
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 1992

A neural network-based trajectory planner for
redundant systems using direct inverse modeling
Franklin J. Rudolph
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Rudolph, Franklin J., "A neural network-based trajectory planner for redundant systems using direct inverse modeling" (1992).
Doctoral Dissertations. 1716.
https://scholars.unh.edu/dissertation/1716

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F1716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F1716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/1716?utm_source=scholars.unh.edu%2Fdissertation%2F1716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om pany

300 North Z e e b Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800 /521-0600

Order N um ber 9307357

A neura l netw ork-based tra jec to ry p lanner for red u n d an t
system s using d irect inverse m odeling

Rudolph, Franklin J., Ph.D.

University of New Hampshire, 1992

Copyright ©1992 by Rudolph, Franklin J . All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

A Neural Network Based Trajectory
Planner

for
Redundant Systems Using Direct

Inverse Modeling

BY

Franklin J . Rudolph
B.S., University of South Alabama, 1976

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy
in

Engineering

December, 1992

ALL RIGHTS RESERVED
c 1992

Franklin J . Rudolph

This dissertation has been examined and approved.

Dissertation Director, W.T. Miller III
Professor of Electrical Engineering

l I m a __________
Filson H. Glanz, Professorof Electrical
Engineering

L. Gordon Kraft,
Electrical Engineering

elj
Electric

', Assistant Professor of
ineering

Lee Zia, A^rieiate Professor of
Mathematics

Roy M/Turner, Research Assistant^
Professor of Computer Science

IC
October 5,1992

DEDICATION

Tb Abby for her patience and support, and for

keeping her sense of humor throughout all this.

Tb Josh and Alex, just for being good kids, and

somehow accepting the idea of a dad who has been in

school for 22 years!

ACKNOWLEDGMENTS

I would like to acknowledge my deep and abiding gratitude to Tbm Miller

for his faith in my abilities, Mike Carter for his encouragement, Fil Glanz and

Lee Zia for inspiring me and giving me teaching role models I can look up to, to

Roy Turner for his acute editorial skills and for agreeing to help out in spite of

his crushingly busy schedule, and to Gordon Kraft for helping me keep this often

painful process in perspective.

I would also like to thank Bruce Segee and Edgar An for their excellent

groundwork in CMAC theory and fault tolerance studies and Chris Aldrich for

his implementation of a protected mode 80386 assembly language CMAC model

used in the Robotics Lab. Thanks also to B art Mel and his creation, MURPHY,

and to Michael Jordan from whose works I received much inspiration.

I would like to thank Jam es Houk for patiently listening to my ravings

and seeing some nugget of worth therein, and for striving for a larger context in

which work like mine may someday fit.

Finally, I would especially like to express my thanks on behalf of the entire

engineering community to Jam es Albus for his insightful invention, the CMAC,

whose immense importance to the fields of robotics and control theory is only

just beginning to be appreciated.

This dissertation was supported, in part, by DARPA/ONR grant N00014-

89-J-3100 and by an Analog Devices, Inc. Career Development Professorship.

This dissertation was produced using Ventura for Windows, version 4.1,

set in 12 point New Century Schoolbook type. Graphics were generated using

CorelDraw! version 2.0, QuattroPro version 2.0, and MathCAD version 3.1 for

Windows. The program was developed in Borland C++ version 2.0.

Ventura is a tradem ark of Ventura Software, Inc. of San Diego, CA

CorelDraw! is a tradem ark of Corel Systems Corp.

QuattroPro is a trademark of Borland International, Scotts Valley, CA

MathCAD is a trademark of MathSoft, Inc. of Cambridge, MA

Windows is a trademark of Microsoft Corporation of Redmond, WA

Borland C++ is a tradem ark of Borland International, Scotts Valley, CA

PREFACE

This thesis investigates control, methods for robotics th a t are applied

within a hierarchy. The nature of the robot hierarchy is assumed to be "intelli­

gent" in some sense. Each level may be termed adaptive. The difference between

"adaptive" and "intelligent" is intended by this author as a m atter of legitimate

difference in degree rather than mere semantics.

The term "adaptive" may be seen as connoting such attributes as "compli­

ant" or "adjustable". The conglomerate result of many separate adaptive mod­

ules or agents acting in concert as has been postulated by Minsky ['86], Brooks

[’88-9la], Hofstadter [’79], and others is tha t some activity resembling intellect

can emerge from the synergistic combinations of the activities of all these modu­

lar parts. The agents differ in these various authors’ methods, but the sense

each author conveys is th a t the combined result is somehow greater than the

sum of the parts.

Minsky and Hofstadter present a descriptive approach explicative of colo­

nies of organisms they have observed, while Brooks takes a more "ontogenic", or

bottom-up approach. Brooks claims that, in essence, ju st by doing w hat we engi­

neers do best, i.e., by being careful to do the right thing a t every step, and by

starting a t the very bottom we can not help but eventually invent a robust, ca­

pable, more or less autonomous system. The resultant system may not be very

"smart" except in some primitive but perhaps important way, e.g. in survival

skills.

vii

It is the addition of the descriptor "autonomous" th a t s ta rts to describe

what is m eant herein by the difference between adaptive and intelligent.

In all 3 systems mentioned, a global world model is not important to the

emergence of intelligence. Brooks takes the extreme view, Brooks [91a], in tha t

he demands no representation of the external world be implemented. Minsky

and Hofstadter on the other hand just do not require it. Brooks holds th a t plan­

ners at every level up to and including the cybernetic "pilot" of the system can be

removed and replaced with some highly complex collection of layered agents.

The agents in Brooks’s hierarchy are cunningly interconnected by subsumptive

and inhibitory communications relays. One could well argue th a t a Brooksian

system does in fact have a world model embedded in it, and the layout, enu­

meration and interconnection of these relays is an implementation of it. This

view begs the question of just where the data and the algorithm lie in such a

system. An extreme Brooksian scholar might conversely argue th a t an AI imple­

m entation of an intelligent system is equivalent to some Brooks-style subsump­

tion implementation in th a t it is implemented with millions of low level switches

and logic gates th a t implement the opcodes comprising the computation and in­

ferences of the system, and tha t there is a ridiculous superfluity of them due to

the inefficiency of a lot of semantic fluff implemented high up in the system at

the LISP or PROLOG level.

These two are extreme views. Bellingham and Consi [90, 91], Schudy and

Duarte [’90], Bellingham and Beaton [*89] argue for a middle approach.

The objection to Brooks's view th a t applies here is more a convenience

than a power issue. Consider, for instance, tha t a Hiring machine has the same

computational power as a modem computer with a C++ compiler. It is nonethe­

less ludicrous to argue th a t the former is a practical replacement for the latter.

It seems th a t though a purely subsumptive control system might be implement-

able, given enough insight into the microstructure of the behavioral fabric of a

particular, highly complex system woven by the Brooksian behaviorist, the con­

venience of a system built by subsumptive revisionists like Bellingham et al (or

this author) is critical, thereby allowing programmability in ways th a t the

purely subsumptive system disallows

Clearly, subsumptive style systems have some enticing and useful attrib­

utes that make the systems robust and compliant. Each layer is independent

and sufficient for the generation of a behavior (though not necessarily the right

one), so a failure a t a high level does not stop the creature in its tracks; it just

might make it behave in a less adequate fashion. The layers are more relaxed

than say a traditional computer network, or a parallel sort algorithm. It would

be entirely sufficient for perhaps 10% of the packets sent by one layer to reach

their destinations a t lower layers. Thus, large amounts of time and effort on the

part of the system are not wasted on handshaking. The effect of this is that

higher layers do not command lower ones, they simply attem pt to influence

them.

Tbp down is not the only direction of data flow. Albus F81] and Houk [’88]

both argue for ascending data flows in their two quite different cerebellar mod­

els. A combined strategy consisting of ascending and descending data flows

through a complex multi-level system is much more like the leaky but adequate

neural channels for control found in nature than in most engineering solutions.

Such a technique is highly robust. Other techniques, like carefully tailored ana-

lytical ones can suffer from brittleness, a lack of adaptability, and even stability

problems in the face of long and variable tim e delays.

x

TABLE OF CONTENTS
DEDICATION... iii
ACKNOWLEDGMENTS..v
PREFACE..vii
LIST OF FIG URES..xvi
ABSTRACT..xix
INTRODUCTION...1

CHAPTER I: Background...6

1.1 W hat Makes a Good Trajectory P lanner?.. 6
1.1.1 The Middle Level Of Control...6
1.1.2 Varieties of Redundancy...7

1.2 Previous W ork..11
1.2.1 Degrees of O ptim ality ... 11

1.2.1.1 Optimality Is Not Central To Success................................ 13
1.3 Why This Thesis is an Improvement On Form er W ork.................... 16

1.3.1 Analytical M ethods..17
1.3.1.1 Chaos in Newton Raphson Method......................................17

1.3.2 Explicit Obstacle Avoidance is E ssential.....................................18
1.3.3 Computational Expense..19
1.3.4 Jordan’s Argument Against the Direct Inverse M ethod.......... 19

1.3.4.1 Linearity of Differential Inverse K inem atics.................... 19
1.3.4.2 "Reasonable" Generalization.. 20
1.3.4.3 Reasonable Input M apping.. 21
1.3.4.4 Convergence C rite ria ... 21

1.3.5 Keeping This Work In Perspective... 22
1.3.6 Required Vindication of R esults... 23

1.3.6.1 Computational Advantage Over Forward M odeling 24

CHAPTER II: Issues...25

2.1 Supervised L earning .. 25
2.2 Direct Inverse Modeling...26

2.2.1 "FVe-training" a Forward Model... 28
2.3 Goal Directedness... 29
2.4 The Problem S ta tem en t.. 30

2.4.1 A Brief Synopsis of the Software Solution.................................. 31
2.4.2 The Details of the ARTISTS M apping...32
2.4.3 The Heuristic C riteria...33

2.5 Why Use CMACs For This Purpose?...34

2.5.1 Historical C ontinuity ... 34
2.5.2 The SERVO Level C ontroller..35

2.5.2.1 Converting Feedback to Feedforward Anticipation........ 36
2.5.3 The Existence of CMAC H ardw are... 37
2.5.4 Multiple Interacting Neural Networks................ 37

2.6 CMACs versus M L Ps.............. 39
2.6.1 Some Worrisome Properties of M LPs...39
2.6.2 Local and Global Generalization in MLPs and CMACs......... 41

2.6.2.1 Deterministic CMAC Generalization................................. 42
2.6.2.2 Generalization and Quantization in CMAC..................... 42
2.6.2.3 Non-deterministic Generalization in an M L P44
2.6.2.4 The MLP as General Function Approximator..................45
2.6.2.5 MLP and CMAC Equivalence.................. 48
2.6.2.6 Local and Global Generalization in a One

Dimensional Prob lem ...48
2.6.2.7 CMAC-like M L Ps...52

2.7 Conclusion: CMACs Are A ppropriate..53

CHAPTER HI: The First Generation Solution... 54

3.1 A Preview...54
3.2 Back-track Search is Not an Explicit P art of ARTFORMS.............58

3.2.1 How Heuristics E nter The S ystem .. 58
3.2.2 Goal Directed Heuristics.. 59

3.2.2.1 Random Flailing...59
3.2.2.2 The Berkinblitt Synergy...59
3.2.2.3 Description of the Berkinblitt A lgorithm......................... 60
3.2.2.4 O ther A Priori H euristics...61
3.2.2.5 Relaxation of Goal Directedness: Hand C onstra in ts 62

3.2.3 The Heuristic C ritic 62
3.2.3.1 Assumption of a Nearly Reversible P la n t62

3.2.4 The Training C ritic .. 63
3.2.4.1 Step Size Control..64

3.3 Multiple CMACs: Spatially D istributed Param eterizations...........64
3.3.1 H abituation.. 65

3.3.1.1 The Inhibitor Network..65
3.3.1.2 Structurally Equivalent CMACs.............................. 66

3.4 Reinforcement Learning: Modifying H ab its67
3.4.1 A Sim plified" Introductory" System .. 70
3.4.2 A Short Term Memory Obstacle Representation......................70
3.4.3 Training the LTM... 73
3.4.4 Training the STM... 73
3.4.5 Projecting the STM onto the LTM .. 74
3.4.6 H abituation Can Be D istu rbed ..75
3.4.7 Discussion of 2DTFORMS.. 76

3.5 Heuristics and Habits: An Action Com piler....................................... 77
3.6 Some Conclusions About The F irst G eneration Solution................ 79

CHAPTER IV: The Second Generation Solution... 80

4.1 Preview: A Concise Description of the A rchitecture.........................80
4.2 Weaknesses of the F irst G eneration Im plem entation......................84
4.3 Stable Trajectory Problem: Trajectory D rift....................................... 84
4.4 Postural D rift.. 85

4.4.1 Postural Feedback...93
4.4.1.1 Jo in t Stop R atcheting..93
4.4.1.2 Observations About Compliance... 94

4.5 The ARTISTS Layer Preserved.....................95
4.6 Postural C onstra in ts... 95

4.6.1 Postural Constraints Decrease Dim ensionality................95
4.6.2 Postural Constraints Increase Goal D irectedness........... 96
4.6.3 Postural Constraints Decrease Memory S aturation96
4.6.4 Development of Postural C onstraint E quations.......................97

4.6.4.1 The Objective Functions... 97
4.6.4.2 Minimum Norm Derivation..97
4.6.4.3 Computing the G radient of the Objective F unction 100
4.6.4.4 Applying the Gradient of the Objective Function............ 102
4.6.4.5 Step 1: the Direct Inverse Training S te p 102
4.6.4.6 Step 2: the Postural Constraint Training S tep 103
4.6.4.7 Robustness of Constraint Training W ith Respect to

Learning R ate ..104
4.7 A Discussion of Temporal C onstraints... 104
4.8 Experimental Results..105

4.8.1 Selection of Adequate P aram eters.. 105
4.8.1.1 Definition of Gross Param etrization...................................105
4.8.1.2 Memory Size.. 106

4.8.2 The E rror M etrics... 106
4.8.2.1 Postural Error D ensity ..107
4.8.2.2 Jo in t Effort D ensity ...110
4.8.2.3 Hand Effort Density... I l l
4.8.2.4 Step Size D ensity I l l
4.8.2.5 Heuristic Step Density... I l l
4.8.2.6 Generalization Slew Rate D ensity...................................... I l l
4.8.2.7 Memory Saturation .. 112

4.8.3 Discussion of the Gross Param etrization R esults....................112
4.8.4 Details of the Ranking of Param etrizations...............................114

4.8.4.1 The F irst Order R anking.. 114
4.8.4.2 Gross Eliminations Based on Heuristic "Need"............... 114
4.8.4.3 Strong Correlations Among the M etrics............................ 114

4.8.5 Subjective W eightings...114

4.8.5.1 Step S ize...114
4.8.5.2 Percentage of Memory U sed...115
4.8.5.3 Number of Memory Vectors..115
4.8.5.4 Generalization Slew R ate 115
4.8.5.5 Jo in t E ffort............... 116
4.8.5.6 Hand Effort and Postural E rro r.. 117

4.8.6 The Final Conclusion of the Rankings.. 117
4.8.7 Innate Robustness in the Presence of N oise117
4.8.8 A Linear Upper Bound on Hashing Collision D am age............118
4.8.9 A Surprising Dependence on Physical Memory S ize................ 119

4.8.9.1 Non-uniform Distribution of Hashing Collisions for
High Dimensional System s..126

4.8.10 Memory C apacity ...127
4.8.10.1 Aging of Training D a ta .. 127
4.8.10.2 B itm apping...129

4.8.11 Repetitive and Non-Repetitive T rajectories............................. 130
4.8.11.1 Conclusions for Non-Repetitive Trajectories.................. 131

4.8.12 Results For Inaccurate Critics... 132
4.8.13 Results For Many-jointed A rticulators......................................133

4.8.13.1 Conclusions About Many-jointed Articulator T ria ls 135
4.9 A Stability A rgum ent.. 136

4.9.1 A Lyapunov "Condition"..137
4.9.1.1 A Lyapunov "Argument" and Outline for a Proof.............139

CHAPTER V: Ohstacle Avoidance.. 142

5.1 Preview... 142
5.2 Modifying Postural C onstra in ts............................... 145

5.2.1 Conservation of Memory U sage ...145
5.2.2 The Robustness of Constraint T ra in in g146

5.3 Exploiting Postures For Obstacle Avoidance.....................................148
5.3.1 The Retinal STM CMAC..148
5.3.2 The Spatially D istributed K-vector... 149

5.3.2.1 Practical Considerations Related to the R-CMAC............149
5.3.2.2 Interior and Exterior O bstacles... 150

5.4 Limitations of This M ethod..150
5.5 Experimental Results...152

CHAPTER VI: A Framework For Future Development...156

6.1 Direct Inverse Modeling is Widely Applicable................................... 156
6.2 Consonance W ith Traditional Non-linear Approaches.....................157
6.3 Adaptive Critics.. 159

6.3.1 A Design for an Adaptive C ritic ... 159
6.3.2 Using Workspace Position Rather Than O rien ta tio n 162

CHAPTER VII: Conclusions and Future Work.. 164

7.1 Conclusions...164
7.2 Future W ork...165

APPENDIX A. Future Directions: A Longer Term View............................. 167
A.l Two Differing Approaches for Interdisciplinary R esearch.............167

A. 1.1 Moving Toward More Biologically Inspired Systems........................ 169
A. 1.1.1 The Philosophical Approach...169
A .I.1.2 Temporal Lookahead M ethod.. 171
A .I.1.3 The Physiological Approach..172
A .I.1.4 The Field Effect Modeling of Neuron Populations 174

APPENDIX B. An Analysis of the Probabilities of Hashing Collisions ...,180
APPENDIX C. A Study of the Linearity of Inverse Differential

Kinematics.. 188
C.l A Discussion of Generalization Slew R ate... 189

APPENDIX D. Patch Plots of Receptive Field R anges................................ 197
D .l Visualizing the CMAC D ata ... 197
D.2 Discussion of Results of Visualization E xperim ents...................... 207
D.3 Conclusions From Visualization E xperim ents................................. 209

APPENDIX E. Raw Error Metrics D ata From ARTISTS T ria ls210
APPENDIX F. ARTFORMS User's M anual...218

BIBLIOGRAPHY ...231
INDEX... •.. 239

xv

U S T OF FIGURES

Figure 1.1: A 2D Planar Redundant Articulator... 8
Figure 1.2: A Prismatic Linkage.. 9
Figure 1.3: The 2 Sticks Problem .. 18
Figure 1.4: Postural Generalization.. 20
Figure 2.1: The Direct Inverse Method of Modeling...26
Figure 2.2: The Forward Modeling Approach.. 27
Figure 2.3: Simple Redundant P lanar Articulator................. 32
Figure 2.4: Gradient Descent Critic Criterion... 33
Figure 2.5: Simplified Diagram of UNH SERVO Controller................................ 36
Figure 2.6: How an MLP Converges..40
Figure 2.7: Generalization and Receptive Field Extent... 43
Figure 2.8: A 3 Layer Multi-Layer Perceptron.. 44
Figure 2.9: The Sigmoid Non-linearity... 45
Figure 2.10: Lapedes and Farber’s Chaotic Sequence Predictor..........................46
Figure 2.11: Convergence of a Sequence Predictor with an MLP.........................49
Figure 2.12: Convergence of a Sequence Predictor with a CMAC........................50
Figure 3.1: A Dataflow Multiplexer...54
Figure 3.2: Overview of ARTFORMS-1.. 55
Figure 3.3: The Berkinblitt Synergy.. 60
Figure 3.4: Effect of Generalization on Trajectories.. 66
Figure 3.5: STM to LTM projection...69
Figure 3.6: Formation of a Feature in STM.. 70
Figure 3.7: 2D Non-Redundant Trajectory Planner..71
Figure 3.8: Training a Direct Inverse Model..71
Figure 3.9: Phase Portrait of 2DTFORMS...72
Figure 3.10: 2D Simplified Analog of ARTFORMS-1... 74
Figure 4.1: Dataflow of Second Generation Solution... 81
Figure 4.2: Sequential Reaching Without Constraints.. 86
Figure 4.3: Chained Trajectories Without Constraints.. 87
Figure 4.4: Chained Posturally Constrained Trajectories 88

xvi

Figure 4.5: Posturally Constrained Sequential Reaching...................................... 89
Figure 4.6: Kinking, an extreme case of postural d rif t .. 91
Figure 4.7: Reversal of curvature, another problem ...91
Figure 4.8: Anomalous dependence on memory size for C = 32..... 108
Figure 4.9: Robust dependence on memory size for C = 32.................................... 108
Figure 4.10: Robust dependence on memory size for C = 64..................................109
Figure 4.11: Anomolous dependence on memory size for C = 64.......................... 109
Figure 4.12: Computing The Hand Error ...I l l
Figure 4.13: Anomalous Behavior for Memory Size of 24,002 Vectors................ 121
Figure 4.14: Anomalous Behavior for Memory Size of 24,002 Vectors................ 122
Figure 4.15: Memory Size Dependence for Old Target Set.................................... 124
Figure 4.16: Memory Size Dependence for Old Target Set.................................... 124
Figure 4.17: Memory Size Dependence for New Target S e t125
Figure 4.18: Memory Size Dependence for New Target S e t125
Figure 4.19: Gaussian Distribution of Hashing Collisions.................................... 126
Table 4.1: Memory Use Reduced By "Playback" Training.............. 128
Figure 4.20: Non-repetitive Trajectories Experiment...130
Figure 4.21: Target Postures for a 9 Jointed Arm... 133
Figure 4.22: The "Uncurling" of a 6 Jointed Arm.. 134
Figure 4.23: The "Uncurling" of a 9 Jointed Arm.. 135
Figure 4.24: A Counter-example for the Lyapunov Ptoof...................................... 137
Figure 5.1: Dataflow Diagram of ARTFORMS-2.. 143
Figure 5.2: Postural Changes Due to K Vector Changes 144
Table 5.1: Conservation of Memory Use vs. Posture...145
Figure 5.3: Obstacle Avoidance by Hand Disturbance..151
Figure 5.4: A Chained Trajectory Without Obstacles 153
Figure 5.5: A Chained Trajectory With O bstacles.. 153
Figure 6.1: An Adaptive Critic M odule...160
Figure A.l: First Order Temporal Lookahead M ethod...171
Figure A.2: Cerebellar Adjustable Pattern G enerators..173
Figure B.l: The Probability of Any Collisions Between

2 Random Inpu ts.................... 180
Figure B.2: The Probability of Exactly N Collisions Between

2 Random In p u ts ...181

xvii

Figure B.3: Probability of Collisions For Any New Random In p u t181
Figure B.4: Probabilities of N Collisions for New Random Inpu ts 183
Figure B.5: Expected Value of Number of Collisions for Any New

Random Input.. 184
Table B.l: A rearrangem ent of the summation of term s for the expected

value of number of collisions..185
Figure C.l: Plots of fl(0)&d3l0)..191
Figure C.2: Plots of dK for, a t Most, Unit Length Hand Moves............................ 193
Figure C.3: | dK | for Unit Length Hand Moves in Quadrants I & II 195
Figure D .l: AAngle Response Plot as a Function of a and p for an Intermediate

Posture (posture #1)... 198
Figure D.2: AAngle Response Plot for a Retracted Posture (posture #2)............. 199
Figure D.3: AAngle Response Plot for Posture # 2

(with 4,000 memory vectors).. 200
Figure D.4: AAngle Response Plot for Posture # 2

(with 3,000 memory vectors).. 201
Figure D.5: AAngle Response Plot for Posture #2 Undergeneralized

With C=32 .. 202
Figure D.6: AAngle Response Plot (Zoomed InView) for Posture # 2 203
Figure D.7: AAngle Response Plot for an Extended Posture (posture #4)...........204
Figure D.8: AAngle Response Plot for Extended Posture (#6) and a Novel

Trajectory... 205
Figure E .l: Error Data from Best Parametrization T ria l...................................... 212
Figure E.2: 3 Jointed Arm Errors with Repeated Segm ents................................ 213
Figure E.3: Errors for 6 Jointed Arm 1 of 3 pages..214
Figure E.4: Errors for 6 Jointed Arm 2 of 3 pages..215
Figure E.5: Errors for 6 Jointed Arm 3 of 3 pages..216
Figure E .6:9 Jointed Arm Errors.. 217

xviii

ABSTRACT

A NEURAL NETWORK BASED TRAJECTORY PLANNER
FOR

REDUNDANT SYSTEMS USING DIRECT INVERSE MODELING

by

Franklin J. Rudolph
University of New Hampshire, December, 1992

Redundant (i.e., under-determined) systems can not be trained effectively

using direct inverse modeling with supervised learning, for reasons well out­

lined by Michael Jordan at MIT. There is a "loop-hole", however, in Jordan's pre­

conditions, which seems to allow just such an architecture. A robot path planner

implementing a cerebellar inspired "habituation" paradigm with such an archi­

tecture will be introduced. The system, called ARTFORMS, for "Adaptive Re­

dundant Trajectory Formation System" uses on-line training of multiple

CMACS. CMACs are locally generalizing networks, and have an a priori deter­

ministic geometric input space mapping. These properties together with on-line

learning and rapid convergence satisfy the loop-hole conditions. Issues of stabil­

ity/plasticity, presentation order and generalization, computational complexity,

and subsumptive fusion of multiple networks are discussed.

Two implementations are described. The first is shown not to be "goal di­

rected" enough for ultim ate success. The second, which is highly successful, is

made more goal directed by the addition of secondary training, which reduces

the dimensionality of the problem by using a set of constraint equations. Run­

ning open loop with respect to posture (the system metric which reduces dimen-

sionality) is seen to be the root cause of the first system’s failure, not the use of

the direct inverse method. In fact, several nice properties of direct inverse mod­

eling contribute to the system’s convergence speed, robustness and compliance.

The central problem used to demonstrate this method is the control of tra ­

jectory formation for a planar kinematic chain with a variable num ber of joints.

Finally, this method is extended to implement adaptive obstacle avoidance.

xx

INTRODUCTION

The broad discussion of the preface infers th a t actions apparently intelli­

gent or purposeful can be synthesized by composition of a collection of rather

primitive activities. The complex activity this dissertation will discuss is the ac­

tivity of a robotic manipulator arm. This is a classic control problem with many

applications in manufacturing, hazardous waste management, assembly and

manipulation of structures in space, etc.

In order to meaningfully compose primitive behaviors into complex ones,

we m ust first decompose complex ones conceptually to know which tasks to as­

sign to individual modules in an overall system. The simplest such decomposi­

tion is to grossly decompose the complete process into three levels:

• TASK level or intentional level: This level decides w hat work space
objects to m anipulate, and in what order, and assigns spatial
coordinates to the target objects.

• Primitive or elemental move level (PRIhVEMOVE): This level figures
out how to form trajectories. It decides how to move the end effector of
the arm from one ultim ate target to another, and perhaps elects
interm ediate targets between the TASK appointed ones. From here,
joint angle trajectories are output to the lowest level.

• SERVO level: This level tu rns desired joint space commands into
moves of the arm. It is much like a traditional tracking controller.

The method developed here the activity of the middle level. Its principal

task is to find a meaningful mapping from the target space, i.e., locations of

1

things to be manipulated, to the joint space, the space wherein the direct means

of controlling the articulator are embedded. Many such mapping methods have

been proposed. (See section 1.2). Some are analytical methods which are compu­

tationally expensive and require exhaustive knowledge of the analytical form of

the model. Others are neural network based, and though they don't require de­

tailed analytical model explication, are computationally expensive because of

the nature of the neural network models used. (See section 2.6).

Thus the middle level task decomposer niche is ripe for an implementation

which purports to solve its problem in a fashion th a t is

• fast enough to be capable of real-time operation, and
• not dependent on knowledge of the analytical form of the p lant

model.

The high level (TASK) decomposer is not treated here because it may not

be implementable by means other than symbolic methods requiring the deep re­

cursive (back-track) search of logic programming, formal languages and artifi­

cial intelligence,

Barto [*89] subdivided modem adaptive methods into two classes:

• vector space methods and
• articulated methods.

Connectionist methods are of the former and symbolic AI methods are of

the latter type.

Some limited back-track search capabilities Eire embodied in Sutton’s tem ­

poral difference method, and in a method proposed here, called temporal looka­

head method. (See section 6.4.2.2). Both these are arguably connectionist

2

methods, but they are certainly vector space methods. At this time these m eth­

ods don’t appear to be general enough to implement the deep search necessary

to tackle the TASK level, so the TASK level rem ains outside the scope of this

work.

The SERVO level is also not treated here because th a t level has been fully

treated by Miller et al [’86-’92].

So the purpose of my system is to perform just the middle level task de­

composition and to produce a stream of data to send to a SERVO level system

based on input it receives from a higher level TASK module both of which are

external to this development.

Here, we shall discuss tha t the system’s task be performed after a fashion

of simply trying things in a constrained trial and error method wherein the re­

sults of nearly all trials become training instances whereby the system incre­

mentally learns how to accurately predict what joint moves are necessary to

accomplish desired work space moves suggested by the TASK level.

W hat makes this mapping difficult to achieve is th a t the class of articula­

tors we shall discuss are redundant ones, for which no analytical means of com­

puting the required work space to joint space mapping in closed form exists. (See

section 1.1.2). The analytical method is then doomed to some computationally

burdensome iterative process unless a fast "reflexive" method like the one about

to be proposed can suffice. (See page 10 and section 3.4 for discussion of the

term, reflexive).

We shall discuss a neural network based adaptive method ra ther than the

well known linear adaptive methods (which would also provide a fast "reflexive"

3

implementation), because the kinematic plant model is too non-linear for the

latter to suffice.

There is a widely accepted view concerning redundant inverse models,

which holds that training should not come from direct experience because there

are potentially conflicting experiences in which differing inverse model inputs

can generate the same inverse model outputs. These differing inputs may be

widely disparate and non-linearly related, so the ir averages may actually not

even be solutions.

On the other hand, direct training of inverse models (or controllers) for

non-redundant systems has proven to be fast and effective, making it desirable

to use similar techniques for redundant systems.

This dissertation will show th a t direct training during on-line learning,

with heuristic guidance, can give fast effective adaptation for redundant sys­

tems, thereby avoiding the pitfalls just described.

In addition, we shall see that different heuristics (i.e. joint motion con­

straints) can lead to different solutions in a robot’s joint space which satisfy

identical requirements in the hand space. Taking advantage of this property, a

method will be developed in which spatially varying heuristics can be stored

that can be used to provide different motion characteristics (in the joint space)

for different regions of the operating space. Finally, this method will be applied

to the problem of work space obstacle avoidance.

Chapter 1 discusses other authors’ approaches to similar problems.

4

Chapter 2 discusses general issues related to these other approaches and

how these issues guided me to the current development.

Chapter 3 describes an initial approach toward the end of direct inverse

learning for redundant systems. This method didn’t work out well, but it helped

refine basic concepts which were later exploited successfully in the modified

technique described in chapter 4.

Chapter 5 describes the basic obstacle avoidance problem and how it can

be approached by modifying training heuristics.

Chapter 6 discusses near term improvements and broad conclusions.

Chapter 7 is a synopsis of direct conclusions from the main body of the dis­

sertation and a discussion future work.

Appendix A is a more speculative and long term discussion of future direc­

tions for this and related adaptive systems.

Several other appendices are included as support for various arguments in

the text.

5

Chapter I

Background

1.1 What Makes a Good Trajectory
Planner?

1.1.1 The Middle Level Of Control

Path planning for robotics is a particularly thorny problem, in th a t it is dif­

ficult to define. Wavering et al [’88] represent path planning as 3 levels: world

model/task decomposition (TASK) elemental move level (E-MOVE) and primi­

tive level (PRIM). If one constructs a hierarchical model composed of these three

modules, one will have all of the brain functions emulated above approximately

the brain stem/spinal cord reflex level of a complex organism. The most primi­

tive reflex or servo level (SERVO) would then complete the system.

It is doubtful a t the current level of artificial neural network development

th a t the TASK level, which might also be called the "intentional" level, can be

implemented using other than "traditional" (symbolic) AI techniques. Houk [*90]

and Albus [*81] have each proposed cerebellar models of relevance to the lower

and middle hierarchical levels. Houk talks about the cerebellum as an array of

adjustable central pattern generators. This model gives insight into the nature

of E-MOVE and PRIM level path planning activities. Albus has proposed and

implemented a simple CMAC (Cerebellar Model Arithmetic Computer) neural

network model th a t has been developed and refined here a t UNH. The CMAC

model has proven itself to be extremely computationally efficient and exhibits

adaptive properties. CMAC has proven to be an excellent adaptive element for

implementing SERVO level control functions.

6

In this dissertation, we shall discuss path planning as defined a t the PRIM

level. This is exclusive of "intentional level" processing and the SERVO level

processing as described by Wavering f88], but would include some of the proc­

essing proposed therein at the E-MOVE level. Notably, the inverse kinematics

and redundancy resolution will be handled in this proposed adaptive model.

1.1.2 Varieties of Redundancy

A robot manipulator arm is a physical realization of a kinematic

transformation:

Under the appropriate constraints there may exist an inverse kinematic

transformation:

X 1:

These transforms describe the response of the manipulator to joint postures and

joint movements.

The "joint space", Hff, uniquely defines the posture of the arm, and coinci­

dentally uniquely defines the hand position1. There are n joints in the kinematic

linkage, and the hand space is m dimensional. One could then express the for­

ward kinematics as ^ = ^ 0) .

The inverse kinematics, expressed as 0 = x \ X ^ , is a bit more problem­

atic. The m anipulator’s hand or actuator coordinates, X reside in the hand

space or work space. The hand space, vC, uniquely defines the hand position, but

not necessarily the arm posture. The hand space may be 2 or 3 dimensional, de-

1 11 is possible to define more complex hand spaces, for instance in the cases where the hand has additional
degrees o f freedom, like orientation or the degree to which a terminal manipulator is open or closed. In
this dissertation, only 2 or 3 dimensional positioning o f a "point hand" w ill be considered.

7

o
pending on whether the arm linkage is planar. The issue of linkage redun­

dancy addresses whether or not this inverse kinematic transform exists.

For any configuration and any values of m,n*0, given 0 , Xh is uniquely

defined. If m = n the arm is non-redundant, and the inverse kinematic trans­

form exists. If m * n, however, things get more complicated. In general, if m <n
Q

the arm is said to be redundant. In other words, for a simple linkage, whenever

the num ber of joints exceeds the degrees of freedom of the hand, no unique in­

verse kinematic solution exists. Any arm is called redundant if no unique in­

verse kinematic solution exists.

There are actually 2 kinds of redundancies involved in manipulators: path

redundancy and postural redundancy. For a path redundant manipulator, m ulti­

ple paths exist between any two hand (endpoint) positions. A posturally redun­

dant mechanism can m aintain the same endpoint position for many different

postures, or settings of the joints. A

two link arm similar to the 3 link

arm in figure 1.1 is only path redun­

dant. A two link arm, however, that

has 2 prismatic (sliding) joints as in

figure 1.2, is posturally redundant.

It seems obvious tha t the sliding

joint mechanism may be less resis­

tan t to analysis than one with rota- . __ ,
Figure 1.1: A 2D P lanar Redundant

Articulator

2 A planar linkage is one in which all the links and joints can be contained in a plane for all possible settings
o f the joint angles.

3 The term "simple" refers to a linkage in which the joints are all independent. N o two or more joints can be
coupled.

Hand Position
(x,y) g

8

tional joints, and yet the two link arm with prismatic joints is posturally redun­

dant as is the 3 link rotationally jointed mechanism. Unfortunately, however,

the prismatic system is a linear system, and thus is not very interesting.

Since nearly all practical manipulators are path redundant, for the rest of

this dissertation, the term redundant, unless specified otherwise, will denote

postural redundancy.

A redundant arm system both poses and solves problems. The problem it

solves is th a t with postural redundancy, an infinite num ber of postures of the

The target position is a linear
combination of the input coordinates.

Figure 1.2: A Prism atic Linkage
joints is possible given a particular hand position, which gives the linkage power

and flexibility in finding paths th a t avoid obstacles. The problem it poses is that

it requires, given a hand position, th a t a posture be found via an iterative search

or constraint satisfaction procedure, because the inverse kinematics cannot be

solved in the straightforward fashion of computing a matrix inverse as is the

case with a non-redundant arm.

It is possible to consider differential forms of these transforms: 5 ^ ” 60),

and 60 = *(5Xh). The "path finding" problem still applies for the differential

9

case which is used to describe gross movements as sequences of small move­

ments rather than as pairs of trajectory endpoint postures and the torques it

takes to move from one to the other.

A trajectory specified in hand space as a series of hand positions, , is a

reasonable form of problem specification. The corresponding series in joint

space 0^ m ust be derived using whatever method is available. The objective in

the rem ainder of this dissertation is to determine a method for a solution

th a t will have knowledge about obstacles "reflexively" embedded in a[X ' — ►[0 .1h.X I

hyperspatial representation of the transform, ra ther th an being declarative in

nature and thus requiring th a t we execute a search whenever a solution is re­

quired. The terms declarative and reflexive in this context are used in the same

sense as in the work of Handelman, Gelfand and Lane (Handelman rS9]). This

is an important concept discussed further in section 3.5.

The actual solution will be to find the incremental series [60.) th a t sweeps

out a series of postures, to generate an incremental series (S^J» given an initial
I

condition, X . , and target position X, . Tb develop the incremental series, we
o f

m ust develop inverse Jacobian m atrix solutions. A neural network will be used

to learn local inverse Jacobian transformations, and the property of local gener­

alization within the network is essential for reasons th a t will be discussed at

length.

10

1.2 Previous Work

1.2.1 Degrees of O ptim ality

The term, optimal, is a relative (and often abused) term. In the following

discussion, no attem pt will be made to describe precisely w hat quantity each

method cited from the literature is purported to be optimal (or near optimal)

with respect to. In some cases, like Kawato [*89, '89a]t it would be simple to do

so, because in his case, optimality is with respect to torque exertion. In other

cases it is often not so easily stated. For instance Canney [*90], Korein ['85] and

Lozano-Perez f87] treated such broad classes of problems th a t the methods

could be said to be optimal with respect to many different measures, depending

on the implementation. In general then, let us consider th a t each method is opti­

mal with respect to search effort within a model representational space.

A nearly optimal solution for a redundant arm using a stochastic method

combined with heuristic search was investigated by Mel [*89, *90], in a system

called MURPHY. Others have solved the optimal problem in a minimum norm

deterministic sense, e.g. Klein [’83], or a variety of constrained search methods

(e.g. Canney [’87] and Korein [’85]) all of which are both highly computationally

intensive and difficult to set up for any particular problem. Canney’s treatm ent

of the generalized mover’s problem attacked a much wider class of trajectory

planning problems than will be discussed here.

Lozano-Perez [’87] used an A* search to find optimal trajectories after a

geometric enumeration of all possible arm/obstacle configurations, but the meas­

ure of complexity was worse than exponential in the num ber of degrees of free­

dom of the arm4, and the constraints placed on the arm and work space were

perhaps too restrictive for general applicability.

11

Jordan ['88] used a constraint satisfaction method coupled with a stochas­

tic "pre-search". For a more complete discussion, see sections 1.3.4 and 2.2.1.

Kawato [’89, *90] proposed a method th a t was optimal (with respect to ex­

erted torque) within the scope of the simple trajectory model it implemented.

The model was, however, so crude an approximation of both the tim e and space

required for a trajectory formation tha t it was suboptimal with respect to most

real world problems it solved. In this method time was converted to space by

building (in simulation) a finite impulse response approximation of an infinite

impulse response5 closed loop system. A simulated feed-forward multi-layer per-

ceptron (MLP) implemented each step of a trajectory (another space costly de-

sign) and recurrent feed-forward and feedback loops provided constraints

between time and space th a t can directly generated optimal torques. In his

method, waypoints were explicitly clamped at any m of the n nodes in the net­

work, and the n-m free nodes then developed waypoints th a t conformed to a

minimum torque smoothness constraint. No means of acquiring specific desired

waypoints was suggested, so his method (as well as Jordan's) is a different kind

of trajectory planner than the one proposed here.

One can conclude early on in a study of the literature th a t a high computa­

tional cost and loss of generality are the price of an optimal method in this area!

k - l 2
4 H is complexity measure was O (r (mn)), where r is the resolution o f the joint encoder, k “ the number

o f degrees o f freedom o f the arm and m and n arc measures o f the complexity o f the arm and the work
space.

5 A finite impulse response (FIR) system approximates an infinite impulse response (DR) system. A n OR is
tike an analog feedback controller in that every input continues to affect the output response until its effect
becom es undetectable. An FIR only considers the effect o f an input over a fixed, finite number o f time
steps.

6 This is similar to the back propagation through time method advocated by Nguyen [’89] and W illiams
[’89].

12

1.2.1.1 O p tim a lity Is N o t C en tra l To Success. O ther authors have

developed methods of obstacle avoidance for path planning applications th a t are

suboptimal. Reinforcement learning has been exhaustively studied by Barto

[’83] and Sutton [’90]. These reinforcement learning methods can be classified

as suboptimal because they culminate in an approximation of dynamic program­

ming, which is, when implemented exactly, an optimal method. P art of the first

generation solution developed here involves a crude form of reinforcement learn­

ing tha t is simpler than the method of Barto and Sutton’s work. In this method,

a specific cost function is not modeled; ra ther an incremental response to a non­

specific punishment signal is implemented.

Bullock [’88] developed a biologically inspired approach th a t synthesized

some of Grossberg’s neural network modeling ideas with neuromuscular junc­

tion models. In his work, it was shown th a t fixed, simple algorithms attempting

a clearly suboptimal solution produced similar trajectories to the ones generated

by the optimal techniques like Jordan's and Kawato’s, but with a lot less work.

Many of these suboptimal solutions (e.g. Hogan [*80, '84, '84a, ’85], Khatib

[’85, '86], Flash [’85] and Hwang [’88]) are based on so called "potential field" or

"impedance" methods. The potential field methods ultimately implement a

nearly reflexive mechanism in tha t they eliminate search during trajectory plan­

ning, but they require a lot of computation to resolve the constraints imposed on

the arm by the repellent potential fields of all the obstacles and the attractive

fields of the targets. Furthermore, for this method to be effective, a complete and

comprehensive world model m ust exist th a t models the locations of all obstacles.

No means of model acquisition is proposed, and this is problematic, because tha t

means the system either m ust operate in a benign constructed environment or

13

else a complex search process m ust be used to acquire the world model tha t ex­

ists externally.

How then, do we resolve the problem of world modeling without an ex­

haustive search-based world model acquisition method?

Stopping far short of Brooks’s outright rejection of representation, if we

could construct a robust methodology th a t operates on incomplete information,

this would reduce reliance on the world model. This methodology could be a

layer in a more comprehensive subsumptivq/hierarchical system. The intent is

to model something akin to an animal’s kinesthetic sense or the reflexive obsta­

cle mapping world model of a blind person, which for obvious reasons, is incom­

plete.

We shall discuss a system th a t consists of interconnected CMAC elements,

which can compute relaxed spatial trajectories and which uses a cerebellar ha­

bituation paradigm to adaptively learn to generate these specific trajectories

given the right input context vectors. This system level is called ARTISTS, for

"Adaptive Redundant Trajectory Information Storage System". A higher level

layer of the system recognizes world-imposed constraints. Features correspond­

ing to these constraints are embedded into the hyperspatial representation of

the robot’s kinematic coordinate system originally formed by ARTISTS. The

higher level system is called ARTFORMS for "Adaptive Redundant Trajectory

Formation System". This hyperspatial representation of analog features will

largely replace the symbolic state of the world model used in symbolic AI sys­

tems which consists of discrete tokens embedded in an articulated repre­

sentation (i.e. a digital database, blackboard, expert system, etc.). The result is

a relaxed suboptimal search method.

