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PREFACE

This thesis investigates control methods for robotics that are applied
within a hierarchy. The nature of the robot hierarchy is assumed to be "intelli-
gent" in some sense. Each level may be termed adaptive. The difference between
"adaptive" and "intelligent" is intended by this author as a matter of legitimate

difference in degree rather than mere semantics.

The term "adaptive" may be seen as connoting such attributes as "compli-
ant’ or "adjustable". The conglomerate result of many separate adaptive mod-
ules or agents acting in concert as has been postulated by Minsky ['86], Brooks
['88-91a), Hofstadter ['79], and others is that some activity resembling intellect
can emerge from the synergistic combinations of the activities of all these modu-
lar parts. The agents differ in these various authors’ methods, but the sense
each author conveys is that the combined result is somehow greater than the

sum of the parts.

Minsky and Hofstadter present a descriptive approach explicative of colo-
nies of organisms they have observed, while Brooks takes a more "ontogenic", or
bottom-up approach. Brooks claims that, in essence, just by doing what we engi-
neers do best, i.e., by being careful to do the right thing at every step, and by
starting at the very bottom we can not help but eventually invent a robust, ca-
pable, more or less autonomous system. The resultant system may not be very
"smart” except in some primitive but perhaps important way, e.g. in survival

skills.

vii



It is the addition of the descriptor "autonomous" that starts to describe

what is meant herein by the difference between adaptive and intelligent.

In all 3 systems mentioned, a global world model is not important to the
emergence of intelligence. Brooks takes the extreme view, Brooks [91a], in that
he demands no representation of the external world be implemented. Minsky
and Hofstadter on the other hand just do not require it. Brooks holds that plan-
ners at every level up to and including the cybernetic "pilot" of the system can be
removed and replaced with some highly complex collection of layered agents.
The agents in Brooks'’s hierarchy are cunningly interconnected by subsumptive
and inhibitory communications relays. One could well argue that a Brooksian
system does in fact have a world model embedded in it, and the layout, enu-
meration and interconnection of these relays is an implementation of it. This
view begs the question of just where the data and the algorithm lie in such a
system. An extreme Brooksian scholar might conversely argue that an Al imple-
mentation of an intelligent system is equivalent to some Brooks-style subsump-
tion implementation in that it is implemented with millions of low level switches
and logic gates that implement the opcodes comprising the computation and in-
ferences of the system, and that there is a ridiculous superfluity of them due to

the inefficiency of a lot of semantic fluff implemented high up in the system at

the LISP or PROLOG level.

These two are extreme views. Bellingham and Consi [90, 91], Schudy and
Duarte ['90], Bellingham and Beaton ['89] argue for a middle approach.

The objection to Brooks's view that applies here is more a convenience
than a power issue. Consider, for instance, that a Turing machine has the same

computational power as a modern computer with a C++ compiler. It is nonethe-
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less ludicrous to argue that the former is a practical replacement for the latter.
[t seems that though a purely subsumptive control system might be implement-
able, given enough insight into the microstructure of the behavioral fabric of a
particular, highly complex system woven by the Brooksian behaviorist, the con-
venience of a system built by subsumptive revisionists like Bellingham et al (or
this author) is critical, thereby allowing programmability in ways that the

purely subsumptive system disallows

Clearly, subsumptive style systems have some enticing and useful attrib-
utes that make the systems robust and compliant. Each layer is independent
and sufficient for the generation of a behavior (though not necessarily the right
one), so a failure at a high level does not stop the creature in its tracks; it just
might make it behave in a less adequate fashion. The layers are more relaxed
than say a traditional computer network, or a parallel sort algorithm. It would
be entirely sufficient for perhaps 10% of the packets sent by one layer to reach
their destinations at lower layers. Thus, large amounts of time and effort on the
part of the system are not wasted on handshaking. The effect of this is that
higher layers do not command lower ones, they simply attempt to influence

them.

Top down is not the _only direction of data flow. Albus [81] and Houk ['88]
both argue for ascending data flows in their two quite different cerebellar mod-
els. A combined strategy consisting of ascending and descending data flows
through a complex multi-level system is much more like the leaky but adequate
neural channels for control found in nature than in most engineering solutions.

Such a technique is highly robust. Other techniques, like carefully tailored ana-

ix



lytical ones can suffer from brittleness, a lack of adaptability, and even stability

problems in the face of long and variable time delays.
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ABSTRACT

A NEURAL NETWORK BASED TRAJECTORY PLANNER
FOR
REDUNDANT SYSTEMS USING DIRECT INVERSE MODELING

by

Franklin J. Rudolph
University of New Hampshire, December, 1992

Redundant (i.e., under-determined) systems can not be trained effectively
using direct inverse modeling with supervised learning, for reasons well out-
lined by Michael Jordan at MIT. There is a "loop-hole", however, in Jordan’s pre-
conditions, which seems to allow just such an architecture. A robot path planner
implementing a cerebellar inspired "habituation" paradigm with such an archi-
tecture will be introduced. The system, called ARTFORMS, for "Adaptive Re-
dundant Trajectory Formation System" uses on-line training of multiple
CMACS. CMACs are locally generalizing networks, and have an a priori deter-
ministic geometric input space mapping. These properties together with on-line
learning and rapid convergence satisfy the loop-hole conditions. Issues of stabil-
ity/plasticity, presentation order and generalization, computational complexity,

and subsumptive fusion of multiple networks are discussed.

Two implementations are described. The first is shown not to be "goal di-
rected” enough for ultimate success. The second, which is highly successful, is
made more goal directed by the addition of secondary training, which reduces
the dimensionality of the problem by using a set of constraint equations. Run-

ning open loop with respect to posture (the system metric which reduces dimen-

xix



sionality) is seen to be the root cause of the first system’s failure, not the use of
the direct inverse method. In fact, several nice properties of direct inverse mod-

eling contribute to the system’s convergence speed, robustness and compliance.

The central problem used to demonstrate this method is the control of tra-

jectory formation for a planar kinematic chain with a variable number of joints.

Finally, this method is extended to implement adaptive obstacle avoidance.



INTRODUCTION

The broad discussion of the preface infers that actions apparently intelli-
éent or purposeful can be synthesized by composition of a collection of rather
primitive activities. The complex activity this dissertation will discuss is the ac-
tivity of a robotic manipulator arm. This is a classic control problem with many
applications in manufacturing, hazardous waste management, assembly and

manipulation of structures in space, ete.

In order to meaningfully compose primitive behaviors into complex ones,
we must first decompose complex ones conceptually to know which tasks to as-
sign to individual modules in an overall system. The simplest such decomposi-

tion is to grossly decompose the complete process into three levels:

+ TASK level or intentional level: This level decides what work space
objects to manipulate, and in what order, and assigns spatial

coordinates to the target objects.

+ Primitive or elemental move level (PRIM/EMOVE): This level figures
out how to form trajectories. It decides how to move the end effector of
the arm from one ultimate target to another, and perhaps elects
intermediate targets between the TASK appointed ones. From here,

joint angle trajectories are output to the lowest level.

« SERVO level: This level turns desired joint space commands into

moves of the arm. It is much like a traditional tracking controller.

The method developed here the activity of the middle level. Its principal
task is to find a meaningful mapping from the target space, i.e., locations of



things to be manipulated, to the joint space, the space wherein the direct means
of controlling the articulator are embedded. Many such mapping methods have
been proposed. (See section 1.2). Some are analytical methods which are compu-
tationally expensive and require exhaustive knowledge of the analytical form of
the model. Others are neural network based, and though they don't require de-
tailed analytical model explication, are computationally expensive because of

the nature of the neural network models used. (See section 2.6).

Thus the middle level task decomposer niche is ripe for an implementation

which purports to solve its problem in a fashion that is

« fast enough to be capable of real-time operation, and
» not dependent on knowledge of the analytical form of the plant

model.

The high level (TASK) decomposer is not treated here because it may not
be implementable by means other than symbolic methods requiring the deep re-
cursive (back-track) search of logic programming, formal languages and artifi-

cial intelligence.
Barto 89} subdivided modern adaptive methods into two classes:

» vector space methods and
+ articulated methods.

Connectionist methods are of the former and symbolic Al methods are of

the latter type.

Some limited back-track search capabilities are embodied in Sutton’s tem-
poral difference method, and in a method proposed here, called temporal looka-

head method. (See section 6.4.2.2). Both these are arguably connectionist



methods, but they are certainly vector space methods. At this time these meth-
ods don't appear to be general enough to implement the deep search necessary
to tackle the TASK level, so the TASK level remains outside the scope of this

work.

The SERVO level is also not treated here because that level has been fully
treated by Miller et al [86-92).

So the purpose of my system is to perform just the middle level task de-
composition and to produce a stream of data to send to a SERVO level system
based on input it receives from a higher level TASK module both of which are

external to this development.

Here, we shall discuss that the system’s task be performed after a fashion
of simply trying things in a constrained trial and error method wherein the re-
sults of nearly all trials become training instances whereby the system incre-
mentally learns how to accurately predict what joint moves are necessary to

accomplish desired work space moves suggested by the TASK level.

What makes this mapping difficult to achieve is that the class of articula-
tors we shall discuss are redundant ones, for which no analytical means of com-
puting the required work space to joint space mapping in closed form exists. (See
section 1.1.2). The analytical method is then doomed to some computationally
burdensome iterative process unless a fast "reflexive" method like the one about
to be proposed can suffice. (See page 10 and section 3.4 for discussion of the

term, reflexive).

We shall discuss a neural network based adaptive method rather than the

well known linear adaptive methods (which would also provide a fast "reflexive"



implementation), because the kinematic plant model is too non-linear for the

latter to suffice.

There is a widely accepted view concerning redundant inverse models,
which holds that training should not come from direct experience because there
are potentially conflicting experiences in which differing inverse model inputs
can generate the same inverse model outputs. These differing inputs may be
widely disparate and non-linearly related, so their averages may actually not

even be solutions.

On the other hand, direct training of inverse models (or controllers) for
non-redundant systems has proven to be fast and effective, making it desirable

to use similar techniques for redundant systems.

This dissertation will show that direct training during on-line learning,
with heuristic guidance, can give fast effective adaptation for redundant sys-

tems, thereby avoiding the pitfalls just described.

In addition, we shall see that different heuristics (i.e. joint motion con-
straints) can lead to different solutions in a robot's joint space which satisfy
identical requirements in the hand space. Taking advantage of this property, a
method will be developed in which spatially varying heuristics can be stored
that can be used to provide different motion characteristics (in the joint space)
for different regions of the operating space. Finally, this method will be applied

to the problem of work space obstacle avoidance.

Chapter 1 discusses other authors’ approaches to similar problems.



Chapter 2 discusses general issues related to these other approaches and

how these issues guided me to the current development.

Chapter 3 describes an initial approach toward the end of direct inverse
learning for redundant systems. This method didn’t work out well, but it helped
refine basic concepts which were later exploited successfully in the modified

technique described in chapter 4.

Chapter 5 describes the basic obstacle avoidance problem and how it can

be approached by modifying training heuristics.
Chapter 6 discusses near term improvements and broad conclusions.

Chapter 7 is a synopsis of direct conclusions from the main body of the dis-

sertation and a discussion future work,

Appendix A is a more speculative and long term discussion of future direc-

tions for this and related adaptive systems.

Several other appendices are included as support for various arguments in

the text.



Chapter I

Background

1.1 What Makes a Good Trajectory
Planner?

1.1.1 The Middle Level Of Control

Path planning for robotics is a particularly thorny problem, in that it is dif-
ficult to define. Wavering et al ['88) represent path planning as 3 levels: world
model/task decomposition (TASK) elemental move level (E-MOVE) and primi-
tive level (PRIM). If one constructs a hierarchical model composed of these three
modules, one will have all of the brain functions emulated above approximately
the brain stem/spinal cord reflex level of a complex organism. The most primi-

tive reflex or servo level (SERVO) would then complete the system.

It is doubtful at the current level of artificial neural network development
that the TASK level, which might also be called the "intentional" level, can be
implemented using other than "traditional" (symbolic) Al techniques. Houk [90]
and Albus [81] have each proposed cerebellar models of relevance to the lower
and middle hierarchical levels. Houk talks about the cerebellum as an array of
adjustable central pattern generators. This model gives insight into the nature
of E-MOVE and PRIM level path planning activities. Albus has proposed and
implemented a simple CMAC (Cerebellar Model Arithmetic Computer) neural
network model that has been developed and refined here at UNH. The CMAC
model has proven itself to be extremely computationally efficient and exhibits
adaptive properties. CMAC has proven to be an excellent adaptive element for

implementing SERVO level control functions.-



In this dissertation, we shall discuss path planning as defined at the PRIM
level. This is exclusive of "intentional level" processing and the SERVO level
processing as described by Wavering ['88], but would include some of the proc-
essing proposed therein at the E-MOVE level. Notably, the inverse kinematics

and redundancy resolution will be handled in this proposed adaptive model.

1.1.2 Varieties of Redundancy

A robot manipulator arm is a physical realization of a kinematic
transformation:
K: R —K".
Under the appropriate constraints there may exist an inverse kinematic
transformation:
&K' K =R
These transforms describe the response of the manipulator to joint postures and

joint movements.

The "joint space”, X", uniquely defines the posture of the arm, and coinei-
dentally uniquely defines the hand positionl. There are n joints in the kinematic
linkage, and the hand space is m dimensional. One could then express the for-

ward kinematics as X h=7\(@).

The inverse kinematics, expressed as @ = & I(Xh), is a bit more problem-
atic. The manipulator’s hand or actuator coordinates, Xh' reside in the hand
space or work space. The hand space, X", uniquely defines the hand position, but

not necessarily the arm posture. The hand space may be 2 or 3 dimensional, de-

1 Iiis possible to define more complex hand spaces, for instance in the cases where the hand has additional
degrees of freedom, like orientation or the degree to which a terminal manipulator is open ot ¢losed. In
this dissertation, only 2 or 3 dimensional positioning of a “point hand” will be considered.



pending on whether the arm linkage is planar.2 The issue of linkage redun-

dancy addresses whether or not this inverse kinematic transform exists.

For any configuration and any values of m,n#0, given ©, Xh is uniquely
defined. If m = n the arm is non-redundant, and the inverse kinematic trans-
form exists. If m # n, however, things get more complicated. In general, if m < n
the arm is said to be redundant. In other words, for a simple3 linkage, whenever
the number of joints exceeds the degrees of freedom of the hand, no unique in-
verse kinematic solution exists. Any arm is called redundant if no unique in-

verse kinematic solution exists.

There are actually 2 kinds of redundancies involved in manipulators: path
redundancy and postural redundancy. For a path redundant manipulator, multi-
ple paths exist between any two hand (endpoint) positions. A posturally redun-
dant mechanism can maintain the same endpoint position for many different
postures, or settings of the joints. A

two link arm similar to the 3 link
Target .

arm in figure 1.1 is only path redun- ;
Hand Position

dant. A two link arm, however, that
has 2 prismatic (sliding) joints as in
figure 1.2, is posturally redundant.

[t seems obvious that the sliding

joint mechanism may be less resis-

tant to analysis than one with rota- Figure 1.1: A 2D Planar Redundant

Articulator

2 A planar linkage is one in which all the links and joints can be contained in a plane for all possible settings
of the joint angles.

3 Theterm "simple” refers to a linkage in which the joints are all independeat. No two or more joints can be
coupled.



tional joints, and yet the two link arm with prismatic joints is posturally redun-
dant as is the 3 link rotationally jointed mechanism. Unfortunately, however,

the prismatic system is a linear system, and thus is not very interesting.

Since nearly all practical manipulators are path redundant, for the rest of
this dissertation, the term redundant, unless specified otherwise, will denocte

postural redundancy.

A redundant arm system both poses and solves problems. The problem it

solves is that with postural redundancy, an infinite number of postures of the

]
ROV FAREANASN

T e e T e TR 3l

| 1
The target position is a linear
combination of the input coordinates.

Figure 1.2: A Prismatic Linkage
joints is possible given a particular hand position, which gives the linkage power

and flexibility in finding paths that avoid obstacles. The problem it poses is that
it requires, given a hand position, that a posture be found via an iterative search
or constraint satisfaction procedure, because the inverse kinematics cannot be
solved in the straightforward fashion of computing & matrix inverse as is the

case with a non-redundant arm.

It is possible to consider differential forms of these transforms: 68X i (50),
and 30 = " {6X - The "path finding" problem still applies for the differential



case which is used to describe gross movements as sequences of small move-
ments rather than as pairs of trajectory endpoint postures and the torques it

takes to move from one to the other.

A trajectory specified in hand space as a series of hand positions, [X h]’ isa
i

reasonable form of problem specification. The corresponding series in joint

space [Gi] must be derived using whatever method is available. The objective in

the remainder of this dissertation is to determine a method for a solution

{X h} —»[@)i] that will have knowledge about obstacles "reflexively" embedded in a
i

hyperspatial representation of the transform, rather than being declarative in
nature and thus requiring that we execute a search whenever a solution is re-
quired. The terms declarative and reflexive in this context are used in the same

sense as in the work of Handelman, Gelfand and Lane (Handelman [89]). This

is an important concept discussed further in section 3.5.

The actual solution will be to find the incremental series [6@ '] that sweeps

out a series of postures, to generate an incremental series [Z‘)X h]’ given an initial
i

condition, X B and target position X h To develop the incremental series, we
0 f

must develop inverse Jacobian matrix solutions. A neural network will be used
to learn local inverse Jacobian transformations, and the property of local gener-
alization within the network is essential for reasons that will be discussed at

length.

10



1.2 Previous Work

1.2.1 Degrees of Optimality

The term, optimal, is a relative (and often abused) term. In the following
discussion, no atﬁempt will be made to describe precisely what quantity each
method cited from the literature is purported to be optimal (or near optimal)
with respect to. In some cases, like Kawato ['89, '89a], it would be simple to do
so, because in his case, optimality is with respect to torque exertion. In other
cases it is often not so easily stated. For instance Canney ['90], Korein [85] and
Lozano-Perez [87] treated such broad classes of problems that the methods
could be said to be optimal with respect to many different measures, depending
on the implementation. In general then, let us consider that each method is opti-

mal with respect to search effort within a model representational space.

A nearly optimal solution for a redundant arm using a stochastic method
combined with heuristic search was investigated by Mel [89, *90), in a system
called MURPHY. Others have solved the optimal problem in a minimum norm
deterministic sense, e.g. Klein ['83], or a variety of constrained search methods
(e.g. Canney ['87] and Korein ['85]) all of which are both highly computationally
intensive and difficult to set up for any particular problem. Canney’s treatment
of the generalized mover's problem attacked a much wider class of trajectory

planning problems than will be discussed here.

Lozano-Perez [87] used an A* search to find optimal trajectories after a
geometric enumeration of all possible arm/obstacle configurations, but the meas-
ure of complexity was worse than exponential in the number of degrees of free-

4

dom of the arm”, and the constraints placed on the arm and work space were

perhaps too restrictive for general applicability.

11



Jordan ['88] used a constraint satisfaction method coupled with a stochas-

tic "pre-search". For a more complete discussion, see sections 1.3.4 and 2.2.1.

Kawato ['89, "90] proposed a method that was optimal (with respect to ex-
erted torque) within the scope of the simple trajectory model it implemented.
The model was, however, so crude an approximation of beth the time and space
required for a trajectory formation that it was suboptimal with respect to most
real world problems it solved. In this method time was converted to space by
building (in simulation) a finite impulse response approximation of an infinite
impulse r‘esponse5 closed loop system. A simulated feed-forward multi-layer per-
ceptron (MLP) implemented each step of a trajectory (another space costly de-
sig'n)6 and recurrent feed-forward and feedback loops provided constraints
between time and space that can directly generated optimal torques. In his
method, waypoints were explicitly clamped at any m of the n nodes in the net-
work, and the n-m free nodes then developed waypoints that conformed to a
minimum torque smoothness constraint. No means of acquiring specific desired
waypoints was suggested, so his method (as well as Jordan's) is a different kind

of trajectory planner than the one proposed here.

One can conclude early on in a study of the literature that a high computa-

tional cost and loss of generality are the price of an optimal method in this area!

4  His complexity measure was O ( r “(mn) 2), where r is the resolution of the joint encoder, k = the number
of degrees of freedom of the arm and m and » are measures of the complexity of the arm and the work
space.

5 A finite impulse response (FIR) system approximates an infinite impulse response (IIR) system. An [IR is
like an analog feedback controller in that every input continues to affect the autput response until its effect
becomes undetectable. An FIR only considers the effect of an input over a fixed, finite number of time
steps.

6 This is similar to the back propagation through time method advocated by Nguyen ['89) and Williams
['89).

12



1.2.1.1 Optimality Is Not Central To Succegs, Other authors have
developed methods of obstacle avoidance for path planning applications that are

suboptimal. Reinforcement learning has been exhaustively studied by Barto
'83] and Sutton [90]. These reinforcement learning methods can be classified
as suboptimal because they culminate in an approximation of dynamic program-
ming, which is, when implemented exactly, an optimal method. Part of the first
generation solution developed here involves a crude form of reinforcement learn-
ing that is simpler than the method of Barto and Sutton’s work. In this method,
a specific cost function is not modeled; rather an incremental response to a non-

specific punishment signal is implemented.

Bullock ['88] developed a biologically inspired approach that synthesized
some of Grossberg’s neural network modeling ideas with neuromuscular junc-
tion models. In his work, it was shown that fixed, simple algorithms attempting
a clearly suboptimal solution produced similar trajectories to the ones generated

by the optimal techniques like Jordan’s and Kawato's, but with a lot less work.

Many of these suboptimal solutions (e.g. Hogan [80, ‘84, ‘844, '85], Khatib
['85, '86], Flash [85] and Hwang ['88]) are based on so called "potential field" or
"impedance" methods. The potential field methods ultimately implement a
nearly reflexive mechanism in that they eliminate search during trajectory plan-
ning, but they require a lot of computation to resolve the constraints imposed on
the arm by the repellent potential fields of all the obstacles and the attractive
fields of the targets. Furthermore, for this method to be effective, a complete and
comprehensive world model must exist that models the locations of all obstacles.
No means of model acquisition is proposed, and this is problematic, because that

means the system either must operate in a benign constructed environment or
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else a complex search process must be used to acquire the world model that ex-

ists externally.

How then, do we resolve the problem of world modeling without an ex-

haustive search-based world model acquisition method?

Stopping far short of Brooks'’s outright rejection of representation, if we
could construct a robust methodology that operates on incomplete information,
this would reduce reliance on the world model. This methodology could be a
layer in a more comprehensive subsumptive/hierarchical system. The intent is
to model something akin to an animal’s kinesthetic sense or the reflexive obsta-
cle mapping world model of a blind person, which for obvious reasons, is incom-

plete.

We shall discuss a system that consists of interconnected CMAC elements,
which can compute relaxed spatial trajectories and which uses a cerebellar ha-
bituation paradigm to adaptively learn to generate these specific trajectories
given the right input context vectors. This system level is called ARTISTS, for
"Adaptive Redundant Trajectory Information Storage System". A higher level
layer of the system recognizes world-imposed constraints. Features correspond-
ing to these constraints are embedded into the hyperspatial representation of
the robot’s kinematic coordinate system originally formed by ARTISTS. The
higher level system is called ARTFORMS for "Adaptive Redundant Trajectory
Formation System". This hyperspatial representation of analog features will
largely replace the symbolic state of the world model used in symbolic Al sys-
tems which consists of discrete tokens embedded in an articulated repre-
sentation (i.e. a digital database, blackboard, expert system, etc.). The result is

a relaxed suboptimal search method.
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The proposed method is similar to both MURPHY and the potential field
methods. It is a weaker planner than MURPHY, and this is appropriate, because
its role is to fill a less ambitious niche than MURPHY’s. Unlike MURPHY, ART-
FORMS is blind, but the ARTFORMS concept assumes that higher up in the hi-
erarchy, there will be more powerful, perhaps sighted, planners that can present
suggestions to ARTFORMS upon which it can habituate, that allow it to learn
trajectory habits that may violate gradient descent rules. Gradient descent vio-
lation, i.e. moving the hand away from a target for a time, is sometimes required
to get out of local potential "wells" in which potential field methods can get
stuck. ARTFORMS also suffers from this problem without higher level help.
However, given the property that ARTISTS has of forming habits, good or bad, it
will tend to persist in habitual modes of behavior until a higher level system ac-
tivity intervenes (by suggesting a violation of current rules) to change that be-
havior. The intervention described in chapter 3 is a punishment signal. In
chapter 4, adaptive constraint satisfaction causes a behavioral change. Input for

other changes, external to ARTFORMS is also allowed.

