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The brain is a network functionally organized at many spatial and temporal scales. To 

understand how the brain processes information, controls behavior and dynamically 

adapts to an ever-changing environment, it is critical to have a comprehensive 

description of the constituent elements of this network and how relationships between 

these elements may change over time. Decades of lesion studies, anatomical tract-

tracing, and electrophysiological recording have given insight into this functional 

organization. Recently, however, resting state functional magnetic resonance imaging 

(fMRI) has emerged as a powerful tool for whole-brain non-invasive measurement of 

spontaneous neural activity in humans, giving ready access to macroscopic scales of 

functional organization previously much more difficult to obtain. This thesis aims to 

harness the unique combination of spatial and temporal resolution provided by 

functional MRI to explore the spatial and temporal properties of the functional 

organization of the brain. First, we establish an approach for defining cortical areas 
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using transitions in correlated patterns of spontaneous BOLD activity (Chapter 2). We 

then propose and apply measures of internal and external validity to evaluate the 

credibility of the areal parcellation generated by this technique (Chapter 3). In chapter 4, 

we extend the study of functional brain organization to a highly sampled individual. We 

describe the idiosyncratic areal and systems-level organization of the individual relative 

to a standard group-average description. Further, we develop a model describing the 

reliability of BOLD correlation estimates across days that accounts for relevant sources 

of variability. Finally, in Chapter 5, we examine whether BOLD correlations meaningfully 

vary over the course of single resting-state scans.  
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Chapter 1: Introduction 
1.1 Spontaneous neural activity reflects the underlying functional 

architecture of the brain  

Spontaneous neural activity has been observed for as long as neuroscientists 

have been recording neural activity. Most research aimed at understanding brain 

function and organization, however, has focused on probing the fraction of activity that 

can be directly elicited by externally imposed tasks. For such study, the brain is 

implicitly viewed as a black box, with controlled inputs and experimentally exposed 

outputs. The variability encountered in trial-to-trial measurement is ‘noise’ in the system 

to be averaged out and spontaneous activity in the absence of a task can be ignored. 

While this strategy has led to a detailed and continuously developing understanding of 

the brain’s functional organization, it sidesteps the fact that the bulk of brain activity is 

not necessarily contingent on immediate stimulus demands (M. D. Fox et al., 2007a).     

In recent decades, however, the role of spontaneous activity as an essential 

organizing property of the brain has been increasingly recognized. Spontaneous activity 

is known to be critical for appropriate segregation and maturation of eye-specific layers 

in the LGN and ocular dominance columns in the cortex, and is believed to play a 

similar role sculpting synaptic relationships during development throughout the brain 

(Katz et al., 1996; Penn et al., 1999; Shatz, 1990). Spontaneous activity subsequent to 

learning has also been hypothesized as a key mechanism reflecting memory 

consolidation at the level of the synapse (Wilson et al., 1994). One of the most salient 

properties of spontaneous activity for our purposes, however, is that it appears to reflect 

the spatiotemporal functional organization of the brain. Arieli and colleagues have 
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vividly demonstrated this phenomenon in a series of studies using optical imaging of the 

visual cortex of anesthetized cats (Arieli et al., 1996; Kenet et al., 2003). They found 

that, in total darkness, columns in the visual cortex of the cat exhibits spontaneous 

repeating transient (~10’s of ms) patterns of coordinated activity that in their spatial 

profile precisely replicate patterns of activity displayed when the cat is actually viewing 

moving gratings of specific orientations. They show further that particular orientation 

profiles (0 and 90 degrees) appear more frequently than others, perhaps reflecting the 

relative frequency of these stimuli in the cat’s natural environment. Viewed over long 

stretches of time one could use the aggregate synchrony of different cortical areas in 

anesthetized cats to map out of the organization of orientation columns across the 

visual cortex. 

At a broader spatial and temporal scale, spontaneous neural activity can be 

measured in humans across the entire brain by recording the blood oxygen level 

depending (BOLD) signal with fMRI while subjects ‘rest’ in a scanner, i.e. they are given 

no explicit task instructions other than to fixate on a crosshair. Although not all 

environmental stimuli can be eliminated during an fMRI scan, this undirected passive 

resting state is as close to generating unconstrained neural activity in humans as we are 

likely to achieve. Remarkably, as first observed by Biswal and colleagues in 1995, in the 

context of this ‘resting state,’ robust and specific correlations in spontaneous BOLD 

activity can be found between the two hemispheres of the motor cortex (B. Biswal et al., 

1995), even though subjects are not performing any motor-related task. Since then, 

spontaneous correlation in low frequency (<0.1 Hz) BOLD activity between spatially 

distributed but functionally related regions, known as resting state functional 
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connectivity (RSFC), has been observed throughout the brain including the visual cortex 

(Lowe et al., 1998), the auditory cortex (Cordes et al., 2000), the default mode network 

(Greicius et al., 2003), and attention and control networks (Dosenbach et al., 2007; 

Vincent et al., 2008) Indeed, there is an emerging consensus that RSFC readily reveals 

a reasonably small number of sub-networks that correspond to major functional systems 

describing most of the gray matter in the brain (Doucet et al., 2011; Power et al., 2011; 

Smith et al., 2009; Yeo et al., 2011).  

One explanation for the presence of these coherent patterns of RSFC hidden in 

the neural ‘noise’ is that they reflect a history of co-activation. In this view, relationships 

in spontaneous neural activity are generated by a ‘Hebbian-like’ mechanism of common 

recruitment during evoked activity (Dosenbach et al., 2007; Nelson et al., 2010a; Wig et 

al., 2011b). That is, brain areas recruited for a common purpose during many tasks will 

change their synaptic efficiency with respect to each other as a result of that co-

activation, resulting in synchronous activity even when they are no longer explicitly 

being recruited for that purpose. Broad evidence for this view exists in that the dominant 

spatial patterns of resting state correlation are consistent with the convergent cross-

study patterns of task-evoked co-activation (Smith et al., 2009).  Further evidence for 

and caveats to this view will be discussed below in the context of temporal scales of 

spontaneous BOLD activity. 

In any case, the observation of coherent functionally-relevant organization in 

spontaneous BOLD activity and the apparent ease with which such data can be 

acquired has motivated a vast literature exploring the properties and details of this 

organization and how these correlational relationships may differ under different 
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conditions, between different populations, and over the lifespan. In our view, this 

enterprise cannot successfully proceed without a clear accounting of the spatial and 

temporal scales of functional organization spontaneous BOLD activity represents.  In 

the following sections, we will introduce the possibility that, in addition to systems-level 

organization, spontaneous BOLD activity may also be able to capture the areal-level 

organization of the brain; we will, however, posit the need to account for individual 

variability in spatial organization; and finally, we will ask whether spontaneous BOLD 

activity meaningfully varies over short time scales, the answer to which should give 

insight into its physiological relevance.  

1.2 Using spontaneous BOLD activity to study spatial functional 

organization  

Brain parcellation 

The cortex of the human brain contains a large set of discrete interacting 

functional areas that form a level of organization, at about a centimeter scale, essential 

for processing information related to perception, cognition, and behavior (Churchland et 

al., 1988). The identification and mapping of the relative positions of these functional 

areas on the cortex, known as brain ‘parcellation’, is one of the grand unfinished 

projects of neuroscience, despite aggressive pursuit for over 100 years (since, at least, 

e.g. (Brodmann, 1909)). An accurate map of cortical areas is critical for defining the 

constituent parts of the ‘wiring diagram’ that describes the flow of information through 

the brain’s various processing systems. Further, the global study of the brain as a 

complex network, a rapidly growing field known as ‘connectomics’ (Sporns et al., 2005), 
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demands measurement of relationships between cortical areas, or network ‘nodes’, and 

is thus necessarily constrained by the specific properties of the parcellation, including 

the number, size, and position of the identified areas.  

Classically, identification of distinct cortical areas is performed by finding spatial 

discontinuities in one or more underlying brain properties, including functional 

responses, architectonics (cyto-, myelo-, and chemo-), anatomic connectivity, and, 

where possible (e.g. V1/V2), topographic maps (D. J. Felleman et al., 1991a). Relatively 

comprehensive areal parcellations have been developed and refined in the macaque 

using this strategy (Van Essen, 2013). Unfortunately, the need for invasive procedures 

to measure several of these brain features has historically limited the extent of areal 

parcellation in the human brain. As noted above, however, measurement of RSFC 

offers the possibility of comprehensive non-invasive whole-brain functional mapping in 

living humans. Indeed, RSFC allows for measurement of the functional associations of 

every location in the brain, limited only by the spatial resolution of BOLD imaging (~2-4 

millimeters). Thus, just as it has successfully revealed the systems-level functional 

organization of the brain, RSFC may be able to delineate functional organization at the 

mesoscale of cortical areas. 

Transitions in RSFC can be used to define cortical areas 

By analogy with the classical methods mentioned above, RSFC is presumed to 

be relatively uniform within the extent of a cortical area and distinct from the RSFC of 

adjacent cortical areas. Thus, it may be hypothesized that as one measures RSFC 

along the cortex, abrupt transitions in the pattern of RSFC may correspond to putative 

boundaries between cortical areas. Cohen et al. first demonstrated the proof-of-concept 
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for this strategy of cortical area definition on a small patch of cortex in 2008 (Cohen et 

al., 2008a). Subsequently, the approach was successfully extended to areal delineation 

of the parietal cortex (Barnes et al., 2012; Nelson et al., 2010a) and preliminarily to 

areal centers throughout the rest of the brain (i.e., 264 spherical regions of interest 

reported in (Power et al., 2011)).  

In Chapters 2 and 3, we present our efforts to refine this technique and expand 

its use to the entire cortex, developing a complete functional areal parcellation of the 

cortex. Critically, we also propose and demonstrate measures for internal and external 

validation of the putative cortical areas identified by RSFC. Specifically, RSFC-based 

parcellation should produce a reliable topology across cohorts of subjects; putative 

cortical areas should demonstrate homogenous patterns of correlation, even when 

applied to distinct datasets; and RSFC-based cortical areas should correspond with 

areal distinctions defined by other brain properties such as architectonics and functional 

responses. 

Defining functional organization accounting for sources of individual 

variability 

The proposed areal parcellation discussed above represents functional brain 

organization inferred from group-average data. Ideally, however, we would like to 

generate individual-level descriptions of functional organization. Anatomic and 

functional variability across individuals is well-known (Devlin et al., 2007; Frost et al., 

2012; Mueller et al., 2013; Van Essen et al., 2007). Consequently, a group-average 

parcellation will never exactly reflect each individual’s idiosyncratic brain organization, 
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ultimately limiting our ability to correctly connect brain features with individual 

differences in behavior and cognition.  

Our early attempts to apply an RSFC-based boundary detection procedure to 

individuals showed provisional utility (e.g., Wig et al., 2014a), but was limited by 

insufficient data available in each subject. It remained unclear how much data was 

needed to provide reliable and accurate estimates of functional organization in 

individual subjects based on spontaneous BOLD activity. Fortunately, we were able to 

address this limitation by using a massive fMRI dataset collected on a single subject 

over more than 100 scanning sessions, including resting state and task data. In chapter 

4, we describe our efforts to generate an individual-level parcellation with this dataset, 

subjecting it to the same tests of internal and external validity applied to the group data. 

This dataset allows us to account for relevant sources of sampling variability and points 

the way to a new approach for studying brain organization using fMRI that focuses on 

detailed evaluation of individuals. 

1.3 Temporal scales of spontaneous BOLD activity  

What is the physiological relevance of spontaneous BOLD activity? 

 Empirically, as described in the first chapters of this thesis, spontaneous BOLD 

activity provides valuable information about the spatial organization of functional 

systems in the brain. However, since its emergence as a widely applied tool for studying 

brain organization, there has been considerable debate about the specific physiological 

relevance of spontaneous BOLD activity itself (e.g. (Morcom et al., 2007)). In particular, 

what underlying brain processes do the observed coherent BOLD fluctuations 

represent? Do they relate to online moment-to-moment changes in cognition? Or are 
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they a natural result of spontaneous neural activity playing out in a specific structural 

topology of connections (C. J. Honey et al., 2010)? Or does spontaneous BOLD activity 

relate to off-line processes including synaptic homeostasis (Maffei et al., 2009) and/or 

plasticity related to consolidation of past events (Miall et al., 2006)? Answers to these 

questions are not necessarily mutually exclusive, but we believe that study of the 

temporal features of spontaneous BOLD activity may provide some direction in sorting 

them out. To start, we would like to provide some key observations that may help 

constrain possible interpretations of the spontaneous BOLD phenomenon, including 

how spontaneous BOLD activity changes over various time-scales. Finally, we will ask 

whether spontaneous BOLD activity meaningfully varies over very short time-scales.  

Spectral content of spontaneous BOLD activity 

Since Biswal et al.’s first observation of the phenomenon, it has been noted that 

correlations in resting-state BOLD activity are most prominent at low frequencies (i.e., 

<0.1 Hz). Higher frequency content is also present in raw BOLD timeseries related to 

scanner noise, cardiac pulsation (B. Biswal et al., 1996), and respiratory motion (Birn et 

al., 2006), though these latter physiological artifacts are frequently not directly 

measurable at the sampling frequency used in most resting state studies (the typical 

Nyquist frequency is usually less than 0.2-0.3 Hz). Fluctuations in the partial pressure of 

end-tidal CO2 in blood related to variable respiration depth may contribute to BOLD 

signal variability at lower frequencies (i.e., <0.05 Hz; Wise et al., 2004). However, this 

potential confound is likely well-controlled by the commonly used processing step of 

global signal regression (Birn et al., 2006). Setting aside these artifactual sources of 

variability, BOLD signal fluctuations essentially appear to demonstrate a 1/f2 power-law 
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distribution in the spectral domain. The presence of this aperiodic, so-called ‘scale-free’, 

behavior in spontaneous BOLD activity likens it to many dynamic natural phenomena 

(e.g., earthquakes, stock market), but distinguishes it from the high-frequency periodic 

oscillations (e.g. theta (4-8 Hz); alpha (9-12 Hz); gamma (>30 Hz)) that are so 

prominent in studies of electrical brain activity (He et al., 2010).  

Spontaneous BOLD activity relates to structural connectivity 

 RSFC between cortical areas appear to at least partially respect the structural 

connections, i.e. axonal tracts, between them. Indeed, there is evidence that patterns of 

RSFC can be predicted, in a limited way, by the known structural organization of the 

brain (Behrens et al., 2012; C. J. Honey et al., 2009b). Thus, RSFC may be expected to 

reflect, in part, the temporal stability of anatomic relationships. It is important to note, 

however, that while some correlations in BOLD activity may be caused by direct 

monosynaptic connections between cortical areas, there is evidence that the bulk of the 

correlations are generated by a common input to each area or by indirect two or three-

step connections. This latter kind of relationship has been clearly demonstrated by the 

strong correlation in spontaneous BOLD activity observed in anesthetized macaques 

between left and right peripheral V1, which are known to have no monosynaptic axonal 

connection (Vincent et al., 2007a). Further, inter-hemispheric RSFC relationships in a 

macaque have been found to be largely retained following corpus callosotomy if the 

anterior commissure alone was left intact, suggesting that indirect structural connections 

are sufficient to maintain RSFC between regions that have lost their direct structural 

connection (O'Reilly et al., 2013). While the long-term stability of indirect functional 

relationships is unclear, we can safely conclude that the functional architecture of the 
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brain reflected by RSFC is a remarkably robust feature of brain organization not wholly 

dependent on direct structural connections. 

Correlations in BOLD activity are relatively stable 

 The topographic organization of RSFC appears to demonstrate considerable 

consistency in several dimensions. Identifiable patterns of RSFC persist, albeit with 

significant signal attenuations, during sleep (Larson-Prior et al., 2009) and anesthesia 

(Palanca et al., 2015), and even appear to have similar homologues in anesthetized 

monkeys (Vincent et al., 2007a). Patterns of RSFC are also highly reproducible across 

cohorts of subjects (Damoiseaux et al., 2006; Shehzad et al., 2009), and, as we show in 

chapter 4, have relatively high reproducibility within a single individual across scanning 

sessions. These observations seriously challenge the notion that spontaneous BOLD 

activity relates directly to unconstrained cognition. While the content, or even presence 

of cognition, may be expected to vary dramatically across days within a subject, across 

subjects, across states of consciousness, and between species, coherent patterns of 

RSFC are evident under all of these conditions. 