14

The proposed method is similar to both MURPHY and the potential field

methods. It is a weaker planner than MURPHY, and th is is appropriate, because

its role is to fill a less ambitious niche th an MURPHY’S. Unlike MURPHY, ART-

FORMS is blind, but the ARTFORMS concept assumes th a t higher up in the hi­

erarchy, there will be more powerful, perhaps sighted, planners th a t can present

suggestions to ARTFORMS upon which it can habituate, th a t allow it to learn

trajectory habits th a t may violate gradient descent rules. Gradient descent vio­

lation, i.e. moving the hand away from a target for a time, is sometimes required

to get out of local potential "wells" in which potential field methods can get

stuck. ARTFORMS also suffers from this problem without higher level help.

However, given the property that ARTISTS has of forming habits, good or bad, it

will tend to persist in habitual modes of behavior until a higher level system ac­

tivity intervenes (by suggesting a violation of current rules) to change th a t be­

havior. The intervention described in chapter 3 is a punishm ent signal. In

chapter 4, adaptive constraint satisfaction causes a behavioral change. Input for

other changes, external to ARTFORMS is also allowed.

So we must view ARTFORMS as augmenting MURPHY in a fashion that

should make MURPHY-like systems more computationally efficient and robust.

ARTFORMS is, however, proposed as a complete replacement for the potential

field methods, because it is more efficient. ARTFORMS is in a sense more pow­

erful as well. Potential field methods settle into solutions th a t are a compromise

among the potential fields of fixed attractive targets and repellent obstacles.

These objects can move around, but the influences of the fields they generate fix

the behavior of the system. ARTFORMS can adapt to obstacles and targets in a

more flexible fashion. The obstacles have only local effects, so between local re­

gions, there is more latitude in the selection of a solution. The challenge is to

15

design this system in such a way th a t this additional flexibility, which may allow

ARTFORMS to be able to recover from some of the potential well problems tha t

thw art potential field methods does not become a detriment. The detrim ent tha t

ARTFORMS risks is th a t in solving the problem in this fashion, residual redun­

dancy is left in the problem. Controlling th is redundancy so th a t consistent solu­

tions result, while still allowing the freedom to select among trajectories, some

of which are "dead ends", is a problem th a t is not entirely resolved in this disser­

tation. Resolution of these dead ends requires back track search, and is left to

future work. Since the policies th a t are used to resolve the redundancies in re­

gions not affected by the obstacles are based not on the obstacles and targets,

but on rules th a t can easily be specified in the system of constraints and heuris­

tics used in the system, fewer dead ends are likely.

1.3 Whv This Thesis is a n Im provem en t On
F orm er Work

Computational efficiency is the prime motivation for this work. The poten­

tial field methods and the "classical" closed form methods with constraint satis­

faction are computationally burdensome and reliant on a relatively complete

world model. This method suffers from neither detriment.

Since redundant arms have no unique transform in the inverse direction,

from world to joint space, many path planners use "pseudo-inverse" techniques,

tha t find matrix "inverses" to transform world space incremental movement vec­

tors into joint space incremental vectors, given some disambiguating constraint.

Two problems arise in this process. First, the pseudo-inverse is computationally
o n

expensive, being a t best CKd) complex , where d is the square of the num ber of

degrees of freedom. Secondly, it is not conservative, i.e., the transform of a

16

"move" in world space to joint space and back to world space may diverge signifi­

cantly (Klein f83]).

1.3.1 Analytical Methods

Reducing the dimensionality of a redundant solution does not entirely

solve difficulties encountered in iterative analytical solutions. Consider the for­

ward kinematics of a simple 3 link arm like figure 1.1, page 8. Some direct solu­

tions based on setting 2 or more joint increments equal and linearizing the

differential kinematics might be used to seed an iterative solution. It would be

unwise to do so without exercising considerable discretion, for reasons discussed

below.

1.3.1.1 Chaos in Newton Raphson Method. Recent results from Kra­

mer [’92] indicate th a t simple iterative solution techniques like Newton-Raph-

son may not give good results, and in fact the method could be chaotic. This

means that the algebraic approach could require the use of higher order "quasi-

Newton" methods like Levenberg-Marquardt, conjugate gradient, etc., a t the ex­

pected higher computational cost, and a t the expense of having to know

accurately what the mathematical model of the plant is. This is clearly unpleas­

ant, especially for "long" kinematic chains! (And the problem is exacerbated seri­

ously by extending the method to kinetics rather than just kinematics). In

figure 1.3 a simple "2 sticks" problem is shown. The idea is to find the solution

where the two endpoints are coincident. There are 2 solutions, one above and

one below the "floor". Kramer’s results summarized in his figure 7.5 show that

in the (a.p) phase plane there are large regions over which very nearby initial

7 Which cosi is in addition to the search cost for the world model, which is in general exponential in the size
o f the model.

17

conditions can result in different solutions. This notion of postural switching is

discussed further in section 4.4.L1. The interesting result is th a t ju st being

very near a solution before iteration does not necessarily m ean that solution will

be the ultimate result. Chaotic results in a non-redundant problem like this one

bode extremely ill for the prospects of a redundant solution using such a

method. On the other hand, a simple, linearized pseudo-inverse may be a useful

heuristic for ARTISTS.

1.3.2 Explicit Obstacle Avoidance is Essential

"Upper" solution

• "Lower" solution

Figure 1.3: The 2 Sticks Problem

Kawato's method has no explicit obstacle acquisition method. Jordan’s

method is elegant and robust, but also lacks an explicit obstacle acquisition

method.

18

1.3.3 C o m p u ta tio n a l E xpense

Kawato’s method simply has too much time and space complexity to merit

further discussion as a practical system. One suspects (in the absence of sure

knowledge of his exact implementation) Jordan’s method is also computationally

expensive. Even if th a t were not so, there is still a front end price to be paid in

his method tha t stems from a central thesis he holds, namely th a t direct inverse

modeling does not work with supervised learning in redundant systems. (See

sections 2.2.1 in addition to the next.)

1.3.4 Jordan’'s Argument Against the Direct Inverse Method

Jordan contends th a t redundant, or excess degree of freedom systems can

not be trained effectively using the direct inverse modeling method of supervised

learning for the following reason: if and x^ are both inputs th a t produce a de­

sired output y, then by repeatedly presenting the training pairs (y,x)̂ an d fy ,^),

to a neural network during training of tha t network, the network will eventually

learn to produce a vector, x, for which £ (r - r .) is minimized. Unfortunately,

in this least mean square (LMS) derivation, x is not, in general, a valid solution.

Increasing goal directedness is Jordan’s solution to the dilemma. (See section

2.3.)

1.3.4.1 L in e a r ity o f D iffe re n tia l Inverse K inem atics . As Mel [’90]

points out, though, inverse differential kinematics (used extensively in this

treatise) is, by definition, linear. The discussion in Appendix C shows th a t this

holds rather broadly, not just for infinitesimal increments. If the solution for a

trajectory planner could be devised so as to exploit this linearity, the general a r­

19

gument against the LMS x being a solution would not hold. Otherwise, the LMS

solution fails for MLP networks as well as for CMAC networks. With MLPs,

however, generalization is a priori arbitrary, and only becomes determined after

the weights converge. Since the initializations of the weights are random, con­

vergence to a final pattern may require extensive training, because the generali­

zation inherent in the initialization of the weights may not fit the geometry of

the problem. The result is th a t geometrically "dissimilar" inputs may general­

ize. This feature of MLPs is useful in cases where one might wish "dissimilar"

inputs to generalize for some novel, and as yet undetermined reason, i.e., when

the structure of the model being trained is not well known. In many control ap­

plications, it would be better to use a network with a known, deterministic, geo­

metric mapping that dictates how generalization within the system's state space

occurs. Further discussion of this topic is in section 2.6.

1.3.4.2 "R ea so n a b len G enera liza tion . Reasons for generalization

among postures are easily determined for a manipulator. If two postures are

close in a state space constructed from postural degrees of freedom (with a rea­

sonable metric determining closeness) then they should generalize. If they are

not close, they should not. (See

figure 1.4).

a. Dissimilar Postures b. Similar Postures

Figure 1.4: Postural Generalization.

By containing generaliza­

tion to roughly coincide with

differential regions around pos­

tures in state space, the linear­

ity of inverse differential

kinematics should favor conver­

gence of trajectory formation.

20

This is because we thereby reduce the tendency to average non-linearly related

inputs th a t are distant one from the other in the input space and yet produce

very similar outputs. The "reasonableness" of the degree of generalization in

ARTISTS is discussed in Appendix C, and compared to the results of section

4.8.6.

1.3.4.3 Reasonable Input Mapping, If generalization occurs only lo­

cally within the state space, then the pair of positions in figure 1.4b should gen­

eralize, while the pair in figure 1.4a should not. It m ust be pointed out here that

our postural mapping is not quite the same as the one usually chosen for ma­

nipulators, in th a t the absolute hand position is not part of the input vector. In­

stead, we shall use joint angles, together with the desired hand move. Details of

this structured mapping, and the input and output vectors are described in sec­

tion 2.4.2.

By modeling inverse Jacobian matrices rather than inverse static posture
Q

maps, the degree of redundancy is reduced , and together with the absence of

the hand position from the input vector, this removes any geometric reason for

the dissimilar postures of figure 1.4a to generalize, in spite of equal hand posi­

tions. Analytical means applied to this problem are well developed (Klein f83]),

but it is hoped th a t a neural network implementation could be considerably

faster after training than the analytical method, and with a locally optimizing

network, should be faster even during training with on-line learning engaged.

1.3.4.4 C onvergence C riteria . The postulated conditions for which

supervised training of a direct inverse model network will converge on a consis-

8 Because we compute m oves incrementally, not from one end o f a trajectory to the other.

21

ten t trajectory formation solution for excess as well as necessary degrees of free­

dom are: (1) on-line training, and (2) local generalization. The reason for the for­

mer is tha t on-line training during performance of trajectories favors goal

directedness simply because only goal directed steps are presented as training

exemplars. The reason for the latter is th a t local generalization largely prevents

LMS averaging of highly non-linearly related trajectory step solutions.

1.3.5 Keenin& This Work In Perspective

Keep in mind th a t I am not attempting to contravene Jordan’s thesis, but

am rather exploiting a "loophole" in his preconditions. The payback for this ex­

ploitation is considerable, namely the removal of the necessity of "pretraining" a

forward model of the robot into an MLP before the model can even start to a t­

tack the problem of learning trajectories. My model trains on-line from the very

start, thus acquiring the inverse model and trajectories simultaneously. (See sec­

tion 2.2.1.) If a forward model is required, th a t too can be acquired incremen­

tally and concurrently with the trajectory formation. (See section 6.3.)

This is a nice computational windfall, bu t an even deeper problem that it

addresses is the avoidance of dependency on Jordan’s (unavoidably) imperfect

forward model. This method also allows the equivalent of retraining the forward

model to account for changes in its physical properties over time. Jordan’s for­

ward model might be on-line retrainable, but based on considerable study of con­

vergence and retrainability problems with MLPs, e.g. Fahlm an [*90], this seems

unlikely. Since Jordan’s model relies on the perfection of his forward model, it is

unlikely, if it were not comprehensively trained up front, th a t meaningful behav­

ior would emerge from training in specific trajectories with on-line training of

the forward model engaged. This argument is carried further in section 2.6.1.

22

The ultim ate goal of this work is not just to implement robust efficient tra ­

jectory formation, but to include therein an inherent and robust obstacle avoid­

ance methodology. This is developed in chapter 5.

Finally, Appendix A tries to put this work in context relative to neurophysi­

ology, clearly a broad and speculative vista, but one which I argue portends cer­

tain advantages for the design engineer of the future.

1.3.6 Required Vindication of Results

A necessary part of this thesis will be to demonstrate th a t the underlying

storage method, ARTISTS, stably leams trajectories presented to it. Through

many repeated simulations, it has been observed th a t this system, with and

without obstacle avoidance, can reliably learn consistent, repeatable trajectories.

A systematic empirical search for adequate system param eters tha t guar­

antee success and the experimental results are discussed in section 4.8, page

105.

A rigorous convergence and stability proof using an analytical Lyapunov

method is beyond the scope of this dissertation, but a discussion of a less rigor­

ous "Lyapunov-like" argument is presented in section 4.9, page 136.

A convincing demonstration of ARTISTS converging on a stable learned set

of trajectories taken from a pathologically redundant set of such trajectories,

will be to demonstrate th a t this method handles adequately a t least a redun­

dant model similar to the one that Jordan proposed, and th a t it can learn simi­

lar trajectories.

23

1.3.6.1 Computational Advantage Over Forward Modeling.

Showing th a t ARTISTS converges on the trajectory ensemble just described is

important because direct inverse modeling is more computationally efficient

than forward modeling for reasons described in sections 1.3.3,1.3.5 and 2.2.1.

24

Chapter II

Issues

2.1 S u perv ised L ea rn in e

The term s "supervised" and "unsupervised" learning are ra ther vague. It is

unclear in the context of the current literature just where the boundary line lies

between a supervised and an unsupervised learning paradigm. In some refer­

ences, notably Mel [”87], unsupervised models are defined as ones not requiring

an intelligent teacher. One would suppose this to be a human, but it might more

generally be an "artificially intelligent" automaton or agent providing the input.

More demanding theorists, e.g. Rivest and Shapire [*87], would require

th a t even a simple "black box" like the forward kinematic transform th a t pro­

vides the essence of the ARTISTS/ARTFORMS robot simulator is considered a

teacher, and so let us call this model a supervised learning paradigm. We shall

then reserve the nomenclature unsupervised learning for such paradigms as Ko-

honen maps, Grossberg’s adaptive resonance systems, etc. However, an argu­

m ent might arise th a t says such a self organizing system uses itself as teacher,

and is thus supervised. This argument can clearly get out of hand!

Let us retain a rather strict definition. Supervised learning is the act of

presenting to a system of equations, or other repository of information, such as a

memory of the discrete or "fuzzy" variety, a set of n vector pairs, where v is

a context or input vector and t is a target or exemplar vector. The system is exer­

cised to produce an output t, such th a t the error t - t can be computed. An ad­

justm ent of the param eters of the system th a t produced the output is then

25

attem pted to reduce the error term over a series of n such vector pairs. The

usual technique is to compute a gradient and descend along the gradient to re ­

duce the squared error over the training set. Jordan [*88] gives a nice develop­

ment of the general vector description of the method. Another development is

shown here in section 4.6.4 (page 97).

2.2 D irec t Inverse M odeling

0 (n-1)
, ,

’ r

............. p Inverse A6 (n-1)
PLANT

A x(n)
A xd (n) Model

(a) The Direct Inverse Model

0 (n-1)

PLANT

AQ(n-l)

(b) Training it

Figure 2.1: The Direct Inverse Method of Modeling

The following discussion is based largely on descriptions of direct inverse

modeling versus forward modeling put forth by Jordan f90].

Consider a mechanism, like a robot arm, which takes a joint position vec­

tor, 0, and outputs a hand position vector, x(Q). If we cause the joints to move by

26

AG, then we may rightly expect the hand to move by Ax. If we wish to move the

hand (a typical robot task) by some amount, Ax, we m ust know w hat value of A0

will cause such a hand move.

It would be nice to have a black box like the one labeled "Inverse Model" in

figures 2.1 and 2.2 which could provide us with a reliable estimate, AG, for tha t

desired input. Figure 2.1a shows a direct inverse system th a t has the intermedi­

ate value, AG, provided by ju st such a black box. Figure 2.1b shows how we

would in practice tra in such a model. The dashed diagonal line indicates a gradi­

ent based adjustm ent of the model as is the case in other figures in this docu­

ment. The im portant feature of this method is th a t the inverse model is trained

(or adjusted) based on direct observations of actions of the plant. This direct ob­

servation method may be term ed a world as model method.

Q,x(n~l)

pseudo-error

(a) The Direct Inverse Model

Q,x(n-1)

A x(n)

(b) Acquiring the forward model

Inverse
Mhjlel

Forward
ModM

PLANT

Forward
Model

of PLANT

Figure 2.2: The Forward Modeling Approach.

27

2.2.1 "Pre-training" a Forward, Model

In the case of forward modeling, a mathem atical model of the forward

kinematics of the plant m ust be acquired. This is done by exhaustively training

a neural network from direct observations of random moves of the plant. This

phase should be complete before training of the inverse model can ensue. This is

the phase term ed "pre-training" in this dissertation. During trajectory forma­

tion, the error observed between the actual plant moves, Ax(n), and the desired

moves, Ajc j,n), is back propagated through the forward model, as indicated by

the dashed line in figure 2.2a. This produces a "pseudo-error" signal tha t can be

used to adjust the inverse model. For a thorough and understandable reference

on back propagation. (See Wasserman T88], chapter 3.)

The direct inverse model can be trained earlier in the process, based on di­

rect observation of the plant, and so constructs the inverse model faster than the

forward modeling method. However, Jordan argues th a t the forward modeling

method is goal directed and as such can, via the gradient descent in figure 2.2a

adjust the inverse model to solve for a particular solution out of a myriad of

many-to-one solutions. In general, the direct inverse method can not find tha t

solution, as was discussed in section 1,3.4.

In this dissertation we shall see, as mentioned in section 1.3.4.4, th a t local

generalization and on-line learning capabilities of the CMAC allow a solution to

be found via direct inverse modeling. We shall also discuss methods to force di­

rect inverse modeling to be goal directed, both by the use of goal directed heuris­

tics and by the use of constraint satisfaction. A discussion of the important

aspects of CMAC are found in sections 2.5 and 2.6.

28

2.3 G oal D irectedness

Direct Inverse modeling is not goal directed. W hat this really means is

tha t it is opportunistic, in tha t it simply learns from what it observes. A goal di­

rected method tends to force the system to behave in a m anner th a t reliably re ­

duces some goal oriented error metric. An example of such a metric is distance to

target, direction to target or postural configuration, i.e. the relative magnitudes

of an articulator’s joint angles.

It is true th a t if a direct inverse system only trains randomly, without re­

gard to any goal (as is the case in forward model "pre-training") there is no ten­

dency to favor goal directed moves over goal divergent ones.

The direct experiential nature of direct inverse modeling assures th a t ex­

emplars match the plant exactly; this should favor convergence on a repre­

sentation th a t is a true plant model more rapidly than an indirect method (like

forward modeling) could achieve. By contrast, indirect methods, though they can

be crafted to m aintain fidelity to goals, and may be better a t adhering to goal di­

rected policies, they may have desired ra ther than actual observed moves

latched into the inputs during training. Thus these indirect methods will not

only capture a true plant model more slowly, but in fact may risk attempting to

train based on impossible actions (which is clearly not an efficient thing to do). If

we can force strong goal directed policies th a t are efficiently computable upon

the direct inverse method, an all around better solution is likely.

Chapter 3 will discuss the use of goal directed heuristics, and chapter 4 the

use of constraint satisfaction to impose goal directedness on the system. In

29

short, it will be argued tha t it is the use of constraints in Jordan’s method th a t

provides goal directedness to a larger extent than the use of forward modeling.

Furthermore, if the goal directedness influences what the direct inverse model

uses as training exemplars, then the same resultant success should be achiev­

able by direct inverse modeling.

2.4 The Problem S ta tem en t

The central problem this dissertation project addresses is th a t of how to

control the trajectory generation of an arbitrarily long planar kinematic chain.

The system is a simulation of a simple planar robotic arm, and the software is

described in detail in Appendix F. The arm may be redundant or non-redundant.

The object in each experiment is to start with an initial posture and generate a

sequence of unit length hand moves tha t moves the hand from th a t posture to

within a unit distance of a target. This action is called one path segment. More

path segments are dictated by specifying multiple targets. The path segments

can be chained by moving the hand along segments extending from target to

target or they can be executed radially by always starting from the original

(home) posture. The difference between the trajectories in these two cases be­

came a pivotal concern in this study.

During execution of these experiments many conclusions were derived

subjectively from observing the arm in motion and other conclusions were de­

rived from studying the error metric data files the program wrote out during

execution.

30

2.4.1 A Brief Synopsis of the Software Solution

More details are in Appendix F. An initialization file containing x = y

statem ents where x is a variable name and y the desired initial value is read in

and in te rp re ted by the simulator program. Over 50 system param eters can be

adjusted in th a t fashion so experiments can be ru n without recompilation.

Drawings of the arm are generated automatically in PostScript, and error data

logged into a series of data files. These files contain logs of error metrics written

out at the end of each "path segment". Up to 40 targets have been implemented

in long sequences of experiments crafted by creating multiple initialization files

and executing the program, "ARTFORMS", once for each initialization. These

initialize and execute sequences were chained together in batch files, so that

overnight runs could generate large collections of data for later analysis. These

data were then used to determine adequate system parameterizations to meet

the desired criteria of

• Paths th a t were nearly rectilinear in the work space.
• Minimal convergence tim e in epochs. (1 train ing epoch = 1

path segment).
• Minimal RMS error in postural constraints.
• Minimal CMAC memory saturation. (See section 4.8.2.7).
• Completion of the experiment (i.e. not getting stuck in

unrecoverable postures).
• Avoiding mechanically disadvantageous postures.

31

2.4.2 The Details of the ARTISTS Maomnsi

ARTISTS is implemented to store trajectories for a 2D planar arm as

shown in figure 2.3. We shall discuss the minimally redundant, 3 link, 3 joint

case here, but experiments with other humbers of joints have been conducted.

The three joint angles are a, p , and 7. The forward kinematic transform, %

is straightforward1,

x = T * cos(a) - H * cos(a+P) + F * cos(a+p+7)

y = T * sin(a) - H * sin(a+p) + F * sin(a+p+7).

No attem pt to model the ki­

netic response of this robot arm was

made. The kinematic response is

suitably non linear, to demonstrate

th a t CMAC is a sufficiently powerful

computational model to solve a hard

supervised learning problem. The ex­

tension to kinetics is a straightfor­

ward m atter of increase of

dimensionality.

A CMAC implements a mapping: X 1: (a,P,7,6r ,5y) -* (5a,5p,&y), where

all are the obvious quantities, except (6x, 6y), which will be treated as a unit vec­

1 With perhaps misguided anthropomorphic intent, the symbols were intended originally as F - forearm, H
- humerus, and T - torso.

Target

Hand Position N
(x.y)

P

Figure 2.3: Simple Redundant P lanar
Articulator

32

tor along a desired trajectory. So the input vector provides a desired straight-

line trajectory direction, along with the current joint posture in order to excite a

response, and the learning will tra in in the observed response a t the actual ob­

served trajectory step. Forcing the steps to be unit vectors results in an attem pt

a t a constant velocity solution, and simplifies the input addresses for a more

uniform input mapping -- only orientation information is contained in this 2 di­

mensional component. For obstacle constraints, the input vector might be

changed to include 2 dimensions for path segment endpoint location. This could

allow radically different policies to be used for forming trajectories aimed a t 2

different target points along a straight line separated by an obstacle.

2.4.3 The Heuristic Criteria

Let S = (a,p,y,8jc,8y). The primary "weak gradient" heuristic rule is: If the

CMAC returns d ? f J (S) « (0,0,0), try a step, g (perhaps a random one), and ob­

serve the result, S = R). There are 2 possibilities: the step generated an

§ - (bx,by) component

such th a t the dot product

§ ■ § >= 0. In tha tx,y x,y

case, tra in on the step

(i.e. tra in the CMAC at

S. ' not a t §), but not for

the former case, because

it moves the hand in the

wrong direction.

TARGET

.. i&ewed cone
HAND

Figure 2.4: Gradient Descent Critic Criterion.

33

This first heuristic criterion accepts randomly generated heuristic steps

only if they have between 0 and 90 degrees deviation from a straight line hand

to target path. This heuristic allows the hand to deviate from the target but

never move such tha t its distance to the target increases. A more general dot

product critic algorithm is installed which can bracket acceptable steps by the

generalized angles and as shown in figure 2.4. This more general crite­

rion can variably constrain the hand moves (perhaps using a spatially distrib­

uted constraint parameterization) within the "allowed cones" shown in the

figure. Note th a t this extension not only allows heuristic steps th a t diverge from

the target, to allow back-track searching to find a path around an obstacle, but

can actually force such heuristic steps by setting <Pq>0. Spatially distributed

parameterizations are discussed in sections 3.3.1.2,4.8.1.1 and A .I.1.1.

2.5 Whv Use CMACs For This P u rpose?

This section discusses both historical and theoretical reasons for using

CMACs in the current development. Afterwards, section 2.6 contrasts and com­

pares CMACs with an alternate and widely used type of neural network, the

multi-layer perceptron (MLP), in an attem pt to strengthen this argument.

2.5.1 Historical Continuity

During the past 6 years, the Robotics Laboratory a t the University of New

Hampshire (UNH) has conducted a series of simulations and real time studies

probing the use of highly regularized neural network arrays called CMACs, for

"Cerebellar Model Arithmetic Computer", inspired by the seminal work of Jam es

Albus [’79] and David M arr [’69]. CMACs have very successfully given our in­

dustrial robot controllers and simulators the ability to perform both repetitive

34

and non-repetitive actions defined by desired actions in the sensor space, while

requiring only qualitative knowledge of kinematics or dynamics.

No exhaustive description of CMACs will be included here; a comprehen­

sive tutorial and descriptive article is Miller T90d]. Of course Albus [*81] is also

good, but not as germane, given the specificity of the former to the problem at

hand. Im portant discussions of generalization, quantization and memory size

are included in section 2.6.2.2 and in the comparative discussion of generaliza­

tion for MLPs and CMACs in section 2.6.2. The CMACs used in this series of

experiments vary from Albus’s original design in two major ways; the CMACs

use: (1) linearly tapered receptive fields, and (2) An's optimal receptive field dis­

tribution. Both these aspects were covered in An T91]* Some experiments using

rectangular fields were tried and though they may have been adequate for the

system, the linear tapered field model worked better. No further comprehensive

comparative study was engaged outside this subjective assessment. An’s ar­

rangement for 2D inputs is shown in figure 2.7, page 43.

2.5.2 The SERVO Level Controller

Tb date, the Robot Lab’s robot control systems have contained a crude fixed

gain linear controller. This controller was completely insensitive to the base line

or time dependent dynamic param eters of the system, and thus was incapable of

generating anything other than very crude, clumsy and inaccurate moves of the

articulator arms under control. Adaptive CMAC modules, operating in parallel

with the fixed gain controller in both the feed-forward and feedback paths, al­

lowed the system to learn the highly non-linear error function th a t emerged

when the actual and desired trajectories were compared. The results were grati­

fying and, as the series progressed, the system was deemed completely sufficient

35

TRAJECTORY
PLANNER

FIXED GAIN
FEEDFORWARD

ROBOT

FIXED GAIN
CONTROL

TRAININGMEMORY
(CMAC)

Figure 2.5: Simplified Diagram of UNH SERVO Controller

for the job of on-line real-time adaptation of these brain stem (SERVO) functions

in the absence of an analytical model of the robot dynamics (Miller, et al f86 -
o

’90e]), but the problems were posed using only non-redundant mechanisms.

2.5.2.1 C o n ver tin g F eedback to F eed forw ard A n tic ip a tio n . In

spite of the lack of plant redundancy, the relevant feature of the

Miller/GlansyTCraft controller is th a t it effectively turned feedback control of a

non-linear plant into a largely feed-forward operation; (see figure 2.5). The exist­

ence of long time delays in biological systems has forced nature to develop just

such strategies as this. There are similarities between this method and the ones

Houk [’90] describes. He describes a kind of evolutional^ adaptation called a

quasi-feedforward process. In a quasi-feedforward process there is only limited

reliance on feedback, much of control being performed in a feedforward fashion.

After failure, the feedback mechanism he characterizes as being much like back-

propagation adjusts parameters retrospectively. Without the feedforward

2 See section 1.1.2, "Varieties o f Redundancy".

36

activation of this method, feedback loops controlling non-linear plants with long

time delays could go unstable.

It may be argued tha t electronic systems are fast enough to have outgrown

nature’s requirement here. The counter to this argument is th a t with the addi­

tion of synthetic vision and heuristic back-track search in path planning, dic­

tated by the existence of redundant mechanisms operating in the presence of

obstacles, such time delays in fact do occur. So this proposed method strives to

capture this reduction of reliance on feedback in the conversion of feedback of

observed movements into a feedforward process of movement anticipation dur­

ing path planning.

2.5.3 T he E xistence o f CMAC H ardw are

In a recent development, hardware implementations of CMACs have be­

come a reality (Miller [’90b, ’90c]). The prototype hardware design developed at

UNH has been commercially developed by Klein Associates of Salem, New

Hampshire. The commercial systems provide sufficient speed (>1 KHz) and stor­

age capacity (1 Mbyte) for most anticipated problems in robotic control.

2.5.4 Multiple Interacting Neural Networks

The obstacle avoidance implemented in this study involves no explicit

world model. It requires simply tha t CMACs implemented in parallel learn by

experience the inverse kinematic transform of a simulated robot arm with bi­

ases embedded in it to represent obstacles in a coarse fashion. The outputs of

these CMACs blend together to generate the system’s control signal, a string

of elemental move commands to be passed down to a servo level controller

(like the Miller/Glanz/Kraft controller, Miller et al f86 - '90], shown schemati­

37

cally in figure 2.5), which then tracks the path. The networks here m ust be

roughly equal in timeliness, so fast convergence is essential.

Q
In ARTFORMS-1, reinforcement learning is used to tra in a short term

memory (STM) of what not to do in certain contexts irrespective of why not to do

it, but the locality around this context point in state space is important. When

an obstacle is encountered, the system receives a non-specific diffuse punish­

m ent signal, called SLAP, which engages training in the STM whose output

serves as a bias to the output of the long term memory (LTM) and ultim ately be­

comes part of the training signal for the LTM. The LTM contains an inverse4 ki­

nematic (i.e. inverse Jacobian) mapping for the arm.

ARTFORMS-2 does something similar, by using a constraint satisfaction

paradigm, which is moderated by a STM projection tha t can alter the constraint

equations in a meaningful way.

The STM module in either case m ust have a very high learning rate5, so it

captures its data quickly, and in the absence of an obstacle-indicative input it

decays by being trained using a zero valued exemplar vector, and a lower learn­

ing rate.

The LTM does not have a decay process. It simply has a continuous dialog

presented to it, consisting of:

• the current context (current position and target position),

3 Sec section 3.4, "Reinforcement Learning".

4 It should be kept in mind that there is no Inverse model o f the arm kinematics because o f postural
redundancy, but the proposed mapping provides a non-unique mapping from desired kinematic response
to the joint perturbations that cause such a response, and so is 'lik e ' an inverse model.

5 Learning rate, denoted by the symbol, r|, determines how fast a neural network converges on a solution. In
other iterative methods, this might be termed 'step size'. Its value can range from 0 to 1.0.

38

• what is commanded including the STM bias and
• the resu ltan t action (feed back of the observed response of the

system one time step in the future).

So whatever moves the robot makes, for whatever reasons, are simply ob­

served and trained into a hyperspatial representation of the robot's kinematics.

If such an "observe and mimic" methodology can be implemented and shown to

be a stable repository of trajectories, it will implement a localized motor pro­

gram "habituation" paradigm. It has been postulated by Albus, Marr, and Houk

tha t this is the function of the cerebellum. This forms one argument, albeit

metaphorical, for the use of CMACs to implement the method. More practically

however, the properties of local generalization and fast on-line training are the

underlying reasons. Habituation is discussed in greater detail in section 3.3.1.1,

on page 65.

2.6 CMACs versus MLPs

It is true tha t many control systems and trajectory planners have been im­

plemented with multi-layer perceptrons. There are some serious concerns re­

lated to the use of MLPs in the current context th a t are outlined in the

comparison of CMACs and MLPs found in this section. As with CMACs, de­

tailed descriptive treatm ent of MLPs is omitted. Many descriptions are avail­

able, e.g. Wasserman [’88].

2.6.1 Some Worrisome Properties of MLPs

My concern for the feasibility of a less than exhaustively trained MLP used

as a forward model stems from the m anner in which an MLP solves a "surface-

fitting" problem versus the way in which a CMAC does.

39

Figure 2. Comparative evaluation of learning rates and approximation capabili­
ties: (a) surface to be learned, consisting of two Gaussians; (b) back-propaga-
lion net with 48 nodes in the hidden layer; (c) functional-link flat net with 48
enhancement nodes; (d) functional-link flat net with 200 enhancement nodes.
Learning time in (d) is 0.14 that of (a).

Figure 2.6: How an MLP Converges
Copyright (Q 1992, IEEE Computer.

A CMAC solves a problem, quickly everywhere in state space th a t it visits

and leaves a very low level residual error everywhere. See figure 3.5, on page 69
g

and contrast it with figure 2.6. The latter result, reprinted with permission

from Pao and Takefuji [*92], shows the readout of a network called a functional

link network, which is one of many variations of backpropagated MLPs, and is

one tha t has an order of magnitude faster convergence rate than standard back-

propagation. Even so, there are regions wherein the network approximation is

highly accurate and other regions where it is quite inaccurate. So testing the ro­

bustness of such a system by applying uniform low level noise everywhere, as

6 Copyright IEEE Computer.

40

Jordan [’88] did, does not really model the inherent deficiencies of the MLP as

system model.

An MLP can not hope to be a suitable fit for a problem unless it has "suffi­

ciently" many nodes with the "right" connections. For the general case this

means many nodes. For the specific case it means custom tailored MLPs to fit

the architecture, i.e., ju st the sort of thing we are trying to avoid by moving

away from purely analytical methods.

Contrarily, robustness in the presence of low level noise is consonant with

the manner in which a CMAC tends to solve a problem and arguments pre­

sented in section 4.8.7 tell of how CMACs in this architecture contribute to an

innate robustness. Memory consumption and inherent noise are directly related.

An upper bound on the worst case inherent noise a CMAC imposes on its host

system are discussed in Appendix B, and results in section 4.8.7 indicate a wide

range of system design latitude to allow an effective tradeoff between system

performance and memory consumption.

2.6.2 Local and Global Generalization in MLPs and CMACs

The concept of generalization can be stated from two vantage points.

• The connectionist’s definition: The degree to which a neural
network learns about novel situations from fam iliar ones, i.e.
ones upon which it has been trained. In other words, if a
supervised learning system is presented w ith exemplar x, how
well can it predict a response to exemplar x\ which is
purported to be "similar".

• The local ist's definition: The degree to which the receptive
fields of local basis function networks can overlap. W ith a
radial basis function, th is quantity is expressed as the radius

41

of the receptive fields. With a CMAC, it is expressed as an
integer quantity representing the num ber of discrete sta te
space points in a receptive field, corresponding to weights
stored in memory locations.

2.6.2.1 Deterministic CMAC Generalization. For a CMAC, these

two definitions are more or less equivalent. If there is a large receptive field (i.e.

many weights) then other receptive fields can share many or almost none of

these weights. The number of weights in a CMAC receptive field is, by conven­

tion, represented by the variable, C. Since the state space points are widely and

uniformly distributed throughout the state space, it is possible then for widely

separated inputs to overlap, and thus generalize. If there is a small receptive

field, the probability of two fields sharing weights is small, unless the inputs cor­

responding to the two receptive fields are very close together, hence only very

similar inputs share weights, and thus little generalization occurs. In fact if

C=l, we have table lookup and no generalization occurs. For the simple case of a

one dimensional CMAC, the effect of broader or narrower generalization can be

seen in figure 2.7, which shows how differing values of the generalization pa­

ram eter might affect function approximation of a sinusoid. Segee [*92] discussed

how the width and profile of the receptive field affects learning speed as a func­

tion of the spatial frequency of the exemplar function. This result together with

the observations of Appendix D will connect the methods of ARTISTS/ART-

FORMS with previous traditional methods of non-linear control. See section 6.2.

2.6.2.2 Generalization and Quantization in CMAC. The term co­

don representation is found in M arr ['69]. It refers to the degree of coarseness of

the input vector coding. Coarse coding is a term also used in reference to

CMACs. The input vector m ust be discretized for a CMAC, and so scaled inte-

42

The relative receptive Held extents
with different generalization
parameters for a one dimensional
CMAC approximating a sinusoid.
Quantization “ 1/20.

0.0

S/20

♦

An's "uniform"
receptive field
distributionThe spatial distribution of the

points in typical receptive fields
with generalization of 8, (i.e.
C-8), for an Albus-style CMAC
with 2 dimensional input

Figure 2.7: Generalization and Receptive Field E xtent

gers are used. The scaling can be as high resolution as necessary to assure an

accurate simulation model. But if the resolution is very fine, the CMAC virtual

memory space can become unworkably large. Since a change of 1 unit in this

representation does not necessarily result in even a measurable change in the

output of the CMAC, it is very wasteful to leave m atters thusly. In order to re­

duce memory consumption, the CMAC can further discretize an input vector to

the degree th a t a single unit increment or decrement does produce a measurable

output change (on average). This discretization control can be exerted in

UNH_CMAC by using an array called qnt_vec[]. This vector contains in each

43

corresponding component the number of units change in the input vector compo­

nent that will ensure a new weight is enlisted in (and thus an old one dropped

from) the receptive field. This allows a simple adjustm ent on a per coordinate

basis of discretization th a t is independent of the plant simulation discretization.
n

One unit of change a t this coarse level is called a codon unit . In figure 2.7, for

example, each codon unit is V20 linear units (lu). If the plant were discretized

with 1 bit representing 0.01 lu then a codon unit would be 5 plant simulation

quanta,

2.6.2.3 N on -de term in ia tic G en era liza tio n in a n M LP, Multi-lay- er

perceptions, on the other hand, can exhibit very broad and almost uncon­

trollable generalization. Figure 2.8 shows a typical 3 layer multi-layer percep-

3 Layer Multilayer Perceptron
With 2 Inputs and Scalar Output

(bias

bias bias bias

Layer 1 Layer 2 Layer 3

Figure 2.8: A 3 Layer Multi-Layer Perceptron

7 After Marr ['69|.

44

i.o

-

0.0
- 1.0 0.0 1.0

Z = £ W; X,
i

Commonly used as the "non-linearity" in multi-layer perceptrons, this sigmoid is drawn
Tor T ■ 0.2 and the bias, b - 0.0. z is just a weighted sum of the inputs. Training is
accomplished by adjustment of the weights using backpropagation to solve the credit
assignment problem related to the weights. This unit will be sensitive to large values of
z, so if the weights attached to its inputs are all large, this unit will be saturated in an ON
state, even for modest input values. Since its derivative is also small there, its weights
will not likely change in response to training exemplars that drive its inputs high. This
can be interpreted as a kind of local generalization.

Figure 2.9: The Sigmoid Non-linearity

tron. The sigmoid non-linearity of figure 2.9 is the heart of an M LFs ability to

approximate functions or act as a pattern classifier. These two capabilities are in

a sense equivalent operations. If a network can approximate a function, then the

surface represented by th a t function will have closed features (i.e. simple humps

or depressions) or open features (i.e. ridges or valleys) which can be intersected

by hyperplanes to form boundaries of respectively closed or open decision re­

gions. Unfortunately for an MLP, the network size and interconnectivity deter­

mine the kinds of functions (or decision region sets) a particular network is

capable of computing.

1.6.2.4 T he M LP a s G enera l F u n c tio n A pp ro x im a to r . Homik,

Stinchcombe and White [*89] showed conclusively th a t a 3 layer MLP is capable

of approximating any Borel measurable function from n-space to m-space, for

any n,m natural numbers. This class encompasses virtually all useful functions

M
♦

45

encountered in engineering applications. They did not however define a method

of training such a network. In other words, figure 2.8, given enough units in

each layer, can be a general function approximator. But getting it to adjust to

approximate th a t function is not a well defined procedure. Their argum ent was

more general in th a t it allowed other than sigmoid non-linearities, but con­

straining the discussion to just the sigmoid class of networks, their argument

can be summarized as follows.

First, observe th a t one node from figure 2.8 is able to separate a hyper­

space into two half-spaces, because the input function is ju st the dot product of

two vectors, the input vector and the weight vector, the la tter of which is the

normal vector to the dividing hyper-plane. The transition between the two

halves of the divided space can be as abrupt or as gentle as you please by adjust-

M ulti layer perceptron topology used by L apedes and Farber
to predict a chaotic tim e sequence.

VV

w,

bias “ 1.0w.

bias bias

wb2 through
bias

Figure 2.10: Lapedes and F arber’s Chaotic Sequence
Predictor Network

46

ing the slope of the sigmoid, by changing the param eter T of figure 2.9. So the

orientation of the separation plane is defined by the weight vector and its dis­

placement from the center of the space by the bias weight. If there are two such

units in the same layer, they can project onto a single unit in the second layer

which can, by conjoining the outputs of the two units in the first layer divide the

space into 2 open regions. If the first layer has 3 such units, only then is it possi­

ble for the second layer target unit to enclose a convex region in the input space,

or approximate a surface with one "bump" on it. In fact more and more units in

the first layer all projecting onto a single unit in the second layer can define any

convex region you please. Suppose there are multiple such groups of units in the

first layer, and each group projects onto one unit in the second layer. Any con­

nected region (a conjoint of convex regions), or arbitrary shaped bump, or any

disjoint set of convex regions (or collection of simple convex bumps) but not both,

can be approximated by the target node in the second layer. The th ird layer can

then conjoin and disjoin regions (features) output by the second layer, which is

equivalent to computing any arbitrarily complicated surface or function. And

furthermore, backpropagation or a variant thereof can (hopefully) tra in it (even­

tually).

It is these two parenthesized conditionals th a t pose the problem. We are

faced with the prospect that there is just no good way ahead of time to decide

how to size or connect such a network in order to perform a given job without

undergoing a thorough analysis of the nature of the function in hand, in which

case it is probably not necessary to use a neural network to perform the compu­

tation. So what is really needed is a generalized three layer network, which can

reliably map arbitrary functions without exhaustive a priori analysis of the

47

function, which may not be a known quantity. Throughout this dissertation, tha t

is precisely the role in which CMAC is cast.

2.6.2.5 MLP and CMAC Equivalence. A CMAC can be shown to be

equivalent to a three layer multi-layer perceptron, in which the first two layers

are hardwired (i.e., have fixed interconnection weights). These first two layers

define the topology of the function the network is capable of approximating, and

are called hidden layers. A major problem with an MLP is th a t it m ust perform

two jobs simultaneously: train the hidden layers to understand the space, and

train the output layer to understand the function. All the hidden layers should

be doing is dividing the input space up into local compartments. The output

layer can then conjoin or disjoin these to form arbitrary sets of convex regions,

and then weight these component regions to finish defining the output. The

equivalent of a CMAC could be built using a three layer MLP if a nearly infinite

number of sigmoid units could be connected together in a regular pattern such

that groups of these units could each subtend limited regions of the input space.

Each of these little subnets would then fulfill the role of a CMAC receptive field.

Fahlman [’90] attempted to do just such a thing adaptively in his cascade corre­

lation architecture.

2A.2.6 Local and Global Generalization in a One Dimensional
Problem.

Lapedes and Farber [*89] wrote a paper on chaotic time sequence predic­

tion. Their network simply learned the internal representation of chaotic se­

quence generator which operated by feeding back the output of a quadratic

logistic function as its next input. By cycling this generator repeatedly, an ap­

parently random sequence resulted. If a network observes the sequence of in­

puts and outputs of the generator and trains in supervised learning fashion, all

48

<UCJ
CV
3

sC / 5

.2
s

J 3u
u■s

+c
CL
Sitss

1.0

0.8 -first trace i quadratic
internal model

0.6

0.4

0.2

0.0

- 0.2

0.75 1.00.50.250.0
step n in the chaotic sequence

Lapedes and Farber's chaotic time series experiment duplicated. The light gray arrows show the
approximate direction of convergence of the backpropagation algorithm. This rather rapidly
convergent experiment is a fast learner principally because it has a carefully chosen architecture,
and weight initialization. In other words, it "fits the problem". Other initializations proved to be
more than two orders of magnitude slower even with the same network topology.