So we must view ARTFORMS as augmenting MURPHY in a fashion that
should make MURPH Y-like systems more computationally efficient and robust.
ARTFORMS is, however, proposed as a complete replacement for the potential
field methods, because it is more efficient. ARTFORMS is in a sense more pow-
erful as well. Potential field methods settle into solutions that are a compromise
among the potential fields of fixed attractive targets and repellent obstacles.
These objects can move around, but the influences of the fields they generate fix
the behavior of the system. ARTFORMS can adapt to obstacles and targets in a
more flexible fashion. The obstacles have only local effects, so between local re-

gions, there is more latitude in the selection of a solution. The challenge is to
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design this system in such a way that this additional flexibility, which may allow
ARTFORMS to be able to recover from some of the potential well problems that
thwart potential field methods does not become a detriment. The detriment that
ARTFORMS risks is that in solving the problem in this fashion, residual redun-
dancy is left in the problem. Controlling this redundancy so that consistent solu-
tions result, while still allowing the freedom to select among trajectories, some
of which are "dead ends", is a problem that is not entirely resolved in this disser-
tation. Resolution of these dead ends requires back track search, and is left to
future work. Since the policies that are used to resolve the redundancies in re-
gions not affected by the obstacles are based not on the obstacles and targets,
but on rules that can easily be specified in the system of constraints and heuris-

tics used in the system, fewer dead ends are likely.

1.3 Why This Thesis is an Improvement On

Former Work

Computational efficiency is the prime motivation for this work. The poten-
tial field methods and the "classical" closed form methods with constraint satis-
faction are computationally burdensome and reliant on a relatively complete

world model. This method suffers from neither detriment.

Since redundant arms have no unique transform in the inverse direction,
from world to joint space, many path planners use "pseudo-inverse" techniques,
that find matrix "inverses" to transform world space incremental movement vec-
tors into joint space incremental vectors, given some disambiguating constraint.
Two problems arise in this process. First, the pseudo-inverse is computationally
expensive, being at best st) complex7, where d is the square of the number of

degrees of freedom. Secondly, it is not conservative, i.e., the transform of a
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"move" in world space to joint space and back to world space may diverge signifi-

cantly (Klein [83]).

13.1 Analytical Methods

Reducing the dimensionality of a redundant seolution does not entirely
solve difficulties encountered in iterative analytical solutions. Consider the for-
ward kinematics of a simple 3 link arm like figure 1.1, page 8. Some direct solu-
tions based on setting 2 or more joint increments equal and linearizing the
differential kinematics might be used to seed an iterative solution. It would be
unwise to do so without exercising considerable discretion, for reasons discussed

below.

1.3.1.1 Chaos in Newton Raphson Method, Recent results from Kra-
mer ['92] indicate that simple iterative solution techniques like Newton-Raph-

son may not give good results, and in fact the method could be chaotic. This
means that the algebraic approach could require the use of higher order "quasi-
Newton" methods like Levenberg-Marquardt, conjugate gradient, etc., at the ex-
pected higher computational cost, and at the expense of having to know
accurately what the mathematical model of the plant is. This is clearly unpleas-
ant, especially for "long" kinematic chains! (And the problem is exacerbated seri-
ously by extending the method to kinetics rather than just kinematics). In
figure 1.3 a simple "2 sticks" problem is shown. The idea is to find the solution
where the two endpoints are coincident. There are 2 solutions, one above and
one below the "floor". Kramer's results summarized in his figure 7.5 show that

in the (a,p) phase plane there are large regions over which very nearby initial

7 Which cost is in addition to the search cost for the world model, which is in general exponential in the size
of the model.
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conditions can result in different solutions. This notion of postural switching is
discussed further in section 4.4.1.1. The interesting result is that just being
very near & solution before iteration does not necessarily mean that solution will
be the ultimate result. Chaotic results in a non-redundant problem like this one
bode extremely ill for the prospects of a redundant solution using such a
method. On the other hand, a simple, linearized pseudo-inverse may be a useful

heuristic for ARTISTS.

1.3.2 E fcit sta id { 1

"Upper” solution

TN

.‘( "Lower” solution

Figure 1.3: The 2 Sticks Problem

Kawato’s method has no explicit obstacle acquisition method. Jordan’s
method is elegant and robust, but also lacks an explicit obstacle acquisition

methoed.
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1.3.3 Computational Expense

Kawato’s method simply has too much time and space complexity to merit
further discussion as a practical system. One suspects (in the absence of sure
knowledge of his exact implementation) Jordan’s method is also computationally
expensive. Even if that were not so, there is still a front end price to be paid in
his method that stems from a central thesis he holds, namely that direct inverse
modeling does not work with supervised learning in redundant systems. (See
sections 2.2.1 in addition to the next.)

1.3.4 Jordan'’s Argument Against the Direct Inverse Method
Jordan contends that redundant, or excess degree of freedom systems can
not be trained effectively using the direct inverse modeling method of supervised

learning for the following reason: if X and x, are both inputs that produce a de-
sired output y, then by repeatedly presenting the training pairs (y,xl) and (y,xz),

to a neural network during training of that network, the network will eventually

learn to produce a vector, x, for which Z(.'x:—aci)2 is minimized. Unfortunately,

in this least mean square (LMS) derivation, x is not, in general, a valid solution.
Increasing goal directedness is Jordan’s solution to the dilemma. (See section
2.3.)

1.3.4.1 Linearity of Differential Inverse Kinematics. As Mel [90]
points out, though, inverse differential kinematics (used extensively in this
treatise) is, by definition, linear. The discussion in Appendix C shows that this
holds rather broadly, not just for infinitesimal increments. If the solution for a

trajectory planner could be devised so as to exploit this linearity, the general ar-
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gument against the LMS x being a solution would not hold. Otherwise, the LMS
solution fails for MLP networks as well as for CMAC networks. With MLPs,
however, generalization is a priori arbitrary, and only becomes determined after
the weights converge. Since the initializations of the weights are random, con-
vergence to a final pattern may require extensive training, because the generali-
zation inherent in the initialization of the weights may not fit the geometry of
the problem. The result is that geometrically "dissimilar" inputs may general-
ize. This feature of MLPs is useful in cases where one might wish "dissimilar"
inputs to generalize for some novel, and as yet undetermined reason, i.e., when
the structure of the model being trained is not well known. In many control ap-
plications, it would be better to use a network with a known, deterministic, geo-
metric mapping that dictates how generalization within the system’s state space

occurs. Further discussion of this topic is in section 2.6.

1.3.4.2 "Reasonable” Generalization, Reasons for generalization

among postures are easily determined for a manipulator. If two postures are
close in a state space constructed from postural degrees of freedom (with a rea-
sonable metric determining closeness) then they should generalize. If they are

not close, they should not. (See

) By containing generaliza-

tion to roughly coincide with

differential regions around pos-

tures in state space, the linear-

a. DiSSiInilar Postures b. Similar Postures ity Of inverse dj_ffemntial

Figure 1.4: Postural Generalization. kinematics should favor conver-

gence of trajectory formation.
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This is because we thereby reduce the tendency to average non-linearly related
inputs that are distant one from the other in the input space and yet produce
very similar outputs. The "reasonableness" of the degree of generalization in
ARTISTS is discussed in Appendix C, and compared to the results of section
4.86.

1.3.4.3 Reasonable Input Mapping., If generalization occurs only lo-
cally within the state space, then the pair of positions in figure 1.4b should gen-
eralize, while the pair in figure 1.4a should not. It must be pointed out here that
our postural mapping is not quite the same as the one usually chosen for ma-
nipulators, in that the absolute hand position is not part of the input vector. In-
stead, we shall use joint angles, together with the desired hand move. Details of
this structured mapping, and the input and output vectors are described in sec-
tion 2.4.2.

By modeling inverse Jacobian matrices rather than inverse static posture
maps, the degree of redundancy is reducede, and together with the absence of
the hand position from the input vector, this removes any geometric reason for
the dissimilar postures of figure 1.4a to generalize, in spite of equal hand posi-
tions. Analytical means applied to this problem are well developed (Klein [83]),
but it is hoped that a neural network implementation could be considerably
faster after training than the analytical method, and with a locally optimizing

network, should be faster even during training with on-line learning engaged.

1.3.4.4 Convergence Criteria. The postulated conditions for which

supervised training of a direct inverse model network will converge on a consis-

8 Because we compule moves incrementally, not from one end of a trajectory to the other.
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tent trajectory formation solution for excess as well as necessary degrees of free-
dom are: (1) on-line training, and (2) local generalization. The reason for the for-
mer is that on-line training during performance of trajectories favors goal
directedness simply because only goal directed steps are presented as training
exemplars. The reason for the latter is that local generalization largely prevents

LMS averaging of highly non-linearly related trajectory step solutions.

1.3.5 Keeping This Work In Perspective

Keep in mind that I am not attempting to contravene Jordan'’s thesis, but
am rather exploiting a "loophole" in his preconditions. The payback for this ex-
ploitation is considerable, namely the removal of the necessity of "pretraining" a
forward model of the robot into an MLP before the model can even start to at-
tack the problem of learning trajectories. My model trains on-line from the very
start, thus acquiring the inverse model and trajectories simultaneously. (See sec-
tion 2.2.1.) If a forward model is required, that too can be acquired incremen-

tally and concurrently with the trajectory formation. (See section 6.3.)

This is a nice computational windfall, but an even deeper problem that it
addresses is the avoidance of dependency on Jordan’s (unavoidably) imperfect
forward model. This method also allows the equivalent of retraining the forward
model to account for changes in its physical properties over time. Jordan’s for-
ward model might be on-line retrainable, but based on considerable study of con-
vergence and retrainability problems with MLPs, e.g. Fahlman ["90], this seems
unlikely. Since Jordan’s model relies on the perfection of his forward model, it is
unlikely, if it were not comprehensively trained up front, that meaningful behav-
ior would emerge from training in specific trajectories with on-line training of

the forward model engaged. This argument is carried further in section 2.6.1.



The ultimate goal of this work is not just to implement robust efficient tra-
jectory formation, but to include therein an inherent and robust obstacle avoid-

ance methodology. This is developed in chapter b.

Finally, Appendix A tries to put this work in context relative to neurophysi-
ology, clearly a broad and speculative vista, but one which I argue portends cer-

tain advantages for the design engineer of the future.

1.3.6 Required Vindication of Results

A necessary part of this thesis will be to demonstrate that the underlying
storage method, ARTISTS, stably learns trajectories presented to it. Through
many repeated simulations, it has been observed that this system, with and

without obstacle avoidance, can reliably learn consistent, repeatable trajectories.

A systematic empirical search for adequate system parameters that guar-
antee success and the experimental results are discussed in section 4.8, page

105.

A rigorous convergence and stability proof using an analytical Lyapunov
method is beyond the scope of this dissertation, but a discussion of a less rigor-

ous "Lyapunov-like" argument is presented in section 4.9, page 136.

A convincing demonstration of ARTISTS converging on a stable learned set
of trajectories taken from a pathologically redundant set of such trajectories,
will be to demonstrate that this method handles adequately at least a redun-
dant model similar to the one that Jordan proposed, and that it can learn simi-

lar trajectories.
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1.3.6.1 Computational Advantage Ouver Forward Modeling,
Showing that ARTISTS converges on the trajectory ensemble just described is

important because direct inverse modeling is more computationally efficient

than forward modeling for reasons described in sections 1.3.3, 1.3.5 and 2.2.1.



Chapter I

Issues
2.1 Supervised Learning

The terms "supervised" and "unsupervised" learning are rather vague. It is
unclear in the context of the current literature just where the boundary line lies
between a supervised and an unsupervised learning paradigm. In some refer-
ences, notably Mel ['87], unsupervised models are defined as ones not requiring -
an intelligent teacher, One would suppose this to be a human, but it might more

generally be an "artificially intelligent" automaton or agent providing the input.

More demanding theorists, e.g. Rivest and Shapire ['87], would require
that even a simple "black box" like the forward kinematic transform that pro-
vides the essence of the ARTISTS/ARTFORMS robot simulator is considered a
teacher, and so let us call this model a supervised learning paradigm. We shall
then reserve the nomenclai;ure unsupervised learning for such paradigms as Ko-
honen maps, Grossberg’s adaptive resonance systems, etc. However, an argu-
ment might arise that says such a self organizing system uses itself as teacher,

and is thus supervised. This argument can clearly get out of hand!

Let us retain a rather strict definition. Supervised learning is the act of
presenting to a system of equations, or other repository of information, such as a
memory of the discrete or "fuzzy" variety, a set of n vector pairs, (u t)i’ where v is
a context or input vector and ¢ is a target or exemplar vector. The system is exer-
cised to produce an output a such that the error t - f can be computed. An ad-

justment of the parameters of the system that produced the output is then
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attempted to reduce the error term over a series of n such vector pairs. The
usual technique is to compute a gradient and descend along the gradient to re-
duce the squared error over the training set. Jordan ['88] gives a nice develop-
ment of the general vector description of the method. Another development is

shown here in section 4.6.4 (page 97).

22 Direct Inverse Modeling
0 (n-1)
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Figure 2.1: The Direct Inverse Method of Modeling

The following discussion is based largely on descriptions of direct inverse

modeling versus forward modeling put forth by Jordan [90].

Consider a mechanism, like a robot arm, which takes a joint position vec-

tor, 0, and outputs a hand position vector, x(8). If we cause the joints to move by
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A0, then we may rightly expect the hand to move by Ax. If we wish to move the
hand (a typical robot task) by some amount, Ax, we must know what value of A0

will cause such a hand move.

It would be nice to have a black Box like the one labeled "Invefse Model" in
figures 2.1 and 2.2 which could provide us with a reliable estimate, A6, for that
desired input. Figure 2.1a shows a direct inverse system that has the intermedi-
ate value, Aé\, provided by just such a black box. Figure 2.1b shows how we
would in practice train such a model. The dashed diagonal line indicates a gradi-
ent based adjustment of the model as is the case in other figures in this docu-
ment. The important feature of this method is that the inverse model is trained
(or adjusted) based on direct observations of actions of the plant. This direct ob-

servation method may be termed a world as model method.

0,x(n-1)
X—¥ Snl)
— | Inverse Af(n- Forward A x(n)
Ax,(n) Mugdel 1 Model |[—*
X of PLANT_|
pseudo-error A _)\
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0, x(n-1
g > A x(n)
PLANT >
AB (n-1)
X
\\ . +
* Forward Ax(n
» Model —(—)-;CZ‘D

(b) Acquiring the forward model N\

Figure 2.2: The Forward Modeling Approach.
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2.2.1 "Pre-training"a Forward Model

In the case of forward modeling, a mathematical model of the forward
kinematics of the plant must be acquired. This is done by exhaustively training
a neural network from direct observations of random moves of the plant. This
phase should be complete before training of the inverse model can ensue. This is
the phase termed "pre-training" in this dissertation. During trajectory forma-
tion, the error observed between the actual plant moves, Ax(n), and the desired
moves, AX d(n), is back propagated through the forward model, as indicated by
the dashed line in figure 2.2a. This produces a "pseudo-error” signal that can be
used to adjust the inverse model. For a thorough and understandable reference

cn back propagation. (See Wasserman [88], chapter 3.)

The direct inverse model can be trained earlier in the process, based on di-
rect observation of the plant, and so constructs the inverse model faster than the
forward modeling method. However, Jordan argues that the forward modeling
method is goal directed and as such can, via the gradient descent in figure 2.2a
adjust the inverse model to solve for a particular solution out of a myriad of
many-to-one solutions. In general, the direct inverse method can not find that

solution, as was discussed in section 1.3.4.

In this dissertation we shall see, as mentioned in section 1.3.4.4, that local
generalization and on-line learning capabilities of the CMAC allow a solution to
be found via direct inverse modeling. We shall also discuss methods to force di-
rect inverse modeling to be goal directed, both by the use of goal directed heuris-
tics and by the use of constraint satisfaction. A discussion of the important

aspects of CMAC are found in sections 2.5 and 2.6.



23 Goal Directedness
Direct Inverse modeling is not goal directed. What this really means is
that it is opportunistic, in that it simply learns from what it observes. A goal di-
rected method tends to force the system to behave in a manner that reliably re-
duces some goal oriented error metric. An example of such a metric is distance to
target, direction to target or postural configuration, i.e. the relative magnitudes

of an articulator’s joint angles.

It is true that if a direct inverse system only trains randomly, without re-
gard to any goal (as is the case in forward model "pre-training") there is no ten-

dency to favor goal directed moves over goal divergent ones.

The direct experiential nature of direct inverse modeling assures that ex-
emplars match the plant exactly; this should favor convergence on a repre-
sentation that is & true plant model more rapidly than an indirect method (like
forward modeling) could achieve. By contrast, indirect methods, though they can
be crafted to maintain fidelity to goals, and may be better at adhering to goal di-
rected policies, they may have desired rather than actual observed moves
latched into the inputs during training. Thus these indirect methods will not
only capture a true plant model more slowly, but in fact may risk attempting to
train based on impossible‘actions {which is clearly not an efficient thing to do). If
we can force strong goal directed policies thaf are efficiently computable upon

the direct inverse method, an all around better solution is likely.

Chapter 3 will discuss the use of goal directed heuristics, and chapter 4 the

use of constraint satisfaction to impose goal directedness on the system. In



short, it will be argued that it is the use of constraints in Jordan’s method that
provides goal directedness to a larger extent than the use of forward modeling.
Furthermore, if the goal directedness influences what the direct inverse model
uses as training exemplars, then the same resultant success should be achiev-

able by direct inverse modeling.

24 The Problem Statement

The central problem this dissertation project addresses is that of how to
control the trajectory generation of an arbitrarily long planar kinematic chain.
The system is a simulation of a simple planar robotic arm, and the software is
described in detail in Appendix F. The arm may be redundant or non-redundant.
The object in each experiment is to start with an initial posture and generate a
sequence of unit length hand moves that moves the hand from that posture to
within a unit distance of a target. This action is called one path segment. More
path segments are dictated by specifying multiple targets. The path segments
can be chained by moving the hand along segments extending from target to
target or they can be executed radially by always starting from the original
(home) posture. The difference betWeen the trajectories in these two cases be-

came a pivotal concern in this study.

During execution of these experiments many conclusions were derived
subjectively from observing the arm in motion and other conclusions were de-
rived from studying the error metric data files the program wrote out during

execution.



2.4.1 A Brief Synopsis of the Software Solution

More details are in Appendix F. An initialization file containing x = ¥
statements where x is a variable name and y the desired initial value is read in
and interpretted by the simulator program. Over 50 system parameters can be
adjusted in that fashion so experiments can be run without recompilation.
Drawings of the arm are generated automatically in PostScript, and error data
logged into a series of data files. These files contain logs of error metrics written
out at the end of each "path segment". Up to 40 targets have been implemented
in long sequences of experiments crafted by creating multiple initialization files
and executing the program, "ARTFORMS", once for each initialization. These
initialize and execute sequences were chained together in batch files, so that
overnight runs could generate large collections of data for later analysis. These
data were then used to determine adequate system parameterizations to meet

the desired criteria of

» Paths that were nearly rectilinear in the work space.

*» Minimal convergence time in epochs. (1 training epoch = 1
path segment).

» Minimal RMS error in postural constraints.

» Minimal CMAC memory saturation. (See section 4.8.2.7).

« Completion of the experiment (i.e. not getting stuck in
unrecoverable postures).

« Avoiding mechanically disadvantageous postures.
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2.4.2 The Details of the ARTISTS Mapping
ARTISTS is implemented to store trajectories for a 2D planar arm as
shown in figure 2.3. We shall discuss the minimally redundant, 3 link, 3 joint

case here, but experiments with other humbers of joints have been conducted.

The three joint angles are a, § , and y. The forward kinematic transform, %

is straightforwardl,
x =T * cos(a)- H * cos(a+p) + F * cos(a+p+y)
y =T * sin(a) - H * sin(a+p) + F * sin(at+p+y).

No attempt to model the ki-
netic response of this robot arm was
made. The kinematic response is
suitably non linear, to demonstrate
that CMAC is a sufficiently powerful
computational model to solve a hard

supervised learning problem. The ex-

tension to kinetics is a straightfor-

ward matter of increase of
dimensionality.
Figure 2.3: Simple Redundant Planar
Articulator
A CMAC implements a mapping: % *:(0,B,7,5x,8y ) — (5,5p,8y ), where

all are the obvious quantities, except (8x, dy), which will be treated as a unit vec-

i With perhaps misguided anthropomorphic intent, the symbols were intended originally as F = forearm, H
= humerus, and T = torso.
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tor along a desired trajectory. So the input vector provides a desired straight-
line trajectory direction, along with the current joint posture in order to excite a
response, and the learning will train in the observed response at the actual ob-
served trajectory step. Forcing the steps to be unit vectors results in an attempt
at a constant velocity solution, and simplifies the input addresses for a more
uniform input mapping -- only orientation information is contained in this 2 di-
mensional component. For obstacle constraints, the input vector might be
changed to include 2 dimensions for path segment endpoint location. This could
allow radically different policies to be used for forming trajectories aimed at 2

different target points along a straight line separated by an obstacle.

2.4.3 The Heuristic Criteria

Let S = («,B,y,8x,8y). The primary "weak gradient" heuristic ruleis: If the
CMAC returns d (S) = (0,0,0), try a step, R (perhaps a random one), and ob-

serve the result, ._S_* = & R). There are 2 possibilities: the step generated an

Ex,y = (5x,8y) component
such that the dot product
Sx,y -8 xy >= (. In that
case, train on the step

(i.e. train the CMAC at

5.‘ not at S), but not for

the former case, because
it moves the hand in the

wrong direction.

Figure 2.4: Gradient Descent Critic Criterion.
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This first heuristic criterion accepts randomly generated heuristic steps
only if they have between O and 90 degrees deviation from a straight line hand
to target path. This heuristic allows the hand to deviate from the target but
never move such that its distance to the target increases. A more general dot
product critic algorithm is installed which can bracket acceptable steps by the

generalized angles P and Py 88 shown in figure 2.4. This more general crite-

rion can variably constrain the hand moves (perhaps using a spatially distrib-
uted constraint parameterization) within the "allowed cones" shown in the
figure. Note that this extension not only allows heuristic steps that diverge from
the target, to allow back-track searching to find a path around an obstacle, but

can actually force such heuristic steps by setting ch)O. Spatially distributed

parameterizations are discussed in sections 3.3.1.2, 4.8.1.1 and A.1.1.1.

25 Why Use CMACs For This Purpose?

This section discusses both historical and theoretical reasons for using
CMAC:s in the current development. Afterwards, section 2.6 contrasts and com-
pares CMACs with an alternate and widely used type of neural network, the
multi-layer perceptron (MLP), in an attempt to strengthen this argument.

2.5.1 Historical Continuity

During the past 6 years, the Robotics Laboratory at the University of New
Hampshire (UNH) has conducted a series of simulations and real time studies
probing the use of highly regularized neural network arrays called CMACs, for
"Cerebellar Model Arithmetic Computer", inspired by the seminal work of James
Albus ['79] and David Marr [69]. CMACs have very successfully given our in-
dustrial robot controllers and simulators the ability to perform both repetitive
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and non-repetitive actions defined by desired actions in the sensor space, while

requiring only qualitative knowledge of kinematics or dynamics.

No exhaustive description of CMACs will be included here; a comprehen-
sive tutorial and descriptive article is Miller [90d]. Of course Albus [81] is also
good, but not as germane, given the specificity of the former to the problem at
hand. Important discussions of generalization, quantization and memory size
are included in section 2.6.2.2 and in the comparative discussion of generaliza-
tion for MLPs and CMACs in section 2.6.2. The CMACs used in this series of
experiments vary from Albus’s original design in two major ways; the CMACs
use: (1) linearly tapered receptive fields, and (2) An's optimal receptive field dis-
tribution. Both these aspects were covered in An ['91]. Some experiments using
rectangular fields were tried and though they may have been adequate for the
system, the linear tapered field model worked better. No further comprehensive
comparative study was engaged outside this subjective assessment. An’s ar-

rangement for 2D inputs is shown in figure 2.7, page 43.

2.5.2 YO l 1]

Tb date, the Robot Lab's robot control systems have contained a crude fixed
gain linear controller. This controller was completely insensitive to the base line
or time dependent dynamic parameters of the system, and thus was incapable of
generating anything other than very crude, clumsy and inaccurate moves of the
articulator armé under control. Adaptive CMAC modules, operating in parallel
with the fixed gain controller in both the feed-forward and feedback paths, al-
lowed the system to learn the highly non-linear error function that emerged
when the actual and desired trajectories were compared. The results were grati-

fying and, as the series progressed, the system was deemed completely sufficient
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Figure 2.5: Simplified Diagram of UNH SERVO Controller

for the job of on-line real-time adaptation of these brain stem (SERVO) functions
in the absence of an analytical model of the robot dynamics (Miller, et al ['86 -

'80e)), but the problems were posed using only non-redundant? mechanisms.