But correlations are not static 

While patterns of RSFC demonstrate considerable stability, there are several 

important contexts in which significant changes in RSFC have been observed. In the 

following sections, we highlight evidence for changes in RSFC over various temporal 

scales, including the years of early-life development, in the hours and days following 

task training, and in the context of particular behavioral states. 
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RSFC changes during development 

A considerable literature has developed studying patterns of RSFC over the 

course of early life, including infancy (e.g., (Fransson et al., 2011; Smyser et al., 2010) 

and early adolescence (e.g., (Dosenbach et al., 2010; Fair et al., 2009; Power et al., 

2010; Vogel et al., 2010). One relevant observation is that term and pre-term infants 

exhibit coherent bilateral spontaneous BOLD activity within recognizable functional 

systems (e.g. somatomotor, visual and auditory cortex; Lin et al., 2008; Redcay et al., 

2007; Smyser et al., 2010) suggesting that at least some RSFC may be instantiated 

prior to any history of task-related co-activation (in contrast to a purely ‘Hebbian’ 

hypothesis of RSFC). There are also clear distinctions in patterns of RSFC relative to 

adults. Unfortunately, many of these studies are confounded, in the first instance, by the 

fact that infants can only be studied while asleep, and, in the second instance, by the 

fact that children exhibit substantially more head motion than adults, artifactually biasing 

the observed patterns of RSFC towards short-distance correlations (Power et al., 2012; 

Satterthwaite et al., 2012). More recent studies carefully controlling head motion (Power 

et al., 2014), however, have been able to identify developmental changes in RSFC 

between children and adults (Greene et al., 2014) and between 6 and 12-month old 

infants (Pruett et al., 2015). Thus, RSFC is reasonably supposed to reflect relevant 

changes in cortical and subcortical organization during maturation. 

Experience-dependent changes in RSFC 

According to the co-activation hypothesis, the strength of correlation in BOLD 

activity between different areas of the brain should be modifiable by controlled exposure 

to tasks that encourage coordinated activity between them. Lewis et al. demonstrated 
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this predicted effect by making subjects undergo several days of intense training on a 

visual perception task (Lewis et al., 2009). Furthermore, the degree of change in resting 

correlations between the regions involved in the task was related to behavioral 

performance. Tambini et al. reported a related finding showing that the increase in 

correlation in resting BOLD activity between hippocampus and lateral occipital complex 

immediately following a memory-encoding task was associated with subsequent 

memory performance (Tambini et al., 2010). Post-training changes in RSFC have been 

reported in various functional systems (for review, (Kelly et al., 2014)), with effects 

observed with as little as 11 minutes (Albert et al., 2009) or as much as 70 hours of 

training (Mackey et al., 2013). However, it remains unknown whether these changes are 

transient or become permanent features of brain organization. Regardless, it is already 

reasonable to conclude that spontaneous BOLD correlations are experimentally 

modifiable over hours or days.  

State-dependent changes in spontaneous BOLD activity 

Many investigators have attempted to measure spontaneous BOLD activity in the 

context of different behavioral and environmental states, as opposed to the typical, 

eyes-open, passive fixation resting condition. Most simply, eyes-open rest has been 

compared to eyes-closed rest. In this case, spontaneous BOLD activity is decreased 

particularly in visual and ventral somatomotor regions when the eyes are open (McAvoy 

et al., 2008), although large-scale system organization is mostly preserved (see Chapter 

4, supplemental Figure 5). RSFC has also been observed to subtly change from the 

morning to the evening particularly between medial temporal regions and regions in the 

posterior cingulate and dorsolateral prefrontal cortex (Shannon et al., 2013).  Less 
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controlled, but no less revealing is the measurement of spontaneous BOLD activity 

during stages of sleep. As mentioned before, BOLD activity during sleep reveals 

recognizable RSNs, but significant differences from the waking resting state are also 

observed, including increased modular segregation during deeper sleep stages 

(Tagliazucchi et al., 2013). Critically, sleep staging based on spontaneous BOLD activity 

has revealed that many extant ‘awake’ resting-state datasets are contaminated by sleep 

(Tagliazucchi et al., 2014). This observation is relevant for understanding the causes of 

‘dynamic’ RSFC discussed below. 

Subtler task manipulations have also revealed changes in RSFC. For example, 

manipulation of visual attention has been able to elicit changes in background BOLD 

correlation between low-level visual areas (e.g. V3, V4) and higher-level visual 

processing areas (i.e. PPA, FFA) during a task (Al-Aidroos et al., 2012). Crucially, these 

effects were observed after accounting for task-related evoked activity. More generally, 

distinct tasks appear to generate mild task-specific changes in background BOLD 

correlations, while preserving a common underlying functional organization (Cole et al., 

2014; Krienen et al., 2014). Thus, subtle changes in RSFC may be observable when 

shifting between different task states or behavioral conditions, but wholesale changes in 

functional organization have so far not been observed. 

Do BOLD correlations meaningfully vary over shorter time scales? 

Spontaneous BOLD activity may change over the lifespan, may be induced to 

change following training, and may even subtly change in the context of different states, 

but does spontaneous BOLD activity meaningfully change from moment-to-moment 

over the course of a resting state scan? It is reasonable to hypothesize that there may 
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be considerable variability in the correlation between regions over the course of a 

resting state scan, especially if it is assumed that spontaneous BOLD activity actually 

reflects moment-to-moment cognition. Indeed, this hypothesis is supported by the 

observation that spontaneous BOLD correlations, when measured over short time 

windows (e.g. 1-2 minutes), exhibit large fluctuations over the course of a single resting 

state scan (see Figure 1). Chang and Glover first reported this type of ‘dynamic’ 

relationship between an ROI in the posterior cingulate cortex and several other ROIs in 

the brain (Chang et al., 2010). Others have claimed that sliding window analysis of 

RSFC reveals a series of distinct states that meaningfully capture the unfolding 

dynamics of spontaneous BOLD activity over the course of a scan (Allen et al., 2012). A 

large literature has developed around these observations hoping that short time-scale 

variability in spontaneous BOLD correlation will reveal previously inaccessible features 

of brain organization (Calhoun et al., 2014; Hutchison et al., 2013; Kopell et al., 2014). 

We believe, however, that the initial excitement over the observation of RSFC 

‘dynamics’ may be, at least partially, misguided (we include ourselves in this 

assessment). There are two major problems with the current evaluation of RSFC 

‘dynamics’. Firstly, perfectly stationary timeseries, i.e. timeseries whose statistics do not 

change over time, will exhibit large, but meaningless, sampling variability if statistics are 

computed on small quantities of data (e.g. short windows). Defining and analyzing a 

stationary simulation of BOLD data will help to illustrate this problem. Second, and more 

insidious, artifactual and uninteresting sources of non-stationary changes in BOLD 

activity, e.g. head motion and drowsiness, must be accounted for when interpreting 

RSFC ‘dynamics’. In Chapter 5, we attempt to evaluate RSFC ‘dynamics’ with these 
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issues in mind, and speculate on how the observation of stationary spontaneous BOLD 

activity may inform our understanding of its physiological relevance.  

 

Figure 1-1. Illustration of sliding window correlation procedure. Top graph depicts BOLD signal 
from two ROIs over a 30-minute resting state scan. Bottom graph depicts variability of 
correlation between ROIs over time for two different window sizes. 
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2.1 Abstract  

Resting-state functional correlations (RSFC) reveal properties related to the brains 

underlying organization and function.  Features related to RSFC signals, such as the 

locations where the patterns of RSFC exhibit abrupt transitions, can be used to identify 

putative boundaries between cortical areas (RSFC-Boundary Mapping).  The locations 

of RSFC-based area boundaries are consistent across independent groups of subjects. 

RSFC-based parcellation converges with parcellation information from other modalities 

in many locations, including task-evoked activity and probabilistic estimates of cellular 

architecture, providing evidence for the ability of RSFC to parcellate brain structures into 

functionally meaningful units.  We highlight a collection of these observations, but also 

point out several limitations and observations that mandate careful consideration in 

using and interpreting RSFC for the purposes of parcellating the brain’s cortical and 

subcortical structures. 

 

2.2 Introduction 
 

The brain is organized at multiple spatial scales ranging from neurons to systems 

of functionally related areas (Sejnowski et al., 1989).  Area1 parcellation has principally 

relied on discriminating areas based on the convergence of multiple underlying 

properties including function, architectonics (cyto-, mylo-, and chemo-), connectivity, 

and in some cases, topographic mapping (e.g., (D.J. Felleman et al., 1991b)).  An areal 

                                            
1 The term ‘area’ is conventionally restricted to parcellations of the cerebral cortex and 
the discussion that follows largely focuses on cortical divisions.  It should be noted 
however, that many of the general ideas regarding parcellation that will be discussed 
here are applicable to cortical areas as well as subdivisions of subcortical nuclei and the 
cerebellum.  
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level of organization as revealed by distinctions in these properties is not limited to 

primary sensory areas (e.g., (Foerster, 1936; Gennari, 1782; Hubel et al., 1962; Kaas et 

al., 1979; Marshall et al., 1937)), but rather, is evident across the brain.  For example, 

borders of area MT in the macaque monkey (also known as area V5) can be defined by 

MT’s independent representation of the visual field, the presence of neurons with 

sensitivity to processing properties of visual motion, distinct patterns of incoming and 

outgoing connections, and the thick band of myelin that is present in layer IV (e.g., (Van 

Essen et al., 1981)).    Likewise, distinctions in patterns of connectivity and 

architectonics have been used to parcellate ventral and medial frontal cortex into 

distinct areas in the macaque monkey (Carmichael et al., 1994, 1996) and human 

(Ongur et al., 2003). While many of the tools used to identify areal boundaries have 

typically required invasive measurements or histological analysis of post-mortem brains, 

recent advances in brain imaging acquisition and analysis have offered an opportunity 

to parcellate brain areas non-invasively in living subjects (e.g., the present special issue 

on In Vivo Brodmann Mapping in Neuroimage). 

Defining areas using functional distinctions has largely been accomplished by 

dissociating adjacent locations based on their patterns of task-evoked activity (e.g., 

(Petersen et al., 1988; Sereno et al., 1995)).   More recently, attempts to functionally 

distinguish brain regions have leveraged the observation that the brain exhibits 

structured and ordered patterns of low-frequency functional correlations in the absence 

of overt task demands (Resting State Functional Connectivity (RSFC); (B. Biswal et al., 

1995)). The prevalence of organized patterns of RSFC across levels of arousal makes 
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RSFC well suited to understanding the function and organization of individuals that span 

ranges of age, mental health, and even species. 

The precise significance of RSFC is uncertain; however, accumulating evidence 

suggests that resting-state correlations identify locations that are functionally similar 

with one another (for reviews see (B. B. Biswal et al., 2010; M. D. Fox et al., 2007a)).  

Furthermore, although RSFC relationships are likely mediated by anatomical 

connectivity, they are not restricted to direct structural connections (e.g., (C J Honey et 

al., 2009a; Vincent et al., 2007b); for reviews see (Deco et al., 2011; Wig et al., 2011a)).  

For these reasons, using resting-state correlations as a property by which to understand 

brain organization is likely drawing on information related to a combination of an area’s 

functional role and its underlying anatomical connectivity. 

  RSFC has been used to identify putative areal divisions or boundaries by 

identifying locations where patterns of RSFC exhibit abrupt transitions (RSFC-Boundary 

Mapping; (Cohen et al., 2008b)).  RSFC-based area parcellations using boundary 

detection have been described for numerous locations including regions of the parietal 

cortex (Barnes et al., 2011; Nelson et al., 2010b), frontal cortex (Cohen et al., 2008b; 

Hirose et al., 2012; Nelson et al., 2010c), and across expanses of the whole brain (Wig 

et al., 2013).  Notably, there have been a number of additional applications of RSFC-

based analysis with the goal of identifying areas (and also systems) in the brain (e.g., 

(Deen et al., 2011; Doucet et al., 2011; Goulas et al., 2012; Kahnt et al., 2012; Kelly et 

al., 2010; D. J. Kim et al., 2012; J. H. Kim et al., 2010; Leech et al., 2012; Margulies et 

al., 2009; Mars et al., 2012; Mumford et al., 2010; Power et al., 2011; Ryali et al., 2013; 

Smith et al., 2009; Uddin et al., 2010; Yeo et al., 2011; Zhang et al., 2008)).  We return 
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to the important distinction between boundary detection and alternate RSFC-based 

methods as means for area parcellation at a later point. 

Rather than reviewing the growing body of work that has examined RSFC to 

identify brain areas and systems, we will utilize this article as a platform to describe 

some of our recent efforts towards parcellating large expanses of the cerebral cortex 

using patterns of RSFC. We recognize that the approaches for parcellating brain areas 

using patterns of RSFC are under continuous revision and refinement, and will continue 

to improve. Here we will highlight our groups most recent progress in this endeavor and 

provide descriptions of some important observations, caveats, and places for potential 

improvement in using RSFC to parcellate brain areas.   Our aims are three-fold.  First, 

we aim to demonstrate that the borders revealed by RSFC-Boundary Mapping reflect 

locations of RSFC pattern transition and are highly similar across independent groups of 

subjects.  Second, we compare the results of RSFC-Boundary Mapping to areal 

distinctions revealed by other modalities (specifically, task-evoked activity and 

architectonics) to demonstrate the strong convergence across methods of parcellation 

in certain locations.  Third, we contrast RSFC-Boundary Mapping to other RSFC-based 

methods that have been used to identify functional area centers or cluster groups of 

functionally related voxels across large expanses of the brain.  Throughout the report, 

we will also draw attention to a number of observations and limitations for using RSFC 

to parcellate areas, and discuss their implications towards both the theory and practice 

of RSFC-based parcellation. 
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RSFC can be used to identify area borders in groups of individuals 

Brain imaging permits areal parcellation in individual subjects and a related 

article describes our recent efforts towards this endeavor using RSFC (Wig et al., 2013).  

We draw attention to two observations from that report:  (1) RSFC parcellation maps 

exhibit significantly higher similarity between independent scans of the same individual 

from different days than between scans from different individuals (see (Wig et al., 2013) 

Figure 11 and Supplementary Figure 4) . The between subject variability in RSFC 

parcellation is consistent with reports that have demonstrated subject-wise variability in 

brain area organization as defined by task-evoked activity (e.g., (Dougherty et al., 2003; 

Fedorenko et al., 2010; Sabuncu et al., 2010)), architectonics (e.g., (Amunts et al., 

2004; Caspers et al., 2006)), anatomical connectivity (e.g., (Johansen-Berg et al., 

2005)), and macroscopic anatomy (Van Essen, 2005).  (2) Despite the presence of 

individual differences in area parcellation, numerous features revealed by RSFC 

parcellation are consistent across individuals (see (Wig et al., 2013) Figure 12).    

Accordingly, for the present work, rather than focusing on parcellating individual brains 

that exhibit numerous sources of variation, we adopt a strategy that highlights the 

commonalities across individuals from a single cohort and report ‘group-based’ 

parcellations.  While a group-based strategy might obscure important and interesting 

parcellation variation within a population, it permits identification of the consistent 

parcellation features across the population. 

There are a number of ways to derive a group-based RSFC parcellation.  The 

primary difference across methods relates to the processing stage at which individuals 

are combined to create group estimates, and each alternative will potentially introduce 
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the influence of different sources of variation.  We refer the interested reader to the 

appendix of this report for details of the methods we have used here to arrive at group-

based RSFC parcellations. 

 

RSFC-Boundary Mapping identifies locations of abrupt transitions in 

patterns of resting-state correlations 

RSFC-Boundary Mapping rests on the assumption that an area’s RSFC 

correlations are relatively uniform within the extent of an area, yet may be distinct from 

the RSFC of an adjacent area (Cohen et al., 2008b).  In this view, locations where the 

patterns of RSFC exhibit abrupt transitions can be considered putative boundaries 

between areas across the cortical surface. This concept is illustrated in Figure 1.  By 

computing and comparing the average seed-based RSFC maps from a group of young 

adults (N=40) for a line of seeds across a portion of the cortical surface, we can see that 

the RSFC correlation maps do not change smoothly, but rather, exhibit rapid and abrupt 

changes (Figure 1a).  Furthermore, these locations of change are consistent in both 

directions (i.e., from an inferior location in the posterior extent of the cingulate gyrus to a 

more superior location in the paracentral lobe, or in reverse), suggesting the presence 

of a functional boundary between two adjacent areas. This basic approach can be 

extended across the cortical surface with the aid of image-processing tools to create a 

vertex-wise estimate of the likelihood with which a location is identified as a RSFC 

boundary (i.e., a spatial gradient of changes in correlation map similarity, or it’s 
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corresponding edge 2) between two locations in the brain (Figure 1b; See Appendix—

Methods for method details)).  The RSFC boundary map reveals locations where 

patterns of RSFC exhibit a transition (hotter colors), and locations where the patterns of 

RSFC are more locally stable (cooler colors).  We hypothesize that the locations of 

transitions are strong candidates for the locations of boundaries between distinct areas.   

