an innate cerebellar/brainstem mechanism th a t a r­

bitrates the problem of when to push and when to give up. Such an additional 

feature would strengthen the practicality of ARTFORMS, because currently, 

ARTFORMS assumes a benign environment: it assumes th a t the reinforcement 

signal will arrive in time to prevent system damage, an assumption th a t is 

clearly naive from an engineering viewpoint! Section 4.4.1.2 addresses this issue 

to a limited extent, however.

A. 1.1.3 The P hysio log ica l A pproach . Second, (a "first" was in section 

A. 1.1.1!) it would be interesting to apply our methods to Houk’s model, rather 

than moving Houk’s ideas into an ARTFORMS venue, in order to follow the 

physiological approach.
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In this proposed research, I suggest th a t CMACs be used to model the 

Purkinje cell response in Houk’s model. He postulates a positive feed forward ac-

d iffu se  a m in e rg ic  
in p u t

c lim b in g  fib e r granule cell

sensory inputs 

( l)  = lateral reticular cell 

@  = red nucleus cell 

rubrospinal -> motor commandssen so rim o to r  cortex

(p )  = purkinje cell

= basket cell (n ) = cerebellar nucleus cell

Figure A.2: Cerebellar Adjustable P a tte rn  Generators 
(after Houk [’90])

tivation loop comprised of the cerebellar nucleus, red nucleus and lateral reticu­

lar nucleus. In his model, motor commands leave the red nucleus and predictive 

data is fed back into the loop via efferent copy from the lateral reticular nucleus 

which then merges with proprioceptive input to the Purkinjes. The Purkinjes in 

turn  modulate the loop’s output by an inhibitory projection1 onto the cerebellar 

nucleus, whenever they are strongly selected by the predictive and/or proprio­

I Noic the recurrence of ihe inhibitory control theme, as in the triune brain hypothesis.
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ceptive dataflow via the parallel fibers. See figure A.2. Under the current Houk 

model, Purkinje cells are trained by climbing fiber inputs, bu t each weight ad­

justed by a climbing fiber represents a term  in a weighted linear summation. If 

the projection onto the cerebellar nucleus is also linear (or even a fixed non-lin­

ear relationship), the model cannot handle the general case of a neuromuscular- 

j unction/muscle response characteristic tha t is force-context variably 

non-linear2. If Houk’s Purkinjes were replaced by CMACs, leaving the rest of 

the loop model essentially untouched, a force context variable non-linear re­

sponse could be modeled. This would at the very least allow for a more realistic 

arm rotation model, because the assumption of linearity of the muscle force ver­

sus 0 that he used was an unrealistic assumption.

One approach for this model would be to allocate one CMAC module for 

each muscle or muscle group. So each of these CMACs models a population of 

Purkinje cells th a t ultimately control the innervation of th a t muscle or group. 

This gives rise to the notion of neural modeling by field effect mathematical 

models rather than discrete neuron models as discussed in the following section.

A. 1.1.4 The F ie ld  Ef fect  M o d e lin e  o f  N eu ro n  P op u la tio n s. The

field of neurobiological research is a t a crossroads, not just as relates to motor 

control, but to memory storage and retrieval issues at large.

It should be obvious from the reading of this dissertation th a t I consider 

the "non-linear" approach taken by the connectionists to date as a generalization 

of the idea of a computer memory. Perhaps we could view this the other way 

around, in view of the controversy th a t took place in the late thirties and early

2 In other words, it has a non-linear response that is variable and the nature of the variability is dependent on
a spatially distributed force parametric field..
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forties between neural networks and Von Neumann advocates. The Von Neu­

mann camp sought to and did mold the direction of 50+ years of computer re­

search and development. The Von Neumann computer architecture could be 

viewed as a high resolution abstraction of the idea of neural network memory. 

The effect of this abstraction is th a t the quality of generalization is abandoned. 

The result of a non-linear system like a computer memory is th a t complete isola­

tion of granular concepts is accomplished. A natural neural network can not help 

but smear information, by virtue of interaction of storage elements. The Von 

Neumann architecture however is the ultim ate non-linear device: there is abso­

lutely no guaranteed relationship, linear or otherwise, between the inputs (ad­

dresses) and the outputs (data) tha t remains the same between any one 

"training pair" and another.

So now, the pendulum swings the other way and connectionists seek to 

build systems th a t move away from the "discrete bucket" design of a Von Neu­

mann architecture and toward a "smeared" representation.

It seems in this view obvious tha t the reasonable approach of building neu­

ral models from scratch without the Von Neumann model from which to general­

ize might be the diverse "bottom up" approaches of MLPs, Hopfield nets, 

Kohonen nets, ART-1,2, or 3, etc. All these methods take a microcosmic view of 

the network and try to build one by building individual neuron models and con­

necting them  together. This would have been the logical approach if the neural 

networks camp had prevailed over the Von Neumann camp in the forties.

We are better off in the nineties, however, and it seems retrograde to go all 

the way back to the McCulloch-Pitts model for anything but conceptual inspira­

tion. The CMAC architecture takes the modem approach: given the Von Neu­
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m ann architecture, which is thoroughly discretized, how can we build a network 

that exploits the developments of the last 50 years and yet seeks to overcome 

the total isolation of stored elements tha t the Von Neumann architecture im­

poses on memory. The result is th a t we build a memory th a t is non-linear in the 

same sense tha t a Von Neumann memory is non-linear, i.e., it is a computer 

memory of sorts. In local areas, however, a relationship is imposed on the con­

tents of the memory tha t may be linear or it may be non-linear, but it is consis­

tent and applies to all the state space that the memory defines.

What we define in such a system is a field model of a memory. Consider 

the definition of a field in Marshall [’87]:

"A field is defined as the mathematical specification, in 
terms of position variables and time, of a physical 
quantity, such as temperature, in a given region."

This is an intuitively satisfying definition of a field th a t is easier to resolve 

with the current argument than the more rigorous one found in many m athe­

matics texts like Adler [’67] as an extension of the mathematical concept of a 

group, which is in tu rn  an extension of a ring. It can be seen th a t a CMAC as 

viewed in figure 3.5 fits the definition. In fact, the iterative method of solving 

LaPl ace’s equation using nearest neighbor averaging bears a lot of similarity to 

the CMAC method. The difference between the two methods is th a t the CMAC 

method attem pts to build a field representation of whatever is presented to it 

and the NNA algorithm can simply be shown (Noble [”67]) to approximate as 

closely as desired any field th a t obeys LaPlace’s equation. In both these m eth­

ods, a local field value is asserted at each mesh point, and the conglomerate ef­

fect of many such training instances is that this local field effect propagates 

outward from each training instance until its effect becomes negligible.
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One might well ask: W hat this has to do with neurophysiology?

Simply this: Neurons have local effects. They also have spreading global 

effects as they innervate target populations, and as neighboring ones intercon­

nect. It should be possible to build field models of the global effects of these neu­

ral projections, based on specific postulated microcosmic hypotheses about 

neural function. It will be much more feasible, given the current state of the art 

in computation to try  and build models, like CMACs, tha t can "virtualize" the 

concept of individual neurons in field effect models of neuron populations and to 

study the net effect of the superposition of these field effect models. The macro- 

cosmic observation of these net synergistic effects may be a much more effective 

way to vindicate particular microcosmic hypotheses than the discrete implemen­

tations of the microcosmic mechanisms in a computer model tha t (again, given 

the current state of the art) is not implementable, or whose implementation is 

unsatisfying in its simplicity.

The suggestion is then that 2 approaches be taken:

• 1. Build macroscopic field effect models of postulated 
microscopic structures within the neuron (like dopamine 
receptors, for instance) and observe the effect of these fields 
taken in superposition with other postulated models, e.g. 
initiation of motion in a Parkinson's disease model or the 
degree of trem or induced in a Huntington’s disease model.

• 2. Build macroscopic field effect models of postulated CNS 
structures. For instance, if we built a field effect model of the 
cerebellar cortex, and connected it to a loop of modules 
modeling the field effects of the red nucleus, cerebellar nucleus 
and the lateral reticular nucleus we could observe the 
macroscopic behavior of these modules taken in cooperation in
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an architecture th a t connects them  together in ways th a t we 
postulate occur within the CNS. We could then  observe the 
motor control capabilities of such interconnected modular 
systems. We would then build each module through 
architectural decomposition as in approach 1.