2.5.2.1 Converting Feedback to Feedforward Anticipation. In
spite of the lack of plant redundancy, the relevant feature of the

Miller/Glanz/Kraft controller is that it effectively turned feedback control of a
non-linear plant into a largely feed-forward operation; (see figure 2.5). The exist-
ence of long time delays in biological systems has forced nature to develop just
such strategies as this. There are similarities between this method and the ones
Houk ['90] describes. He describes a kind of evolutionary adaptation called a
quasi-feedforward process. In a quasi-feedforward process there is only limited
reliance on feedback, much of control being performed in a feedforward fashion.
After failure, the feedback mechanism he characterizes as being much like back-

propagation adjusts parameters retrospectively. Without the feedforward

2 Scescction [.1.2, "Varieties of Redundancy”.
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activation of this method, feedback loops controlling non-linear plants with long

time delays could go unstable.

[t may be argued that electronic systems are fast enough to have outgrown
nature’s requirement here. The counter to this argument is that with the addi-
tion of synthetic vision and heuristic back-track search in path planning, dic-
tated by the existence of redundant mechanisms operating in the presence of
obstacles, such time delays in fact do occur. So this proposed method strives to
capture this reduction of reliance on feedback in the conversion of feedback of
observed movements into a feedforward process of movement anticipation dur-

ing path planning.

2.5.3 The Existence of CMAC Hardware

In a recent development, hardware implementations of CMACs have be-
come a reality (Miller ['90b, "90c]). The prototype hardware design developed at
UNH has been commercially developed by Klein Associates of Salem, New
Hampshire. The commercial systems provide sufficient speed (>1 KHz) and stor-

age capacity (1 Mbyte) for most anticipated problems in robotic control.

2.5.4 Multiple Interacting Neural Networks

The obstacle avoidance implemented in this study involves no explicit
world model. It requires simply that CMACs implemented in parallel learn by
experience the inverse kinematic transform of a simulated robot arm with bi-
ases embedded in it to represent obstacles in a coarse fashion. The outputs of
these CMACs blend together to generate the system’s control signal, a string
of elemental move commands to be passed down to a servo level controller

(like the Miller/Glanz/Kraft controller, Miller et al ['86 - ’90], shown schemati-
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cally in figure 2.5), which then tracks the path. The networks here must be

roughly equal in timeliness, so fast convergence is essential.

In ARTFORMS-1, reinforcement learx:u'ng3 is used to train a short term

memory (STM) of what not to do in certain contexts irrespective of why not to do
it, but the locality around this context point in state space is important. When
an obstacle is encountered, the system receives a non-specific diffuse punish-
ment signal, called SLAP, which engages training in the STM whose output
serves as a bias to the output of the long term memory (LTM) and ultimately be-
comes part of the training signal for the LTM. The LTM contains an inverse? ki-

nematic (i.e. inverse Jacobian) mapping for the arm.

ARTFORMS-2 does something similar, by using a constraint satisfaction
paradigm, which is moderated by a STM projection that can alter the constraint
equations in a meaningful way.

The STM module in either case must have a very high learning rates, so it
captures its data quickly, and in the absence of an obstacle-indicative input it
decays by being trained using a zero valued exemplar vector, and a lower learn-

ing rate.

The LTM does not have a decay process. [t simply has a continuous dialog

presented to it, consisting of:

» the current context (current position and target position),

3 Scesection 3.4, “Reinforcement Learning”.

4 It should be kept in mind that there is no inverse model of the arm kinematics because of postural
redundancy, but the proposed mapping provides a non-unique mapping from desired kinematic response
to the joint perturbations that cause such a response, and so is “like” an inverse model.

5 Lecaming rate, dencted by the symbot, n, determines how fast a neural network converges on a solution. In
other iterative methods, this might be termed “step size”. Its value can range from 0 to 1.0,
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« what is commanded including the STM bias and
« the resultant action (feed back of the observed response of the

system one time step in the future).

Sc whatever moves the robot makes, for whatever reasons, are simply ob-
served and trained into a hyperspatial representation of the robot’s kinematics.
If such an "observe and mimic" methodology can be implemented and shown to
be a stable repository of trajectories, it will implement a localized motor pro-
gram "habituation" paradigm. It has been postulated by Albus, Marr, and Houk
that this is the function of the cerebellum. This forms one argument, albeit
metaphorical, for the use of CMACs to implement the method. More practically
however, the properties of local generalization and fast on-line training are the
underlying reasons. Habituation is discussed in greater detail in section 3.3.1.1,

on page 65.

2.6 CMACs versus ML Ps

It is true that many control systems and trajectory planners have been im-
plemented with multi-layer perceptrons. There are some serious concerns re-
lated to the use of MLPs in the current context that are outlined in the
comparison of CMACs and MLPs found in this section. As with CMACs, de-
tailed descriptive treatment of MLPs is omitted. Many descriptions are avail-

able, e.g. Wasserman ['88].

2.6.1 Some Worrisome Properties of MLPs

My concern for the feasibility of a less than exhaustively trained MLP used
as a forward model stems from the manner in which an MLP solves a "surface-

fitting" problem versus the way in which a CMAC does.
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Figure 2. Comparative evaluation of learning rates and approximation capabili-
ties: (a) surface to be learned, consisting of two Gaussians; (b) back-propaga-
tion net with 48 nodes in the hidden layer; (¢} functional-link flat net with 48
enhancement nodes; (d) functional-link flat net with 200 enhancement nodes.
Learning time in (d) is 0.14 that of (a).

Figure 2.6: How an MLP Converges
Copyright (C) 1992, IEEE Computer.

A CMAC solves a problem quickly everywhere in state space that it visits
and leaves a very low level residual error everywhere. See figure 3.5, on page 69
and contrast it with figure 2.6. The .latter result, reprinted with permiss;ion6
from Pao and Takefuji [92], shows the readout of a network called a functional
link network, which is one of many variations of backpropagated MILPs, and is
one that has an order of magnitude faster convergence rate than standard back-
propagation. Even so, there are regions wherein the network approximation is

highly accurate and other regions where it is quite inaccurate. So testing the ro-
bustness of such a system by applying uniform low level noise everywhere, as

6 Copyright IEEE Computer.



Jordan ['88] did, does not really model the inherent deficiencies of the MLP as

system model.

An MLP can not hope to be a suitable fit for a problem unless it has "suffi-
c.iently" many nodes with the "right" connections. For the general case this
means many nodes. For the specific case it means custom tailored MLPs to fit
the architecture, i.e., just the sort of thing we are trying to avoid by moving

away from purely analytical methods.

Contrarily, robustness in the presence of low level noise is consonant with
the manner in which a CMAC tends to sclve a problem and arguments pre-
sented in section 4.8.7 tell of how CMACs in this architecture contribute to an
innate robustness. Memory consumption and inherent noise are directly related.
An upper bound on the worst case inherent noise a CMAC imposes on its host
system are discussed in Appendix B, and results in section 4.8.7 indicate a wide
range of system design latitude to allow an effective tradeoff between system

performance and memory consumption.

2.6.2 Local and Global Generalization in MLPs and CMACs

The concept of generalization can be stated from two vantage points.

» The connectionist’s definition: The degree to which a neural
network learns about novel situations from familiar ones, i.e.
ones upon which it has been trained. In other words, if a
supervised learning system is presented with exemplar x, how
well can it predict a response to exemplar x', which is
purported to be "similar".

» The localist’s definition: The degree to which the receptive
fields of local basis function networks can overlap. With a

radial basis function, this quantity is expressed as the radius
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of the receptive fields. With a CMAC, it is expressed as an
integer quantity representing the number of discrete state
space points in a receptive field, corresponding to weights

stored in memory locations.

2.6.2.1 Deterministic CMAC Generalization, For a CMAC, these

two definitions are more or less equivalent. If there is a large receptive field (i.e.
many weights) then other receptive fields can share many or almost none of
these weights. The number of weights in a CMAC receptive field is, by conven-
tion, represented by the variable, C. Since the state space peoints are widely and
uniformly distributed throughout the state space, it is possible then for widely
separated inputs to overlap, and thus generalize. If there is a small receptive
field, the probability of two fields sharing weights is small, unless the inputs cor-
responding to the two receptive fields are very close together, hence only very
similar inputs share weights, and thus little generalization occurs. In fact if
C=1, we have table lookup and no generalization occurs. For the simple case of a
one dimensional CMAC, the effect of broader or narrower generalization can be
seen in figure 2.7, which shows how differing values of the generalization pa-
rameter might affect function approximation of a sinusoid. Segee [92] discussed
how the width and profile of the receptive field affects learning speed as a func-
tion of the spatial frequency of the exemplar function. This result together with
the observations of Appendix D will connect the methods of ARTISTS/ART-
FORMS with previous traditional methods of non-linear control. See section 6.2.

2.6.2.2 Generalization and Quantization in CMAC. The term co-

don representation is found in Marr ['69]. It refers to the degree of coarseness of
the input vector coding. Coarse coding is a term also used in reference to

CMACs. The input vector must be discretized for a CMAC, and so scaled inte-
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Figure 2.7: Generalization and Receptive Field Extent
gers are used. The scaling can be as high resolution as necessary to assure an
accurate simulation model. But if the resolution is very fine, the CMAC virtual
memory space can become unworkably large. Since a change of 1 unit in this
representation does not necessarily result in even a measurable change in the
output of the CMAC, it is very wasteful to leave matters thusly. In order to re-
duce memory consumption, the CMAC can further discretize an input vector to
the degree that a single unit increment or decrement does produce a measurable
output change (on average). This discretization control can be exerted in

UNH_CMAC by using an array called qnt_vec[ ). This vector contains in each
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corresponding component the number of units change in the input vector compo-
nent that will ensure a new weight is enlisted in (and thus an old one dropped
from) the receptive field. This allows a simple adjustment on a per coordinate
basis of discretization that is independent of the plant simulation disaretization.
One unit of change at this coarse level is called a codon unit’. In figure 2.7, for
example, each codon unit is }%g linear units (lw). If the plant were discretized
with 1 bit representing 0.01 lu then a codon unit would be & plant simulation

quanta.

2.6.2.3 Non-deterministic lization § L Multi-lay- er
perceptrons, on the other hand, can exhibit very broad and almost uncon-

trollable generalization. Figure 2.8 shows a typical 3 layer multi-layer percep-

3 Layer Multilayer Perceptron
With 2 Inputs and Scalar Output

Layer | Layer 2 Layer 3

Figure 2.8: A 3 Layer Multi-Layer Perceptron

7 After Marr ['69].
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Commonly used as the “non-linearity” in muld-layer perceptrons, this sigmoid is drawn
for T= 0.2 and the bias, b = 0.0. z is just a weighted sum of the inputs. Training is
accomplished by adjustment of the weights using backpropagation to solve the credit
assignment problem related to the weights. This unit will be sensitive to large values of
z, so if the weights attached 1o its inputs are all large, this unit will be saturated in an ON
state, even for modest input values. Since its derivative is also small there, its weights
will not likely change in response to training exemplars that drive its inputs high. This
can be interpreted as a kind of local generalization.

Figure 2.9: The Sigmoid Non-linearity
tron. The sigmoid non-linearity of figure 2.9 is the heart of an MLP’s ability to
approximate functions or act as a pattern classifier. These two capabilities are in
a sense equivalent operations. If a network can approximate a function, then the
surface represented by that function will have closed features (i.e. simple humps
or depressions) or open features (i.e. ridges or valleys) which can be intersected
by hyperplanes to form boundaries of respectively closed or open decision re-
gions. Unfortunately for an MLP, the network size and interconnectivity deter-
mine the kinds of functions (or decision region sets) a particular network is

capable of computing.

2.6.2.4 The MLP as General Function Approximator. Hornik,
Stinchcombe and White [89] showed conclusively that a 3 layer MLP is capable

of approximating any Borel measurable function from n-space to m-space, for

any n,m natural numbers. This class encompasses virtually all useful functions
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encountered in engineering applications. They did not however define a method
of training such a network. In other words, figure 2.8, given enough units in
each layer, can be a general function approximator. But getting it to adjust to
approximate that function is not a well defined procedure. Their argument was
more general in that it allowed other than sigmoid non-linearities, but con-
straining the discussion to just the sigmoid class of networks, their argument

can be summarized as follows.

First, observe that one node from figure 2.8 is able to separate a hyper-
space into two half-spaces, because the input function is just the dot product of
two vectors, the input vector and the weight vector, the latter of which is the
normal vector to the dividing hyper-plane. The transition between the two

halves of the divided space can be as abrupt or as gentle as you please by adjust-

Multilayer perceptron topology used by Lapedes and Farber
to predict a chaotic time sequence.

W,y through w,

Figure 2.10: Lapedes and Farber’s Chaotic Sequence
Predictor Network
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ing the slope of the sigmoid, by changing the parameter T of figure 2.9. So the
orientation of the separation plane is defined by the weight vector and its dis-
placement from the center of the space by the bias weight. If there are two such
units in the same layer, they can project onto a single unit in the second layer
which can, by conjoining the outputs of the two units in the first layer divide the
space into 2 open regions. If the first layer has 3 such units, only then is it possi-
ble for the second layer target unit to enclose a convex region in the input space,
or approximate a surface with one "bump" on it. In fact more and more units in
the first layer all projecting onto a single unit in the second layer can define any
convex region you please. Suppose there are multiple such groups of units in the
first layer, and each group projects onto one unit in the second layer. Any con-
nected region (a conjoint of convex regions), or arbitrary shaped bump, or any
disjoint set of convex regions (or collection of simple convex bumps) but not both,
can be approximated by the target node in the second layer. The thi;‘d layer can
then conjoin and disjoin regions (features) output by the second layer, which is
equivalent to computing any arbitrarily complicated surface or function. And
furthermore, backpropagation or a variant thereof can (hopefully) train it (even-

tually).

It is these two parenthesized conditionals that pose the problem. We are
faced with the prospect that there is just no good way ahead of time to decide
how to size or connect such a network in order to perform a given job without
undergoing a thorough analysis of the nature of the function in hand, in which
case it is probably not necessary to use a neural network to perform the compu-
tation. So what is really needed is a generalized three layer network, which can

reliably map arbitrary functions without exhaustive a priori analysis of the
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function, which may not be a known quantity. Throughout this dissertation, that
is precisely the role in which CMAC is cast.

2.6.2.5 MLP and CMAC Equivalence, A CMAC can be shown to be
equivalent to a three layer multi-layer perceptron, in which the first two layers
are hardwired (i.e., have fixed interconnection weights). These first two layers
define the topology of the function the network is capable of approximating, and
are called hidden layers. A major problem with an MLP is that it must perform
two jobs simultaneously: train the hidden layers to understand the space, and
train the output layer to understand the function. All the hidden layers should
be doing is dividing the input space up into local compartments. The output
layer can then conjoin or disjoin these to form arbitrary sets of convex regions,
and then weight these component regions to finish defining the output. The
equivalent of a CMAC could be built using a three layer MLP if a nearly infinite
number of sigmoid units could be connected together in a regular pattern such
that groups of these units could each subtend limited regions of the input space.
Each of these little subnets would then fulfill the role of a CMAC receptive field.
Fahlman ['90] attempted to do just such a thing adaptively in his cascade corre-

lation architecture.

2.6.2.6 Local and Global Generalization in a One Dimensional
Proble

Lapedes and Farber [89] wrote a paper on chaotic time sequence predic-
tion. Their network simply learned the internal representation of chaotic se-
quence generator which operated by feeding back the output of a quadratic
logistic function as its next input. By cycling this generator repeatedly, an ap-
parently random sequence resulted. If a network observes the sequence of in-

puts and outputs of the generator and trains in supervised learning fashion, all
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Lapedes and Farber’s chaotic time series experiment duplicated. The light gray arrows show the
approximate direction of convergence of the backpropagation algorithm. This rather rapidly
convergent experiment is a fast learner principally because it has a carefully chosen architecture,
and weight initialization. In other words, it "fits the problem”. Other initializations proved to be
more than two orders of magnitude slower even with the same network topology.

MS Error Per Epoch

17.808361 6.207622 2.366761 1.260756
11.590284 5.205238 1.932657 1.135156
9.934926 4.324663 1.732864 1.023141
8.574083 3.562446 1.557949 0.923478
7.331949 2.912544 1401226 0.834997
Figure 2.11: Convergence of a Sequence Predictor
with an MLP

it is really doing is learning a quadratic. Such a function has one smooth hump,
and so the topology of figure 2.10 should suffice. I used an MLP of that topology
and standard backpropagation, with a heuristic c¢ycling of the learning rate, to
attempt to learn the function as Lapedes and Farber had done. The results are
seen in figure 2.11. What I discovered in the process of this effort was that the
weight initialization was critical. If I initialized the weights as large weights
with a wide variance (weights range from +/-5.0) the result was figure 2.11.

When I used the "conventional wisdom" of small magnitude random weights
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step n+] in the chaotic sequence

0.0 0.25 0.5 0.75 1.0
step n in the chaotic sequence

MS Error per Epoch:

0.581080 0.019997
0.035263 0.019170
0.022182

Figure 2.12: Convergence of a Sequence Predictor
with a CMAC

(ranging from +/-0.5) the result was that the function converged several hundred
times more slowly, and the original approximation (similar to the first trace of
figure 2.11) persisted for hundreds of epochs with only minor changes in down-
ward concavity to try and approximate the quadratic. Why might this be? I con-

tend that it is due to overgeneralizing during training.

If all the weights of an MLP are similar and small, then on average all the
sigmoid units attached to the summers will tend to be presented with weighted

summed inputs that are near the centers of the sigmoid functions. That happens
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to be where each sigmoid has maximal slope, so gradient descent changes every
unit on every train.ihg step. Fahlman ['90] calls this situation herd effect. This ef-
fect is a kind of global generalization: a system-wide response to a single gradi-
ent adjustment. Furthermore, if most weights are similar and small, then it is
probable that many or all of the units will tend to respond strongly to a particu-
lar input, which is a form of global generalization: a system-wide response to a
single input vector. Both these global generalization affects are problematic, in
that they slow learning down. If the initial weights are set with a wider vari-
ance, however, then there is a higher probability that a limited subset of the
units will respond strongly to a particular input, while others will ignore it due
to having sigmoid inputs negative. If these two subnets of sigmoids units are
driven into the saturation region, they will persist there in spite of training ad-
justments due to having near zero slopes. This represents a form of localization,
or the emergence of local generalization in the MLP network, albeit a rather
haphazard one. My final weights and Lapedes and Farber’s both exhibited a

rather broad variance.

A further slowdown of learning is caused by the fact that MLP weights are
not changed after every iteration because so called incremental learning tends
not to work well for MLPs. Rather, batch learning is typically used, wherein the
errors encountered in the training steps are summed throughout an entire ep-
och of training exemplars, and the weights are all adjusted at the end. The need
for this is due in part to global generalization. CMACs on the other hand toler-
ate incremental learning well due to their innate localization capabilities, and
this is essential to on-line learning, which requires that the system learn at
every iterative step. The speed of convergence of CMAC versus MLP is dramati-

cally demonstrated by a comparison of figures 2.12 and 2.11 wherein it can be
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noted that CMAC accomplishes in b epochs a degree of accuracy of function ap-
proximation that will take the MLP almost 500 epochs to match, and this is
with a carefully crafted MLP with a particular weight initialization. With a less
serendipitous initialization, the MLP’s learning rate slows down by up to 2 or-

ders of magnitude.

So in summary, the promise that "similar inputs generate similar outputs"
that is mistakenly attributed to MLPs is in fact the main strength of radial basis
functions, sparse distributed memories and CMACs, i.e. the set of local basis

networks. MLPs "generate similar inputs" under rather ill-defined conditions.

2.6.2.7 CMAC-like MLPs. Extensions to the cascade correlation archi-
tecture (a variant of the generic MLP postulated by Fahlman ['90]) can be de-
vised that can adaptively "grow" state space detectors, or locally receptive fields,
similar to those inherent in the CMAC architecture. But this does not improve
the time complexity problem for the MLP which still requires a complete for-
ward activation of the network. This can be so costly that if the problem gets
harder than the simple one posed in Lapedes and Farber, notably with higher
dimensional representations, a massively parallel computer would be essential
for a reasonable implementation. The MLP is exponential in the dimensionality
of the problem and number of layers while CMAC has a computational complex-
ity that is linear in the generalization parameter, C, and dimensionality. It
should be remembered that, if the MLP is well fit to the problem, as a mc.)djfied
cascade correlation architecture could be, and in the end could produce some-
thing very much like the CMAC architecture, it would have some properties like
smoothness of function representation that CMAC lacks. So here is grist for a
tradeoff decision, where the detriment of computational complexity must be

weighed against the need for smooth function approximation. For control appli-
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cations, where immediacy of response is often more important than accuracy,
and as is often quoted, that "sign is more important than value", it should be ap-

parent that CMAC will usually win in this tradeoff decision.

2.7 nclusion:

The results of sections 2.5 and 2.6 are summarized as follows: Since no
neural model except CMAC exhibits the necessary speed of convergence to do
on-line incremental learning (a requirement for real-time adaptation), and since
only local basis function networks (of which CMAC is a kind) exhibit the neces-
sary localization property, and given the milieu of CMAC activity and experience
in the Robotics Lab, it makes sense to study how these CMAC modules might be
used to implement path planning actions. The goal is obviously to provide a
front end trajectory planner for SERVO trackers like figure 2.5 (page 36). A re-
dundant arm will be used (for its obstacle avoidance capability). No adjunct
fixed gain linear controller will be implemented to provided the CMACs with
guidance as in the experiments of Miller et al; since generalized path planning
has no underlying linear model, it may not be very helpful to do so. The goal will
be plan trajectories for an unknown robot configuration, given only the ability to

observe the joint angles and hand position.
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Chapter 11

The First Generation Solution

In this chapter, a trajectory planner is developed that exploits an errone-
ous assumption, but nonetheless involves basic concepts that become the basis

for the successful implementation of chapter 4.

3.1 A Preview

In addition to this preview, the reader may find section 3.4.1 instructive. In
that section, a very much simplified system called 2DTFORMS is introduced
that is analogous to ARTFORMS, but is of lower dimensionality and hence is

easier to understand.

source O source 0 Do
source | source |
DI
MUX
: —| SEL
:losl'll"lal?t L out put - g'—;:‘unlnl output
(seleet line) signal (select line) U o
(a) A typical dataflow (b) A simplified dataflow multiplexer
diagram “multiplexer” based on circuit element symbol

Figure 3.1: A Dataflow Multiplexer



Constant STM decay
(n = 0.1) Heuristic Biases
This context info. drives the @—__.‘ From Higher Levels
associative meniory lookup
SLAP SEL oo
MUX This context lafo. drves the
L assodative memory teaning
/ (n = 0.0)
[ ]
STM
CMAC [
Context l:l U
Vector, 0
Target
Info., Ah
4
Heuristic
Suggestions
SLAP rescts
the LTM learning
rate to 1.0 (locally) D / Data=|
ouT Do n=0.l
e MUX ——
ne=14i0

F igure‘ 3.2: Overview of ARTFORMS-1

As a notational convenience, in the dataflow diagrams of this dissertation,
the circuit symbeol for a multiplexer (MUX) is used to replace a module like the
truth-gate/ffalse-gate dataflow construct of figure 3.1a. The purpose of a multi-
plexer is to allow alternate dataflows from one module to another that is control-
led by some condition. For instance, in figure 3.2, the reinforcement signal,
SLAP, controls the training into both the short term memory (STM) CMAC and
the inhibitor CMAC. When the SLAP signal is dormant, the inhibitor CMAC re-

ceives a data signal of 1 as its exemplar value and is trained with a small learn-
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ing rate! of n = 1.0. Whenever SLAP is active, exemplar data of 0.0 with a learn-

ing rate of 1.0 is gatéd through the MUX as an exemplar.

On the left-hand side of figure 3.2, input vectors flow in. These input vec-
t'ors establish a context for the articulator that consists of a postural vector, 8,
and a target vector, Ah = (3x, By), consisting of direction cosines pointing from
the hand to the target.

Direct inverse response vectors, A8, are then trained into the LTM CMAC
near the center of figure 3.2. This CMAC'’s output will become é, the estimate

of an inverse differential kinematic solution.

At the same time, a second CMAC, the INHIBITOR, learns the constant
function, 1.0, with a small learning rate, as a function of the same input (con-
text) vectors. This CMAC’s output becomes a measure of the amount of experi-
ence the LTM CMAC has acquired as a function of the input vectors, and is used
to compute a learning rate for the LTM CMAC. In this fashion, the INHIBITOR
causes a gradual reduction of the plasticity of the long term memory (L'TM)
CMAUQC, by altering the latter’s learning rate, or can quickly increase the learn-
ing rate of the LTM CMAC in response to an obstacle, in an effort to make the
LTM more plastic. Without this plasticity control, the system’s redundancy
would allow it to drift from one valid trajectory solution to another. The act of
settling on a particular trajectory in a particular context is a form of habitu-

ation.

| Leaming rate, n, is a measure of step size during the iterative convergence caused by execution of
the delta rule. See section 4.6.4.5 on page 102 for discussion of the CMAC delta rule.
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The method used to modify such acquired habits is provided by the rein-
forcement signal, SLAP, and its associated short term memory, the STM CMAC.
In its normal mode, SLAP provides a zero vector as training exemplar for the
STM CMAC, which enforces a gradual STM decay of any information that was
already in the STM. The gradual nature of the decay is a result of a small learn-
ing rate for the STM training. If, however, a collision signal engages SLAP, the
most recent inverse model supplied moves of the ROBOT are negated and
trained into the STM CMAC with a large learning rate, of q = 1.0. The STM
CMAC then emits a non-zero output to be summed into the forward activation
supplied by the LTM CMAC as input to the ROBOT. The STM meanwhile de-
cays to zero, via the normal mode of STM training just mentioned, so this per-
turbation triggered by SLAP will be transient. During the transient
perturbation of the model, it is assumed that the system will be forced to learn
some alternate solution for the inverse kinematics. Whenever a solution results
in collision with an obstacle, it is perturbed from that solution, until some trajec-

tory solution that is obstacle free becomes a habit in the given context.