 

 

Figure 2-1. Patterns of RSFC exhibit abrupt changes across the cortical surface.  (a) RSFC 
maps were derived for locations (R2-R8) between a region in the posterior extent of the 
cingulate cortex (PCC) and a region in the paracentral lobe (PCL) in a group of subjects (n=40; 
defined anatomically; locations are shown as colored balls).  The plot to the right depicts the 
similarity (spatial correlation) of every location’s RSFC map with the RSFC map of each of the 
other locations.  RSFC maps are similar from PCC to R4, followed by a location of abrupt 
change (R5), and then a second set of locations where the maps are highly self-similar.  
                                            
2 Spatial gradient maps can exhibit features reflecting a high level of variability in the 
magnitude of correlation map changes (cf. Figure 9 – step 6, and Wig, et al 2013), 
suggesting that even adjacent cortical areas identified in this way will not be equally 
separable from one another in terms of their patterns of RSFC. In the present work, we 
have applied an edge detection technique that emphasizes the locations where there is 
a gradient present. The edges are agnostic as to how large the correlation pattern 
change underlying the transition is. Thus large and small correlation pattern changes 
can both have high values in the edge probability map as long as the location of 
transition is consistently identified.  
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Similarity lines and location balls have been color coded to denote greater RSFC similarity with 
PCC (blue) or PCL (pink).  The location whose RSFC map was not similar to either the PCC or 
PCL group (R5) is color-coded orange.  The RSFC maps of a subset of the regions are depicted 
on the lower panel, and two locations with prominent differences between maps are highlighted 
by arrows (the angular gyrus on the lateral views and anterior cingulate gyrus on the medial 
views).   (b) RSFC-Boundary map for a group of subjects (n=40).  The coloring highlights where 
patterns of RSFC exhibit a abrupt transitions (i.e., putative areal borders) and locations where 
patterns of RSFC are relatively stable.   Locations highlighted in panel (a) are displayed on the 
medial surface –the identified transition point (orange) is at a location of high border likelihood. 

 

RSFC-defined borders are highly similar across independent groups of 

individuals 

We argue that group-based parcellation may deemphasize some of the inherent 

variability across groups of individuals (both anatomical and otherwise) to reveal the 

parcellation features (in the current case, areal boundaries3) that are consistent across 

individuals.  If this is the case, then RSFC-Boundary Mapping parcellations from 

independent groups of individuals sampled from the same cohort should be highly 

similar.  Figure 2a depicts group-based RSFC Boundary Mapping maps from three 

independent groups of healthy young adults (N = 40 individuals/group). The spatial 

correlation between the three parcellation maps reveals a high degree of similarity 

across the groups (average spatial correlation:  r = 0.60, range of spatial correlations 

across three maps: r = 0.60 – 0.61).  Visual inspection confirms that the locations of 

many of the putative boundaries between areas are strikingly similar across the three 

groups.  For example, locations along the middle and inferior frontal gyrus exhibit similar 

areal boundaries in each of the three groups providing evidence for distinct divisions 

along the lateral frontal cortex.  Likewise, prominent boundaries within medial-superior 

                                            
3 Parcellation features may also include an areas interior/extent or an areas geometric 
center. 
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frontal cortex, medial parietal cortex (e.g., between posterior cingulate cortex and 

paracentral lobule), medial occipital cortex, and lateral parietal cortex (e.g., between the 

angular gyrus and the lateral aspect of the middle occipital gyrus) are evident in all three 

groups.  To demonstrate the overlap in group-based parcellations, each of the group 

maps was thresholded to reveal the strongest edge probability locations, and a 

conjunction of these images was created (Figure 2b). Conjunction maps were created 

over a range of edge probability thresholds (0.10-0.20) to give a more complete picture 

of the amount of overlap in RSFC-Boundary Mapping features. The putative boundaries 

highlighted earlier can all be observed in these conjunction images, reinforcing their 

consistency. In addition, a final group-based parcellation was derived by combining the 

individuals from the three independent groups into one 120-subject group (Figure 3). 

Not surprisingly, this last group parcellation map is similar to each of the independent 

group parcellations. This 120-subject group parcellation map includes the consistent 

features highlighted in the conjunction maps of figure 2b while also retaining the full 

range of edge probability values across all cortical vertices; it is used in our subsequent 

comparisons. 
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Figure 2-2. RSFC-Boundary Mapping parcellation reliably identifies locations of putative area 
borders. (a) RSFC-Boundary Mapping parcellations are highly similar across 3 independent 
groups of healthy young adults. A subset of locations is pointed out with arrows to highlight the 
high degree of similarity in parcellations.  These locations include regions along the inferior and 
middle frontal gyrus of the left hemisphere (1), a strong border separating angular gyrus from 
the middle-occipital gyrus in the right hemisphere (2), a strong border parallel to the calcarine 
sulcus in the medial occiptal lobe (3), a strong border separating posterior extent of the 
cingulate gyrus from locations in the paracentral lobe (4), and a border which separates 
locations in the anterior cingulate gyrus from more dorsal regions of the medial frontal cortex (4). 
(b) The strongest RSFC-Boundary Mapping borders are consistent across groups. Independent 
conjunction images created by first thresholding each of the three group’s RSFC-Boundary 
Mapping parcellation maps from (a), binarizing the image, and summing the three images to 
demonstrate the consistency in parcellation features across groups. Three edge probability 
thresholds are depicted. 
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Figure 2-3. RSFC-Boundary Mapping parcellation from combined group (N=120) of healthy 
young adult subjects. The coloring highlights where patterns of RSFC exhibit abrupt transitions 
(i.e., putative areal borders) and locations where patterns of RSFC are relatively stable. 

 

RSFC-defined borders exhibit strong correspondence with task-activation 

maps 

To understand the relevance of RSFC-based areal boundaries, it is critical to 

determine whether parcellations derived from the current approach correspond with 

parcellations identified by other modalities. Brain areas perform distinct processing 

operations and a RSFC parcellation map should reveal areal divisions that are 

functionally plausible based on known processing dissociations.  Previous research in 

both our laboratory and others has taken this approach to begin to inform and validate 

RSFC parcellations in numerous cortical locations (e.g., (Nelson et al., 2010b; Wig et al., 

2013), also see (Smith et al., 2009)).  By examining functional activity defined by the 

meta-analysis of large batteries of task-evoked data, we identified a collection of 
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independent locations demonstrating unique fingerprints of functional activity that 

converge with divisions revealed by RSFC borders.  

 

Meta-analysis of task-evoked data reveals locations sensitive to a variety of signal types 

Meta-analyses were conducted on a large collection of independent studies in 

which independent groups of subjects performed different tasks with different stimuli. 

Each meta-analysis was aimed at identifying brain regions that reliably displayed 

significant activity when certain tasks were performed (e.g., reading) or certain signal 

types were expected (e.g., error-related activity). While the analyses were constrained 

by the available datasets (specifically those collected in our laboratory), we were able to 

create meta-analytic maps for task-evoked activity focused on error-related processing, 

task-induced deactivations, task-initiation, memory (episodic retrieval), language 

(reading), and sensorimotor functions.  All study datasets contributing to the meta-

analyses were acquired on a single scanner (a Siemens 1.5 Tesla MAGNETOM Vision 

MRI scanner), which was distinct from the scanner used to acquire the RSFC data (see 

Appendix –Methods for details).  For each dataset, the voxels passing a statistical 

threshold were identified to create a binary mask, and the resultant maps were summed 

to create a conjunction image for the corresponding meta-analysis (for subject, dataset 

and analysis details see (Power et al., 2011)).  This conjunction image indicated how 

often a voxel was identified across all the datasets associated with the given task or 

signal-type.  In this way, each meta-analytic conjunction image represents an estimate 

of the spatial extent of functional areas defined by task-related activity. 
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RSFC borders separate clusters of task-evoked data 

For comparison to the RSFC-Boundary map, we focus on voxels exhibiting 

significant activity in at least 60% of the studies contributing to each task-evoked meta-

analysis. As the comparison is constrained by available datasets, only a portion of the 

total cortical surface is available for comparison between modalities.  Figure 4 

demonstrates that locations demonstrating task-induced activity tend to fall within 

borders defined by RSFC (for purposes of comparison, the 120-subject RSFC-

Boundary map was thresholded at >0.15 edge probability to identify stronger borders).  

In several locations, RSFC-defined borders tightly surround clusters identified in task-

evoked maps.  For example, locations demonstrating task-induced deactivations 

including the medial prefrontal cortex, angular gyrus, and posterior cingulate cortex are 

surrounded by RSFC borders. In other locations, contiguous voxels of activity which 

appear to have multiple local maxima and associated sub-clusters are separated by a 

RSFC border, suggesting the sub-clusters may be parts of different areas (e.g., in the 

motor-response meta-analytic map a task-related cluster in the anterior portion of the 

cingulate gyrus is separated by a RSFC-border from a more dorsal cluster in the medial 

superior frontal cortex likely corresponding to the supplementary motor area, while in 

the episodic-memory meta-analytic map a task-related cluster in the inferior parietal 

lobule is separated by a RSFC-border from a cluster in the angular gyrus). As a 

quantitative confirmation of these qualitative observations, we performed a chi-square 

test of independence between a composite task-map of all cortical locations exhibiting 

task-evoked activity in at least one meta-analytic map and the thresholded RSFC-

Boundary map. The vertices identified as having a high likelihood of being an RSFC-
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defined border and the vertices identified as exhibiting task-evoked data (i.e., putative 

area interiors) came from non-overlapping populations (Χ2 (1, N = 59412) = 220.9, p << 

0.001). 

It is important to note, however, that the correspondence between task-evoked 

activity and RSFC-borders is not perfect at all locations (e.g., not all task clusters are 

perfectly enclosed by RSFC borders).  This may be a consequence of the large 

differences in data acquisition and processing between the two types of data (e.g., 

different scanners, volume-based analysis for task data vs. surface-based RSFC 

parcellation). Indeed, a thorough demonstration of the correspondence between RSFC-

borders and task activations will require datasets that include both data types in the 

same subjects. This caveat notwithstanding, there may remain true discrepancies 

between these modalities that will mandate closer examination of the sources of 

disparity. Resting state and task-evoked activity may highlight different aspects of the 

brain’s functional organization. 
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Figure 2-4. RSFC-Boundary Mapping parcellation exhibits a high degree of correspondence 
with areas defined by task-evoked activity.  Task-evoked activity was derived from meta-
analyses of multiple studies to highlight locations exhibiting sensitivity to performance of certain 
tasks (e.g., reading) or certain signal types (e.g., error-related activity).  The 120-subject RSFC-
Boundary Mapping parcellation was thresholded (edge probability > 0.15) to reveal locations 
exhibiting a high likelihood of being a border between areas.  Many area locations defined by 
task-evoked activity are surrounded by RSFC-borders (e.g., the cluster of activity in the ventral 
medial prefrontal cortex in the task-induced deactivation meta-analytic map).  In other locations 
RSFC-borders separate what appears to be distinct clusters of task-evoked activity, suggesting 
the existence of distinct areas (e.g., a cluster of activity in the inferior parietal lobule is separated 
from a cluster of activity in the angular gyrus in the episodic memory meta-analysis map).  
Parcellations are overlaid on inflated cortical surfaces; some surfaces have been tilted to 
facilitate viewing (i.e., the lateral surface of the right hemisphere in the motor response (button 
pushing) comparison and the lateral surface of the left hemisphere in the error-related activity 
comparison). 
 

RSFC-defined borders respect architectonic divisions in some locations 

In addition to functional dissociations, identifying the transitions in architectonic 

features has been a standard approach towards parcellating human cortical areas since 
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(Brodmann, 1909). More recently, probabilistic maps of a collection of cortical areas 

have been defined by quantitative procedures that measure changes in the laminar 

distribution of cell-body density across the cortical surface in a set of post-mortem 

human brains (Amunts et al., 2000; Schleicher et al., 1990; Schormann et al., 1998).  

Surface-based representations of these maps, as well as a number of other 

parcellations, are available in the sumsDB database (http://sumsdb.wustl.edu/) and 

have been described at greater length elsewhere (Fischl et al., 2008; Van Essen et al., 

2011). Direct comparisons between maps derived from post-mortem dissection of 

human brains and the in-vivo RSFC parcellation described hitherto has clear caveats 

towards interpretation. Determining the precise convergence between architectonics 

and RSFC will be best accomplished by incorporating imaging methods that can reveal 

cellular and sub-cellular features of anatomy, and there are numerous efforts to do so 

(Dick et al., 2012; Glasser et al., 2011; Toga et al., 2006).   Keeping this limitation in 

mind, we describe preliminary observations that suggest RSFC-based parcellations 

may converge with features related to underlying cellular anatomy.  

RSFC borders exhibit overlap with architectonic divisions defining primary 

visual cortex 

While the precise correspondence between probabilistic maps of cyto-

architecture based on post-mortem histology and RSFC-based boundaries may be 

difficult to ascertain due to the very different methods and underlying properties used to 

create these parcellations, we highlight here an important instance where they appear 

to converge. Figure 5a depicts probabilistic estimates of areas 17 and 18 (herein 

referred to as probabilistic area (PA) 17 and 18). These architectonic areas have been 
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shown to have reasonable correspondence with retinotopic maps of V1 and V2 (V1 

more clearly than V2; (Hinds et al., 2009; Van Essen et al., 2011)).  The architectonic 

boundaries are overlaid on a medial occipital view of the RSFC-Boundary map as black 

lines. The border between PA 17 and PA 18 overlaps with a prominent border in this 

map that runs both ventral and dorsal to the calcarine sulcus. These RSFC-based 

borders were also consistently observed in each of the individual group parcellations 

(see arrow ‘3’ in Figure 2).   

Figure 5b demonstrate how RSFC seed maps differ on either side of the RSFC-

Boundary Mapping defined border (calculated across all 120 subjects).  When a seed is 

placed ventral to the calcarine sulcus but dorsal to an RSFC-defined border (grey ball 

labeled ‘17’ in Figure 5a), resting-state correlations are prominent within PA 17 but 

bound by the RSFC-defined borders separating PA 17 from PA 18. Conversely, a seed 

region on the opposing side of the RSFC-defined border (grey ball labeled ‘18’ in Figure 

5a) exhibits the strongest resting-state correlations with locations within PA 18, both 

dorsal and ventral to the calcarine sulcus. The difference between these two seed-

based maps is best appreciated in the statistical difference image (t(119)=3.38, 

p<0.001); a collection of other more distal locations also exhibit differential connectivity 

as a function of seed location. Accordingly, the presence of a RSFC-defined border 

separating PA 17 from PA 18 likely reflects differences in both local and global 

correlation patterns.   

Notably, there are additional borders found by RSFC-Boundary Mapping within 

PA 17. For example, a border running along the calcarine sulcus (red arrow, labeled ‘1’) 

approximates the position of the horizontal meridian in retinotopic maps of V1 and may 
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reflect differences in RSFC between the upper and lower visual fields of V1. Likewise a 

border running along the dorsal-ventral axis mid-way through PA17 may divide the more 

central vs. peripheral visual representations of this area. The presence of additional 

borders within a cortical area characterized by topographic mapping is consistent with 

the RSFC-based division between mouth and hand regions of primary motor and 

somatosensory cortex that has been reported by network estimation methods 

elsewhere (e.g., (Power et al., 2011; Yeo et al., 2011)).  This division of 

motor/somatosensory cortex can also be seen in the parcellation maps presented here 

(e.g., see borders surrounding the dorsal motor cortex surrounding button-push related 

task activity and in the ventral motor cortex surrounding reading-related task activity in 

Figure 5).  Importantly, a number of divisions are also apparent along the pre- and post-

central gyrus, and exhibit correspondence with other probabilistic area divisions (e.g., 

PA 1 vs. 2, PA 2 vs. 3b; see post-central gyrus in lateral views in Figure 4). All together, 

these observations are critical to evaluate: they likely reflect the special nature of the 

information RSFC brings to bear towards understanding area organization and function, 

but also stress caution when interpreting the presence of RSFC boundaries in the 

absence of parcellation information from other modalities. 

The RSFC-Boundary Mapping border corresponding to the PA 17/PA 18 border 

extends somewhat further laterally beyond the occipital pole than the cyto-architectonic 

boundary (while a lateral view is not presented in Figure 5, a lateral view of the RSFC-

Boundary Mapping borders are presented in Figure 3). This discrepancy, along with an 

aberrant border within PA 17 (Figure 5a: red arrow, labeled ‘2’), may be due to 

inadequacies in the scan acquisition and processing – in particular, field distortions 
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and/or signal loss related to vasculature at the occipital pole likely affected the position 

of borders measured here (see subsequent section ‘Additional constraints and 

considerations’ and red arrow labeled ‘4’ in Figure 8a).  