MS Error Per Epoch

17.898361
11590284
9.934926
8.574083
7.331949

6.207622
5.205238
4.324663
3.562446
2.912544

2366761
1.932657
1.732864
1557949
1.401226

1.260756
1.135156
1.023141
0.923478
0.834997

Figure 2.11: Convergence of a Sequence Predictor
with an MLP

it is really doing is learning a quadratic. Such a function has one smooth hump,

and so the topology of figure 2.10 should suffice. I used an MLP of th a t topology

and standard backpropagation, with a heuristic cycling of the learning rate, to

attem pt to learn the function as Lapedes and Farber had done. The results are

seen in figure 2.11. What I discovered in the process of this effort was th a t the

weight initialization was critical. If I initialized the weights as large weights

with a wide variance (weights range from +/-5.0) the result was figure 2.11.

When I used the "conventional wisdom" of small magnitude random weights

49

0.0 0.25 0.5 0.75 1.0

step n in the chaotic sequence

M S Error per Epoch:

0.581080 0.019997
0.035263 0.019170
0.022182 .

Figure 2.12: Convergence of a Sequence Predictor
with a CMAC

(ranging from +/-0.5) the result was th a t the function converged several hundred

times more slowly, and the original approximation (similar to the first trace of

figure 2.11) persisted for hundreds of epochs with only minor changes in down­

ward concavity to try and approximate the quadratic. Why might this be? I con­

tend th a t it is due to overgeneralizing during training.

If all the weights of an MLP are similar and small, then on average all the

sigmoid units attached to the summers will tend to be presented with weighted

summed inputs th a t are near the centers of the sigmoid functions. T hat happens

50

to be where each sigmoid has maximal slope, so gradient descent changes every

unit on every training step. Fahlm an f90] calls th is situation herd effect. This ef­

fect is a kind of global generalization: a system-wide response to a single gradi­

ent adjustment. Furthermore, if most weights are similar and small, then it is

probable th a t many or all of the units will tend to respond strongly to a particu­

lar input, which is a form of global generalization: a system-wide response to a

single input vector. Both these global generalization affects are problematic, in

th a t they slow learning down. If the initial weights are set with a wider vari­

ance, however, then there is a higher probability th a t a limited subset of the

units will respond strongly to a particular input, while others will ignore it due

to having sigmoid inputs negative. If these two subnets of sigmoids units are

driven into the saturation region, they will persist there in spite of training ad­

justm ents due to having near zero slopes. This represents a form of localization,

or the emergence of local generalization in the MLP network, albeit a rather

haphazard one. My final weights and Lapedes and Farber's both exhibited a

rather broad variance.

A further slowdown of learning is caused by the fact th a t MLP weights are

not changed after every iteration because so called incremental learning tends

not to work well for MLPs. Rather, batch learning is typically used, wherein the

errors encountered in the training steps are summed throughout an entire ep­

och of training exemplars, and the weights are all adjusted a t the end. The need

for this is due in part to global generalization. CMACs on the other hand toler­

ate incremental learning well due to their innate localization capabilities, and

this is essential to on-line learning, which requires th a t the system learn at

every iterative step. The speed of convergence of CMAC versus MLP is dram ati­

cally demonstrated by a comparison of figures 2.12 and 2.11 wherein it can be

51

noted th a t CMAC accomplishes in 5 epochs a degree of accuracy of function ap­

proximation th a t will take the MLP almost 500 epochs to match, and this is

with a carefully crafted MLP with a particular weight initialization. With a less

serendipitous initialization, the MLPs learning rate slows down by up to 2 or­

ders of magnitude.

So in summary, the promise th a t "similar inputs generate similar outputs"

that is mistakenly attributed to MLPs is in fact the m ain strength of radial basis

functions, sparse distributed memories and CMACs, i.e. the set of local basis

networks. MLPs "generate similar inputs" under rather ill-defined conditions.

2.6.2.7 CMAC-like MLPs. Extensions to the cascade correlation archi­

tecture (a variant of the generic MLP postulated by Fahlm an [’90]) can be de­

vised tha t can adaptively "grow" state space detectors, or locally receptive fields,

similar to those inherent in the CMAC architecture. But this does not improve

the time complexity problem for the MLP which still requires a complete for­

ward activation of the network. This can be so costly th a t if the problem gets

harder than the simple one posed in Lapedes and Farber, notably with higher

dimensional representations, a massively parallel computer would be essential

for a reasonable implementation. The MLP is exponential in the dimensionality

of the problem and number of layers while CMAC has a computational complex­

ity that is linear in the generalization param eter, C, and dimensionality. It

should be remembered that, if the MLP is well fit to the problem, as a modified

cascade correlation architecture could be, and in the end could produce some­

thing very much like the CMAC architecture, it would have some properties like

smoothness of function representation th a t CMAC lacks. So here is grist for a

tradeoff decision, where the detriment of computational complexity m ust be

weighed against the need for smooth function approximation. For control appli­

52

cations, where immediacy of response is often more im portant th an accuracy,

and as is often quoted, th a t "sign is more important th an value", it should be ap­

parent tha t CMAC will usually win in this tradeoff decision.

2 .7 Conclusion: CMACs Are Appropriate

The results of sections 2.5 and 2.6 are summarized as follows: Since no

neural model except CMAC exhibits the necessary speed of convergence to do

on-line incremental learning (a requirement for real-time adaptation), and since

only local basis function networks (of which CMAC is a kind) exhibit the neces­

sary localization property, and given the milieu of CMAC activity and experience

in the Robotics Lab, it makes sense to study how these CMAC modules might be

used to implement path planning actions. The goal is obviously to provide a

front end trajectory planner for SERVO trackers like figure 2.5 (page 36). A re­

dundant arm will be used (for its obstacle avoidance capability). No adjunct

fixed gain linear controller will be implemented to provided the CMACs with

guidance as in the experiments of Miller et ai, since generalized path planning

has no underlying linear model, it may not be very helpful to do so. The goal will

be plan trajectories for an unknown robot configuration, given only the ability to

observe the joint angles and hand position.

53

Chapter I I I

The First Generation Solution

In this chapter, a trajectory planner is developed th a t exploits an errone­

ous assumption, but nonetheless involves basic concepts th a t become the basis

for the successful implementation of chapter 4.

3.1 A P review

In addition to this preview, the reader may find section 3.4.1 instructive. In

that section, a very much simplified system called 2DTFORMS is introduced

that is analogous to ARTFORMS, but is of lower dimensionality and hence is

easier to understand.

source 0
source I

f' f

control
signal
(select line)

output

signal

source 0

source 1

M U X

outputcontrol
signal
(select line)

(a) A typical dataflow
diagram "m ultiplexer"

(b) A simplified dataflow multiplexer
based on circuit element symbol

Figure 3.1: A Dataflow M ultiplexer

Constant STM decay
(n - 0 .1)

This context info, drives the
associative memory lookup

This context Info, drives the
associative memory mining

Context
Vector, 0

Weighted
Summer A h

AO
A0

Learning
Rate, r|

SLAP resets
the LTM learning

rate to 1.0 (locally)

Data«0

OUT

SEL
MUX

00

D1
SLAP

OUT

SEL
MUX

DO

ROBOT
Target
Info., Ah

Heuristic
Suggestions

CRITIC

LTM CMAC

Heuristic Biases
From Higher Levels

Figure 3.2: Overview of ARTFORMS-1

As a notational convenience, in the dataflow diagrams of this dissertation,

the circuit symbol for a multiplexer (MUX) is used to replace a module like the

truth-gat^Talse-gate dataflow construct of figure 3.1a. The purpose of a m ulti­

plexer is to allow alternate dataflows from one module to another th a t is control­

led by some condition. For instance, in figure 3.2, the reinforcement signal,

SLAP, controls the training into both the short term memory (STM) CMAC and

the inhibitor CMAC. When the SLAP signal is dormant, the inhibitor CMAC re­

ceives a data signal of 1 as its exemplar value and is trained with a small leam-

55

ing ra te1 of n =■ 1.0. Whenever SLAP is active, exemplar data of 0.0 with a learn­

ing rate of 1.0 is gated through the MUX as an exemplar.

On the left-hand side of figure 3.2, input vectors flow in. These input vec­

tors establish a context for the articulator th a t consists of a postural vector, £,

and a target vector, Ah = (bx, by), consisting of direction cosines pointing from

the hand to the target.

Direct inverse response vectors, A0, are then trained into the LTM CMAC

near the center of figure 3.2. This CMACs output will become A0, the estimate

of an inverse differential kinematic solution.

At the same time, a second CMAC, the INHIBITOR, learns the constant

function, 1.0, with a small learning rate, as a function of the same input (con­

text) vectors. This CMACs output becomes a measure of the amount of experi­

ence the LTM CMAC has acquired as a function of the input vectors, and is used

to compute a learning rate for the LTM CMAC. In this fashion, the INHIBITOR

causes a gradual reduction of the plasticity of the long term memory (LTM)

CMAC, by altering the la tter’s learning rate, or can quickly increase the learn­

ing rate of the LTM CMAC in response to an obstacle, in an effort to make the

LTM more plastic. Without this plasticity control, the system’s redundancy

would allow it to drift from one valid trajectory solution to another. The act of

settling on a particular trajectory in a particular context is a form of habitu­

ation.

I Learning rate, r], is a measure o f step size during the iterative convergence caused by execution o f
the delta rule. See section 4.6.4.S on page 102 for discussion o f the CM AC delta rule.

56

The method used to modify such acquired habits is provided by the rein­

forcement signal, SLAP, and its associated short term memory, the STM CMAC.

In its normal mode, SLAP provides a zero vector as training exemplar for the

STM CMAC, which enforces a gradual STM decay of any information th a t was

already in the STM. The gradual nature of the decay is a result of a small learn­

ing rate for the STM training. If, however, a collision signal engages SLAP, the

most recent inverse model supplied moves of the ROBOT are negated and

trained into the STM CMAC with a large learning rate, of q - 1.0. The STM

CMAC then emits a non-zero output to be summed into the forward activation

supplied by the LTM CMAC as input to the ROBOT. The STM meanwhile de­

cays to zero, via the normal mode of STM training just mentioned, so this per­

turbation triggered by SLAP will be transient. During the transient

perturbation of the model, it is assumed th a t the system will be forced to learn

some alternate solution for the inverse kinematics. Whenever a solution results

in collision with an obstacle, it is perturbed from th a t solution, until some trajec­

tory solution th a t is obstacle free becomes a habit in the given context.

Heuristics are used to generate suggested moves whenever the LTM either

has no information trained into the memory associated with the current context,

or if the LTM’s suggested move violates goal directed conditions. The goal di­

rected conditions impose a Lyapunov-like convergence condition on the system,

by only allowing training with exemplars th a t reduce the hand to target dis­

tance, while discarding any non-convergent moves.

Critical to this system is the notion th a t a habituated trajectory will, in

the redundant case, happenstantially often be appropriate to the problem being

solved, and tha t the weighted summer th a t mixes the outputs of the various

57

sources of trajectory information can be crafted in such a way th a t the selective

disturbance of trajectories will also be appropriate. Both these assumptions

have proved over-optimistic.

3.2 B ack-track S earch is N o t a n
E xp lic it P a r t o f ARTFORM S

The ARTISTS/ARTFORMS system is a shallow search method, having no

explicit back-track capability. It uses hill-climbing or gradient descent as its

principal goal direction mechanism. At any point, a heuristic or adaptive move

suggestion for what to do next is required th a t will be critiqued by a heuristic

critic or a training critic^ based on whether or not the distance to the target has

been reduced. If the proposed move will not reduce the distance, the suggestion

is rejected. This criterion can be relaxed to some extent, bu t full blown back­

track search is left to be addressed by a higher level in the planning architec­

ture.

3.2.1 H ow H eu ris tic s E n te r The System

Heuristic search is thus exploited and then turned into a feedforward acti­

vation process by simply presenting steps postulated by a heuristic "suggestion"

generator. As this process progresses, ARTISTS observes each move and its asso­

ciated context vector, and trains the direct inverse LTM with th a t move as exem­

plar. This method, if viewed upstream of the heuristic critic, is clearly not goal

directed; this objection has been raised by Jordan r90]. If the heuristic move

suggestions were merely randomly generated ones, serendipity would dictate

whether any observed heuristic move would in fact be germane to the issue of

decreasing the distance to the goal state. But if the heuristics used are goal di-

2 The two types o f critics are described shortly.

58

rected, this objection loses strength. (See section 2.3.) After the critics' evalu­

ations, goal directedness is stronger yet.

Any appropriate biasing influence, including obstacle avoidance sugges­

tions, can easily be "piped in" from AI layers, impedance control modules, vision

systems, minimum norm optimal methods, heuristic search methods like MUR­

PHY, etc. Such sophisticated adjunct control modules are not necessary for

merely adequate behavior. Each can simply subsume the heuristic suggestion

generator whenever a higher level collision detector engages. In the event that

the adequacy of this system’s behavior is deemed insufficient, higher level help

could be blended in to the level necessary to bring the behavior's adequacy up to

some desired level. In th is fashion a balance can be struck: only as much compu­

tational load as is minimally necessary need be added to achieve the desired

level of competency.

3.2.2 G oal D irected H eu ris tic s

Heuristics th a t are applied before the plant is moved are a priori heuris­

tics. Another set of a posteriori heuristics are applied after the fact by the heuris­

tic and training critics. Two types of a priori heuristics have been successfully

and extensively used: Random flailing and the Berkinblitt synergy.

3.2.2.1 R a n d o m F la ilin g . Whenever the system has no previously

learned knowledge a t a particular state space location (i.e. when the LTM

CMAC returns a near zero activation level) or if other methods have failed, n

random numbers within certain limits are cast. These become an n dimensional

joint change vector (for n joints). This is not goal directed per se, bu t goal direc­

tion is imposed on the system by a critic as described in section 3.2.3, which pre­

vents the system being distracted by erroneous random moves.

59

Y

A a OC % X (typ)

—> A a o c s in (v)

P

V - 0

Target

Ana prior heuristic

Figure 3.3: The Berkinblitt Synergy
3.2.2.2 T he B e r k in b lit t S vneray. The Berkinblitt synergy is based on

observations of a spinal frog's wiping reflex. (See Handelman [*90] and Berkin­

blitt [’86].) It approximates straight line hand movement with approximately

minimal total torque exertion, which would be important in a kinetics capable

extension of this system. The algorithm is an approximate, qualitatively goal di­

rected heuristic th a t computes very rapidly, and presents, open loop, a sugges­

tion th a t reduces the hand-to-target distance.

3.2.2.3 D escrip tion o f th e B e r k in b li t t A lg o r ith m . The Berkinblitt

synergy is described concisely in figure 3.3 At first glance it appears to be a so­

lution to the inverse kinematics problem, but it is not. It is simply an interesting

rule of thumb tha t gives a correct suggestion for any one-joint-only move, tha t

will best reduce the hand-to-target distance, but when more than one joint is

moved a t a time, though the result will most always reduce the distance, it may

not do so optimally. Consider, for instance, the example in the figure. By com­

60

puting the cross products shown, it is clear th a t joints a and (J should be ad­

justed by small negative angles. Angle y should rem ain unchanged. Viewed

statically and in isolation, each of these suggestions seem reasonable, but if a is

decreased slightly, it is obvious th a t a slight simultaneous increase in p best re­

duces the hand-to-target distance.

3.2.2.4 O th er a Priori H euristics . Other heuristics, besides random

flailing, which are more goal directed, but still more efficient th an search or con­

strain t methods were tried, such as:

• Requiring a sufficient set of the joint angles' changes to be
equal, so th a t the inverse problem becomes a non-redundant
one.

• Exploiting synergies like opposite signs for selected pairs of
neighboring joints (Hinton [’84]). This can, for instance, allow
elbows to move while keeping the same hand position.

In fact these did not appear to be any more effective th an random training,

and the clear winner was the Berkinblitt algorithm. The policy th a t was finally

implemented was to use Berkinblitt unless its suggestion was rejected by the

critic, and then to revert temporarily to the random policy, which would always

(eventually) succeed.

A th ird set of policies are discussed in sections 4.2 and 5.2.2 as the pos­

tural constraint and the central obstacle avoidance mechanism. The rules used

to devise the objective functions for these constraint satisfactions are simply

other forms of heuristics. Although these constraint rules are designed into the

system a prion, their application occurs concurrently with training (and move­

ment), thus their effect is neither a priori nor a posteriori.

61

If more heuristic policies were available, a flexible policy could be imple­

mented tha t could intelligently select from among heuristic methods as need

dictates. This policy could even be selected by a spatially distributed param eteri­

zation. (See sections 3.3.1.2,4.8.1.1, A.l.1.1 and A.l.1.3).

3.2.2.S R e la x a tio n o f G oal D irectedness: H a n d C onstra in ts . The

heuristic goal direction is modified by changing the values of the hand con­

straint parameters <p0 and th a t were discussed in section 2.4.3. The adjust­

ment of these angles can allow the search for trajectories to proceed using

heuristic moves tha t vary from the rectilinear hand move constraint by any ar­

bitrary amount. A very interesting qualitative result was observed: for non-re-

dundant arms (i.e. 2 joints) any values of ip^, worked. For large values of cp^,

the resultant search process was quite curious to watch. In those cases, the hand

at first followed bizarre looping trajectories and seemed unlikely to settle on rea­

sonable trajectories. After a single pass around the targets, however, the arm

settled down into trajectories th a t were nearly rectilinear and improved rapidly.

The amount of saturation of memory went up during the peculiar looping exer­

cises in such cases. (See the discussion of memory usage in section 4.8.10.)

3.2.3 T h e H eu ris tic C ritic

The heuristic critic predicts (as described in section 2.4.3) whether or not a

heuristically or randomly derived move suggestion will result in a desired de­

gree of goal directedness. An analytical model of the forward plant provides a

perfect prediction each time, but this need not be so. (See section 4.8.12 on page

132 and section 6.3 on page 159).

3.2.3.1 A ssu m p tio n o f a N e a rly R eversib le P la n t, The use of the

plant as model for the critic is perfectly acceptable if there is a reversible plant.

62

If the plant is not exactly reversible, it will not be a problem unless reversal of a

move causes goal divergence tha t sweeps out completely virgin state space (i.e.,

state space th a t is previously unvisited directly or through generalization). In­

deed, it may be problematic for a physically realized ARTFORMS system if the

physical p lant were not a t least nearly reversible for small incremental moves.

On the other hand, it may be quite acceptable to just allow the plant to

make goal divergent moves without bothering to reverse them. It suffices to say

tha t the current ARTFORMS-1 and ARTFORMS-2 are intended to be idealized

limiting cases for such planning systems, hence the use of the analytical forward

model in the critics. The development of more realistic systems is left as future

work, with the discussions of section 4.8.12 on page 132 and section 6.3 on

page 159 finishing the current discussion.

3.2.4 T he T ra in in s t C ritic

The training critic is activated to critique every move th a t has been read

from the LTM to determine if it is appropriate. The same world as model para­

digm is used for the training critic as was used for the heuristic critic. It was ob­

served in all successful simulations th a t piily during the first few segments did

the training critic fail, so its absence is not a problem after early training. It is

needed in two situations:

• During early training, before the LTM converges.
• During very late training if memory has been so saturated

th a t hashing damage occurs. Such occurs when the CMAC
memory is sized too small. For discussion of when the hashing
damage is transien t and relative innocuous, see section 4.8.10.
For a discussion of experimental results using an inaccurate

63

model for both the heuristic and train ing critics, see sections
4.8.12, and 6.3.

3.2.4.1 S te p S iz e C ontrol. Associated with the training critic, there is a

need to ensure th a t hand moves are uniform length, as a cue for when to reject

low grade data whose genesis might be an artifact of hashing collisions. To this

end, and also to the end of providing a more uniform addressing of state space,

any move th a t is postulated by the CMAC or the heuristic move generator is

tested on the plant to see if it in fact generates a unit length hand move. If the

move is outside certain limits around a nearly unit length then an iterative

process of scaling the joint move until these limits are satisfied is executed. This

is a flagrant appeal to the linearity of inverse differential kinematics in which

Appendix C gives us some faith. It was determined experimentally th a t 0.8 to

1.2 were acceptable limits for approximate unit length of steps. Tighter limits

caused too much time to be wasted in iteration. Looser limits may have been ac­

ceptable, but these limits worked well in practice.

3.3 M u ltip le CMACs:
S o a tia llv D is tr ib u ted P a ra m eter iza tio n s

The concept of a spatially distributed param eterization is a crucial concept

of this dissertation. The idea will be visited over and over again. The rest of this

chapter describes the first generation attem pt a t an implementation of obstacle

avoidance using this means. In section 4.4 the problems th a t led to rejection of

the first generation solution are described. Some readers may wish to skip im­

mediately to chapter 4 and proceed to the ultim ate second generation system.

Tb preserve the chronology of th is development, the first generation solution is

left in. It still contains many solid concepts, especially relative to spatially dis­

64

tributed parameterizations. The first such param eterization we shall discuss is

a spatially distributed plasticity mechanism.

3.3.1 H a b itu a tio n

This supervised learning system incorporates three CMACs, trained con­

currently using the same inputs. The first one learns the inverse model. Another

one, the inhibitor, is used to stabilize the first such th a t it robustly learns sub-

optimal trajectories through hand space. The th ird CMAC network is involved

in obstacle avoidance.

A successful trajectory goes from sta rt point to target point without getting

stuck in between, and without violating some imposed conditions. Assume that

whenever a successful trajectory is observed it is "recorded" in the inverse model

network. Suppose the trajectory can be reliably "replayed" by simply starting at

a point on that trajectory and asking the inverse model network to recall the se­

quence of moves of tha t trajectory. If this can occur for any arbitrary successful

trajectory, then the system clearly can learn sub-optimal trajectories.

3.3.1.1 The In h ib ito r N etw ork . A good definition of habituation is the

tendency to execute a particular action in a given context only because that

same action or one similar to it has been done before in the same or similar con­

text.

Habituation is strengthened over time by the activity of a second, "inhibi­

tor" network, which stabilizes the inverse model network. It schedules the in­

verse model’s learning rate down in high usage regions of state space while

leaving the rate large (i.e. 0.5 or so) elsewhere. This may not allow final conver­

gence of a particular sub-optimal trajectory, which is a desirable and exploitable

65

feature of this method, because an adequate trajectory with an obstacle present

may be far from the optimal trajectory aimed a t the same target but without the

obstacle. The mechanism is simple: the inhibitor is presented with the same in­

put vector as the inverse model. It is trained with the scalar response function

r(0)=l.O. The inhibitor network’s learning rate, is small. This allows the in­

verse model network time to develop trajectories before the trajectory is fully ha­

bituated or "frozen". The larger H the faster trajectories habituate.

Obviously selecting a value of t\.nh is critical. The inhibitor will then output

O£n(0)5l-O, which is used to construct the learning rate, q-l-r{0), for the next

training cycle of the inverse model.

3.3.1.2 S tr u c tu r a lly E q u iv a le n t CMACa. The inhibitor network op­

erates concurrently with the inverse model network and is structurally identical

to the inverse model network, in th a t it has the same input vector, 0, as the in­

verse model (i.e. it then has the same number of degrees of freedom). It has the

same "internal wiring", by virtue of having the same generalization, hashing al­

gorithm, and address decoding algorithm. So, instead of actually allocating a

second CMAC, a more efficient implementation may entail including the inhibi-

a. with 0 2 5 6 b. with C*64

Figure 3.4: Effect of Generalization on Trajectories

66

tion level as a fourth component of the response vector trained into the inverse

model network.

It may, however, be argued th a t the inhibitor network should have less

generalization than the inverse model, requiring a separate CMAC for its imple­

mentation. See figures 3.4a and b. For the case of large generalization, the for­

mation of the first trajectory strongly influences the formation of the second. In

instances where two nearby trajectories should be pulled apart due to an inter­

stitial obstacle we would want the first trajectory to influence bu t not dictate

th a t nearby trajectories emulate its form. In other words, by making C. ^<C^tm

we are attem pting to prevent regions tha t have been visited only through gener­

alization and not direct exemplar training to rem ain plastic longer. This notion

of a spatially distributed plasticity measure is a central theme of this thesis and

is one of its major original contributions. In fact, a CMAC is an ideal tool for a

field representation for any spatially distributed parameterization. This method

is a significant means for increasing the power and flexibility of parameteriza­

tion for adaptive systems in general. Tb date, the only similar application is

Moody's [’89] method of cooperative interconnection of multiple resolution

CMACs. Moody’s method was put forth only as a learning speedup mechanism.

3.4 R einforcem ent Learning:
Modifying Habits

The ARTISTS architecture becomes ARTFORMS with the addition of rein­

forcement learning. A third, "repeller", network is subsumptively connected to

the other two. In the presence of a reinforcement signal (SLAP) it is trained on

exemplars th a t are the negations of the most recent inverse model moves, and

its learning rate is large (near 1.0). It locally inhibits the inhibitor network (i.e.

trains it to zero, with a learning rate of 1.0), while summing a negated move into

67

the inverse model’s training example. This action, taken repetitively, overcomes

habituation in a local area and causes the system to relearn new trajectories

when obstacles are encountered. Succinctly this network learns to "do the oppo­

site" of whatever was recently done th a t tended to get the system into trouble,

as indicated by the reinforcement signal. Since the inhibitor network has been

trained down to a near zero inhibition level in th is neighborhood, and since the

output is summed with the training signal for the inverse model, then on sub­

sequent training passes, the reverse action emitted by the repeller is propagated

backward and forward along the trajectory to the extent th a t generalization al­

lows. This repeller CMAC can be viewed as a short term memory module,

(STM). In addition to the training described above, it is being trained a t every

visited state space point with a zero vector as training exemplar and a small

learning rate in order to effect the memory decay necessary for an STM. The di­

rect inverse model is a long term memory, (LTM).

This "habituation" paradigm stops and starts convergence toward sub-op­

timal trajectories, to allow the "elbows" to migrate around, with or without hand

disturbance, to avoid obstacles as the repeller STM’s information is transferred

to the LTM. This allows the joint postures to naturally assume positions related

to recently visited postures via generalization. The final result is th a t obstacle

avoidance maneuvers eventually become part of an overall direct inverse model

of the inverse kinematics, consisting of three networks operating in parallel.

Figure 3.2 shows this model. It is instructive, however, to consider a simpler

analog of the model, as follows.

68

Figure
3.5: STM

to
LTM

projection

(a) STM memory before
reinforcement training
has been triggered.

(b) STM memory after
a reinforcement trained
feature is trained in

(d) LTM m e m o r y after
initial training

(e) LTM memory during
reinforcemen train­
ing * no change yet.

(c) STM memory after the
reinforcement training
feature has decayed away

(f) LTM memory after the fea
ture or "bump" has projec-
ted from STM to LTM.

3.4.1 A Sim plified "Introductory" System

lb more clearly explain the ARTFORMS system, a system is presented

that is called 2DTFORMS whose postural dimensionality is 2, so tha t the LTM

can be easily visualized using plots like those in figure 3.5. Unfortunately this

system is not posturally redundant, so it's input problem will not be a perfect

idealization of the task tha t ARTFORMS m ust perform, but it will suffice to il­

lustrate the basic concept involved in the STM -► LTM projection. Under­

standing of this should lead to a complete understanding of the ARTISTS +

ARTFORMS system as summarized in figure 3.10 for 2DTFORMS, and ulti­

mately in figure 3.2 of page 55 for ARTFORMS-1.

X
ob

o b

Xob

Figure 3.6: Form ation of a Feature in STM

3.4.2 A Short Term Memory Obstacle Representation

Consider figure 3.6. This illustrates a convex perturbation or bump func­

tion being formed in the STM state space around a perceived obstacle in 2-space.

Now consider figure 3.5: the first two panels on the bottom are approximations

of the function z(x,y)=sin(x)sin(y). The figure is actually the output, z(x,y) of a

CMAC th a t has been trained on a limited range of (xy) inputs. By training this

direct inverse model as shown in figure 3.8, z(xy) becomes a very close approxi-

70

LTM Direct
Inverse

*

— »

— d
f+-----

-----»

\
z -

-----•> sin(x)sin(y) • r

Training the direct
inverse model

6,' “ (Z‘ ' Zi} * n
c

Trajectory goal - (x - 2 k)

Figure 3.8: Training a Direct Inverse
Model

Feed
Forward
Model

LTM Direct
Inverse

Feed Forward Model Difference
Bpa/™.; Jw_ x. t a p _

rM - y, - * z(

Figure 3.7: A 2D Non-Redundant
Trajectory Planner.

m ation of 2(x,y), and can serve as

an LTM of a trajectory model. The

trajectories th a t it can produce are

like those in figure 3.9, which are

phase portraits of the tim e re­

sponse of the direct inverse system

shown in figure 3.7. The forward

model is ju st the pair of difference

equations shown in figure 3.7. The

bell shaped trajectories produced

by th is simple system take the

state point from a negative value

of x to a target point which is any

point on the right m argin of the x-

y plane shown in figure 3.9. This

should not be confused with any

robotic manipulator; it is purely a

mathematical exercise. Suppose

for some reason we wish to disturb

the regular set of trajectories emit­

ted by th is model. All we desire is

th a t if the state point moves along

the trajectory T as shown in figure

3.9, before the obstacle a t O is en­

countered, the system should

change modes so as to jump to a

"neighboring" bell shaped trajec-

71

0.0

-2n X

Figure 3.9: Phase Portraits of 2DTFORMS

to avoid obstacle O whenever encountered.

tory. So the system m ust

learn a bump function

th a t will perturb the tra ­

jectory from T to a neigh­

boring trajectory. The

system m ust then stably

remember to do the same

thing whenever it encoun­

ters a point near th a t ob­

stacle, so th a t T and very

nearby trajectories will all

jump up to "higher" (in the

phase portrait) trajectories

The difference equations of figure 3.7 are equivalent to:

*y
1 0
0 -sin(x)sin(y)

S. , - S.+At-Ji+l i xy

and

(3.2)

where At is the step size along the trajectory, J is the Jacobian of the trajectory

ensemble and S. is the ith point, (x,y) along the trajectory. Clearly there are

many paths from (rQ,y0) to the target point (2rc,y,p). Equation (3.2) defines

adequate (but certainly not unique) trajectories meeting this criterion.

72

3.4.3 Training the LTM

We may sta rt training our system with a null LTM. At every step, we train

as we step along trajectories. In early training, performance may be erratic. In

fact we may choose to only "think about" executing trajectories at first. In the

event this were a planner for a physical actuator, th is would avoid damaging a

device th a t may be intolerant of or unable to realize the trajectories so formed.

During this time we would then be relying on the "world as model" by actually

computing the forward model each time, since it is easily computable. We should

eventually arrive at a stable trajectory set, because sin(x)sin(y) is deterministic

and single valued. At some point along the way we should be able to rely on the

output of the LTM. Training so far has proceeded as in figure 3.8.

3.4.4 Training the STM

Suppose th a t we have a second CMAC th a t is to model an STM. It is in­

itially null. We always tra in the STM on the function f(x,y)=0, with a slow learn­

ing rate of about 0.1 (for instance). This would represent a constant STM decay.

Let us assume th a t the direct inverse training has t\=0.5. If during trajectory

formation an obstacle is encountered, the STM is trained using as exemplar the

function, f(x,y) = k, for constant k, with a learning rate of to cause rapid

formation of the STM "bump" or perturbation function as shown in figure 3.6.

The actual feature trained into the CMAC would not be as smooth as the bump

shown, but it should suffice as an approximation of a convex perturbation func­

tion. The important point is th a t it does not affect trajectory states anywhere

more than r a C codon units away from the obstacle, (x ^ y ^ , where C is the

generalization param eter of the STM CMAC. Codon unit is defined in section

2.6.2.2.

73

1+1

Vi —

> z

SLAP
MUX

se)
out

MUXbump(x.y)

INHIBITOR
CMAC

sin(x)sin(y)

LTM
CMAC

STM
CMAC

bump Z

; Weighted
2 Summer

FORWARD
MODEL

Figure 3.10: A 2D Simplified Analog of ARTFORMS-1

3.4.5 Projecting the S T M onto the L T M

Rather than referencing the LTM, we reference LTM(j;y)+STM(j;y). At the

same time, we tra in the LTM based on the observed moves along the trajectory.

In the process of this training, what happens is th a t the bump function is tran s­

ferred into the LTM in a m anner described by the time sequence in figure 3.5. It

is critical to adjust the learning rate during training in such a way tha t the

bump function transfers from the STM to the LTM before the STM decays to

zero and th a t the STM decays to zero soon enough th a t its presence in the

summed value th a t becomes the training signal for the LTM does not unneces­

sarily amplify the magnitude of the perturbation. It is clear th a t the weighted

summer box of figure 3.10 is more complex than the figure indicates! This box is

responsible for using only the sin(x)sin(y) function as an exemplar when the

LTM is untrained. The weighting for the summer is controlled by having a con­

text sensitive variable learning rate, nfoy)- This context sensitivity is provided

by another CMAC. This CMAC is the inhibitor CMAC. It is trained in parallel

74

with the LTM (using the same input state vector) and is trained with 1.0 as ex­

emplar function. So if INHfoy) = 0 it indicates th a t n for the LTM should be

large at that point. If on the other hand INHfoy) = 1.0 it indicates th a t n for the

LTM should — 0, which establishes a condition of absolute trajectory stability

for tha t context, and other values of INHfoy) indicate intermediate values of

^inh'

3.4.6 Habituation Can Be Disturbed

When a condition of absolute trajectory stability is established a t a point,

foy), there are still 2 mechanisms whereby the value of LTM(x,y) could be per­

turbed:

First, consider the effect of overlapping locally receptive fields along a tra ­

jectory: if a state vector (x+S, y+e) occurs during training, where 5+e < Cltm’ and

Cj is the LTM generalization, then training a t LTM(x+6, y+e) could affect

LTM(^y).

Secondly, during training a t any point, it is possible, as discussed in section

4.3, th a t hashing collisions could cause spurious generalization th a t can, over

time, affect LTMfcy). The former cause is not a problem, in fact it simply rein­

forces an innate smoothness constraint th a t CMAC provides the model through

generalization. The latter cause is problematic though in th a t over time a trajec­

tory may drift due to hashing, as more and more trajectories are learned. This

means th a t constant vigilance is necessary. The sensors th a t feed the SLAP sig­

nal can never go to sleep. As long as the physical memory is large enough,

though, the occurrence of SLAP should, on average, decrease over time. If this

last condition is not met, the remedy is to enlarge physical memory of the LTM.

75

3.4.7 Discussion of2DTPORMS

Taken as a whole, the system just described causes trajectories th a t pass

near the obstacle, O, in figure 3.9 to be deflected as shown in th a t figure. This

overall behavior is very similar to the desired behavior of ARTFORMS.

By now other properties of the system become apparent:

• The magnitude of Cstm determines by how much trajectories
will be deflected from nominal when SLAP occurs. The same
reasoning applies here as in section 3.3.1.2 regarding how old
trajectories can distort new ones through generalization.

• There is an innate smoothness constraint imposed on a system
relian t on a locally generalizing memory, because
generalization will propagate postural suggestions forward
and backward in time along the trajectory. This causes the
following: after trajectory T has been learned and obstacle O is
first encountered, during subsequent practice of T, the
deflection will occur before the obstacle, and thus before SLAP
occurs.

• If we th ink of the extrapolation of th is system to a controller
for a physical m anipulator, the resolution of the STM can
probably be much coarser th an for the LTM, because the effect
of obstacles should on average be less fine grained th an the
desired precision of the mechanism. The reason for th is is th a t
any mechanism probably has members th a t are thicker than
the smallest move the end point is intended to make. Thus, if
an obstacle affects it similarly for a given posture, it will affect
it for postures near th a t point by a distance equal to a t least
the thickness of the mechanical links.

76

If an obstacle occurs a t (xq^ yob) the STM quickly learns to avoid it by vir­

tue of training in a convex function centered about (xq^ yQb) in the STM model.

The radius of the function should be r « c/2 so it can be learned virtually com­

pletely in a single training instance with learning rate of 1.0. As the bump is

trained into the LTM by reinforcement learning, th a t region of the STM is al­

lowed to decay back to null by retraining it with the exemplar function 0.0. Dur­

ing this reinforcement learning, the LTM and STM are summed to form

exemplars for retraining the LTM. In this fashion, the LTM retains the superim­

posed image of the bump while the bump disappears from the STM.

The analogy between the simple 2D STM -* LTM projection model

(2DTFORMS) and ARTFORMS breaks down here. Since ARTFORMS is postu-

rally redundant, and not just path redundant, it has multiple stable trajectories

between any 2 state points th a t can be formed and used as training exemplar

sources, directly from the plant, whereas 2DTFORMS does not. By having to ar­

tificially rely on the analytical sin(x)sin(y) model to tra in the LTM, the analytical

model can not be used to train the LTM once a "bump" has been superimposed

on the LTM image of the sin(x)sin(y) model, because if such were the case, the

bump would decay from the LTM just as it does from the STM.

3.5 H eu ristics a n d H abits:
A n A ction C om piler

The weighted summer for 2DTFORMS m ust cause the training examples

for the LTM to be the ideal model sin(x)sin(y) whenever the LTM is immature

and SLAP is not present, and to be the LTMfoy) + bump(o;y) if the LTM is m a­

ture or SLAP is present. In the case of the robot arm, there is no ideal function

to refer to. Rather this role is fulfilled by any heuristics th a t are presented, deux

77

ex machina fashion from a higher level. The heuristic th a t is applied may be an

analytical solution (which is heuristic because it must, by definition, have a heu­

ristic constraint satisfaction applied to get an inverse solution of the redundant

problem), or it may be supplied by an AI system th a t has common-sense rules

embedded in a knowledge base or blackboard, or it could be random "flailing"

around suggestions, in the event th a t nothing more interesting can be contrived

in the current instance. This is a form of action compilation whereby difficult

symbolic or analytic computations used to arrive a t desirable activities can be

converted into reflexive actions. Handelman, et al [^ l , investigated a related

method. We exploit certain properties of CMAC modules here, forming a larger

scheme that mimics what is actually done in a cerebellum. Simply stated, an­

other central idea of this thesis is: the conversion o f heuristics into habits is an

effective planning and learning paradigm. Tb th a t extent, this system is seen to

be based on a biological metaphor.

Suppose tha t ARTISTS has successfully habituated on a trajectory, T l. As

ARTFORMS tries to deform trajectory T l into T2, the system naturally habitu­

ates on T2 by sculpting "hyper-bumps" superimposed on the trajectory forming

hypersurface in the LTM to cause trajectories to conform to the suggestions

passed down from higher levels, including the reinforcement signal. But there is

more going on here — The system under control imposes its own innate ascend­

ing constraints on the system in th a t the dialog ARTFORMS observes is what

the robot actually does in the current context, not what was requested, so

SERVO level response limitations and physical postural limitations are auto­

matically learned by the system. (See section 4.4.1.2.) T hat is to say T2 gets

transformed into T2\ which may have features in it th a t do not conform to the

robot's hierarchy. This characteristic of the system is viewed as subsumptive in

78

nature, in th a t ascending, lateral and descending flows of information from

largely autonomous sources merge together in a fashion such th a t one or more

sources can subsume the data flow path into the control surface.

3.6 Som e C onclusions A bout The F irst
G eneration S o lu tion

In practice, ARTISTS was successful. Detailed experimental results are in

the next chapter. There were problems associated with development of consis­

ten t trajectories and problems getting a reasonable implementation of ART-

FORMS (ARTISTS + obstacle avoidance) to work a t all. These deficiencies and a

better 2nd generation architecture, called ARTFORMS-2 are discussed in the

next chapter.

It is important to remember th a t what the robot does m ust be similar to

what was requested for generalization to allow any meaningful learning to take

place. This is a restatem ent of the need for goal directedness to be present in the

training exemplars.

79

Chapter IV

The Second G eneration S o lu tion

The failure of ARTFORMS-1 to live up to expectations led to the develop­

m ent of ARTFORMS-2. The sources of deficiencies and the necessary implemen­

tation of postural constraint satisfaction are developed in this chapter.

4.1 Preview: A Concise D escrip tion
o f the A rch itectu re

This chapter introduces a new planning method based on some of the prin­

ciples introduced in chapter 3. In this chapter, however, the postural ambiguity

is dealt with in a structured way so that trajectory formation becomes consistent

and repeatable.

Figure 4.1 consists of an upper region labeled ARTISTS and a lower re­

gion, th a t consists of a gradient descent computation which is used, as described

later in this chapter, to reduce the degrees of freedom and allow consistent in­

verse kinematic solutions for generating trajectories. The upper part is very

closely related to the ARTISTS level described in chapter 3. everything above

the dotted line in the figure is essentially preserved from the first generation so­

lution.

Figure 3.2 on page 55 is similar to figure 4.1, with the principal exception

th a t the latter is more detailed. A similar diagram appears in chapter 5, and

there it will include a module th a t provides obstacle avoidance. In addition to

the MUX elements used here, as in figure 3.2, there are also OR gates used

where multiple control signals may affect the behavior of other elements.

80

Figure
4.1: Dataflow

of Second
G

eneration
Solution

MUX2HEURISTICS
ENA

TARGET
COMPUTATION

5EL DOHEURISTIC
CRITIC

dau cet ENA

Training

)ii
M e rf.TM)

/ / i I /
Direct Inverse

ROBOT< <
threshold

bi ffer j era |ENA
TRAINING

art C R m c

V .F “ Ea S

E “ !S [h j b .

£ CM1-U)

A Dataflow Diagram of the
ARTISTS Level of the ARTFORMS-2

Trajectory Planning System
(Without Obstacle Avoidance)

K = [1.0,1.0,1.0,...]

A constant constraint vector, designed to
impose a curvate atm posture constraint.

Postural Gradient Computation

A
R

T
IS

T
S

Starting in the upper left comer of the figure, note th a t a target computa­

tion generates a desired hand move (direction vector) which becomes part of the

input stream to MUX1 and the heuristics generator.

The training and heuristic critic modules mutually inhibit one another.

This should only be interpreted to m ean th a t one or the other module may

evaluate a move. Both modules would never evaluate the same move. This is be­

cause the heuristic critic evaluates moves suggested by the heuristics generator,

and the training critic evaluates moves suggested by the LTM CMAC. The out­

put control lines from these two critics control the training signal gate and the

heuristics generator. The control outputs are positive logic success or failure in­

dicators.

Success for the critic means a suggested move m et the current heuristic

criteria. (See section 2.4.3., on page 33.) If the heuristic critic fails, then the heu­

ristics generator is activated, causing a new move suggestion to be generated. If

the heuristic critic succeeds, it enables the training signal gate, allowing the

next move of the robot (which will be the result of its trying the current heuristi-

cally generated move suggestion) to become a training exemplar (provided that

the training critic doesn't block its use as an exemplar).

The training critic receives data directly from the robot or a model of the

forward mechanics of the robot, and evaluates whether a real or imagined move

m et the current criteria for success. If so, th a t move becomes part of the input

data for the next training cycle and the training gate is enabled.

If the LTM CMAC receives input, it will be activated to output its current

contents of the memory vectors associated with the current context; this phase is

82

called lookup. If the LTM CMAC is activated and a t the same time, the training

gate is enabled, the training signals are gated in and a training cycle ensues; in

other words, the CMAC is not required to output a signal, only to update the

memory vectors associated with the current context using the current exemplar

observed from the robot's behavior.