Heuristics are used to generate suggested moves whenever the LTM either
has no information trained into the memory associated with the current context,
or if the LTM’s suggested move violates goal directed conditions. The goal di-
rected conditions impose a Lyapunov-like convergence condition on the system,
by only allowing training with exemplars that reduce the hand to target dis-

tance, while discarding any non-convergent moves.

Critical to this system is the notion that a habituated trajectory will, in
the redundant case, happenstantially often be appropriate to the problem being

solved, and that the weighted summer that mixes the outputs of the various
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sources of trajectory information can be crafted in such a way that the selective
disturbance of trajectories will also be appropriate. Both these assumptions

have proved over-optimistic.

3.2 Back-track Search is Not an
Explicit Part of ARTFORMS

The ARTISTS/ARTFORMS system is a shallow search method, having no
explicit back-track capability. It uses hill-climbing or gradient descent as its
principal goal direction mechanism. At any point, a heuristic or adaptive move
suggestion for what to do next is required that will be critiqued by a heuristic
critic or a training critic® based on whether or not the distance to the target has
been reduced. If the proposed move will not reduce the distance, the suggestion
is rejected. This criterion can be relaxed to some extent, but full blown back-
track search is left to be addressed by a higher level in the planning architec-

ture.

3.2.1 How Heuristics Enter The System

Heuristic search is thus exploited and then turned into a feedforward acti-
vation process by simply presenting steps postulated by a heuristic "suggestion"
generator. As this process progresses, ARTISTS observes each move and its asso-
ciated context vector, and trains the direct inverse LTM with that move as exem-
plar. This method, if viewed upstream of the heuristic eritic, is clearly not goal
directed; this objection has been raised by Jordan [90]. If the heuristic move
suggestions were merely randomly generated ones, serendipity would dictate
whether any observed heuristic move would in fact be germane to the issue of

decreasing the distance to the goal state. But if the heuristics used are goal di-

2 The two types of critics are described shortly.
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rected, this objection loses strength. (See section 2.3.) After the critics’ evalu-

ations, goal directedness is stronger yet.

Any appropriate biasing influence, including obstacle avoidance sugges-
tions, can easily be "piped in" from Al layers, impedance control modules, vision
systems, minimum norm optimal methods, heuristic search methods like MUR-
PHY, etc. Such sophisticated adjunct control modules are not necessary for
merely adequate behavior. Each can simply subsume the heuristic suggestion
generator whenever a higher level collision detector engages. In the event that
the adequacy of this system’s behavior is deemed insufficient, higher level help
could be blended in to the level necessary to bring the behavior’s adequacy up to
some desired level. In this fashion a balance can be struck: only as much compu-
tational load as is minimally necessary need be added to achieve the desired

level of competency.

3.2.2 Goal Directed upristi

Heuristics that are applied before the plant is moved are a priort heuris-
tics. Another set of a posteriori heuristics are applied after the fact by the heuris-
tic and training critics. Two types of a priori heuristics have been successfully

and extensively used: Random flailing and the Berkinblitt synergy.

3.2.2.1 Random Flailing, Whenever the system has no previously
learned knowledge at a particular state space location (i.e. when the LTM

CMAC returns a near zero activation level) or if other methods have failed, n
random numbers within certain limits are cast. These become an n dimensional
joint change vector (for n joints). This is not goal directed per se, but goal direc-
tion is imposed on the system by a critic as described in section 3.2.3, which pre-

vents the system being distracted by erroneous random moves.
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Figure 3.3: The Berkinblitt Synergy
3.2.2.2 The Berkinblitt Synergy. The Berkinblitt synergy is based on

observations of a spinal frog's wiping reflex. (See Handelman [90] and Berkin-
blitt ['86].) It approximates straight line hand movement with approximately
minimal total torque exertion, which would be important in a kinetics capable
extension of this system. The algorithm is an approximate, qualitatively goal di-
rected heuristic that computes very fapidly, and presents, open loop, a sugges-
tion that reduces the hand-to-target distance.

3.2.2.3 Description of the Berkinblitt Algorithm. The Berkinblitt
synergy is described concisely in figure 3.3 At first glance it appears to be a so-

lution to the inverse kinematics problem, but it is not. It is simply an interesting
rule of thumb that gives a correct suggestion for any one-joint-only move, that
will best reduce the hand-to-target distance, but when more than one joint is
moved at a time, though the result will most always reduce the distance, it may
not do so optimally. Consider, for instance, the example in the figure. By com-
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puting the cross products shown, it is clear that joints a and § should be ad-
justed by small neéative angles. Angle y should remain unchanged. Viewed
statically and in isolation, each of these suggestions seem reasonable, but if o is
decreased slightly, it is obvious that a slight simultaneous increase in p best re-

duces the hand-to-target distance.

3.2.2.4 Other a Priori Heuristics, Other heuristics, besides random

flailing, which are more goal directed, but still more efficient than search or con-

straint methods were tried, such as:

* Requiring a sufficient set of the joint angles’ changes to be
equal, so that the inverse problem becomes a non-redundant
one.

+ Exploiting synergies like opposite signs for selected pairs of
neighboring joints (Hinton ['84]). This can, for instance, allow

elbows to move while keeping the same hand position.

In fact these did not appear to be any more effective than random training,
and the clear winner was the Berkinblitt algorithm. The policy that was finally
implemented was to use Berkinblitt unless its suggestion was rejected by the
critic, and then to revert temporarily to the random policy, which would always
(eventually) succeed.

A third set of policies are discussed in sections 4.2 and 5.2.2 as the pos-
tural constraint and the central obstacle avoidance mechanism. The rules used
to devise the objective functions for these constraint satisfactions are simply
other forms of heuristics. Although these constraint rules are designed into the
system a priort, their application occurs concurrently with training (and move-

ment), thus their effect is neither a priori nor a posteriori.
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If more heuristic policies were available, a flexible policy could be imple-
mented that could intelligently select from among heuristic methods as need
dictates. This policy could even be selected by a spatially distributed parameteri-
zation. (See sections 3.3.1.2,4.8.1.1, A:1.1.1 and A.1.1.3).

3.2.2.5 Relaxation of Goal Directedness: Hand Constraints. The
heuristic goal direction is modified by changing the values of the hand con-
straint parameters @, and Py that were discussed in section 2.4.3. The adjust-
ment of these angles can allow the search for trajectories to proceed using
heuristic moves that vary from the rectilinear hand move constraint by any ar-
bitrary amount. A very interesting qualitative result was observed: for non-re-
dundant arms (i.e. 2 joints) any values of Pogr worked. For large values of Pgq?
the resultant search process was quite curious to watch. In those cases, the hand
at first followed bizarre looping trajectories and seemed unlikely to settle on rea-
sonable trajectories. After a single pass around the targets, however, the arm
settled down into trajectories that were nearly rectilinear and improved rapidly.
The amount of saturation of memory went up during the peculiar looping exer-

cises in such cases. (See the discussion of memory usage in section 4.8.10.)

3.2.3 The Heuristic Critic

The heuristic critic predicts (as described in section 2.4.3) whether or not a
heuristically or randomly derived move suggestion will result in a desired de-
gree of goal directedness. An analytical model of the forward plant provides a
perfect prediction each time, but this need not be so. (See section 4.8.12 on page
132 and section 6.3 on page 159).

3.2.3.1 Assumption of a Nearly Reversible Plant. The use of the

plant as model for the critic is perfectly acceptable if there is a reversible plant.
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If the plant is not exactly reversible, it will not be a problem unless reversal of a
move causes goal divergence that sweeps out completely virgin state space (i.e.,
state space that is previously unvisited directly or through generalization). In-
deed, it may be problematic for a physically realized ARTFORMS system if the

physical plant were not at least nearly reversible for small incremental moves.

On the other hand, it may be quite acceptable to just allow the plant to
make goal divergent moves without bothering to reverse them. It suffices to say
that the current ARTFORMS-1 and ARTFORMS-2 are intended to be idealized
limiting cases for such planning systems, hence the use of the analytical forward
model in the critics. The development of more realistic systems is left as future
work, with the discussions of section 4.8.12 on page 132 and section 6.3 on

page 159 finishing the current discussion.

3.24 The Training Critic

The training critic is activated to critique every move that has been read
from the LTM to determine if it is appropriate. The same world as model para-
digm is used for the training critic as was used for the heuristic critic. It was ob-
served in all successful simulations that only during the first few segments did
the training critic fail, so its absence is not a problem after early training. It is

needed in two situations:

« During early training, before the LTM converges.

e During very late training if memory has been so saturated
that hashing damage occurs. Such occurs when the CMAC
memory is sized too small. For discussion of when the hashing
damage is transient and relative innocuous, see section 4.8.10.

For a discussion of experimental results using an inaccurate
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model for both the heuristic and training critics, see sections
4.8.12, and 6.3.

3.2.4.1 Step Size Control, Associated with the training critic, there is a

need to ensure that hand moves are uniform length, as a cue for when to reject
low grade data whose genesis might be an artifact of hashing collisions. To this
end, and also to the end of providing a more uniform addressing of state space,
any move that is postulated by the CMAC or the heuristic move generator is
tested on the plant to see if it in fact generates a unit length hand move. If the
move is outside certain limits around a nearly unit length then an iterative
process of scaling the joint move until these limits are satisfied is executed. This
is a flagrant appeal to the linearity of inverse differential kinematics in which
Appendix C gives us some faith. It was determined experimentally that 0.8 to
1.2 were acceptable limits for approximate unit length of steps. Tighter limits
caused too much time to be wasted in iteration. Looser limits may have been ac-

ceptable, but these limits worked well in practice.

3.3 Multiple CMACs:
Spatially Distribute 1
The concept of a spatially distributed parameterization is a crucial concept
of this dissertation. The idea will be visited over and over again. The rest of this
chapter describes the first generation attempt at an implementation of obstacle
avoidance using this means. In section 4.4 the problems that led to rejection of
the first generation solution are described. Some readers may wish to skip im-
mediately to chapter 4 and proceed to the ultimate second generation system.
To preserve the chronology of this development, the first generation solution is

left in. It still contains many solid concepts, especially relative to spatially dis-



tributed parameterizations. The first such parameterization we shall discuss is

a spatially distributed plasticity mechanism.

3.3.1 Habituation
This supervised learning system incorporates three CMACs, trained con-

currently using the same inputs. The first one learns the inverse model. Another
one, the inhibitor, is used to stabilize the first such that it robustly learns sub-
optimal trajectories through hand space. The third CMAC network is involved

in obstacle avoidance.

A successful trajectory goes from start point to target point without getting
stuck in between, and without violating some imposed conditions. Assume that
whenever a successful trajectory is observed it is "recorded" in the inverse model
network. Suppose the trajectory can be reliably "replayed" by simply starting at
a point on that trajectory and asking the inverse model network to recall the se-
quence of moves of that trajectory. If this can occur for any arbitrary successful

trajectory, then the system clearly can learn sub-optimal trajectories.

3.3.1.1 The Inhibitor Network., A good definition of habituation is the

tendency to execute a particular action in a given context only because that
same action or one similar to it has been done before in the same or similar con-

text.

Habituation is strengthened over time by the activity of a second, "inhibi-
tor" network, which stabilizes the inverse model network. It schedules the in-
verse model’s learning rate down in high usage regions of state space while
leaving the rate large (i.e. 0.5 or s0) elsewhere. This may not allow final conver-

gence of a particular sub-optimal trajectory, which is a desirable and exploitable
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feature of this method, because an adequate trajectory with an obstacle present
may be far from the optimal trajectory aimed at the same target but without the
obstacle. The mechanism is simple: the inhibitor is presented with the same in-
put vector as the inverse model. It is trained with the scalar response function
r(8)=1.0. The inhibitor network’s learning rate, n, , is small. This allows the in-
verse model network time to develop trajectories before the trajectory is fully ha-
bituated or "frozen". The larger Ninh is, the faster trajectories habituate.
Obviously selecting a value of Vink is critical. The inhibitor will then output
OSrA(O)Sl.O, which is used to construct the learning rate, q-l—;\(e), for the next

training cycle of the inverse model.

3.3.1.2 Structurally Equivalent CMACs. The inhibitor network op-

erates concurrently with the inverse model network and is structurally identical
to the inverse model network, in that it has the same input vector, 6, as the in-
verse model (i.e. it then has the same number of degrees of freedom). It has the
same "internal wiring", by virtue of having the same generalization, hashing al-
gorithm, and address decoding algorithm. So, instead of actually allocating a

second CMAC, a more efficient implementation may entail including the inhibi-

a. with C=256 b. with C=64
Figure 3.4: Effect of Generalization on Trajectories
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tion level as a fourth component of the response vector trained into the inverse

model network.

It may, however, be argued that the inhibitor network should have less
generalization than the inverse model, requiring a separate CMAC for its imple-
mentation. See figures 3.4a and b. For the case of large generalization, the for-
mation of the first trajectory strongly influences the formation of the second. In
instances where two nearby trajectories should be pulled apart due to an inter-
stitial obstacle we would want the first trajectory to influence but not dictate
that nearby trajectories emulate its form. In other words, by making Cin h<Cl 'm
we are attempting to prevent regions that have been visited only through gener-
alization and not direct exemplar training to remain plastic longer. This notion
of a spatially distributed plasticity measure is a central theme of this thesis and
is one of its major original contributions. In fact, a CMAC is an ideal tool for a
field representation for any spatially distributed parameterization. This method
is a significant means for increasing the power and flexibility of parameteriza-
tion for adaptive systems in general. Tb date, the only similar application is

Moody’s ['89] method of cooperative interconnection of multiple resolution

CMACs. Moody’s method was put forth only as a learning speedup mechanism.

3.4 i .

The ARTISTS architecture becomes ARTFORMS with the addition of rein-
forcement learning. A third, "repeller", network is subsumptively connected to
the other two. In the presence of a reinforcement signal (SLAP) it is trained on
exemplars that are the negations of the most recent inverse model moves, and
its learning rate is large (near 1.0). It locally inhibits the inhibitor network (i.e.

trains it to zero, with a learning rate of 1.0), while summing a negated move into
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the inverse model’s training example. This action, taken repetitively, overcomes
habituation in a local area and causes the system to relearn new trajectories
when obstacles are encountered. Succinctly this network learns to "do the oppo-
site" of whatever was recently done that tended to get the system into trouble,
as indicated by the reinforcement signal. Since the inhibitor network has been
trained down to a near zero inhibition level in this neighborhood, and since the
output is summed with the training signal for the inverse model, then on sub-
sequent training passes, the reverse action emitted by the repeller is propagated
backward and forward along the trajectory to the extent that generalization al-
lows. This repeller CMAC can be viewed as a short term memory module,
(STM). In addition to the training described above, it is being trained at every
visited state space point with a zero vector as training exemplar and a small
learning rate in order to effect the memory decay necessary for an STM. The di-

rect inverse model is a long term memory, (LTM).

This "habituation" paradigm stops and starts convergence toward sub-op-
timal trajectories, to allow the "elbows" to migrate around, with or without hand
disturbance, to avoid obstacles as the repeller STM’s information is transferred
to the LTM. This allows the joint postures to naturally assume positions related
to recently visited postures via generalization. The final result is that obstacle
avoidance maneuvers eventually become part of an overall direct inverse model
of the inverse kinematics, consisting of three networks operating in parallel.
Figure 3.2 shows this model. It is instructive, however, to consider a simpler

analog of the model, as follows.
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3.4.1 A Simplified "Introductory” System
To more clearly explain the ARTFORMS system, a system is presented

that is called 2DTFORMS whose postural dimensionality is 2, so that the LTM

can be easily visualized using plots like those in figure 3.5. Unfortunately this

system is not posturally redundant, so it's input problem will not be a perfect

idealization of the task that ARTFORMS must perform, but it will suffice to il-

lustrate the basic concept involved in the STM — LTM projection. Under-

standing of this should lead to a complete understanding of the ARTISTS +

ARTFORMS system as summarized in figure 38.10 for 2DTFORMS, and ulti-

mately in figure 3.2 of page 65 for ARTFORMS-1. |

P |
xob

Figure 3.6: Formation of a Feature in STM

3.4.2 A Short Term Memory Qbstacle Representation

Consider figure 3.6. This illustrates a convex perturbation or bump func-
tion being formed in the STM state space around a perceived obstacle in 2-space.
Now consider figure 3.5: the first two panels on the bottom are approximations
of the function z(x,y)=sin(x)sin(y). The figure is actually the output, Q(x,y) of a
CMAC that has been trained on a limited range of (x,y) inputs. By training this

direct inverse model as shown in figure 3.8, g(x,y) becomes a very close approxi-
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mation of 2(x,y), and can serve as
an LTM of a trajectory model. The
trajectories that it can produce are
like those in figure 3.9, which are
phase portraits of the time re-
sponse of the direct inverse system
shown in figure 3.7. The forward
model is just the pair of difference
equations shown in figure 3.7. The
bell shaped trajectories produced
by this simple system take the
state point from a negative value
of x to a target point which is any
point on the right margin of the x-
y plane shown in figure 3.9. This
should not be confused with any
robotic manipulator; it is purely a
mathematical exercise. Suppose
for some reason we wish to disturb
the regular set of trajectories emit-
ted by this model. All we desire is
that if the state point moves along
the trajectory T as shown in figure
3.9, before the obstacle at O is en-
countered,' the system should
change modes so as to jump to a

"neighboring" bell shaped trajec-



-n/2
-2n X 25

Figure 3.9: Phase Portraits of 2DTFORMS

to avoid obstacle O whenever encountered.

tory. So the system must
learn a bump function
that will perturb the tra-
jectory from T to a neigh-
boring trajectory. The
system must then stably
remember to do the same
thing whenever it encoun-
ters a point near that ob-
stacle, so that T and very
nearby trajectories will all
jump up to "higher’ (in the
phase portrait) trajectories

The difference equations of figure 3.7 are equivalent to:

1 0
ny= 0 -sin(x)sin(y) and
Si+1 = Si+At~ny (3.2

where At is the step size along the trajectory, ny is the Jacobian of the trajectory

ensemble and Si is the ih point, (xy) along the trajectory. Clearly there are

many paths from (xo,yo) to the target point (21t,yT). Equation (3.2) defines

adequate (but certainly not unique) trajectories meeting this criterion.
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3.43 Training the LTM
We may start training our system with a null LTM. At every step, we train

as we step along trajectories. In early training, performance may be erratic. In
fact we may choose to only "think about" executing trajectories at first. In the
event this were a planner for a physical actuator, this would avoid damaging a
device that may be intolerant of or unable to realize the trajectories so formed.
During this time we would then be relying on the "world as model" by actually
computing the forward model each time, since it is easily computable. We should
eventually arrive at a stable trajectory set, because sin{x)sin(y) is deterministic
and single valued. At some point along the way we should be able to rely on the

output of the LTM. Training so far has proceeded as in figure 3.8.

3.4.4 Training the STM

Suppose that we have a second CMAC that is to model an STM. It is in-
itially null. We always train the STM on the function f(xy)=0, with a slow learn-
ing rate of about 0.1 (for instance). This would represent a constant STM decay.
Let us assume that the direct inverse training has n=0.5. If during trajectory
formation an obstacle is encountered, the STM is trained using as exemplar the
function, f{xy) = k&, for constant k, with a learning rate of n=1.0, to cause rapid
formation of the STM "bump" or perturbation function as shown in figure 3.6.
The actual feature trained into the CMAC would not be as smooth as the bump
shown, but it should suffice as an approximation of a convex perturbation func-
tion. The important point is that it does not affect trajectory states anywhere
more than r = C codon units away from the obstacle, (xob, yo,), where C is the
generalization parameter of the STM CMAC. Codon unit is defined in section
26.2.2.
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Figure 3.10: A 2D Simplified Analog of ARTFORMS-1

3.45 Projecting the STM onto the LTM

Rather than referencing the LTM, we reference LTM(x y)+STM(x,y). At the
same time, we train the LTM based on the observed moves along the trajectory.
In the process of this training, what happens is that the bump function is trans-
ferred into the LTM in a manner described by the time sequence in figure 3.5. It
is critical to adjust the learning rate during training in such a way that the
bump function transfers from the STM to the LTM before the STM decays to
zero and that the STM decays to zero soon enough that its presence in the
summed value that becomes the training signal for the LTM does not unneces-
sarily amplify the magnitude of the perturbation. It is clear that the weighted
summer box of figure 3.10 is more complex than the figure indicates! This box is
responsible for using only the sin(x)sin(y) function as an exemplar when the
LTM is untrained. The weighting for the summer is controlled by having a con-
text sensitive variable learning rate, n(x,¥). This context sensitivity is provided
by another CMAC. This CMAC is the inhibitor CMAC. It is trained in parallel
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with the LTM (using the same input state vector) and is trained with 1.0 as ex-
emplar function. So if INH(xy) = O it indicates that n for the LTM should be
large at that point. If on the other hand INH(xy) = 1.0 it indicates that n for the
LTM should — O, which establishes a condition of absolute trajectory stability
for that context, and other values of INH(xy) indicate intermediate values of

Ninh:
3.4.6 Habituation Can Be Disturbed

When a condition of absolute trajectory stability is established at a point,
(x,y), there are still 2 mechanisms whereby the value of LTM(x,y) could be per-
turbed:

First, consider the effect of overlapping locally receptive fields along a tra-
jectory: if a state vector (x+9, y+e) occurs during training, where d+e < CI om? and
Cl 'm is the LTM generalization, then training at LTM(x+5, y+e) could affect
LTM(x).

Secondly, during training at any point, it is possible, as discussed in section
4.3, that hashing collisions could cause spurious generalization that can, over
time, affect LTM(x,y). The former cause is not a problem, in fact it simply rein-
forces an innate smoothness constraint that CMAC provides the model through
generalization. The latter cause is problematic though in that over time a trajec-
tory may drift due to hashing, as more and more trajectories are learned. This
means that constant vigilance is necessary. The sensors that feed the SLAP sig-
nal can never go to sleep. As long as the physical memory is large enough,
though, the occurrence of SLAP should, on average, decrease over time. If this

last condition is not met, the remedy is to enlarge physical memory of the LTM.
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3.4.7 i 8i

Taken as a wﬁole, the system just described causes trajectories that pass
near the obstacle, O, in figure 3.9 to be deflected as shown in that figure. This
overall behavior is very similar to the desired behavior of ARTFORMS.

By now other properties of the system become apparent:

» The magnitude of Cstm determines by how much trajectories
will be deflected from nominal when SLAP occurs. The same
reasoning applies here as in section 3.3.1.2 regarding how old
trajectories can distort new ones through generalization.

+ There is an innate smoothness constraint imposed on a system
reliant on a locally generalizing memory, because
generalization will propagate postural suggestions forward
and backward in time along the trajectory. This causes the
following: after trajectory T has been learned and obstacle O is
first encountered, during subsequent practice of T, the
deflection will occur before the obstacle, and thus before SLAP
occurs.

» If we think of the extrapolation of this system to a controlier
for a physical manipulator, the resolution of the STM can
probably be much coarser than for the LTM, because the effect
of obstacles should on average be less fine grained than the
desired precision of the mechanism. The reason for this is that
any mechanism probably has members that are thicker than
the smallest move the end point is intended to make. Thus, if
an obstacle affects it similarly for a given posture, it will affect
it for postures near that point by a distance equal to at least
the thickness of the mechanical links.
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If an obstacle occurs at (xab, yob) the STM quickly learns to avoid it by vir-
tue of training in a convex function centered about (xob, yob) in the STM model.
The radius of the function should be r = % so it can be learned virtually com-
pletely in a single training instance with learning rate of 1.0. As the bump is
trained into the LTM by reinforcement learning, that region of the STM is al-
lowed to decay back to null by retraining it with the exemplar function 0.0. Dur-
ing this reinforcement learning, the LTM and STM are summed to form
exemplars for retraining the LTM. In this fashion, the LTM retains the superim-

posed image of the bump while the bump disappears from the STM.