 

 

Figure 2-5. RSFC-Boundary Mapping compared to cyto-architectonically-defined probabilistic 
areas (PA) 17 and 18. (a) Medial occipital view of PA 17 and PA 18 (Fischl, et al 2008) and 120-
subject RSFC-Boundary map. Black lines indicate reasonable boundaries between and around 
areas 17 and 18 as described in Van Essen, et al 2011. The white arrows indicate dorsal and 
ventral RSFC boundaries that appear to closely correspond to the architectonic boundary. The 
RSFC-based borders are also apparent in each of the individual groups (see Figure 2). Red 
arrow 1 indicates a boundary along the calcarine fissure that may correspond to the horizontal 
meridian of PA 17 (Visual Area 1). Red arrow 2 indicates a boundary that is likely due to 
susceptibility artifact at the occipital pole (see Figure 8a) (b) Correlation maps generated from 
ventral PA 17 and PA 18 seeds (white balls) and the differences between them. Green and 
black arrows highlight the locations of strongest correlations for seeds in PA 17 and PA 18, 
respectively. The differences between the two seeds can be best appreciated on the statistical 
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difference map, which is calculated as a surface vertex-wise two-sample t-test between the 
correlation maps of the two seeds.  Note that the contour of the difference image follows the PA 
17/18 boundary. 

 

RSFC can be used to identify the location of area centers 

RSFC patterns can also be leveraged to reveal alternative features that may 

relate to area organization.  So far, we have described how identifying locations where 

patterns of RSFC exhibit an abrupt transition can be used for identifying borders 

between putative areas.  An alternative strategy is to focus on identifying the interior (or 

central) parts of areas rather than the boundaries between them. We use an RSFC 

approach that aims to directly identify these interior regions and suggests that 

independent RSFC-based areal center identification may help parcellate areas that are 

not clearly distinguished by RSFC-Boundary Mapping (Wig et al., 2013). In general, 

these two approaches to RSFC-based area definition should be highly complimentary to 

one another. 

 

RSFC-Snowball sampling identifies locations where resting-state correlation peaks 

aggregate 

Our method for identifying candidate locations for the central portions of areas 

combines seed-based RSFC with principles inspired by social network science and 

graph theory (Snowball Sampling; (Goodman, 1961; Wasserman et al., 1994)).  RSFC-

Snowball sampling first identifies the peaks of correlation (i.e., neighbors) from a seed-

based RSFC map, and then iteratively tracks the neighbor’s of these neighbors through 

multiple stages.  To minimize sampling bias, this basic process is repeated from 

numerous starting locations across the brain, and the output of each sampling 
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procedure is aggregated to arrive at a final peak density map.  We have previously 

described the details of using this method for parcellating an individual subject’s cortical 

and subcortical brain structures; RSFC-Snowballing parcellation maps are reliable 

within an individual scanned over multiple days, and area center locations defined by 

RSFC-Snowballing correspond with area center locations defined by task-evoked data 

(Wig et al., 2013).  To parallel the present group-based RSFC-Boundary Mapping 

parcellation observations, a method for extending the RSFC-Snowballing method to the 

level of groups is presented in the Appendix section.  

  

RSFC-defined centers and borders compliment one-another 

An RSFC-Snowballing peak density map was derived for the group of 120 

individuals.  Rather than being randomly or uniformly distributed, the RSFC-Snowballing 

map exhibits a structured distribution, with some locations having many peaks, and 

others having very few.  If RSFC-Boundary Mapping identifies the locations of putative 

boundaries between areas and RSFC-Snowballing identifies the locations of putative 

centers of areas, peak density values should be less prominent at locations that are 

transition points (or boundaries) and more prominent within boundary interiors.  

Simultaneously viewing the strong borders defined by RSFC-Boundary Mapping and 

the strong centers defined by RSFC-Snowballing suggests this expectation may be true 

(Figure 6).  Importantly, each of the two methods appear to reveal unique parcellation 

features in some locations (e.g., two area centers identified by RSFC-Snowballing in the 

posterior-inferior temporal cortex are surrounded by an area border defined by RSFC-

Boundary Mapping on the lateral right hemisphere), suggesting the two methods are not 
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completely redundant with one another and can be used in combination for the 

purposes of RSFC parcellation (for more detailed examples and discussion see (Wig et 

al., 2013)).  This is consistent with the negative, but non-perfect relationship between 

the two RSFC-based parcellation maps (r = - 0.14, p<<0.001).  

The non-perfect relationship noted above may be surprising, given that both 

methods of area parcellation focus on patterns of RSFC. This observation may related 

to a practical as opposed to conceptual difference between the methods — 

operationally, the thresholds that are most useful for a given method of parcellation may 

miss distinctions in another method of parcellation and the different processing steps for 

each method may accentuate and attenuate non-overlapping sources of noise in RSFC.  

For example, adjacent areas that share very similar patterns of RSFC would have a 

weak boundary between them, yet the area centers might be highlighted by RSFC-

Snowballing. Along these lines, there are trade-offs between methods that focus on 

borders between areas versus methods that attempt to identify area interiors. Relying 

on borders may result in parcellations with discontinuous boundaries if there are 

differences in the strength of RSFC transitions between an area and the various areas 

that are adjacent to it. Likewise, focusing on area centers may result in a parcellation 

with a poor representation of area extent. Accordingly, just as it is important to focus on 

multiple modalities to accurately parcellate areas, it is advantageous to focus on 

multiple features that may distinguish areas (i.e., boundaries and centers or interiors). 
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Figure 2-6. Area borders defined by RSFC-Boundary Mapping surround area centers defined 
by RSFC-Snowballing.  RSFC-Snowballing parcellation of 120 subjects reveals the locations of 
putative area interiors (centers).  This RSFC-Snowballing parcellation map was thresholded to 
highlight vertices with high area center likelihood (peak density > 0.03). The 120-subject RSFC-
Boundary Mapping parcellation was thresholded to reveal locations exhibiting a high likelihood 
(edge probability > 0.15) of being a border between areas.  Each parcellation method reveals 
different area features (i.e., interiors and borders) and many locations exhibit a high degree of 
correspondence between the methods (e.g., running above the posterior cingulate sulcus in the 
left medial hemisphere and the right anterior insula in the right lateral hemisphere highlighted by 
white boxes).  In other locations, a given parcellation method may identify features not revealed 
by the other (e.g., two area centers identified by RSFC-Snowballing [pointed out with white 
arrows] are surrounded by an area border defined by RSFC-Boundary Mapping on the lateral 
right hemisphere) encouraging the use of multiple methods for RSFC-based parcellation. 

	  

RSFC-defined borders overlap with RSFC-defined system boundaries, but 

also reveal plausible areal divisions within the identified systems 

Voxels can be clustered or grouped based on the similarity of their resting-state 

time series or their RSFC maps (e.g., using community detection, clustering algorithms, 
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or independent component analysis (ICA)4; e.g., (Doucet et al., 2011; Mumford et al., 

2010; Power et al., 2011; Smith et al., 2009; Yeo et al., 2011)).  In some cases, the 

identified clusters have demonstrated a considerable degree of overlap with functionally 

defined systems, providing evidence that patterns of RSFC can be used to identify 

system-level organization (e.g., (Power et al., 2011; Smith et al., 2009)). Although many 

clustering approaches have been described as methods of parcellation, it is important to 

recognize that the purpose (and the outcome) of these analyses typically differ from the 

work presented here.  Community detection, clustering, and component separation 

techniques operate on a data space that is blind to the underlying neuroanatomy.  As a 

consequence, RSFC-based clustering techniques are capable of identifying collections 

of voxels or locations with similar properties, but these collections are not bound by 

space and may also group distinct adjacent areas into a single cluster. Accordingly, the 

majority of clustering analyses have typically identified locations that are functionally 

similar and may compose a given system (e.g., the visual system or the default system), 

but do not necessarily parcellate areas themselves (e.g., V1 versus V2 of the visual 

system, etc.). Direct comparisons of RSFC-defined system divisions and RSFC-based 

area parcellation provide illustrations of this important distinction   

 

RSFC clusters, communities, and components are not equivalent to areas 

Brain systems are defined as groups of functionally related areas (Sejnowski et 

al., 1989) and RSFC clustering techniques have identified collections of areas (or 

                                            
4 While there are important differences across each of these methods, for simplicity we 
will refer to the collection of methods as ‘clustering techniques’ and the identified units 
as ‘clusters’.  
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technically, regions/voxels) that likely represent functional brain systems at the scales 

that have been prominently explored.  It is important to point out that the voxels 

corresponding to a given cluster are often spatially discontiguous, and can even span 

the length of the brain (e.g., groupings labeled as the default system typically include 

voxels in the medial prefrontal cortex and posterior parietal cortex; Figure 7a). It should 

be clear based on this discontinuity alone that the identification of a cluster may reflect a 

granularity of organization that should not be confused with the parcellation of an area.   

 

RSFC-defined area borders are consistent with RSFC-defined system boundaries in 

many locations 

If clustering techniques are capable of identifying putative systems, and systems 

are composed of areas, the locations of system divisions should overlap with the 

locations of some areal boundaries. Figure 7b depicts the correspondence between 

system divisions (i.e., transitions between two adjacent clusters) and the 120-subject 

RSFC-Boundary map.  As expected, many locations that are system divisions exhibit 

high RSFC-Boundary mapping edge probabilities.    

A direct comparison of RSFC-defined boundaries and two published systems 

maps (Power et al., 2011 and Yeo et al., 2011) was conducted.  Figure 7c depicts the 

distribution of edge probability values across all cortical vertices. Two separate 

distributions are presented in each histogram: the subset of edge probability values 

located at cortical vertices that were identified as system divisions (colored in yellow 

(Power et al., 2011) and orange (Yeo et al., 2011)), and the subset of edge probability 

values located at cortical vertices that were not identified as system divisions (colored in 
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purple). Locations of system divisions exhibited higher edge probability values than the 

locations not identified as system divisions5 (Power et al. (2012) division comparison:  

Median edge probability at locations that are system divisions: 0.168, median edge 

probability at locations that are not system divisions:  0.144, W(57034) = 492580832, z 

= 19.5, p<<0.0001; Yeo et al. (2012) division comparison:  Median edge probability at 

locations that are system divisions: 0.174, median edge probability at locations that are 

not system divisions:  0.143, W(57034) = 471727456, z = 28.0, p<<0.0001).  

 

RSFC-defined systems contain multiple areal divisions 

The locations of putative system divisions revealed by clustering techniques 

coincide with the locations of several strong putative area boundaries as identified by 

RSFC-Boundary Mapping. One might try to use clustering techniques for parcellation by 

segregating a cluster into portions that only contain adjacent voxels and label these 

sub-clusters as areas. However, there is strong reason to be cautious in this regard.  As 

a prominent example, it should be apparent that this would result in large portions of the 

visual system highlighted using various methods in Figure 7a (blue community or red 

cluster) being labeled as a single area.  Consistent with this, it is apparent that many 

locations not identified as system divisions exhibit high edge probability (RSFC 

boundary) likelihood (see purple bars in histograms depicted in Figure 7c).  These 

                                            
5 Kolmogorov-Smirnov goodness-of-fit hypothesis tests revealed that the distributions of 
the RSFC-Boundary Mapping edge probabilities were non-normal and log 
transformation did not achieve normality.  Accordingly, a Wilcoxon rank sum test was 
used to determine the probability with which the two distributions had equivalent 
medians. 
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observations support the notion that system divisions are not a comprehensive 

representation of area boundaries. 

Further comparison of RSFC-derived clusters and communities to RSFC-derived 

borders confirms that, in some cases, multiple strong boundaries can be found within a 

single contiguous portion of a cluster or community.  We have already pointed out the 

parcellation of PA17/PA18 using RSFC-Boundary Mapping; here we highlight a portion 

of the left lateral inferior frontal cortex as an additional example of a location where 

multiple boundaries are observed within a cluster.  Two independent techniques 

(community detection (yellow in Power et al. (2012)) and clustering (orange in Yeo et al. 

(2012))) identified similar clusters of continuous voxels spanning the extent of the left 

inferior/middle frontal gyrus (Figure 7d).   However, the RSFC-Boundary Mapping 

parcellation suggests the presence of 3 strong borders (corresponding to 4 putative 

areas) within these clusters.  While it is possible that the presence of RSFC-Boundary 

Mapping divisions simply reflect subtle and progressive distinctions within a single area, 

this would be inconsistent with the architectonic divisions that have been noted along 

this part of the brain (e.g., Brodmann’s areas 44-47 and possibly 10).  Furthermore, 

examination of the seed-based RSFC maps obtained from locations within each of 

these divisions suggests otherwise (the most posterior location (4) has a RSFC map 

most similar to the most anterior location (1), which are quite distinct from maps 

obtained from locations (2) and (3); Figure 7e).   

Why do clustering techniques behave differently than the RSFC-Boundary 

Mapping parcellation method highlighted here? Clustering techniques, for a given a 

priori or data-determined number of clusters, will identify groups of voxels that minimize 
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RSFC similarity distance within clusters while simultaneously maximizing RSFC 

similarity distance between clusters. This focus on maximizing global separation may 

come at the cost of more local distinctions. In contrast, parcellation methods that rely on 

local feature changes (such as RSFC-Boundary Mapping) will be more sensitive to 

transitions in cortical identity (e.g., from V1 to V2 in Figure 6). It may be possible for a 

clustering technique to identify a collection of voxels that corresponds to a single area if 

the method is invoked using both an appropriate level of granularity and with spatial 

constraints. However, complete partitioning at a given spatial scale (e.g., systems or 

areas) would require a perfectly hierarchical RSFC structure. The appropriate level of 

the RSFC hierarchy to define a given cortical area may be the same level that defines a 

system of areas elsewhere. As such, just as is the case with RSFC-Boundary Mapping, 

appropriate comparisons are necessary to understand the clustering observations 

further and ensure biological plausibility. 
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Figure 2-7. RSFC-Boundary Mapping compared to RSFC-defined systems boundaries. (a) 
Large-scale cortical systems derived from RSFC community detection (Power et al, 2011) and 
clustering (Yeo et al, 2011).  Dotted boxes indicate approximate view in (d). (b) RSFC-based 
system divisions (community divisions from Power et al., 2011; cluster divisions from Yeo et al., 
2011) overlaid on 120-subject RSFC-Boundary map depict the correspondence between the 
two types of maps. (c) Histograms depicting the distribution of edge probabilities for locations 
that were identified as system divisions as defined by Power et al. (yellow) and Yeo et al. 
(orange) and locations that were not identified as system divisions (purple in both). Note that 
system division edge probabilities are slightly right shifted relative to the edge probabilities of 
the remaining locations (i.e. tend to have higher edge probabilities), but there remain many 
locations with high edge probabilities that are not accounted for by system divisions (d) Close-
up of lateral frontal cortex showing frontal-parietal system borders overlaid on RSFC-Boundary 
map. Four white balls indicate local minima in the RSFC-Boundary map. (e) The spatial 
correlation (Pearson’s r) between the four correlation maps generated from the local minima 
positions indicated in (d). Note that the most anterior (1) and most posterior (4) seeds have very 
similar correlation maps. The two intermediate seeds (2,3) show similar patterns as seeds 1 and 
4, but also differ markedly in certain regions, e.g. along the lateral frontal cortex (arrows) and in 
posterior cingulate cortex (dotted circle), providing evidence that there are numerous areas 
within a single system location. 
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Additional constraints and considerations 

While we have attempted to point out potential caveats and sources that require 

particular further attention, we highlight here additional considerations in the application 

of RSFC for area parcellation. Specifically, we focus on the relationship between RSFC-

defined boundaries and BOLD signal strength and surface geometry, and also make 

some comments on parcellation of subcortical structures using patterns of RSFC. 

 

Relationship of RSFC-defined borders to BOLD signal strength 

It is important to note that observed transitions in the patterns of RSFC may not 

be neurobiologically relevant. In particular, boundaries that correspond to BOLD signal 

differences relating to variable BOLD sensitivity across the brain (e.g. due to magnetic 

field inhomogeneties arising from adjacent structures with different magnetic 

susceptibilities (Frahm et al., 1988)) are likely of little interest in the context of cortical 

parcellation. With this in mind, we compared the RSFC-Boundary maps to the BOLD 

signal strength across the brain. Mean BOLD signal was calculated by averaging the 

first frame of acquisition (post-steady state magnetization) from all subjects (Ojemann et 

al., 1997). A small positive correlation (r=0.12) was found between the change in the 

mean BOLD signal along the cortical surface (measured by the gradient, or spatial 

derivative, of the mean BOLD signal) and the 120-subject RSFC-Boundary map. BOLD 

signal strength changes may account for a small amount of variability in the RSFC-

Boundary map, but even this may be largely confined to regions known to have 

significant signal loss. Figure 8a depicts the pattern of BOLD signal dropout in our data. 

BOLD data was normalized to a mode of 1000 during preprocessing.  Accordingly, a 
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mean BOLD signal of 800 or less (depicted in orange shades) represents a substantial 

attenuation of signal. Boundaries in the ventral portion of the temporal lobe (red arrow 

1) and in orbitofrontal cortex (red arrow 2) are clearly suspect given the large signal loss 

in these regions. Similarly, the boundaries along the superior temporal gyrus (red arrow 

3) and at the occipital pole (red arrow 4) may be explained by the decreased signal in 

these regions. Leaving out regions with substantial signal loss (i.e. BOLD<800) 

significantly reduces the correlation between the change in BOLD signal strength and 

the RSFC-Boundary map (r=0.07). We conclude that for much of the brain changes in 

BOLD signal strength do not account for the presence of RSFC-defined boundaries. 