The input to the robot (or robot model) is multiplexed by MUX2. Thus its

input can come either from a heuristically generated move, or from the LTM

CMAC. If the data comes from the LTM CMAC, a stepsize control critic evalu­

ates the M anhattan length of the step. If it is above a threshold size, indicating

th a t it is true data, and not just a weak collateral generalization effect or hash­

ing collision generated data, the AGC module is enabled and the step is scaled

up to represent a near unit length in the hand space. If the heuristic critic is in­

active, this data will become the next step. If the threshold logic failed, the AGC

module is blocked and a new heuristic step is requested by activating the heuris­

tics generator.

The lower right pa rt of the diagram performs a postural gradient computa­

tion, which supplies a training step th a t is based on the current context (0p and

a constant curvate arm constraint vector, K. This module will, on every training

step, insert a training cycle th a t attem pts to adjust the value of Ath formed from

the contents of the currently selected LTM memory vectors, to cause Q. to meet

the curvate constraint.

83

4.2 W eaknesses o f the F irst G en eration
Im plem en ta tion

The three weaknesses of ARTFORMS-1 are the stable trajectory problem,

postural drift and a complete lack of goal directedness in the obstacle avoidance

method. All these problems are discussed separately below.

4.3 S ta b le T ra jec tory Problem :
T ra jec tory D rift

In both CMAC and MLP architectures there is some degree of distant

point generalization th a t makes on-line learning problematic. Suppose an MLP

uses a particular weight, w, in training for a posture p. The same weight, w,

may then be enlisted during training for a geometrically distant posture, p'. This

will require regular reinforcement of p, even when it is not an application rele­

vant training example, ju st to prevent new training from disturbing old train ­

ing. This becomes exponentially problematic as on-line training progresses.

Weight competition is exacerbated for reasons related to global generalization by

the need to scale down an MLP to a minimal size for computational speed.

Though there is local generalization in MLPs as well as global (see section

2.6.2), there is competition for weights in response to training exemplars th a t is

inherent in having to model large input spaces in small networks. This network

scaling problem is central. When one considers th a t typically MLPs model doz­

ens of nodes with perhaps hundreds of weights, the problem of selecting a net­

work small enough to be practical, but large enough to prevent the weight

competition just mentioned clearly reduces the feasibility of on-line training for

MLPs.

A CMAC can also exhibit this kind of competition for weights, as a result of

the hashing randomization tha t allows hundreds of thousands or even millions

84

of "virtual" weights to be modeled in tens of thousands of physical weights, but it

is a very low grade effect and only becomes im portant when the CMAC memory

size is scaled too small for the problem. However, over time, this may cause fully

habituated trajectories to drift. Having fully habituated, ARTFORMS-1 will be

unable to correct this drift through further training. This sort of drift is unavoid­

able, and detection and correction of it poses a computational problem for ART­

FORMS-1.

4,4 P o stu ra l D rift

The central failing of ARTFORMS-1 was th a t it exhibited postural drift.

When I first implemented ARTISTS, I always designed trajectories tha t started

from a common initial posture and sequentially reached from th a t posture to

each of the targets in turn. This method produced uniformly good results. In

these cases, I also routinely started the simulations from a normal curvate pos­

ture. A typical result looked like the animation panels of figure 4.2. At th a t point

I thought ARTISTS had achieved stable trajectory formation. Then I installed

trajectory chaining, and the trouble began!

Trajectory chaining is essential for a robot th a t is behaving in a reasonably

free form mode and performing general tasks in its workspace. These chained

trajectory segments have targets sequenced as in figure 4,2, bu t the targets are

visited one after the other without the respite of returning to a common home

position. This technique caused the system to attem pt a closed trajectory tha t

m ust be repeatable to achieve stable trajectory formation. Unfortunately, using

this mode of operations, ARTISTS's first results looked like figure 4.3. In tha t

figure it is apparent th a t posture evolved over time to one th a t scarcely resem-

85

Initial posture is bold gray.

a. 1st pass b. 2nd p ass

c. 3rd pass d. A fter 120 ep och s

A sequential reaching experiment without postural constraints
genl = 64 quant = 4,8 memsize = 20K

Final memory vector count = 756

Figure 4.2: Sequential Reaching W ithout Constraints

86

b. 2nd passa. 1st pass

c. 3rd pass d. After 120 epochs

A chained trajectory experim ent w ithout postural constraints
genl = 64 quant = 4,8 m em size = 20K.

Final m em ory vector count = 2039

Figure 4.3: Chained Trajectories W ithout Constraints

87

b. 2nd passa. 1st pass

c. 3rd pass d. After 120 epochs
A chained trajectory experiment without postural constraints

genl = 64 quant = 4,8 memsize = 20K
Final memory vector count = 1215

Figure 4.4: Chained, Posturally Constrained
Trajectories

88

A sequential reaching experiment with postural constraints
genl = 64 quant = 4,8 memsize = 20K

Final memory vector count = 739

Figure 4.5: Posturally Constrained Sequential Reaching

89

bled the initial posture. In reaching from the home position to any one target, as

in figure 4.2, no such evolution had been immediately obvious.

W hat I concluded from this was th a t when approached from the home po-
iL

sition, the posture a t the i target was not necessarily the same one th a t re­

sulted from target i being approached from the i-lst target.

Panels a through c of figure 4.3 each show a single pass around the ta r­

gets starting from the home position. In each case, the initial curvate posture

had been more or less preserved from targets 1 through 4, with angle p decreas­

ing only slightly. As the trajectory proceeded through targets 5 and 6, the pos­

ture became noticeably different and by the time path 6 -* 7 was executed, the

posture was quite different, even though we might have expected a retu rn to an

earlier posture, since this path segment passed very near target 1.

I reasoned that if a stable repeatable posture existed in the closed trajec­

tory, then stable trajectory formation might result. This is what happened in

panel d: angle p finally drifted down during 120 path segments with no return to

any common grounded posture until it reached 10°, from which point no further

drift was possible, because angle p struck a joint stop there. Since angle p be­

came a constant there, then in a region around th a t posture, dimensionality of

the search problem locally reduced to 2, a non-redundant situation, which guar­

anteed a unique trajectory solution in tha t neighborhood!

This grounded the closed trajectory and prevented further drift from occur­

ring. In general, trajectory drift will continue until such a grounding instance oc­

curs. Memory use will increase too, because state space location is a function of

posture. If posture differs slightly each time a trajectory passes through a par-

90

f

o
/

o

Wi limn pcstsnl niduce, ibis
trm marhtiH i 'kkked' nil*

60m which It cmlda’t ncovet

Figure 4.6: Kinking, an Extreme Case of Postural Drift

Normal curvate poaCure

Figure 4.7: Reversal of Curvature, Another Problem

91

ticular target’s neighborhood, the posturally generated address vector there will

differ and so a slightly different set of CMAC weights will be adjusted to have

non-zero values. So each pass around the targets, more CMAC weights will be

non-zero until the trajectory stably repeats.

This interpretation was further reinforced by the following evidence:

• If an initial posture like th a t in figures 4.4 and 4.5 was used,
the resu ltan t chained trajectory always looked like panel d of
figure 4.3 even during pass 1. This can be explained by
observing th a t the new recumbent initial posture and the
postures at targets 4 and 5 in panel d are similar.

• The amount of memory used by the unconstrained trajectories
of figure 4.3 was large compared to th a t consumed by the
unconstrained sequential reaching task of figure 4.2. This is
reasonable because the sequential reaching task was grounded
by the mechanism of starting at a common home position each
time. The short trajectory from there to each targe t did not
allow the opportunity for the posture to drift across large
regions of state space.

The postural drift observed in these 4 figures became more problematic

with longer kinematic chains. With more joints, there was more redundancy and

ultimately situations like figures 4.6 and 4.7 occurred. In a real robot arm the

kinking problem can not happen for obvious reasons, but the simulator I built

was not capable of detecting this degenerate posture. It just became mechani­

cally disadvantaged. In some cases, the kinking or reversal of curvature became

extreme enough th a t without back track search capability, the simulation got

stuck in a local minimum while seeking the next target and could not proceed.

92

I installed a postural constraint method, which will be developed in detail

in section 4.6. Once th a t was perfected, figures 4.4 and 4.5 resulted, in which

case smaller amounts of memory were consumed, and postures like figure 4.4

resulted, regardless of chaining or initial condition.

So it would seem th a t in all these cases, a t some point there is a grounding

of the posture, by the home position for the sequential reaching tasks, and by

the term inal drift condition of the target 4 and 5 postures for the unconstrained

chained trajectories of figure 4.3.d. These groundings locally reduced the de­

grees of freedom of the system

Altogether, the deficiencies inferred by the preceding experiments required

the development of a stronger methodology. T hat stronger method involves a t­

tem pting to ground the posture everywhere. This causes a reduction in dimen­

sionality similar to th a t advocated by Hogan [’92]. (See section 4.6.1.)

4,4.1 P o stu ra l F eedback .

Postural drift allows an arm to evolve the posture of its initial condition

into a degenerate posture. Two factors th a t exacerbate this problem are trajec­

tory chaining and longer kinematic chains, i.e., more joints.

ARTFORMS-1 operates open-loop with respect to posture and this is prob­

lematic. It results in postures drifting into mechanically disadvantageous con­

figurations from which it may even be th a t no recovery is possible within the

constraints imposed by the critic modules. Postural feedback is imposed by the

postural constraint satisfaction discussed in section 4.6.

4.4.1.1 J o in t S to p R atchetinsr. Jo int stop ratcheting was another use­

ful method of preventing degenerate postures, since even with postural con­

93

straints, kinking and reversal of curvature became a problem for longer kine­

matic chains. This technique simply involved variable joint stops th a t could al­

low the arm to start out in a degenerate posture, like the starting position of

figure 4.22 on page 134, but once the posture opened up into one th a t was not in

violation of strictly curvate joint stops and thus was within the range of allowed

postures, the joint stops became effective.

Consider figure 4.20 on page 130. The initial posture was highly enfolded.

Some joints were 10°, while other were > 180°. The ratcheting condition said

tha t once the posture extended into a curvate form such th a t all joints (except

the base, which is a free variable) were set such th a t 90° ^ 0 £ 180° then 90° and

180° became hard lower and upper joint stops. The upper limit effectively pre­

vented reversal of curvature and the lower limit (remarkably) prevented "kink­

ing". The reason for this result is simply th a t the joints stops blocked any

adaptive moves tha t descended the postural gradient in the "wrong direction".

The reason for needing the 180° ratcheted stop was th a t even with postural con­

stra in t satisfaction making solutions non-redundant, I still had to worry about

the kinds of postural switching redundancies mentioned in section 1.3.1.1.

Whenever joints were near 180°, the alternate solution th a t caused reversal of

curvature became as nearly likely as the one tha t favored the normal curvate

posture.

4.4.1.2 O bserva tions A bou t C om pliance. There are implications for

direct inverse systems brought to light by this notion of joint stop ratcheting

that deserve mention. When the joint stops prevent incursion into a postural

"forbidden-zone", if the robot repeatedly tried to enter th a t zone, excessive wear

could result. But by using direct inverse modeling, the robot will never, under

94

adaptive control, try to train a move into th a t forbidden zone. Since the robot

can not do it, the direct inverse method can not train such a thing into the sys­

tem. This means th a t the robot will, on average, tend to avoid the joint stops. I

have observed th a t the arm shows no anomalous behavior upon encountering

joint stops. The remarkable success of the 6 and 9 link arms in rapidly forming

trajectories of curvate postured arms starting from very degenerately shaped in­

itial postures bears witness to th is state of affairs.

When a joint stop is encountered, one component of an incremental joint

move vector will be decreased. This means tha t a move th a t was originally pos­

tulated as a unit length step in the work space will become shorter. The AGC

mechanism will linearly scale th a t move up. (See section 3.2.4.1). It should be

clear then tha t longer kinematic chains will behave more nicely upon encounter­

ing joint stop impingement because the linear scaling will be more near unity

than for a joint obstruction of a shorter kinematic linkage.

4.5 The ARTISTS Laver Preserved

ARTFORMS-2 preserved in toto all of ARTISTS. The implementation of

postural constraints and obstacle avoidance was added as a layer of additional

training which merely added term s to the training of the LTM CMAC.

4.6 P o stu ra l C on stra in ts

The postural feedback mechanism tha t was mentioned before is imple­

mented by installing postural constraint satisfaction in the system. Some effects

of these constraints are discussed.

95

4.6.1 P oatural C on stra in ts D ecrease D im en sio n a lity

The central motivation for use of the postural constraint is to make the re­

dundant problem less redundant. Hogan [’92] argues th a t hum ans solve redun­

dant kinematics problems by adapting to kinematic constraints which reduce

the degrees of freedom of the system. Though not stated so succinctly, Jordan's

work consists of constraint application that essentially does the same thing.

4.6.2 P o stu ra l C o n stra in ts Increase G oal D irec tedness

The postural constraints provide an immediate goal for the system to work

toward. By assuring more continuity of postures along trajectories, it tends to

force the direct inverse system to operate in state space locations similar to the

locations of interest relative to what’s being done at the time. In other words it

tends to increase the overlap of adjacent receptive fields along the trajectory.

(See section 4.8.2.6 on generalization slew rate, and section 5.2.2 concerning ro­

bustness of postural constraint training.)

4.6.3 P o stu ra l C o n stra in ts D ecrease M em ory S a tu r a t io n

It was observed tha t for all experiments in which constrained arm moves

were studied alongside unconstrained experiments, with all other aspects of the

experiments being equal, the constrained system used less available CMAC

memory than the unconstrained experiments.

The reason for this phenomenon is easily understood. During training, if

the movements are constrained, then fewer kinds of different postures will be

searched, and thus smaller regions of state space will be swept out during the

search. Also the search will take less time, and it could be argued th a t since

memory usage is a monotonically increasing function for CMAC, the longer

early training takes, the more memory will be consumed.

96

4,6.4 D evelopm ent o f P ostu ra l C on stra in t E qu ation s

The postural constraint equations will be developed by first stating the ob­

jective functions F\6) which are functions of the constrained angles (i.e. the ones

other than the base angle). Next, a positive definite (in fact diagonal) L matrix is

defined and the expression F ^L F is used to develop a least squares derivation to

arrive at the software implementation of the gradient descent equations.

4.6.4.1 The O bjective F unctions. The objective functions are just a set

of linear constraints among the n joints. Each constraint is of the general form

fe/0. - The objective of each constraint is the constraint equation

k ; Q . - k . .* 0 . , = 0 .i i t+1 i+l

For a normal curvate arm, all the ks would be equal, causing all the joints

beyond the base to be more or less equal. The assumption th a t the absolute con­

dition of equality is an ideal and may not be met within the training require­

ments of the system, gives rise to the "more or less" clause. For k. * k., the two

k.
joints i and j are related by the ratio, ~r.

re.
)

4.6.4.2 M in im u m N orm D eriva tion . If all the joints were constrained,

including the base, the constraint equations generalize to the cyclic form

fe.-0. - k/Qj = 0, where j = (i+l mod n)+l. This just adds the equation

k -0 - k - Q , = 0 , for base angle 0., and nth joint = 0 . In such a case, the sys- n n 1 1 n j
tern is overspecified, because it reduces the num ber of free variables to 1 (if, of

course f.(Q) = 0, (V i) could actually be satisfied, where f.(Q) is the itfl compo-I I
nent, corresponding to joint i, of the vector function F(0)). This is unnecessary

and in fact undesirable, because if the constraints are always converged upon

97

by gradient descent, the solution will never settle down, because eventually, for

a fixed learning rate, a limit cycle will always be reached. On the other hand, if

we heed Jo rdans suggestion and use a declining rate to achieve a so called mini­

mum norm solution for all these constraints, then ultimately we will have

thrown out the postural feedback mechanism th a t this whole effort was all

about! Clearly it is not desirable for on-line learning systems to have as a goal a

system th a t operates open loop with respect to any important param eter. If the

system were ultimately intended to reach stasis, and every param eter of the sys­

tem fixed forever because we have exhaustively learned the system, th a t might

be a good time to consider such a reduction to open loop operation, but th a t is

not what we are trying to do here. At the risk of being tedious, I might suggest

another spatially distributed parameterization to allow the learning rate for a

minimum norm derivation to be tied to the experience level of the system as a

function of state space location. (See section 3.3.1.2.) My efforts to implement

minimum norm tended to reach a state of rather bad postural oscillation, which

is what the above discussion predicted for a large constant learning rate, so the

method tha t has as its goal an exactly specified system was finally chosen for

ARTFORMS-2.

With this goal in mind, consider the following expression for the constraint

equations:

(IK - I K) 0 = 0 where I is the first superdiagonal identity m atrix
S S

and K is a diagonal m atrix where K.. - k..

In other words,

98

(IK - I$K) 0

1 - 1 0
0 1 -1
0 0 1

0 0 0
- 1 0 0

(IK - IsK) 0

... 0] ' f e jO .. 0 ’ ' 90 '

. . . 0 0 k 2 .. 0 e l

. . . 0 0 0 .. 0 9 2

. . . - 1
• ■

. . . 1 0 0 .. k
i «

n J n - 1

*1 ^2 ^
0 k2 -*3
0 0 k n

0 0 0
-Jfej 0 0

o
o 9 0 1

... 0 9 1

... 9 2

- k n d n - l
... k n

J

(4.1)

(4.2)

Now, define L =

' A . ,0 ... 0 '

0 X. ... 01
0 0 .. . 0

0 0 ... Xn /,

as a weight m atrix for the constraints.

Setting any A.. = 0 ignores constraint i. The complete set of constraint equations

can be concisely expressed as

W) L = (I - /)KQL = 0s

X (k 0 -fe.) rr n n V

(4.3)

Now we m ust specify the L matrix. The base angle is set off as being quali­

tatively different in th a t it is grounded. So it seems a logical step to allow it to be

a free variable and let the other n-1 joints be related by F(0)L.

99

Letting f.(Q) be the components of F(Q), then every X. th a t contains 0,I t 1

should be set to 0, all others are set to the relative importance of the constraint

to which they correspond. Therefore, X.=0 for i = 1 and n.

4.6.4.3 C om autinst the G ra d ien t o f th e O bjective F unction . This

section describes the gradient of the objective functions and how to train the

CMAC to incorporate an additional level of training to respond to it.

Constructing the least squares form of the functional (i.e. set of objective

functions) as F^LF, we recall tha t the complete derivative of this form is

So the gradient of the functional, V JF“ 2 F L — , and adjustm ents to the
0 Gt0

joints to enforce the postural constraints will be: 60 - - q c’ VQf^ 0) , where nc is a

constraint learning rate not to be confused with the CMAC learning rate q. In

fact, on the assumption that X. = X. = X , for all i j * 1 and i j * n , then X can be

factored out leaving 60 = - X .

Now observe th a t since all the constraints are linear, from equation 4.3 we

can derive the Jacobian matrix,

100

dF
de

fel ~k2 0 ... 0 1

0 k2 -*3 - 0

0 0 *3 - 0

0 0 0 ... -k n

- fel 0 0 ... kn J

- Q K - i p (4.5)

So, substituting equation (4.5) into equation (4.4), we find th a t

0

“V 2

k J 0-k - f ,n-1 n-2 n-1 n-1
k f i n n-1

(4.6)

Substituting = fe.6. - fe.+10i+1 into equation (4.6), we finally get the form,

0

50 = - XV QF- -X

^2^292
W 2‘ 2W W

fe4<fe3e3 '2fc484+W

k Ak o0 „-2fe .0 .+& 0)n-1 n-2 n-2 n-1 n-1 n n '
(k .0 *~k 0)n n-1 n-1 n n

(4.7)

•thIn the implementation of equation 4.7, note th a t the leading k. in each i

term of the 60 vector simply provides an additional weighting on each of the

term s in the vector. It is unclear at this point whether it would m atter if the fac­

tored out leading coefficients were all set to unity, leaving only the ones inside

the parentheses variable. Experiments seemed to indicate th a t this would not

101

matter, but the extra computational burden of leaving them all variable is so mi­

nor th a t we may as well stay with exactly equation 4.7.

4.6.4.4 A pp ly ing the G ra d ien t o f th e O bjective F u n c tio n . In this

section, the actual method used to incorporate the system’s training is discussed.

In figure 4.1, page 81, there are 3 training sources impinging on the direct in­

verse CMAC: direct inverse, postural and smoothness. These are listed here in

order of application. The method used is to train each separately. The nature of

the delta rule (first seen in figure 3.8) shows each training instance to be a sum­

mation into the direct inverse model. Jordan [*88] and others describe con­

straints used in gradient descent training being arbitrated by simply forming a

training term th a t is a sum of constraint terms. Adding new constraints means

adding new terms to the negative gradient expression. This is equivalent to the

separate application of each training step as discussed below.

The smoothness constraint discussed in section 4.7 was never actually im­

plemented. These experiments worked adequately without it, but its inclusion

may have shortened the training time required for long kinematic chains.

4.6.4.5 S tep 1: th e D irect Inverse T r a in in g S tep . The following dis­

cussion is embodied in the C file try21em.c (which is excerpted in Appendix F).

As a first principle, the delta rule is reprinted (and paraphrased) from figure 3.8:

(A ^ - A 0) n
Aw ------- ^ ------- (4.8)

This rule is applied twice. The first application is the direct inverse training

step, with AT = A0, where A0 is is the observed change in the robot’s joints and

A0 is the direct inverse estimate already present in the CMAC at the current

102

state space point. This operating point is defined by the input vector, inp_vec[],

which is used to activate the robot to generate this change in joint angles. Aw is

automatically generated and added to the weights of the receptive field by a call

to the function, learn(int cmac_id, int inp_vec[], in t de ltajo in tf], int eta),

provided by UNH_CMAC. (delta jo in tf] is A0 during training and A0 after

lookup.)

4.6.4.6 S te p 2: th e P o stu ra l C o n stra in t T r a in in g S tep . In the sec­

ond, or constraint satisfaction step, the delta rule is applied to cause the learned

A0 to be adjusted to favor the postural constraint satisfaction. In this step the

negative gradient of F, 80, is used so AT - A0+50. The details of the second

training step involve recalling A0, given the same inp_vec[] as a t the just com­

pleted direct inverse training step, via a call to the UNH_CMAC function

rembr(cmac_id, inp_vec, deltajoint). Now delta_joint[] is modified by a call to

the function SatisfyPosturalConstraints(0), This incorporates equation 4.7. For

now, just consider kv[] to be the diagonal of the constant K m atrix of th a t equa­

tion. In section 5.2.2, this vector becomes non-constant, so the code th a t manipu­

lates kv[] may become clearer after studying th a t section. The purpose there, as

will be seen, is obstacle avoidance.

So now the A0 vector is modified to favor the arm posture embodied in K

and equation 4.7. That is A0 - A0 + 50. All th a t remains to complete the job is a

call to leam () just like the one in section 4.6.4.5 which trains with the new A0 as

exemplar. A similar sequence of steps could be performed to learn the temporal

constraints discussed in section 4.7.

103

4.6.4.7 R o b u stn ess o f C o n s tra in t T r a in in g W ith R espec t to
Learn insr R ate. The system was not overly sensitive to the

value of X discussed above, which contrasts with most gradient descent based

methods in the past. This issue is discussed further in section 5.2.2.

4.7 A Discussion of Temporal Constraints

It has been previously argued in sections 3.4.6 and 3.4.7 th a t the overlap­

ping receptive fields CMAC provides neighboring trajectory steps imposes an

implicit smoothness constraint on trajectories. It is a simple extension of the

system (not implemented a t this time) to add the explicit smoothness constraint

shown in figure 4.1 and 5.1 on pages 81 and 143, respectively. This would entail

saving the "last" incremental joint move learned during the previous trajectory

step and using it as a training exemplar at the current step. The learning rate

used for this training instance would be like a momentum term parameter. A

large learning ra te would prejudice the system to strongly favor the same action

as was recently taken. A stiffness term can be added by training an incremental

joint move that favors the posture of the previous time step rather than the

move of the recent step. Neither of these are implemented, but would make in­

teresting future work.

Sutton’s temporal difference method applies such temporal constraints,

but requires back-propagation of errors through an analytical* model. There is a

variation on the temporal difference method I call n th order temporal looka­

head, th a t may be useful to parameterize systems capable of performing back­

track search in a reflexive manner. Ideas concerning this as future work are

discussed in section A. 1.1.2.

1 A multilayer perceptron is an "analytical” model o f sorts, though not directly a model o f the plant.

104

4.8 E xperim ental R esu lts

This section describes the method of selection of the system gross parame­

terization, discusses the error metric formulas, and makes conclusions about the

adequacy of the ARTISTS system with respect to robustness from a number of

different vantage points

4.8.1 S e lec tio n o f A d eq u a te P aram eters

This section discusses how the gross system param eterization (i.e. settings

for generalization and quantization) were evaluated to find nearly optimal para-

meterizations.

4.8.1.1 D e fin itio n o f Gross P a ra m e ter iza tio n . A system parame­

terization includes all possible parameters tha t characterize the physical system

and the problem it solves. Among these for an articulator are number of joints,

linkage lengths, and even the adaptive values in the neural networks, which are

viewed as fine grained variable parameterizations. Much of this dissertation

talks about a spatially distributed parameterization stored in the latter. In order

for the networks to provide a reliable mapping, the network’s gross param eteri­

zation must be appropriate. This parameterization is defined as an ordered

quadruple, P = (C, q ^ q^ M), where C = generalization, qh = quantization of

the hand space target direction vector part of the input vector, q. = quantization

of the joint components of the input vector, and M = the physical memory size,

in vectors. It seemed highly appropriate to have different values of qh and qy

but probably unnecessary to distinguish the individual joints’ quantizations one

from the other. The directed search used to find an adequate parameterization

involved about 250 experimental setups. Varying quantization on a joint by joint

basis would have had an exponential effect on that search.

105

4.8.1.2 M em ory S ize . The physical memory size is clearly an important

system parameter. Large memories of > 20,000 vectors seemed to always be

adequate. Small ones of < 5,000 vectors usually gave poorer results, but it is im-

pprtant to pick a minimal adequate memory size based on the problem, so data

has been collected over a wide range of memory sizes. A consideration of innate

noise tha t is related to memory size is discussed in section 4.8.7.

4.8.2 T he E rror M etrics

During execution of trajectory formation for an 8 target, repetitive trajec­

tory ensemble for a 3 joint redundant arm, several error metrics were tracked.

These data were written out to files during trajectory formation, a t the end of

each path segment. The experiments all ran for 1000 path segments.

Each metric was computed as a root m ean square or absolute summed

value as appropriate, and scaled by dividing by the path segment length, so tha t

the error function became a density function over the trajectory. Each was also

scaled and offset so the error functions could be plotted afterwards on a CRT for

visual evaluation. A comprehensive visual review of all the data allowed several

settings to immediately be disqualified. Beyond that, the visual inspection

method became too ambiguous, so a batch evaluation method was devised.

The data were then all assumed to eventually reach steady state. Under

the steady state assumption, each error metric, for each experiment, had its

mean and variance computed over the last 100 path segments.

All trials th a t resulted in a non-zero heuristic step density after the first

100 epochs were disqualified. The means and variances were entered into a

spreadsheet, so tha t all 250 experiments could be evaluated. The importance of

106

each error metric was weighted and the means and variances of the error met­

rics were sorted in tu rn for each metric. The top 11 experiments for each ranking

were selected and the conjunction of the top ranked sets were subjected to a

weighted sum test to determine a best parameterization for all the experiments.

Details of the rankings are discussed in section 4.8.4.1.

From this final list emerged 4 candidate parameterizations, P j =

(32,4,8,M), P 2 = (32,8,8,AO, P g = (64,4,4,AO and P 4 = (64,4,8,Af). Next, a se­

quence of experiments was run in which the means and variances for each P.

was determined for a wide range of Af. The plots in figures 4.8, 4.9, 4.10, and

4.11, plot several important metrics, and the important point to note is th a t in

general the system is robust with respect to physical memory size, with poorer

performance for smaller memory size, and better for large. However, for reason­

able memory sizes > 10,000 vectors there is virtually no difference in the per­

formance metrics for a good parameterization (like P 4> for instance).

Figures 4.8 and 4.11 seem to be problematic, though. In these figures

there is a curious dependence on memory size. An increase in physical memory

size should in all cases make the average error metrics go down. But these para­

meterizations did not conform strictly to tha t rule. Section 4.8.9 will discuss in

detail an explanation of this phenomenon.

Below are detailed definitions of the error metrics used to evaluate the

adequacy of gross system parameterizations.

4.8.2.1 P o stu ra l E rror D ensity. This metric computes the summed

difference between the posture at each step and w hat is desired. In other words

the RMS sum of the postural constraint objective functions. The factor of 1/10

compensates for the 1/100° scaling of the input mapping.

107

%
M

eu
kx

y
ul

m
tio

a
«

«
(

»
«

«
.

tl*t

V': Vvt ii <• »• > i

Generalization ■ 32
Hand quant. ■ 4. Joint quanL » 8

J* *'n\

*\ F GJ » »t \ >*Jw6v ;» i ti <a “ v / 1 , / i
,--''A\ x-'*" ̂ = 5 ® ® . « - _ . / v /•. ---------

 — *•.......'M*'5 —
'doo'

19000 23000 27000
Mcnoiy Slae la Vccien

“ “ pcniurtl em r mew **** p o au n lco w iid ttf«n alcvraic n n i
■» — %yai »ie» m e »id ■ * *1 h>Ad rffon mem O - Hmcmoiy Mtuntion

Figure 4.8: Anomalous Dependence on Memory Size
fo r C = 32

100-

Generalization ■ 32
Hand quant. ■ 8, Joint quant. ■ 8 *40

80- -36

*32

-a60-

-20
40-

-16

-4

” 1760? ^ 2 l W ' ' ' 23b00 ̂
) 19O00 23000

Mmvoqr SU* In Vecuwi
310007000 27000 39000 39000 430003000 11000

 paiurftl rrror mesa pcwlunTemx*fct %nefl*JeVnteaeiiT
** ^ %ftn >kw rue nd 1,11 hind effort n a n €► % memory nhiratloo

Figure 4.9: Robust Dependence on Memory Size
for C => 32

108

%
 M

un
ar

y
ui

um
io

n

IOO-&

r
I 4 0 -e<

v Generalization ” 64
Hand quant. • 4, Joint quant. ■ 4

■ * ** if
\ / \ / ' - 1 \
" •■ ••S rfiS g "*»*<"**«•*■ *-w »w «w *r"S ie«6 l>**Mi_ii»r1.j* ■W w ** •

> / ‘
J .

* Joo ’ 1 'sobo* ' ' iK F ■ ’13
3000 1000 11000

3600 1 1 6 0 0 2 1 6 0 0 24B00 29l
ISOO0 10000 23000 21000

Mcnmy 5U« U Vedoti

' pn iunlerrorm aui % |e n s to w n u mau
a a 1 |< o illi> lilfU d •-** h*4ui rffortmeeii O f MdlOf)' MQiflliM

Figure 4.11: Anomolous Dependence on Memory Size
for C = 64

100“

-40

Generalization ■ 64
Hand quant. * 4, Joint quant. ■ 8 -32

-2 0

-12

15000
T i W 1 '25000

2.1000
Mentor? SIm 1a Vectors

3900011000 43000

~ ” po»a>™l«rormoio **"* postunll errors*) 4 ju * le « a femes a
— — nte nd **■» hand rfTcrtmon ^memory wairslion

Figure 4.10: Robust Dependence on Memory Size
for C = 64

109

% } (4.8)

pahtaipli

4.8.2.2 J o in t E ffo r t D ensity. This metric measures the RMS value of

the total joint angle increment at each step.

e =
path - i-1
£ [£ , (A 6 j /] (4.9)

pathleneth

e* - £ h i <4 i °>
pathlength

a = new distance to target

c = old distance to target

s = hand step

target

Using the law of cosines, the instantaneous
hand error can be computed as follows:hand

2 2 „2
0 = cos'l

2 sc

and all these quantities are readily available as a side effect of the
execution of the simulation.

Figure 4.12 Computing H and Error

110

4.8.2.3 H a n d E ffo r t D ensity. In this metric, the law of cosines is ap­

plied to the desired and actual hand move vector at each step. The perpendicu­

lar displacement of the hand from the desired rectilinear path a t each step is

summed. Straight summing is sufficient here because this value, h, is always

positive. This is a measure of the curvature of the trajectory. Figure 4.12 de­

scribes the derivation of hand effort and the instantaneous hand error, h. whichI
is the perpendicular deviation of the actual hand move from the desired hand to

target vector.

4.8.2.4 S tep S ize D ensity. The steps in work space were intended to be

of unit length. The actual length was computed and its RMS sum was stored.

This value is computed as in equation 4.11.

e = (it o f steps) pathlength (4.11)

This value should be nominally 1.00, though in practice it had a value of

slightly more, and it did not tu rn out to be a reliable measure of performance,

because it measured just what the heuristic step generator dictated and an

automatic gain control mechanism was built in which scaled every step to

within some tolerance of 1.00. This measure then was always consistent and

seemed to be more or less independent of the goodness of fit of the trajectory to

the trajectory formation goals.

4.8.2.5 H eu ris tic S te p D ensity. The total num ber heuristic steps were

counted on each path and the count was divided by the path length. This metric

should go to zero in the steady state, and did so for all successful experiments.

4.5.2.6 G e n era liza tio n S le w R a te D ensity. This is a difficult metric

to describe. It is a measure of how much overlap there is between the receptive

111

fields of adjacent trajectory steps. If the slew rate is 0%, it means th a t receptive

field is the same for this step as for the last. If the slew rate is 100%, the two

steps have exactly disjoint receptive fields. Slew rates of > 100% indicates tha t

the receptive fields are even farther apart in the state space. Equation 4.12 de­

scribes this quantity, with v ! being the ith component of the scaled integer input
. f # iL

vector for the j step in the trajectory. <?. is the i component of the quantiza­

tion array; larger values of q. denote coarser codon representation.

e = max
i « path

X 1 0 0 (4.12)

4.8.2.7 Memorw S a tu ra tio n . This metric is simply the cumulative

memory usage of the CMAC. The measure is provided by the UNH_CMAC soft­

ware. The value returned is the count of the non-zero-valued memory vectors in

the physical memory allocated to a particular CMAC. This gives an approximate

measure, U, of the num ber of the physical memory vectors actually used. A dis­

cussion of the inaccuracy of this metric is in section 4.8.10.2.

The value u = U /M is the degree of saturation of the CMAC, and it has

been determined by our cumulative results in the Robotics Lab th a t when u is

small, CMAC function approximation is good. When u > ^ max for

Umax - ^ or Performance suffers. This subject is discussed at greater

length in section 4.8.8.

4.8.3 D iscussion o f the Groas P a ra m e te r iza tio n R esu lts

Appendix E, page 210, contains plots of selected experimental results. Fig­

ure E.O contains plots of all the important error metrics for a single experiment,

112

with parameterization P = (64,4,8,20000). In figure E.O there is a set of plots for

an experiment with the same parameterization but with each path segment re­

peated 5 times before the next path segment is executed. The effect of this is

th a t it spreads the plots out left to right to show the near periodicity of certain

error metrics more clearly.

The original reason, however, th a t I contrived experiments of the latter

type was tha t I reasoned: if a path segment could be executed over and over

again before a new path segment was tried, the result would be less postural

drift and a faster learning of the overall trajectory. As is discussed in section

4.8.9, this turned out not to always be true, but by the time I had realized this,

the selection of a "best" parameterization was completed. Re-running all those

experiments with non-repeating path segments was deemed not worth the ef­

fort.

The multi-trace plots of Appendix E show clearly the rapid convergence of

the error metrics upon which were based the selection of gross system parame­

terization. Some selections of memory size, generalization param eter and quan­

tization were much better than others at finding a solution rapidly and reliably.

Approximately 250 experiments were crafted as described in section 4.8.2.

After the data was collected in a series of files (one set for each experiment)

these files were analyzed based on a steady state assumption for the last 100

path segments, and the following set of observations were made:

113

4.8.4 D eta ils o f th e R a n k in * o f P a ra m e te r iza tio n s

4.8.4.1 T he F irst O rder R a n k in s . 8 separate rankings of the means

and variances of all the 250 experiments were made using the sort records fea­

ture of the Quattro-Pro spreadsheet program. Each ranking was based on a dif­

ferent error metric.

4.8.4.2 Gross E lim in a tio n s B ased o n H e u ris tic "Need". Any para­

meterization whose experiment had non-zero heuristic step density during the

terminal or "steady state" phase of the experiment was disqualified. This re­

moved 7 experiments from the list. Of the remaining experiments, the topmost

11 experiments were selected, in each of the 8 rankings.

4.8.4.3 S tro n g C orrela tions Amorist th e M etrics. It was noted tha t

hand effort, joint effort, memory usage (and percentage memory usage) and pos­

tural error were strongly correlated. The same set of experiments tended to be

the best experiments in each ranking, as they were ranked, metric by metric.

4.8.5 S u b jec tive W eight inns

The following reasons were used for setting the weights attached to the

ranks in each of the 8 lists as relatively high, low or unimportant. The weight

was a number between 1 and 10.

4.8.5.1 S te p S ize . Step size density was given a low weight of 1 because

it appeared to be only weakly correlated to success.

4.8.5.2 P ercen tage o f M em ory Used. Memory saturation was an am­

biguous measure of success, because, by using large physical memory (even

when it was not necessary to do so), this quantity could look good even when

other measures were mediocre or terrible.

114

4.8.5.3 N u m b er o f M em ory Vectors. This metric was more reliable,

because since all setups performed the same task, one might reasonably expect

similar memory usage as an absolute vector count.

For instance, consider a setup not coarse coded enough, like P y =

(32,2,2,20000). 19817 vectors were used, as compared to 1500 to 2000 vectors for

the best performers, and its performance was, as expected, bad. On the other

hand, P q = (32,16,16,5000) resulted in only 699 vectors being used, but tha t

setup had twice the m ean and variance of the best hand effort and postural er­

ror statistics achieved. P q approaches (rather distantly of course) the limiting

case of storing all the information in the same location, degenerating the CMAC

into a simple integral controller, which by itself we would not expect to do a good

job at this task.

Though much can be inferred by vector count, its ambiguity gave me cause

to give it a low importance, but one higher than either percentage memory

saturation or step size density.

4.8.5.4 G e n era liza tio n S le w R a te . The assumption th a t P q "over-gen­

eralized" is confirmed in that case by the fact th a t the generalization slew rate

for th a t experiment was the minimum value of all the experiments.

At the other extreme, when the quantization is too small, under-generali­

zation occurs. P , for instance, showed a generalization slew ra te of >500%,

and performed worse than table lookup. This setup did not have a sufficiently

large memory space to leam a t all. With table lookup, learning should occur, al­

beit slowly. With 99.1% memory saturation, however, this setup was clearly dis­

tracted from accomplishing learning by an excess of hashing collisions. In fact,

115

as is discussed in section 4.8.8, we might reasonably conclude th a t such a sys­

tem would approach an expected value of hashing collisions tha t is 90% or more

of its receptive field size every time it maps an input, because the large generali­

zation slew rate indicates a considerable reduction in the correlation between

adjacent lookups along the trajectory.

Although generalization slew rate is important, neither a least nor a maxi­

mal value infers a particularly good parameterization, so slew ra te was not in­

cluded as a ranking metric; rather, all experiments with generalization slew

rates > 30% were eliminated. Appendix C contains some analysis to validate

tha t the observed slew rate of < 20% for the best parameterizations is a reason­

able and necessary result. This result is important for the conclusion in section

6.2, concerning the view of ARTFORMS as an extension of traditional lineariza­

tion methods.

4.8.5.5 J o in t E ffo rt. Jo in t effort was given a relatively low weight, be­

cause, as has already been mentioned, it did not correlate well with success. It

can be observed in figure E.0, th a t joint effort is more or less a periodic function

th a t develops early and independently of the other metrics. The reason for this

is tha t joint effort is dictated by the heuristics generator. It always postulates

displacements selected with the goal of unit length hand moves. Thus, when the

arm is extended, the joint effort is small, and when the arm is tightly enfolded,

the joint effort is large, all based on the moment arm of the articulator. This ex­

tension and retraction rhythm is clearly visible in the plot. We m ust also keep in

mind tha t the AGC mechanism (see section 3.2.4.1) tha t scales all attempted

moves to generate unit length hand moves is a tight loop feedback mechanism

tha t ensures joint effort will be a mediocre measure of performance relative to

116

learning. So joint effort is given a ra ther small weight, similar to the weight as­

signed to memory vector count.

4.8.5.6 H a n d E ffo r t a n d P o stu ra l E rror . These two metrics were

given the highest weights, because they represent direct measures of what the

direct inverse training step and the postural constraint training step are actu­

ally learning. As is argued in section 4.4, the latter error measure ultimately

measures the stability of the system’s storage and retrieval capabilities when

the problem is redundant.

4.8.6 The F in a l C onclusion o f th e R a n k in g s

The net result of these ranking tests was th a t no m atter what values of

the weights I assigned, within the general guidelines of the last 6 subsections,

the following parameterizations always won: P^ = (32,4,8,M), = (32,8,8,M),

P 3 = (64,4,4,M) and P 4 = (64,4,8,M).

4.8.7 In n a te R obustness in th e P resence o f N oise

Figures 4.8 through 4.10 clearly show th a t there is a robustness in this

methodology that, subject to the caveats in section 4.8.9, can be seen as a func­

tion of memory size. For any reasonable parameterization (especially P 4) the

only poor performance th is methodology shows is selection of a too small mem­

ory space, and tha t once a threshold memory size is achieved, the error metrics

rem ain quite robustly low for all memory sizes. There is an inherent principle

hidden in these results th a t I will try to articulate.

Jordan [’88] showed th a t his forward modeling method was robust in the

presence of noise by injecting random noise in the forward model after trajectory

formation had converged. The result was th a t it still performed (though with no­

117

ticeable degradation of performance especially relative to posture). Contrarily, in

my methodology, I contend th a t there is an innate and quantifiable level of noise

that can be observed directly as texture in simpler CMAC mappings like figure

3.5 on page 69. This noise level is of course related to hashing collisions; it is

quantifiable using the methods of Appendix B, and it is inherent and unavoid­

able. The fact th a t from an external observation the performance of most well

parameterized experiments with memory sizes above 5000 vectors were virtu­

ally indistinguishable one from the other shows th a t this methodology is quite

immune to this inherent noise. Only when the noise is turned up to very high

levels does the mapping suffer as in the far left hand side of the plots of figures

4.8 through 4.10. In an investigation of the nature of the heuristic and training

critics, I further disturbed the system by injecting noise into the internal model

of the plant used as a predictor (not as a control effort source) and it showed

graceful degradation in the face of that noise,too. (See section 4.8.12.)

4.8.8 A L in e a r U pper B o u n d o n H a sh in g C o llis io n D am age

Tb a limited extent, the probabilities of hashing collisions given prior train­

ing, i.e. how badly hashing collisions are likely to disturb old data by the intro­

duction of new data, can be analyzed. Simple analytical methods are developed

in Appendix B. In th a t Appendix, I show tha t in fact the expected value of the

number of constituent points in a receptive field th a t point to already prior used

data is strictly a function of memory saturation. The surprising result is th a t the

function is linear. A proof by construction therein shows th a t this value

is really just E ^ u , Q = u-C. This represents a very loose, worst case situation

for random input sequences. Experimental results in th is study of course

represent highly correlated sequences of data, and so of the "collisions" incurred

by adjacent mappings along a trajectory, most are intentional. In fact, for P 4

with its maximum generalization slew rate falling in the range of < 10%, then

90% or more of those collisions are probably intentional, due to the large overlap

of adjacent receptive fields. This signifies th a t the upper bound, u-C, is

extremely loose, and the actual useful memory capacity may be profoundly

large. Section 4.8.11.1 indicates th a t 44,000 vectors under the

parameterization is more than sufficient for virtually any set of trajectories

definable for a planar arm of up to 6 joints.