Why might these approaches work? Consider the field of electromagnetics. 

Since Maxwell’s introduction of his equations describing electromagnetic fields 

in the 1860’s, we have enjoyed more than  a century of success in studying elec­

tromagnetism, guided largely by these simple equations, which are founded on 

models of atomic particles th a t in view of today's knowledge of quantum  me­

chanics are incredibly naive, perhaps as much so as McCulloch-Pitts is a naive 

model of the neuron.

Another case history is Miller [’78, ’78a]. He described cardiac function us­

ing a field effect model based on volume electrical current density. This model 

was based on differential elements which were naive models of electrical activity 

in cardiac muscle cells. This approach predicted activation waves across the car­

diac muscle and EKG readout tha t matched clinical observations very accu­

rately.

Francis Crick [’89] argued that we need to concentrate on every detail of 

actual neurons without wasting our time building networks of simple naive
Q

models like perceptrons . Maybe this argument should not be thrown out en­

tirely, any more than it should have been argued during the early 20th  century 

tha t the quantum physicists should cease and desist because we had not yet

.1 hi ill 1 fairness, his principal argument was against the back propagation algorithm, and there, his argument
is hard to refute!
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enumerated all the implications of Maxwell’s equations. If they had, we might 

not have gotten around to understanding sub-atomic mechanics until well into 

the 21st century. But similarly, we should not concentrate exclusively on the mi­

croscopic, bottom up approach, because if we wait to view complex neural sys­

tems behavior until the microscopic knowledge is fully enumerated and until 

computer science has evolved to the point of being capable of modeling large 

scale systems based on the results of said research, none of us alive today will 

ever see a truly neural-like complex system under study!

In summary, I advise a dual approach: two camps should cooperate, one 

elaborating on microscopic mechanisms, the other on field effect macroscopic 

models. If postulations of one camp can be converted into implementations of 

features in the other’s models, we might see development in the field of neuro­

physiology paralleling that in physics. In physics, engineers continued to de­

velop elaborate communications and transportation systems based on Maxwell’s 

equations while the quantum physicists amended and generalized these equa­

tions based on sub-atomic hypotheses and experimental vindications in  the lab. 

Many of these amendments have found their ways into practical engineering 

systems. If we can emulate the physics research model, someday we may hope to 

be knocking at the gates of a universal field theory of neural activity, much as 

today’s physicists still hope to do in the place where field theorists and quantum 

mechanics theorists get together.
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APPENDIX B: An analysis of the probability of hashing collisions.

T h e  p ro b ab ility  o f  A N Y  co llis io n  b e tw e e n  2 ra n d o m  in p u ts  is:

fo r  m ~ 500,600 . 20000 , P a(M ,C )  = /  -
(A f-C )
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F ig u re  B . 1: T h e  P ro b ab ility  o f  Any C o llis io n s B e tw e e n  2  R a n d o m  In p u ts
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Figure B.2 shows a plot o f  this quantity.
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F ig u re  B .2 : T h e  P ro b a b ility  o f  Exactly N  C o llis io n s B e tw e e n  2  R a n d o m  In p u ts

T h e  p ro b ab ility  o f  A NY co llis io n  b e tw e e n  ran d o m  inpu t an d  e x is tin g  tra in in g  is sim ilar to  the  
above , bu t in ternally , th e  ro le  o f  C  in th e  ab s isscas  ab o v e  is ta k e n  by  th e  q u an tity : u =  U/M, 
w h ere  / /  =  the  n u m b er o f  v e c to rs  u sed  in th e  c u rre n t m o d e l, an d  M  =  th e  to ta l physical 

m em ory  v e c to rs  availab le .
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For systems like ARTISTS and ARTFORMS, this 30% upper limit on memory is not very 
worrisome. There are 2 factors which ameliorate the problem:

1. Only "active" memory usage is important. Any state space that was visited during
the process o f converging to a solution but subsequently was not revisited during the 
execution of the solution trajectories will simply be overwritten by new experiential 
data. This means that hashing collisions resulting from old training data gradually will 
be attenuated by new training just as old coherent training will. The degree to which 
one wishes to preserve old training data in the face o f new novel data is controlled 
by adjusting the memory size to be large enough to fit the complexity of the 
trajectory ensemble expected. In the body of the thesis an experiment was 
performed to demonstrate how the memory usage drops off significantly after 
training o f trajectories has converged.

2 The ARTISTS architecture includes an adaptive critic that evaluates a proposed
move. If the move is not appropriate, a heuristic is used to generate an appropriate 
approximate move which, upon being trained into the system, will cause the 
inappropriate move to decay away via re-training.

Concerning both these two points, it is noted that the system has already been shown to be 
robust with respect to memory size. The following analysis will further substantiate a claim 
that we need not worry about hashing collisions, given that memory size is set for a 
"reasonable" value. The rule o f thumb to use here is just that common sense prevail: if 
possible use 20,000 vectors rather than < 10,000 vectors, if the memory is available. If not, 
just be aware that potential problems may arise.

For the remainder of these examples, u and C will be fixed. C will be set to a value that will 
be similar to a nominal value used in the arm experiments, and u will range from "naive" to 
fully saturated memory.

Cs  32 u - 0 , . 0 1 I

The probability o f exactly N collisions between random input and existing training is a 
binomial distribution:

Pc(it ,N) = (u)N (J  -  u f ~ N ( C ! )

(M -(C-A 0!)

which is analogous to the function P ti(M ,C ,N ) derived above.
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We'll compute a few of these to see what they look like:

P C ( u )  -- P c ( u , 3 ) P C l ( u )  -- P c ( u , 6 )  P C 2 ( u )  = P c ( u , 1 6 )
P C 3 ( n )  z P c ( u , 2 4 )  P C 4 ( u ) --P c ( u , 3 0 )  P C 5 ( u ) = P c ( u , 3 2 )

0.8

PCl (u)
0.6

0 4

PC5(u)
0.2

0.8 10.60 0.2 0.4
u

Figure. B.4: Probabilities o f N Collisions for New Random Inputs 
(and existing old data)

Finally, the expected number of collisions between existing training and random input is just 
the sum of P c(u) x N  for all N from 1 to C.

C!
n \ ( C - n ) \

■n
n

It’s to be expected that the binomial "humps" on the right side o f the plot o f£ C  will be 
amplified and the ones on the left will be relatively attenuated in the multiplication by N, so 
we’d expect the sum to be a monotone increasing fimction o f some form, but surprisingly, 
this expected value function turns out to be just the linear quantity, uC,  as seen in figure B.5.
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2

EC(u)

I

0
0 0.3 0.4 0.6 0.8

u

Figur. B.5. Expected Value o f Number of Collisions for a New Random Input

This means that we can expect performance to degrade a t  w o rst linearly with increasing 
memory usage, (or decreasing memory size). By "at w o rs t”, I mean that the expectation 
plotted above holds for random inputs, which on average are unlikely to overlap due to 
valid generalization interaction. However, if the inputs are from an ensemble o f training 
instances that are highly correlated, (as in an ensemble that forms a spatial trajectory), there 
is a strong expectation that most of the state space visited by the trajectory is the result of 
multiple overlap of receptive fields. This means that happenstantia! collisions will will be 
better tolerated than if the inputs were all intended to be parts of discrete state space 
regions as might be the case with, for instance, a pattern classification problem with many 
distinct classes and few members in each class.

The probability expressions above are from unpublished results associated with [Miller,
'90b, ’90c], These expressions were used with random input data to validate the hardware 
CMAC design and vindicate the equivalence between the hardware and software designs. 
The result that the expected number of collisions is a linear relationship in m  is a new result.