Field map-based distortion correction, which was not carried out here as many subjects 

in our cohort had not been collected with field maps, may help ameliorate distortion-

related effects, but would not be able to repair boundaries related to frank signal loss.  

Consideration of artifacts such as these are critical to keep in mind when interpreting 

boundaries and highlight regions of the brain where RSFC-based tools will struggle to 

generate meaningful parcellation without further processing or acquisition refinements. 
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Figure 2-8. RSFC-Boundary Mapping compared to BOLD signal strength and surface geometry. 
(a) Mean BOLD signal from the first frame of resting state data from 120 subjects overlaid on 
RSFC-Boundary map. Regions with BOLD signal less than 800 (BOLD signal has been mode 
1000 normalized) can be seen in orange-yellow. Signal loss is apparent in ventral temporal (red 
arrow ‘1) and orbitofrontal (red arrow ‘2’) regions, superior temporal gyrus (red arrow ‘3’), and 
the occipital pole (red arrow  ‘4’). (b) Lateral parietal-occipital (right) and lateral frontal views of 
RSFC-Boundary map compared to surface geometry. Left panels show full range RSFC-
Boundary map, middle panels show RSFC-Boundary map thresholded at 0.15 boundary 
frequency, and right panels show average surface convexity of Conte-69 atlas (darker and 
brighter values on this surface represent sulcal and gyral regions respectively). Red arrows 
indicate gyral crowns where there is an absence of a strong RSFC-defined border and blue 
arrows indicate regions in which RSFC boundaries cross over sulcal fundi. 

 
Relationship of RSFC-defined borders to surface geometry 

Areal borders need not respect morphometric divisions.  For example, the 

primary visual area (V1) spans both sides of the calcarine sulcus, reflecting the upper 

and lower representations of the visual field in this area (e.g., (Dougherty et al., 2003)).  

However, a number of strong borders defined by RSFC-Boundary Mapping follow 
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prominent gyral and sulcal landmarks: strong RSFC borders are present along the 

central sulcus (from dorsal to ventral) and along the cingulate gyrus (from anterior to 

posterior). While some of these divisions may be consistent with areal divisions (e.g., 

the primary motor and somatosensory areas follow the central sulcus along the pre- and 

post-central gyri, respectively), one concern is that the identification of RSFC-Boundary 

Mapping borders is biased by surface geometry (for example, as a consequence of the 

volume-to-surface processing and analysis stream; see methods in Appendix—

Methods). Indeed, the RSFC-Boundary map has a small positive correlation with the 

average convexity of the Conte69 atlas (r=0.11). A number of observations mitigate this 

concern however.  Figure 8b highlights a few examples in the frontal and 

temporal/parietal cortex where strong RSFC boundaries are not found along gyral 

crowns (red arrows), as well as examples of regions where strong RSFC boundaries 

cross over sulcal fundi (blue arrows). While it is conceivable that RSFC borders follow 

morphometric landmarks in some locations as a consequence of the presence of an 

areal division, we do not view gyral and sulcal features as the causal source of group-

level RSFC borders. We recognize that the previous observations do not completely 

rule out the possibility that inter-individual variability in surface geometry may be 

masked when individuals are combined into a group, and that geometric bias may be 

present when RSFC borders are computed on individual subjects. With respect to the 

latter point, observations in our laboratory suggests otherwise (e.g., see supplemental 

figure 3 in (Wig et al., 2013)). 

RSFC-based parcellation of subcortical structures 
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While we have focused our present discussions on parcellation of cortical areas, 

many of the general points we have made are applicable to subdividing subcortical 

structures, with some caveats. For example, the gradient-based approach described 

here is applied primarily for the 2-dimensional parcellation of the cortical sheet; 

subcortical structures, however, are not arrayed on a sheet, but rather are organized as 

nuclei having, sometimes complex, 3-dimensional forms. As such, different approaches 

are necessary for their parcellation. The gradient-based strategy for finding RSFC 

pattern transitions can naturally be extended into 3-dimensions for this purpose, though 

we do not present such an approach here. The current form of the RSFC-Snowballing 

procedure is not limited to the cortical surface and is capable of identifying area centers 

within subcortical structures, which in fact is highlighted elsewhere (Wig et al., 2013). In 

addition, clustering approaches have clearly demonstrated the ability to partition 

subcortical structures according to RSFC correlations (e.g., (Barnes et al., 2010; Zhang 

et al., 2008)). As with the cortex, much work remains to be done comparing apparent 

RSFC-based distinctions with other modalities to understand how RSFC information in 

the subcortical nuclei and the cerebellum converges with and/or diverges from other 

properties of brain organization and function. 

2.3 Concluding comments 

Patterns of RSFC exhibit abrupt transitions across the brain and recent advances 

in BOLD imaging acquisition and analysis have facilitated the development of tools to 

map the locations of these changes across the cortical surface (RSFC-Boundary 

Mapping).  Throughout this report, we have described some prominent observations 

where the locations of putative areal divisions as defined by RSFC-Boundary Mapping 
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converge with features from other parcellation modalities as well as other RSFC 

analysis methods.   

Where possible, we have attempted to highlight observations and issues that 

necessitate particular attention in order to more fully understand and interpret the 

parcellation information gleaned from RSFC-based approaches.  Of course, as the 

nature and source of RSFC signals is continually explored, we suspect our 

understanding of RSFC-based area parcellation will also be modified.  For example, 

deeper understanding of the non-stationary nature of RSFC signals (e.g., (Chang et al., 

2010; Smith et al., 2012)) and of the sensitivity of RSFC to various sources of spurious 

noise (e.g., (Birn et al., 2006; Chang et al., 2009; Power et al., 2012; Satterthwaite et al., 

2012; Van Dijk et al., 2012)), as well as improved image acquisition and processing 

techniques (De Martino et al., 2011; Van Essen et al., 2012b) will likely aid our ability to 

use RSFC for parcellating cortical and subcortical areas.     

The parcellation of brain areas relies on distinctions related to function, 

architectonics, connectivity and topography.  While the earliest parcellation of human 

cortical areas relied on invasive approaches such as post-mortem dissection (e.g., 

(Brodmann, 1909; Vogt et al., 1919)) or intra-cranial recording (e.g., (Jasper et al., 

1954)), recent advances in brain imaging have enabled continual improvements and 

refinement in our understanding of the properties and methods for identifying areal 

divisions ((Toga et al., 2006); the present special issue on In Vivo Brodmann Mapping in 

Neuroimage).  As has been the case with parcellation of non-human cortical areas, it is 

likely that no single feature will serve to parcellate all cortical and subcortical structures.  

Accurate and informative parcellation has been accomplished by the careful 
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consideration of multiple converging features.  In additional to distinctions identified by 

examining patterns of evoked-activity, connectional anatomy, architectonics, and 

topography, we feel there is sufficient and compelling evidence to suggest that patterns 

of RSFC provide confirmatory and complementary information for the purposes of 

parcellating cortical areas and subcortical divisions of the brain.  We urge interested 

readers to explore and utilize our RSFC-based parcellation maps for themselves, we 

have made these maps available on our laboratory website 

(http://www.nil.wustl.edu/labs/petersen/Publications.html).  

2.4 Appendix – Methods 

Subjects 

RSFC from a total of 120 healthy young adult subjects was analyzed for 

parcellation (60 females, mean age = 25 years, age range = 19-32 years).  All subjects 

were native speakers of English and were right-handed. Subjects were recruited from 

the Washington University community and were screened with a self-report 

questionnaire to ensure that they had no current or previous history of neurological or 

psychiatric diagnosis. Informed consent was obtained from all subjects.  The study was 

approved by the Washington University School of Medicine Human Studies Committee 

and Institutional Review Board   

 

Data acquisition parameters 

Structural and RSFC (functional) MRI data were obtained with a Siemens 

MAGNETOM Trio Tim 3.0T Scanner (Erlangen, Germany) and a Siemens 12 channel 

Head Matrix Coil. To help stabilize head position, each subject was fitted with a 
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thermoplastic mask fastened to holders on the headcoil.  A T1-weighted sagittal 

magnetization-prepared rapid acquisition gradient echo (MP-RAGE) structural image 

was obtained (TE=3.08ms, TR(partition)=2.4s, TI=1000ms, flip angle=8°, 176 slices with 

1x1x1mm voxels) (Mugler et al., 1990). An auto align pulse sequence protocol provided 

in the Siemens software was used to align the acquisition slices of the functional scans 

parallel to the anterior commissure-posterior commissure (AC-PC) plane and centered 

on the brain. This plane is parallel to the slices in the Talairach atlas (Talairach et al., 

1988).  

During RSFC data acquisition, subjects were instructed to relax while fixating on 

a black crosshair that was presented against a white background.  Functional imaging 

was performed using a blood oxygenation level-dependent (BOLD) contrast sensitive 

gradient echo echo-planar sequence (TE=27ms, flip angle=90°, in-plane resolution=4x4 

mm). Whole brain EPI volumes (MR frames) of 32 contiguous, 4 mm-thick axial slices 

were obtained every 2.5 seconds. A T2-weighted turbo spin echo structural image 

(TE=84ms, TR=6.8s, 32 slices with 1x1x4 mm voxels) in the same anatomical planes as 

the BOLD images was also obtained to improve alignment to an atlas.  The number of 

volumes obtained from subjects ranged from 184 to 729 (mean = 336 frames).  

 

Image preprocessing 

Functional images were first processed to reduce artifacts (Miezin et al., 2000). 

These steps included: (i) correction of odd vs. even slice intensity differences 

attributable to interleaved acquisition without gaps, (ii) correction for head movement 

within and across runs and (iii) across-run intensity normalization to a whole brain mode 
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value of 1000.  Atlas transformation of the functional data was computed for each 

individual using the MP-RAGE scan. Each run was then re-sampled to an isotropic 3-

mm atlas space (Talairach et al., 1988), combining movement correction and atlas 

transformation in a single cubic spline interpolation (Lancaster et al., 1995a; Snyder, 

1996). This single interpolation procedure avoids blurring that would be introduced by 

multiple interpolations. All subsequent operations were performed on the atlas-

transformed volumetric time series. 

 

RSFC preprocessing 

Several additional preprocessing steps were utilized to reduce spurious variance 

unlikely to reflect neuronal activity in RSFC data.  RSFC preprocessing was performed 

in two iterations.  In the first iteration, RSFC preprocessing included, in the following 

order: (i) multiple regression of the BOLD data to remove variance related to the whole 

brain signal (cf. (Scholvinck et al., 2010)), ventricular signal, white matter signal, six 

detrended head realignment parameters obtained by rigid body head motion correction, 

and the first-order derivative terms for all aforementioned nuisance variables. (ii) a 

band-pass filter (0.009 Hz < f < 0.08 Hz), (iii) volumetric spatial smoothing (6 mm full 

width at half maximum in each direction).6 

Following the initial RSFC preprocessing iteration, to ameliorate the effect of 

motion artifact on RSFC correlations, data was processed following the recently 

described ‘scrubbing’ procedure (Power et al., 2012). Temporal masks were created to 

flag motion-contaminated frames so that they could be ignored during subsequent 

                                            
6 Volumetric smoothing was only performed as a RSFC preprocessing step for RSFC-
Snowballing.  
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nuisance regression and correlation calculations. Motion contaminated volumes were 

identified by frame-by-frame displacement (FD, calculated as the sum of absolute 

values of the differentials of the 3 translational motion parameters and 3 rotational 

motion parameters) and by frame-by-frame signal change (DVARS). Volumes with FD > 

0.3 mm or DVARS > 3% signal change were flagged. In addition, the two frames 

acquired immediately prior to each of these frames and the two frames acquired 

immediately after these frames were also flagged to account for temporal spread of 

artifactual signal resulting from the temporal filtering in the first RSFC preprocessing 

iteration. 

The RSFC preprocessing steps outlined above (steps i – iii; including nuisance 

regression, temporal filtering, and volumetric smoothing) were applied in the second 

iteration on RSFC data that excluded volumes flagged during motion scrubbing.  The 

mean percent of frames excluded from the remaining subjects was 26% (range:  1%-

26.0%).  All subjects had a minimum of 126 frames remaining after RSFC 

preprocessing (mean = 245 frames). 

 

Surface preprocessing 

Following volumetric registration, each subject’s MP-RAGE image was 

processed to generate anatomical surfaces using FreeSurfer’s default recon-all 

processing pipeline (version 5.0).  This pipeline included brain extraction, segmentation, 

generation of white matter and pial surfaces, inflation of the surfaces to a sphere, and 

surface shape-based spherical registration of the subject’s ‘native’ surface to the 

fsaverage surface (A. M. Dale et al., 1999; A.M. Dale et al., 1993b; Fischl et al., 1999; F 
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Ségonne et al., 2004; Florent Ségonne et al., 2005). The fsaverage-registered left and 

right hemisphere surfaces were brought into register with each other using deformation 

maps from a landmark-based registration of left and right fsaverage surfaces to a hybrid 

left-right fsaverage surface (‘fs_LR’; (Van Essen et al., 2011)) and resampled to a 

resolution of 164,000 vertices (164k fs_LR) using Caret tools (Van Essen et al., 2001).  

Finally, each subject’s 164k fs_LR surface was down-sampled to a 32,492 vertex 

surface (fs_LR 32k), which allowed for analysis in a computationally tractable space 

while still oversampling the underlying resolution of BOLD data used in subsequent 

analyses. The various deformations from the ‘native’ surfaces to the fs_LR 32k surface 

were composed into a single deformation map allowing for one step resampling. The 

above procedure results in a surface space that allows for quantitative analysis across 

subjects as well as between hemispheres. A script for this procedure is available on the 

Van Essen Lab website (Freesurfer_to_fs_LR Pipeline, http://brainvis.wustl.edu). 

 

RSFC-Boundary Mapping 

RSFC-Boundary Mapping identifies transitions in resting state correlations across 

the cortical surface. Cohen et al.’s (2008) original approach applied 2-D image 

processing tools to BOLD data sampled from patches on a flattened cortical surface 

(e.g., (Nelson et al., 2010b)). Flattening the surface induces distortions in the surface 

representation that could lead to spurious boundary identification. The current 

implementation of RSFC-Boundary Mapping avoids this issue by performing all 

computations directly on a closed surface topology.  The analysis is now also applied to 

the entire cortical surface as opposed to small selected patches of cortex. The details of 
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this procedure have been described for individual subjects elsewhere (Wig et al., 2013). 

Here we apply the method to groups of individuals. 

A flowchart of the RSFC-Boundary Mapping procedure can be seen in Figure 9. 

The RSFC BOLD time courses7 were first sampled to each subject’s individual ‘native’ 

midthickness surface (generated as the average of the white and pial surfaces) using 

the ribbon-constrained sampling procedure available in Connectome Workbench 0.7. 

This procedure samples data from voxels within the gray matter ribbon (i.e. between the 

white and pial surfaces) that lay in a cylinder orthogonal to the local midthickness 

surface weighted by the extent to which the voxel falls within the ribbon—it is designed 

to minimize partial-volume effects arising from the low sampling resolution of the BOLD 

data relative to the structural image acquisition (Glasser et al., 2011).  Once sampled to 

the ‘native’ surface, the time courses were smoothed along the surface using a 

Gaussian smoothing kernel (σ = 2.55). The smoothed time courses were deformed and 

resampled from the individual’s ‘native’ surface to the 32k fs_LR surface in a single step 

using the deformation map generated as described above.  