4.8.9 A S u r p r is in g D ependence on P hysica l M em ory S iz e

In section 4.8 .21 mentioned some interesting points concerning the plots of

figure 4.8. The observation th a t it was possible to see a significant, measurable

degradation of performance in a system by increasing memory size was some­

what disturbing. A new series of experiments was devised, in which the gross

parameterization was P = (32,4,8,M), for M ranging over all integer values over

the range (23990,... 24010). The results of the experiments indicate a possible

dependence of performance metrics on memory size th a t had far smaller granu­

larity than was expected (granularity = 1 vector out of 24,000).

The observed performance disturbance was of low magnitude, but it

points out a possible source of significant error for systems th a t are trying to be

very frugal with respect to physical memory allocation. Once the phenomenon

was observed, I started probing that experiment to see if I could isolate the

119

cause of the measurably different trajectories. I t turned out th a t the perform­

ance problem was easily observed in this experiment.

Figures 4.13 and 4.14 show the behavior th a t gave rise to this error. All ex­

periments in the series were subject to equiangular joint constraints. But, in

moving from target 7 to 8, joints 2 and 3 showed noticeable constraint violation.

The error corrected itself in going from target 8 to 1. Along the paths from target

3 to target 4 and 4 to 5, another minor but noticeable postural switching oc­

curred.

This error appears to contradict our ideas of CMAC memory capacity until

we realize th a t hashing collision error predictions are based on expected values.

So over vast numbers of training instances the effect of hashing collisions should

be very small if u is small. Consider th a t we have an actual instantiation of a

CMAC trained with the information of this experiment. There are hashing colli­

sions. When the input mapping algorithm executes, it generates target ad­

dresses in the physical memory space by randomizing each of the n+2

coordinates of the input vector using a fixed, randomizing lookup table. The n+2

coordinates are then added together to generate a virtual address. Now th a t vir­

tual address, A is limited via a modulus operation A’v = A^ modulo memory

size.

The effect of the modulus operation is th a t it "folds" the virtual memory

space back on itself however many times the virtual memory space is divisible

sv
by memsize. This folding operation defines m partitions, where m = |^nems£zej *

Now any hashing collisions tha t exist in the mapping are fixed and act like im-

120

Figure 4.13: Anomalous Behavior for Memory Size
of 24,002 Vectors

121

Figure 4.14: Anomalous Behavior for Memory Size
of 24,002 Vectors

122

pulse functions in the state space. If one or more hashing collisions occur at a

point exactly k codon units up from a fold caused by the modulus, but in differ­

ent partitions of the virtual memory space, they will potentiate one another’s ef­

fect. If the value of memsize is changed by one vector, tha t potentiation will

disappear, because those hashing collisions will no longer be coincident in the

physical memory.

The error seen in one of the "bad" experiments, e.g. memory size=24002,

corresponding to the plots of figure 4.15 decreases significantly for the following

actions:

• move targets 7 or 4 even by a small amount (figures 4.17 and
4.18),

• change the num ber of memory vectors by +/- 1 vector (figures
4.15 through 4.18) or

• change from chained trajectories with repeated path segments
to ones without path segment repeating (figures 4.16 and
4.18).

The first of these action serves to move the trajectory away from a state re­

gion damaged by hashing collisions. The second action causes these hashing col­

lisions to no longer be coincident in the physical memory space. The th ird action

points out tha t the repeated path segment strategy is not as helpful as originally

assumed (see section 4.8.3) because it reduces the migration of training data

from one path segment the next one via the generalization overlap a t the target.

This generalization overlap only gets exercised every 5th pass, and so the two

neighboring path segments are much more likely to develop different solutions if

perturbed by a hashing collision near the target point. Interestingly, the pos-

123

%
 M

em
or

y
sa

iu
ra

ito
n

%
 M

em
or

y
sa

tu
ra

tio
n

IOO

80-

20-

G eneralization - 32
H and quant. - 4 , Joint quant. - 8
target se t - o ld
practice m o d e - repeat

■r-*
/ u .

/A
_ ymr m

-20

i \ I1tt
(\
V ''"

' ------ ‘ v / ' \ ' s „ ____

" *’ */%**•••
^ - » - a- - » /

-10

23990 2 3 & 9 4 23698 24502 24&0« 2l6lO
23992 23990 24000 24004 24008

Memory Size in Vector*

’ post m l error mean
% gen slew raie std

postural error std
• •• hand effort mean

%gcn slew rare mean
fcroeraory sarutiTion

Figure 4.15: Memory Size Dependence for Old Target Set

L00-
-24

80-
-20

G eneralization - 32
Hand quantization - 4 , Joint quant. * 8
target se t - o ld
practice m ode “ n on repeat

-16 g

-1 2

20-

2400623090 24002
23992 23996 24000

Memory Size In Veel on
24004 24008

 pcwiural error mesfl —— postural error std
— “ %gen slew rale std ■■■* hand effort mean

ft gen slew rale mean
% mem cry saturation

Figure 4.16: Memory Size Dependence for Old T arget Set

124

%
 M

em
or

y
sa

ru
ra

iio
n

G en era liza tio n - 32
H and quant. - 4 , J o in t quant. - 8
target se t ■ n ew
p ra ctice m o d e - rep eat ■20

-16-60- DC

-12

7. 40-

20-

O

s 2401024006
24000

Memory Size l a V eel on

poemnt error mean postural enor sid %geo slew rate mean
“ %genslew ralestd hindeffort mean %memo*y saturation

Figure 4.17: Memory Size Dependence for New Target Set

100-

G en era liza tio n - 32
H and quant. - 4 , Jo in t quant. ■ 8
target se t “ n ew
p ractice m o d e ■ n on -rep eat

■24

! 0-
-20

-M l
60-

40-

23M I 2460223990 23994 24010
24004 2400123996 24000

Memory Sue in Veclon

1 postural error mean **•* postural error std %gcn slew tale mean
“ “ %gen slew rate std •■■■ band effort mean “O" ftmcmory saturation

Figure 4.18: Memory Size Dependence for New Target Set

125

tural difference between these two path segments does converge out after about

3000 epochs.

4.8.9.1 N o n -u n ifo rm D is tr ib u tio n o f H a sh in g C o llis ions fo r H itth
D im en sio n a l System s. The previous discussion led to an in-

depth consideration of the distribution of hashing collisions in the physical

memory. In higher dimensional systems (e.g. 12 or more dimensions) the as­

sumed uniform distribution of hashing collisions becomes gaussian over the vir­

tual address space due to the summation of many samples from uniform

distributions, one for each coordinate of the input vector. This consequence of

the central limit theorem changes the hashing collision expectations discussed

in Appendix B.

This indicates th a t the amelioration derived from increasing physical

memory size is not a uniform effect. The expected number of hashing collisions

150

100 -

f.
j

20 40 60 SO 1000 120

j

Figure 4.19: Gaussian Distribution of Hashing
Collisions

126

th a t occur as memory size increases goes down, but as the memory size ap­

proaches its theoretical maximum, the fraction of these collisions th a t are "mul­

tiple collision" sites (and thus more damaging) goes up as the distribution

becomes gaussian, because in the gaussian case, some weights are more likely to

be collision sites than others. This may in part explain why, in the previous sec­

tion, we found th a t some physical memory sizes are better than others, even if

they are larger. This observation may have implications th a t deserve further

study.

Figure 4.19 is an illustrative example only; it is not directly related to the

system under study. It resulted from constructing 12 uniform random sample

sets from the interval (0,1) and summing them together generating a sample set

ranging over (0,12.00). The plot is a 120 bin histogram of the resultant data.

4.8.10 Memory Capacity

Here the ultimate capacity of a CMAC is discussed for trajectory storage

problems. The notions of data age and bitmapping will be discussed.

4.8.10.1 Asfiruf of Trairtirur Data. As trajectory data becomes "stale",

i.e. its existence in the CMAC is the result only of training th a t occurred long

ago, without recent reinforcement, it may be th a t it is there only because it was

the result of sweeping out state space regions during convergence of early train ­

ing, which regions did not become part of the converged solutions, or it may be

th a t it is there to describe how to do things the robot does not do anymore.

In either of these cases, the hashing damage th is stale data imposes on

more recently trained data becomes innocuous, because it can be trained over

with more recent data and its deleterious effect on the system will go away.

127

In a series of experiments, 3 ,4 and 6 jointed arm s were trained to repeat a

sequence of trajectories with 8 targets. After convergence of each, a set of

chained trajectory moves was recorded to a disk file, so the disk file only con­

tained accurate, relevant arm moves. The CMAC was erased and training was

resumed using the recorded file to provide the sequence of moves for training.

After the recorded file moves were learned, the arm was allowed to tra in nor­

mally on the whole target set until ultim ate convergence (4 or 5 passes). The

memory saturation was then re-computed. In all tria ls it was noted th a t the

memory saturation level went down. The decrease was sometimes as high as

Ann Length Memory Size Original Memory
Usage invectors

Memory use
alter retraining

Percent
memory Use

Reduction

3 joints 20K vectors 1501 973 35

1013 33

1076 28

1028 32

4 joints 20K vectors 1400 1149 18

908 35

6 joints 30K vectors 2840 2698 5

1371 50

1600 44

Table 4.1: Memory Use Reduced By "Playback" Training

128

50%. (See Table 4.1.) This indicates th a t of the state space swept out by the sys­

tem during trajectory convergence, about 30% to 50% of the state space used

was used only during the irrelevant moves encountered in the search involved in

early training, and the vectors associated with th a t phase of training eventually

became "stale" and ultimately available for new training instances. The total

num ber of vectors used in initial training in column 3 of table 4.1 is fixed for

each arm configuration because the initial training, given the param eters of the

experimental setup, is deterministic. The re-training session is not, because

there is no way of determining what the "best" training set to record and later

play back for training purposes might be. Some of the training sequences

learned via this "record and playback mode" were more goal directed than oth­

ers. The ones th a t showed the least memory usage after convergence were stable

(i.e., they repeated reliably for the same the target set) and so we would expect

that these minimal memory usage statistics are sufficient for the problem.

These same statistics would be more reliably reflected by a different method of

computing memory usage, namely bitmapping.

4.8.10.2 Bitmanpirur. In UNH_CMAC, the level of saturation of a

CMAC is computed by simply counting the num ber of non-zero memory loca­

tions in the physical memory. This measure is an approximation of how satu­

rated the CMAC is. It fails to account for actual 0 valued vectors; this is a minor

effect because zero length move components are infrequent. More importantly,

this method treats all "usage" of the memory as equal, even though stale data is

irrelevant. An extension of the current UNH_CMAC software should include a

bitmapping capability. This would allow each physical memory location to have

an associated bit in a bit map. Every time a location is accessed, its bit is set.

The bitmap can then be cleared and the system allowed to exercise through a

129

comprehensive set of moves, during which time the bitmap could accumulate

new data. Now memory usage can be computed accurately by counting the ones

in the bit map. This method would ignore "stale" data.

4.8.11 Repetitive and Non-Reoetitive Trajectories

In this section, I describe the results of experiments for trajectory ensem­

bles th a t are non-repetitive. In this series of experiments, 40 targets were used

and the system randomly disturbed each target when it became the active one,

resulting in coverage of the workspace more or less uniformly for over 3000 ep­

ochs. The result was highly encouraging. Memory usage seemed to level off

Figure 4.20: Non-repetitive Trajectories Experiment

130

asymtotically, with little recurrence of heuristic or training critic failures, which

is in keeping with the prior observations about large memory capacity.

In addition to the postural animation of figure 4.20, a plot of the memory

use and error metrics for the 3000+ epoch long non-repetitive experiment can be

seen in figures E.3 through E.5 on pages 214 through 216.

4.8.11.1 C onclusions for N on-R enetitive Tra jec tories. It seems that

ARTISTS with constraint satisfaction is extremely robust to new information.

After learning a rather sketchy set of trajectories, it continued to execute trajec­

tories th a t were novel (because the targets were randomly moving throughout

the trials) th a t filled up the workspace quite thoroughly. Once early training

was completed, the critics reported nearly zero errors. This is encouraging. It

should also be noted tha t no attem pt to re-tune the parameterization for a 6

jointed arm was attempted, other than doubling the generalization parameter.

The fact th a t the critics found no failures in most of the path segments of

these experiments indicates tha t generalization in the connectionist’s sense (i.e.

being able to handle novel situations based on prior ones th a t are similar) was

broadly achieved. Some insight into the novel trajectories result can be seen in

figure D.8, on page 205. In th a t figure, little qualitative difference can be seen

between the control surface for this novel trajectory and the ones in the other

figures of th a t appendix. Keep in mind th a t the receptive field for parameteriza­

tion P=(64,4,8,20000) can span as much as +/- 25° of joint angle around the oper­

ating point, if only one joint moves. Because quantization = 8, simulation

resolution is 0.1°, and generalization = 64, so 8x0.1* 64 = 51.2°. This means that

some influence of training is possible over a range of +/-51.2+2 = +/-25.60

around the operating point as a result of training at th a t point, though the ef-

131

feet is diminished a t the receptive field extrema due to the linear tapered profile

of the receptive field. A full discussion of these issues can be found in An f91].

4.8.12 Results For Inaccurate Critics

In section 3.2.3, I talked about the critics used in ARTISTS. It should be

noted th a t without the critics, goal directedness falls apart and the redundant

system can not learn. The so-called training critic acts as a safety net to prevent

inappropriate mappings from hashing collisions in later training from being ac­

cepted as valid moves.

In most of the experiments I used the analytical model of the p lant as the

source of information for both critics. It may be argued th a t this is not fair. In

fact a system able to successfully guess the effect of a move before trying it

should be more robust. In an effort to probe this possibility, I devised a series of

3 joint arm experiments using the parameterization, P=(64,4,8,20000). For each

experiment, I added zero mean white noise to the numerical quantity th a t both

critics used for evaluation. Recall th a t the critics tes t a new move to see tha t it

generates a hand move whose orientation is within (<pgQ~tpQ) of the desired rec­

tilinear hand space move, ((pg -̂cp)̂ is measured in cosine units. See section

2.4.3. The dot product of the test move and the desired move m ust be within the

range cos(cp)̂ to cos(<p^. The white noise was crafted in each of 6 1000 path
o

segment experiments to have a - 1, 5, 7,10, 15 and 20% of OpgQ-(Po)* For 20%

variance noise, the systems proceeded to ask for heuristic help throughout all

the experiments. For less, the system’s performance over the range of variances

was little affected. This indicates a significant degree of robustness in the critic

mechanism, so we may find th a t the system could tolerate a crude forward

model, perhaps containing an adaptive forward model estimator. The installa­

132

tion of this new critic mechanism would reduce reliance on the reversible plant

requirement discussed in section 3.2.3.1. See section 6.3 for details of the pro­

posed future work in this area.

4.8.13 Results For Manv-iointed Articulators

Many tests were run for planar arms with 3, 4, 6 and 9 links. The results

were all more or less equally successful. In this section I will discuss the trajec-

OBS

initial
posture

This sequence of postures results from 150
segments of training of a 9 jointed arm. This

means each target to target trajectory was
executed 18 times.

Figure 4.21: Target Postures for a 9 Jo inted Arm

133

^ initial hand position

Figure 4.22: The "Uncurling" of a 6 Jointed Arm

tory formations represented by the postural sequence drawings generated in the

simulations for 6 and 9 jointed arms.

Figure 4.21 shows the target postures from an experiment in which the in­

itial posture was quite dissimilar from the postural constraint requirements, yet

in the first pass, the curvate constraint was achieved, and after 18 passes

around the targets, the trajectories showed little or no variation from pass to

pass. Figures 4.22 and 4.23 show remarkable and quite robust instances of

training 6 and 9 jointed arms (respectively), using equi-angle joint constraints

(and joint ratcheting during early training). It is remarkable th a t the postural

constraint mechanism allows the articulator to so successfully "uncurl". Figure

4.23 shows a trajectory th a t was trained only 5 times. It was one path segment

out of an 8 target chained trajectory experiment like the ones in the exhaustive

134

This trajectory of a highly
curvate arm was only

practiced 5 times!

Figure 4.23: The "Uncurling" of a 9 Jointed Arm

3 jointed arm trajectory experiments used to establish appropriate generaliza­

tion and quantization.

No attem pt was made to fine tune the gross param eterization for 4.23.

P={ 128,4,8.44) was selected, simply because it seemed th a t more generalization

was required due to the existence of more joints and thus more input coordi­

nates.

4.8.13.1 C onclusions A bou t M a n v io in te d A r tic u la to r T ria ls . This

series of experiments was a success. The many jointed articulators learned tra ­

jectories in a remarkably short time, and had robust performance th a t continued

135

to improve over time. Joint stop ratcheting was used in most cases, simply be­

cause it reduced memory usage, by cutting down on "stale" data from early

training. During early training without ratcheting, the system swept out consid­

erably more state space, but in only a relatively few cases did postural switching

occur, resulting in unrecoverable postures. (Postural switching is discussed in

section 1.3.1.1 and 4.4.1.1).

4.9 A S tab ility Argument

A rigorous Lyapunov stability proof for the convergence of trajectory for­

mation for the ARTISTS/ARTFORMS system would be useful. This would prove

that for any trajectory formed, if the same initial condition and target were pre­

sented, then a trajectory very similar to the original would be guaranteed to

emerge.

Tb accomplish this proof, first it would be necessary to neglect hashing col­

lision noise, and then to find a Lyapunov function th a t emerges from the m athe­

matical definition of the system; the complexities of the CMAC make this

difficult. Then we would need to show tha t this quantity decreases over time as

an effect of the execution of the set of equations defining the system. Next, the

hashing induced noise m ust be shown to have a tightly bounded effect on the

system, so th a t the effects of hashing collisions could be reintroduced without

destroying the ultim ate guarantee of convergence th a t the proof provides. Such

a proof is not within the scope of this work. In fact, for the general case, it may

not even be possible. The simple fact th a t the ARTFORMS critics impose a strict

reduction of hand to target distance is a critical starting point for a more infor­

mal argument, however.

136

4.9.1 A L vapu nov "Condition"

A Lyapunov condition is imposed upon the system, ra ther than shown to

emerge from the system equations. The Lyapunov condition, enforced by the

heuristic and training critics says th a t no move will be allowed th a t violates the

condition th a t the move m ust decrease the Lyapunov function,

L(5*,5y) = ■/"(6^+(5y)^, where 8jc and by are the two coordinates of the hand to

target distance. It would be nice if some aspect of the system training guaran­

teed convergence of this quantity, but tha t is not the case. In fact, a counter-ex­

ample for the general case is easily constructed. Consider the articulator in

figure 4.24. Jo in t stops of 90° prevent the target shown in the figure from being

reached. Other obstacle or configu­

rational conditions might prevail

th a t could prevent movement to­

wards the target, but which could

be circumvented by back-tracking

and trying a different approach.

Such spurious local and global

minimum problems we will term

"non-convex obstacle situations"

and will explicitly assume can't

happen.

That having been said, we now know th a t reaching the target is possible

from any initial condition. If th a t is so, then if we try enough attem pts from any

T A R G E T

Figure 4.24: A Counter-example for the
Lyapunov Proof

137

given position, we will ultimately find a move th a t reduces the distance rem ain­

ing. Such a move will be acted upon and used as a training exemplar, others will

be rejected. This disallows any increase of the Lyapunov function (by fiat), and

since a move that decreases it can always be found, we have therefore assured

that the Lyapunov function always decreases.

Thus we now have th a t the hand will absolutely converge on the target or

get stuck somewhere in the attempt, which case is omitted by the exclusion of

non-convex obstacle situations assumed above.

If the system were non-redundant, this should finish it, since the hand po­

sition is a single valued functional encoding of the joints, and the joints are a fi­

nitely valued relational encoding of the hand position. Local generalization

favors convergence to single valued encodings of the inverse relation except

where the joints are near 180 degrees, in which case alternate solutions are

closer together in state space. The sets of alternate solutions allowed by the

trigonometric functions (being odd or even periodic functions) are distant one

from another in the state space, and thus the system is not subject to postural

switching due to non-linear averaging provided th a t joints are not allowed to be

near 180 degrees, in which case alternate solutions are closer together in state

space. Empirical evidence shows th a t for low order arms (three or four joints)

this postural switching problem hasn’t been a problem for ARTFORMS, so we

will also neglect the postural switching effect and assume th a t for the non-re-

dundant case, the hand position is a single-valued functional encoding of the

joints.

But ARTFORMS deals with redundant problems, so the constraint equa­

tions m ust enter the argument. The constraint equations are linear, so their

138

least squares expression is quadratic. Thus, as long as the convergence step size

is small enough to prevent limit cycling, divergence or chaos, an absolute error

minimum in the joint space will be reached by gradient descent. Once th a t hap­

pens, the system model degenerates into a non-redundant one. In other words,

the system approaches non-redundancy a t the rate the postural error gradient

descends.

4.9.L1 A Lyapunov "Arsrument"and Outline for a Proof.

The problem rem ains th a t the joint space postural convergence can disturb

the the progress of the hand towards the target, because the constraint equa­

tions are independent of the Lyapunov function. At least four arguments can put

this objection to rest. None of these will be argued formally, so the strict

Lyapunov proof is still left incomplete. Two of the four require a change in the

system. The fourth requires considerable computational consideration, but is

promising. The th ird is a compelling approach and would probably be the best

course to persue.

First, heuristic critics could evaluate postural training, and apply a

Lyapunov condition to postural training, but th a t would require a change in the

system.

Second, we could show th a t the hand convergence is robust in the presence

of disturbances.

Third, since the postural constraint error will go to a global minimum, it is

a decreasing function (though not necessarily monotonic) of time. The distur­

bance such a function can impose on the target convergence is a decreasing

139

quantity. It should then be possible to bound th a t disturbance by a decreasing

"envelope" around the trajectory.

Fourth, the effect th a t the postural error adjustment imposes on the target

convergence is a non-linear function of joint angle changes, so an error term can

be constructed tha t is the sum of the Euclidean hand to target distance and the

postural error correction term. Since this is an analytical expression, it may be

possible to show that, given the old Lyapunov constraint imposed by the heuris­

tic and training critics, th a t this is an absolutely convergent function. Failing

that, this error term could simply become the function for a new Lyapunov "con­

dition" and we would then fall back on the first approach.

There is one final point concerning the Lyapunov stability of ARTFORMS

trajectory formation deserving of comment. The input to the system contains a

random activation component because random steps are used to search for good

moves. Training persists indefinitely, so even if the random component of the

heuristic suggestions ceases, random activation remains as a side effect of the

hashing collisions in the CMACs, and persistent training will cause th a t random

activation to persist indefinitely. This means th a t this system can be said to

have input with persistent excitation. From a system identification standpoint

this is desirable, because it means tha t the system is not limited to the identifi­

cation of a system of finite order. Some system designers, in an effort to assure

Lyapunov stability of their systems, artificially inject low-level noise just to pro­

vide tha t excitation. Other designers go to great lengths to develop systems that

are robust in the Lyapunov sense without persistent excitation, (Lozano-Leal

[’89]). This innate persistent excitation in ARTFORMS favors the long term

Lyapunov stability of trajectory formation by ARTFORMS.

140

In the absence of a rigorous stability proof, the evidence of stability is th a t

given a sufficient gross parameterization of the CMAC:

• With only sufficient degrees of freedom and no heuristic critic,
the system formed consistent trajectories in all observed trials.

• With excess degrees of freedom th is breaks down, and postural
drift occurs and accumulates causing postures th a t either stop
trajectory formation at a local m inimum or reach a condition
of nearly sufficient degrees of freedom, a t which time
trajectories become stably reproducible.

• With proper constraints on the trajectories, a variably
specified condition of nearly sufficient degrees of freedom can
be imposed.

• All the above holds robustly for memory sizes th a t are small
enough to generate significant hashing noise, and the system
can also tolerate noise in its decision rules (the critics) th a t is
substantial.

141

Chapter V

Obstacle Avoidance

This chapter marks the completion of ARTFORMS-2. In this chapter the

development of the idea of a spatially distributed constraint vector field or a

spatially distributed non-constant vector is chronicled. The K vector becomes

a non-linear field representation of obstacles encoded as spatially dependent

postural constraints. The dataflow diagram of figure 5.1 is similar to the one on

page 81 but an additional module is present in the lower left comer, which can

adaptively modify the constraint vector th a t is used in the postural gradient de­

scent computation in the lower right comer of both these figures.

5 .1 Preview

The mechanism for this constraint vector modification is embodied in the

the lower left quadrant of figure 5.1. An adaptive memory component (K-CMAC)

there models the constraint vector, It receives input from a unit th a t is sensi­

tive to the proximity of a joint to an obstacle sensed in a retinal field of view

model (R-CMAC). When such a proximity is sensed, the K-CMAC receives a sig­

nal tha t allows it to adjust its model of the vector to favor a slight change in

posture, which in turn is then passed on to the postural gradient computation

module. A detailed description of the dataflow involved in this constraint vector

modification is found in section 5.3. Before th a t detailed description ensues,

however, we should first try to justify th a t it is reasonable to expect th a t we can

effectively control the adaptation of postural constraints.

142

Figure
5.1: Dataflow

Diagram

of A
R

TFO
R

M
S-2

HEURISTICS
(IN'A

M U X 2
TARGET

COMPUTATION
SEL DOHEURISTIC

CRITIC
O il ENA n

§*
v t $ /

Direct Inverse
(MAC {KIM)

Training
ROBOT

thresholdMUX1

I : tx (Ter

TRAINING
CRITIC

MF- FA^ - - as
F - KJ I - I ISjPkiuim Coostitiitf

Verfoc CMAC
/ (LTM)

t
elbow #

Arm Drawing
Module

dF% “K[i-y

Ret Inti ACMAC fint)
’T ' R-CMAC obdade sensor Postural Gradient Computation

1. n*l-0
A Dataflow Diagram o f

The C om p lete ARTFORMS-2 Trajectory
Planning System

0. n=0.125Obstacle Avoidance

A
R

T
FO

R
M

S
-

a. T he original uniform ly curvate arm

for K =

b. A "pronate" posture results

from K = [1,1,1.5,1]T

c. A "recumbent" posture results
from K = [ip .5 .1 ,llT

Figure 5.2: Postural Changes Due to K Vector Changes

144

5.2 M odifyine P ostu ra l C on stra in ts

The postural constraints tha t are described extensively in section 4.6 sim­

ply place conditions on how the joints are linearly related in a fixed posture. So

far this postural relationship is globally applied to the system.

5.2.1 Conservation of Memory Usaste

Experiments were performed in which a constant K vector was used which

defined the linear relationships between pairs of distal joints. A nominal value of

(1,1,1,...1) constrains n-1 joints to be equal. (See figure 5.2a.) The memory satu­

ration level was observed and the vector was changed to a new value, K =

(1,1,1.5,...!), defining a more "pronate" posture (figure 5.2b), and more training

accumulated. The new memory saturation was larger than before. However

when the original K vector was restored, not only did the arm rapidly resume

the old posture, but the level of memory usage remained essentially unchanged,

3 Jointed Manipulator 4 Jointed Manipulator

K V e c t o r M e m o r y
V e c t o r s

K V e c t o r M e m o r y
V e c t o r s

[1 .0 ,1 .0 ,1 .0] 1 3 8 9 [1 .0 ,1 .0 ,1 .0 ,1 .0 1 1 0 7 2

1 1 .0 ,1 .0 ,1 .2] 1 4 9 4 [1 .0 ,1 .0 ,1 .5 ,1 .0 1 1 7 3 5

[1 .0 ,1 .0 ,1 .0 1 1 5 0 0 [1 .0 ,1 .0 ,1 .0 ,1 .0 1 1 7 5 5

[1 .0 ,1 .2 ,1 .0 1 1 6 0 8 [1 .0 ,1 .5 ,1 .0 ,1 .0 1 2 4 1 5

[1 .0 ,1 .0 ,1 .0] 1 6 0 9 [1 .0 ,1 .0 ,1 .0 ,1 .0 1 2 4 2 3

Table 5.1 Conservation of Memory Use vs. Posture

145

indicating tha t no new state space was visited. Next, the i£ vector was disturbed

significantly in the opposite sense, K ~ (1,1,0.5,...!), to cause a deflection toward

a more recumbent posture (figure 5.2c). Again, more state space was swept out,

resulting in a significant increase in percent memory utilization, but again,

when the £ resumed its original curvate value of (1,1,...1), the posture resumed

its former state quickly (within 1 path segment) and no significant additional

memory usage resulted.

This experiment was performed, with the results shown in table 5.1 for

both 3 and 4 jointed arms. The same type of experiment was performed with

many arm configurations for 3,4,6 and 9 jointed arms, by manually changing the

K vector during execution of the arm, where the K vector was deflected first one

way and then another, always returning to a prior condition, and upon retu rn to

an old K vector, memory usage proved to be a conserved quantity.

5.2,2 T he R obustness o f C o n stra in t T r a in in g

The latter results are encouraging. They contain the seeds of the rest of

the implementation. Before embarking on th a t story, I wish to digress and pon­

der some properties of the constraint trained data.

The postural constraint was met very quickly in every case. Usually pos­

tural error dropped to near zero values within a very few path segments. The

hand effort error metric, however, persisted in a non-zero state long afterwards.

When a new posture was dictated by a new & vector, the new posture seemed to

develop independently of the hand trajectories in spite of the fact tha t training

with the postural constraints disturbs the trajectory data. Furthermore, when

two postures were selected th a t were both previously learned, the switching

146

time from one posture to the other was profoundly short, typically less than 1

path segment.

This evidence is both understandable and perplexing. It is understandable

because the postural constraint is direct and strictly goal oriented. In other

words, the postural constraint says "change the arm posture", and directly

places data in the CMAC th a t could potentially do this in a single step, but for

the value of X, whereas the direct inverse training requires feedback for evalu­

ation of success because it changes § in order to observe a change in fliQ). Recall

that X is the step-size param eter or learning rate for constraint satisfaction

training. Curiously, however, the constraint training works in s p i t e o f i t s b e i n g

r e q u i r e d to t o l e r a t e t h i s l a c k o f g o a l - d i r e c t e d n e s s o f th e d i r e c t i n v e r s e t r a i n i n g .

Another intriguing point is that the value of X was not a critical parameter. X =

0.05 and X = 0.5 were both robustly tolerated. The former simply resulted in a

slightly slower convergence rate in assuming the desired posture. This is at

odds with the gradient descent methods used in most non-linear systems. In fact

values of X = 1.0 were even tolerated (perhaps because the learning rate of the

underlying CMAC was set at 0.5). Only when values of X>3.0 were used did

stability of trajectory formation become an issue.

The original notion (ARTFORMS-1) of obstacle avoidance was never suc­

cessfully implemented. The reason for th a t is th a t it depended too much on ser­

endipity. The old system perturbed trajectories away from the current posture

whenever an obstacle was encountered, but no appropriate guidance was pro­

vided by the system to give an alternative posture. The result was th a t when an

obstacle occurred, radical changes resulted, and large quantities of state were

quickly consumed. An aggravating effect during tha t stage of development was

147

that the ideal setting for generalization and quantization were not determined

yet, and so the system was already operating a t a disadvantage.

5.3 E xp lo itin g P ostu res For O bstacle
A voidance

All tha t is necessary for effective shallow search obstacle avoidance is now

in place. The essence of the paradigm about to be described is tha t obstacles will

be sensed on a 2 dimensional retina. This then causes a K vector representation

to be changed whenever an elbow enters the receptive field of an obstacle fea­

ture in the retina. This change will exploit joint pair synergies like those dis­

cussed by Hinton [’84].

Refer to the dataflow diagram of figure 5.1 for the following discussion,

principally the section labeled "obstacle avoidance" which is enclosed in dashed

lines at the lower left of the diagram.

5.3.1 The Retinal STM CMAC

A CMAC is allocated with 2 input dimensions and one output dimension.

The input is computed by the mouse cursor location in the target manager mod­

ule. Whenever the left and right mouse buttons are depressed simultaneously, a

circle with a radius approximately equal to the retinal CM AC's receptive field

radius is drawn. That mouse cursor location, in scaled screen coordinates, is

used to excite the retinal CMAC. The retinal CMAC (R-CMAC) is then trained

with an exemplar value of 1.0 and q = 1.0, to allow the feature to be captured

rapidly, with a single training instance. The R-CMAC is a short term memory.

148

5.3.2 T he S p a tia l ly D is tr ib u ted K -vector

Now, whenever the arm is drawn, each time an elbow is drawn, the elbow

coordinates are used to excite the R-CMAC. If an super-threshold value emerges

from the R-CMAC, it becomes a scaled sub-unitary gain, g, applied to a 3 ele­

ment center surround vector, [1,-1,1], th a t is used to adjust the current K vector,

read from the postural constraint vector CMAC (K-CMAC).

thThe decoder generates an n-dimensional unit vector with its j coordinate,

e. = 1, and others e. . = 0. This vector is then used as a mask to construct the
; i* i

center surround vector, c.. , In the vector c., the j th element is -1, the (j ± 1)st

element is 1 and all others are 0. The result of computing K £+1 = K (+ g c . on

the system is to cause the j th joint to increase relative to its 2 neighbors for g>0 ,

and the decrease for g<0.

5.3.2.1 P ra c tica l C onsidera tions R e la te d to th e R-CMAC. The re­

sult of the training of the K-CMAC based on readouts from the R-CMAC is the

creation of a spatially distributed K vector. There is an effective 2 dimensional

to n+2 dimensional projection of information from the R-CMAC STM to the K-

CMAC LTM.

This STM -► LTM projection is an interesting feature of ARTFORMS-2 and

it deserves study in its own right. It is a method of potential applicability for the

propagation of constraints from one sub-system to another. We m ust realize,

however, tha t its presence is an accommodation to the needs of a simulation

platform. A real-world physical robot would be better served by a touch sensitive

sheath surrounding the arm which would replace the R-CMAC, and provide ob­

149

stacle avoidance information in the form of directly acquired "elbow proximity"

information. The circuitry involved in this could also automatically disable all

joint actuators from the disturbed elbow back to the base. This would give the

arm some additional compliance, and based on the results in section 4.4.1.2

(page 94) ARTFORMS should automatically handle the disturbance caused by

this.

In the simulation, however, the touch sensitive sheath is very difficult to

simulate, so the arm is allowed to collide with and even drive through obstacles,

relying on the assumption that, in a physical implementation, the touch sensi­

tive circuitry just described would prevent damage*.

S.3.2.2 In te r io r a n d E x ter io r O bstacles. The obstacle avoidance

paradigm th a t is implemented here only considers "exterior" obstacles. These

are obstacles tha t are outside the region enclosed by the combination of the cur-

vate arm and a straight line connecting the actuator to the base. The extension

to interior obstacles should be straightforward, but will not be developed in this

dissertation, because initial attempts were inconclusive, and time constraints

led me to defer this to future work.

5.4 L im ita tio n s o f This M ethod

The use of direction cosines in the input vector ra ther than absolute target

locations imposes some limitations on ARTFORMS-2. The hand cannot be dis­

turbed from its rectilinear path during a trajectory in order to avoid obstacles.

Only the "elbows" can migrate around. With the implementation of absolute ta r­

get location tha t may be changed. The result could be trajectories formed like

I So you, kind render, should not be troubled by this obvious violation o f physics in the simulation!

150

Obstacle avoidance with
hand disturbance can be

achieved with ARTFORMS-2
only by higher level help.
New targets generated to

avoid the obstacle solve the
problem.

f W s t a r t

Figure 5.3 Obstacle Avoidance by H and Disturbance

figure 5.3. See section 6.3.2 for more discussion of this possibility. The reason for

this inability to disturb the hand is th a t ARTISTS will always train, via the di­

rect inverse training step, nearly rectilinear paths in the hand space. With ART­

FORMS-2, such hand disturbance would be handled by inserting new target

locations in the workspace. Such a feat would have to be handled by a higher

level in the system. Figure 5.3 shows the generation of a trajectory tha t avoids

an obstacle by disturbing the hand. The experiment was successful in adjusting

the most distal joint during the first iteration of the path segment to cause the

joint to miss the obstacle, but as is shown in the figure, the hand was deflected

by the (manual) insertion of several intermediate targets along the trajectory

that were placed to avoid the obstacle. Hogan [’92] argues th a t just such a

mechanism goes on in hum an neuromuscular control in the formation of trajec­

tories, but since the trajectories he suggests are in fact bell-shaped in the work­

space, only very few intermediate points are required. If the direction cosine

encoding in ARTFORMS-2 could successfully be replaced by endpoint target in­

formation as argued above, the hand deflections could be incorporated in ART­

FORMS-2. In fact, in the experiments I performed using endpoint data rather

than direction cosines, the hand trajectories were usually bell-shaped or sig­

moid. The problem with those somewhat ambivalent results was th a t too much

memory use occurred during training, and the critics never went dormant.

5.5 E xperim en ta l R esu lts

Here I will discuss the experimental results, for various arms, of 4 or more

joints.

For these experiments, the lower half of the dataflow diagram of figure 5.1

was implemented and 2 additional CMACs were allocated, one to represent the

retina and one to represent the constraint vector field. The R-CMAC and K-

CMAC both used C=64, simply because th a t was the setting used for the main

CMAC. I set the memory size of the R-CMAC to be half th a t of the others (this

seemed reasonable due to smaller dimensionality). The R-CMAC used a quanti­

zation of 1. It took screen coordinates (1 codon = 1 pixel) so it could reasonably

be viewed as a retinal model of the computer’s CRT a t the resolution of the

screen. So on the screen, a receptive field was a square region with a 64 pixel di­

agonal.

The K-CMAC has the same gross parameterization as the m ain CMAC,

except that its output dimension is n-1, ra ther than n (for n joints). The reason

152

Figure 5.4 A Chained Trajectory W ithout Obstacles

Figure 5.5 A Chained Trajectory W ith Obstacles

153

is tha t the K vector need not affect the base joint since the base angle is a free

variable, and thus there is no need to allocate an unused coordinate.

See figure 5.4 and figure 5.5 for before and after results of obstacle avoid­

ance experiments. The results generally were th a t in one or two presentations of

the obstacles, these obstacles were successfully encoded in the K-CMAC. The re­

sults shown in the figure are entirely adequate, and the constraint did not seem

to propagate into regions of the input space that were not directly related to the

obstacle.

The results, in spite of the admittedly haphazard selection of a parame­

terization, were gratifying. This indicates the system is fairly insensitive to sys­

tem parameter changes, or I was very lucky (a most unlikely occurrence!).

Some cursory experiments were tried with other numbers of joints, with

mixed results. Whenever the length of the arm links were larger than the (ap­

proximate) diameter of the receptive fields in the R-CMAC the results were

good. In cases like figure 4.21, on page 133, when the obstacle was placed near

the distal joints (nearest the hand) the results were poor. The reason for this is

that if multiple joints enter the receptive field of the R-CMAC, the (1,-1,1) pat­

terns of the center surround vectors used to adjust the K-CMAC compete and

therefore do not give good results. For these cases, in further developments of

ARTFORMS-2, a longer center surround vector with a more complex shape that

could excite multiple joints near the center and inhibit multiple ones in its pe­

riphery is needed. The number of joints to be affected would be a function of the

size of the R-CMAC receptive field and the length of the arm links. Of course, as

was discussed in section 5.3.2.1, a touch sensitive sheath and a real robot would

be even better!

154

A more comprehensive probing into the robustness of the obstacle avoid­

ance layer of ARTFORMS similar to the level of investigation of the ARTISTS

trajectory formation and robustness found in Chapter 4 is beyond the scope of

this dissertation.

155

CHAPTER VI

A Framework For Future Development

In the light of the results derived from the simulation described in the pre­

vious chapters, it is obvious tha t some improvements can be made th a t are

rather straightforward changes in the system. It is also important to add some

broader conclusions th a t are compelling and are not directly tied to the experi­

ments. These two areas are discussed in this chapter.

6,1 D irect Inverse M odeling is W idely
A pp licab le

Although this project was framed as a robotics problem, it embodies princi­

ples of a widely applicable methodology. There exist many applications in indus­

try, science, business and elsewhere in which processes behave in accordance

with vector space definitions and in which a sufficient (i.e., adequate, though not

necessarily optimal) setting for some param eters m ust be known in advance to

assure the success of the process. Typically, the forward process transform is

easy, but the solution of the matrix equations for the inverse transform (which

would allow the a priori setting of the parameterization) can not be found be­

cause of the existence of non-invertible matrices in the system equations due

either to singularities or under-determined systems. The adaptive method of

learning a representation of an inverse transform may be of wide and profound

interest to other industries and disciplines.

156

6.2 Consonance W ith T ra d itio n a l
N on -linear A pproach es

One of the most powerful features of CMAC is its adjustable local generali­

zation capability. This local generalization capability allows systems like ART-

FORMS to extend the traditional methods of non-linear analysis around stable

operating points. ARTFORMS is consonant with those methods, and allows

multidimensional models to be constructed th a t by their very nature act linearly

around any operating point.

The "traditional" method of dealing with a non-linear plant is to develop

the differential equations of the plant, determine what are stable operating

points of the plant, and then linearize the equations and discuss the approxi­

mating properties of the resultant linear system. The assumption is then made

tha t the plant will never leave a state space region around a stable operating

point, and so the non-linear nature of the plant's operation far from th a t operat­

ing point becomes moot.

A CMAC, like a computer memory, is a non-linear system. (See section

A. 1.1.4, page 175.) The CMAC delta rule is, however, a linear operation when

viewed at the same operating point each time. Segee f92] talked about spectral

methods of viewing the effect of CMAC training over a range of points, and used

that view to explain observed slow learning scenarios for CMACs. In his discus­

sion, he found that the Fourier transform of the profile of the receptive field

(linearly tapered in the system under discussion here) explained the slow learn­

ing phenomena, because it had spectral nulls a t harmonics of 1/C. An [’91] and

Carter [’90] found th a t slow learning occurred whenever the spatial frequency of

the exemplar function was a harmonic of 1/C. My experiments performed during

the research reported in Carter [’90] indicated tha t whenever the spatial fre*

157

quency of the function was at one of these critical frequencies, the read-out of

the CMAC representation exhibited aliasing and erratic results with rather high

amplitudes, ra ther th an exhibiting an absence of high frequency content. Thus

the patch plots in Appendix D, by virtue of having no exhibition of higher spatial

frequency content th an 1/C indicate th a t there probably is no such content. This

means that, since all the observed patch plots exhibited features th a t fell within

the extent of a single receptive field, then the learning capability of the ART­

ISTS CMAC should be undiminished throughout the system’s operating range,

as has been repeatedly observed in practice.

Taking this evidence together, I hazard to suggest, in the absence of a rig­

orous development, th a t this CMAC based learning system and ones like it can

reliably and stably build models of control surface representations provided tha t

the CMAC meets the spatial frequency constraints just discussed, and the out­

puts developed cause a generalization slew rate th a t is small. (See section

4.8.2.6.) If the generalization slew rate is such th a t a small fraction of the recep­

tive field width is traversed in stepping from one iteration to the next along a

trajectory, then we are assured th a t each incremental training step will linearly

affect its immediately subsequent neighboring step via the delta rule. Since we

can see by inspection of figures D .l through D.8 th a t the shape of the control

surface function is very nearly linear over sub-patches th a t are - 10-20% of the

extent of a receptive field, this linear averaging is highly appropriate. By the

time the operating point has moved sufficiently far along the trajectory th a t a

distinctly non-linear relationship exists between the current "patch" and its an­

tecedent along the trajectory, a new and distinct set of weights are being used

than were used by th a t antecedent. So every point along the trajectory is in a

158

sense operating the delta rule within a linearized region of the overall control

surface.