The only proof o f the new result I've been able to construct is rather messy. A summary of 
the proof follows. The insight required is to note that in the summand,

in the sum, only the leading term, Cm, which occurs when when n = I  survives. It is the

//! (C - n)l
C!

n  is simply the product o f n  and the binomial coefficient, n .

only term that contains mA The other terms are annihilated by adding in expansions of

(l-u)C ~n  that follow, which have alternating signs and leading coefficients that are also 
binomial coefficients. A more detailed treatment is on the next few pages.
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This is

Ec (u , c) -  £  (1-u)' 
n = l

C - n (C \
n

proof of 

•un-n -  uC

the assertion tha t

C -n E a c h  ro w  h e re  a rc  c o e f f ic ie n ts  o f  th e  b in o m ia l
C—ne x p a n s io n  o f f  1 ~u)

E a c h  c o lu m n  is  a  s e q u e n c e

C - 4 C - 5 C - 6 C - 7

0 1 0 0 0 0 0 0 4 u 4 5 u S 6 u 6 7 u 7

1 1 - l u 0 0 0 0 0 1 2 u 3 2 0 u 4 3 0 u 5 4 2 u 6

2 1 -2 u + u 2 0 0 0 0 I 2 u 2 3 0 u 3 6 0 u 4 1 0 5 u 3

3 1 -3 u +  3 u 2 •u 3 0 0 0 4 u 2 0 u 2 6 0 u 3 1'tOu4
*

4 1 -4 u + 6 u 2 -4 u 3 V 0 0 0 5 u 3 0 u 2 1 0 5 u 3

5 -5 u + 1 0 u 2 -1 0 u 3 + 5 u 4 -u 5 0 0 0 6 u 4 2 u 2

6 I -6 u + 1 5 u 2 -2 0 u 3 + 1 5 u 4 -6 u s + u 6 0 0 0 7 u

Table B.l: A rearrangement of the summation of terms for the expected 
value of number of collisions

The inspiration for this proof comes from the observation th a t the expan-

sion of (1 -n) ' has as its expansion a binomial series with alternating signs.
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In the table above, the columns in the right hand half of the table repre­

sent the values of the quantity n- 

In the table, each column vector, V, from bottom to top, starting at the head of

'C) u , taken with n=l a t  the tail of the arrow.n 
\ /

the arrow for th a t value of C. So defining V 4 s V , observe th a t the col-
c -  4

A  0  ^  A  7 1umn vector V = [ 4u 12u I2u 4u ] . The sub-diagonals should also be read 

from bottom to top. For any C, ignore all rows for (C-n) S> C, as these rows would 

represent negative values of n.

In the expression of E , it is clear th a t each term  of (1 -  ri)c~n m ust m ulti­

ply with the component, Vn , and this is true for all n.

So if we form dot products, D [ V  with the n  subdiagonals of the lower tri­

angular binomial expansion m atrix on the left, starting with the subdiagonal at 

the head of the corresponding arrow and finishing with the m ain diagonal, we

C

can observe th a t the sum • V  of these C dot products, for a given value of
i=l

C, is a slight rearrangem ent of the series, for th a t value of C. Only the first

term of the first dot product survives, because the alternating signs along the 

other subdiagonals cause the term s of each of those dot products to cancel each 

other out. After th a t cancellation, all th a t is left of the series then, for any value 

of C is uC.
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' i i ’-3u" 3u2 '- u 3-
0

+ r 4 1 + r 4 -2  u T 4 u2
0 0 1 -u
0 0 0 1

. Expanding each termExample: Ec -  V ‘

for the value, V 4, given above this 4 term series becomes:

u C + 0  + 0 + 0

It should become apparent after hrying this construct for all values of C € (4..7 ] 

and for n e {1..C }, that the pattern persists regardless of the size of C.

This is not a satisfying proof of the conjecture, 

C

Ec (u , c )  = £  (1-u)
n=*l

C - n r c i
n \ ✓

un-n -  uC, but the search for a concise inductive 

proof has been in vain so far, and this will ju st have to do!
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A P P E N D IX  C

A Study of the L inearity of Inverse Differential Kinem atics

This appendix describes some analysis tha t predicts a generalization slew 

rate  of - 11% for parameterization P 4 and of - 20% for parameterization 

which is in agreement with experimental results. It also illustrates th a t inverse 

differential kinematics is linear in a rather broad sense. This is of course not 

true for inverse kinematics.

I will make some simplifying assumptions for the case of a redundant arm 

with 3 joints to allow plots to be drawn of the kinematic transform. I assume 

tha t the differential joint steps will be equal for all three joints. This reduces the 

problem to one with a closed form solution. This is also reasonable in view of 

the equi-angle constraint training of the ARTISTS model.

So as not to have to resort to linearization, the inverse kinematics is not 

solved. Rather, the forward kinematics is shown in figures C .la  and C .lb for 

various values of 0.

Now the differential kinematics is shown for varying step sizes in the 

traces of figures C.lc and C.ld. The pertinent point to notice in these plots is 

th a t the plots seem to be linear scaled versions of one another, for values up to .1 

radians. As the increment increases the plots start to separate in phase, but note 

tha t 5*dK(0.01) =* dk(0.05) appears to hold as closely as the eye can distinguish.
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C.l A Discussion of
Generalization Slew Rate.

The param eterization chosen in section 4.8.2 of = (64,4,8,20K) per­

formed well. W hat physical interpretation can be attached to this, and why was 

it a reasonable choice? The answers to these questions will aid us in the future 

in assigning a parameterization a priori.

In the simulation space, the joint angles were discretized such th a t 1 dis-
T1crete simulation unit (su) = 0.1°. A quantization of 8 , (qnt_vec = [„8,8 ,...] ), 

means tha t one codon unit change requires a change of 8 su. So 1 codon unit (cu) 

= 8x0 .1° = 0 .8°.

In the simulation space, the direction cosines are encoded such th a t the 

vector [100,0] - i ,  a unit length vector in the x  direction. If the codon is set by 

qnt_vec = [4,4,...] , then 1 cu subtends a hand displacement of 4/100 = 0.04 lin­

ear units.

Now in each coordinate, a receptive field will subtend C codon units. So 

two postures will generalize if only one joint changes by an amount of

e 7! -0 '+1< C lcu  < 64 0.8° £ 51°i i

or if only one hand space coordinate changes, by an  amount

h i -  / i j+1 £ 64 0.04 ^ 2.56 linear units.

Of course this is absurd, because the coordinates of the input vector are all 

coupled by the mechanical linkage, so no one component is a t liberty to vary in­

dependently. Since all steps are nominally 1.0 linear unit in the hand space, 

then all hand moves will be on the order of
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h i  -  h i* 1 -  1.0 linear units, (lu).
1 1

In fact, the average vector in hand space should be [7 V2 ,7 V2 ]^. 

h i  -  h i +l a 0.707 linear units, (lu),
1 1

so an average hand move will cause a receptive field change (generalization slew 

rate) of rc-0.04 -  0.707, so n  * 0.04/0.707 -  18 cu, per coordinate. Meanwhile, as 

the hand moves, so move the joints. To cause generalization to occur between 

succesive postures along the trajectory, no more th a t 64 - (2x18) = 28 cu can be 

contributed, in toto by the n  joints. Thus, if for 3 joints, the joints each move 

28—  • 0.8°=7.47° then no generalization will occur.
o

How many steps will a receptive field span? The forward kinematics can 

be expressed, in general as

n i n i
^(0) = £  l.cos( £  0 .) ( -  l )1-1 f  + £  U in(  £  0 .)  ( -  l )1-1 j  

£=1 ;=1 i=1 7=1

where /. are the lengths of the links, 0 . are the n  joint angles, and t, f  are theI I
unit length basis vectors of the hand space.

For 3 joints, links of 15 lu each, and equi-angular constraints, this becomes 

x  = 7^(0) = JjCostOj) -  igCosfOj+Og) + /gCo^Gj + 02 + 0g) and

y  = K2(0) -  Z js in ^ )  -  ZgSinfOj+Og) + ZgSinfOj + 02 + 0g)

These can be simplified using sum of angle formulae to derive the func­

tions K l and K2 of figure C .l, (equations C .l and C.2).
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0 s 0 ,.0 1 ..2  n

K 2 (0 ) l5  C (sin (0) -  s in (2 -0 ))   ̂ s in (3 -0 )) K l ( 6 )  = 1 5 ( ( c o s ( 0 )  -  c o s (2 -0 ) )  t  c o s ( 3 0 ) )

6.280 6

19.7333

K 1(0)

-M.9997
6.280 e

a. T he y value o f  K(0)
b. The x value o f  K (0)

K 2 (0 ) = -3 O s in (0 ) -c o s (0 )  + 6 O s in ( 0 ) c o s ( 0 )

K 2 (0 ) = 3 O s i n ( 0 ) c o s ( 0 ) ( - 1 < -2 -c o s(0 ))  (C .l)  

«.IK2 ( 0 1 ,0 2 )  K 2 (6 1 ) K 2 (0 2 ) (C .3)