Each surface vertex’s time course was correlated with the time courses from 

every voxel in a brain mask to generate full volume correlation maps (32492 vertices x 

65549 voxels). Each correlation map was transformed using Fisher’s r-to-z 

transformation (Zar, 1996) and averaged across subjects. Full volume correlation maps 

were used instead of surface correlation maps in order to ensure that sub-cortical 

correlation relationships contributed to areal parcellation.  A RSFC map similarity matrix 

                                            
7 No spatial smoothing was performed in the volume during pre-processing for RSFC-
Boundary Mapping so as to minimize again partial-volume effects and cross-sulcal data 
blurring. 
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was created by calculating the spatial correlation between every vertex’s RSFC 

correlation maps with one another, producing a 32k x 32k matrix. Each row of this 

matrix corresponds to a map on the cortical surface wherein the values reflect the 

similarity of a given vertices RSFC map with the RSFC map of every other vertex. To 

find positions where RSFC similarity exhibited abrupt changes, the similarity maps were 

first Gaussian smoothed along the surface (σ = 2.55) and the first spatial derivative was 

computed using the ‘metric-gradient-all’ function available in Caret 5.65.  This resulted 

in 32k ‘gradient’ maps for each hemisphere. These gradient maps represent the 

essential feature of RSFC transition we aim to identify. As a further refinement relative 

to whole-brain boundary maps presented in previous work (Wig et al., 2013), in order to 

sharpen observed borders and facilitate identification of even subtle differences in 

correlation patterns, we applied a non-maxima suppression procedure to each of the 

gradient maps, creating 32k ‘edge’ maps. This technique identifies a vertex as an edge 

if it is a gradient maxima with respect to at least two pairs of spatially non-adjacent 

neighboring vertices (each of the 32k vertices has six neighbors, except 12 which have 

five neighbors). The non-linear nature of this step makes it susceptible to potentially 

uninteresting noise in the input data; averaging correlation maps from many subjects 

minimizes this possibility.  Finally, the 32k ‘edge’ maps from each hemisphere were 

averaged to indicate the frequency with which a given vertex was identified as an edge.   
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Figure 2-9. RSFC-Boundary Mapping procedure. (1) Resting state time courses are first 
sampled to each subject’s native midthickness surface and smoothed along the surface.  (2) 
The sampled data is then deformed and resampled to the 32k fs_LR surface space (Van Essen, 
et al 2011). (3) Full volume RSFC maps are calculated for all surface vertices and averaged 
across all subjects. (4) The spatial correlation between all RSFC maps is calculated generating 
a 32,492 x 32,492 vertex matrix. (5) Each column of this matrix represents each surface vertex’s 
RSFC similarity map. (6) The spatial gradient of each RSFC similarity map is taken. (7) Edges 
in the gradient map are then highlighted by non-maxima suppression (where 1 indicates an 
edge and 0 indicates no edge). (8) Finally, the edge maps from all vertices are averaged 
together; this generates a final RSFC-Boundary map that indicates how frequently an edge was 
detected at each vertex (edge probability). 

 

RSFC-Snowball Sampling 

RSFC-Snowball sampling (RSFC-Snowballing) identifies locations that exhibit a 

high density of resting-state correlations to other locations in the brain.  Peak density 

values are lesser at locations that are transition points (or boundaries) between 
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adjacent areas and greater within an area’s interior (or center).  Therefore, the voxel-

wise distribution of peaks can be used to identify the locations of area centers. A 

separate report describes RSFC-Snowballing for parcellating cortical and sub-cortical 

structures in an individual subject (Wig et al., 2013).  As with RSFC-Boundary Mapping, 

we describe here the method for application to groups of individuals.     

RSFC-Snowballing is an iterative procedure that uses seed-based RSFC to 

identify locations correlated with a starting seed location (i.e., the ‘neighbors’ of the seed, 

in a graph theoretic sense), and then identifies the neighbors of the neighbors, and so 

forth over multiple iterations (zones). RSFC-Snowballing is initialized from multiple 

starting seed locations (i.e., from a pre-defined set of coordinates) creating a peak 

density map for each starting location. The peak density maps derived from each 

starting location are combined to arrive at an aggregate peak density map (Figure 10).  

In the present analysis, the starting location set was defined from a meta-analysis of 

task-evoked data, which identified 151 task-defined centers across cortical and sub-

cortical structures (for details see (Wig et al., 2013)).  Aggregating the peak density 

maps from multiple starting locations minimizes the potential bias of a single starting 

seed location and provides estimates of area centers across broad expanses of the 

brain’s cortical and subcortical structures.  
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Figure 2-10. Overview of RSFC-Snowballing using multiple starting seed locations.  (a) 
Initialization location set consisting of cortical and sub-cortical seed locations (n=151) defined by 
meta-analysis of task-evoked data.  (b) For each seed location in the initialization location set, 
RSFC-Snowballing iteratively identifies the neighbors (peaks of RSFC correlation) of seed ROIs 
over multiple zones and adds these neighbors to a peak density map.  (c) The independently 
derived peak density maps from each of the seed locations of the initialization location set are 
summed to arrive at an aggregate peak density map presumed to reflect the likelihood with 
which a given location is an area center. 

A neighbor of a given seed need not be physically adjacent to the seed, but 

rather is defined by the presence of a RSFC relationship above a given correlation 

threshold. Neighbor identification was conducted by calculating seed-based statistical 

correlation maps across the group of individuals.  For each participant, the average time 

course was extracted from the seed region of interest (ROI) and Pearson’s correlation 

coefficient was computed between this ROI’s time course and the time course for each 

voxel across the whole brain volume. The resulting correlation map was converted to z 

values using Fisher’s r-to-z transformation (Zar 1996). The individual z(r) images were 

next submitted to a random-effects analysis, treating participant as the random factor, to 

create a statistical map using a t-test. To identify the seed ROI’s ‘neighbors’ (i.e. the 

regions that were correlated with the seed ROI), the statistical t-maps were first 

smoothed (6 mm FWHM) and the local maxima (peaks) of contiguous clusters of voxels 

that both surpassed a correlation threshold (p < 0.001, uncorrected) and had a minimum 

distance of 10mm between peaks were identified.   
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Each starting location was submitted to RSFC-Snowballing over 3 zones.  The 

final aggregate peak density map was spatially smoothed (volumetric smoothing of 6 

mm FWHM) and then normalized relative to its maximal value to facilitate viewing.  
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3.1 Abstract 

The cortical surface is organized into a large number of cortical areas; however, 

these areas have not been comprehensively mapped in the human. Abrupt transitions in 

resting state functional connectivity (RSFC) patterns can noninvasively identify locations 

of putative borders between cortical areas (RSFC boundary mapping; Cohen et al., 

2008). Here we describe a technique for using RSFC boundary maps to define parcels 

that represent putative cortical areas. These parcels had highly homogenous RSFC 

patterns, indicating that they contained one unique RSFC signal; further, the parcels 

were much more homogenous than a null model matched for parcel size when tested in 

two separate datasets. Several alternative parcellation schemes were tested this way, 

and no other parcellation was as homogenous or had as large a difference compared to 

its null model. The boundary map-derived parcellation contained parcels that 

overlapped with architectonic mapping of areas 17, 2, 3, and 4. These parcels had a 

network structure similar to the known network structure of the brain, and their 

connectivity patterns were reliable across individual subjects. These observations 

suggest that RSFC boundary map-derived parcels provide information about the 

location and extent of human cortical areas. A parcellation generated using this method 

is available at 

 http://www.nil.wustl.edu/labs/petersen/Resources.html 

 

3.2 Introduction 

The cortical surface of the brain is organized into a large number of interacting 

cortical areas (Sejnowski and Churchland 1989). Accurate identification of these cortical 
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areas is a major goal of modern systems neuroscience, as it would provide substantial 

benefits to many areas of neuroscientific investigation. For example, identification and 

functional characterization of visual areas in the macaque has provided a detailed 

hierarchical wiring diagram of the primate visual system, which has greatly aided our 

understanding of visual processing (Felleman and Van Essen 1991). Identifying human 

cortical areas would be a critical first step towards the same sort of comprehensive 

characterization of information flow within the brain’s various processing systems. 

Second, identification of cortical areas would greatly improve investigations of brain 

function using graph theory (Bullmore and Sporns 2009), because such areas could 

serve as rationally defined, neurobiologically-based network “nodes” (Wig et al. 2011; 

Power et al. 2013). Third, identified areas can serve as a priori regions of interest for 

analysis of functional neuroimaging data. Averaging data within pre-defined areas would 

improve signal-to-noise and reduce multiple comparisons problems in statistical testing. 

Identification of distinct cortical areas is based on observing dissociations in one 

or more critical underlying brain properties, including functional responses, topography, 

architectonics, and connectivity (Felleman and Van Essen 1991; Carmichael and Price 

1994, 1996). In the macaque, decades of research using these modalities have 

provided a reasonable first-order approximation of a complete cortical areal parcellation 

(Lewis and Van Essen 2000; Paxinos et al. 2000; Saleem et al. 2007; Van Essen et al. 

2012; Markov et al. 2014). While a limited number of similar areal dissociations have 

been identified in humans (e.g., Brodmann 1909; Öngür et al. 2003; Schleicher et al. 

2005), the measurement of these brain properties often relies either on invasive neural 

recordings or on post-mortem examinations of brain tissue, both of which are difficult to 
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obtain for large expanses of cortex in humans. As such, definitions of cortical areas in 

humans have lagged behind those in other primates.  

Advances in functional neuroimaging techniques offer the potential for 

noninvasive in-vivo recording of brain activity. In principle, cortical areas may be 

dissociated by their differential responses to specific task conditions (Petersen et al. 

1988). However, application of this approach to the cortex broadly has been challenging, 

as most tasks recruit large networks of coactivated areas. This lack of specificity makes 

it difficult to identify fine dissociations between adjacent and functionally related areas 

using a necessarily limited task set. 

Recently, an fMRI technique called resting state functional connectivity (RSFC) 

has emerged that may provide one modality for noninvasive parcellation of human 

cortex. RSFC relies on the observation that in the absence of any task, spatially distant 

regions of cortex exhibit highly correlated patterns of BOLD activity (Biswal et al. 1995) 

that are both spatially structured (Beckmann et al. 2005; Power et al. 2011; Yeo et al. 

2011) and relatively reliable across individuals (Damoiseaux et al. 2006; Shehzad et al. 

2009). While the precise significance of RSFC is uncertain, accumulating evidence 

suggests that regions exhibiting RSFC correlations are also functionally coactive during 

tasks (Fox and Raichle 2007; Smith et al. 2009; Biswal et al. 2010). In this view, these 

correlations observed during the resting state at least partly reflect the statistical history 

of regional coactivation (Dosenbach et al. 2007). RSFC correlations also appear to be 

at least partly constrained by structural connections, though regions with no direct 

structural connections can also be functionally connected, likely via indirect pathways 

(Vincent et al. 2007; Honey et al. 2009). Taken together, this evidence suggests that 
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RSFC measurements reflect some combination of both a region’s function, in a manner 

not limited to any one task, and its direct and indirect connectivity.  

RSFC data may be used to perform areal parcellation via a recently proposed 

approach known as boundary mapping (Cohen et al. 2008; Wig et al., 2014b). The 

boundary mapping approach relies on the observation that RSFC patterns can abruptly 

change from one cortical location to a proximate location, mirroring the abrupt changes 

in function or connections that form the basis of cortical area discrimination in 

nonhuman primates (Felleman and Van Essen 1991); these locations of abrupt change 

may thus represent boundaries between cortical areas. The boundary mapping 

technique has previously been used to identify transition zones in limited sections of 

cortex, including left lateral parietal cortex (Nelson, et al. 2010a; Barnes et al. 2012) and 

parts of frontal cortex (Cohen et al. 2008; Nelson, et al. 2010b; Hirose et al. 2012, 2013), 

as well as in the whole brain (Wig et al. 2014a, 2014b). Boundaries identified in this way 

have been shown to: 1) separate regions with functionally discrete task activation 

timecourses (Nelson, et al. 2010a); 2) match functional activation patterns; 3) 

correspond well with systems-level divisions, but also further subdivide those systems; 

and 4) match architectonically-defined areal borders between V1 and V2 (Wig et al., 

2014b). In sum, boundaries identified using this technique are reasonable candidates 

for borders between cortical areas. However, no previous work has either used these 

boundaries to identify cortical areas, or evaluated the resulting cortical areas. Here we 

present a method for identifying and evaluating putative cortical areas from group 

average RSFC boundary maps. 
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A parcellation that accurately represents cortical areas of the brain should have, 

among others, several properties. First, each parcel should generally be homogenous, 

in that it should have a similar functional connectivity pattern at all points within the 

parcel (Craddock et al. 2012; Shen et al. 2013). Second, a parcellation that accurately 

represents cortical areas should contain parcels that overlap known human cortical 

areas that have been well-described with cytoarchitectonics (e.g., Fischl et al. 2008). 

Third, a parcellation that accurately represents cortical areas should have a large-scale 

network structure that is consistent with the known network structure of the brain (Wig et 

al. 2011; Power et al. 2011; Yeo et al. 2011). Finally, parcels that accurately represent 

cortical areas in group average data should serve as reasonable a priori regions of 

interest in individual subjects. While the known inter-individual variability in areal extent 

(e.g., Amunts et al. 2000) means that cortical area locations in individual subjects are 

unlikely to precisely match parcels identified from group average data, these group 

average parcels should still represent the central tendency of the group. Thus, for any 

given parcel, the functional connectivity patterns across subjects should reflect that level 

of reliability. 

We note that some of these criteria—particularly parcel homogeneity and overlap 

with architectonics—are likely to fail for a minority of cortical areas. For example, some 

cortical areas are topographically organized (e.g., somatotopy in somatomotor cortex), 

such that subregions within the area have different functional responses (Rao et al. 

1995), including different RSFC responses (Long et al. 2014). These functional 

dissociations would likely either reduce the observed RSFC homogeneity of a parcel 
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representing the area, or would result in the delineation of sub-areal parcels within a 

single cortical area. These are unavoidable limitations of any RSFC-based technique. 

In this paper, we constructed a set of parcels derived from a group average 

RSFC boundary map that represent putative cortical areas. We assessed the 

homogeneity of these parcels, and we compared those homogeneities against an 

appropriate null model. We additionally assessed the homogeneity of these boundary 

map-derived parcels using an independent dataset, collected on a different scanner 

model at a different institution. Further, we compared the homogeneity of the boundary 

map-derived parcellation to the homogeneities of several other alternative parcellations 

(Brodmann, 1909; Tzourio-Mazoyer et al., 2002), including other candidate approaches 

for performing whole-brain areal partitioning using RSFC data (Power et al., 2011; Yeo 

et al. 2011; Craddock et al. 2012; Shen et al. 2013). Each of these sets of parcel 

homogeneities was also compared to a tailored null model, all within the independent 

dataset. We also identified boundary map-derived parcels that overlapped with several 

known human architectonic areas. We further identified the network structure of the 

boundary map-derived parcellation and compared this structure to the network structure 

identified using all gray matter points in the brain. Finally, we assessed the level of inter-

subject reliability of subject-level RSFC patterns from these boundary map-derived 

parcels. 

 

3.3 Methods 

For a graphical summary of the methods, see Figure 1 
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Figure 3-1. Visual outline of analysis methods 

 

We acquired two independent datasets: Dataset 1, which we used to create an RSFC 

boundary map and generate parcels; and Dataset 2, which we used to compare the 

boundary map-derived parcellation against other putative areal parcellations. 

 

Dataset 1 

Subjects 

Data was collected from 120 healthy young adult subjects during relaxed eyes-

open fixation (60 females, mean age = 25 years, age range = 19-32 years). All subjects 

were native speakers of English and right-handed. Subjects were recruited from the 

Washington University community and were screened with a self-report questionnaire to 

ensure that they had no current or previous history of neurological or psychiatric 

diagnosis. Informed consent was obtained from all subjects. The study was approved by 

the Washington University School of Medicine Human Studies Committee and 

Institutional Review Board   
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Data Acquisition 

Structural and functional MRI data were obtained with a Siemens MAGNETOM 

Trio Tim 3.0T Scanner (Erlangen, Germany) and a Siemens 12 channel Head Matrix 

Coil. A T1-weighted sagittal magnetization-prepared rapid acquisition gradient echo 

(MP-RAGE) structural image was obtained (TE=3.08ms, TR(partition)=2.4s, TI=1000ms, 

flip angle=8°, 176 slices with 1x1x1mm voxels) (Mugler and Brookeman 1990). An auto 

align pulse sequence protocol provided in the Siemens software was used to align the 

acquisition slices of the functional scans parallel to the anterior commissure-posterior 

commissure (AC-PC) plane of the MP-RAGE and centered on the brain. This plane is 

parallel to the slices in the Talairach atlas (Talairach and Tournoux 1988).  

During functional MRI data acquisition, subjects were instructed to relax while 

fixating on a black crosshair that was presented against a white background. Functional 

imaging was performed using a blood oxygenation level-dependent (BOLD) contrast 

sensitive gradient echo echo-planar sequence (TE=27ms, flip angle=90°, in-plane 

resolution=4x4 mm). Whole brain EPI volumes (MR frames) of 32 contiguous, 4 mm-

thick axial slices were obtained every 2.5 seconds. A T2-weighted turbo spin echo 

structural image (TE=84ms, TR=6.8s, 32 slices with 1x1x4 mm voxels) in the same 

anatomical planes as the BOLD images was also obtained to improve alignment to an 

atlas. The number of volumes collected from subjects ranged from 184 to 729 (mean = 

336 frames, 14.0 mins).  
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Dataset 2 

Subjects 

Data was collected from 108 healthy young adult subjects during relaxed eyes-

open fixation (69 females, mean age = 21 years, age range = 18-33 years). Subjects 

were recruited from the Dartmouth College community and were screened with a self-

report questionnaire to ensure that they had no neurological problems, were not using 

psychoactive medications and had normal or corrected to normal vision. Participants 

were given course credit or monetary compensation in exchange for their participation 

and were provided informed consent in accordance with the guidelines set by the 

Committee for the Protection of Human Subjects at Dartmouth College. These subjects 

were selected as the subjects with minimal in-scan head motion from a larger cohort of 

746 subjects. 