6.3 A d a p tive C ritics

The training critic discussed in section 3.2.4 is a fixed law module that cri­

tiques the adaptive steps, i.e. steps taken on the advice of the adaptive estimator

(the LTM CMAC), to see if it is appropriate. The fixed law it uses is a simple

analytical model of the forward mechanics of the articulator. It would be a sig­

nificant improvement to the system under discussion here to replace this mod­

ule, as well as the heuristic critic of section 3.2.3 with adaptive critic1 modules

that do not know the exact forward mechanics of the plant.

Section 4.8.12 argued that the system shows sufficient robustness to be

able to tolerate such a change in architecture, but for future work, the actual in­

stallation of one would be a significant area of study. As an aid to future re­

searchers, a suggested implementation is outlined below.

6.3.1 A Desism for an Adaptive Critic

Figure 6.1 outlines a module tha t replaces the analytical forward model

used by the heuristic and training critics described in chapters 3 and 4. The only

difference between the heuristic and training critics in the context of figure 6.1

is that in the former case data from a heuristic source is input, and in the latter,

data from the LTM is input to the critic. The critic consists of two CMACs, a for­

ward model CMAC and a confidence CMAC, implemented in parallel data paths

] Note ihai this is intended to refer to a "generic" concept o f an "adaptive critic" which is distinguished from
Paul Werhos's ['90 | more restricted definition o f an adaptive critic. Here, I am simply denoting a module
that is adaptive and whose purpose is to critique actions.

159

success failure

 v q
t

LTM CMAC

180°

CONFJDENCE
CMAC

90, adj.

hand divergence
limit, adjusted for

uncertainty
90. nom.

nominal hand
divergence limit

ROBOT

Target
Computation

Figure 6.1: An Adaptive Critic Module

and interconnected in a fashion such tha t the confidence CMAC influences the

way the system interprets the output of the forward model CMAC.

Every time the robot is activated, the input to the robot is also applied to

the forward model CMAC, and the robot’s response to the input is used as the

forward model’s training exemplar. Take note th a t this is a single valued, non-

redundant transformation, and can thus be learned quickly and reliably by this

direct inverse method.

In the ill-fated implementation of Chapter 3, a "distributed plasticity"

CMAC was implemented for the purpose of providing a learning rate for another

160

CMAC with which it was interconnected. In this case, however, the distributed

plasticity CMAC becomes a distributed confidence measure for the adaptive for­

ward model. It is a "grain of salt" generator, if you will, th a t tells the system (as

a function of state space location) just how reliable the forward model is.

Recall now how the heuristic criterion works. There is an "allowed cone"

angle, cp^, which defines by how much the hand may diverge from the desired

(8;t,8y) target direction vector. If a prediction of the forward model falls outside

that cone, the step is deemed a failure. Suppose the critic is very bad. In such a

case, the critic may tell us tha t a move is a failure when in fact it is fine. This is

not a happy occurrence, because that move will be rejected as a training exem­

plar and if many such failures occur, learning will be very slow. If the critic tells

us that a move is a success when in fact it is bad, then we may temporarily learn

to do the wrong thing. The former case is worse than the latter because, in the

latter case, we are at least learning something and eventually, as the forward

model improves, we will more and more often learn the "right" thing. So the best

policy is to be very gullible at first, and as the critic becomes more knowledge­

able, be more and more restrictive. The method used to implement this is to ex­

pand the allowed cone to encompass any angle if the confidence CMAC reads out

a zero value (indicating a naive critic) and use the predefined 9^ value as the

outer limit of the allowed cone if the confidence CMAC reads out a 1.0 (indica­

tive of a near perfect forward model). So there is a new variable value of 9qq,

called 'Pgond;’ *s a ^near function of a, the output of the confidence CMAC,

161

and has boundary conditions of 180° and tp^. Solving for the boundary condi­

tions of

^90 ad;
f 180° if a = 0

^90 if a = 1-0

gives rise to the equation

%><«#• 180“ ' a 18°° + ° ' ’’90

which is the dataflow module in the lower right hand part of figure 6.1. This

adjusted angle is compared to the difference between the outputs of the target

computation (the desired direction) and the critic, in order to generate a success

or failure signal.

Early in the training session, the critics will make lots of mistakes and this

will obfuscate things, but in fairly short order these mistakes will decrease in

frequency until they eventually go away entirely. In section 4.8.12, we saw that

the ARTFORMS-2 system was very tolerant of artificially imposed obfuscatory

noise injected into the critic that never went away. We can be reasonably as­

sured, then, th a t the noise the adaptive critic imposes on the system, which de­

creases over time, will be less troublesome than the former noisy critic. The

prediction I hazard to make a t this point is th a t once implemented, ART-

FORMS-2 with an adaptive forward model critic will perform as well as the

ideal ARTFORMS-2 with an analytical forward model critic, but will be com­

pletely independent of knowledge of the analytical form of either the forward or

inverse models! This, of course, makes the issue of a reversible plant require­

ment moot. (See section 3.2.3.1.)

162

6.3.2 Usinsr Workspace Position Rather Than Orientation

The point has been made by numerous researchers, like Houk f92], Hogan

[’92] and Massone [’89], tha t target endpoint information is what drives real

muscular activation systems. This may m ean th a t ARTISTS can be improved

upon by making a modification that replaces the direction cosines in the input

vector by absolute coordinates of the target. Such an approach is outlined in sec­

tion 5.4. ARTISTS was designed to use direction cosines because it originally

seemed an obvious, easy, consistent and uniform mapping, and it spanned the
o

necessary space . More discussion of this is found in section 7.2 on page 166.

A cursory attem pt at endpoint control produced results tha t were not con­

clusive. In general terms, the error metrics did not converge as nicely as for the

case of target directed direction cosines, and the critics did not go dormant, they

just contributed less and less over time, which is not sufficient. My assumption

going into tha t experiment was tha t since ARTISTS was tailored to the solution

with direction cosines, expectations of a success by simply changing the map­

ping was overly optimistic. So tha t too is left as an effort for future work. If it

can be accomplished, this would make the extension of ARTFORMS obstacle

avoidance into a larger class of problems (consisting of those problems men­

tioned in section 5.4) complete.

2 ii has the same number o f degrees o f freedom as the arm plus the target position.

163

CHAPTER VII

C onclusions a n d F uture Work

7.1 C onclusions

These major conclusions were formed in this dissertation:

• Multiple CMACs can be used to model complex systems in a
subsumptive fashion. Spatially distributed representations in one can
indirectly affect the other. Examples are:
• spatially distributed plasticity,
• constraint representation for obstacle avoidance, and
• spatially distributed confidence measures.

• Direct inverse methods can be used very effectively for redundant
systems, given (1) local generalization and (2) on-line training.

• Goal directedness can be forced on direct inverse methods via
constraints whose goal is to reduce the dimensionality of the problem.
The result is a robust system. This reduction of dimensionality via
constraints is probably the root cause of Jordan 's forward model
successes.

• It is possible th a t by increasing memory size by as little as 1 vector can
result in a measurable change in function approximation accuracy with
CMACs, under certain conditions.

• The use of CMACs in control systems can be viewed as consonant with
and an extension of the traditional method of non-linear control via
linearization around stable operating points

164

Some more minor conclusions were also made:

• There is a loose linear upper bound on hashing collision damage for
CMACs.

• The summation of CMAC address coordinates th a t have been
uniformly randomized distorts the distribution of the randomized
samples from uniform to near Gaussian.

Finally, some slightly speculative results were also asserted:

• A Lyapunov stability argum ent seems to hold for ARTFORMS-2
trajectory formation, and a rigorous proof may be possible.

• The ARTFORMS-2 system is robust in the presence of noise and this
discovery led to a persuasive (though untested) design for a system
based on an adaptive critic th a t will be entirely model independent.

7.2 F uture Work

Future work for which this dissertation set the stage includes:

• Installing Adaptive Critics: In section 6.3 the notion of installing
adaptive critics was discussed. The current implementation is really an
idealization of a practical implementation of the ARTFORMS
trajectory planner. By removing the analytical forward model, the
construction of a fully general adaptive planner for simple planar
kinematics is complete.

• Installing Smoothness Constraints: Installation of smoothness
constraints with stiffness and/or momentum term s as discussed in
section 4.7 should be implemented to determine how effectively they

165

improve (or thw art) convergence of trajectory formation. This should be
especially helpful for long kinematic chains.

• Using Endpoint Control: The minimum dimensionality of an input
space m ust accommodate every im portant aspect of the input data. In
the case of ARTISTS, tha t dimensionality is 2+n for n joints. At any
point in the state space, the posture (and thus the hand position) is
well defined by the n joints, but the sta te space input vector m ust have
2 additional coordinates like (bx, by), which provide disambiguation for
the case where two trajectories cross in the hand space, and thus have
equal joint postures, to define two distinct trajectories in the input
space upon which those two points lie, for the case of two distinct
targets. If the values of (5:*; Sy) are not equal for these two points, then
we may rightly expect th a t these represent two points upon 2 distinct
trajectories aimed at different targets even though the postures are
equal. This seems to infer th a t the representation spans the necessary
vector space of the problem. It is an open question whether absolute
target position ra ther than direction cosines will suffice for tha t
spanning. Clearly, the number of dimensions is sufficient.

• Construction of a rigorous Lyapunov stability proof for trajectory
formation within the ARTFORMS-2 system.

• Multiple cooperating ARTFORMS-2 systems th a t have binocular vision
input for depth perception, more sophisticated obstacle recognition and
can operate multiple cooperating arms in 3 dimensions.

166

APPENDIX A

Future Directions: A Longer Term View

The next logical step in this research progression is to put ARTFORMS

into context, and to broaden the scope of this research to consider a more inter­

disciplinary approach.

A.l Two Differing Approaches for
Interdisciplinary Research

There are two possible directions a biologically inspired motor control

paradigm may follow: a philosophical approach and a physiological approach.

The philosophical approach receives deep biological inspiration and insight

and proceeds to design on engineering principles which then operate more or

less open loop with respect to physiology, once the initial inspiration is complete,

This method is exemplified by Albus's [’81] approach.

The physiologist’s approach is exemplified by Houk [*90], who persists in

adhering to physiological models throughout. The agenda here is clearly first the

goal of explication of real neurological systems and only secondarily, engineering

systems.

Another approach, the analytical approach, which contains a "symbolic AI

approach" as a subset, is a variant of the philosophical approach. This may take

a cue from nature, or it may proceed entirely from a mathematical formalism,

but it usually attacks a problem at a very high level. The objective becomes to

use whatever means are a t our disposal to assure as nearly optimal performance

167

with as nearly minimal time complexity as possible. A problem th a t arises is

that these two requirements are strongly a t odds with one another. The result is

often neither a satisfying application nor a palatable computational budget.

The former two methods are in some ways qualitatively more powerful

than the analytical approach because they build on evolutionarily proven sys­

tems, without having to reinvent evolution in a bottle, as genetic methods do,

which is computationally burdensome. Evolutionary successes can be very in­

structive engineering parables for the control theorist and engineer. Some adap­

tive control theorists have argued against emulating nature in complex systems

for a num ber of good reasons. For instance: nature is very inefficient and so

blind adherence to models that mimic nature risks inefficiency. Our counter-ar­

gument to this class of objections is th a t there are cases where a system m ust be

designed to be fault tolerant of crude, inaccurate components used in a system

in an effort to be frugal, and there are cases where long time delays in systems

cause problems that can be ameliorated by "quasi-feedforward" methods that

mimic Houks cerebellar model.

I am not saying th a t "no engineering solution exists th a t can not beat evo­

lution a t low cost with a lower resolution", nor am I saying th a t the "evolution­

ary way" is the only way. It is just simply the case tha t if a system must tolerate

crude components (because tha t is what a cheap design has forced upon it) those

inaccurate, noisy, low resolution components pose a problem for the system. Na­

ture has had to handle just those sorts of problems because biological compo­

nents are inaccurate, noisy and low resolution. One solution (perhaps not the

only one) tha t has worked with a low computational budget (since no computers

were involved) is the "quasi-feedforward" solution postulated by Houk. Systems

168

like mine are very similar in strategy, not design, to Houk’s, by providing an

adaptive feed forward predictive capability in place of tight loop feedback con­

trol. Another argument in favor of these kinds solutions is th a t well designed

analytical solutions will not likely be as portable from one implementation to

the next unless they are highly adaptive and try, via this adaptivity, to be gen­

eral purpose solutions, ra ther than each being specifically tailored to a given ap­

plication. This latter point suggests th a t analytical solutions may have problems

just from one manufactured unit to the next because of loose tolerances making

these different units start to look like different designs.

Finally, the innate time delays of complex systems have deleterious effects

as mentioned in section 2.5.2.1, and again, nature has dealt with these problems

using solutions like Houk’s quasi-feedforward processes.

A. 1.1 Moving Toward More Biologically Inspired Systems

A. 1.1.1 The Philosophical Approach . First, we would like to consider

some obvious extensions of ARTFORMS under the philosophical approach in­

tended to develop cerebellar methods th a t can subsume higher level functions.

At the least these would include:

• the fusion of multiple ARTFORMS systems to plan for
multiple articulators or other mechanisms.

• the addition of more useful vector representations of
articulators’ joint spaces, e.g. from vision data extracted from
an image processing system th a t gets input from a binocular
vision system, facilitating 3 dimensional postural perception.

But the ultimate target of this method would be to develop systems that

resemble Albus’s three level hierarchy of the mammalian brain (Albus [*81], p.

169

184). MacLean [’73] and others have postulated a triune brain hypothesis in

which higher levels in the hierarchy exert control on lower ones by inhibition of

innate primitive behavior tha t left alone would proceed in a feed forward fashion

(for instance Brooks’sr88] walking behaviors).

The hierarchy consists, a t the most primitive level, of the reptilian brain,

with an old mammalian brain in the middle, and finally a new mammalian

brain occupies the uppermost layer. ARTFORMS now operates a t the old mam­

malian level with incursions into the reptilian level. The Miller/Glanz/Kraft con­

troller might be said to operate at the reptilian level. If your view of reptiles

precludes adaptivity, consider Brooks's modified FSMs as an example. MURPHY

(Mel [’90]) operates at the new mammalian level.

It is possible to extend spatially distributed param eter systems similar to

ARTFORMS well into the new mammalian level. What ARTFORMS is missing

is something like a parametric understanding of back-track search. Tb develop

this, some sort of time history capability m ust be developed.

The incorporation of a more sophisticated Purkinje cell model in the

CMAC implementation to conform Houk's (Houk [’89,’90,’91], Sinkjaer [’91]) ob­

servation of a hysteresis loop involved in Purkinje deactivation might be a valid

approach: delaying the deactivation of receptive fields in CMAC would cause

some "smearing" of the receptive fields along trajectories rather th an just having

a fixed generalization around any state space point as if it existed in static isola­

tion from the dynamics of the system. The result of this time delayed deactiva­

tion might be faster learning of trajectories and a better capture of the dynamics

of the motion of the mechanism. Such a method of smearing the generalization

region would tend to potentiate movement commands when arm velocity is

170

large, which seems appropriate. However, this low level modification may not be

necessary, and further, it would only capture past time history, whereas a

method of forward prediction is desirable as well.

A.l.1.2 T em pora l L o o ka h ea d M ethod . Consider figure A.I. In this

section, a method of using CMACs to implement a temporal lookahead method

t (‘+*0 Time
* * N .

x(t) ! x(t+£.t)

/ (•)

^ — > J (X (0) I

AjJX(x) AJJX(x)

Figure A.l: First Order Temporal Lookahead Method

will be discussed. Temporal lookahead is similar to Sutton's temporal difference

method in that multiple networks are used to learn the temporal consequences

of actions, i.e., what outcomes result from those actions. To have a single time

step lookahead, two CMACs would be required; to have an n step lookahead,

n+1 CMACs are required.

By contrast, Sutton’s temporal difference method would train the new in­

formation into the same network. The latter method is appropriate for dynamic

programming solutions where an action is thrown out based on a reduction in

171

cost of a newly searched path through the given state space point, bu t the tem ­

poral lookahead method does not throw out the prior actions, ra ther it keeps a

complete (spatially distributed) "tree" of consequences active, so th a t multiple

policies can be used to search the same state space. Note in figure A .l th a t nei­

ther x nor f are explicit functions of time, because the CMAC models here model

autonomous systems. The AUX CMAC learns the implicit time relationship be­

tween adjacent steps along the trajectory.

The final suggestion for building on the philosophical approach is to at­

tempt, to mimic Houk’s [’91] quasi feed-forward control. (See section 2.5.2.1 on

page 36.) Moderation of predictive and proprioceptively sensed state information

can lead to alleviation of problems related to the deficiencies of closed loop feed

back control in the presence of obstacles. A feedback system, when thwarted,

tends to "push harder" to move its plant under control toward a target. Houk

lias determined that there is an innate cerebellar/brainstem mechanism th a t a r­

bitrates the problem of when to push and when to give up. Such an additional

feature would strengthen the practicality of ARTFORMS, because currently,

ARTFORMS assumes a benign environment: it assumes th a t the reinforcement

signal will arrive in time to prevent system damage, an assumption th a t is

clearly naive from an engineering viewpoint! Section 4.4.1.2 addresses this issue

to a limited extent, however.

A. 1.1.3 The P hysio log ica l A pproach . Second, (a "first" was in section

A. 1.1.1!) it would be interesting to apply our methods to Houk’s model, rather

than moving Houk’s ideas into an ARTFORMS venue, in order to follow the

physiological approach.

172

In this proposed research, I suggest th a t CMACs be used to model the

Purkinje cell response in Houk’s model. He postulates a positive feed forward ac-

d iffu se a m in e rg ic
in p u t

c lim b in g fib e r granule cell

sensory inputs

(l) = lateral reticular cell

@ = red nucleus cell

rubrospinal -> motor commandssen so rim o to r cortex

(p) = purkinje cell

= basket cell (n) = cerebellar nucleus cell

Figure A.2: Cerebellar Adjustable P a tte rn Generators
(after Houk [’90])

tivation loop comprised of the cerebellar nucleus, red nucleus and lateral reticu­

lar nucleus. In his model, motor commands leave the red nucleus and predictive

data is fed back into the loop via efferent copy from the lateral reticular nucleus

which then merges with proprioceptive input to the Purkinjes. The Purkinjes in

turn modulate the loop’s output by an inhibitory projection1 onto the cerebellar

nucleus, whenever they are strongly selected by the predictive and/or proprio­

I Noic the recurrence of ihe inhibitory control theme, as in the triune brain hypothesis.

173

ceptive dataflow via the parallel fibers. See figure A.2. Under the current Houk

model, Purkinje cells are trained by climbing fiber inputs, bu t each weight ad­

justed by a climbing fiber represents a term in a weighted linear summation. If

the projection onto the cerebellar nucleus is also linear (or even a fixed non-lin­

ear relationship), the model cannot handle the general case of a neuromuscular-

j unction/muscle response characteristic tha t is force-context variably

non-linear2. If Houk’s Purkinjes were replaced by CMACs, leaving the rest of

the loop model essentially untouched, a force context variable non-linear re­

sponse could be modeled. This would at the very least allow for a more realistic

arm rotation model, because the assumption of linearity of the muscle force ver­

sus 0 that he used was an unrealistic assumption.

One approach for this model would be to allocate one CMAC module for

each muscle or muscle group. So each of these CMACs models a population of

Purkinje cells th a t ultimately control the innervation of th a t muscle or group.

This gives rise to the notion of neural modeling by field effect mathematical

models rather than discrete neuron models as discussed in the following section.

A. 1.1.4 The F ie ld Ef fect M o d e lin e o f N eu ro n P op u la tio n s. The

field of neurobiological research is a t a crossroads, not just as relates to motor

control, but to memory storage and retrieval issues at large.

It should be obvious from the reading of this dissertation th a t I consider

the "non-linear" approach taken by the connectionists to date as a generalization

of the idea of a computer memory. Perhaps we could view this the other way

around, in view of the controversy th a t took place in the late thirties and early

2 In other words, it has a non-linear response that is variable and the nature of the variability is dependent on
a spatially distributed force parametric field..

174

forties between neural networks and Von Neumann advocates. The Von Neu­

mann camp sought to and did mold the direction of 50+ years of computer re­

search and development. The Von Neumann computer architecture could be

viewed as a high resolution abstraction of the idea of neural network memory.

The effect of this abstraction is th a t the quality of generalization is abandoned.

The result of a non-linear system like a computer memory is th a t complete isola­

tion of granular concepts is accomplished. A natural neural network can not help

but smear information, by virtue of interaction of storage elements. The Von

Neumann architecture however is the ultim ate non-linear device: there is abso­

lutely no guaranteed relationship, linear or otherwise, between the inputs (ad­

dresses) and the outputs (data) tha t remains the same between any one

"training pair" and another.

So now, the pendulum swings the other way and connectionists seek to

build systems th a t move away from the "discrete bucket" design of a Von Neu­

mann architecture and toward a "smeared" representation.

It seems in this view obvious tha t the reasonable approach of building neu­

ral models from scratch without the Von Neumann model from which to general­

ize might be the diverse "bottom up" approaches of MLPs, Hopfield nets,

Kohonen nets, ART-1,2, or 3, etc. All these methods take a microcosmic view of

the network and try to build one by building individual neuron models and con­

necting them together. This would have been the logical approach if the neural

networks camp had prevailed over the Von Neumann camp in the forties.

We are better off in the nineties, however, and it seems retrograde to go all

the way back to the McCulloch-Pitts model for anything but conceptual inspira­

tion. The CMAC architecture takes the modem approach: given the Von Neu­

175

m ann architecture, which is thoroughly discretized, how can we build a network

that exploits the developments of the last 50 years and yet seeks to overcome

the total isolation of stored elements tha t the Von Neumann architecture im­

poses on memory. The result is th a t we build a memory th a t is non-linear in the

same sense tha t a Von Neumann memory is non-linear, i.e., it is a computer

memory of sorts. In local areas, however, a relationship is imposed on the con­

tents of the memory tha t may be linear or it may be non-linear, but it is consis­

tent and applies to all the state space that the memory defines.

What we define in such a system is a field model of a memory. Consider

the definition of a field in Marshall [’87]:

"A field is defined as the mathematical specification, in
terms of position variables and time, of a physical
quantity, such as temperature, in a given region."

This is an intuitively satisfying definition of a field th a t is easier to resolve

with the current argument than the more rigorous one found in many m athe­

matics texts like Adler [’67] as an extension of the mathematical concept of a

group, which is in tu rn an extension of a ring. It can be seen th a t a CMAC as

viewed in figure 3.5 fits the definition. In fact, the iterative method of solving

LaPl ace’s equation using nearest neighbor averaging bears a lot of similarity to

the CMAC method. The difference between the two methods is th a t the CMAC

method attem pts to build a field representation of whatever is presented to it

and the NNA algorithm can simply be shown (Noble [”67]) to approximate as

closely as desired any field th a t obeys LaPlace’s equation. In both these m eth­

ods, a local field value is asserted at each mesh point, and the conglomerate ef­

fect of many such training instances is that this local field effect propagates

outward from each training instance until its effect becomes negligible.

176

One might well ask: W hat this has to do with neurophysiology?

Simply this: Neurons have local effects. They also have spreading global

effects as they innervate target populations, and as neighboring ones intercon­

nect. It should be possible to build field models of the global effects of these neu­

ral projections, based on specific postulated microcosmic hypotheses about

neural function. It will be much more feasible, given the current state of the art

in computation to try and build models, like CMACs, tha t can "virtualize" the

concept of individual neurons in field effect models of neuron populations and to

study the net effect of the superposition of these field effect models. The macro-

cosmic observation of these net synergistic effects may be a much more effective

way to vindicate particular microcosmic hypotheses than the discrete implemen­

tations of the microcosmic mechanisms in a computer model tha t (again, given

the current state of the art) is not implementable, or whose implementation is

unsatisfying in its simplicity.

The suggestion is then that 2 approaches be taken:

• 1. Build macroscopic field effect models of postulated
microscopic structures within the neuron (like dopamine
receptors, for instance) and observe the effect of these fields
taken in superposition with other postulated models, e.g.
initiation of motion in a Parkinson's disease model or the
degree of trem or induced in a Huntington’s disease model.

• 2. Build macroscopic field effect models of postulated CNS
structures. For instance, if we built a field effect model of the
cerebellar cortex, and connected it to a loop of modules
modeling the field effects of the red nucleus, cerebellar nucleus
and the lateral reticular nucleus we could observe the
macroscopic behavior of these modules taken in cooperation in

177

an architecture th a t connects them together in ways th a t we
postulate occur within the CNS. We could then observe the
motor control capabilities of such interconnected modular
systems. We would then build each module through
architectural decomposition as in approach 1.

Why might these approaches work? Consider the field of electromagnetics.

Since Maxwell’s introduction of his equations describing electromagnetic fields

in the 1860’s, we have enjoyed more than a century of success in studying elec­

tromagnetism, guided largely by these simple equations, which are founded on

models of atomic particles th a t in view of today's knowledge of quantum me­

chanics are incredibly naive, perhaps as much so as McCulloch-Pitts is a naive

model of the neuron.

Another case history is Miller [’78, ’78a]. He described cardiac function us­

ing a field effect model based on volume electrical current density. This model

was based on differential elements which were naive models of electrical activity

in cardiac muscle cells. This approach predicted activation waves across the car­

diac muscle and EKG readout tha t matched clinical observations very accu­

rately.

Francis Crick [’89] argued that we need to concentrate on every detail of

actual neurons without wasting our time building networks of simple naive
Q

models like perceptrons . Maybe this argument should not be thrown out en­

tirely, any more than it should have been argued during the early 20th century

tha t the quantum physicists should cease and desist because we had not yet

.1 hi ill 1 fairness, his principal argument was against the back propagation algorithm, and there, his argument
is hard to refute!

178

enumerated all the implications of Maxwell’s equations. If they had, we might

not have gotten around to understanding sub-atomic mechanics until well into

the 21st century. But similarly, we should not concentrate exclusively on the mi­

croscopic, bottom up approach, because if we wait to view complex neural sys­

tems behavior until the microscopic knowledge is fully enumerated and until

computer science has evolved to the point of being capable of modeling large

scale systems based on the results of said research, none of us alive today will

ever see a truly neural-like complex system under study!

In summary, I advise a dual approach: two camps should cooperate, one

elaborating on microscopic mechanisms, the other on field effect macroscopic

models. If postulations of one camp can be converted into implementations of

features in the other’s models, we might see development in the field of neuro­

physiology paralleling that in physics. In physics, engineers continued to de­

velop elaborate communications and transportation systems based on Maxwell’s

equations while the quantum physicists amended and generalized these equa­

tions based on sub-atomic hypotheses and experimental vindications in the lab.

Many of these amendments have found their ways into practical engineering

systems. If we can emulate the physics research model, someday we may hope to

be knocking at the gates of a universal field theory of neural activity, much as

today’s physicists still hope to do in the place where field theorists and quantum

mechanics theorists get together.

179

APPENDIX B: An analysis of the probability of hashing collisions.

T h e p ro b ab ility o f A N Y co llis io n b e tw e e n 2 ra n d o m in p u ts is:

fo r m ~ 500,600 . 20000 , P a(M ,C) = / -
(A f-C)

M

0.999844

Pa{m,8)

Palm ,32)

PcAm ,64)

0.00319552
500 m 20000

F ig u re B . 1: T h e P ro b ab ility o f Any C o llis io n s B e tw e e n 2 R a n d o m In p u ts

N o w , g iv e n C is th e g e n e ra liz a tio n p a ra m e te r, o r th e n u m b e r o f m em o ry ce lls in a C M A C

re cep tiv e field. M is th e to ta l n u m b er o f m em o ry cells, th en

(V V
; j is th e p ro b ab ility o f p ick in g o f C o f th o se e lem en ts (w ith re p la c e m en t) fro m a C
\ M l

(M - C
sized su b se t o f M th ings. \ ^

C - N

is th e p ro b ab ility o f th e o th e r C -N ch o ices ,

w h e re th ey a re N O T in th e C sized su b se t, b u t a re e lse w h e re in th e M sized se t.

C!
Finally, since th e re are w ays to p ick all c o m m itte e s o f N e le m e n ts o u t

\N\ {C - N)\,

C th ings, w e have th e P ro b ab ility o f ex ac tly N co llis io n s b e tw e e n 2 ra n d o m in p u ts

Pn(M,C ,N) , -
(M - C)

M

C - N c\

Figure B.2 shows a plot o f this quantity.

180

1.5-10I-10
m

5000

F ig u re B .2 : T h e P ro b a b ility o f Exactly N C o llis io n s B e tw e e n 2 R a n d o m In p u ts

T h e p ro b ab ility o f A NY co llis io n b e tw e e n ran d o m inpu t an d e x is tin g tra in in g is sim ilar to the
above , bu t in ternally , th e ro le o f C in th e ab s isscas ab o v e is ta k e n by th e q u an tity : u = U/M,
w h ere / / = the n u m b er o f v e c to rs u sed in th e c u rre n t m o d e l, an d M = th e to ta l physical

m em ory v e c to rs availab le .

Ec(m ,u ,C) ■ =] - (! - m)

u = 0,.0J ...4

!

Ec(5000,u ,32) 0.5

0
0.2 0.3 0.40 0.1

F ig u re B .3: P ro b ab ility o f C o llis io n s F o r
A ny N e w R a n d o m Inp u t

T h e re is a d e p e n d e n c e
o n g e n e ra liz a tio n , b u t no t

o n p h ysica l m em o ry size.
T h is re so n a te s w ith o u r

ex p e rien ce th a t has
sh o w n u s th a t w h e n e v e r
m em o ry sa tu ra tio n

e x c e e d s ap p ro x im a te ly
3 0 % , p e rfo rm a n c e

d e g ra d e s b e c a u se
h ash in g co llis io n s

b e c o m e p reva len t.

181

For systems like ARTISTS and ARTFORMS, this 30% upper limit on memory is not very
worrisome. There are 2 factors which ameliorate the problem:

1. Only "active" memory usage is important. Any state space that was visited during
the process o f converging to a solution but subsequently was not revisited during the
execution of the solution trajectories will simply be overwritten by new experiential
data. This means that hashing collisions resulting from old training data gradually will
be attenuated by new training just as old coherent training will. The degree to which
one wishes to preserve old training data in the face o f new novel data is controlled
by adjusting the memory size to be large enough to fit the complexity of the
trajectory ensemble expected. In the body of the thesis an experiment was
performed to demonstrate how the memory usage drops off significantly after
training o f trajectories has converged.

2 The ARTISTS architecture includes an adaptive critic that evaluates a proposed
move. If the move is not appropriate, a heuristic is used to generate an appropriate
approximate move which, upon being trained into the system, will cause the
inappropriate move to decay away via re-training.

Concerning both these two points, it is noted that the system has already been shown to be
robust with respect to memory size. The following analysis will further substantiate a claim
that we need not worry about hashing collisions, given that memory size is set for a
"reasonable" value. The rule o f thumb to use here is just that common sense prevail: if
possible use 20,000 vectors rather than < 10,000 vectors, if the memory is available. If not,
just be aware that potential problems may arise.

For the remainder of these examples, u and C will be fixed. C will be set to a value that will
be similar to a nominal value used in the arm experiments, and u will range from "naive" to
fully saturated memory.

Cs 32 u - 0 , . 0 1 I

The probability o f exactly N collisions between random input and existing training is a
binomial distribution:

Pc(it ,N) = (u)N (J - u f ~ N (C !)

(M -(C-A 0!)

which is analogous to the function P ti(M ,C ,N) derived above.

182

We'll compute a few of these to see what they look like:

P C (u) -- P c (u , 3) P C l (u) -- P c (u , 6) P C 2 (u) = P c (u , 1 6)
P C 3 (n) z P c (u , 2 4) P C 4 (u) --P c (u , 3 0) P C 5 (u) = P c (u , 3 2)

0.8

PCl (u)
0.6

0 4

PC5(u)
0.2

0.8 10.60 0.2 0.4
u

Figure. B.4: Probabilities o f N Collisions for New Random Inputs
(and existing old data)

Finally, the expected number of collisions between existing training and random input is just
the sum of P c(u) x N for all N from 1 to C.

C!
n \ (C - n) \

■n
n

It’s to be expected that the binomial "humps" on the right side o f the plot o f£ C will be
amplified and the ones on the left will be relatively attenuated in the multiplication by N, so
we’d expect the sum to be a monotone increasing fimction o f some form, but surprisingly,
this expected value function turns out to be just the linear quantity, uC, as seen in figure B.5.

183

3

2

EC(u)

I

0
0 0.3 0.4 0.6 0.8

u

Figur. B.5. Expected Value o f Number of Collisions for a New Random Input

This means that we can expect performance to degrade a t w o rst linearly with increasing
memory usage, (or decreasing memory size). By "at w o rs t”, I mean that the expectation
plotted above holds for random inputs, which on average are unlikely to overlap due to
valid generalization interaction. However, if the inputs are from an ensemble o f training
instances that are highly correlated, (as in an ensemble that forms a spatial trajectory), there
is a strong expectation that most of the state space visited by the trajectory is the result of
multiple overlap of receptive fields. This means that happenstantia! collisions will will be
better tolerated than if the inputs were all intended to be parts of discrete state space
regions as might be the case with, for instance, a pattern classification problem with many
distinct classes and few members in each class.

The probability expressions above are from unpublished results associated with [Miller,
'90b, ’90c], These expressions were used with random input data to validate the hardware
CMAC design and vindicate the equivalence between the hardware and software designs.
The result that the expected number of collisions is a linear relationship in m is a new result.

The only proof o f the new result I've been able to construct is rather messy. A summary of
the proof follows. The insight required is to note that in the summand,

in the sum, only the leading term, Cm, which occurs when when n = I survives. It is the

//! (C - n)l
C!

n is simply the product o f n and the binomial coefficient, n .

only term that contains mA The other terms are annihilated by adding in expansions of

(l-u)C ~n that follow, which have alternating signs and leading coefficients that are also
binomial coefficients. A more detailed treatment is on the next few pages.

184

This is

Ec (u , c) - £ (1-u)'
n = l

C - n (C \
n

proof of

•un-n - uC

the assertion tha t

C -n E a c h ro w h e re a rc c o e f f ic ie n ts o f th e b in o m ia l
C—ne x p a n s io n o f f 1 ~u)

E a c h c o lu m n is a s e q u e n c e

C - 4 C - 5 C - 6 C - 7

0 1 0 0 0 0 0 0 4 u 4 5 u S 6 u 6 7 u 7

1 1 - l u 0 0 0 0 0 1 2 u 3 2 0 u 4 3 0 u 5 4 2 u 6

2 1 -2 u + u 2 0 0 0 0 I 2 u 2 3 0 u 3 6 0 u 4 1 0 5 u 3

3 1 -3 u + 3 u 2 •u 3 0 0 0 4 u 2 0 u 2 6 0 u 3 1'tOu4
*

4 1 -4 u + 6 u 2 -4 u 3 V 0 0 0 5 u 3 0 u 2 1 0 5 u 3

5 -5 u + 1 0 u 2 -1 0 u 3 + 5 u 4 -u 5 0 0 0 6 u 4 2 u 2

6 I -6 u + 1 5 u 2 -2 0 u 3 + 1 5 u 4 -6 u s + u 6 0 0 0 7 u

Table B.l: A rearrangement of the summation of terms for the expected
value of number of collisions

The inspiration for this proof comes from the observation th a t the expan-

sion of (1 -n) ' has as its expansion a binomial series with alternating signs.

185

In the table above, the columns in the right hand half of the table repre­

sent the values of the quantity n-

In the table, each column vector, V, from bottom to top, starting at the head of

'C) u , taken with n=l a t the tail of the arrow.n
\ /

the arrow for th a t value of C. So defining V 4 s V , observe th a t the col-
c - 4

A 0 ^ A 7 1umn vector V = [4u 12u I2u 4u] . The sub-diagonals should also be read

from bottom to top. For any C, ignore all rows for (C-n) S> C, as these rows would

represent negative values of n.

In the expression of E , it is clear th a t each term of (1 - ri)c~n m ust m ulti­

ply with the component, Vn , and this is true for all n.

So if we form dot products, D [V with the n subdiagonals of the lower tri­

angular binomial expansion m atrix on the left, starting with the subdiagonal at

the head of the corresponding arrow and finishing with the m ain diagonal, we

C

can observe th a t the sum • V of these C dot products, for a given value of
i=l

C, is a slight rearrangem ent of the series, for th a t value of C. Only the first

term of the first dot product survives, because the alternating signs along the

other subdiagonals cause the term s of each of those dot products to cancel each

other out. After th a t cancellation, all th a t is left of the series then, for any value

of C is uC.

186

' i i ’-3u" 3u2 '- u 3-
0

+ r 4 1 + r 4 -2 u T 4 u2
0 0 1 -u
0 0 0 1

. Expanding each termExample: Ec - V ‘

for the value, V 4, given above this 4 term series becomes:

u C + 0 + 0 + 0

It should become apparent after hrying this construct for all values of C € (4..7]

and for n e {1..C }, that the pattern persists regardless of the size of C.

This is not a satisfying proof of the conjecture,

C

Ec (u , c) = £ (1-u)
n=*l

C - n r c i
n \ ✓

un-n - uC, but the search for a concise inductive

proof has been in vain so far, and this will ju st have to do!

187

A P P E N D IX C

A Study of the L inearity of Inverse Differential Kinem atics

This appendix describes some analysis tha t predicts a generalization slew

rate of - 11% for parameterization P 4 and of - 20% for parameterization

which is in agreement with experimental results. It also illustrates th a t inverse

differential kinematics is linear in a rather broad sense. This is of course not

true for inverse kinematics.

I will make some simplifying assumptions for the case of a redundant arm

with 3 joints to allow plots to be drawn of the kinematic transform. I assume

tha t the differential joint steps will be equal for all three joints. This reduces the

problem to one with a closed form solution. This is also reasonable in view of

the equi-angle constraint training of the ARTISTS model.

So as not to have to resort to linearization, the inverse kinematics is not

solved. Rather, the forward kinematics is shown in figures C .la and C .lb for

various values of 0.

Now the differential kinematics is shown for varying step sizes in the

traces of figures C.lc and C.ld. The pertinent point to notice in these plots is

th a t the plots seem to be linear scaled versions of one another, for values up to .1

radians. As the increment increases the plots start to separate in phase, but note

tha t 5*dK(0.01) =* dk(0.05) appears to hold as closely as the eye can distinguish.

188

C.l A Discussion of
Generalization Slew Rate.

The param eterization chosen in section 4.8.2 of = (64,4,8,20K) per­

formed well. W hat physical interpretation can be attached to this, and why was

it a reasonable choice? The answers to these questions will aid us in the future

in assigning a parameterization a priori.

In the simulation space, the joint angles were discretized such th a t 1 dis-
T1crete simulation unit (su) = 0.1°. A quantization of 8 , (qnt_vec = [„8,8 ,...]),

means tha t one codon unit change requires a change of 8 su. So 1 codon unit (cu)

= 8x0 .1° = 0 .8°.

In the simulation space, the direction cosines are encoded such th a t the

vector [100,0] - i , a unit length vector in the x direction. If the codon is set by

qnt_vec = [4,4,...] , then 1 cu subtends a hand displacement of 4/100 = 0.04 lin­

ear units.

Now in each coordinate, a receptive field will subtend C codon units. So

two postures will generalize if only one joint changes by an amount of

e 7! -0 '+1< C lcu < 64 0.8° £ 51°i i

or if only one hand space coordinate changes, by an amount

h i - / i j+1 £ 64 0.04 ^ 2.56 linear units.

Of course this is absurd, because the coordinates of the input vector are all

coupled by the mechanical linkage, so no one component is a t liberty to vary in­

dependently. Since all steps are nominally 1.0 linear unit in the hand space,

then all hand moves will be on the order of

189

h i - h i* 1 - 1.0 linear units, (lu).
1 1

In fact, the average vector in hand space should be [7 V2 ,7 V2]^.

h i - h i +l a 0.707 linear units, (lu),
1 1

so an average hand move will cause a receptive field change (generalization slew

rate) of rc-0.04 - 0.707, so n * 0.04/0.707 - 18 cu, per coordinate. Meanwhile, as

the hand moves, so move the joints. To cause generalization to occur between

succesive postures along the trajectory, no more th a t 64 - (2x18) = 28 cu can be

contributed, in toto by the n joints. Thus, if for 3 joints, the joints each move

28— • 0.8°=7.47° then no generalization will occur.
o

How many steps will a receptive field span? The forward kinematics can

be expressed, in general as

n i n i
^(0) = £ l.cos(£ 0 .) (- l)1-1 f + £ U in(£ 0 .) (- l)1-1 j

£=1 ;=1 i=1 7=1

where /. are the lengths of the links, 0 . are the n joint angles, and t, f are theI I
unit length basis vectors of the hand space.

For 3 joints, links of 15 lu each, and equi-angular constraints, this becomes

x = 7^(0) = JjCostOj) - igCosfOj+Og) + /gCo^Gj + 02 + 0g) and

y = K2(0) - Z js in ^) - ZgSinfOj+Og) + ZgSinfOj + 02 + 0g)

These can be simplified using sum of angle formulae to derive the func­

tions K l and K2 of figure C .l, (equations C .l and C.2).

190

0 s 0 ,.0 1 ..2 n

K 2 (0) l5 C (sin (0) - s in (2 -0)) ̂ s in (3 -0)) K l (6) = 1 5 ((c o s (0) - c o s (2 -0)) t c o s (3 0))

6.280 6

19.7333

K 1(0)

-M.9997
6.280 e

a. T he y value o f K(0)
b. The x value o f K (0)

K 2 (0) = -3 O s in (0) -c o s (0) + 6 O s in (0) c o s (0)

K 2 (0) = 3 O s i n (0) c o s (0) (- 1 < -2 -c o s(0)) (C .l)

«.IK2 (0 1 ,0 2) K 2 (6 1) K 2 (0 2) (C .3)

K 1 (0) := - 3 O c o s (0) - 3O -cos(0)2 +■ 15 +■ 6O c o s (0) 3

K 1 (0) ;= 15-(-1 * 2 - c o s (0)) - (2 - c o s (0) 2 - l)

dK 1 (0 1 ,0 2) = K 1 (0 I) - K l (0 2)

(C.2)

(C .4)

0..1..2-X

8.97S62

dK2(<t>,())r .01)

5<iK2(<J>,<t> - .01)

dK2(, .05)

.iK2(4>,(f ̂ . I)

-5.68818

7.99919

dK !(<>,* +■ .01)

5-dKI(<t>,4>i- .01)

dKI(<|>.01- .05)

dKI(<t>.<t>i-.l)

•8.00512

c. The y value o f dK (0) d. The x value o f dK (0)

Figure C.l: Plots (vs. posture and step size) of
flj(0) anddfl{0)

191

As the plots of figure C .l demonstrate, the functions dK. are in fact linear,

(in A0) because the plots of figures C .lc and C .ld demonstrate th a t

dK.(<p,\-dd) - X dK.(<p,d0).
t I

Furthermore, if we note tha t dKg is a maximum a t <)> = 71, then a t th a t value we

can pick the value

dX 2(0 .1) 8.97745

Cp=JC

off the plot of C.lc. Now by trial and error, a t th a t value of (J)=ji , we find a value

of y such tha t the differential step is a unit step, i.e. dy . Reading tha t

value off the plot of figure C.2a, we seek a plot th a t satisfies:

dlr2(y) 0.707

<P=JC

Such a plot exists for A0 - 0.00787 radians = 0.5°. The dx plots give similar

magnitudes.