The analogy between the simple 2D STM — LTM projection model
(2DTFORMS) and ARTFORMS breaks down here. Since ARTFORMS is postu-
rally redundant, and not just path redundant, it has multiple stable trajectories
between any 2 state points that can be formed and used as training exemplar
sources, directly from the plant, whereas 2DTFORMS does not. By having to ar-
tificially rely on the analytical sin(x)sin(y) model to train the LTM, the analytical
model can not be used to train the LTM once a "bump" has been superimposed
on the LTM image of the sin(x)sin(y) model, because if such were the case, the

bump would decay from the LTM just as it does from the STM.

3.5 Heuristics and Habits:
An Action Compiler

The weighted summer for 2DTFORMS must cause the training examples
for the LTM to be the ideal model sin(x)sin(y) whenever the LTM is immature
and SLAP is not present, and to be the LTM(x,y) + bump(x,y) if the LTM is ma-

ture or SLAP is present. In the case of the robot arm, there is no ideal function
to refer to. Rather this role is fulfilled by any heuristics that are presented, deux
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ex machina fashion from a higher level. The heuristic that is applied may be an
analytical solution (which is heuristic because it must, by definition, have a heu-
ristic constraint satisfaction applied to get an inverse solution of the redundant
problem), or it may be supplied by an Al system that has common-sense rules
embedded in a knowledge base or blackboard, or it could be random "flailing"
around suggestions, in the event that nothing more interesting can be contrived
in the current instance. This is a form of action compilation whereby difficult
symbolic or analytic computations used to arrive at desirable activities can be
converted into reflexive actions. Handelman, et al [89), investigated a related
method. We exploit certain properties of CMAC modules here, forming a larger
scheme that mimics what is actually done in a cerebellum. Simply stated, an-
other central idea of this thesis is: the conversion of heuristics into habits is an
effective planning and learning paradigm. To that extent, this system is seen to

be based on a biological metaphor.

Suppose that ARTISTS has successfully habituated on a trajectory, T1. As
ARTFORMS tries to deform trajectory T into T2, the system naturally habitu-
ates on T2 by sculpting "hyper-bumps" superimposed on the trajectory forming
hypersurface in the LTM to cause trajectories to conform to the suggestions
passed down from higher levels, including the reinforcement signal. But there is
more going on here -- The system under control imposes its own innate ascend-
ing constraints on the system in that the dialog ARTFORMS observes is what
the robot actually does in the current context, not what was requested, so
SERVO level response limitations and physical postural limitations are auto-
matically learned by the system. (See section 4.4.1.2.) That is to say T2 gets
transformed into T2, which may have features in it that do not conform to the

robot’s hierarchy. This characteristic of the system is viewed as subsumptive in
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nature, in that ascending, lateral and descending flows of information from
largely autonomous sources merge together in a fashion such that one or more

sources can subsume the data flow path into the control surface.

3.6 Some Conclusions About The First
_Generation Solution

In practice, ARTISTS was successful. Detailed experimental results are in
the next chapter. There were problems associated with development of consis-
tent trajectories and problems getting a reasonable implementation of ART-
FORMS (ARTISTS + obstacle avoidance) to work at all. These deficiencies and a
better 2nd generation architecture, called ARTFORMS-2 are discussed in the
next chapter.

It is important to remember that what the robot does must be similar to
what was requested for generalization to allow any meaningful learning to take
place. This is a restatement of the need for goal directedness to be present in the

training exemplars.

79



Chapter IV

The Second Generation Solution

The failure of ARTFORMS-1 to live up to expectations led to the develop-
ment of ARTFORMS-2. The sources of deficiencies and the necessary implemen-

tation of postural constraint satisfaction are developed in this chapter.

4.1 Preview: A Concise Description
of the Architecture

This chapter introduces a new planning method based on some of the prin-
ciples introduced in chapter 3. In this chapter, however, the postural ambiguity
is dealt with in a structured way so that trajectory formation becomes consistent

and repeatable.

Figure 4.1 consists of an upper region labeled ARTISTS and a lower re-
gion, that consists of a gradient descent computation which is used, as described
later in this chapter, to reduce the degrees of freedom and allow consistent in-
verse kinematic solutions for generating trajectories. The upper part is very
closely related to the ARTISTS level described in chapter 3. everything above
the dotted line in the figure is essentially preserved from the first generation so-

lution.

Figure 3.2 on page 55 is similar to figure 4.1, with the principal exception
that the latter is more detailed. A similar diagram appears in chapter 5, and
there it will include a module that provides obstacle avoidance. In addition to
the MUX elements used here, as in figure 3.2, there are slso OR gates used

where multiple control signals may affect the behavior of other elements.
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Starting in the upper left corner of the figure, note that a target computa-
tion generates a desired hand move (direction vector) which becomes part of the

input stream to MUX1 and the heuristics generator.

The training and heuristic critilc modules mutually inhibit one another.
This should only be interpreted to mean that one or the other module may
evaluate a move. Both modules would never evaluate the same move. This is be-
cause the heuristic critic evaluates moves suggested by the heuristics generator,
and the training critic evaluates moves suggested by the LTM CMAC. The out-
put control lines from these two critics control the training signal gate and the
heuristics generator. The control outputs are positive logic success or failure in-

dicators.

Success for the critic means a suggested move met the current heuristic
criteria. (See section 2.4.3., on page 33.) If the heuristic critic fails, then the heu-
ristics generator is activated, causing a new move suggestion to be generated. If
the heuristic critic succeeds, it enables the training signal gate, allowing the
next move of the robot (which will be the result of its trying the current heuristi-
cally generated move suggestion) to become a training exemplar (provided that

the training critic doesn't block its use as an exemplar).

The training critic receives data directly from the robot or a model of the
forward mechanics of the robot, and evaluates whether a real or imagined move
met the current criteria for success. If so, that move becomes part of the input

data for the next training cycle and the training gate is enabled.

If the LTM CMAC receives input, it will be activated to output its current

contents of the memory vectors associated with the current context; this phase is
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called lookup. If the LTM CMAC is activated and at the same time, the training
gate is enabled, the training signals are gated in and a training cycle ensues; in
other words, the CMAC is not required to output a signal, only to update the
memory vectors associated with the current context using the current exemplar

observed from the robot's behavior.

The input to the robot (or robot model) is multiplexed by MUXZ2. Thus its
input can come either from a heuristically generated move, or from the LTM
CMAC. If the data comes from the LTM CMAC, a stepsize control critic evalu-
ates the Manhattan length of the step. If it is above a threshold size, indicating
that it is true data, and not just a weak collateral generalization effect or hash-
ing collision generated data, the AGC module is enabled and the step is scaled
up to represent a near unit length in the hand space. If the heuristic critic is in-
active, this data will become the next step. If the threshold logic failed, the AGC
module is blocked and a new heuristic step is requested by activating the heuris-

tics generator.

The lower right part of the diagram performs a postural gradient computa-
tion, which supplies a training step that is based on the current context @i) and
a constant curvate arm constraint vector, K. This module will, on every training
step, insert a training cycle that atterﬁpts to adjust the value of _A_é:‘. formed from
the contents of the currently selected LTM memory vectors, to cause g'. to meet

the curvate constraint.
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4.2 Weaknesses of the First Generation
Implementation

The three weaknesses of ARTFORMS-1 are the stable trajectory problem,
postural drift end a complete lack of goal directedness in the obstacle avoidance

method. All these problems are discussed separately below.

4.3 Stable Trajectory Problem:
Trajectory Drift

In both CMAC and MLP architectures there is some degree of distant
point generalization that makes on-line learning problematic. Suppose an MLP
uses a particular weight, w, in training for a posture p. The same weight, w,
may then be enlisted during training for a geometrically distant posture, p’. This
will require regular reinforcement of p, even when it is not an application rele-
vant training example, just to prevent new training from disturbing old train-
ing. This becomes exponentially problematic as on-line training progresses.
Weight competition is exacerbated for reasons related to global generalization by
the need to scale down an MLP to a minimal size for computational speed.
Though there is local generalization in MLLPs as well as global (see section
2.6.2), there is competition for weights in response to training exemplars that is
inherent in having to model large input spaces in small networks. This network
scaling problem is central. When one considers that typically MLPs model doz-
ens of nodes with perhaps hundreds of weights, the problem of selecting a net-
work small enough to be practical, but large enough to prevent the weight

- competition just mentioned clearly reduces the feasibility of on-line training for

MLPs.

A CMAC can also exhibit this kind of competition for weights, as a result of

the hashing randomization that allows hundreds of thousands or even millions
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of "virtual" weights to be modeled in tens of thousands of physical weights, but it
is a very low grade effect and only becomes important when the CMAC memory
size is scaled too small for the problem. However, over time, this may cause fully
habituated trajectories to drift. Having fully habituated, ARTFORMS-1 will be
unable to correct this drift through further training. This sort of drift is unavoid-
able, and detection and correction of it poses a computational problem for ART-

FORMS-1.

4.4 Postural Drift

The central failing of ARTFORMS-1 was that it exhibited postural drift.
When I first implemented ARTISTS, I always designed trajectories that started
from a common initial posture and sequentially reached from that posture to
each of the targets in turn. This method produced uniformly good results. In
these cases, [ also routinely started the simulations from a normal curvate pos-
ture. A typical result looked like the animation panels of figure 4.2. At that point
I thought ARTISTS had achieved stable trajectory formation. Then I installed

trajectory chaining, and the trouble began!

Trajectory chaining is essential for a robot that is behaving in a reasonably
free form mode and performing general tasks in its workspace. These chained
trajectory segments have targets sequenced as in figure 4.2, but the targets are
visited one after the other without the respite of returning to a common home
position. This technique caused the system to attempt a closed trajectory that
must be repeatable to achieve stable trajectory formation. Unfortunately, using
this mode of operations, ARTISTS’s first results looked like figure 4.3. In that

figure it is apparent that posture evolved over time to one that scarcely resem-
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Initial posture is bold gray.
a. lst pass

c. 3rd pass d. After 120 epochs

A sequential reaching experiment without postural constraints
genl = 64 quant = 4,8 memsize = 20K
Final memory vector count = 756

Figure 4.2: Sequential Reaching Without Constraints
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c. 3rd pass d. After 120 epochs

A chained trajectory experiment without postural constraints
genl = 64 quant = 4,8 memsize = 20K.
Final memory vector count = 2039

Figure 4.3: Chained Trajectories Without Constraints
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c. 3rd pass d. After 120 epochs

A chained trajectory experiment without postural constraints
genl = 64 quant = 4,8 memsize = 20K
Final memory vector count = 1215

Figure 4.4: Chained, Posturally Constrained
Trajectories
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c. 3rd pass d. After 120 epochs

A sequential reaching experiment with postural constraints
genl = 64 quant = 4,8 memsize = 20K
Final memory vector count = 739

Figure 4.5: Posturally Constrained Sequential Reaching
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bled the initial posture. In reaching from the home position to any one target, as

in figure 4.2, no such evolution had been immediately obvious.

What [ concluded from this was that when approached from the home po-
sition, the posture at the ith target was not necessarily the same one that re-

13t

sulted from target i being approached from the i-1"" target.

Panels a through c of figure 4.3 each show a single pass around the tar-
gets starting from the home position. In each case, the initial curvate posture
had been more or less preserved from targets 1 through 4, with angle p decreas-
ing only slightly. As the trajectory proceeded through targets 5 and 6, the pos- |
ture became noticeably different and by the time path 6 — 7 was executed, the
posture was quite different, even though we might have expected a return to an

earlier posture, since this path segment passed very near target 1.

I reasoned that if a stable repeatable posture existed in the closed trajec-
tory, then stable trajectory formation might result. This is what happened in
panel d: angle  finally drifted down during 120 path segments with no return to
any common grounded posture until it reached 10°, from which point no further
drift was possible, because angle f struck a joint stop there. Since angle p be-
came a constant there, then in a region around that posture, dimensicnality of
the search problem locally reduced to 2, a non-redundant situation, which guar-

anteed a unique trajectory solution in that neighborhood!

This grounded the closed trajectory and prevented further drift from occur-
ring. In general, trajectory drift will continue until such a grounding instance oc-
curs. Memory use will increase too, because state space location is a function of

posture. If posture differs slightly each time a trajectory passes th.rough a par-
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Figure 4.7: Reversal of Curvature, Another Problem
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ticular target’s neighborhood, the posturally generated address vector there will
differ and so a slightly different set of CMAC weights will be adjusted to have
non-zero values. So each pass around the targets, more CMAC weights will be

non-zero until the trajectory stably repeats.
This interpretation was further reinforced by the following evidence:

+ If an initial posture like that in figures 4.4 and 4.5 was used,
the resultant chained trajectory always looked like panel d of
figure 4.3 even during pass 1. This can be explained by
observing that the new recumbent initial posture and the
postures at targets 4 and 5 in panel d are similar.

* The amount of memory used by the unconstrained trajectories
of figure 4.3 was large compared to that consumed by the
unconstrained sequential reaching task of figure 4.2. This is
reasonable because the sequential reaching task was grounded
by the mechanism of starting at a common home position each
time. The short trajectory from there to each target did not
allow the opportunity for the posture to drift across large

regions of state space.

The postural drift observed in these 4 figures became more problematic
with longer kinematic chains. With more joints, there was more redundancy and
ultimately situations like figures 4.6 and 4.7 occurred. In a real robot arm the
kinking problem can not happen for obvious reasons, but the simulator I built
was not capable of detecting this degenerate posture. It just became mechani-
cally disadvantaged. In some cases, the kinking or reversal of curvature became
extreme enough that without back track search capability, the simulation got

stuck in a local minimum while seeking the next target and could not proceed.
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I installed a postural constraint method, which will be developed in detail
in section 4.6, Once that was perfected, figures 4.4 and 4.6 resulted, in which
case smaller amounts of memory were consumed, and postures like figure 4.4

resulted, regardless of chaining or initial condition.

So it would seem that in all these cases, at some point there is a grounding
of the posture, by the home position for the sequential reaching tasks, and by
the terminal drift condition of the target 4 and 5 postures for the unconstrained
chained trajectories of figure 4.3.d. These groundings locally reduced the de-

. grees of freedom of the system

Altogether, the deficiencies inferred by the preceding experiments required
the development of a stronger methodology. That stronger method involves at-
tempting to ground the posture everywhere. This causes a reduction in dimen-

sionality similar to that advocated by Hogan ['92]. (See section 4.6.1.)

4.4.1 Postural Feedback,

Postural drift allows an arm to evolve the posture of its initial condition
into a degenerate posture. Two factors that exacerbate this problem are trajec-

tory chaining and longer kinematic chains, i.e., more joints.

ARTFORMS-1 operates open-loop with respect to posture and this is prob-
lematic. It result_.s in postures drifting into mechanically disadvantageous con-
figurations from which it may even be that no recovery is possible within the
constraints imposed by the critic modules. Postural feedback is imposed by the

postural constraint satisfaction discussed in section 4.6.

4.4.1.1 Joint Stop Ratcheting, dJoint stop ratcheting was another use-

ful method of preventing degenerate postures, since even with postural con-
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straints, kinking and reversal of curvature became a problem for longer kine-
matic chains. This technique simply involved variable joint stops that could al-
low the arm to start out in a degenerate posture, like the starting position of
figure 4.22 on page 134, but once the posture opened up into one that was not in
violation of strictly curvate joint stops and thus was within the range of allowed

postures, the joint stops became effective.

Consider figure 4.20 on page 130. The initial posture was highly enfolded.
Some joints were 10°, while other were > 180°. The ratcheting condition said
that once the posture extended into a curvate form such that all joints (except
the base, which is a free variable) were set such that 90° < 8 < 180° then 90° and
180° became hard lower and upper joint stops. The upper limit effectively pre-
vented reversal of curvature and the lower limit (remarkably) prevented "kink-
ing". The reason for this result is simply that the joints stops blocked any
adaptive moves that descended the postural gradient in the "wrong direction'.
The reason for needing the 180° ratcheted stop was that even with postural con-
straint satisfaction making solutions non-redundant, I still had to worry about
the kinds of postural switching redundancies mentioned in section 1.3.1.1.
Whenever joints were near 180°, the alternate solution that caused reversal of
curvature became as nearly likely as the one that favored the normal curvate

posture.

4.4.1.2 Observations About Compliance, There are implications for
direct inverse systems brought to light by this notion of joint stop ratcheting

that deserve mention. When the joint stops prevent incursion into a postural
"forbidden-zone", if the robot repeatedly tried to enter that zone, excessive wear

could result. But by using direct inverse modeling, the robot will never, under
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adaptive control, try to train a move into that forbidden zone. Since the robot
can not do it, the direct inverse method can not train such a thing into the sys-
tem. This means that the robot will, on average, tend to avoid the joint stops. I
have observed that the arm shows no anomalous behavior upon encountering
joint stops. The remarkable success of the 6 and 9 link arms in rapidly forming
trajectories of curvate postured arms starting from very degenerately shaped in-

itial postures bears witness to this state of affairs.

When a joint stop is encountered, one component of an incremental joint
move vector will be decreased. This means that a move that was originally pos-
tulated as a unit length step in the work space will become shorter. The AGC
mechanism will linearly scale that move up. (See section 3.2.4.1). It should be
clear then that longer kinematic chains will behave more nicely upon encounter-
ing joint stop impingement because the linear scaling will be more near unity

than for a joint obstruction of a shorter kinematic linkage.

4.5 The ARTISTS Layer Preserved
ARTFORMS-2 preserved in toto all of ARTISTS. The implementation of
postural constraints and obstacle avoidance was added as a layer of additional

training which merely added terms to the training of the LTM CMAC.

4.6 Postural Constraints

The postural feedback mechanism that was mentioned before is imple-
mented by installing postural constraint satisfaction in the system. Some effects

of these constraints are discussed.
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4.6.1 Postural Constraints Decrease Dimensionality

The central motivation for use of the postural constraint is to make the re-
dundant problem less redundant. Hogan [92] argues that humans solve redun-
dant kinematics problems by adapting to kinematic constraints which reduce
the degrees of freedom of the system. Though not stated so succinctly, Jordan's

work consists of constraint application that essentially does the same thing.

4.6.2 Postural Constraints Increase Goal Directedness

The postural constraints provide an immediate goal for the system to work
toward. By assuring more continuity of postures along trajectories, it tends to
force the direct inverse system to operate in state space locations similar to the
locations of interest relative to what's being done at the time. In other words it
tends to increase the overlap of adjacent receptive fields along the trajectory.
(See section 4.8.2.6 on generalization slew rate, and section 5.2.2 concerning ro-

bustness of postural constraint training.)

4.6.3 Postural Constraints Decrease Memory Saturation

It was observed that for all experiments in which constrained arm moves
were studied alongside unconstrained experiments, with all other aspects of the
experiments being equal, the constrained system used less available CMAC

memory than the unconstrained experiments.

The reason for this phenomenon is easily understood. During training, if
the movements are constrained, then fewer kinds of different postures will be
searched, and thus smaller regions of state space will be swept out during the
search. Also the search will take less time, and it could be argued that since
memory usage is a monotonically increasing function for CMAC, the longer

early training takes, the more memory will be consumed.
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4.6.4 Development of Postural Constraint Fquations

The postural constraint equations will be developed by first stating the ob-
jective functions F(0) which are functions of the constrained angles (i.e. the ones
other than the base angle). Next, a positive definite (in fact diagonal) L matrix is
defined and the expression FYLFis used to develop a least squares derivation to

arrive at the software implementation of the gradient descent equations.

4.6.4.1 The Objective Functions, The objective functions are just a set

of linear constraints among the n joints. Each constraint is of the general form

k0. -k
|

k.0.-k
P 1

01

1=0.

i1 . The objective of each constraint is the constraint equation

019

For a normal curvate arm, all the ks would be equal, causing all the joints
beyond the base to be more or less equal. The assumption that the absolute con-
dition of equality is an ideal and may not be met within the training require-
ments of the system, gives rise to the "more or less" clause. For ki # kj’ the two

k

joints i and j are related by the ratio, E‘
]

4.6.4.2 Minimum Norm Derivation. If all the joints were constrained,

including the base, the constraint equations generalize to the cyclic form
ki-Bi - kj-ej =0, where j = (i+l mod n)+l. This just adds the equation
kn-On - kl-el = (), for base angle 61, and nth joint = Bn. In such a case, the sys-
tem is overspecified, because it reduces the number of free variables to 1 (if, of
course fi(e) =0, (V 1) could actually be satisfied, where fi(e) is the i*P compo-
nent, corresponding to joint i, of the vector function F(8)). This is unnecessary

and in fact undesirable, because if the constraints are always converged upon
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by gradient descent, the solution will never settle down, because eventually, for
a fixed learning rate, a limit cycle will always be reached. On the other hand, if
we heed Jordan’s suggestion and use a declining rate to achieve a so called mini-
mum norm solution for all these constraints, then ultimately we will have
thrown out the postural feedback mechanism that this whole effort was all
about! Clearly it is not desirable for on-line learning systems to have as a goal a
system that operates open loop with respect to any important parameter. If the
system were ultimately intended to reach stasis, and every parameter of the sys-
tem fixed forever because we have exhaustively learned the system, that might
be a good time to consider such a reduction to open loop operation, but that is
not what we are trying to do here. At the risk of being tedious, I might suggest
another spatially distributed parameterization to allow the learning rate for a
minimum norm derivation to be tied to the experience level of the system as a
function of state space location. (See section 3.3.1.2.) My efforts to implement
minimum norm tended to reach a state of rather bad postural oscillation, which
is what the above discussion predicted for a large constant learning rate, so the
method that has as its goal an exactly specified system was finally chosen for

ARTFORMS-2,

With this goal in mind, consider the following expression for the constraint

equations:

(IK - ISK) 6=0 where Is is the first superdiagonal identity matrix

and K is a diagonal matrix where Kii = ki'

In other words,
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as a weight matrix for the constraints.

Setting any Ri = 0 ignores constraint i. The complete set of constraint equations

can be concisely expressed as

ROL=(- Is)KBL =0

?Ln(knﬁn-kl)

Kl(klel-kzez)

(4.3)

Now we must specify the L matrix. The base angle is set off as being quali-

tatively different in that it is grounded. So it seems a logical step to allow it to be

a free variable and let the other -1 joints be related by F(6)L.



Letting fi(e) be the components of F{0), then every A, that contains 8,

should be set to 0, all others are set to the relative importance of the constraint

to which they correspond. Therefore, Ai=0 fori=1andn.

4.6.4.3 Computing the Gradient of the Objective Function. This
section describes the gradient of the objective functions and how to train the
CMAC to incorporate an additional level of training to respond to it.

Constructing the least squares form of the functional (i.e. set of objective

functions) as o LF, we recall that the complete derivative of this form is

AIFTLF) - 28 g

So the gradient of the functional, VBF= 2F L @’ and adjustments to the

joints to enforce the postural constraints will be: 36 = - n c VBFIB) , where n, isa

constraint learning rate not to be confused with the CMAC learning rate n. In

fact, on the assumption that A = kj =A,foralliy#1 andij+n,then A can be

factored out leaving 80 =- A ~V0F(6) .

Now observe that since all the constraints are linear, from equation 4.3 we

can derive the Jacobian matrix,
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So, substituting equation (4.5) into equation (4.4), we find that

Substituting fl = kiei -k

36 = -AV F=-2

In the implementation of equation 4.7, note that the leading ki in each
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(4.6)

into equation {(4.6), we finally get the form,

(4.7)

ith

term of the 80 vector simply provides an additional weighting on each of the

terms in the vector. It is unclear at this point whether it would matter if the fac-

tored out leading coefficients were all set to unity, leaving only the ones inside

the parentheses variable. Experiments seemed to indicate that this would not
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matter, but the extra computational burden of leaving them all variable is so mi-

nor that we may as well stay with exactly equation 4.7.

4.6.4.4 Applyving the Gradient of the Objective Function. In this

section, the actual method used to incofporate the system’s training is discussed.
In figure 4.1, page 81, there are 3 training sources impinging on the direct in-
verse CMAC: direct inverse, postural and smoothness. These are listed here in
order of application. The method used is to train each separately. The nature of
the delta rule (first seen in figure 3.8) shows each training instance to be a sum-
mation into the direct inverse model. Jordan [88] and others describe con-
straints used in gradient descent training being arbitrated by simply forming a
training term that is a sum of constraint terms. Adding new constraints means
adding new terms to the negative gradient expression. This is equivalent to the

separate application of each training step as discussed below.

The smoothness constraint discussed in section 4.7 was never actually im-
plemented. These experiments worked adequately without it, but its inclusion

may have shortened the training time required for long kinematic chains.

4.6.4.5 Step 1: the Direct Inverse Training Step, The following dis-
cussion is embodied in the C file try2lern.c (which is excerpted in Appendix F).
As a first principle, the delta rule is reprinted (and paraphrased) from figure 3.8:

(AY - ab)n

Aw =

Aw=——"F""" (4.8

This rule is applied twice. The first application is the direct inverse training
step, with AW = A6, where A0 is is the observed change in the robot’s joints and

A_é\ is the direct inverse estimate already present in the CMAC at the current
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state space point. This operating point is defined by the input vector, inp_vec| ],
which is used to activate the robot to generate this change in joint angles. Aw is
automatically generated and added to the weights of the receptive field by a call
to the function, learn(int cmac_id, int inp_vec[ ], int delta_joint[ ], int eta),
provided by UNH_CMAC. ( delta_joint[ ] is A8 during training and g_é_\ after
lookup.)