 

Data Acquisition 

Structural and functional MRI data were obtained with a Philips Achieva 3.0 

Tesla scanner and a thirty-two channel phased array coil.  A T1-weighted sagittal MP-

RAGE structural image was obtained (TE=4.6ms, TR=9.9ms, flip angle=8°, 160 slices 

with 1x1x1mm voxels.  

During functional MRI data acquisition, subjects were instructed to relax while 

fixating on a white crosshair that was presented against a black background. Functional 

imaging was performed using a BOLD contrast sensitive gradient echo echo-planar 

sequence (TE=35ms, flip angle=90°, in-plane resolution=3x3 mm, sense factor = 2). 

Whole brain EPI volumes (MR frames) of 36 3.5 mm-thick axial slices were obtained 
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every 2.5 seconds with .5mm skip between slices. Two 5:00 minute runs (240 volumes 

total) were collected from each subject.  

Further analysis of both datasets was identical, except where noted. 

 

Preprocessing 

Functional images were first processed to reduce artifacts (Miezin et al. 2000). 

These steps included: (i) correction of odd vs. even slice intensity differences 

attributable to interleaved acquisition without gaps, (ii) correction for head movement 

within and across runs and (iii) across-run intensity normalization to a whole brain mode 

value of 1000. Atlas transformation of the functional data was computed for each 

individual using the MP-RAGE scan. Each run was then re-sampled to an isotropic 3-

mm atlas space (Talairach and Tournoux 1988), combining movement correction and 

atlas transformation in a single cubic spline interpolation (Lancaster et al. 1995; Snyder 

1996). All subsequent operations were performed on the atlas-transformed volumetric 

time series. 

 

Functional connectivity processing 

Additional preprocessing steps to reduce spurious variance unlikely to reflect 

neuronal activity were executed as recommended in Power et al. (2014). RSFC 

preprocessing was performed in two iterations. In the first iteration, the processing steps 

were: (i) demeaning and detrending, (ii), multiple regression including: whole brain, 

ventricular and white matter signals, and motion regressors derived by Volterra 

expansion (Friston et al., 1996), and (iii) a band-pass filter (0.009 Hz < f < 0.08 Hz). 
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Following the initial RSFC preprocessing iteration, temporal masks were created 

to flag motion-contaminated frames. Motion contaminated volumes were identified by 

frame-by-frame displacement (FD, described in Power et al., 2012). Volumes with FD > 

0.2 mm (Dataset 1) / FD > .25mm (Dataset 2; different thresholds were used based on 

observations of different motion “noise floors” in the two datasets, following Power et al., 

2012), as well as uncensored segments of data lasting fewer than 5 contiguous 

volumes were flagged for removal. In Dataset 1, these masks censored 16% ± 14% 

(range: 0.7% – 66%) of the data across subjects; on average, subjects retained 279 ± 

107 volumes (range: 151 – 719). In Dataset 2, these masks censored 8% ± 2% (range: 

4% – 12%) of the data across subjects; on average, subjects retained 221 ± 5 volumes 

(range: 212 – 230). 

The data was then re-processed in a second iteration incorporating the temporal 

masks described above. This reprocessing was identical to the initial processing stream, 

but ignored cencored data. Finally, the data was interpolated across censored frames 

using least squares spectral estimation (Power et al. 2014) of the values at censored 

frames so that continuous data can be passed through (iv) a band-pass filter (0.009 Hz 

< f < 0.08 Hz) without contaminating frames near high motion frames (Power et al. 

2012; Carp 2013). It should be noted that even following this processing censored 

frames are still ignored during the final correlation calculations between timecourses.  

 

Surface processing and CIFTI creation 

Surface generation and sampling of functional data to anatomical surfaces 

followed a similar procedure as described in Glasser et al. (2013). First, following 
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volumetric registration, anatomical surfaces were generated from each subject’s MP-

RAGE image using FreeSurfer’s default recon-all processing pipeline (version 5.0). This 

pipeline included brain extraction, segmentation, generation of white matter and pial 

surfaces, inflation of the surfaces to a sphere, and surface shape-based spherical 

registration of the subject’s ‘native’ surface to the fsaverage surface (Dale and Sereno 

1993; Dale et al. 1999; Fischl et al. 1999; Ségonne et al. 2004, 2005). The fsaverage-

registered left and right hemisphere surfaces were then brought into register with each 

other (Van Essen et al., 2012) and resampled to a resolution of 164,000 vertices using 

Caret tools (Van Essen et al. 2001). Finally, each subject’s surface was down-sampled 

to a 32,492 vertex surface (fs_LR 32k), which allowed for analysis in a computationally 

tractable space while still oversampling the underlying resolution of BOLD data used in 

subsequent analyses. The above procedure results in a surface space that allows for 

quantitative analysis across subjects. A script for this procedure is available on the Van 

Essen Lab website (Freesurfer_to_fs_LR Pipeline, 

http://brainvis.wustl.edu/wiki/index.php/Caret:Operations/Freesurfer_to_fs_LR). 

Surface processing of the BOLD data proceeded through the following steps. 

First, the BOLD volumes are sampled to each subject’s individual ‘native’ midthickness 

surface (generated as the average of the white and pial surfaces) using the ribbon-

constrained sampling procedure available in Connectome Workbench 0.84, which 

samples data from voxels within the gray matter ribbon (i.e. between the white and pial 

surfaces) (Glasser and Van Essen 2011). Voxels with a timeseries coefficient of 

variation 0.5 standard deviations higher than the mean coefficient of variation of nearby 

voxels (within a 5 mm sigma Gaussian neighborhood) are excluded from the volume to 
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surface sampling, as described in Glasser et al. (2013). Once sampled to the ‘native’ 

surface, timecourses were deformed and resampled from the individual’s ‘native’ 

surface to the 32k fs_LR surface. Finally, the time courses were smoothed along the 

32k fs_LR surface using a Gaussian smoothing kernel (σ = 2.55). 

These surfaces are then combined with volumetric subcortical and cerebellar 

data into the CIFTI format using Connectome Workbench (Glasser et al. 2013), creating 

full brain timecourses that exclude non-gray matter tissue. Subcortical (including 

accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and 

cerebellar voxels were selected based on a mask generated by finding the modal 

assignment of voxels by Freesurfer segmentation across all subjects. Volumetric data 

was smoothed within this mask with a Gaussian kernel (σ = 2.55) before being 

combined with the surface data.  

 

Boundary map generation 

RSFC-Boundary Mapping identifies transitions in resting state correlations across 

the cortical surface. The original approach described in Cohen et al. (2008) applied 2-D 

image processing tools to BOLD data sampled from patches on a flattened cortical 

surface. The current implementation performs all calculations directly on a closed 

surface topology and applies to the entire cortical surface. The RSFC-Boundary 

Mapping procedure is implemented using Connectome Workbench and Matlab (Version 

7.14, Mathworks, Inc., Sherborn, MA, USA) and follows a similar sequence as 

described in Wig et al. (2014b) with some notable distinctions that will be highlighted 

below.  
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For each subject, the time course of each surface vertex was correlated with the 

time courses from every other surface vertex and subcortical voxel in CIFTI space. 

Each correlation map was transformed using Fisher’s r-to-z transformation. For each 

hemisphere, the subject’s RSFC map similarity matrix was created by calculating the 

pairwise spatial correlations between all vertex’s RSFC correlation maps, producing a 

32k x 32k matrix. To find positions where RSFC similarity exhibited abrupt changes, the 

first spatial derivative was computed using the ‘cifti-gradient’ function in Connectome 

Workbench. This resulted in 32k ‘gradient’ maps for each hemisphere. These gradient 

maps were then averaged across subjects. At this point, instead of using non-maxima 

suppression to identify boundaries in the gradient maps, as in Wig et al. (2014b), we 

used the “watershed by flooding” algorithm (Beucher & Lantuejoul, 1979), implemented 

using custom Matlab scripts. This standard image segmentation procedure defines 

regions in the gradient maps by starting from local minima (vertices with values smaller 

than of their neighbors that were less than three vertices away) and iteratively growing 

until reaching locations that could ambiguously be assigned to more than one region. 

These boundary locations identify putative boundaries in the gradient maps. Finally, the 

32k boundary maps from each hemisphere were averaged to indicate the frequency 

with which a given vertex was identified as a boundary.  

 

Boundary map reliability 

To determine the reliability of the boundary maps, we calculated the degree of 

spatial correlation between the boundary maps from the two datasets as an overall 

measure of reliability. To further determine whether the strongest boundaries in 
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particular were highly reliable, we then thresholded the two boundary maps to retain the 

top quartile of boundary values (i.e., retaining the cortical vertices most likely to be 

boundaries) and assessed the overlap of the two thresholded boundaries by calculating 

Dice’s coefficient.  

 

Parcel creation 

Parcels were created from the Dataset 1 boundary map only using custom 

Matlab scripts. We identified all local minima on the boundary map image as seeds to 

be used for parcel creation. Parcels were grown from these seeds using the “watershed 

by flooding” procedure described above, such that parcels were allowed to expand 

outward from the seed until they either reached a height threshold on the boundary map 

or met another parcel. This resulted in a large number of parcels tiling the cortical 

surface (>1000), with one-vertex wide borders (i.e., the watershed zones) separating 

them. Pairs of parcels were then merged together based on the values of the boundary 

map in the border vertices between the parcels, which represent the local change in 

connectivity patterns, and therefore can be considered a measure of the dissimilarity of 

the parcels. If the median boundary value between two parcels was below a threshold, 

then the parcels were considered not sufficiently dissimilar and were merged together. 

We visually examined multiple border thresholds, and the optimal threshold that 

captured all major divisions in the boundary map image appeared to be at the 60th 

percentile of the values in the boundary map (see Supplemental Figure 3 for 

parcellations resulting from other threshold values). As areas of the cortex with very 

high boundary map values are likely to be transition zones between parcels rather than 
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parcels themselves, we then eliminated all parcels and portions of parcels in vertices 

with high boundary map values (defined as the top quartile of values in the boundary 

map). 

This procedure produced an anatomically plausible number of parcels that 

visually appeared to well fit the contours of the boundary map. Parcels in low-SNR 

areas (defined as regions with mean BOLD signal < 750, consisting primarily of 

orbitofrontal cortex and anterior ventral lateral temporal lobe; see Ojemann et al. 1997; 

Wig et al. 2014b), which are likely to be noisy and unreliable, were excluded from 

further analysis. Finally, we eliminated parcels containing fewer than 15 cortical vertices 

(~30mm2) because the effective resolution of the BOLD data (originally 4x4x4mm, then 

upsampled and smoothed on the surface) suggested that accurate identification and 

evaluation of objects that small might be dubious. 

 

Parcel evaluation 

The parcel creation procedure outlined above creates parcels based on strong 

boundaries, which indicate large differences in connectivity patterns between adjacent 

cortical regions. However, a parcel that accurately represents a cortical area should not 

only be distinct from its neighbors but, in most cases (i.e. non-topographic regions), it 

should also have a single, consistent connectivity pattern across the parcel—in other 

words, its connectivity pattern should be homogenous within the parcel. Thus, the 

degree to which the created parcels are homogenous can serve as a quality metric of 

the parcellation (Craddock et al. 2012; Shen et al. 2013). We assessed the 

homogeneity of our created parcels using the following technique: for each parcel, we 
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computed the average whole-brain connectivity pattern of each vertex in the parcel 

across subjects in Dataset 1. We then entered the connectivity patterns from all vertices 

in a parcel into a principal components analysis. The homogeneity of the parcel was 

calculated as the percent of total variance across all vertices’ connectivity patterns that 

can be explained by the first (largest) principal component. A higher homogeneity value 

indicates that the connectivity patterns of vertices within the parcel can be better 

described by a single connectivity pattern. We then averaged the homogeneity values 

across parcels to determine the overall homogeneity of the whole parcellation. 

Compared to other metrics of parcel homogeneity, this novel metric has the advantage 

of being highly interpretable: the homogeneity of a parcel represents the percent of 

variance in the parcel explained by the most common connectivity pattern. Homogeneity 

analyses conducted with a previously devised homogeneity metric (average z-

transformed pairwise correlations between all vertex connectivity patterns within a 

parcel, from Craddock et al., 2012) yielded very similar results (see Supplemental 

Figure 11). 

However, we note that any metric of parcel homogeneity is likely to be dependent 

on parcel size, with smaller parcels being intrinsically more homogenous. To illustrate 

this fact, consider that a large, perfectly homogenous parcel could be divided in half, 

and both halves would still be perfectly homogenous. Further, a direct comparison of 

the homogeneities of the large and small parcels would not indicate one scheme as 

superior to the other, even though the large perfectly homogenous parcel is much more 

likely to represent a single cortical area. Even in a purely random parcellation scheme, 

randomly placed small parcels are more likely to contain a single connectivity pattern 
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than randomly placed large parcels, which will more often span multiple cortical areas. 

Thus, any homogeneity-based evaluation of a parcellation must be compared to a null 

model—it should consider not only how homogenous the parcels are, but also whether 

they are more homogenous than would be expected from randomly placed parcels of 

the same size and shape. Thus, we assessed the degree to which a parcellation was 

more homogenous than a null model consisting of many parcellations with randomly 

placed parcels of the same size, shape, and relative position to each other.  

To create such random parcellations, we rotated each hemisphere of the original 

parcellation a random amount around each of the x, y, and z axes on the spherical 

expansion of the 32k fs_LR cortical surface. This procedure randomly relocated each 

parcel while maintaining the relative positions of parcels to each other. Each parcel was 

then slightly dilated or contracted to adjust for vertices gained or lost due to the 

nonuniform vertex density across the surface of the sphere, thus maintaining the same 

number of vertices within the rotated parcel while approximately maintaining the same 

shape. Random rotation was repeated 1000 times to generate distributions of average 

homogeneities calculated from randomly placed versions of each tested parcellation. 

Notably, in any random rotation, some parcels will inevitably be rotated into the medial 

wall (where no data exists) or into low-SNR regions (where we believe the homogeneity 

of data to be particularly low). The homogeneity of a parcel rotated into one of these 

regions was not calculated; instead, we assigned this parcel the average homogeneity 

of all random versions of the parcel that were rotated into valid (high-SNR) cortical 

regions.  
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The average homogeneity of the original parcellation was compared to the 

homogeneities of the set of rotated parcellations. We assessed 1) the number of rotated 

parcellations that had worse average homogeneity than the original parcellation, and 2) 

the difference between the original parcellation homogeneity and the distribution of 

random homogeneities, calculated as a Z-score ((original homogeneity – mean of 

random homogeneities) / standard deviation of random homogeneities). 

 

Comparison of parcel homogeneity against alternative parcellations 

We compared the homogeneities of boundary-derived parcels against those of 

several alternative parcellations, created using a variety of methods (and excluding all 

parcels in low-SNR regions). These alternative parcellations included: “Power ROIs”: a 

set of functional ROIs derived from a combination of meta-analytic and functional 

connectivity analyses (Power et al., 2011); “Craddock”: a parcellation created by the 

NCUT method (Craddock et al., 2012); “Shen”: a parcellation created using a multiclass 

spectral clustering approach to the NCUT criterion (Shen et al. 2013); “Power 

communities”: a parcellation created using the Infomap community detection technique 

(Power et al. 2011); “Yeo”: a parcellation created using a signal clustering technique 

(Yeo et al., 2011); “Brodmann”: a parcellation created from canonical Brodmann areas 

(Brodmann 1909); and “AAL”: a parcellation created from the Automated Anatomical 

Labeling atlas (Tzourio-Mazoyer et al. 2002). Each parcellation was sampled to the 

cortical surface where necessary, and parcels containing less than 15 cortical vertices 

outside of low-SNR regions were eliminated from further analysis. For parcellation 

approaches with multiple solutions (the Craddock and Shen parcellations), we selected 
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the solution with the number of parcels most similar to the boundary map-derived 

parcellation. We repeated these analysis for all other available Craddock and Shen 

parcellations with at least 50 parcels; these produced similar results to the chosen 

parcellation (see Supplemental Figures 8 and 9). Table 1 provides additional details for 

each of these parcellations. 

 

 

Table 3-1. Previously published parcellations compared against present boundary map-derived 
parcellation. 

 
To ensure that the boundary map-derived parcellation created using Dataset 1 

was not advantaged by being tested in the same dataset, we tested all parcellations’ 

homogeneity using Dataset 2. For each parcellation scheme, we evaluated 

homogeneity using Dataset 2, and compared it to the homogeneity of randomly rotated 

versions of the parcellation. 

 

Comparison of parcels with known cytoarchitectonic areas 

If the boundary-derived parcellation created above is an accurate representation 

of the cortical areas in the brain, then it should contain parcels that are similar to known 
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human cytoarchitectonic areas. We visually compared the boundary map-derived 

parcels to the probabilistic borders of areas 17, 1, 2, 3 (combining 3a and 3b), 4 

(combining 4a and 4p), and hOc5 that were mapped to the 32k fs_LR by Van Essen et 

al. (2012) (publically available through the SumsDB database, 

http://sumsdb.wustl.edu:8081/sums/index.jsp) based on cytoarchtectonic mapping by 

Fischl et al. (2008). 