Figure C.2b and C.3 plot the function | dk(Q) | . More correctly, it is the func­

tion | dk(Q,A0) 1. Figure C.2b is a log ordinate plot which in which it is clear that

this function, k(01,02) in equation C.5, is in fact nearly linear in A0. Figure C.3

shows this function only in the domain from 45° to 180°, which is the region in

which the articulator simulator usually operates. The objective here is to find

that range of A0 which over the domain keeps the step length as near 1.0 as

possible in the hand space.

192

0. 705279

dK2($.<j> -■ . 00787)

-0. 447938

1. 99924

1.0I
, .0001 II 11 I)

k (4 > , 4) t - - 0 0 1 1 L I I I)

k(i)i,<t) f .0111111)

kdt>.* ^ .02222222)

0. 00272716

b. Log plcx of dK for dO giving a move less lhan or equal to unit length

k(01,02) dK2(01,02)2 +dKl{01,02)2) (C5)

0
a. Containing the d6 to a Unit Length Hand Move

Figure C.2: Plots of dscfor, a t Most, U nit
Length Hand Moves

193

The limiting plots are the + hatched and x hatched plots in figure C.3,

which correspond to, respectively, A0 = 0.011 and A0 = 0.04 radians, or A0 =

0.64° to 2.29°. These values correspond to

0.64° ~ 1 codon unit and

2.290 ~ 3 codon units,

so for 3 angles, an average of 2 cu/joint for an average of 6 cu’s is probably a

reasonable if slightly high estimate. But if A0 G (0.64°,...,2.29°), is the change in

hand space direction cosines significant? Since the hand will be directed towards

the target, it is reasonable to assume tha t the angle 0 , of figure 4.111 (on page

111) is small, because the vector s should superimpose on c 151if goal

directedness is achieved. This means the opposite angle, £ , is even smaller yet,

a t least until the hand gets very near the target. At any rate, on average, it is

probably safe to estimate tha t the most activity th a t will be seen in this measure

is a single codon unit, perhaps, due to numerical roundoff and dithering in the

attem pt to keep the hand on a rectilinear path to the target. As the CMAC gains

experience, the change in the direction cosines per path segment should

approach zero. For the record, I did observe this in practice by recording and

displaying changes in the direction cosine components during simulation and

they showed only least significant bit changes between trajectory steps.

Incidentally, this means tha t this pair of coordinates is a strong index for storing

and separating classes of trajectories, because it effectively segregates

trajectories in the state space by orientation of the hand space trajectory!

If the trajectory has significant curvature in the hand space, then the di­

rection cosines will change significantly and affect generalization slew rate,

which is exactly what is observed in the Appendix E plots: Whenever the system

194

<— X— C—*
0.196277

7t

4

For postures in the first quadrant, try to iteratively isolate values of d0 near a
unit length hand move. This will give a bound for d0 that can be used in the
arguments relative to a discussion o f the effect of generalization and
quantization in the input space.

Fig. C.3 | dK | for Unit Length Hand Moves in Q uadrants I & II

is in early training convergence, the generalization slew rate is transiently very

large, and until the hand space trajectory becomes linear, large variance of the

slew rate persists. It is also interesting to notice th a t the slew rate for the six

and nine jointed arms of figures E.3 through E .6 show larger variance in this

metric than the 3 jointed arms. This latter can only be because the hand space

trajectories have higher curvature for the longer arms. It can not be because of

variance in the joint steps, because the stepsize control (AGC) module prevents

this. Again, observation supports this because the longer arms did exhibit more

hand space trajectory curvature than the three jointed arms.

195

So in toto, for the 3 jointed arm, we should see ^ 6 + 1 = 7 codon units

change between steps, or 7/S4x 100 <. 11%, which is about what the plot of figure

4.10, (on page 109), showed. Observing the other plots on th a t page and the pre­

vious page, note tha t by halving generalization or hand quantization, the effect

is to double the generalization slew rate, again, exactly what the above analysis

predicts.

196

A P P E N D IX D

P a tch P lo ts o f R ecep tive F ie ld R anges

In the pages th a t follow, I have included several plots of the range of the

receptive fields of the ARTISTS CMAC under certain conditions, for varying

generalization, memory size, and varying posture. The object is to make some

conclusions to lend credibility to the reasons for success of the ARTISTS trajec­

tory data storage method.

D .l V isu a liz in g the CMAC D a ta

It is obviously impossible to visualize the nonlinear mapping of even the

simplest redundant manipulator handled by ARTISTS. The reason is th a t the

input is at least 5 dimensional and the output a t least 3 dimensional, (for the

shortest redundant linkage). Figures D1 through D8 show examples of 3D sur­

face patches, each of which is a representation of the output of the CMAC for a 3

jointed articulator trajectory planner. In each case, the assumption is made that

the base angle, a, and the first constrained joint, p, are free variables. The third

joint, y, is constrained to be equal to p, so it seems reasonable to view plots of the

outputs, 6a, 6p and 6y as functions of the 2 free variables. Tb generate the plots,

a is incremented over a range of C codon units starting with o.Q-CfZ and proceed­

ing up to o.q+C/2, (a^ is the base angle setting corresponding to the figure in

each case). For each setting of a, both p and y are incremented in parallel from

respectively p^ and y ^ through the same sized range, and the output vector is

plotted at each resultant point. The hand space direction cosines, 5x and 5y are

held constant throughout each patch plot. The result shows some indication of

the shape of the inverse kinemaitc function around the operating point defined

197

Figure D .l: A Angle Response Plot
as Function of a and p in an Intermediate
Posture (Posture #1). Generalization = 64

198

Figure D.2: A Angle Response Plot
as Function of a and P in a retracted

Posture. (Posture #2)

Generalization was 64, and a memory size of 20K vectors was entirely adequate.

199

("3

Vi' ' / / ' *'»/* r.% * :' \ \ v w * / ^ A V * / # / / / - ' ^ # / / j

Figure D.3: A Angle Response Plot
as Function of a and p in a retracted

Posture. (Posture #2)

Generalization again was 64, but the small memory size of 4K caused hashing damage to
be visible in a slightly more erratic shape of the surfaces. The overall effect was that
performance, though degraded was gracefully so.

200

Figure D.4: A Angle Response Plot
as Function of a and P in a retracted

Posture. (Posture #2)

Here generalization was 64, but the memory size was only 3K vectors. Hashing collisions
became a problem. It took a lot of training to get this result, but remarkably, performance
was eventually successful.

201

f 3

Figure D.5: A Angle Response Plot
as Function of a and P in a retracted

Posture. (Posture #2)

"Undergeneralization" for a CMAC with generalization = 32. Note that not as much of the
nonlinear nature of the kinematics is captured in receptive field range. Learning is slow,
approaching table lookup, and it is not as good at low pass filtering out hashing collision damage.

202

Figure D.6: A Angle Response Plot
as Function of a and p in a retracted

Posture. (Posture #2)

As in Figure D.5, not as much nonlinearity shows in this patch plot. It, however is the
result of plotting a half generalization width patch for a CMAC with a generalization =
64, so it subtends the same width as Figure D.5. The relevant observation is that the plot is
smoother. Any apparent shifting of the patches among figures D.2 through D.6 and most
shape change is due to slight differences in the operating state space point

203

p

Figure D.7: A Angle Response Plot
as Function of a and (3 in an extended

Posture. (Posture #4)

Generalization of 64 and memory size of 20K vectors.

204

r 3

ap

,v

m m m m ®

•>'//////,,'»ZL

w w
Figure D.8: A Angle Response Plot

as Function of a and R in an Extended
Posture. (Posture #6)

This posture resulted from a diversion of the arm from a well trained path segment to a
completely novel trajectory. Generalization was 64 and memory size 20K vectors.
"Texture" in this "novel" posture is much the same as in well trained postures.

205

by the posture shown in the figure. By varying a and p and observing the mag­

nitude of the vertical axis, the angular displacements on each joint required to

maintain a hand move of (5x, 5y) can be read off the vertical axes of the three

patch plots in each picture.

The patch plots cover an area of state space approximately equal to an ac­

tual receptive field’s coverage. It is important to note th a t the functions gener­

ated, (which must be a close approximation of the inverse kinematics, since the

system functions appropriately), have a t most one "hill or valley" in the patch.

This means tha t spatial frequencies > 1/C are not strongly represented in the

functions. We know from Carter [*90] and Segee 1*92] th a t if this were not the

case, CMAC learning would be slow. Given the linear tapered window, the one

humped or one valleyed topology of the surface fits well the receptive field con­

tour. I would have been worried to find many peaks and valleys in a receptive

field extent, because I would expect th a t they would cause the CMAC mapping

to be potentially unstable, or a t best slow to converge, due to CMAC averaging,

which would force those m any peaks and valleys to change rapidly during train­

ing in an effort to force the average at each iteration to look like the observed re ­

sponse.

It must be noted that these patch plots are not receptive field descriptions.

A C = 64 patch represents a sampling of 1600 sample points each, because the

patch plot software is limited to 40x40 plots. These samples are evenly distrib­

uted over 4096 virtual state space points, (a 64x64 codon square). Each point is

the summation of 64 weights th a t are regularly, sparsely and uniformly distib-

uted over hypercube regions centered around each of the 1600 input state space

points.

206

So the functions represented in each surface plot are the conglomerate ef­

fect of many receptive fields. It should just be noted th a t the influence of just the

receptive field associated with the center of each plot extends over the plot, with

declining influence toward the periphery. The observation I expected to see in

these plots was th a t consistently shaped surfaces with a topological simplicity

would emerge after a minimal amount of training, and th a t they would be re ­

peatable. This expectation was bom out conclusively by the following observa­

tions about the plots:

D.2 D iscussion o f R esu lts o f
V isualiza tionE xnerim ents

It is obvious th a t figures D.2 through D.6 depict the same function, albeit

with some varying degrees of distortion or scale; this is appropriate since the

state space input for each was similar, but not precisely the same. The reason is

tha t for D.5 and D.6, separate experiments with differing generalization were

used. For D.3 and D.4 differing physical memory sizes were used. In D.2 and

D.6 , the same experimental setup was used, but I manually interrupted the pro­

gram along subsequent trajectories to snapshot patches of different extents. Fig­

ure D.6 is an attem pt to display a receptive field sized region of influence th a t is

the size of a C=32 CMACs receptive field, but is generated by a C=64 CMAC.

The observation here is th a t the C=64 CMAC gives a much smoother repre­

sentation over the same state region.

So it is possible to visualize in a limited fashion the mapping in a high di­

mensional CMAC. It is further possible to conclude th a t the reason C=64 works

better than C=32 is tha t for C=32, the function representation is less smooth, is

less able to low pass filter out the noise of hashing collisions, and approaches

more closely table lookup, with a much more localized receptive field extent and

207

thus a more nearly linear function under each reoeptive field as can be con­

firmed by viewing figure D.5.

These plots are characteristic. I plotted many more and noted th a t they all

told similar stories. Though they had widely differing shapes, all the shapes

were of single bumps or valleys or a t worse, mild saddle points like figure D.8 .a

and b. Figure D.2 is overall smoother th an D.5 and D.5 took well over twice the

training time to achieve its result than D.2. All of this is reasonable for compar­

ing C=64 and C=32.

D .8 is a very interesting example, demonstrating generalization in the

"traditional" sense. This surface shows little qualitative difference from D.2, i.e.,

it is smooth and reasonable in shape, though it is a patch plot taken the first

time the system executed the trajectory. The fact th a t the trajectory executed

without any divergence from the expected path indicates th a t generalization

was strong, and the function in D.8 looks very much as it will after ultim ate con­

vergence.

Finally the sequence D.2, D.3, D.4 was extremely interesting. D.2 per­

formed best of all the experiments. When its memory size was reduced to 4,000

vectors memory saturation was over 30%, and the toll hashing took is evident in

figure D.3. Note th a t its shape is still recognizable, but quite irregular and dis­

torted. With a further reduction in memory size, (figure D.4), performance be­

came quite unacceptable, and the surface quite noisy, with memory saturation

around 50%. Surprisingly, this last distorted model is still capable of learning. If

we leave it for 1000 iterations, we get the results shown near the left side of fig­

ure 4.10 on page 109. Its error statistics in the steady state are about the same

as the setup with C=64 an 8000 memory vectors. All models th a t these patch

208

plots represent were trained very superficially. All were trained on less th an 200

path segments, and some on only 30 or so.

D.3 C onclusions From V isu a liza tio n
E xperim ents

The conclusions I derive from these observations are th a t

• T hat ARTISTS is robust with respect to noise (as a function of
memory size) as argued in section 4.8.7 is fu rther supported
by these plots

• The param etrization with C=64 does in fact seem reasonable,
as was discussed in section 4.8.6.

• The simple shape of the control surfaces subtended by
receptive fields is conducive to a consideration of CMAC as a
reasonable spatially distributed generalization of traditional
non-linear control by linearization of equations a t operating
points. See section 6.2.

209

A P P E N D IX E

Raw Error Metrics D ata From ARTISTS Trials

In figures E .l tthrough E .6 are examples of the raw error metric data de­

rived from various trials of the ARTISTS system, with constraint satisfaction

but no obstacle avoidance. The body of the thesis refers to these figures with ap­

propriate commentary. The general features to notice about these figures is tha t

they represent successful parameterizations.

The error metrics for figures E .l and E.2 was smaller than for any of the

parameterization trials. The postural error metric falls off to near zero within

the first 100 path segments. Heuristic step density drops off to exactly 0 in the

same time frame.

Figures E.3 through E.5 shows the error metrics plotted for 6 jointed arm

experiment with non-repetitive targets. The postural error metric falls off to a

small value, but not as small as with the 3 jointed, arm, which is expected. This

was a casually chosen parameterization. It is possible, indeed likely th a t a bet­

ter one exists. Note in figure E.4, around epoch 1600 the error metrics increase

significantly, and heuristic help is required for about 100 epochs. W hat hap­

pened there was th a t while the program ran unattended, some randomly wan­

dering targets moved off into regions where the arm could not reach, because

they were more than the sum of the link lengths away from the base. The sys­

tem was not designed to handle such a problem, and performance was not sur­

prisingly very poor for a substantial period. It was gratifying to note, though,

that when I intervened and collected all the targets, moving them back to within

210

the arm ’s field of reach, the system recovered nicely. The only adverse effect was

tha t an additional few hundred vectors of memory were consumed. After tha t

point the error metrics went back to very low levels and memory vectors used re­

mained constant for the rest of the 3000 epochs.

Figure E .6 shows the result of a non-repetitive 9 jointed arm trial, which

shows postural error of roughly the same magnitude as the 6 jointed arm. Note

that scale for postural error is changed for each of the three cases of 3, 6 and 9

joints, to account for the extra number of joints. For instance, the scale of 0 to

40 (degrees *j o int^pathlength) for the 9 jointed arm is 4 times larger th an for

the 3 jointed arm, because there are 4 times as many constrained joints over

which to compute the error. The other metrics are not so scaled.

The actual units and scaling of these values is of little importance. They

were only recorded

• To show th a t they in general decreased over tim e, and
• To provide a relative measure for discerning the best param e­

terization for the 3 jointed arm.

211

Figure
E.l:

Error
data

from
Best

Param
eterization

Trial

Two early samples were clipped.

C M A C Perform ance Parameters

R M S postural error density,-
(degrees / lu)

0.0

100.0 %-

G eneralization slew rate,
(% / lu)

0.0 % -

R M S Joint effort density,
(degrees / lu) 0.0

0.5

A verage hand effort
density, (lu / lu) 0.0

EXPERIMENT: T0644820
Generalization = 64
target quant = 1/4
joint quant = 1/8
memsizc = 20000 vectors
(No path segment repeating)

5 0 .0

H euristic step density,
(events / lu) 0.0 --0

600 800 10004000 200

r

Epochs (# path segments traversed)

CMAC Performance Parameters

R M S postural error density,
(degrees / lu)

0.0

100.0 4b

G eneralization slew rate

0.0 4b

2.5
R M S joint effort

(degrees / lu)

t oi—*
CO R M S hand effort

(t
a o

E X P E R I M E N T : T 0 6 4 4 8 2 0
G e n e r a l i z a t i o n = 6 4
t a r g e t q u a n t = 1 /4
j o i n t q u a n t = 1 /8
m e m s iz e = 2 0 0 0 0 v e c to r s
(5 r e p e a t s p e r p a th s e g m e n t)

5 0 .0

H euristic step density

0.0

6 0 0 800 10000 200 4 0 0

K
e

£
.5
o

o
B
S

Epochs (# path segments traversed)

Figure
E.3:

Errors
for

6
Jointed

Arm
(1

of
3

pages)

25

RMS postural error density,
(degrees / lu)

0.0

ioo.o%--

Generalization slew rate.
(% / lu) ‘

...------- -

0.0%"

RMS joint effort 25 --
density, (lu / lu) ------►

0.0 -»
0 .5 ^

Average band effort ------
density, (lu / lu) 0.0 --

EXPERIMENT: 6norepet
Generalization = 64
target quant = 1/4
joint quant = 1/8
memsize = 30000 vectors

6 jointed arm with non-
repetitive targets.

50.0 - -

Heuristic step density,
(events / lu) 0.0

CMAC Performance Parameters

|tl
£ l

Memory usage

200

-------------j------------------------------------ i----------------
I i

400 600
Epochs (# path segments traversed)

- - 15

- 0
800 1000

M
em

or
y

us
ag

e
in

#v
ec

to
rs

x
10

00

Figure
E.4:

Errors
for

6
Jointed

Arm
(2

of
3

pages)

RM S postural error density.
(degrees / lu)

Generalization slew rate.
(% / lu)

RMS joint effort
density, Gu / lu)

Average hand effort ---------
density. Gu / lu) 0 0

E X P E R I M E N T : 6 n o r e p e t
G e n e r a l i z a t i o n = 6 4
t a r g e t q u a n t = 1 /4
j o i n t q u a n t = 1 /8
m e m s i z e = 3 0 0 0 0 v e c t o r s

6 jointed arm with non
repetitive targets.

Heuristic step density,
(events / lu)

CM AC Perform ance Parai aeters

100.0%

/>.•> \ ,0.0% - -

1000 1200 1 4 0 0 1 6 0 0
Epochs (# path segments traversed)

1800 2000

Figure
E.S:

Errors
for

6
Jointed

Arm
(3

of
3

pages)

CMAC Performance Parameters

RMS postural error density.
(degrees / lu)

100.0% -

Generalization slew rate,
(% I lu)

RMS Joint effort
density, (lu / lu)

 $>•

0.0% - -

Average hand effort K
density, (lu / lu) q q

EXPERIMENT: 6norepet
Generalization = 64
target quant = 1/4
joint quant = 1/8
memsize = 30000 vectors

• • I t
• i l l
t i l l
• i l l

“ ” “ “ “ i“ i i i

6 jointed arm with non-
repetitive targets.

50.0

Heuristic step density,
(events / lu) 0.0

Memory usage

2000 2200

--------1---------------------- j----------
i i

2400 2600
Epochs (# path segments traversed)

- - 15

- 5

-- 0
2800 3000

M
em

or
y

us
ag

e
in

#v
ec

to
rs

x
10

00

Figure
E.6:

9
Jointed

Arm
Errors

i
CMAC Performance Parameters

RM S postural error density.
(degrees / lu)

G eneralization slew rale,
(% / lu)

R M S joint effort
density, (lu / lu)

Average hand effort
density, (lu / lu)

EXPERIMENT: 9ann3
Generalization = 128
target quant = 1/4
joint quant = 1/8
memsize = 40000 vectors
9 jointed arm with non­
repeating path segments
during last 200 epochs.

50.0*

Heuristic step density,
(events / lu)

100.0 %

itf0.0

Epochs (# path segments traversed)

M
em

or
y

us
ag

e
in

#v
ec

tor
e

x
10

00

APPENDIX F

ARTFORMS User’s Manual
Version 6.3 11/5/92 Copyright 1988, 1989, 1990, 1991, 1992 byFrank Rudolph at the University of New Hampshire Robotics Lab, All rights reserved.
Before you do anythingi type CMAC_SW to invoke the CMAC TSR program.
ARTFORMS will not do anything until that is resident, and in fact it WILL crash your system without it I
NOTEi This software will only work on an MS-DOS 80386 machine.
After CMAC_SW is running, execute ARTFORMS or ARM.BAT.

P a r t I: Keystrokes During Program Execution:

(see the file checkey.c; It contains a dispatch table for these keystroke responses.)
- = suppress random heuristic steps.
+ = enable random heuristic steps.
? = H E L P .

0 = Set random step mode for the heuristic step generator.
1 = heuristic mode l: suggest equal magnitude angles but randomlyselect CW or CCW joint rotation.
2 = Mode 2 t different magnitudes at each joint, but rotationdirection same for all joints at each step,
3 - Mode 3: Like mode 1 WRT sign, but magnitudes of joint stepsare ascending.
4 = Mode 4 : Random magnitude and orientation of jointperturbations, but most change is concentrated at the base, with the rest of the energy distributed with increasing weight towards the hand.
5 = Mode 5i Like mode 4, but with random sign at the base.
6 = Berklnblitt synergy based step generator.
Biases for the heuristic random stepsi

a = accumulate negative bias to alpha, (base).
A = accumulate positive bias to alpha,
b = accumulate negative bias to beta, (shoulder).
B = accumulate positive bias to beta,
g = accumulate negative bias to gamma, (elbow) .

2 1 8

O - accumulate positive bias to gamma.
These invlove only the first 3 of up to NUM_«TOINTS angles. The actual number of joints Is specified by num joints which mustbe < or equal to NUM_JOINTS. To specify variable valueswithout recompiling/ use the arm.Ini file. There are over 50 variables that can be adjusted thusly. See parmlnit.c for the variable initialization parser. See Part II, below, the ABM.INI file description.
c, C = clear screen.
D = turn on debug output (i.e. the value of response vector before and

after learning).
d = turn off debug output
E, e = unused
s, S = "slow", i.e. draw arm each cycle
f, F = "fast", i.e. suspend drawing of arm
H, h = Return arm to "HOME" position and restart the target set.
i = re-read the a r m .INI initialization file. (Restore the system parameters to the defaults as they existed at the start of the program).
*i = save the ARM.INI initialization file. Save new startup parameter settings in a *.ini file.
K, k = Kill the CMAC memory; you will be prompted to tell the system which CMAC to erase, if there are more than one.
L, 1 = unused
M, mi Invoice the mouse driven target manager)

Once in the target manageri
LEFT BUTTON = add a target.
RIGHT BUTTON = delete a target.
MIDDLE BUTTON = drag a target to a new position.
ALL buttons = delete all the targets and insert new one at the mouse cursor.
LEFT+RIGHT places an "exterior" obstacle at the cursor.
ESC = leave the target manager.

N = unused
n = ?
O, o = Open script file output.
p = suppress joint space dot Product heuristic retraining,
p = enable dot Product heuristic retraining.
Q, q = quit the program (in an orderly fashion).

2 1 9

r, R = restart current path.
t, T - Type to the terminal the number of non zero cells in the physical memory. This is a rough measure of the level of saturation of the CMAC memory.
u = unused
u = ?
V = unused
* = increase the value of the first constraint coefficient; set the 2d one to l/first_one,
v = decrease the value of the first constraint coefficient; set the 2d one to l/first_one.
W, w = Install ratchet conditions (set max/min angles to prevent curling into a kink and to prevent reversal of curvature) .
X, x 3 unused
Y, y = unused
Z, z = Draw 3 patch plots in PostScript files pl.eps, p2.eps and p3.eps, which show the shapes of the direct inverse function over the span of one receptive field. The height or z value of the patches is in each case a function of angles a and p, which vary from the "current" value to the current value +/- C/2 codon units. The three z plots are then, respectively, the values of Aa, Ap and Ay.
FUNCTION KEYS:
Fl = Constant speed target moves, (constant at the last speed achieved)
F3 = Suppress retraining heuristic. This is a global equivalent to training the CMAC Training Inhibitor to a constant l through all state space. See the data flow diagram in CHapter 3 for local obstacle avoidance.
F4 = unsupresses the above F3 feature.
F6 = Spawn a DOS window
F7 = Record arm moves from the current position.
FB = Playback the recorded arm moves.
F9 = Radial (sequential reaching) trajectory formation.
Flo = Daisy-chained trajectory formation.
The arrows move the target around up down, left and right as well as vertically. The arrows accelerate the longer they are used. To go back to slowest speed, simply hit any other key. (Mouse left right up down ok too)
You may also use the joystick to move the target. To do this, depress the pushbutton and move the joystick for target x/y displacement.
Movement of the arm by the joystick is done by stopping the armvia SPACEBAR and moving the joystick. Without the trigger

220

pulled move the base and shoulder joints. With the trigger pulled, move the shoulder and elbow joints.
Depress both the joystick buttons simultaneously causes the joystick to be recalibrated.
Space bar = stop moving the arm. (all other functions continue)
Space bar also resumes the arm movement.
Control and alt keya:
AA = Display the links.
alt-A = Suppress display of the links (just joints will show).
AB = ?
*C = terminate program (abort)
AD = Draw the arm posture for the next control cycle to the postscript output file.
AE = Draw the arm posture for the next target position into the PostScript file.
AF = Flash arm segments on screen.
*G = unused
AH = unused
AI = see under '1', above.
AJ = Show the joints on the screen.
alt-J = Flash the joints on screen once.
AK = unused
AL = unused
AM = unused
*N = Normalize the direction to target vector.
alt-N = Don't normalize the direction to target vector,
aO = unused
alt-O = Reinforcement signal (OBSTACLE)
AP = DONT PUSH THIS ONE. IT ACTIVATES THE PRINTER (DOS FEATURE, REMEMBER?).
alt-P = Purge dump of the last 100 gradient descent errors (in hand space).
AQ = unused
AR = Random target moves (the current target jumps aroundrandomly using Alt-R = no random moves the last length vector defined by the accelerating target algorithm.)
AS = scroll lock (DOS provided)

221

alt-S = toggle sound on/off.
*T = Fast Target (accelerating)
Alt-T = Slow Target (non accelerating)
AU = unused
*V = unused
AW = unused
AX = unused
*Y = unused
AZ = unused
APgUp = save or "upload" the current control CMAC
APgDn = restore or "download" an old control CMAC
AHome = Arm to HOME position and first target
Mouse commands:

middle button - Current arm position is start position left button = Turn Arm on

The target can be moved with the mouse similarly to the method described under the arrow keys above.

The following describes most of the program variables that can be specified in the ARM,INI file. This entire file is parsed in by the TSRARM program in the first stages of execution to define the articulator arm being simulated, and some parameters about the learning system.
CAUTIONi Don't put comments in the actual ARM.INI file. Some of these parameters are NOT optional, and the TSRARM program will not execute if they aren't specified. If a required parameter is not specified in the ARM.INI file, ARTFORMS will abort and type an error message specifying which one was ommitted. Some parameters must be specified before others; e.g. the value num_Joints is used to size many arrays in the system, and so it must be specified before any parameters that are array representations.
Error messages printed out by ARTFORMS will, in most cases, tell in which source file and in which line number within the source file the error occurred.
The parameters are described below with an example value that is either a default, or a reasonable value.
acura = 1.000000 ; The radius of the target; how close the hand must be to define a successful path segment.

left+middle right+middle all buttons
flash arm once flash joints toggle joints on/off

P a r t I I ; The Initialization File.

222

agc_threshold = 10 ; This integer tells how large a value per coordinate must be so that the summed absolute value or the response recalled from the CMAC will be deemed by the stepsize control critic (AGC) to be a valid stored command. The example shows that for a 3 jointed arm, a summed value must be at least 3*10=30 to be accepted.

cniac_id = 0 ; An integer telling the id # of the direct inverse CMAC. An id # is 1-7, since up to 7 distinct CMACs may be allocated. A 0 indicates that the program should allocate a new one. If a non-zero is specified, the user should be certain that there really is a pre-existing CMAC allocated for that id #.
cmac_name = example ; This char * variable tells what the first name of a file used into which a CMAC image will be saved. The example indicates that cmac_id's CMAC will be saved in EXAMPLE.CMC, the repeller cmac will be saved in EXAMPLE.REP, etc.
constrainer_id = 0 ; An integer telling the id # of the K-CMAC.
constraints = 5 ; Which postural constraints to apply. 5 is the normal curvate constraint, 0 is no constraint, and other constraints weren't very successful.
dontask = 1 ; This integer flag if set to 1 suppresse theinitial setup questions in the early part of the programs, and accepts defaults dictated by arm.ini. This is helpful for batch runs.
dontinhibit = 1 ; This integer flag = 1 means not to implement the ARTFORMS-1 style distributed plasticity CMAC (inhibitor_id).
dontnormalize = 0 ; This integer flag if set to 1 disables the normalization of steps (and input deltax, deltay vectors) to be unit vectors, Setting this to one is endpoint control.
dontrepel = 1 ; This integer flag if set to 1 means don'timplement the ARTFOMRS-1 style reinforcement CMAC (repeller_id) .
dontretrain = 0 ; 1 = don't retrain to a near optimal path, if after the CMAC contains information at a given state space point.
dont_show = 1 ; 1 means don't print out debugging information.
draw_at_target = 0 ; an int variable that controls whether or not a PostScript file showing the target postures will be printed out to a file called DATA.EPS. Value of 1 allows the output.
eta = 1 ; an int value giving the learning rate. 0 means1.0, 1 means 1/2, 3 means 1/8, etc., for successive powers of 1/ 2 .
general = 64 ; generalization parameteri the number of cells ina receptive field.
heuristic mode = 6 ; Which kind of a priori heuristic to use to "guess11 a move. 6 is the Berkinblitt synergy, 0 is random activation and the others weren't very successful.

223

inhibitor id = 2 ; An integer telling the id # of the distributed plasticity CMAC (the inhibitor) CMAC.
joints = 900 900 900 ; An integer array containing the initial values of the joints as scaled integers with LSB representing 1/10 degree.
joint scale = io.000000 ; the joint angle increments, are scaled this much finer than the angles themselves.
kv = 1 1 1 ; A double precision array giving the initial valueof the "curvate constraint" vector, K. The example is a normal curvate condition for a 4 jointed arm with equal angles.
lambda =0.5 ; This double precision real value defines thelearning rate (stepsize) for the postural constraint gradient training.
linkages = 10 12 15 ; This double precision real value defines the lengths of the articulator links.
max_jolnts 2100 2100 2100 ; This integer array gives the maximum permissible value (joint stops) for the joints. The example is for a 3 jointed arm, with upper joint stopB at 210 degrees each.
max_passes = 1000 ; How many epochs (path segments) to execute.
max_step = 200 ; A scaled integer value that tells what themaximum magnitude (per coordinate) the heuristic generator will suggest. The example is 2.0 degrees.
memsize = 20000; The total number of physical memory vectors in the CMAC corresponding to cmad_id.
min joints = 100 100 100 ; Like max_Joints, but specifies theTower value joint stops.
nodot = 1 ; 1 = suppress the dot product heuristic.
noise = 0 ; This double precision floating point value specifies

the heating value (a2) of the uniform white noise that will be injected into the critics' output signals.
no_adaptive critic = 0 ; This integer flag if set to 1 disables the training and adaptive critics. This mode is acceptable for redundant sysems. If non-redundant, this will cause too little goal directedness, and the experiment will fail. It IS appropriate to set this to 1 for playback training, however.
num_joints = 3 ; Humber of joints; for a value of 2, the arm is not redundant. This variable must precede specification in the

a r m .INI file of joints, linkages, kv, max_joints, min_joints and quantization.
pause_arm = 0 ; 0 = starts with a live arm. 1 = starts withthe arm paused. The space bar toggles this value.
phi_o =1.0 ; See the text under heuristic constraints.
phi_90 = -1.0 ; phi_0 and phi 180 are used to compute the inner and outer limits of the "allowed cone" for the neurlstlc and training critics.
playback = 0 ; See the variable "record", below.

224

practices = 1 ; This integer tells how many times each path segment is executed before going on the the next.
quantization ■ 4 4 8 8 8 ; this is an integer array telling howcoarsely coded the input vector is. These values are read into the qnt vec[] array. The example specifies a quantization of 4 for hand space and 8 for the joint space, for a 3 jointed arm.
ratchet = 1 ; If this int is 1 the ratchet condition is applied during training.
real_robot = 0 ; 1 = a SCORBOT is actually attached to COM port 2 0 = simulation ONLY.
record = 0 ; If this integer is 1, the trajectory steps will be recorded in a data file for playback later when the playback flag = X.
repeller id = 3 ; An integer telling the id # of thereinforcement CMAC for ARTFORMS-1. .
restart mode = 1 ; This int flag determines if sequential reaching (0) or chained (1) trajectories will be formed.
retina_id = 3 ; An integer telling the id # of the R-CMAC.
scale_factor = 8 ; Scale factor for displaying the arm within screen limits.
script_file = first.ext ; This tells the program where to read a record of keystrokes from a script file. If the file doesn't exist, the program assumes that you want to create a new one. If it does exist, the program opens it and reads it in as ifit were console input. This allows you to archive anexperimental run for later display, perhaps with parameter changes.
smooth = 0 ; This int flag only applies when real_robot=l. 1 =don't execute the SCORBOT path until a full trajectory has been computed. This results in a smooth, fast arm trajectory, but reinforcement is impossible, and the simulator and arm are not synchronized. 0 = execute incremental moves of the SCORBOT arm as each step is computed. This results in a slow, jerky trajectory.
sounds = 0 ; An Int flag that enables (1) or disables (0) theoutput of an auditory signal when a critic detects a failure.
tapered = r ; A value of 'r' means rectangular receptive fields, '1' means linear tapered, 'o' means Albus style rectangular field.
target_file_name 3 NEW.TOT ; A char * variable pointing to the name of the file that has the target coordinates in it.
target_mode = 0 ; An integer variable. If zero it means read all targets in at once. If non-zero, it meansi start out by reading in one target, and then after every target mode path segments, read in another target position until alT targets are read in.
teacher = 0 ; An int flag that tells what training mode to use. The normal mode is 0 which is default inverse modeling (train at the observed context) mode. Mode 1 trains at the desired context. Mode 2 trains at both contexts, mode 3 is used for endpoint control.

225

xtgt = 36.350000 ; The target, which appears as a small red circle.
ytgt - 25.450000 ; Appears at the x,y coordinates given. These coords are overwritten when the target file is read in.

Part III: The Critics.

The functions, HeuristicCritic0 and Adaptivecritic(), apply the heuristic constraint rule. They determine to what extent an arm move must locally reduce the hand to target distance.
in simple terms, the procedure involves computing the dot product of the hand-to-target vector and the hand to new position vector. If the angle formed by the two vectors is 0 then the putative move would follow a tight rectilinear trajectory.Left or right of the straight line path, the two angles, phi_0, and phi 180, define the constraints. The new trajectory step MOST fall“between phi 0 and phi_180. So a loose trajectory Is allowed by, Tor instance, phi 0=0 and phi 90=180 degrees, a VERY tight trajectory is phi_0=phi 90=0, which actually is unachievable. If phi 0 is increased, it forces the trajectory away from a straight Tine (for obstacle avoidance), if phi_90 is small straight lines are favored. If it is increased towards 180 deg. curved trajectories are allowed. Cautionj phi 0 and phi_90 are actually stored as cos(phi_0) and cos (phi_?Fo) , so they range from -1.0 to 1.0; So the loosest possible trajectory is phi_0=1.0 and phi_180=-l.0. phi_0=l.0 and phi_90=0 specify loosest constraint that doesn't allow the hemd to target distance to increase.

P a r t JV Script Mode.

If you specify a script file name in arm.ini, the program will use it for console input. If the file doesn't exist the program will prompt for input when necessary and save a new script file containing those prompted inputs as well as any asynchronous inputs supplied by the user through the keyboard. There are some problems related to WHEN you type input into the program which are described below.
Some idosyncrasies of script modei
The keystrokes that are typed in response to prompted answers to questions are no problem. If they axe keystrokes that are typed asynchronously while the program is executing, the program attempts to insert "wait-states" in the script file that will cause the GetchO function to return nothing until the number of wait states that were observed and recorded during creation of the script file have elapsed during execution of the program under script file control. The script files are also editable. This gives rise to problems related to control chars, function keys, etc.
if the program is reading console input from a script file, when "special keys" are read in, two character key sequences are read in, where the first is an ASCII null, The null can't be written to a script file, so the key '|' is substituted.Thus, in a script file, an UP ARROW looks likei

I
P

226

During execution of Yes(), if an actual keystroke is sensed, if it is 'Q' or 'g', the program terminates. If, on the other hand, a pNNNN is in the script file where Y or N Is expected, a concert A (440 Hz) is sounded and NNNN milliseconds of delay occurs. This allows a demo to freeze a final result for a period of time.
GetchO stops and reads a keystroke delimited by CR LF.Otherwise it emulates getch(); It does however leave the rest of the line in the buffer getch_buf[];
get_ch{) reads a single key from the console, if no script. If a script is being read, signified by the file RDF being active (read data file) GetchO is called to read a keystroke in from the script file. If a script is being written a single keystroke is read from the console and written to the script prefixed by a line reading \nnnn where nnnn is an integer representing the current kb_counter, which counts how many times KbHit() has been called to poll for a keystroke. Later, when a script is being read in, KbHitO watches for the valueof kb counter to equal a value of next event, which it hasread Tn from the script to tell it how"many cycles into the program execution an asynchronous keystoke is expected. When reading a script line, if the first character is \, the

?rogram knows that this is a signal that an asynchronous event s coming up. Thus is is necessary for the whole system to "preread" the script file, while polling, so that if an asynchronous input is coming up it will know ahead of time, when it reads the input, then If the line was NOT prefixed by
' V , the flag "getch buf_full" is set to - 1 to tell the systemthat next time a synchronous read (GetchO) occurs, the datais already in the buffer.

Part V: L e a r n in g e v a l u a t i o n a n d r e i n f o r c e m e n t.
The arm learns very quickly to move about in the workspace. In a sense, this is a form of obstacle avoidance, in that the robot learns to modify the inverse kinematic model to account for joint stops.

As learning progresses, the planner gets "smarter", a localattribute that is dependent on the arm position. This property is shown on the screen by the color of the arm and hand. When the CMAC is untrained, the arm shows up in grey, followed by white, green, yellow, red and finally blue in sequence as the degree of training of the CMAC increases in a state space region.
So, as the arm sweeps out a trajectory, one would expect its behavior to be more erratic when displayed in white and more smooth when in blue. In fact, when in blue, the arm can't learn at all... it is frozen with its current weights. But again, this is only local. The arm may be blue over part of its workspace, and white over other parts, which it hasn't visited yet.
Depressing alt-O during operation tells the arm that it hasencountered an "obstacle", At that time, it tries to retrain with a bias against what it "used to think" it should do in the neighborhood of the obstacle, and the level of experience in that region is reduced back to novice level, to ensure that it can retrain. The presence of the bias against current knowledge should cause the old trajectory formation to move

227

about to accommodate the obstacle. Subsequent trajectories in this neighborhood should detour around the obstacle.

P a r t VI: Constraint satisfaction.

This subject is exhaustively covered in Chapter IV of the text, so no treatment is given here.

Part VII: HEURISTIC ERRORS

In the code that tests for target directedness (subroutines criticO, HeuristicCriticO and AdaptiveCritlc(); see file disredux.c) there are numerous ways in which an error can be reported.
The following return codes are reported by system that mean,"there is an error reported by a critic". The source of the error by return code isi

• l = Stun of delta joint angles = 0• 2 = sum of delta hand moves = 0• 3 = joint space dot product heuristic failed (TryToLearn())• 4 = heuristic mode 4 or S failed to have ascending magnitudes• 5 = a zero length heuristic step was proposed• 6 = the heuristic criterion railed (move outside the "allowed cone")• 7 = HeuristicCriticO failed• 8 = failure in HeuristicStepO after 5 tries to suggest a unit length step• 9 = no data in the CMAC; virgin terrain I• 10 = delta joint move vanished in AdaptiveStep () due tonormalization• 11 AdaptiveCritic failed• 12 Numerical problem normalizing vector in HeuristicCriticO

Part VIII: SELECTED SUBROUTINES EXCERPTED FROM
THE SOURCE CODE

// Prom the file ARTISTS.Ct
int inp_vec[NUM_INFS] ;
int delta_joint [NUM_JOINTS],dot;
// From the file CONSTRAN.Ci
int K[NCM_JOINTS+l);
int bump=0;
static int i;
void GetKVector(void)
(if (Irembr(constrainer_id, inp_vec, K))

TOOBAD("constrainer CMAC can't rembr");
LOOP(i,num_joints-1)
(K[i] += 100;
}

}

void TrainKVector(void)
{// K is scaled so 100 ■ i.o.
// Remove the excess so a null CMAC represents

// a K vector that is (1,1,1,!...)
2 2 8

LOOP(i,nuro_j oints-1)
{ K[i] -= 100;
Ilearn (constrainerjid, inp_voc, K, eta);

void AdjuBtKVectortint reap, int joint)
{ double gain = (double) resp/100.0;

GetKVector();
if (jointl)
{ K[joint-l] += (int)(10*gain);
} K[joint] - = (int)(10*gain);

K[jolnt+l] += (int)(10*gain);
TrainKVector();

// From the file, TRY2LERN.Ct
double ddj[NUM_JOINTS];
double kv[NUM_JOINTS-l] ;
void ddjUpdate(void)
(int i;
LOOP(i,num_j oin ts)
{ delta_joint[i]+=ddj[i];
>

static double f(int i)
(return kv(i*l] * (double) inpjvec[i+2j

- kv[i] * (doiible) inpjvec [i+3] ;
}

void satisfyPosturalConstraints(int flag)
{ int i;
double f0,fl;
i = i;
L O O P(i,num_joints)
{ ddj[i]=0.0;
)for(i=l;l < numj)oints;i++)
{ if (i > l)f0=f(i-1);

fl=f(i);
if (i==l){ ddj[i] = -lambda *kv[i-1)*f1;
}else if (i==num_Joints-1)
(ddj[1] = lambda*kv[i-1]*f0;
}else
(ddj[i] = lambda*kv[i-1]*(fO-f1);
}

}
}

2 2 9

int obstacles = 0;
int TryToLearn(void)
{ int i,dot,OK;if {(constraints==l || constraints== 4 | | constraints== 5) && obstacles)
{ GetKVector{);

// Put the K vector that is derived from the R-CMAC and K-CMAC into
// the working array k[]
LOOP(i,num_j oints-1)

{ kv[i] = (double) K[i] / 100.0;}
}if (K(0)+K[1] 1= 200) i=i;

// This prevents a zero length joint move being computed
OK=0;
LOOP(i,num_joints)
{ if (deltajoint [i])

{ OK=l;
break;

}
)if (IOK) return 1;if (inp_vec[0]==0 && inp_vec[1]==0) return 2;

// train the CMAC memory for the direct inverse modeling training step
learn(cmac_id, inp_vec, deltaJoint,eta);
if (constraints)
{ if (!CloseBnough())

{ LOOP(i,numjoints)
{ ddj[i]=0.0;
}// apply the postural constraint
rembr (cmac_id, inp_vec, deltaJoint);
switch(constraints)
{ case 5i // The other constraints aren't listed here.

SatisfyPosturalConstraints(0);
ddjUpdate();
break;
default) printf("\nDon't know what constraint %d is",

constraints);
TheEnd(l);

}// train the CMAC memory for the postural constraint
learn(cmac_id, inp_yec, deltajoint, eta);
) // End of CloseEnough() conditional
else
{ fprintf(inf_file, "CLOSE ENOUOH PROBLEM in file %b, line %d,

pass# %d", FILE, LIKE, PassNumber);
)

}

return 0;
}

230

B IB L IO G R A P H Y
A d le r | ' 6 7 | A d ler, C .F ., Modern Geometry, 2d Edition, M cG raw -H ill, 1967.