K 1 (0 )  := - 3 O c o s (0 )  -  3O -cos(0 )2 +■ 15 +■ 6O c o s ( 0 ) 3

K 1 (0 )  ;= 15-(-1  * 2 - c o s ( 0 ) ) - ( 2 - c o s ( 0 ) 2 -  l)  

dK 1 ( 0 1 ,0 2 )  = K 1 (0 I )  - K l ( 0 2 )

(C.2)

(C .4 )

0..1..2-X

8.97S62

dK2(<t>,())r .01) 

5<iK2(<J>,<t> -  .01) 

dK2( , .05) 

.iK2(4>,(f  ̂ . I )

-5.68818

7.99919

dK !(<>,* +■ .01) 

5-dKI(<t>,4>i- .01) 

dKI(<|>.01- .05) 

dKI(<t>.<t>i-.l)

•8.00512

c. The y value o f  dK (0) d. The x  value o f  dK (0)

Figure C.l: Plots (vs. posture and step size) of 
flj(0) anddfl{0)
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As the plots of figure C .l demonstrate, the functions dK. are in  fact linear, 

(in A0) because the plots of figures C .lc and C .ld demonstrate th a t

dK.(<p,\-dd) -  X dK.(<p,d0).
t  I

Furthermore, if we note tha t dKg is a maximum a t <)> = 71, then a t th a t value we 

can pick the value

dX 2(0 .1) 8.97745

Cp=JC

off the plot of C.lc. Now by trial and error, a t th a t value of (J)=ji , we find a value 

of y such tha t the differential step is a unit step, i.e. dy  . Reading tha t 

value off the plot of figure C.2a, we seek a plot th a t satisfies:

dlr2(y) 0.707

<P=JC

Such a plot exists for A0 -  0.00787 radians = 0.5°. The dx  plots give similar 

magnitudes.

Figure C.2b and C.3 plot the function | dk(Q) | . More correctly, it is the func­

tion | dk(Q,A0) 1. Figure C.2b is a log ordinate plot which in which it is clear that 

this function, k(01,02) in equation C.5, is in fact nearly linear in A0. Figure C.3 

shows this function only in the domain from 45° to 180°, which is the region in 

which the articulator simulator usually operates. The objective here is to find 

that range of A0 which over the domain keeps the step length as near 1.0 as 

possible in the hand space.
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0. 705279

dK2($.<j> -■ . 00787)

-0. 447938

1. 99924

1.0I
, .0001 II 11 I) 

k ( 4 > , 4 )  t -  - 0 0 1 1 L I I I )  

k(i)i,<t) f  .0111111) 

kdt>.* ^ .02222222)

0. 00272716

b. Log plcx of dK for dO giving a move less lhan or equal to unit length

k(01,02) dK2(01,02)2 +dKl{01,02)2) (C5)

0
a. Containing the d6 to a Unit Length Hand Move

Figure C.2: Plots of dscfor, a t Most, U nit 
Length Hand Moves
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The limiting plots are the + hatched and x hatched plots in figure C.3, 

which correspond to, respectively, A0 = 0.011 and A0 = 0.04 radians, or A0 = 

0.64° to 2.29°. These values correspond to

0.64° ~ 1 codon unit and

2.290 ~ 3 codon units,

so for 3 angles, an average of 2 cu/joint for an average of 6 cu’s is probably a 

reasonable if slightly high estimate. But if A0 G (0.64°,...,2.29°), is the change in 

hand space direction cosines significant? Since the hand will be directed towards 

the target, it is reasonable to assume tha t the angle 0 , of figure 4.111 (on page 

111) is small, because the vector s should superimpose on c 151if goal 

directedness is achieved. This means the opposite angle, £ , is even smaller yet, 

a t least until the hand gets very near the target. At any rate, on average, it is 

probably safe to estimate tha t the most activity th a t will be seen in this measure 

is a single codon unit, perhaps, due to numerical roundoff and dithering in the 

attem pt to keep the hand on a rectilinear path to the target. As the CMAC gains 

experience, the change in the direction cosines per path segment should 

approach zero. For the record, I did  observe this in practice by recording and 

displaying changes in the direction cosine components during simulation and 

they showed only least significant bit changes between trajectory steps. 

Incidentally, this means tha t this pair of coordinates is a strong index for storing 

and separating classes of trajectories, because it effectively segregates 

trajectories in the state space by orientation of the hand space trajectory!

If the trajectory has significant curvature in the hand space, then the di­

rection cosines will change significantly and affect generalization slew rate, 

which is exactly what is observed in the Appendix E plots: Whenever the system
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<— X— C—*
0.196277

7t

4

For postures in the first quadrant, try to iteratively isolate values of d0 near a 
unit length hand move. This will give a bound for d0 that can be used in the 
arguments relative to a discussion o f the effect of generalization and 
quantization in the input space.

Fig. C.3 | dK | for Unit Length Hand Moves in  Q uadrants I & II

is in early training convergence, the generalization slew rate  is transiently very 

large, and until the hand space trajectory becomes linear, large variance of the 

slew rate persists. It is also interesting to notice th a t the slew rate for the six 

and nine jointed arms of figures E.3 through E .6 show larger variance in this 

metric than  the 3 jointed arms. This latter can only be because the hand space 

trajectories have higher curvature for the longer arms. It can not be because of 

variance in the joint steps, because the stepsize control (AGC) module prevents 

this. Again, observation supports this because the longer arms did  exhibit more 

hand space trajectory curvature than the three jointed arms.
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So in toto, for the 3 jointed arm, we should see ^ 6  + 1 = 7 codon units 

change between steps, or 7/S4x 100 <. 11%, which is about what the plot of figure 

4.10, ( on page 109), showed. Observing the other plots on th a t page and the pre­

vious page, note tha t by halving generalization or hand quantization, the effect 

is to double the generalization slew rate, again, exactly what the above analysis 

predicts.
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A P P E N D IX  D

P a tch  P lo ts o f R ecep tive  F ie ld  R anges

In the pages th a t follow, I have included several plots of the range of the 

receptive fields of the ARTISTS CMAC under certain conditions, for varying 

generalization, memory size, and varying posture. The object is to make some 

conclusions to lend credibility to the reasons for success of the ARTISTS trajec­

tory data storage method.

D .l V isu a liz in g  the CMAC D a ta

It is obviously impossible to visualize the nonlinear mapping of even the 

simplest redundant manipulator handled by ARTISTS. The reason is th a t the 

input is at least 5 dimensional and the output a t least 3 dimensional, (for the 

shortest redundant linkage). Figures D1 through D8 show examples of 3D sur­

face patches, each of which is a representation of the output of the CMAC for a 3 

jointed articulator trajectory planner. In each case, the assumption is made that 

the base angle, a, and the first constrained joint, p, are free variables. The third 

joint, y, is constrained to be equal to p, so it seems reasonable to view plots of the 

outputs, 6a, 6p and 6y as functions of the 2 free variables. Tb generate the plots, 

a  is incremented over a range of C codon units starting with o.Q-CfZ and proceed­

ing up to o.q+C/2, (a^ is the base angle setting corresponding to the figure in 

each case). For each setting of a, both p and y are incremented in parallel from 

respectively p^ and y ^  through the same sized range, and the output vector is 

plotted at each resultant point. The hand space direction cosines, 5x and 5y are 

held constant throughout each patch plot. The result shows some indication of 

the shape of the inverse kinemaitc function around the operating point defined
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Figure D .l: A Angle Response Plot 
as Function of a  and p in an Intermediate 
Posture (Posture #1). Generalization = 64

198



Figure D.2: A Angle Response Plot 
as Function of a  and P in a retracted 

Posture. (Posture #2)

Generalization was 64, and a memory size of 20K vectors was entirely adequate.
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Figure D.3: A Angle Response Plot 
as Function of a  and p in a retracted 

Posture. (Posture #2)

Generalization again was 64, but the small memory size of 4K caused hashing damage to 
be visible in a slightly more erratic shape of the surfaces. The overall effect was that 
performance, though degraded was gracefully so.
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Figure D.4: A Angle Response Plot 
as Function of a  and P in a retracted 

Posture. (Posture #2)

Here generalization was 64, but the memory size was only 3K vectors. Hashing collisions 
became a problem. It took a lot of training to get this result, but remarkably, performance 
was eventually successful.
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Figure D.5: A Angle Response Plot 
as Function of a  and P in a retracted 

Posture. (Posture #2)

"Undergeneralization" for a CMAC with generalization = 32. Note that not as much of the 
nonlinear nature of the kinematics is captured in receptive field range. Learning is slow, 
approaching table lookup, and it is not as good at low pass filtering out hashing collision damage.
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Figure D.6: A Angle Response Plot 
as Function of a  and p in a retracted 

Posture. (Posture #2)

As in Figure D.5, not as much nonlinearity shows in this patch plot. It, however is the 
result of plotting a half generalization width patch for a CMAC with a generalization = 
64, so it subtends the same width as Figure D.5. The relevant observation is that the plot is 
smoother. Any apparent shifting of the patches among figures D.2 through D.6 and most 
shape change is due to slight differences in the operating state space point
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Figure D.7: A Angle Response Plot 
as Function of a  and (3 in an extended 

Posture. (Posture #4)

Generalization of 64 and memory size of 20K vectors.
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Figure D.8: A Angle Response Plot 

as Function of a  and R in an Extended 
Posture. (Posture #6)

This posture resulted from a diversion of the arm from a well trained path segment to a 
completely novel trajectory. Generalization was 64 and memory size 20K vectors. 
"Texture" in this "novel" posture is much the same as in well trained postures.