4.6.4.6 Step 2: the Postural Constraint Training Step, In the sec-

ond, or constraint satisfaction step, the delta rule is applied to cause the learned
A_é\ to be adjusted to favor the postural constraint satisfaction. In this step the
negative gradient of F, 80, is used so A¥ = A_6+§_0 The details of the second
training step involve recalling é_é\, given the same inp_vec[ ] as at the just com-
pleted direct inverse training step, via a call to the UNH_CMAC function
rembr(cmac_id, inp_vec, delta_joint). Now delta_joint[ ] is modified by a call to
the function SatisfyPosturalConstraints(0). This incorporates equation 4.7. For
now, just consider kv[ ] to be the diagonal of the constant K matrix of that equa-
tion. In section 5.2.2, this vector becomes non-constant, so the code that manipu-
lates kv[ ] may become clearer after studying that section. The purpose there, as

will be seen, is obstacle avoidance.

So now the A8 vector is modified to favor the arm posture embodied in K
and equation 4.7. That is A0 = ._Aé\ + 50. All that remains to complete the job is a
call to learn( ) just like the one in section 4.6.4.5 which trains with the new A8 as
exemplar. A similar sequence of steps could be performed to learn the temporal

constraints discussed in section 4.7.
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4.6.4.7 Robustness of Constraint Training With Respect to
Learning Rate, The system was not overly sensitive to the

value of A discussed above, which contrasts with most gradient descent based

methods in the past. This issue is discussed further in section 5.2.2.

4.7 A _Discussion of Temporal Constraints

It has been previously argued in sections 3.4.6 and 3.4.7 that the overlap-
ping receptive fields CMAC provides neighboring trajectory steps imposes an
implicit smoothness constraint on trajectories. It is a simple extension of the
system (not implemented at this time) to add the explicit smoothness constraint
shown in figure 4.1 and 5.1 on pages 81 and 143, respectively. This would entail
saving the "last' incremental joint move learned during the previous trajectory
step and using it as a training exemplar at the current step. The learning rate
used for this training instance would be like a momentum term parameter. A
large learning rate would prejudice the system to strongly favor the same action
as was recently taken. A stiffness term can be added by training an incremental
joint move that favors the posture of the previous time step rather than the
move of the recent step. Neither of these are implemented, but would make in-

teresting future work.

Sutton’s temporal difference method applies such temporal constraints,
but requires back-propagation of errors through an analyticall model. There is a
variation on the temporal difference method I call nth order temporal looka-
head, that may be useful to parameterize systems capable of performing back-
track search in a reflexive manner. Ideas concerning this as future work are

discussed in section A.1.1.2.

1 A muliilayer percepiron is an "analytical” model of sorts, though nat directly a model of the plant.
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4.8 Experimental Results

This section describes the method of selection of the system gross parame-
terization, discusses the error metric formulas, and makes conclusions about the
adequacy of the ARTISTS system with respect to robustness from a number of

different vantage points

4.8.1 Selection of Adequate Parameters

This section discusses how the gross system parameterization (i.e. settings
for generalization and quantization) were evaluated to find nearly optimal para-

meterizations.

4.8.1.1 Definition of Gross Parameterization. A system parame-

terization includes all possible parameters that characterize the physical system
and the problem it solves. Among these for an articulator are number of joints,
linkage lengths, and even the adaptive values in the neural networks, which are
viewed as fine grained variable parameterizations. Much of this dissertation
talks about a spatially distributed parameterization stored in the latter. In order
for the networks to provide a reliable mapping, the network’s gross parameteri-
zation must be appropriate. This pérameterization is defined as an ordered
quadruple, P = (C, A 9, M), where C = generalization, q, = quantization of
the hand space target direction vector part of the input vector, q; = quantization
of the joint components of the input vector, and M = the physical memory size,
in vectors. It seemed highly appropriate to have different values of q,, and q g
but probably unnecessary to distinguish the individual joints’ quantizations one
from the other. The directed search used to find an adequate parameterization
involved about 250 experimental setups. Varying quantization on a joint by joint

basis would have had an exponential effect on that search.
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4.8.1.2 Memory Size. The physical memory size is clearly an important
system parameter. Large memories of > 20,000 vectors seemed to always be
adequate. Small ones of < 5,000 vectors usually gave poorer results, but it is im-
portant to pick a minimal adequate memory size based on the problem, so data
has been collected over a wide range of memory sizes. A consideration of innate

noise that is related to memory size is discussed in section 4.8.7.

4.8.2 The Error Metrics

During execution of trajectory formation for an 8 target, repetitive trajec-
tory ensemble for a 3 joint redundant arm, several error metrics were tracked.
These data were written out to files during trajectory formation, at the end of

each path segment. The experiments all ran for 1000 path segments.

Each metric was computed as a root mean square or absolute summed
value as appropriate, and scaled by dividing by the path segment length, so that
the error function became a density function over the trajectory. Each was also
scaled and offset so the error functions could be plotted afterwards on a CRT for
visual evaluation. A comprehensive visual review of all the data allowed several
settings to immediately be disqualified. Beyond that, the visual inspection

method became too ambiguous, so a batch evaluation method was devised.

The data were then all assumed to eventually reach steady state. Under
the steady state assumption, each error metric, for each experiment, had its

mean and variance computed over the last 100 path segments.

All trials that resulted in a non-zero heuristic step density after the first
100 epochs were disqualified. The means and variances were entered into a

spreadsheet, so that all 250 experiments could be evaluated. The importance of
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each error metric was weighted and the means and variances of the error met-
rics were sorted in turn for each metric. The top 11 experiments for each ranking
were selected and the conjunction of the top ranked sets were subjected to a
weighted sum test to determine a best parameterization for all the experiments.

Details of the rankings are discussed in section 4.8.4.1.

From this final list emerged 4 candidate parameterizations, P1 =

(32,4,8,M), P2 = (32,8,8,M), P3 = (64,4,4,M) and P4 = (64,4,8,M). Next, a se-
quence of experiments was run in which the means and variances for each Pi
was determined for a wide range of M. The plots in figures 4.8, 4.9, 4.10, and
4.11, plot several important metrics, and the important point to note is that in
general the system is robust with respect to physical memory size, with poorer
performance for smaller memory size, and better for large. However, for reason-
able memory sizes > 10,000 vectors there is virtually no difference in the per-

formance metrics for a good parameterization (like P o for instance).

Figures 4.8 and 4.11 seem to be problematic, though. In these figures
there is a curious dependence on memory size. An increase in physical memory
size should in all cases make the average error metrics go down. But these para-
meterizations did hot conform strictly to that rule. Section 4.8.9 will discuss in

detail an explanation of this phenocmenon.

Below are detailed definitions of the error metrics used to evaluate the

adequacy of gross system parameterizations.

4.8.2.1 Postural Error Densgity. This metric computes the summed

difference between the posture at each step and what is desired. In other words
the RMS sum of the postural constraint objective functions. The factor of 1/10

compensates for the 1/100° scaling of the input mapping.
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4.8.2.2 Joint Effort Density. This metric measures the RMS value of
the total joint angle increment at each step.
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Using the law of cosines, the instantaneous
hand error can be computed as follows:

hand
2 2 2
8 =cos' u_c__f_) h = s.sin®,
2 s8¢

and all these quantities are readily available as a side effect of the
exccution of the simulation.

Figure 4.12 Computing Hand Error
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4.8.2.3 Hand Effort Density. In this metric, the law of cosines is ap-
plied to the desired and actual hand move vector at each step. The perpendicu-

lar displacement of the hand from the desired rectilinear path at each step is
summed. Straight summing is sufficient here because this value, A, is always
positive. This is a measure of the curvature of the trajectory. Figure 4.12 de-
scribes the derivation of hand effort and the instantaneous hand error, hi which
is the perpendicular deviation of the actual hand move from the desired hand to

target vector.

4.8.2.4 Step Size Density. The steps in work space were intended to be
of unit length. The actual length was computed and its RMS sum was stored.

This value is computed as in equation 4.11.

Cop ™ (# of steps) + pathlength (4.11)

This value should be nominally 1.00, though in practice it had a value of
slightly more, and it did not turn out to be a reliable measure of performance,
because it measured just what the heuristic step generator dictated and an
automatic gain control mechanism was built in which scaled every step to
within some tolerance of 1.00. This measure then was always consistent and
seemed to be more or less independent of the goodness of fit of the trajectory to

the trajectory formation goals.

4.8.2.5 Heuristic Step Density. The total number heuristic steps were
counted on each path and the count was divided by the path length. This metric

should go to zero in the steady state, and did so for all successful experiments.

4.8.2.6 Generalization Slew Rate Density. This is a difficult metric

to describe. It is a measure of how much overlap there is between the receptive
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fields of adjacent trajectory steps. If the slew rate is 0%, it means that receptive
field is the same for this step as for the last. If the slew rate is 100%, the two
steps have exactly disjoint receptive fields. Slew rates of > 100% indicates that
the receptive fields are even farther apart in the state space. Equation 4.12 de-
scribes this quantity, with vij being the ith component of the scaled integer input
vector for the jth step in the t.rajectory. q; is the it component of the quantiza-
tion array; larger values of q; denote coarser codon representation.
n+? S
o - P L2

X100 4.12)

=V
i i
Japak q‘_

C

i=}]

4.8.2.7 Memory Saturation, This metric is simply the cumulative
memory usage of the CMAC. The measure is provided by the UNH_CMAC soft-
ware. The value returned is the count of the non-zero-valued memory vectors in
the physical memory allocated to a particular CMAC. This gives an approximate
measure, U, of the number of the physical memory vectors actually used. A dis-

cussion of the inaccuracy of this metric is in section 4.8.10.2.

The value u = U/M is the degree of saturation of the CMAC, and it has
been determined by our cumulative results in the Robotics Lab that when u is
small, CMAC function approximation is good. When u > U, o for

u_ oo = (0.2 or 0.3., performance suffers. This subject is discussed at greater

length in section 4.8.8.

4.8.3 Discussion of the Gross Parameterization Results

Appendix E, page 210, contains plots of selected experimental results. Fig-

ure E.O contains plots of all the important error metrics for a single experiment,
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with parameterization P = (64,4,8,20000). In figure E.O there is a set of plots for
an experiment with the same parameterization but with each path segment re-
peated 5 times before the next path segment is executed. The effect of this is
that it spreads the plots out left to right to show the near periodicity of certain

error metrics more clearly.

The original reason, however, that I contrived experiments of the latter
type was that I reasoned: if a path segment could be executed over and over
" again before a new path segment was tried, the result would be less postural
drift and a faster learning of the overall trajectory. As is discussed in section
4.8.9, this turned out not to always be true, but by the time I had realized this,
the selection of a "best" parameterization was completed. Re-running all those
experiments with non-repeating path segments was deemed not worth the ef-

fort.

The multi-trace plots of Appendix E show clearly the rapid convergence of
the error metrics upon which were based the selection of gross system parame-
terization. Some selections of memory size, generalization parameter and quan-

tization were much better than others at finding a solution rapidly and reliably.

Approximately 250 experiments were crafted as described in section 4.8.2.
_After the data was collected in a series of files (one set for each experiment)
these files were analyzed based on a steady state assumption for the last 100

path segments, and the following set of observations were made:
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4.8.4 Details of the Ranking of Parameterizations
4.8.4.1 The First Order Ranking, 8 separate rankings of the means

and variances of all the 250 experiments were made using the sort records fea-
ture of the Quattro-Pro spreadsheet program. Each ranking was based on a dif-

ferent error metric.

4.8.4.2 Gross Eliminations Based on Heuristic "Need'. Any para-

meterization whose experiment had non-zero heuristic step density during the
terminal or "steady state" phase of the experiment was disqualified. This re-
moved 7 experiments from the list. Of the remaining experiments, the topmost
11 experiments were selected, in each of the 8 rankings.

4.8.4.3 Strong Correlations Among the Metrics. It was noted that
hand effort, joint effort, memory usage (and percentage memory usage) and pos-
tural error were strongly correlated. The same set of experiments tended to be

the best experiments in each ranking, as they were ranked, metric by metric.

4.8.5 Subjective Weightings

The following reasons were used for setting the weights attached to the
ranks in each of the 8 lists as relatively high, low or unimportant. The weight

was a number between 1 and 10.

4.8.5.1 Step Size. Step size density was given a low weight of 1 because

it appeared to be only weakly correlated to success.

4.8.5.2 Percentage of Memory Used, Memory saturation was an am-
biguous measure of success, because, by using large physical memory (even
when it was not necessary to do so), this quantity could look good even when

other measures were mediocre or terrible.

114



4.8.5.3 Number of Memory Vectors, This metric was more reliable,

because since all setups performed the same task, one might reasonably expect

similar memory usage as an absolute vector count.

For instance, consider a setup not coarse coded enough, like Pu =
(32,2,2,20000). 19817 vectors were used, as compared to 1500 to 2000 vectors for
the best performers, and its performance was, as expected, bad. On the other
hand, Po = (32,16,16,5000) resulted in only 699 vectors being used, but that
setup had twice the mean and variance of the best hand effort and postural er-
ror statistics achieved. Po approaches (rather distantly of course) the limiting -
case of storing all the information in the same location, degenerating the CMAC
into a simple integral controller, which by itself we would not expect to do a good
job at this task.

Though much can be inferred by vector count, its ambiguity gave me cause
to give it a low importance, but one higher than either percentage memory

saturation or step size density.

4.8.5.4 Generalization Slew Rate. The assumption that Po "over-gen-
eralized" is confirmed in that case by the fact that the generalization slew rate

for that experiment was the minimum value of all the experiments.

At the other extreme, when the quantization is too small, under-generali-
zation occurs. Pu, for instance, showed a generalization slew rate of >50026,
and performed worse than table lookup. This setup did not have a sufficiently
large memory space to learn at all. With table lookup, learning should occur, al-
beit slowly. With 99.1% memory saturation, however, this setup was clearly dis-

tracted from accomplishing learning by an excess of hashing collisions. In fact,
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as is discussed in section 4.8.8, we might reascnably conclude that such a sys-
tem would approach an expected value of hashing collisions that is 90% or more
of its receptive field size every time it maps an input, because the large generali-
zation slew rate indicates a considerable reduction in the correlation between

adjacent lookups along the trajectory.

Although generalization slew rate is important, neither a least nor a maxi-
mal value infers a particularly good parameterization, so slew rate was not in-
cluded as a ranking metric; rather, all experiments with generalization slew
rates > 30% were eliminated. Appendix C contains some analysis to validate
that the observed slew rate of < 20% for the best parameterizations is a reason-
able and necessary result. This result is important for the conclusion in section
6.2, concerning the view of ARTFORMS as an extension of traditional lineariza-

tion methods.

4.8.5.5 Joint Effort. Joint effort was given a relatively low weight, be-
cause, as has already been mentioned, it did not correlate well with success. It
can be observed in figure E.Q, that joint effort is more or less a periodic function
that develops early and independently of the other metrics. The reason for this
is that joint effort is dictated by the heuristics generator. It always postulates
displacements selected with the goal of unit length hand moves. Thus, when the
arm is extended, the joint effort is small, and when the arm is tightly enfolded,
the joint effort is large, all based on the moment arm of the articulator. This ex-
tension and retraction rhythm is clearly visible in the plot. We must also keep in
mind that the AGC mechanism (see section 3.2.4.1) that scales all attempted
lmoves to generate unit length hand moves is a tight loop feedback mechanism

that ensures joint effort will be a medioare measure of performance relative to
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learning. So joint effort is given a rather small weight, similar to the weight as-

signed to memory vector count.

4.8.5.6 Hand Effort and Postural Error, These two metrics were
given the highest weights, because they represent direct measures of what the

direct inverse training step and the postural constraint training step are actu-
ally learning. As is argued in section 4.4, the latter error measure ultimately
measures the stability of the system’s storage and retrieval capabilities when

the problem is redundant.

4.8.6 The Final Conclusion of the Rankings

The net result of these ranking tests was that no matter what values of
the weights I assigned, within the general guidelines of the last 6 subsections,
the following parameterizations always won: P1 = (324,8,M), P2 = (32,8,8,M),
P, = (64,44,M) and P, =(64,4,8M).

4.8.7 Innate Robustness in the Presence of Noise

Figures 4.8 through 4.10 clearly show that there is a robustness in this
methodology that, subject to the caveats in section 4.8.9, can be seen as a func-
tion of memory size. For any reasonable parameterization (especially P4) the
only poor performance this methodology shows is selection of a too small mem-
ory space, and that once a threshold memory size is achieved, the error metrics
remain quite robustly low for all memory sizes. There is an inherent principle

hidden in these results that I will try to articulate.

Jordan ['88] showed that his forward modeling method was robust in the
presence of noise by injecting random noise in the forward model after trajectory

formation had converged. The result was that it still performed (though with no-
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ticeable degradation of performance especially relative to posture). Contrarily, in
my methodology, | contend that there is an innate and quantifiable level of noise
that can be observed directly as texture in simpler CMAC mappings like figure
3.5 on page 69. This noise level is of course related to hashing collisions; it is
quantifiable using the methods of Appendix B, and it is inherent and unavoid-
able. The fact that from an external observation the performance of most well
parameterized experiments with memory sizes above 5000 vectors were virtu-
ally indistinguishable one from the other shows that this methodology is quite
immune to this inherent noise. Only when the noise is turned up to very high
levels does the mapping suffer as in the far left hand side of the plots of figures
4.8 through 4.10. In an investigation of the nature of the heuristic and training
critics, I further disturbed the system by injecting noise into the internal model
of the plant used as a predictor (not as a control effort source) and it showed

graceful degradation in the face of that noise,too. (See section 4.8.12.)

4.8.8 A Linear Upper Bound on Hashing Collision Damage

To a limited extent, the probabilities of hashing collisions given prior train-
ing, i.e. how badly hashing collisions are likely to disturb old data by the intro-
duction of new data, can be analyzed. Simple analytical methods are developed
in Appendix B. In that Appendix, I show that in fact the expected value of the
number of constituent points in a receptive field that point to already prior used
data is strictly a function of memory saturation. The surprising result is that the

function is linear. A proof by construction therein shows that this value

C
Eu,C) = ): (l-u)c'" -[S]-u"n,
n=1
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is really just Ec(u , O) = uC. This represents a very loose, worst case situation

for random input sequences. Experimental results in this study of course
represent highly correlated sequences of data, and so of the "collisions" incurred
by adjacent mappings along a trajectory, most are intentional. In fact, for P4
with its maximum generalization slew rate falling in the range of < 109, then
90% or more of those collisions are probably intentional, due to the large overlap
of adjacent receptive fields. This signifies that the upper bound, wC, is
extremely loose, and the actual useful memory capacity may be profoundly
large. Section 4.8.11.1 indicates that 44,000 vectors under the P4
parameterization is more than sufficient for virtually any set of trajectories

definable for a planar arm of up to 6 joints.

4.8.9 A Surprising Dependence on Physical Memory Size

In section 4.8.2 I mentioned some interesting points concerning the plots of
figure 4.8. The observation that it was possible to see a significant, measurable
degradation of performance in a system by increasing memory size was some-
what disturbing. A new series of experiments was devised, in which the gross
parameterization was P = (32,4,8,M), for M ranging over all integer values over
the range (23990,... 24010). The results of the experiments indicate a possible
dependence of performance metrics on memory size that had far smaller granu-

larity than was expected (granularity = 1 vector out of 24,000).

The observed performance disturbance was of low magnitude, but it
points out a possible source of significant error for systems that are trying to be
very frugal with respect to physical memory allocation. Once the phenomenon

was observed, | started probing that experiment to see if I could isolate the
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cause of the measurably different trajectories. It turned out that the perform-

ance problem was easily observed in this experiment.

Figures 4.13 and 4.14 show the behavior that gave rise to this error. All ex-
periments in the series were subject to equiangular joint constraints. But, in -
moving from target 7 to 8, joints 2 and 3 showed noticeable constraint violation.
The error corrected itself in going from target 8 to 1. Along the paths from target
3 to target 4 and 4 to 5, another minor but noticeable postural switching oc-

curred.

This error appears to contradict our ideas of CMAC memory capacity until
we realize that hashing collision error predictions are based on expected values.
So over vast numbers of training instances the effect of hashing collisions should
be very small if u is small, Consider that we have an actual instantiation of a
CMAC trained with the information of this experiment. There are hashing colli-
sions. When the input mapping algorithm executes, it generates target ad-
dresses in the physical memory space by randomizing each of the n+2
coordinates of the input vector using a fixed randomizing lookup table. The n+2
coordinates are then added together to generate a virtual address. Now that vir-
tual address, AU is limited via a modulus operation A’U = Au modulo memory

size.

The effect of the modulus operation is that it "folds" the virtual memory

space back on itself however many times the virtual memory space is divisible

S
v
by memsize. This folding operation defines m partitions, where m = Lme m sizeJ .

Now any hashing collisions that exist in the mapping are fixed and act like im-
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Figure 4.13: Anomalous Behavior for Memory Size
of 24,002 Vectors
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Figure 4.14: Anomalous Behavior for Memory Size
of 24,002 Vectors
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pulse functions in the state space. If one or more hashing collisions occur at a
point exactly k2 codon units up from a fold caused by the modulus, but in differ-
ent partitions of the virtual memory space, they will potentiate one another’s ef-
fect. If the value of memsize is changed by one vector, that potentiation will
disappear, because those hashing collisions will no longer be coincident in the

physical memory.

The error seen in one of the "bad" experiments, e.g. memory size=24002,
" corresponding to the plots of figure 4.15 decreases significantly for the following

actions:

« move targets 7 or 4 even by a small amount (figures 4.17 and
4.18),

+ change the number of memory vectors by +/- 1 vector (figures
4.15 through 4.18) or

« change from chained trajectories with repeated path segments
to ones without path segment repeating (figures 4.16 and
4.18).

The first of these action serves to move the trajectory away from a state re-
gion damaged by hashing collisions. The second action causes these hashing col-
lisions to no longer be coincident in thé physical memory space. The third action
points out that the repeated path segment strategy is not as helpful as originally
assumed (see section 4.8.3) because it reduces the migration of training data
from one path segment the next one via the generalization overlap at the target.
This generalization overlap only gets exercised every Sth pass, and so the two
neighborihg path segments are much more likely to develop different solutions if

perturbed by a hashing collision near the target point. Interestingly, the pos-
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tural difference between these two path segments does converge out after about

3000 epochs.

4.8.9.1 Non-uniform Distribution of Hashing Collisions for High
Dimensional Systems. The previous discussion led to an in-

depth consideration of the distribution of hashing collisions in the physical
memory. In higher dimensional systems (e.g. 12 or more dimensions) the as-
sumed uniform distribution of hashing collisions becomes gaussian over the vir-
tual address space due to the summation of many samples from uniform
distributions, one for each coordinate of the input vector. This consequence of
the central limit theorem changes the hashing collision expectations discussed

in Appendix B.

This indicates that the amelioration derived from increasing physical

memory size is not a uniform effect. The expected number of hashing collisions
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Figure 4.19: Gaussian Distribution of Hashing
Collisions
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that occur as memory size increases goes down, but as the memory size ap-
proaches its theoretical maximum, the fraction of these collisions that are "mul-
tiple collision" sites (and thus more damaging) goes up as the distribution
becomes gaussian, because in the gaussian case, some weights are more likely to
be collision sites than others. This may in part explain why, in the previous sec-
tion, we found that some physical memory sizes are better than others, even if
they are larger. This observation may have implications that deserve further

study.

Figure 4.19 is an illustrative example only; it is not directly related to the
system under study. It resulted from constructing 12 uniform random sample
sets from the interval (0,1) and summing them together generating a sample set

ranging over (0,12.00). The plot is a 120 bin histogram of the resultant data.

4.8.10 Memory Capacity

Here the ultimate capacity of a CMAC is discussed for trajectory storage

problems. The notions of data age and bitmapping will be discussed.

4.8.10.1 Aging of Training Data. As trajectory data becomes "stale",
i.e. its existence in the CMAC is the result only of training that occurred long

ago, without recent reinforcement, it may be that it is there only because it was
the result of sweeping out state space regions during convergence of early train-
ing, which regions did not become part of the converged solutions, or it may be

that it is there to describe how to do things the robot does not do anymore.

