655 research outputs found

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Virtual reality as an educational tool in interior architecture

    Get PDF
    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent Univ., 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references.This thesis discusses the use of virtual reality technology as an educational tool in interior architectural design. As a result of this discussion, it is proposed that virtual reality can be of use in aiding three-dimensional design and visualization, and may speed up the design process. It may also be of help in getting the designers/students more involved in their design projects. Virtual reality can enhance the capacity of designers to design in three dimensions. The virtual reality environment used in designing should be capable of aiding both the design and the presentation process. The tradeoffs of the technology, newly emerging trends and future directions in virtual reality are discussed.AktaÅŸ, OrkunM.S

    Structured computer-based training in the interpretation of neuroradiological images

    Get PDF
    Computer-based systems may be able to address a recognised need throughout the medical profession for a more structured approach to training. We describe a combined training system for neuroradiology, the MR Tutor that differs from previous approaches to computer-assisted training in radiology in that it provides case-based tuition whereby the system and user communicate in terms of a well-founded Image Description Language. The system implements a novel method of visualisation and interaction with a library of fully described cases utilising statistical models of similarity, typicality and disease categorisation of cases. We describe the rationale, knowledge representation and design of the system, and provide a formative evaluation of its usability and effectiveness

    SciTech News Volume 71, No. 3 (2017)

    Get PDF
    Columns and Reports From the Editor.........................3 Division News Science-Technology Division....5 Chemistry Division....................8 Conference Report, Marion E, Sparks Professional Development Award Recipient..9 Engineering Division................10 Engineering Division Award, Winners Reflect on their Conference Experience..15 Aerospace Section of the Engineering Division .....18 Architecture, Building Engineering, Construction, and Design Section of the Engineering Division................20 Reviews Sci-Tech Book News Reviews...22 Advertisements IEEE..........................................

    Functional Brain Organization in Space and Time

    Get PDF
    The brain is a network functionally organized at many spatial and temporal scales. To understand how the brain processes information, controls behavior and dynamically adapts to an ever-changing environment, it is critical to have a comprehensive description of the constituent elements of this network and how relationships between these elements may change over time. Decades of lesion studies, anatomical tract-tracing, and electrophysiological recording have given insight into this functional organization. Recently, however, resting state functional magnetic resonance imaging (fMRI) has emerged as a powerful tool for whole-brain non-invasive measurement of spontaneous neural activity in humans, giving ready access to macroscopic scales of functional organization previously much more difficult to obtain. This thesis aims to harness the unique combination of spatial and temporal resolution provided by functional MRI to explore the spatial and temporal properties of the functional organization of the brain. First, we establish an approach for defining cortical areas using transitions in correlated patterns of spontaneous BOLD activity (Chapter 2). We then propose and apply measures of internal and external validity to evaluate the credibility of the areal parcellation generated by this technique (Chapter 3). In chapter 4, we extend the study of functional brain organization to a highly sampled individual. We describe the idiosyncratic areal and systems-level organization of the individual relative to a standard group-average description. Further, we develop a model describing the reliability of BOLD correlation estimates across days that accounts for relevant sources of variability. Finally, in Chapter 5, we examine whether BOLD correlations meaningfully vary over the course of single resting-state scans

    Advanced Modeling of Single Degree of Freedom System for Earthquake Ground Motion Using LabVIEW Software

    Get PDF
    In this paper, the structural responses at discrete time steps are evaluated to understand the linear dynamics characteristics of a structural system using LabVIEW (Laboratory Virtual Instrument Engineering Workbench) tool. Time History Analysis (THA) which is an essential procedure to design a reliable structure when the structure is subjected to dynamic loading is taken into consideration for the study. Direct integration method was used to find out the dynamic response of the structure as it is applicable for both linear as well as nonlinear range. Block diagram that perform step-by-step integration to analyze the linear single degree of freedom (SDOF) system has been prepared in LabVIEW. The processing of data is carried out till the equilibrium is satisfied at all discrete time points within the interval of solution instead of any time t. Different ground motion time histories were considered for THA and responses of the SDOF system are evaluated. The results from LabVIEW were validated and the accuracy of the algorithms generated are discussed. It is observed that the accuracy and stability of the final solution depends on the variation of displacement, velocity and acceleration that is assumed in each step. Thus, LabVIEW workbench can therefore be recognized as an effective instrument in structural engineering owing to its fast sampling features

    Self-Playing Labyrinth Game Using Camera and Industrial Control System

    Get PDF
    In this master’s thesis, an industrial control system together with a network camera and servo motors were used to automate a ball and plate labyrinth system. The two servo motors, each with its own servo drive, were connected by joint arms to the plate resting on two interconnected gimbal frames, one for each axis. A background subtraction-based ball position tracking algorithm was developed to measure the ball-position using the camera. The camera acted as a sensor node in a control network with a programmable logical controller used together with the servo drives to implement a cascaded PID control loop to control the ball position. The ball reference position could either be controlled with user input from a tablet device, or automatically to make the labyrinth self-playing. The resulting system was able to control the ball position through the labyrinth using the camera for position feedback

    Deep Learning Development Environment in Virtual Reality

    Full text link
    Virtual reality (VR) offers immersive visualization and intuitive interaction. We leverage VR to enable any biomedical professional to deploy a deep learning (DL) model for image classification. While DL models can be powerful tools for data analysis, they are also challenging to understand and develop. To make deep learning more accessible and intuitive, we have built a virtual reality-based DL development environment. Within our environment, the user can move tangible objects to construct a neural network only using their hands. Our software automatically translates these configurations into a trainable model and then reports its resulting accuracy on a test dataset in real-time. Furthermore, we have enriched the virtual objects with visualizations of the model's components such that users can achieve insight about the DL models that they are developing. With this approach, we bridge the gap between professionals in different fields of expertise while offering a novel perspective for model analysis and data interaction. We further suggest that techniques of development and visualization in deep learning can benefit by integrating virtual reality

    NASA Tech Briefs, August 1992

    Get PDF
    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    • …
    corecore