205



by the posture shown in the figure. By varying a  and p and observing the mag­

nitude of the vertical axis, the angular displacements on each joint required to 

maintain a hand move of (5x, 5y) can be read off the  vertical axes of the three 

patch plots in each picture.

The patch plots cover an area of state space approximately equal to an  ac­

tual receptive field’s coverage. It is important to note th a t the functions gener­

ated, (which must be a close approximation of the inverse kinematics, since the 

system functions appropriately), have a t most one "hill or valley" in the patch. 

This means tha t spatial frequencies > 1/C are not strongly represented in the 

functions. We know from Carter [*90] and Segee 1*92] th a t if this were not the 

case, CMAC learning would be slow. Given the linear tapered window, the one 

humped or one valleyed topology of the surface fits well the receptive field con­

tour. I would have been worried to find many peaks and valleys in a receptive 

field extent, because I would expect th a t they would cause the CMAC mapping 

to be potentially unstable, or a t best slow to converge, due to CMAC averaging, 

which would force those m any peaks and valleys to change rapidly during train­

ing in an effort to force the average at each iteration to look like the observed re ­

sponse.

It must be noted that these patch plots are not receptive field descriptions. 

A C = 64 patch represents a sampling of 1600 sample points each, because the 

patch plot software is limited to 40x40 plots. These samples are evenly distrib­

uted over 4096 virtual state space points, (a 64x64 codon square). Each point is 

the summation of 64 weights th a t are regularly, sparsely and uniformly distib- 

uted over hypercube regions centered around each of the 1600 input state space 

points.
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So the functions represented in each surface plot are the conglomerate ef­

fect of many receptive fields. It should just be noted th a t the influence of just the 

receptive field associated with the center of each plot extends over the plot, with 

declining influence toward the periphery. The observation I expected to see in 

these plots was th a t consistently shaped surfaces with a topological simplicity 

would emerge after a minimal amount of training, and th a t they would be re ­

peatable. This expectation was bom  out conclusively by the following observa­

tions about the plots:

D.2 D iscussion  o f R esu lts  o f
V isualiza tionE xnerim ents

It is obvious th a t figures D.2 through D.6 depict the same function, albeit 

with some varying degrees of distortion or scale; this is appropriate since the 

state space input for each was similar, but not precisely the same. The reason is 

tha t for D.5 and D.6, separate experiments with differing generalization were 

used. For D.3 and D.4 differing physical memory sizes were used. In D.2 and 

D.6 , the same experimental setup was used, but I manually interrupted the pro­

gram along subsequent trajectories to snapshot patches of different extents. Fig­

ure D.6 is an attem pt to display a receptive field sized region of influence th a t is 

the size of a C=32 CMACs receptive field, but is generated by a C=64 CMAC. 

The observation here is th a t the C=64 CMAC gives a much smoother repre­

sentation over the same state region.

So it is possible to visualize in a limited fashion the mapping in a high di­

mensional CMAC. It is further possible to conclude th a t the reason C=64 works 

better than C=32 is tha t for C=32, the function representation is less smooth, is 

less able to low pass filter out the noise of hashing collisions, and approaches 

more closely table lookup, with a much more localized receptive field extent and

207



thus a more nearly linear function under each reoeptive field as can be con­

firmed by viewing figure D.5.

These plots are characteristic. I plotted many more and noted th a t they all 

told similar stories. Though they had widely differing shapes, all the  shapes 

were of single bumps or valleys or a t worse, mild saddle points like figure D.8 .a 

and b. Figure D.2 is overall smoother th an  D.5 and D.5 took well over twice the 

training time to achieve its result than  D.2. All of this is reasonable for compar­

ing C=64 and C=32.

D .8 is a very interesting example, demonstrating generalization in the 

"traditional" sense. This surface shows little qualitative difference from D.2, i.e., 

it is smooth and reasonable in shape, though it is a patch plot taken the first 

time the system executed the trajectory. The fact th a t the trajectory executed 

without any divergence from the expected path indicates th a t generalization 

was strong, and the function in D.8 looks very much as it will after ultim ate con­

vergence.

Finally the sequence D.2, D.3, D.4 was extremely interesting. D.2 per­

formed best of all the experiments. When its memory size was reduced to 4,000 

vectors memory saturation was over 30%, and the toll hashing took is evident in 

figure D.3. Note th a t its shape is still recognizable, but quite irregular and dis­

torted. With a further reduction in memory size, (figure D.4), performance be­

came quite unacceptable, and the surface quite noisy, with memory saturation 

around 50%. Surprisingly, this last distorted model is still capable of learning. If 

we leave it for 1000 iterations, we get the results shown near the left side of fig­

ure 4.10 on page 109. Its error statistics in the steady state are about the same 

as the setup with C=64 an 8000 memory vectors. All models th a t these patch
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plots represent were trained very superficially. All were trained on less th an  200 

path segments, and some on only 30 or so.

D.3 C onclusions From  V isu a liza tio n
E xperim ents

The conclusions I derive from these observations are th a t

• T hat ARTISTS is robust with respect to noise (as a function of 
memory size) as argued in  section 4.8.7 is fu rther supported 
by these plots

• The param etrization with C=64 does in  fact seem reasonable, 
as was discussed in section 4.8.6.

• The simple shape of the control surfaces subtended by 
receptive fields is conducive to a consideration of CMAC as a 
reasonable spatially distributed generalization of traditional 
non-linear control by linearization of equations a t operating 
points. See section 6.2.
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A P P E N D IX  E

Raw Error Metrics D ata From ARTISTS Trials

In figures E .l tthrough E .6 are examples of the raw error metric data de­

rived from various trials of the ARTISTS system, with constraint satisfaction 

but no obstacle avoidance. The body of the thesis refers to these figures with ap­

propriate commentary. The general features to notice about these figures is tha t 

they represent successful parameterizations.

The error metrics for figures E .l and E.2 was smaller than  for any of the 

parameterization trials. The postural error metric falls off to near zero within 

the first 100 path segments. Heuristic step density drops off to exactly 0 in the 

same time frame.

Figures E.3 through E.5 shows the error metrics plotted for 6 jointed arm 

experiment with non-repetitive targets. The postural error metric falls off to a 

small value, but not as small as with the 3 jointed, arm, which is expected. This 

was a casually chosen parameterization. It is possible, indeed likely th a t a bet­

ter one exists. Note in figure E.4, around epoch 1600 the  error metrics increase 

significantly, and heuristic help is required for about 100 epochs. W hat hap­

pened there was th a t while the program ran  unattended, some randomly wan­

dering targets moved off into regions where the arm  could not reach, because 

they were more than  the sum of the link lengths away from the base. The sys­

tem was not designed to handle such a problem, and performance was not sur­

prisingly very poor for a substantial period. It was gratifying to note, though, 

that when I intervened and collected all the targets, moving them  back to within
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the arm ’s field of reach, the system recovered nicely. The only adverse effect was 

tha t an additional few hundred vectors of memory were consumed. After tha t 

point the error metrics went back to very low levels and memory vectors used re­

mained constant for the rest of the 3000 epochs.