A lb u s | ’7 9 a) A lb u s, Jam es S ., "M ethods o f P lanning and P rob lem S o lv in g In the Brain",
M athem atical B io sc ie n c e s 4 5 :2 4 7 -2 9 3 , 1979.

A lb u s | ’7 9 b | A lb u s, Jam es S ., "A N e w A pproach to M anipulator C ontrol: T h e C erebellar M od el
A rticu lation C ontroller (C M A C), T ransactions o f the A S M E , Sept. 1979.

A lb u s ['8 1 J A lb u s, Jam es S ., Brains, Behavior and Robotics, M cG raw H ill, 1981.

A lm e id a f ’8 9 | A lm eid a , L uis, "Back Propagation in N o n Feedforw ard N etw orks" , from Neural
Computing Architectures, M IT P ress, 1989.

A n |* 9 l | A n , P., An Improved Multidimensional CMAC Neural Network: Receptive Field Function
and Placement. A doctoral dissertation presented to the U n iversity o f N e w H am pshire EC E
D ept., 1991.

A n d e r so n 1*88) A nderson , Jam es A ., Arthur B. M arkm an, S u san R. V isc u so and Edw ard J
W isn iew sk i, "Program m ing N eural N etw orks", N eural N etw ork s, v o l. 1, su p p lem en t 1, p. 157.
Sept. 1988.

A n d r e w s [’83] A n drew s, J. R. and H ogan , N . "Im pedance control as a fram ew ork for im plem enting
obstacle avoidan ce in a m anipulator". In D . E. Hardt and W J , B o o k , ed s ., Control o f
Manufacturing Processes and Robotic Systems. N ew York: A m erican S o c ie ty o f M echan ica l
E ngin eer;, 1983.

A lk e so n f ’8 8 | A lk eso n , C .G ., and D avid J. R einkensm eyer, "U sing A sso c ia tiv e
C ontent- A ddressable M em ories to C ontrol R obots", M IT A I L ab., T ech . R eport N E 4 3 -7 5 9 ,
1988.

B a r to [*83 | Barto, A . G ., R ichard S . Sutton and C harles W . A nderson , "N euronlike A d aptive
E lem en ts That Can S o lv e D ifficu lt Learning Problem s", IEEE T ransactions o n S y stem s, M an
and C yb ernetics, V o l. S M C -13, N o . 5 , S ept./O ct., 1983.

B a r to |*89] Barto, A . G ., "C onnection ist Learning for C ontrol: A n O verview " , C O IN S T ech n ica l
Report 8 9 -8 9 , U n iversity o f M ass., A m herst, M A , Sept. 1989.

B lo ck | ’6 2 a | B lock , H .D .,"T he Perception: A M odel for Brain Functioning", R ev iew o f M o d em
P h ysics. V ol. 34 N o . I, Jan. 1962.

B erk in b litt | ’9 0 | B erk inblin , I.M ., G elfand , J., and Feldm an, "M odel o f the C ontrol o f the
M ovem en ts o f a M ullijo int Limb", Biophysics, vo l. 31 , n o . 1, 1986, pp. 142-153 .

B lock ['6 2 b | B lo ck , H .D ., B .W . K night, Jr., and F. R osenblatt, "A nalysis o f a Four-L ayer S eries
cou p led Perceptron.", R ev iew s o f M o d em P h y sics , V o l. 3 4 , N u m ber 1, Jan. 1962.

B r o o k s | ’8 9 a [B rook s, R odney A . "A ch iev ing A rtific ia l In telligen ce T hrough B u ild in g R obots",
M IT A I Lab, T ech . A .I. M em o 899 .

B r o o k s | ’8 9 h | B rooks, R odney A . "Planning is Just a W ay o f A v o id in g F iguring O ut W hat to D o
N ext", M IT AI Lab, A .I. W orking Paper 3 03 .

B m o k s | *881 Brtxiks, R odney A . "A R obot that W alks; E m ergent B ehav iors from a C arefu lly
E volved Network", M il AI Lab., Sept. 1988.

231

B r o o k s ['9 1 | B rook s, R odney A . "Intelligence W ithout R eason", IJCAJ, 1991.

B r o o k s | ' 9 1 a | B rooks, R odney A . "Intelligence w ithout representation", A rtifical In telligen ce ,
E lsev ier S c ien ce P ublishers B .V ., (4 7) , 1991 , p a ges 1 39-159 .

B u llo ck l ’8 8 | B u llock , D ., G rossberg, S ., "Neural D yn am ics o f Planned Arm M ov em en ts.
Em ergent Invariants and S p eed A ccuracy Properties D uring Trajectory Form ation", from
Neural Networks and Natural Intelligence, G rossberg, S ., E d., M IT P ress, 1988.

C u n n c y [’9 0 b | C an n ey , John , The Complexity o f Robot Motion Planning, M IT P ress, C am bridge,
M A , 1988.

C a r te r [’9 0] Carter, M .J., R udolph , F J . and N u cc i, A .J. 1990. "Operational F ault T olerance o f
C M A C N etw o rk s"Advances in Neural Information Processing Systems 2. T ouretsky , D .S ., ed.
San M ateo , CA: M organ K aufm an.

C a r te r | ' 9 0 h | Carter, M .J., N u cci, A .J., M iller , W .T . m , A n , E ., R udolph , F .J., "S low Learning
Scenarios for L ocally G en eraliz in g Neural N etw orks and Im plications for Fault T olerance" ,
24th Annual Conference on Information Sciences and Systems, M arch 2 1 -2 3 , 1990 , P rinceton ,
N.J.

C a r te r | ' 9 1 | Carter, M .J., N u cc i, A J . , A n , E ., M iller , W .T . and R udolph , F J . "S low L earning in
C M A C N etw orks and Im plications for Fault T olerance", (In preparation).

C a u d ill | ’901 C au d ill, M aureen, and B utler, C harles, Naturally Intelligence Systems, M IT P ress
1990.

C r ic k | '891 C rick , Francis, "The recent excitem en t about neural networks", Nature, v o l 3 3 7 , no . 32,
12 Jan., 1987.

F u h lm a n | ’9 0 | Fahlm an, S cott E., and C hristian L ebiere, "The C ascad e C orrelation L earning
Architecture", from Advances in Neural Information Processing Systems 2, M organ K aufm an,
1990. (in press)

F lash | '8 5 1 R a sh , T . and H ogan , N . "The coord ination o f arm m ovem ents: A n experim en ta lly
confirm ed m athem atical m odel". Journal o f N eu ro sc ien ce , 5 :1 6 8 8 -1 7 0 3 , 1985.

G ille t te ('8 6] G illette , Rhanor, "The R o le O f N eural C om m and In F ix ed A ction Patterns O f
Behaviour", Aims & Methods - Neuroethology, D .M . G uthrie, ed . M anchester U n iversity Press,
pp. 4 6 -7 9 . 1986.

G la n z | ' 8 7 | G lanz, F. H ., M iller , W. T ., "Shape R eco g n itio n U sin g a C M A C B a sed L earning
System ." P roceedings SPIE: Intelligent R obots and C om puter V is io n , C am bridge, M a ss., N o v .,
1987.

G la n z |* 8 9 | G lan z, F. H ., and M iller, W. T ., " D econvolu tion and N on linear Inverse F iltering U sin g
a Neural Network." Proc. 1CA SSP '8 9 , G la sg o w , Scotland , M ay 2 3 -2 6 , 1989, v o l. 4 , pp.
2 3 4 9 -2 3 5 2 .

G r o ssb e r g |'8 8 1 G rossberg, S ., "N onlinear N eural N etw orks,: P rincip les, M ech an ism s, and
A rchitectures", Neural N etw orks, V o l l ,p p . 17-61 , 1988,

G r o ssb e r g | ’88J G rossberg, Stephen , Neural Networks and Natural Intelligence, M IT P ress, 1988.

H a n d e lm a n [’89] H andclm an, D avid A ., S tephen H. L ane, and Jack J. G elfan d , "Integrating
K now led ge-b ased S y stem and Neural N etw ork T ech n iqu es for A u ton om ou s Learning
M achines", International Joint C on feren ce on Neural N etw ork s, W ash. D C , June 1989.

232

H a n d e lm a n [’9 0] H andelm an, D av id A ., L ane, S tephen H ., "Integration o f K n o w led g e-b a sed
S y stem s and N eural N etw ork s for In telligen t Sensorim otor C ontrol", R o b ico n S y stem s, Inc.,
R S I T ech ., R eport T R 9 0 -1001 , Princeton, N J . , O ct. 1990.

H er a ld [’88] H erold , D . J ., M iller , W . T ., Kraft, L . G ., and G la n z , F . H ., "Pattern R eco g n itio n U sin g
a C M A C B a sed L earning System ." P roceed in gs SPIE: A utom ated In sp ection and H ig h Sp eed
V isio n A rch itectures II, vo l. 1004 , pp. 8 4 -9 0 , 1988.

H ew cs | '8 8 a | H ew es , R .P ., Implementation and Demonstration o f a Learning Control Test System
For a Five Axis Industrial Robot, M asters T h esis, D ept, o f E lectrical and C om puter
E ngineering, U niversity o f N e w H am pshire, M ay , 1988.

H ew es [’88] H ew es , R .P ., and M iller , W .T . "Pracdcal D em onstration o f a L earning C ontrol S y stem
for a F ive A x is Industrial Robot." P roceed ings SPIE: In telligen t R o b o ts and C om puter V is io n ,
vol. 1002, 1988.

H in to n [’8 4] H in ton , G eo ffrey , "Parallel C om putations for contro lling an Arm ", Journal o f M otor
B ehavior, 19 8 4 , V ol. 16 N o . 2 , 171-194 .

H o rsta d ter] ’7 9 | H ofstadter, D ou g las R ., Godet, Escher, Bach: An Eternal Golden Braid, B a sic
B o o k s, N ew Y ork, 1979.

H o g a n | ’8 0 | H ogan, N. "M echanical Im pedance C ontrol in A ss is tiv e D e v ic e s and M anipulators",
P roceed ings o f 1980 Joint A C C C on feren ce , San F rancisco , 1980; p T A 1 0 -B ,

H o g a n [’8 4 a] H ogan , N . "Im pedance Control: A n A pproach to M anipulation", Proceedings o f the
1984 American Controls Conference, June 6 -8 , 1984; v o l 1, p p 3 0 4 -1 3 .

H o g a n [’8 4] H ogan , N . "An O rgan izing P rincip le fo r a C la ss o f V oluntary M ovem ents" , Journal o f
N eu ro sc ien ce , 4 :2 7 4 5 -2 7 5 4 ,1 9 8 4 .

H o g a n [’8 5] H ogan , N . "Im pedance Control: A n A pproach to M anipulation", A S M E Journal o f
D yn am ic S y stem s, M easurem ent and C on tro l, vo l 107,#1: pp 1 -24 , M arch 1985.

H o g a n] ’8 5 | H ogan . N . , "A daptive C ontrol o f M echan ical Im pedance by C oactivation o f
A ntagonist M uscles" , IEEE T ransactions o n A utom atic C ontrol, v o l A C -2 9 , # 8 , pp 6 8 1 -9 0 ,
A u g. 1984.

H o g a n | ' 9 2 | H ogan , N . , "H ow H um ans A dapt to K inem atic C onstraints", In: P roceed ings o f the
S eventh Y ale W orkshop o n A d aptive and L earning S y stem s, N e w H a v en , C T , M ay 2 0 -2 2 ,
1992 , pp. 182-185

H o lm e s [’9 1] H o lm es, E .F. and Carter, M J . "Fault T o lerance D uring the L earning S ta g e in C M A C
N etw orks." In preparation for su b m iss io n to IEEE T rans. N eural N etw orks.

H o rn ik [’8 9] H o m ik , K ., S tinchcom be, M . and W hite, H.," M ultilayer F eedforw ard N etw ork s are
U niversal A pproxim ators" , Neural Networks, V o l. 2 , pp 3 5 9 -3 6 6 , 1989.

H o u k | ’8 8 | H ouk , Jam es, C ., "Schem a For M otor C ontrol U tiliz in g a N etw o rk M od el o f the
C erebellum ", Neural inform ation P rocessing S y stem s. D .Z . A n derson , ed . N Y , N Y : A m er. Inst.
P h y sics, 198 8 :3 6 7 -3 7 6 .

H o u k [’8 9 | H ouk , Jam es, C ., "C ooperative C ontrol o f L im b M o v em en ts b y the M otor C ortex ,
B rainstem and Cerebellum ", from Models o f Brain Function, Ed. R od n ey M J . C otterill,
C am bridge U n iversity Press, 1989.

H o u k [’9 0] H ouk , Jam es C ., S in gh , S .P ., F isher, C ., B arto, A ., "An A d aptive Sensorim otor N etw ork
Inspired by the A natom y and P h y sio lo g y o f the C erebellum ", from M iller , W . T ., Su tton , R . S .,
and W erb os, P. J., (ed itors). Neural Networks fo r Control, C am bridge M A , M IT P ress,
D ecem ber, 1990.

233

H o u k [’9IJ H ouk , Jam es C ., "O utline for a T h eo ty o f M otor Learning", Tutorials in Motor
Neuroscience, Proceedings o f the NATO AS1 Corsica Meeting, 16 -2 4 Septem ber, 1990 , G .E .
S te lm ach , e d ., K lu w er A cad em ic P ublishers, 1991

H o u k [’92] H ouk , Jam es C , "Learning In M odular N etw orks" , In: P ro ceed in g s o f the Seven th Y a le
W orkshop o n A d a p d v e and L earning S y stem s, N e w H aven , C T , M ay 2 0 -2 2 , 1992 , pp. 8 0 -8 4

H w a n g | ’8 8 1 H w ang, V. K. and A huja, N . "Path planning usin g a potentia l fie ld representation".
C oordinated S c ien ce Laboratory T ech nica l R eport U IL U -E N G -8 8 -2 2 5 1, U n iversity o f Illin o is ,
U rbanu-C ham paign. 1988.

J o n e s (’87) Jo n es, W illiam P ., and Josiah H osk in s, "Back-Propagation: A G en era lized D elta Rule",
B Y T E , O ct. 1987 . 155-162 .

J o r d a n [’8 8] Jordan, M ichael I., "Supervised learning and sy stem s w ith e x ce ss d egrees o f
freedom ", U . M ass. A m herst, C O IN S T ech . R eport 8 8 -2 7 , M ay 1988.

J o r d a n ['9 0) Jordan, M ichael I., "Forward M odels: S u p erv ised learning w ith a d ista l teacher", M IT
C enter for C o g n itiv e S c ien ce O ccasiona l Paper # 4 0 , (subm itted for p u b lication to C o g n itiv e
S cien ce , 1990).

.lo s in | ’8 7 | Josin , G ary, "N eural-N etw ork H euristics: T hree H euristic A lgoritlu n s T hat Learn From
E x p er ien ce', B Y T E , O ct. 1987, 183-192 .

K u w a lo) '8 9 | K aw ato, M ., Y. M aeda, Y . U n o and R. Su zu k i, "Trajectory Form ation o f A rm
M ovem ent by C ascad e Neural N etw ork M o d el B a sed o n M in im um T orque-change Criterion",
A T R A uditory and V isu al P erception R esearch Laboratories internal paper, 7 /2 6 /8 9 .

K a w a to | '8 9 j K aw ato , M ., Y ., from M iller , W . T ., Su tton , R . S ., and W erb os, P . J., (ed itors),
Neural Networks fo r Control, Chapter 9 , C am bridge M A , M IT P ress, D ecem ber , 1990.

K h a tib [’8 5] K hatib, O . (1 9 8 5) . "R eal-tim e o b stacle a vo id an ce for m anipulators and m ob ile
robots", Proceedings o f the IEEE International Conference on Robotics and Automation, St.
L ouis, M O , M arch.

K hu tih | ’8 6 | K hatib, O . (1 9 8 6) . "R eal-tim e o b sta c le avo idan ce for m a n ip u la to r and m ob ile
robots". International o f Journal o f R ob otics R esearch , 5 (1) pp 9 0 -9 8 .

K le in | '8 3] K lein , C h arles, and C hian g-H siang H uang, "R eview o f P seu d o in verse C ontrol for U se
w ith K in em atica lly R edundant M anipulators", IEEE T rans, o n S y s . M an, and C yber, vo l.
S M C -1 3 , no . 3 , M ar/Apr. 1983.

K o rc in (’8 5) K orcin , Jam es U ., A Geometric Investigation o f Reach, M IT P ress, 1985.

K ru fl | ’89aJ Kraft, L. G ., and C am pagna, D . P ., "A C om parison o f C M A C N eural N etw o rk and
T raditional A daptive C ontrol System s." Proc. o f the 1989 A m erican C on tro ls C o n f., P ittsburgh,
Pa., M ay, 1989.

K raft | ' 8 9 h | Kraft, L. G ., and C am pagna, D . P ., "C om parison o f C on v erg en ce Properties o f C M A C
Neural N etw ork and Traditional A d aptive C o n tro ller ." Proc. 28th C o n f. on D ec is io n and
C ontrol, T am pa, F la ., D ecem ber, 1989, pp. 174 4 -1 7 4 5 .

K ra ft [’8 9 | Kraft, L. G ., A n , E ., and C am pagna, D . P ., "C om parison o f C M A C C ontroller W eigh t
Update Laws." Proc. 28th C on f. on D ec is io n and C ontrol, T am pa, F la ., D ecem b er , 1989 , pp.
1746 -1 7 4 7 .

K ra ft [’9 0 a] Kraft, L. G ., M iller ,W .T ., G lan z, F .H ., Prina, S ., "A N eural N etw o rk B a sed C ontroller
For a M agnetic D isc D rive W ith a N o isy Sensor", P roced in gs o f E lectron ics Im aging 1990
East C on feren ce , B osto n , M A , O ctob er, 1990.

234

K ra ft [’9 0 b] Kraft, L. G ., "A pplications o f C M A C to O ptim al C ontrol P roblem s", T o appear in the
P roceed in gs o f the W orkshop o n A erosp ace A p p lica tion s o f N eural C ontrol, co -sp o n so red by
the N ational S c ien ce Foundation, M cD o n n ell D o u g la s , and W ash in gton U n iversity , S t. L o u is ,
M issouri, O ctober, 1990.

K ra ft ['9 0 c j Kraft, L. G ., and C am pagna, D .P ., "C om parison o f C M A C A rchitectures for N eural
N etw ork Control", IEEE D ecis io n and C ontrol C on feren ce , H on o lu lu , H aw aii, D ecem ber ,
1990.

K ra ft | ’9 0 | Kraft, L. G ., and C am pagna, D . P ., "A Sum m ary C om parison o f C M A C N eural
N etw ork and T raditional A daptive C ontrol System s." IEEE C ontrol S y stem s M agazin e , A pril,
1990.

K ra ft [*91] Kraft, L. G ., A n , Edgar, and B r ig g s , E ., "C onvergence P roperties o f C M A C Neural
N etw ork C ontrollers", Subm itted to the 1991 A m erican C ontrols C on feren ce , B osto n , M ass.

K ra m e r [’9 2] K ram er, G ., Solving Geometric Constraint Systems, M IT P ress, C am bridge, M A ,
1992.

K u llle r | ' 8 4 | K uffler, S .W ., N ich o lls , J .G ., M artin, A .R ., From Neuron to Brain, Sinauer,
Sunderland, M A , 1984.

K u h n | ’9 0 | Kuhn & H er/b erg , "V ariations on T raining o f R ecurrent N etw orks", from 24th
C on feren ce on Inform ation S c ien ce s & S y stem s, P rinceton , N J . 3 /2 1 /9 0 .

K u p er ste in [’8 8] K uperstein , M ich ael, and Jorge R u binstein , "Im plem entation o f an A d aptive
Neural C ontroller for S ensory-M otor C oordination", IEEE C ontrol S y stem s M a gazin e , A pril,
1989,o n and lecture g iv en at the B o sto n IN N S co n feren ce, Sept. 1988).

I .ip p m a n n [’8 7] L ippm ann, Richard P ., " A n Introduction to C om puting w ith N eural N ets" , IEEE
A S S P M agazine, Apr. 1987.

L o z a n o -L e a l ['8 9 | L ozano-L eal, R ., "R obust A daptive R egu lation W ithout Persistent Excitation",
IEEE Transactions on Automatic Controls, vo l. 34 , no. 12, pp. 1 2 6 0 -1 2 6 7 , June 1989.

L o za n o -I’cr e z | ’8 7 | L ozano-P erez, T . , " A sim p le m otion planning algorithm for general robot
m anipulators", IEEE Journal o f Robotics and Automation, 1987 , R A -3 , pp 2 2 4 -2 3 8 .

M a cL e a n [’73] M acL ean, P .D .A TriuneConcept o f the Brain and Behavior, T oronto: U n iv ersity o f
T oronto Press, 1973.

M a rr | ’6 9 | M art, D ., "A T heory o f C erebellar C ortex", Journal o f P h y sio lo g y , L ond on , E ng ., V .
2 0 2 , 1969, pp 4 3 7 -4 7 0 .

M a rsh a ll | ' 8 7 | M arshall, S .V ., Sk itck , G .G ., Electromagnetic Concepts and Applications, 2n d
E dition, P rentice-H all, 1987, E n g lew o o d C liffs , N ew Jersey.

M a sso n e | ’8 9 | M ussone, L., B izz i, E., "A Neural N etw ork M odel for L im b T rajectoiy Form ation",
Biological Cybernetics, 6 1 ,4 1 7 -4 2 5 , 1989,

M eC u llo c h [’4 3] M cC u lloch , W .W and P itts, W ., "A lo g ica l ca lcu lu s o f the id ea s im m in en t in
neurvous activ ity" . Bulletin o f Mathematical Biophysics, 5:1 1 5-33 , 1943

M el [’8 7] M el, Bartlett W ., "M U R PH Y : A robot that learns by doing", Proc. o f the IEEE C o n f. o n
N eural Inform ation P rocessing S y stem s, D enver, 1987.

M cl [’8 9] M el, Bartlett W ., "M U R PH Y : A N eurally-Insp ired C on n ectio n ist A pproach to L earning
and Perform ance in V isio n -B a sed R ob ot M otion P lanning.", T ech . R eport C C S R -8 9 -1 7 A ,
C enter for C o m p lex S y stem s R esearch, U n iv . o f 111., U rbana-C ham paign . *

235

M el [*90J M el, Bartlett W ., " V ision -B ased R ob ot M o tio n P lanning" , from M iller , W . T ., Sutton, R.
S ., and W erb os, P. J ., (ed itors). Neural Networks fo r Control, C am bridge M A , M IT P ress,
D ecem b er, 1990.

M iller [*781 M iller , W .T ., G ese lo w itz , D .B ., "Sim ulation stu d ies o f the electrocard iogram . I. T he
norm al heart." C ircu lation R esearch vo l 4 3 , pp 3 0 1 -3 1 4 , 1978.

M iller | ’7 8 u | M iller, W .T ., G ese lo w itz , D .B ., "Sim ulation stu d ies o f the electrocard iogram . II.
Ischem ia and infarction." C ircu lation R esearch v o l. 4 3 , pp. 3 1 5 -3 2 9 , 1978.

M iller [’8 6 | M iller , W . T ., "A N on linear Learning C ontroller for R ob otic M anipulators." Proc. o f
the SPIE: Intelligent R obots and C om puter V is io n , v o l 7 2 6 , pp. 4 1 6 -4 2 3 , O ctober, 1986.

M ille r [’871 M iller , W . T ., "A L earning C ontroller fo r N on repetitive R o b o tic O perations." P roc. o f
the W orkshop o n S p ace T elerob otics, JPL pu blication 8 7 -1 3 , v o l. n , pp. 2 7 3 -2 8 1 , Pasadena,
C A , January 19-22 , 1987.

M ille r [’871 M iller, W . T ., "Sensor B ased Control o f R ob otic M anipu lators U s in g A G eneral
Learning A lgorithm ." IEEE J. o f R ob otics and A u tom ation , v o l. R A -3 , pp. 1 5 7 -1 6 5 , A pril,
1987.

M iller | ' 8 7 | M iller, W. T ., G lan z, F. H ., and Kraft, L. G ., "A pplication o f a G eneral Learning
A lgorithm to the C ontrol o f R ohotic M anipulators." T he International Journal o f R ob otics
R esearch, vol. 6 .2 , pp. 8 4 -9 8 , Sum m er, 1987.

M iller ['8 8 a | M iller , W . T ., "Real T im e A p plication o f N eural N etw o rk s for S en sor-B ased C ontrol
o f R obots w ith V ision" , Internal paper o f U n iv . o f N .H , E C E D ep t., rev ised , S ep t. 1 5 ,1 9 8 8

M ille r [’8 8 b] M iller, W . T ., H ew es , R .P ., G lan z, F .H ., and K raft, L .G ., "R eal-T im e D y n a m ic
C ontrol o f an Industrial M anipulator U sin g a N eural N etw ork B a sed L earning Controller",
Journal o f R o b o tics and A utom ation , (date and vo lum e???)

M ille r | ’8 8 c] M iller, W . T ., "Real T im e Learned S ensor P rocessin g and M otor C ontrol for a R ob ot
with V ision." P roceed ings o f the First A nnual C on feren ce o f the International N eural N etw ork
S o c ie ty , B oston , M A , Septem ber 6 -1 0 , 1988, pp. 347 .

M ille r |* 8 8 d | M iller, W . T ., and H ew es, R .P ., "Real T im e E xperim ents in N eural N etw o rk B ased
Learning C ontrol D uring H igh S p eed , N on repetitive R o b o t O perations." P roceed ings o f the
Third IEEE International S y m p o siu m o n In telligent C ontrol, W ash in gton , D .C ., A u gust 2 4 -2 6 ,
1988.

M ille r [’89] M iller , W , T ., "Real T im e A p p lica d o n o f N eural N etw ork s fo r S en so r-B a sed C ontrol
o f R ob ots w ith V ision." IF.F.F. T ransactions o n S y stem s, M an, and C yb ern etics S p ecia l Issu e on
Inform ation T ech n o lo g y for S en sory-B ased R ob ot M anipulators, V o l. 19, pp. 8 2 5 -8 3 1 ,
A u gu st, 1989.

M iller | ’9 0 a | M iller, W . T ., and A ldrich , C . M ., "Rapid L earning U sin g C M A C N eural N etw orks:
Real T im e Control o f an U nstable System ." P roceedings o f the F ifth IEEE International
Sym p osium on Intelligent C ontrol, P hil., P A , Sept. 5 -7 , 1990 , pp. 4 6 5 -4 7 0 .

M ille r | ’9 0 b | M iller, W . T ., B o x , B . A ., and W hitney , E . C ., "D esign and Im plem entation o f a H igh
Sp eed C M A C N eural N etw ork U sin g Program m able C M O S L o g ic C e ll Arrays." U N H
In telligent Structures G roup R eport E C E .IS .90 .01 , U n iv . o f N e w H am pshire, Feb . 6 ,1 9 9 0 .

M ille r [’9 0 c] M iller , W . T ., B o x , B . A ., W hitney , E . C ., and G lyn n , J. M ., " D esign and
Im plem entation o f a H igh S p eed C M A C N eural N etw ork U sin g L o g ic Program m able C M O S
L o g ic C e ll Arrays", P roceed ings o f the IEEE C on feren ce o n N eural Inform ation P rocessing
S y stem s, D enver, C O ,N o v . 2 6 -2 9 , 1990.

236

M ille r | ’9 0 d | M iller , W . T ., G la n z , F. H ., and K raft, L . G .f "C M A C : A n A sso c ia t iv e N eural
N etw ork A lternative to B ackpropagalion." IE E E P ro ceed in gs , S p ec ia l Issu e o n N eural
N etw ork s II: A n a ly sis , T ech n iqu es, and A p p lica tio n s , v o l. 7 8 , pp. 1 5 6 1 -1 5 6 7 , O ctob er, 1990 .

M iller | '9 0 c] M iller , W . T ., H ew es , R . P ., G lan z, F . H ., and K raft, L. G ., "Real T im e D y n am ic
C ontrol o f an Industrial M anipulator U s in g a N eural N etw o rk B a se d L earn ing C ontroller."
IEEE J. o f R o b o tics and A utom ation , V o l. 6 , pp. 1 -9 ,1 9 9 0 .

M iller | ’9(M1 M iller , W , T ., Latham , P. J., and Scalera, S . M ., "B ipedal G ait A daptation for W alk ing
w ith D y n am ic Balance: Tem poral D ifferen ce L earning U s in g C M A C N eural N etw orks."
Presented at the C on feren ce on the S im ulation o f A d aptive B ehavior: From A n im a ls to
A n im ats, Paris, France, Septem ber 24*28 , 1990.

M iller [*90g] M iller , W . T ., Sutton, R . S ., and W erb os, P . J., (ed itors), Neural Networks fo r
Control, C am bridge M A , M IT P ress, D ecem b er , 1990.

M ille r ['901 M iller , W . T „ A n , E ., G lan z, F. H ., and Carter, M . J„ "The D e s ig n o f C M A C N eural
N etw o rk s for C ontrol." P roceed in gs o f the S ix th Y a le W orkshop o n A d ap tive S y stem s, N e w
H aven , C T , A u gust 15-17 , 1990, pp. 140-145 .

M iller | ’9 11 M iller , W . T ., Latham , P. J., and Scalera, S . M ., "Bipedal G ait A daptation for W alk ing
with D y n am ic Balance." Subm itted to the 1991 A m erican C on tro ls C o n feren ce , B o sto n , M ass.

M in sk y | ’6 9 | M in sky , M arvin, and Seym our Papcrt, Perceptrons, an Introduction to
Computational Geometry, M IT Press, 1969.

M o o d y [’8 9] M o o d y , John , and C hristian J. D arken, "Fast L earning in N etw o rk s o f L ocally -T un ed
P rocessin g U nits", N eural C om putation, 1989.

M o z c r [’8 9] M ozcr, M ich a e l, "D iscovering the Structure o f a R ea ctiv e E nvironm ent B y
Exploration", fro m ^ t/v n n ces in Neural Information Processing Systems 2 , M organ K aufm an,
1990.

N e w m a n |* 8 5 | N ew m an , W . S. and H ogan, N . " H ig h sp eed robot control and o b sta c le avoidance
using dyn am ic potential functions". P roceed ings o f the IEEE International C on feren ce on
R ob otics Inform ation, St. L ouis, M O , M arch 1985.

N g u y en] '8 9 | N g u y en , D errick , and Bernard W idrow , "The T ruck B acker-U pper: an E xam ple o f
S e lf-tea m in g in N N s" , International Joint C on feren ce o n N eural N etw ork s, June, 1989.

O m o h u n d r o [’8 7] O m ohundro, S . "E fficient a lgorithm s w ith neural netw ork behavior". Journal o f
C o m p lex S y s tem s , 19 8 7 , 1(2): 2 7 3 -3 4 7 .

N o b le [’6 7] N o b le , B en , Application o f Undergraduate Mathematics in Engineering, M acm illan ,
N .Y ., 1967.

P ao | ’9 2] Pao, Y ., T akefu ji, Y ., "Functional-L ink C om puting: T heory , S y stem A rch itecture, and
F unctionalities" , IEEE Computer, M ay, 1992, vo l. 2 5 , no . 5 , p. 7 6 .

P en ro se | ’8 9 | P enrose. R oger. The Emperor's New Mind: Concerning Computers, Minds, and the
Laws o f Physics, O xford U n iversity Press, 1989.

P itts [’4 7] P itts, W . and M cC u lloch , W .W , "H ow w e kn ow un ivetsa ls" , .Bulletin o f Mathematical
Biophysics, 9 :1 2 7 -4 7 ,1 9 4 7 .

R iv est [’8 7] R iv est, R onald L ., and R obert E . Shapire, "A N e w A pproach to U n su p erv ised Learning
in D eterm in istic E nvironm ents" , M IT Laboratory fo r C om puter S c ien ce , T ech R eport, 1986.

237

R u d o lp h [’9 0] R udolph , Frank, "L ocally O ptim izing N eural N etw o rk s In A d ap tive R o b o t Path
Planning", International Joint C onference o n N eural N etw o rk s, Jan. 16, 1990 , W ash in gton ,
D .C .

R u m elh a r t [’8 6] R um elhart, D .E ., J.L. M cC lellan d , Parallel Distrubuted Processing: Explorations
in the Microstructure o f Cognition , M IT P ress, 1986.

R u m elh a r t [’8 8 | Rum elhart, D .E ., J.L. M cC lellan d , Explorations in Parallel Distributed
Processing, M IT Press, 1988.

S ee g ee | ’9 2 | S e g e e , B ., Characterizing and Improving the Fault Tolerance o f Neural Networks. A
doctoral dissertation presented to the U n iversity o f N e w H am pshire E C E D ep t., 1992.

S e lv e r sto n [’8 8] Set v ersion , A lle n L "A C onsideration o f Invertebrate C entral Pattern G enerators as
C om putational D atabases", N eural N etw ork s, v o l. 1 no. 2 , pp. 1 0 9 -1 1 7 , 1988 . P ergam on Press,
N ew York.

S in k ja er] ’9 0 | Sinkjaer, T ., W u, C .H . B arto, A ., H ouk , J. C ., "C erebellar C ontro l o f E ndpoint
P osition -A Sim ulation M odel" , P roceed in gs o f the International Joint C on feren ce o n Neural
N etw orks, San D ie g o , V ol. II: 7 0 5 -7 1 0 , 1990.

S h cp a n sk y | ’8 7 | Shepanski, J.F ., and S .A . M acy , T each in g A rtific ia l N eural S y stem s to D rive:
M anual Training T ech n iqu es for A u ton om ou s System s" , SP IE V o l. 8 4 8 , In telligen t R ob ots and
C om puter V ision: Sixth in a Series(1987).

S n y d e r (’8 5] Snyder, W esley E., Industrial R obots: Computer Interfacing and Control, Prentiss
H all. 1985.

S u tto n | ’9 0] Sutton, R .S ., "First R esu lts w ith D yn a , A n Integrated A rchitecture for L earning,
Planning and R eacting", from M iller , W . T ., Su tton , R . S ., and W erb os, P . J ., (ed itors), Neural
Networks fo r Control, Chapter 8 , C am bridge M A , M IT P ress, D ecem b er , 1990 .

V a n d c V c g te [’8 6] Van de V eg te , John, Feedback Control System., Prentice H all, 1986.

W a sser m a n | ’8 8 | W asserm an, P .D ., Neural Computing: Theory and Practice, V an N ostrand
R einhold , 1989.

W a v e r in g | ' 8 8 | W avering, A lbert J., "M anipulator P rim itive L ev el T ask D ecom p osition " , N IS T
T echnical N ote 1256, U .S . D ept, o f C om m erce, N IS T , O ct. 1988.

W c rh o s, P. J . [’9 0] W erb os, P J . "A M enu o f D e s ig n s for R ein forcem en t Learning", from M iller,
W . T ., Sutton, R. S ., and W erb os, P. J., (ed itors). Neural Networks fo r Control, C am bridge M A ,
M IT P ress, D ecem ber, 1990.

W illia m s [’89] W illiam s, R onald J., "A daptive S tate R epresentation and E stim ation U s in g
Recurrent C on nection ist N etw orks", C o lleg e o f C om puter S c ien ce , N ortheastern U n iversity
internal paper.

238

INDEX
Index entries are "chapter.page"; (the chapter numbers are in bold face type).

!

2DTFORMS 3.70
q, learning rate 2.38

A

action compiler 3.78
adaptive critic 6.159
adaptive resonance 2.25
Albus, J . 1.6,2.34,2.39
An’s optimal receptive field
arrangement 2.35
ARTFORMS 1.14,3.70
ARTFORMS problem statem ent 2.30
articulated representation 1.14
ARTISTS 1.14
Automatic gain control (AGC) for

step-size 3.64,4.83,4.95,4.116,
C.195

B

backpropagation 2,28
Barto, A.G. 1.13
batch learning 2.51
benign environment 1.14
Berkinblitt, I.M. 3.60
binocular vision A.169
bitmapping 4.129
Bullock, D. 1.13

C

C, the generalization param eter 2.42
Canney, J . 1.11
cascade correlation architecture 2.48
cerebellum

function of 2.39
chained trajectory 4.85

chained vs. radial trajectories 2.30
chaos 1.17
chaotic time sequence prediction 2.48
climbing fibers A.174
CMAC 1.6

defined 2.34
CMAC versus multi-layer
perceptrons 2.39
codon representation 2.42,4.112
codon unit 2.44
computational expense 1.19
computer memory

as a non-linear device A.175
conditions for convergence of
ARTISTS 1.21
conservation of memoiy use 5.145
constraint satisfaction 1.9,1.16

as heuristic 3.61
convex region 2.47
curvate arm constraint 5.145

D

delta rule 4.102
direct inverse

computational advantage over
forward modeling 1.24
direct inverse as LTM 3.68
direct inverse modelling 2.26
direct inverse training step 4.102
direction cosine encoding 5.152,5.150
dynamic programming 1.13

E

elbow disturbance 5.150
endpoint control 2.33,5.152,6.163
error metrics 4.106
exterior obstacles 0.150

239

F

Fahlman, S. 1.22,2.52
feedforward control 2.36
field representation 3.67
fixed gain controller 2.35
Flash, T 1.13
forward kinematics 1.7
forward model 1.22
forward modeling 2.28
function approximation

related to pattern classification 2.‘
functional link network 2.40

G

Gelfand, J . 1.10
generalization 1.20

in MLPs 4.84
connectionist’s definition 2.41,4.1
localist's definition 2.41
non-deterministic in MLP 2.44
reasons for 1.20
the traditional definition 4.131

generalization and quantization 2.42
generalization slew rate 4.96,4.115
generalization slew rate density

4.111
generalized mover’s problem 1.11
goal directed 2.28
goal directed heuristics 3.58
goal directedness 1.19,2.29
gradient descent 2.26, 3.58
gradient of objective function 4.102
gross parameterization 4.105
Grossberg, S. 1.13, 2.25

H

habituation 1.14,2.39,3.56,3.65
hand disturbance 5.150
hand effort 4.111,4.117
hand space 1.7
Handelman, D. 1.10
Handelman, D.A. 3.60, 3.78
hashing algorithm 3.66,4.84
hashing collisions

linear upper bound on 4.118

non-uniform distribution of 4.126
herd effect 2.51
heuristic criteria 2.33
heuristic critic 3.58
heuristic step density 4.111
hidden layers 2.48
hierarchical system 1.14
hill climbing 3.58
Hogan, N. 1.13,4.95,5.152,6.163
Homik, K. 2.45
Houk, J.C. 2.36, 2.39,6.163
Hwang, Y.K. 1.13

I

impedance method 1.13
incremental learning 2.51
inhibitor network 3.65
inhibitory projection A.173
initialization of weights 1.20
innacurate critic 4.132
input mapping 2.32
integral controller

degeneration of CMAC to a 4.115
interior obstacles 5.150
inverse Jacobian matrices 1.10,1.21
inverse kinematics 1.7
inverse static posture maps 1.21

J

joint effort 4.110,4.116
joint space 1.7
joint stop ratcheting 4.136
Jordan, M.I. 1 .12-1 .13,1 .18,1 .22-

1.23,2.26,2.28,4.17

K

K-CMAC 5.149
Kawato, M.Y. 1.12 -1.13,1.18
Khatib, O. 1.13
kinesthetic sense 1.14
Klein, C. 1.11,1.17,1.21
Kohonenmaps 2.25
K orein,J. 1.11
Kramer, G. 1.17

240

L O
Lane, S. 1.10
Lapedes and Farber 2.48
learning rate 2.38, 3.65
least mean square, LMS 1.19
limitations of ARTFORMS 5.150
linear tapered receptive field 4.132
linear tapered receptive fields 2.35
local basis functions 2.53
local basis network 2.52
local generalization 2.28
long term memory (LTM) 2.38, 3.68
Lozano-Perez, T. 1.11
Lyapunov convergence 4.136

M

mammalian brain A. 170
many-jointed articulator trials 4.133
M arr.D . 2.34,2.39,2.42
Massone, L. 6.163
Mel, Bartlett 1.11,2.25
memory saturation 4.112
Miller, W.T. 2.36-2.37
minimum norm 1.11
minimum torque 1.12
MLP 1.20,1.22,4.84

insufficiencies 2.41
model acquisition 1.13, 2.28
Moody, J . 3.67
movement anticipation 2.37
multi-layer perceptron (MLP) 1.12,

2.39
multiple articulators A. 169
MURPHY 1.11,1.15

N

neuromuscular junction models 1.13
noise

persistent excitation 4.140
robustness in the presence of 2.41,
4.117

non-repetitive trajectory trials 4.130

objective functions 4.97
obstacle avoidance 1.13
obstacles

interior and exterior 5.150
on-line learning 2.28
optimal methods 1.11
over-generalization 2.50,4.115

P

Pao, Y. 2.40
pattern classifier

equivalence to function
approximator 2.45

persistent excitation 4.140
planar linkage 1.8
postural constraint equations 4.97
postural constraint training step

4.103
postural constraint vector CMAC

(K-CMAC) 5.149
postural constraints

increase goal directedness 4.96
modification of 5.145

postural dimensionality 3.70
postural error 4.117
postural error density 4.107
postural switching 1.18
potential field methods 1.13
potential fields method 1.16
pre-training 2.28
pre-training a forward model 1.22
predictive vs. proprioceptive data

A. 174
prismatic linkage 1.8
pseudo-inverse 1.16

Q
qualitative kinematics and dynamics

2.35
quantization 2.42,4.115
quasi-feedforward process 2.36

241

R

radial basis function 2.52
random flailing 3.59
redundancy 1.7

path redundancy 1.8
postural redundancy 1,8

redundant linkage 1.8,2.53
reflexive vs. declarative

representation 1.10,1.13, 3.78
reinforcement learning 1.13, 2.38,

3.67
relaxed search 1.15
relaxed spatial trajectories 1.14
repeller as STM 3.68
repeller network 3.67
reptilian brain A. 170
retinal CMAC (R-CMAC) 5.148
reversible plant assumption 4.133
Rivest, R.L. 2.25
robustness in the presence of noise

2.41,4.117
robustness of constraint training

5.146
rotational linkage 1.8

S

Seegee, B. 2.42
SERVO control 2.36
SERVO level controller 2.35
short term memory (STM) 2.38, 3.68
sigmoid non-linearity 2.45
simple linkage 1.8
SLAP 2.38,3.67
spatially distributed
parameterization 3.67, A. 170, A. 174
spatially distributed

parameterization 4.105
spatially distributed plasticity 3.67
stable trajectory problem 3.67
state space detector 2.52
step-size control (AGC) 3.64,4.83,

4.95, 4.116, C.195
step size density 4.111
stochastic search 1.12
sub-optimal methods 1.13
subsumptive connection 3.67

subsumptive system 1.14
supervised learning 2.25
surface-fitting 2.39
Sutton, R.S. 1.13

T

table lookup 2.42
temporal constraints 4.104
time delays in complex systems 2.37
training critic 3.58
training_critic 3.63
trajectory drift 4.85
triune brain hypothesis A.170
two sticks problem 1.17

u
uncurling a long arm 4.134
under-generalization 4.115
UNHCM AC 2.43
unsupervised learning 2.25

W

W asserman, P. 2.39
Wasserman, Philip 2.28
Wavering, A*T. 1.6
waypoint generation 1.12
Werbos, P. 6.159
workspace 1.7

242

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 1992

	A neural network-based trajectory planner for redundant systems using direct inverse modeling
	Franklin J. Rudolph
	Recommended Citation

	00001.tif