In either of these cases, the hashing damage this stale data imposes on
more recently trained data becomes innocuous, because it can be trained over

with more recent data and its deleterious effect on the system will go away.
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In a series of experiments, 3, 4 and 6 jointed arms were trained to repeat a
sequence of trajectories with 8 targets. After convergence of each, a set of
chained trajectory moves was recorded to a disk file, so the disk file only con-
tained accurate, relevant arm moves. The CMAC was erased and training was
resumed using the recorded file to provide the sequence of moves for training.
After the recorded file moves were learned, the arm was allowed to train nor-
mally on the whole target set until ultimate convergence (4 or 5 passes). The
memory saturation was then re-computed. In all trials it was noted that the

memory saturation level went down. The decrease was sometimes as high as

Arm Length Memory Size Original Memory Memory use Percent
Usage invectors after retraining memory Use
Reduction
3 joints 20K vectors 1501 973 35
1013 33
1076 28
1028 32
4 joints 20K vectors 1400 1149 18
908 35
6 joints 30K vectors 2840 2698 5
1371 50
1600 44

Table 4.1: Memory Use Reduced By "Playback" Training
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50%. (See Table 4.1.) This indicates that of the state space swept out by the sys-
tem during trajectory convergence, about 30% to 50% of the state space used
was used only during the irrelevant moves encountered in the search involved in
early training, and the vectors associated with that phase of training eventually
became "stale" and ultimately available for new training instances. The total
number of vectors used in initial training in column 3 of table 4.1 is fixed for
each arm configuration because the initial training, given the parameters of the
experimental setup, is deterministic. The re-training session is not, because
there is no way of determining what the "best" training set to record and later
play back for training purposes might be. Some of the training sequences
learned via this “record and playback mode" were more goal directed than oth-
ers. The ones that showed the least memory usage after convergence were stable
(i.e., they repeated reliably for the same the target set) and so we would expect
that these minimal memory usage statistics are sufficient for the problem.
These same statistics would be more reliably reflected by a different method of

computing memory usage, namely bitmapping.

4.8.10.2 Bitmapping. In UNH_CMAC, the level of saturation of a
CMAC is computed by simply counting the number of non-zero memory loca-
tions in the physical memory. This measure is an approximation of how satu-
rated the CMAC is. It fails to account for actual O valued vectors; this is a minor
effect because zero length move components are infrequent. More importantly,
this method treats all "usage" of the memory as equal, even though stale data is
irrelevant. An extension of the current UNH_CMAC software should include a
bitmapping capability. This would allow each physical memory location to have
lan associated bit in a bit map. Every time a location is accessed, its bit is set.

The bitmap can then be cleared and the system allowed to exercise through a
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comprehensive set of moves, during which time the bitmap could accumulate
new data. Now memory usage can be computed accurately by counting the ones

in the bit map. This method would ignore "stale" data.

4.8.11 Repetitive and Non-Repetitive Trajectories

In this section, I describe the results of experiments for trajectory ensem-
bles that are non-repetitive. In this series of experiments, 40 targets were used
and the system randomly disturbed each target when it became the active one,
resulting in coverage of the workspace more or less uniformly for over 3000 ep-

ochs. The result was highly encouraging. Memory usage seemed to level off

Figure 4.20: Non-repetitive Trajectories Experiment
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asymtotically, with little recurrence of heuristic or training critic failures, which

is in keeping with the prior observations about large memory capacity.

In addition to the postural animation of figure 4.20, a plot of the memory
use and error metrics for the 3000+ epoch long non-repetitive experiment can be

seen in figures E.3 through E.5 on pages 214 through 216.

4.8.11.1 Conclusions for Non-Repetitive Traiectories. It seems that
ARTISTS with constraint satisfaction is extremely robust to new information.

After learning a rather sketchy set of trajectories, it continued to execute trajec-
tories that were novel (because the targets were randomly moving throughout
the trials) that filled up the workspace quite thoroughly. Once early training
was completed, the critics reported nearly zero errors. This is encouraging. It
should also be noted that no attempt to re-tune the parameterization for a 6

jointed arm was attempted, other than doubling the generalization parameter.

The fact that the critics found no failures in most of the path segments of
these experiments indicates that generalization in the connectionist’s sense (i.e.
being able to handle novel situations based on prior ones that are similar) was
broadly achieved. Some insight into the novel trajectories result can be seen in
figure D.8, on page 205. In that figure, little qualitative difference can be seen
between the control surface for this novel trajectory and the ones in the other
figures of that appendix. Keep in mind that the receptive field for parameteriza-
tion P=(64,4,8,20000) can span as much as +/- 25° of joint angle around the oper-
ating point, if only one joint moves. Because quantization = 8, simulation
resolution is 0.1°, and generalization = 64, so 8x0.1x 64 = 51.2°, This means that
some influence of training is possible over a range of +/-561.2+2 = +/.25.6°
around the operating point as a result of training at that point, though the ef-
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fect is diminished at the receptive field extrema due to the linear tapered profile
of the receptive field. A full discussion of these issues can be found in An [91)}.

4.8.12 Results For Inaccurate Critics

In section 3.2.3, I talked about the critics used in ARTISTS. It should be
noted that without the critics, goal directedness falls apart and the redundant
system can not learn. The so-called training critic acts as a safety net to prevent
inappropriate mappings from hashing collisions in later training from being ac-

cepted as valid moves,

In most of the experiments I used the analytical model of the plant as the
source of information for both critics. It may be argued that this is not fair. In
fact a system able to successfully guess the effect of a move before trying it
should be more robust. In an effort to probe this possibility, I devised a series of
3 joint arm experiments using the parameterization, P=(64,4,8,20000). For each
experiment, | added zero mean white noise to the numerical quantity that both
critics used for evaluation. Recall that the critics test a new move to see that it
generates a hand move whose corientation is within ( cpgo-tpo) of the desired rec-
tilinear hand space move. ((p90~cp0) is measured in cosine units. See section
2.4.3. The dot product of the test move and the desired move must be within the
range cos(@y) to cos(cpgo). ‘The white noise was crafted in each of 6 1000 path
segment experiments to have o= 1,5, 7, 10, 156 and 20% of (qago—cpo). For 20%
variance noise, the systems proceeded to ask for heuristic help throughout all
the experiments. For less, the system’s performance over the range of variances
was little affected. This indicates a significant degree of robustness in the critic
mechanism, so we may find that the system could tolerate a crude forward

model, perhaps containing an adaptive forward model estimator. The installa-
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tion of this new critic mechanism would reduce reliance on the reversible plant
requirement discussed in section 3.2.3.1. See section 6.3 for details of the pro-

posed future work in this area.

4.8.13 Results For Many-jointed Articulators

Many tests were run for planar arms with 3, 4, 6 and 9 links. The results

were all more or less equally successful. In this section I will discuss the trajec-

initial
posture

This sequence of postures results from 150
segments of training of a 9 jointed arm. This
means each target to target trajectory was
executed 18 times.

Figure 4.21: Target Postures for a 9 Jointed Arm
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3£ initial hand position

Figure 4.22: The "Uncurling" of a 6 Jointed Arm
tory formations represented by the postural sequence drawings generated in the

simulations for 6 and 9 jointed arms.

Figure 4.21 shows the target postures from an experiment in which the in-
itial posture was quite dissimilar from the postural constraint requirements, yet
in the first pass, the curvate constraint was achieved, and after 18 passes
around the targets, the trajectories showed little or no variation from pass to
pass. Figures 4.22 and 4.23 show remarkable and quite robust instances of
training 6 and 9 jointed arms (respectively), using equi-angle joint constraints
(and joint ratcheting during early training). It is remarkable that the postural
constraint mechanism allows the articulator to so successfully "uncurl”. Figure
4.23 shows a trajectory that was trained only 5 times. It was one path segment

out of an 8 target chained trajectory experiment like the ones in the exhaustive
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This trajectory of a highly
curvate arm was only
practiced 5 times!

Figure 4.23: The "Uncurling" of a 9 Jointed Arm
3 jointed arm trajectory experiments used to establish appropriate generaliza-

tion and quantization.

No attempt was made to fine tune the gross parameterization for 4.23.
P=(128,4,8,44) was selected, simply because it seemed that more generalization
was required due to the existence of more joints and thus more input coordi-

nates.

4.8.13.1 Conclusions Abou joint ] ials. This
series of experiments was a success. The many jointed articulators learned tra-

jectories in a remarkably short time, and had robust performance that continued
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to improve over time. Joint stop ratcheting was used in most cases, simply be-
cause it reduced memory usage, by cutting down on "stale" data from early
training. During early training without ratcheting, the system swept out consid-
erably more state space, but in only a relatively few cases did postural switching
occur, resulting in unrecoverable postures. (Postural switching is discussed in

section 1.3.1.1 and 4.4.1.1).

4.9 A Stability Argument

A rigorous Lyapunov stability proof for the convergence of trajectory for-
mation for the ARTISTS/ARTFORMS system would be useful. This would prove
that for any trajectory formed, if the same initial condition and target were pre-
sented, then a trajectory very similar to the original would be guaranteed to

emerge.

To accomplish this proof, first it would be necessary to neglect hashing col-
lision noise, and then to find a Lyapunov function that emerges from the mathe-
matical definition of the system; the complexities of the CMAC make this
difficult. Then we would need to show that this quantity decreases over time as
an effect of the execution of the set of equations defining the system. Next, the
hashing induced noise must be shown to have a tightly bounded effect on the
system, so that the effects of hashing collisions could be reintroduced without
destroying the ultimate guarantee of convergence that the proof provides. Such
a proof is not within the scope of this work. In fact, for the general case, it may
not even be possible. The simple fact that the ARTFORMS critics impose a strict
reduction of hand to target distance is a critical starting point for a more infor-

mal argument, however.
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4.9.1 A Lyapunou "Condition"

A Lyapunov condition is imposed upon the system, rather than shown to
emerge from the system equations. The Lyapunov condition, enforced by the
heuristic and training critics says that no move will be allowed that violates the

condition that the move must decrease the Lyapunov function,

L{dx,5y) = ¥ (8x)2+(6y)2, where dx and &y are the two coordinates of the hand to

target distance. It would be nice if some aspect of the system training guaran-
teed convergence of this quantity, but that is not the case. In fact, a counter-ex-
ample for the general case is easily constructed. Consider the articulator in
figure 4.24. Joint stops of 90° prevent the target shown in the figure from being
reached. Other obstacle or configu-
rational conditions might prevail

that could prevent movement to-

wards the target, but which could
be circumvented by back-tracking
and trying a different approach.
Such spurious local and global

minimum problems we will term

"non-convex obstacle situations"

d wi icitl '
Figure 4.24: A Counter-example for the and will explicitly assume can'

Lyapunov Proof happen.

That having been said, we now know that reaching the target is possible

from any initial condition. If that is so, then if we try enough attempts from any
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given position, we will ultimately find a move that reduces the distance remain-
ing. Such a move will be acted upon and used as a training exemplar, others will
be rejected. This disallows any increase of the Lyapunov function (by fiat), and
since a move that decreases it can always be found, we have therefore assured

that the Lyapunov function always decreases.

Thus we now have that the hand will absolutely converge on the target or
get stuck somewhere in the attempt, which case is omitted by the exclusion of

non-convex obstacle situations assumed above.

If the system were non-redundant, this should finish it, since the hand po-
sition is a single valued functional encoding of the joints, and the joints are a fi-
nitely valued relational encoding of the hand position. Local generalization
favors convergence to single valued encodings of the inverse relation except
where the joints are near 180 degrees, in which case alternate solutions are
closer together in state space. The sets of alternate solutions allowed by the
trigonometric functions (being odd or even periodic functions) are distant one
from another in the state space, and thus the system is not subject to postural
switching due to non-linear averaging provided that joints are not allowed to be
near 180 degrees, in which case alternate solutions are closer together in state
space. Empirical evidence shows that for low order arms (three or four joints)
this postural switching problem hasn’t been a problem for ARTFORMS, so we
will also neglect the postural switching effect and assume that for the non-re-
dundant case, the hand position is a single-valued functional encoding of the

joints.

But ARTFORMS deals with redundant problems, so the constraint equa-

tions must enter the argument. The constraint equations are linear, so their
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least squares expression is quadratic. Thus, as long as the convergence step size
is small enough to prevent limit cycling, divergence or chaos, an absolute error
minimum in the joint space will be reached by gradient descent. Once that hap-
pens, the system model degenerates into a non-redundant one. In other words,
the system approaches non-redundancy at the rate the postural error gradient

descends.

4.9.1.1 A Lyapunov "Argument” and Outline for a Proof.

The problem remains that the joint space postural convergence can disturb
the the progress of the hand towards the target, because the constraint equa-
tions are independent of the Lyapunov function. At least four arguments can put
this objection to rest. None of these will be argued formally, so the strict
Lyapunov proof is still left incomplete. Two of the four require a change in the
system. The fourth requires considerable computational consideration, but is
promising. The third is a compelling approach and would probably be the best

course to persue.

First, heuristic critics could evaluate postural training, and apply a
Lyapunov condition to postural training, but that would require a change in the

system.

Second, we could show that the hand convergence is robust in the presence

of disturbances.

Third, since the postural constraint error will go to a global minimum, it is
a decreasing function (though not necessarily monotonic) of time. The distur-

bance such a function can impose on the target convergence is a decreasing
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quantity. It should then be possible to bound that disturbance by a decreasing

"envelope" around the trajectory.

Fourth, the effect that the postural error adjustment imposes on the target
convergence is a non-linear function of joint angle changes, so an error term can
be constructed that is the sum of the Euclidean hand to target distance and the
postural error correction term. Since this is an analytical expression, it may be
possible to show that, given the old Lyapunov constraint imposed by the heuris-
tic and training critics, that this is an absolutely convergent function. Failing
that, this error term could simply become the function for a new Lyapunov "con-

dition" and we would then fall back on the first approach.

There is one final point concerning the Lyapunov stability of ARTFORMS
trajectory formation deserving of comment. The input to the system contains a
random activation component because random steps are used to search for good
moves. Training persists indefinitely, so even if the random component of the
heuristic suggestions ceases, random activation remains as a side effect of the
hashing collisions in the CMACs, and persistent training will cause that random
activation to persist indefinitely. This means that this system can be said to
have input with persistent excitation. From a system identification standpoint
this is desirable, because it means that the system is not limited to the identifi-
cation of a system of finite order. Some system designers, in an effort to assure
Lyapunov stability of their systems, artificially inject low-level noise just to pro-
vide that excitation. Other designers go to great lengths to develop systems that
are robust in the Lyapunov sense without persistent excitation, (Lozano-Leal
[89D. This innate persistent excitation in ARTFORMS favors the long term
Lyapunov stability of trajectory formation by ARTFORMS.
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In the absence of a rigorous stability proof, the evidence of stability is that

given a sufficient gross parameterization of the CMAC:

» With only sufficient degrees of freedom and no heuristic critic,
the system formed consistent trajectories in all observed trials.

+ With excess degrees of freedom this breaks down, and postural
drift occurs and accumulates causing postures that either stop
trajectory formation at a local minimum or reach a condition
of nearly sufficient degrees of freedom, at which time
trajectories become stably reproducible.

» With proper constraints on the trajectories, a variably
specified condition of nearly sufficient degrees of freedom can
be imposed.

« All the above holds robustly for memory sizes that are small
enough to generate significant hashing noise, and the system
can also tolerate noise in its decision rules (the critics) that is

substantial.
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Chapter V

Obstacle Avoidance

This chapter marks the completion of ARTFORMS-2. In this chapter the
development of the idea of a spatially distributed constraint vector field or a
spatially distributed non-constant X vector is chronicled. The K vector becomes
a non-linear field representation of obstacles encoded as spatially dependent
postural constraints. The dataflow diagram of figure 5.1 is similar to the one on
page 81 but an additional module is present in the lower left corner, which can
adaptively modify the constraint vector that is used in the postural gradient de-

scent computation in the lower right corner of both these figures.

5.1 Preview

The mechanism for this constraint vector modification is embodied in the
the lower left quadrant of figure 5.1. An adaptive memory component (K-CMAC)
there models the constraint vector, K. It receives input from a unit that is sensi-
tive to the proximity of a joint to an obstacle sensed in a retinal field of view
model (R-CMAC). When such a proximity is sensed, the K-CMAC receives a sig-
nal that allows it to adjust its model of the K vector to favor a slight change in
posture, which in turn is.then passed on to the postural gradient computation
module. A detailed description of the dataflow involved in this constraint vector
modification is found in section 5.3. Before that detailed description ensues,
however, we should first try to justify that it is reasonable to expect that we can

effectively contro] the adaptation of postural constraints.
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a. The original uniformly curvate arm
for K = [L1,L1]7

b. A "pronate” posture results
from K = [1,1,1.5,1]"

¢. A “recumbent” posture results
from K = [lP'S'I'I]T

Figure 5.2: Postural Changes Due to K Vector Changes
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52 Modifving Postural Constraints

The postural constraints that are described extensively in section 4.6 sim-
ply place conditions on how the joints are linearly related in a fixed posture. So

far this postural relationship is globally applied to the system.

5.2.1 Conservation of Memory Usage

Experiments were performed in which a constant K vector was used which
defined the linear relationships between pairs of distal joints. A nominal value of
(1,1,1,...1) constrains n-1 joints to be equal. (See figure 5.2a.) The memory satu-
ration level was observed and the vector was changed to a new value, K =
(1,1,1.5,...1), defining a more "pronate" posture (figure 5.2b), and more training
accumulated. The new memory saturation was larger than before. However
when the original K vector was restored, not only did the arm rapidly resume

the old posture, but the level of memory usage remained essentially unchanged,

3 Jointed Manipulator 4 Jointed Manipulator
K Vector Memory K Vector Memory
Vectors Vectors
[1.0,1.0,1.0] 1389 (1.0,1.0,1.0,1.0] 1072
{1.0,1.0,1.2] 1494 (1.0,1.0,1.5,1.0] 1735
[1.0,1.0,1.0] 1500 (1.0,1.0,1.0,1.0] 1755
(1.0,1.2,1.0] 1608 (1.0,1.5,1.0,1.0] 2415
[1.0,1.0,1.0] 1609 {1.0,1.0,1.0,1.0] 2423

Table 5.1 Conservation of Memory Use vs. Posture
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indicating that no new state space was visited. Next, the K vector was disturbed
significantly in the opposite sense, K = (1,1,0.5,...1), to cause a deflection toward
a more recumbent posture (figure 5.2c). Again, more state space was swept out,
resulting in a significant increase in percent memory utilization, but again,
when the K resumed its original curvate value of (1,1,...1), the posture resumed
its former state quickly (within 1 path segment) and no significant additional

memory usage resulted.

This experiment was performed, with the results shown in table 5.1 for
both 3 and 4 jointed arms. The same type of experiment was performed with
many arm configurations for 3,4,6 and 9 jointed arms, by manually changing the
K vector during execution of the arm, where the K vector was deflected first one
way and then another, always returning to a prior condition, and upon return to

an old K vector, memory usage proved to be a conserved quantity.

5.2.2 The Robustness of Constraint Training

The latter results are encouraging. They contain the seeds of the rest of
the implementation. Before embarking on that story, I wish to digress and pon-

der some properties of the constraint trained data.

The postural constraint was met very quickly in every case. Usually pos-
tural error dropped to near zero values within a very few path segments. The
hand effort error metric, however, persisted in a non-zero state long afterwards.
When a new posture was dictated by a new K vector, the new posture seemed to
develop independently of the hand trajectories in spite of the fact that training
with the postural constraints disturbs the trajectory data. Furthermore, when

two postures were selected that were both previously learned, the switching
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time from one posture to the other was profoundly short, typically less than 1

path segment.

This evidence is both understandable and perplexing. It is understandable
because the postural constraint is direct and strictly goal oriented. In other
words, the postural constraint says "change the arm posture', and directly
places data in the CMAC that could potentially do this in a single step, but for
the value of A, whereas the direct inverse training requires feedback for evalu-
ation of success because it changes 8 in order to observe a change in %(9). Recall
that A is the step-size parameter or learning rate for constraint satisfaction
training. Curiocusly, however, the constraint training works in spite of its being
required to tolerate this lack of goal-directedness of the direct inverse training.
Another intriguing point is that the value of A was not a critical parameter. A =
0.05 and A = 0.5 were both robustly tolerated. The former simply resulted in a
slightly slower convergence rate in assuming the desired posture. This is at
odds with the gradient descent methods used in most non-linear systems. In fact
values of A = 1.0 were even tolerated (perhaps because the learning rate of the
underlying CMAC was set at 0.5). Only when values of A23.0 were used did

stability of trajectory formation become an issue.

The original notion (ARTFORMS-1) of obstacle avoidance was never suc-
cessfully implemented. The reason for that is that it depended too much on ser-
endipity. The old system perturbed trajectories away from the current posture
whenever an obstacle was encountered, but no appropriate guidance was pro-
vided by the system to give an alternative posture. The result was that when an
obstacle occurred, radical changes resulted, and large quantities of state were

quickly consumed. An aggravating effect during that stage of development was
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that the ideal setting for generalization and quantization were not determined

yet, and so the system was already operating at a disadvantage.

5.3 Exploiting Postures For Obstacle
Avoidance

All that is necessary for effective shallow search obstacle avoidance is now
in place. The essence of the paradigm about to be described is that obstacles will
be sensed on a 2 dimensional retina. This then causes a K vector representation
to be changed whenever an elbow enters the receptive field of an obstacle fea-
ture in the retina. This change will exploit joint pair synergies like those dis-

cussed by Hinton ['84].

Refer to the dataflow diagram of figure 5.1 for the following discussion,
principally the section labeled "obstacle avoidance" which is enclosed in dashed

lines at the lower left of the diagram.

5.3.1 The Retinal STM CMAC

A CMAC is allocated with 2 input dimensions and one output dimension.
The input is computed by the mouse cursor location in the target manager mod-
ule. Whenever the left and right mouse buttons are depressed simultaneously, a
circle with a radius approximately equal to the retinal CMAC’s receptive field
radius is drawn. That mouse cursor location, in scaled screen coordinates, is
used to excite the retinal CMAC. The retinal CMAC (R-CMAC) is then trained
with an exemplar value of 1.0 and n = 1.0, to allow the feature to be captured

rapidly, with a single training instance. The R-CMAC is a short term memory.

148



5.3.2 The Spatially Distributed K-vector

Now, whenevef the arm is drawn, each time an elbow is drawn, the elbow
coordinates are used to excite the R-CMAC. If an super-threshold value emerges
from the R-CMAC, it becomes a scaled sub-unitary gain, g, applied to a 3 ele-
ment center surround vector, [1,-1,1], that is used to adjust the current K vector,

read from the postural constraint vector CMAC (K-CMAC).

The decoder generates an n-dimensional unit vector with its jth coordinate,

ej = 1, and others e, .j” 0. This vector is then used as a mask to construct the

center surround vector, C: s In the vector c}., the j‘h element is -1, the (j* 1)

element is 1 and all others are 0. The result of computing -I-(:+1 = I_{t + g¢; on

h

the system is to cause the 7" joint to increase relative to its 2 neighbors for g>0,

and the decrease for g<0.

5.3.2.1 Practical Considerations Related to the R-CMAC. The re-
sult of the training of the K-CMAC based on readouts from the R-CMAC is the

creation of a spatially distributed K vector. There is an effective 2 dimensional
to n+2 dimensional projection of information from the R-CMAC STM to the K-
CMAC LTM.

This STM —LTM projection is an interesting feature of ARTFORMS-2 and
it deserves study in its own right. It is a method of potential applicability for the
propagation of constraints from one sub-system to another. We must realize,
however, that its presence is an accommodation to the needs of a simulation
platform. A real-world physical robot would be better served by a touch sensitive

sheath surrounding the arm which would replace the R-CMAC, and provide ob-
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stacle avoidance information in the form of directly acquired "elbow proximity”
information. The circuitry involved in this could also automatically disable all
joint actuators from the disturbed elbow back to the base. This would give the
arm some additional complimice, and based on the results in section 4.4.1.2
(page 94) ARTFORMS should automatically handle the disturbance caused by

this.

In the simulation, however, the touch sensitive sheath is very difficult to
simulate, so the arm is allowed to collide with and even drive through obstacles,
relying on the assumption that, in a physical implementation, the touch sensi-

tive circuitry just described would prevent damagel.

5.3.2.2 Interior and Exterior Obstacles. The obstacle avoidance

paradigm that is implemented here only considers "exterior" obstacles. These
are obstacles that are outside the region enclosed by the combination of the cur-
vate arm and a straight line connecting the actuator to the base. The extension
to interior obstacles should be straightforward, but will not be developed in this
dissertation, because initial attempts were inconclusive, and time constraints

led me to defer this to future work.

54 Limitations of This Method

The use of direction cosines in the input vector rather than absolute target
locations imposes some limitations on ARTFORMS-2. The hand cannot be dis-
turbed from its rectilinear path during a trajectory in order to avoid obstacles.
Only the "elbows" can migrate around. With the implementation of absolute tar-

get location that may be changed. The result could be trajectories formed like

1 So you, kind reader, should not be troubled by this obvious violation of physics in the simutation!
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Obstacle avoidance with
hand disturbance can be
achieved with ARTFORMS-2
only by higher level help.
New targets generated to
avoid the obstacle solve the
problem.