Figure E .6 shows the result of a non-repetitive 9 jointed arm  trial, which 

shows postural error of roughly the same magnitude as the 6 jointed arm. Note 

that scale for postural error is changed for each of the three cases of 3, 6 and 9 

joints, to account for the extra number of joints. For instance, the scale of 0 to 

40 (degrees *j o int^pathlength) for the 9 jointed arm  is 4 times larger th an  for 

the 3 jointed arm, because there are 4 times as many constrained joints over 

which to compute the error. The other metrics are not so scaled.

The actual units and scaling of these values is of little importance. They 

were only recorded

• To show th a t they in general decreased over tim e, and
• To provide a relative measure for discerning the best param e­

terization for the 3 jointed arm.
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APPENDIX F

ARTFORMS User’s Manual
Version 6.3 11/5/92 Copyright 1988, 1989, 1990, 1991, 1992 byFrank Rudolph at the University of New Hampshire Robotics Lab, All rights reserved.
Before you do anythingi type CMAC_SW to invoke the CMAC TSR program.
ARTFORMS will not do anything until that is resident, and in fact it WILL crash your system without it I
NOTEi This software will only work on an MS-DOS 80386 machine.
After CMAC_SW is running, execute ARTFORMS or ARM.BAT.

P a r t  I: Keystrokes During Program Execution:

(see the file checkey.c; It contains a dispatch table for these keystroke responses.)
- = suppress random heuristic steps.
+ = enable random heuristic steps.
?  = H E L P .

0 = Set random step mode for the heuristic step generator.
1 = heuristic mode l: suggest equal magnitude angles but randomlyselect CW or CCW joint rotation.
2 = Mode 2 t different magnitudes at each joint, but rotationdirection same for all joints at each step,
3 - Mode 3: Like mode 1 WRT sign, but magnitudes of joint stepsare ascending.
4 = Mode 4 : Random magnitude and orientation of jointperturbations, but most change is concentrated at the base, with the rest of the energy distributed with increasing weight towards the hand.
5 = Mode 5i Like mode 4, but with random sign at the base.
6 = Berklnblitt synergy based step generator.
Biases for the heuristic random stepsi

a = accumulate negative bias to alpha, (base).
A  = accumulate positive bias to alpha,
b  = accumulate negative bias to beta, (shoulder).
B = accumulate positive bias to beta,
g = accumulate negative bias to gamma, (elbow) .
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O - accumulate positive bias to gamma.
These invlove only the first 3 of up to NUM_«TOINTS angles. The actual number of joints Is specified by num joints which mustbe < or equal to NUM_JOINTS. To specify variable valueswithout recompiling/ use the arm.Ini file. There are over 50 variables that can be adjusted thusly. See parmlnit.c for the variable initialization parser. See Part II, below, the ABM.INI file description.
c, C = clear screen.
D = turn on debug output (i.e. the value of response vector before and

after learning). 
d = turn off debug output 
E, e = unused
s, S = "slow", i.e. draw arm each cycle
f, F = "fast", i.e. suspend drawing of arm
H, h = Return arm to "HOME" position and restart the target set.
i = re-read the a r m .INI initialization file. (Restore the system parameters to the defaults as they existed at the start of the program).
*i = save the ARM.INI initialization file. Save new startup parameter settings in a *.ini file.
K, k = Kill the CMAC memory; you will be prompted to tell the system which CMAC to erase, if there are more than one.
L, 1 = unused
M, mi Invoice the mouse driven target manager)

Once in the target manageri
LEFT BUTTON = add a target.
RIGHT BUTTON = delete a target.
MIDDLE BUTTON = drag a target to a new position.
ALL buttons = delete all the targets and insert new one at the mouse cursor.
LEFT+RIGHT places an "exterior" obstacle at the cursor.
ESC = leave the target manager.

N = unused 
n = ?
O, o = Open script file output.
p = suppress joint space dot Product heuristic retraining, 
p = enable dot Product heuristic retraining.
Q, q = quit the program (in an orderly fashion).
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r, R = restart current path.
t, T - Type to the terminal the number of non zero cells in the physical memory. This is a rough measure of the level of saturation of the CMAC memory.
u = unused
u = ?
V = unused
* = increase the value of the first constraint coefficient; set the 2d one to l/first_one,
v = decrease the value of the first constraint coefficient; set the 2d one to l/first_one.
W, w = Install ratchet conditions (set max/min angles to prevent curling into a kink and to prevent reversal of curvature) .
X, x 3 unused
Y, y = unused
Z, z = Draw 3 patch plots in PostScript files pl.eps, p2.eps and p3.eps, which show the shapes of the direct inverse function over the span of one receptive field. The height or z value of the patches is in each case a function of angles a and p, which vary from the "current" value to the current value +/- C/2 codon units. The three z plots are then, respectively, the values of Aa, Ap and Ay.
FUNCTION KEYS:
Fl = Constant speed target moves, (constant at the last speed achieved)
F3 = Suppress retraining heuristic. This is a global equivalent to training the CMAC Training Inhibitor to a constant l through all state space. See the data flow diagram in CHapter 3 for local obstacle avoidance.
F4 = unsupresses the above F3 feature.
F6 = Spawn a DOS window
F7 = Record arm moves from the current position.
FB = Playback the recorded arm moves.
F9 = Radial (sequential reaching) trajectory formation.
Flo = Daisy-chained trajectory formation.
The arrows move the target around up down, left and right as well as vertically. The arrows accelerate the longer they are used. To go back to slowest speed, simply hit any other key. (Mouse left right up down ok too)
You may also use the joystick to move the target. To do this, depress the pushbutton and move the joystick for target x/y displacement.
Movement of the arm by the joystick is done by stopping the armvia SPACEBAR and moving the joystick. Without the trigger
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pulled move the base and shoulder joints. With the trigger pulled, move the shoulder and elbow joints.
Depress both the joystick buttons simultaneously causes the joystick to be recalibrated.
Space bar = stop moving the arm. (all other functions continue)
Space bar also resumes the arm movement.
Control and alt keya:
AA = Display the links.
alt-A = Suppress display of the links (just joints will show).
AB = ?
*C = terminate program (abort)
AD = Draw the arm posture for the next control cycle to the postscript output file.
AE = Draw the arm posture for the next target position into the PostScript file.
AF = Flash arm segments on screen.
*G = unused
AH = unused
AI = see under '1', above.
AJ = Show the joints on the screen. 
alt-J = Flash the joints on screen once.
AK = unused 
AL = unused 
AM = unused
*N = Normalize the direction to target vector. 
alt-N = Don't normalize the direction to target vector, 
aO = unused
alt-O = Reinforcement signal (OBSTACLE)
AP = DONT PUSH THIS ONE. IT ACTIVATES THE PRINTER (DOS FEATURE, REMEMBER?).
alt-P = Purge dump of the last 100 gradient descent errors (in hand space).
AQ = unused
AR = Random target moves (the current target jumps aroundrandomly using Alt-R = no random moves the last length vector defined by the accelerating target algorithm.)
AS = scroll lock (DOS provided)
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alt-S = toggle sound on/off.
*T = Fast Target (accelerating)
Alt-T = Slow Target (non accelerating)
AU = unused 
*V = unused 
AW = unused 
AX = unused 
*Y = unused 
AZ = unused
APgUp = save or "upload" the current control CMAC
APgDn = restore or "download" an old control CMAC
AHome = Arm to HOME position and first target
Mouse commands:

middle button - Current arm position is start position left button = Turn Arm on

The target can be moved with the mouse similarly to the method described under the arrow keys above.