Figure 5.3 Obstacle Avoidance by Hand Disturbance
figure 5.3. See section 6.3.2 for more discussion of this possibility. The reason for
this inability to disturb the hand is that ARTISTS will always train, via the di-
rect inverse training step, nearly rectilinear paths in the hand space. With ART-
FORMS.-2, such hand disturbance would be handled by inserting new target
locations in the workspace. Such a feat would have to be handled by a higher
level in the system. Figure 5.3 shows the generation of a trajectory that avoids
an obstacle by disturbing the hand. The experiment was successful in adjusting
the most distal joint during the first iteration of the path segment to cause the
joint to miss the obstacle, but as is shown in the figure, the hand was deflected

by the (manual) insertion of several intermediate targets along the trajectory
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that were placed to avoid the obstacle. Hogan ['92] argues that just such a
mechanism goes on in human neuromuscular control in the formation of trajec-
tories, but since the trajectories he suggests are in fact bell-shaped in the work-
space, only very few intermediate points are required. If the direction cosine
encoding in ARTFORMS-2 could successfully be replaced by endpoint target in-
formation as argued above, the hand deflections could be incorporated in ART-
FORMS-2. In fact, in the experiments I performed using endpoint data rather
than direction cosines, the hand trajectories were usually bell-shaped or sig-
moid. The problem with those somewhat ambivalent results was that too much

memory use occurred during training, and the critics never went dormant.

5.5 Experimental Results

Here I will discuss the experimental results, for various arms, of 4 or more

joints.

For these experiments, the lower half of the dataflow diagram of figure 5.1
was implemented and 2 additional CMACs were allocated, one to represent the
retina and one to represent the constraint vector field. The R-CMAC and K-
CMAC both used C=64, simply because that was the setting used for the main
CMAC. | set the memory size of the R-CMAC to be half that of the others (this
seemed reasonable due to smaller dimensionality). The R-CMAC used a quanti-
zation of 1. It took screen coordinates (1 codon = 1 pixel) so it could reasonably
be viewed as a retinal model of the computer’s CRT at the resolution of the
screen. So on the screen, a receptive field was a square region with a 64 pixe! di-

agonal,

The K-CMAC has the same gross parameterization as the main CMAC,

except that its output dimension is n-1, rather than n (for n joints). The reason
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Figure 5.5 A Chained Trajectory With Obstacles
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is that the K vector need not affect the base joint since the base angle is a free

variable, and thus there is no need to allocate an unused coordinate.

See figure 5.4 and figure 5.5 for before and after results of obstacle avoid-
ance experirnents.- The results generally were that in one or two presentations of
the obstacles, these obstacles were successfully encoded in the K-CMAC. The re-
sults shown in the figure are entirely adequate, and the constraint did not seem
to propagate into regions of the input space that were not directly related to the

obstacle.

The results, in spite of the admittedly haphazard selection of a parame-
terization, were gratifying. This indicates the system is fairly insensitive to sys-

tem parameter changes, or [ was very lucky (a most unlikely occurrence!).

Some cursory experiments were tried with other numbers of joints, with
mixed results. Whenever the length of the arm links were larger than the (ap-
proximate) diameter of the receptive fields in the R-CMAC the results were
good. In cases like figure 4.21, on page 133, when the obstacle was placed near
the distal joints (nearest the hand) the results were poor. The reason for this is
that if multiple joints enter the receptive field of the R-CMAC, the (1,-1,1) pat-
terns of the center surround vectors used to adjust the K-CMAC compete and
therefore do not give good results. For these cases, in further developments of
ARTFORMS-2, a longer center surround vector with a more complex shape that
could excite multiple joints near the center and inhibit multiple ones in its pe-
riphery is needed. The number of joints to be affected would be a function of the
size of the R-CMAC receptive field and the length of the arm links. Of course, as
was discussed in section 5.3.2.1, a touch sensitive sheath and a real robot would

be even better!
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A more comprehensive probing into the robustness of the obstacle avoid-
ance layer of ARTFORMS similar to the level of investigation of the ARTISTS
trajectory formation and robustness found in Chapter 4 is beyond the scope of

this dissertation.
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CHAPTER VI

A Framework For Future Development

In the light of the results derived from the simulation described in the pre-
vious chapters, it is obvious that some improvements can be made that are
rather straightforward changes in the system. It is also important to add some
broader conclusions that are compelling and are not directly tied to the experi-

ments. These two areas are discussed in this chapter.

6.1 Direct Inverse Modeling is Widely
Applicable

Although this project was framed as a robotics problem, it embodies princi-
ples of a widely applicable methodology. There exist many applications in indus-
try, science, business and elsewhere in which processes behave in accordance
with vector space definitions and in which a sufficient (i.e., adequate, though not
necessarily optimal) setting for some parameters must be known in advance to
assure the success of the process. Typically, the forward process transform is
easy, but the solution of the matrix equations for the inverse transform (which
would allow the a priori setting of the parameterization) can not be found be-
cause of the existence of non-invertible matrices in the system equations due
either to singularities or under-determined systems. The adaptive method of
learning a representation of an inverse transform may be of wide and profound

interest to other industries and disciplines.
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6.2 Consonance With Traditional
Non-linear Approaches

One of the most powerful features of CMAC is its adjustable local generali-
zation capability. This local generalization capability allows systems like ART-
FORMS to extend the traditional methods of non-linear analysis around stable
operating points. ARTFORMS is consonant with those methods, and allows
multidimensional models to be constructed that by their very nature act linearly

around any operating point.

The "traditional" method of dealing with a non-linear plant is to develop
the differential equations of the plant, determine what are stable operating
points of the plant, and then linearize the equations and discuss the approxi-
mating properties of the resultant linear system. The assumption is then made
that the plant will never leave a state space region around a stable operating
point, and so the non-linear nature of the plant’s operation far from that operat-

ing point becomes moot.

A CMAC, like a computer memory, is a non-linear system. (See section
A.1.1.4, page 175.) The CMAC delta rule is, however, a linear operation when
viewed at the same operating point each time. Segee ['92) talked about spectral
methods of viewing the effect of CMAC training over a range of points, and used
that view to explain obsex;ved slow learning scenarios for CMACs. In his discus-
sion, he found that the Fourier transform of the profile of the receptive field
(linearly tapered in the system under discussion here) explained the slow learn-
ing phenomena, because it had spectral nulls at harmonics of 1/C. An [91] and
Carter {"90] found that slow learning occurred whenever the spatial frequency of
the exemplar function was a harmonic of 1/C. My experiments performed during

the research reported in Carter [90] indicated that whenever the spatial fre-
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quency of the function was at one of these critical frequencies, the read-out of
the CMAC representation exhibited aliasing and erratic results with rather high
amplitudes, rather than exhibiting an absence of high frequency content. Thus
the patch plots in Appendix D, by virtue of having no exhibition of higher spatial
frequency content than 1/C indicate that there probably is no such content. This
means that, since all the observed patch plots exhibited features that fell within
the extent of a single receptive field, then the learning capability of the ART-
ISTS CMAC should be undiminished throughout the system’s operating range,

as has been repeatedly observed in practice.

Taking this evidence together, | hazard to suggest, in the absence of a rig-
orous development, that this CMAC based learning system and ones like it can
reliably and stably build models of control surface representations provided that
the CMAC meets the spatial frequency constraints just discussed, and the out-
puts developed cause a generalization slew rate that is small. (See section
4.8.2.6.) If the generalization slew rate is such that a small fraction of the recep-
tive field width is traversed in stepping from one iteration to the next along a
trajectory, then we are assured that each incremental training step will linearly
affect its immediately subsequent neighboring step via the delta rule. Since we
can see by inspection of figures D.1 through D.8 that the shape of the control
surface function is very nearly linear over sub-patches that are = 10-200% of the
extent of a receptive field, this linear averaging is highly appropriate. By the
time the operating point has moved sufficiently far along the trajectory that a
distinctly non-linear relationship exists between the current "patch" and its an-
tecedent along the trajectory, a new and distinct set of weights are being used
than were used by that antecedent. So every point along the trajectory is in a
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sense operating the delta rule within a linearized region of the overall control

surface.

6.3 7 Adaptive Critics

The training critic discussed in section 3.2.4 is a fixed law module that cri-
tiques the adaptive steps, i.e. steps taken on the advice of the adaptive estimator
(the LTM CMAQC), to see if it is appropriate. The fixed law it uses is a simple
analytical model of the forward mechanics of the articulator. It would be a sig-
nificant improvement to the system under discussion here to replace this mod-
ule, as well as the heuristic critic of section 3.2.3 with adaptive critic! modules

that do not know the exact forward mechanics of the plant.

Section 4.8.12 argued that the system shows sufficient robustness to be
able to tolerate such a change in architecture, but for future work, the actual in-
stallation of one would be a significant area of study. As an aid to future re-

searchers, a suggested implementation is outlined below.

6.3.1 A Design for an Adaptive Critic

Figure 6.1 outlines a module that replaces the analytical forward model
used by the heuristic and training critics described in chapters 3 and 4. The only
difference between the heuristic and training critics in the context of figure 6.1
is that in the former case data from a heuristic source is input, and in the latter,
data from the L.TM is input to the critic. The critic consists of two CMAC:s, a for-
ward model CMAC and a confidence CMAC, implemented in paralle! data paths

1 Note that this is intended to refer to a "generic” concept of an “adaptive critic” which is distinguished from
Paul Werbas's [ "90] more restricted definition of an adaptive ctitic. Here, I am simply denoting a module
that is adaptive and whose purpose is to critique actions.

159



success failure
}

:
Cor:;rugtglﬁ . desired (5x,y) tan(y/8%)
- L oot (5%, 5Y)
R + <
n v o lokifl iy

(0%,6y) d -
i tari (ay/5%)

180°(1- o)
4 * ody,

180°
. T4
__| CONFJDENCE! o fl\ J

| GMAC X/ Ly
—_— ) . J 90, adj.
n=0. \
hand divergence

90, nom. i limit, adjusted for
nominal hand uncertainty
divergence limit

Figure 6.1: An Adaptive Critic Module
and interconnected in a fashion such that the confidence CMAC influences the

way the system interprets the output of the forward model CMAC.

Every time the robot is activated, the input to the robot is also applied to
the forward model CMAC, and the robot’s response to the input is used as the
forward model’s training exemplar. Take note that this is a single valued, non-
redundant transformation, and can thus be learned quickly and reliably by this

direct inverse method.

In the ill-fated implementation of Chapter 3, a "distributed plasticity"

CMAC was implemented for the purpose of providing a learning rate for another
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CMAC with which it was interconnected. In this case, however, the distributed
plasticity CMAC becomes a distributed confidence measure for the adaptive for-
ward model. It is a "grain of salt" generator, if you will, that tells the system (as

a function of state space location) just how reliable the forward model is.

Recall now how the heuristic criterion works. There is an "allowed cone"

angle, Py which defines by how much the hand may diverge from the desired

(85x,5y) target direction vector. If a prediction of the forward model falls outside
that cone, the step is deemed a failure. Suppose the critic is very bad. In such a
case, the critic may tell us that a move is a failure when in fact it is fine. This is
not a happy occurrence, because that move will be rejected as a training exem-
plar and if many such failures occur, learning will be very slow. If the critic tells
us that a move is a success when in fact it is bad, then we may temporarily learn
to do the wrong thing. The former case is worse than the latter because, in the
latter case, we are at least learning something and eventually, as the forward
model improves, we will more and more often learn the "right" thing. So the best
policy is to be very gullible at first, and as the critic becomes more knowledge-
able, be more and more restrictive. The method used to implement this is to ex-
pand the allowed cone to encompass any angle if the confidence CMAC reads out

a zero value (indicating a naive critic) and use the predefined Py value as the

outer limit of the allowed cone if the confidence CMAC reads out a 1.0 (indica-

tive of a near perfect forward model). So there is a new variable value of Pg0°

called P0ad” which is a linear function of o, the output of the confidence CMAC,
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and has boundary conditions of 180° and Poo- Solving for the boundary condi-

tions of

180° ifo =0
®90adj"| @y, ifo=10

gives rise to the equation

P0ad; ™ 180°-¢-180° + ¢ Pgo

which is the dataflow module in the lower right hand part of figure 6.1. This
adjusted angle is compared to the difference between the outputs of the target
computation (the desired direction) and the critic, in order to generate a success

or failure signal.

Early in the training session, the critics will make lots of mistakes and this
will obfuscate things, but in fairly short order these mistakes will decrease in
frequency until they eventually go away entirely. In section 4.8.12, we saw that
the ARTFORMS-2 system was very tolerant of artificially imposed obfuscatory
noise injected into the critic that never went away. We can be reasonably as-
sured, then, that the noise the adaptive critic imposes on the system, which de-
creases over time, will be less troublesome than the former noisy critic. The
prediction I hazard to make at this point is that once implemented, ART-
FORMS-2 with an adaptive forward model critic will perform as well as the
ideal ARTFORMS-2 with an analytical forward model critic, but will be com-
pletely independent of knowledge of the analytical form of either the forward or
inverse models! This, of course, makes the issue of a reversible plant require-

ment moot. (See section 3.2.3.1.)
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6.3.2 Using Workspace Position Rather Than Orientation

The point has been made by numerous researchers, like Houk [*92], Hogan
[92] and Massone ['89], that target endpoint information is what drives real
muscular activation systems. This may mean that ARTISTS can be improved
upon by making a modification that replaces the direction cosines in the input
vector by absolute coordinates of the target. Such an approach is outlined in sec-
tion 5.4. ARTISTS was designed to use direction cosines because it originally
seemed an obvious, easy, consistent and uniform mapping, and it spanned the

necessary spacez. More discussion of this is found in section 7.2 on page 166.

A cursory attempt at endpoint control produced results that were not con-
clusive. In general terms, the error metrics did not converge as nicely as for the
case of target directed direction cosines, and the critics did not go dormant, they
just contributed less and less over time, which is not sufficient. My assumption
going into that experiment was that since ARTISTS was tailored to the solution
with direction cosines, expectations of a success by simply changing the map-
ping was overly optimistic. So that too is left as an effort for future work. If it
can be accomplished, this would make the extension of ARTFORMS obstacle
avoidance into a larger class of problems (consisting of those problems men-

tioned in section 5.4) complete.

2 [t has the same number of degrees of freedom as the arm plus the target position.
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CHAPTER VII

Conclusions and Future Work

7.1 Conclusions

These major conclusions were formed in this dissertation:

Multiple CMACs can be used to model complex systems in a
subsumptive fashion. Spatially distributed representations in one can
indirectly affect the other. Examples are:

» spatially distributed plasticity,

 constraint representation for obstacle avoidance, and

+ spatially distributed confidence measures.

Direct inverse methods can be used very effectively for redundant

systems, given (1) local generalization and (2) on-line training.

Goal directedness can be forced on direct inverse methods via
constraints whose goal is to reduce the dimensionality of the problem.
The result is a robust system. This reduction of dimensionality via
constraints is probably the root cause of Jordan's forward model

successes.

It is possible that by increasing memory size by as little as 1 vector can
result in a measurable change in function approximation accuracy with

CMACGCs, under certain conditions.

The use of CMACsS in control systems can be viewed as consonant with
and an extension of the traditional method of non-linear control via

linearization around stable operating points
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Some more minor conclusions were also made:

o There is a loose linear upper bound on hashing collision damagc for
CMAGC:s.

+ The summation of CMAC address coordinates that have been
uniformly randomized distorts the distribution of the randomized

samples from uniform to near Gaussian.

Finally, some slightly speculative results were also asserted:

» A Lyapunov stability argument seems to hold for ARTFORMS-2

trajectory formation, and a rigorous proof may be possible.

+ The ARTFORMS-2 system is robust in the presence of noise and this
discovery led to a persuasive (though untested) design for a system

based on an adaptive critic that will be entirely model independent.

7.2 Future Work

Future work for which this dissertation set the stage includes:

« Installing Adaptive Critics: In section 6.3 the notion of installing
adaptive critics was discussed. The current implementation is really an
idealization of a practical implementation of the ARTFORMS
trajectory planner. By removing the analytical forward model, the
construction of a fully general adaptive planner for simple planar

kinematics is complete.

» Installing Smoothness Constraints: Installation of smoothness
constraints with stiffness and/or momentum terms as discussed in

section 4.7 should be implemented to determine how effectively they
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improve (or thwart) convergence of trajectory formation. This should be

especially helpful for long kinematic chains.

Using Endpoint Control: The minimum dimensionality of an input
space must accommodate every important aspect of the input data. In
the case of ARTISTS, that dimensionality is 2+n for n joints. At any
point in the state space, the posture (and thus the hand position) is
well defined by the n joints, but the state space input vector must have
2 additional coordinates like (5x, 8y), which provide disambiguation for
the case where two trajectories cross in the hand space, and thus have
equal joint postures, to define two distinct trajectories in the input
space upon which those two points lie, for the case of two distinct
targets. If the values of (dx, 8y) are not equal for these two points, then
we may rightly expect that these represent two points upon 2 distinct
trajectories aimed at different targets even though the postures are
equal. This seems to infer that the representation spans the necessary
vector space of the problem. It is an open question whether absolute
target position rather than direction cosines will suffice for that

spanning. Clearly, the number of dimensions is sufficient.

Construction of a rigorous Lyapunov stability proof for trajectory
formation within the ARTFORMS-2 system.

Multiple cooperating ARTFORMS-2 systems that have binocular vision
input for depth perception, more sophisticated obstacle recognition and

can operate multiple cooperating arms in 3 dimensions.
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APPENDIX A

Future Directions: A Longer Term View

The next logical step in this research progression is to put ARTFORMS
into context, and to broaden the scope of this research to consider a more inter-
disciplinary approach.

Al Two Differing Approaches for

Interdiscipli esearch

There are two possible directions a biologically inspired motor control

paradigm may follow: a philosophical approach and a physiological approach.

The philosophical approach receives deep biological inspiration and insight
and proceeds to design on engineering principles which then operate more or
less open loop with respect to physiology, once the initial inspiration is complete,

This method is exemplified by Albus’s [81] approach.

The physiologist’s approach is exemplified by Houk [*90], who persists in
adhering to physiological models throughout. The agenda here is clearly first the
goal of explication of real neurological systems and only secondarily, engineering

systems.

Another approach, the analytical approach, which contains a "symbolic Al
approach” as a subset, is a variant of the philosophical approach. This may take
a cue from nature, or it may proceed entirely from a mathematical formalism,
but it usually attacks a problem at a very high level. The objective becomes to

use whatever means are at our disposal to assure as nearly optimal performance
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with as nearly minimal time complexity as possible. A problem that arises is
that these two requirements are strongly at odds with one another. The result is

often neither a satisfying application nor a palatable computational budget.

The former two methods are in some ways qualitatively more powerful
than the analytical approach because they build on evolutionarily proven sys-
tems, without having to reinvent evolution in a bottle, as genetic methods do,
which is computationally burdensome. Evolutionary successes can be very in-
structive engineering parables for the control theorist and engineer. Some adap-
tive contro! theorists have argued against emulating nature in complex systems -
for a number of good reasons. For instance: nature is very inefficient and so
blind adherence to models that mimic nature risks inefficiency. Our counter-ar-
gument to this class of objections is that there are cases where a system must be
designed to be fault tolerant of crude, inaccurate components used in a system
in an effort to be frugal, and there are cases where long time delays in systems
cause problems that can be ameliorated by "quasi-feedforward" methods that

mimic Houk’s cerebellar model.

I am not saying that "no engineering solution exists that can not beat evo-
lution at low cost with a lower resolution", nor am I saying that the "evolution-
ary way' is the only way. It is just simply the case that if a system must tolerate
crude components (because that is what a cheap design has forced upon it) those
inaccurate, noisy, low resolution components pose a problem for the system. Na-
ture has had to handle just those sorts of problems because biological compo-
nents are inaccurate, noisy and low resolution. One solution (perhaps not the
only one) that has worked with a low computational budget (since no computers

were involved) is the "quasi-feedforward" solution postulated by Houk. Systems
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like mine are very similar in strategy, not design, to Houk’s, by providing an
adaptive feed forward predictive capability in place of tight loop feedback con-
trol. Another argument in favor of these kinds solutions is that well designed
analytical solutions will not likely be as portable from one implementation to
the next unless they are highly adaptive and try, via this adaptivity, to be gen-
eral purpose solutions, rather than each being specifically tailored to a given ap-
plication. This latter point suggests that analytical solutions may have problems
just from one manufactured unit to the next because of loose tolerances making

these different units start to look like different designs.

Finally, the innate time delays of complex systems have deleterious effects
as mentioned in section 2.5.2.1, and again, nature has dealt with these problems

using solutions like Houk’s quasi-feedforward processes.

A.l.1 Moving Toward More Biologically Inspired Systems

A.1.1.1 The Philosophical Approach. First, we would like to consider
some obvious extensions of ARTFORMS under the philosophical approach in-

tended to develop cerebellar methods that can subsume higher level functions.
At the least these would include:

« the fusion of multiple ARTFORMS systems to plan for
multiple articulators or other mechanisms.

« the addition of more useful vector representations of
articulators’ joint spaces, e.g. from vision data extracted from
an image processing system that gets input from a binocular

vision system, facilitating 3 dimensional postural perception.

But the ultimate target of this method would be to develop systems that

resemble Albus’s three level hierarchy of the mammalian brain (Albus [81), p.
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184). MaclL.ean ['73) and others have postulated a triune brain hypothesis in
which higher levels in the hierarchy exert control on lower ones by inhibition of
innate primitive behavior that left alone would proceed in a feed forward fashion

(for instance Brooks's['88)] walking behaviors).

The hierarchy consists, at the most primitive level, of the reptilian brain,
with an old mammalian brain in the middle, and finally a new mammalian
brain occupies the uppermost layer. ARTFORMS now operates at the old mam-
malian level with incursions into the reptilian level. The Miller/Glanz/Kraft con-
troller might be said to operate at the reptilian level. If your view of reptiles
precludes adaptivity, consider Brooks’s modified FSMs as an example. MURPHY

(Mel [90]) operates at the new mammalian level.

It is possible to extend spatially distributed parameter systems similar to
ARTFORMS well into the new mammalian level. What ARTFORMS is missing
is something like a parametric understanding of back-track search. To develop

this, some sort of time history capability must be developed.

The incorporation of a more sophisticated Purkinje cell model in the
CMAC implementation to conform Houk'’s (Houk ['89,'90,'91], Sinkjaer ['91]) ob-
servation of a hysteresis loop involved in Purkinje deactivation might be a valid
approach: delaying the deactivation of receptive fields in CMAC would cause
some "smearing" of the receptive fields along trajectories rather than just having
a fixed generalization around any state space point as if it existed in static isola-
tion from the dynamics of the system. The result of this time delayed deactiva-
tion might be faster learning of trajectories and a better capture of the dynamics
of the motion of the mechanism. Such a method of smearing the generalization

region would tend to potentiate movement commands when arm velocity is
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large, which seems appropriate. However, this low level modification may not be
necessary, and further, it would only capture past time history, whereas a

method of forward prediction is desirable as well,

A.1.1.2 Temporal Lookahead Method, Consider tigure A.l. In this

section, a method of using CMACs to implement a temporal lookahead method
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Figure A.1: First Order Temporal Lookahead Method
will be discussed. Temporal lookahead is similar to Sutton's temporal difference
method in that multiple networks are used to learn the temporal consequences
of actions, i.e., what outcomes result from those actions. To have a single time
step lookahead, two CMACs would be required; to have an n step lookahead,
n+I CMACs are required.

By contrast, Sutton’s temporal difference method would train the new in-
formation into the same network. The latter method is appropriate for dynamic

programming solutions where an action is thrown out based on a reduction in
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cost of a newly searched path through the given state space point, but the tem-
poral lookahead method does not throw out the prior actions, rather it keeps a
complete (spatially distributed) "tree" of consequences active, so that multiple
policies can be used to search the same state space. Note in figure A.1 that nei-
ther x nor f are explicit functions of time, because the CMAC models here medel
autonomous systems. The AUX CMAC learns the implicit time relationship be-

tween adjacent steps along the trajectory.

The final suggestion for building on the philosophical approach is to at-
tempt to mimic Houk’s ['91] quasi feed-forward control. (See section 2.5.2.1 on
page 36.) Moderation of predictive and proprioceptively sensed state information
can lead to alleviation of problems related to the deficiencies of closed loop feed
back control in the presence of obstacles. A feedback system, when thwarted,
tends to "push harder" to move its plant under control toward a target. Houk
has determined that there is an innate cerebellar/brainstem mechanism that ar-
bitrates the problem of when to push and when to give up. Such an additional
feature would strengthen the practicality of ARTFORMS, because currently,
ARTFORMS assumes a benign environment: it assumes that the reinforcement
signal will arrive in time to prevent system damage, an assumption that is
clearly naive from an engineering viewpoint! Section 4.4.1.2 addresses this issue

to a limited extent, however.

A.1.1.3 The Physiological Approach. Second, (a "first" was in section
A.1.1.11) it would be interesting to apply our methods to Houk’s model, rather
than moving Houk’s ideas into an ARTFORMS venue, 