The following describes most of the program variables that can be specified in the ARM,INI file. This entire file is parsed in by the TSRARM program in the first stages of execution to define the articulator arm being simulated, and some parameters about the learning system.
CAUTIONi Don't put comments in the actual ARM.INI file. Some of these parameters are NOT optional, and the TSRARM program will not execute if they aren't specified. If a required parameter is not specified in the ARM.INI file, ARTFORMS will abort and type an error message specifying which one was ommitted. Some parameters must be specified before others; e.g. the value num_Joints is used to size many arrays in the system, and so it must be specified before any parameters that are array representations.
Error messages printed out by ARTFORMS will, in most cases, tell in which source file and in which line number within the source file the error occurred.
The parameters are described below with an example value that is either a default, or a reasonable value.
acura = 1.000000 ; The radius of the target; how close the hand must be to define a successful path segment.

left+middle right+middle all buttons
flash arm once flash joints toggle joints on/off

P a r t  I I ;  The Initialization File.
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agc_threshold = 10 ; This integer tells how large a value per coordinate must be so that the summed absolute value or the response recalled from the CMAC will be deemed by the stepsize control critic (AGC) to be a valid stored command. The example shows that for a 3 jointed arm, a summed value must be at least 3*10=30 to be accepted.

cniac_id = 0 ; An integer telling the id # of the direct inverse CMAC. An id # is 1-7, since up to 7 distinct CMACs may be allocated. A 0 indicates that the program should allocate a new one. If a non-zero is specified, the user should be certain that there really is a pre-existing CMAC allocated for that id #.
cmac_name = example ; This char * variable tells what the first name of a file used into which a CMAC image will be saved. The example indicates that cmac_id's CMAC will be saved in EXAMPLE.CMC, the repeller cmac will be saved in EXAMPLE.REP, etc.
constrainer_id = 0 ; An integer telling the id # of the K-CMAC.
constraints = 5 ; Which postural constraints to apply. 5 is the normal curvate constraint, 0 is no constraint, and other constraints weren't very successful.
dontask = 1 ; This integer flag if set to 1 suppresse theinitial setup questions in the early part of the programs, and accepts defaults dictated by arm.ini. This is helpful for batch runs.
dontinhibit = 1 ; This integer flag = 1 means not to implement the ARTFORMS-1 style distributed plasticity CMAC (inhibitor_id).
dontnormalize = 0 ; This integer flag if set to 1 disables the normalization of steps (and input deltax, deltay vectors) to be unit vectors, Setting this to one is endpoint control.
dontrepel = 1 ; This integer flag if set to 1 means don'timplement the ARTFOMRS-1 style reinforcement CMAC (repeller_id) .
dontretrain = 0 ; 1 = don't retrain to a near optimal path, if after the CMAC contains information at a given state space point.
dont_show = 1  ; 1 means don't print out debugging information.
draw_at_target = 0 ; an int variable that controls whether or not a PostScript file showing the target postures will be printed out to a file called DATA.EPS. Value of 1 allows the output.
eta = 1  ; an int value giving the learning rate. 0 means1.0, 1 means 1/2, 3 means 1/8, etc., for successive powers of 1/ 2 .
general = 64 ; generalization parameteri the number of cells ina receptive field.
heuristic mode = 6 ; Which kind of a priori heuristic to use to "guess11 a move. 6 is the Berkinblitt synergy, 0 is random activation and the others weren't very successful.
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inhibitor id = 2 ; An integer telling the id # of the distributed plasticity CMAC (the inhibitor) CMAC.
joints = 900 900 900 ; An integer array containing the initial values of the joints as scaled integers with LSB representing 1/10 degree.
joint scale = io.000000 ; the joint angle increments, are scaled this much finer than the angles themselves.
kv = 1 1 1 ; A double precision array giving the initial valueof the "curvate constraint" vector, K. The example is a normal curvate condition for a 4 jointed arm with equal angles.
lambda =0.5 ; This double precision real value defines thelearning rate (stepsize) for the postural constraint gradient training.
linkages = 10 12 15 ; This double precision real value defines the lengths of the articulator links.
max_jolnts 2100 2100 2100 ; This integer array gives the maximum permissible value (joint stops) for the joints. The example is for a 3 jointed arm, with upper joint stopB at 210 degrees each.
max_passes = 1000 ; How many epochs (path segments) to execute.
max_step = 200 ; A scaled integer value that tells what themaximum magnitude (per coordinate) the heuristic generator will suggest. The example is 2.0 degrees.
memsize = 20000; The total number of physical memory vectors in the CMAC corresponding to cmad_id.
min joints = 100 100 100 ; Like max_Joints, but specifies theTower value joint stops.
nodot = 1  ; 1 = suppress the dot product heuristic.
noise = 0 ; This double precision floating point value specifies 

the heating value (a2) of the uniform white noise that will be injected into the critics' output signals.
no_adaptive critic = 0 ; This integer flag if set to 1 disables the training and adaptive critics. This mode is acceptable for redundant sysems. If non-redundant, this will cause too little goal directedness, and the experiment will fail. It IS appropriate to set this to 1 for playback training, however.
num_joints = 3 ; Humber of joints; for a value of 2, the arm is not redundant. This variable must precede specification in the 

a r m .INI file of joints, linkages, kv, max_joints, min_joints and quantization.
pause_arm = 0  ; 0 = starts with a live arm. 1 = starts withthe arm paused. The space bar toggles this value.
phi_o =1.0 ; See the text under heuristic constraints.
phi_90 = -1.0 ; phi_0 and phi 180 are used to compute the inner and outer limits of the "allowed cone" for the neurlstlc and training critics.
playback = 0  ; See the variable "record", below.
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practices = 1 ; This integer tells how many times each path segment is executed before going on the the next.
quantization ■ 4 4 8 8 8 ; this is an integer array telling howcoarsely coded the input vector is. These values are read into the qnt vec[] array. The example specifies a quantization of 4 for hand space and 8 for the joint space, for a 3 jointed arm.
ratchet = 1 ; If this int is 1 the ratchet condition is applied during training.
real_robot = 0 ; 1 = a SCORBOT is actually attached to COM port 2 0 = simulation ONLY.
record = 0 ; If this integer is 1, the trajectory steps will be recorded in a data file for playback later when the playback flag = X.
repeller id = 3 ; An integer telling the id # of thereinforcement CMAC for ARTFORMS-1. .
restart mode = 1 ; This int flag determines if sequential reaching (0) or chained (1) trajectories will be formed.
retina_id = 3 ; An integer telling the id # of the R-CMAC.
scale_factor = 8 ; Scale factor for displaying the arm within screen limits.
script_file = first.ext ; This tells the program where to read a record of keystrokes from a script file. If the file doesn't exist, the program assumes that you want to create a new one. If it does exist, the program opens it and reads it in as ifit were console input. This allows you to archive anexperimental run for later display, perhaps with parameter changes.
smooth = 0  ; This int flag only applies when real_robot=l. 1 =don't execute the SCORBOT path until a full trajectory has been computed. This results in a smooth, fast arm trajectory, but reinforcement is impossible, and the simulator and arm are not synchronized. 0 = execute incremental moves of the SCORBOT arm as each step is computed. This results in a slow, jerky trajectory.
sounds = 0  ; An Int flag that enables (1) or disables (0) theoutput of an auditory signal when a critic detects a failure.
tapered = r ; A value of 'r' means rectangular receptive fields, '1' means linear tapered, 'o' means Albus style rectangular field.
target_file_name 3 NEW.TOT ; A char * variable pointing to the name of the file that has the target coordinates in it.
target_mode = 0 ; An integer variable. If zero it means read all targets in at once. If non-zero, it meansi start out by reading in one target, and then after every target mode path segments, read in another target position until alT targets are read in.
teacher = 0 ; An int flag that tells what training mode to use. The normal mode is 0 which is default inverse modeling (train at the observed context) mode. Mode 1 trains at the desired context. Mode 2 trains at both contexts, mode 3 is used for endpoint control.
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xtgt = 36.350000 ; The target, which appears as a small red circle.
ytgt - 25.450000 ; Appears at the x,y coordinates given. These coords are overwritten when the target file is read in.

Part III: The Critics.

The functions, HeuristicCritic0 and Adaptivecritic(), apply the heuristic constraint rule. They determine to what extent an arm move must locally reduce the hand to target distance.
in simple terms, the procedure involves computing the dot product of the hand-to-target vector and the hand to new position vector. If the angle formed by the two vectors is 0 then the putative move would follow a tight rectilinear trajectory.Left or right of the straight line path, the two angles, phi_0, and phi 180, define the constraints. The new trajectory step MOST fall“between phi 0 and phi_180. So a loose trajectory Is allowed by, Tor instance, phi 0=0 and phi 90=180 degrees, a VERY tight trajectory is phi_0=phi 90=0, which actually is unachievable. If phi 0 is increased, it forces the trajectory away from a straight Tine (for obstacle avoidance), if phi_90 is small straight lines are favored. If it is increased towards 180 deg. curved trajectories are allowed. Cautionj phi 0 and phi_90 are actually stored as cos(phi_0) and cos (phi_?Fo) , so they range from -1.0 to 1.0; So the loosest possible trajectory is phi_0=1.0 and phi_180=-l.0. phi_0=l.0 and phi_90=0 specify loosest constraint that doesn't allow the hemd to target distance to increase.

P a r t  JV Script Mode.

If you specify a script file name in arm.ini, the program will use it for console input. If the file doesn't exist the program will prompt for input when necessary and save a new script file containing those prompted inputs as well as any asynchronous inputs supplied by the user through the keyboard. There are some problems related to WHEN you type input into the program which are described below.
Some idosyncrasies of script modei
The keystrokes that are typed in response to prompted answers to questions are no problem. If they axe keystrokes that are typed asynchronously while the program is executing, the program attempts to insert "wait-states" in the script file that will cause the GetchO function to return nothing until the number of wait states that were observed and recorded during creation of the script file have elapsed during execution of the program under script file control. The script files are also editable. This gives rise to problems related to control chars, function keys, etc.
if the program is reading console input from a script file, when "special keys" are read in, two character key sequences are read in, where the first is an ASCII null, The null can't be written to a script file, so the key '|' is substituted.Thus, in a script file, an UP ARROW looks likei

I
P
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During execution of Yes(), if an actual keystroke is sensed, if it is 'Q' or 'g', the program terminates. If, on the other hand, a pNNNN is in the script file where Y or N Is expected, a concert A (440 Hz) is sounded and NNNN milliseconds of delay occurs. This allows a demo to freeze a final result for a period of time.
GetchO stops and reads a keystroke delimited by CR LF.Otherwise it emulates getch(); It does however leave the rest of the line in the buffer getch_buf[];
get_ch{) reads a single key from the console, if no script. If a script is being read, signified by the file RDF being active (read data file) GetchO is called to read a keystroke in from the script file. If a script is being written a single keystroke is read from the console and written to the script prefixed by a line reading \nnnn where nnnn is an integer representing the current kb_counter, which counts how many times KbHit() has been called to poll for a keystroke. Later, when a script is being read in, KbHitO watches for the valueof kb counter to equal a value of next event, which it hasread Tn from the script to tell it how"many cycles into the program execution an asynchronous keystoke is expected. When reading a script line, if the first character is \, the

?rogram knows that this is a signal that an asynchronous event s coming up. Thus is is necessary for the whole system to "preread" the script file, while polling, so that if an asynchronous input is coming up it will know ahead of time, when it reads the input, then If the line was NOT prefixed by 
' V ,  the flag "getch buf_full" is set to - 1  to tell the systemthat next time a synchronous read (GetchO) occurs, the datais already in the buffer.

Part V: L e a r n in g  e v a l u a t i o n  a n d  r e i n f o r c e m e n t.
The arm learns very quickly to move about in the workspace. In a sense, this is a form of obstacle avoidance, in that the robot learns to modify the inverse kinematic model to account for joint stops.

As learning progresses, the planner gets "smarter", a localattribute that is dependent on the arm position. This property is shown on the screen by the color of the arm and hand. When the CMAC is untrained, the arm shows up in grey, followed by white, green, yellow, red and finally blue in sequence as the degree of training of the CMAC increases in a state space region.
So, as the arm sweeps out a trajectory, one would expect its behavior to be more erratic when displayed in white and more smooth when in blue. In fact, when in blue, the arm can't learn at all... it is frozen with its current weights. But again, this is only local. The arm may be blue over part of its workspace, and white over other parts, which it hasn't visited yet.
Depressing alt-O during operation tells the arm that it hasencountered an "obstacle", At that time, it tries to retrain with a bias against what it "used to think" it should do in the neighborhood of the obstacle, and the level of experience in that region is reduced back to novice level, to ensure that it can retrain. The presence of the bias against current knowledge should cause the old trajectory formation to move
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about to accommodate the obstacle. Subsequent trajectories in this neighborhood should detour around the obstacle.

P a r t  VI: Constraint satisfaction.

This subject is exhaustively covered in Chapter IV of the text, so no treatment is given here.

Part VII: HEURISTIC ERRORS

In the code that tests for target directedness (subroutines criticO, HeuristicCriticO and AdaptiveCritlc(); see file disredux.c) there are numerous ways in which an error can be reported.
The following return codes are reported by system that mean,"there is an error reported by a critic". The source of the error by return code isi

• l = Stun of delta joint angles = 0• 2 = sum of delta hand moves = 0• 3  = joint space dot product heuristic failed (TryToLearn())• 4  = heuristic mode 4  or S failed to have ascending magnitudes• 5  = a zero length heuristic step was proposed• 6 = the heuristic criterion railed (move outside the "allowed cone")• 7  = HeuristicCriticO failed• 8 = failure in HeuristicStepO after 5 tries to suggest a unit length step• 9  = no data in the CMAC; virgin terrain I• 10 = delta joint move vanished in AdaptiveStep () due tonormalization• 11 AdaptiveCritic failed• 12 Numerical problem normalizing vector in HeuristicCriticO

Part VIII: SELECTED SUBROUTINES EXCERPTED FROM
THE SOURCE CODE

// Prom the file ARTISTS.Ct
int inp_vec[NUM_INFS] ;
int delta_joint [NUM_JOINTS],dot;
// From the file CONSTRAN.Ci
int K[NCM_JOINTS+l);
int bump=0;
static int i;
void GetKVector(void)
( if (Irembr(constrainer_id, inp_vec, K))

TOOBAD("constrainer CMAC can't rembr");
LOOP(i,num_joints-1)
( K[i] += 100;
}

}

void TrainKVector(void)
{// K is scaled so 100 ■ i.o.
// Remove the excess so a null CMAC represents 

// a K vector that is (1,1,1,!...)
2 2 8



LOOP(i,nuro_j oints-1)
{ K[i] -= 100;
Ilearn (constrainerjid, inp_voc, K, eta);

void AdjuBtKVectortint reap, int joint) 
{ double gain = (double) resp/100.0; 

GetKVector(); 
if (jointl)
{ K[joint-l] += (int)(10*gain);
} K[joint] - = (int)(10*gain);

K[jolnt+l] += (int)(10*gain);
TrainKVector();

// From the file, TRY2LERN.Ct
double ddj[NUM_JOINTS]; 
double kv[NUM_JOINTS-l] ;
void ddjUpdate(void)
( int i;
LOOP(i,num_j oin ts)
{ delta_joint[i]+=ddj[i];
>

static double f(int i)
( return kv(i*l] * (double) inpjvec[i+2j 

- kv[i] * (doiible) inpjvec [i+3] ;
}

void satisfyPosturalConstraints(int flag)
{ int i;
double f0,fl; 
i = i;
L O O P(i,num_joints)
{ ddj[i]=0.0;
)for(i=l;l < numj)oints;i++)
{ if  (i > l)f0=f(i-1); 

fl=f(i); 
if (i==l){ ddj[i] = -lambda *kv[i-1)*f1;
}else if (i==num_Joints-1)
( ddj[1] = lambda*kv[i-1]*f0;
}else
( ddj[i] = lambda*kv[i-1]*(fO-f1);
}

}
}
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int obstacles = 0; 
int TryToLearn(void)
{ int i,dot,OK;if {(constraints==l || constraints== 4 | |  constraints== 5) && obstacles) 
{ GetKVector{);

// Put the K vector that is derived from the R-CMAC and K-CMAC into 
// the working array k[ ]
LOOP(i,num_j oints-1)

{ kv[i] = (double) K[i] / 100.0;}
}if (K(0)+K[1] 1= 200) i=i;

// This prevents a zero length joint move being computed 
OK=0;
LOOP(i,num_joints)
{ if (deltajoint [i])

{ OK=l; 
break;

}
)if (IOK) return 1;if (inp_vec[0]==0 && inp_vec[1]==0) return 2;

// train the CMAC memory for the direct inverse modeling training step 
learn(cmac_id, inp_vec, deltaJoint,eta); 
if (constraints)
{ if (!CloseBnough())

{ LOOP(i,numjoints)
{ ddj[i]=0.0;
}// apply the postural constraint 
rembr (cmac_id, inp_vec, deltaJoint); 
switch(constraints)
{ case 5i // The other constraints aren't listed here. 

SatisfyPosturalConstraints(0); 
ddjUpdate(); 
break;
default) printf("\nDon't know what constraint %d is", 

constraints);
TheEnd(l);

}// train the CMAC memory for the postural constraint 
learn(cmac_id, inp_yec, deltajoint, eta);
) // End of CloseEnough() conditional
else
{ fprintf(inf_file, "CLOSE ENOUOH PROBLEM in file %b, line %d, 

pass# %d", FILE, LIKE, PassNumber );
)

}

return 0;
}
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