 

Identification of parcel network structure 

If the boundary-derived parcels created above are accurate representations of 

the cortical areas in the brain, then the network structure of the temporal correlations 

between these parcels should be highly similar to previously published descriptions of 

the network structure of the temporal correlations between all gray matter voxels.  

Closely following Power et al. (2011), we assessed the network structure of the 

parcel-wise graph using the Infomap algorithm (Rosvall and Bergstrom 2008). In each 

subject we calculated the average timecourse of each parcel from Dataset 1, and cross-

correlated these timecourses to form the parcel-wise correlation matrix. These 

correlation matrices were then Fisher transformed and averaged across subjects. The 

resulting average correlation matrix was thresholded at a variety of correlation 

thresholds calculated to create connection matrices with specific degrees of sparseness 

(ranging from 1% to 3% of all possible connections surviving the threshold, in steps 

of .1%). Further, connections passing these thresholds were removed if the geodesic 

distance along the cortex between the centroids of the connected parcels was less than 

20mm. The resulting connection matrices at each threshold were then evaluated using 
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the Infomap algorithm, which assigned parcels to communities at each correlation 

threshold based on the maximization of within-community random walks in the 

connection matrix. Communities with five or fewer parcels were eliminated from 

consideration, and those parcels were considered unassigned. 

We then collapsed across Infomap thresholds using a “consensus” procedure, with 

the goal of incorporating information both from more sparse thresholds, in which smaller 

networks were likely to emerge, and more dense thresholds, in which more parcels 

were likely to be successfully assigned. In this procedure, each node was given the 

community assignment it had at the sparsest possible threshold at which it was 

successfully assigned. The node assignments were “cleaned up” by removing small 

communities that were only present at one threshold. This procedure is nearly identical 

to the method used to collapse previously published voxel-wise community assignments 

(Power et al. 2011) across thresholds to create a single network map (the “Power 

communities” map described above). We note that this procedure does not attempt to 

comprehensively describe all features of the network, and may be especially poor at 

capturing non-hierarchical network features (which do occur infrequently). Rather, it 

provides a single, summary view of the brain’s networks. 

We assessed the overlap between the consensus parcel-wise network 

communities and the surface-mapped voxelwise Power consensus communities 

described above. Overlap was calculated as the number of cortical vertices that had the 

same community identity in both parcel-wise and voxel-wise Infomap analyses divided 

by the total number of vertices that were assigned to a community in both analyses. 

 



	109	

Use of parcels in individual subjects 

Ideally, the boundary-derived parcellation could be used to interrogate individual 

subject data. However, applying a group-level parcellation to individual subjects should 

only be performed if there is reasonable confidence that the parcellation truly does 

reflect the central tendency of the overall group, such that data in a given parcel from an 

individual will tend to look like the average data in that parcel across individuals. Thus, 

to determine whether the parcellation derived from the group boundary map could also 

be used to investigate individual subjects, we examined how reliably individual subjects’ 

parcel connectivity maps looked like the group average parcel connectivity maps. 

For each parcel in each Dataset 1 subject, we calculated the whole-brain subject-

level connectivity pattern of the parcel by extracting the parcel’s mean timecourse in 

that subject’s data and correlating it against the timecourses from every other gray 

matter point in the brain. We then averaged the Fisher’s Z-transformed correlation 

patterns across subjects. Finally, we calculated the spatial correlation between the 

group average Fisher-transformed connectivity pattern for that parcel and all of the 

Fisher-transformed subject-level connectivity patterns for the same parcel. This analysis 

produced a subject-group similarity (i.e., spatial correlation value) for each parcel in 

each subject. 

We then explored two dimensions of variability in connectivity patterns: at the 

subject level and at the parcel level. First, we examined whether some subjects tended 

to be more or less similar to the group average than others, and whether the degree of 

similarity was related to the quantity of data remaining for each subject after motion 

correction. This was done by averaging similarity scores across parcels, for each 
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subject, and then plotting these subject average scores against the number of 

uncensored timepoints in each subject’s resting state scan. Second, we examined 

whether some parcels’ subject-specific connectivity patterns tended to be more or less 

similar to the group average than others. This was done by averaging similarity scores 

across subjects, for each parcel. Parcels with low average similarity scores can be 

considered unreliable for use in cross-subject analysis. 

3.4 Results 

Boundary map characteristics 

Visually, the group boundary map (Figure 2) appears very similar to our 

previously published boundary map (Wig et al. 2014b), though close examination 

indicates that the present boundary map appears cleaner, with sharper boundaries and 

lower minimum boundary values. Comparison of histograms of the values in the current 

boundary map and the previously published boundary map (Supplemental Figure 1) 

supports this observation, as the value distribution of the current map is markedly 

shifted to the left, suggesting a reduction of measurement noise in the map. 
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Figure 3-2. RSFC-boundary map from Dataset 1. Bright colors indicate locations where abrupt 
transitions in RSFC pattersn were reliably found across many cortical vertices, representing 
putative boundaries between cortical areas. Dim colors represent relatively stable RSFC 
patterns. 

 

Boundary map reliability 

Boundary maps from the two datasets appeared visually very similar. When 

thresholded at the top quartile of boundary map values, the boundary maps from the 

two datasets overlapped closely (Supplemental Figure 2), with a Dice’s coefficient of .71. 

 

Parcel creation 

The parcel creation procedure produced 422 cortical parcels (206 in the left 

hemisphere, 216 in the right hemisphere; see Figure 3). Of these parcels, 356 (178 in 

each hemisphere) parcels were at least partly (>= 15 vertices, ~30mm2) outside low 

SNR areas (Wig et al., 2014b). The remaining 66 parcels were considered unreliable 

due to low SNR and were excluded from further analysis. 
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Figure 3-3. Boundary map-derived parcels are both highly homogenous and more homogenous 
than a null model. Top: 422 cortical parcels were created from the Dataset 1 boundary map. 
Bottom left: homogeneity of each parcel, calculated as the percent of the variance in RSFC 
patterns explained by the parcel’s first PCA eigenvariate. Green indicates a parcel is >70% 
homogenous; red indicates >90% homogenous. Bottom middle: average homogeneity across 
parcels (red dot) was significantly higher than that across parcels of each null model iteration 
(black dots). Bottom right: homogeneity of individual real parcels (red dots) was higher than that 
of null model parcels (gray dots) when plotted against parcel size. Black dots indicate the 
median homogeneity across iterations for each null model parcel. Lowess fit lines in red and 
black emphasize the homogeneity–size relationship for the real and null model parcels, 
respectively. 
 

Parcel homogeneity 

We calculated the homogeneity of each of these parcels within Dataset 1. 

Homogeneity represents the degree to which the parcel has a uniform connectivity 

pattern, and is thus a metric of parcel quality. Parcel homogeneities are mapped onto 
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the brain in Figure 3. Mean parcel homogeneity across all parcels was 89.1% ± 5.8% 

(max 98.4%, min 61.2%). 

We then compared the mean homogeneity of this parcellation to a null model 

consisting of mean homogeneities from 1000 matched parcellations randomly rotated 

on the cortex. We observed that the mean homogeneity of the boundary-derived 

parcellation was much higher than any of the 1000 randomly rotated null model 

parcellation homogeneities (Figure 3); the parcellation was thus significantly more 

homogenous than random at p<.001. These null model parcellations had a mean 

homogeneity of 85.6%, with a standard deviation of .29% across parcellations; the 

boundary-derived parcellation had a homogeneity Z score of 12.07 (i.e. was 12.07 

standard deviations away from the mean of the null model parcellations). 

We further examined the relationship between parcel homogeneity and parcel 

size to determine whether the homogeneity measure was dependent on parcel size. 

The homogeneities of the real parcels (in red) and null model parcels (in grey, medians 

in black) are plotted against parcel size in Figure 3. We observed a close relationship 

between homogeneity and parcel size that can be appreciated with the Lowess fit line 

plotted on top; this relationship was observed both for the boundary-derived parcels (in 

red) and for the random matched parcels (in grey; mean homogeneities of random 

parcels in black).  

In sum, parcels derived from boundary maps are highly homogenous. Overall, 

this parcellation is also much more homogenous than a null model consisting of 

randomly replaced versions of the parcellation, suggesting that the present parcels are 

well placed. We further established that the homogeneity measure has a strong 
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relationship with parcel size, justifying our use of the present null model, which accounts 

for parcel size and shape. 

 

Comparison of parcel homogeneity against alternative parcellations 

To demonstrate external validity of the parcellation, we evaluated the 

homogeneity of the Dataset 1 boundary map-derived parcels using data from Dataset 2. 

The mean homogeneity across the boundary map-derived parcels was 87.4% ± 6.4%, 

which was similar to, but slightly lower than, the homogeneities of the parcels derived 

from and tested in Dataset 1 (89.1% ± 5.8%, as stated above). 

As above, we compared the homogeneities of the boundary map-derived parcels 

to the null model consisting of randomly rotated versions of the parcellations. Once 

again, the boundary map-derived parcellation tested in Dataset 2 was more 

homogenous than any randomly rotated parcellation (p<.001); it had a Z score of 10.91 

compared to the distribution of random parcellations. 

We further evaluated the homogeneity of several alternative parcellations using 

Dataset 2. Parcel homogeneities from these alternative parcellations can be seen in 

Figure 4; average homogeneities of each parcellation are listed in Table 2.  

We then compared the homogeneities of each alternative parcellation against the 

homogeneities of a null model consisting of 1000 randomly placed versions of the 

parcellation. See Table 2 for comparisons to the null model parcellations. The Power 

ROIs, Yeo parcels, and Brodmann parcels were more homogenous than any of their 

null model parcellations, while the Shen parcellation and Power communities were 

significantly better than the set of random parcellations, but not better than all possible 
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random parcellations. The Craddock and AAL parcellations were not significantly more 

homogenous than their null models.  

 

 

Figure 3-4. When tested in an independent dataset, the boundary map-derived parcellation is 
more homogenous than any other parcellation, and does better relative to its null model than 
any other parcellation. Top: parcel homogeneities of each competing parcellation when tested in 
Dataset 2. Bottom: average homogeneity across parcels of each parcellation (red dots) 
compared with the average homogeneity across parcels of each of 1000 null model iterations 
(black dots), which vary in homogeneity because of differing parcel sizes. ***indicates the 
parcellation was more homogenous than all of its 1000 null model iterations (i.e., P<0.001); 
*indicates the parcellation was more homogenous than at least 950 of its null model iterations 
(P<0.05). 
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Table 3-2. Average homogeneity and comparison of homogeneity against a null model for each 
parcellation 

Finally, we examined homogeneity vs parcel size relationships for the boundary 

map-derived parcellation, as well as for each alternative parcellation (see Supplemental 

Fig 4). Relationships between homogeneity and size were observed for each 

parcellation and the null model of each parcellation, though size-homogeneity 

relationships appeared weaker for parcellations with less variance in parcel size, as 

would be expected. When the fit lines of all of the parcellations and random 

parcellations were plotted on the same scale (Supplemental Fig 5), it became evident 

that while all parcels exhibited homogeneity decreases as size increased, the boundary 

map-derived parcels had superior homogeneity even when parcel size was taken into 

account. 

 

Comparison of parcels with known cytoarchitectonic areas 

We observed strong visual overlap between the boundary map-derived parcels 

and several known cytoarchitectonic areas. The left side of Figure 5 illustrates these 
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overlaps on the left hemisphere (see Supplemental Figure 6 for right hemisphere 

overlap). The architectonic boundary of area 17 almost perfectly encompassed a single 

RSFC-defined parcel in both hemispheres. By contrast, area hOc5 also appeared to 

correspond with a single parcel in the left hemisphere, but that parcel extended 

significantly beyond the probabilistic border of the area. In the right hemisphere, no 

parcel corresponded with area hOc5. Area 1 did not correspond with any parcels, falling 

directly on top of a border between parcels in both hemispheres. 

In both hemispheres, cytoarchitectonically defined areas 2, 3, and 4 aligned well 

with a string of parcels running down the pre- and postcentral gryri. Taken together, 

these strings of parcels matched areas 3 and 4 almost perfectly, and overlapped most 

of area 2, failing only to capture a ventral posterior section of the area. Thus, we 

hypothesized that while the parcels do not conform well to strict anatomical definitions 

of cortical areas, they may be capturing some unknown functional subdivisions within 

the areas. 

 

 

Figure 3-5. Boundary map-derived parcels match known cortical areas and functional activation 
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patterns. Left and middle: a variety of cytoarchitectonically defined cortical areas (Fischl et al. 
2008) were matched by boundary map-derived parcels. Area 17 overlapped very well with one 
parcel, whereas area hOc5 overlapped moderately well with another parcel. Areas 2, 3, and 4 
overlapped with several adjacent parcels. Right: parcel divisions within cytoarchitectonic areas 2, 
3, and 4 corresponded with divisions between activation clusters from motor movements of the 
right foot, right hand, and tongue (Barch et al. 2013). 
 

One possible functional subdivision these parcels could be capturing is the 

known somatotopic divisions within areas 2-4, in which dorsomedial somatomotor 

cortex receives sensory input and projects motor output to the feet, dorsolateral 

somatomotor cortex to the hands, and ventrolateral somatomotor cortex to the mouth 

and tongue. We conducted a post-hoc investigation of this possibility using results from 

a motor fMRI task collected as part of the Human Connectome Project. This task 

involved blocks of cued left or right finger tapping, left or right toe squeezing, and 

tongue movement (see Barch et al. 2013 for details). Preliminary findings from this task 

conducted in 20 subjects were presented in Barch et al. (2013); the present 

investigation used results from 219 subjects, analyzed using the same procedures as in 

Barch et al. (2013). We thresholded this data at a very high statistical threshold 

(arbitrarily selected to be Z > 8.0, though similar results were observed for any threshold 

between Z>5.0 and Z>10.0) and examined the overlap between the task activations and 

the various parcels in the pre- and postcentral gyri. 

We observed that each task activation cluster very well matched multiple parcels 

in the pre- and postcentral gyri (left hemisphere activations shown in Fig 5, right; see 

Supplemental Figure 6 for right hemisphere activations). The correspondence was 

particularly clear for the hand and tongue activation clusters. The left hemisphere 

(though not right hemisphere) foot cluster extended anterior and posterior to the pre- 

and postcentral gyri. Importantly, the dorsal/ventral borders of each activation cluster 
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very well conformed to some of the parcel borders that split the putative 

cytoarchitectonic areas into multiple parcels. This suggests that these borders represent 

differences in function within a topographically organized area that are not captured by 

cytoarchitectonics.  

 

Parcel network structure 

We conducted community detection in the parcel-wise graph across many 

density thresholds (see Supplemental Figure 7 for results from all thresholds), and we 

collapsed across thresholds using a consensus procedure. There was considerable 

visual overlap between the cross-threshold consensus parcel-wise communities (Fig 6, 

top) and the Power communities (Fig 6, middle). Every community found in the Power 

communities was also observed in the parcel communities except for one in anterior 

medial temporal lobe. These included all of the classic large scale RSFC 

networks/systems that have been consistently identified using multiple techniques 

(community detection, Power et al., 2011; ICA, Beckmann et al. 2005, Smith et al. 2009; 

signal clustering, Yeo et al. 2011), such as Visual (dark blue in Fig 6), Dorsal 

somatomotor (light blue), Ventral somatomotor (orange), Auditory (light purple), Default 

(red), Fronto-parietal (yellow), Dorsal attention (green), Cingulo-opercular (purple), 

Ventral attention (teal), and Salience (black). They also included a number of less well-

known systems that have been identified only in more recent investigations (Power et 

al., 2011; Yeo et al., 2011), such as: 1) a superior temporal sulcus-centered community 

(pink in Fig 6); 2) a community in anterior and posterior lateral frontal cortex, ventral 

inferior parietal lobule, and dorsomedial prefrontal cortex (tan); 3) a community in 
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retrosplenial and ventral temporal cortex (white); and 4) a community in posterior 

cingulate and ventral posterior precuneus (medium blue). Meanwhile, only one 

community emerged in the parcels was not found in the Power communities: a 

community in the marginal sulcus and frontal eye fields (colored magenta in Fig 6, top).  

Overall, the overlap between the two methods was 71.2%. Multiple parcels with 

100% overlap were observed in medial prefrontal, parietal, and occipital cortex, anterior 

and posterior insula, and pre- and postcentral gyrus. By contrast, parcels with poor 

overlap between the two methods were observed in lateral occipital and retrosplenial 

cortex, marginal sulcus, and frontal eye fields (Figure 6, bottom).  

 

 

Figure 3-6. The network structure of the boundary map-derived parcellation closely 
corresponds with the previously described network structure of the brain. Top: communities 
identified with the Infomap community detection procedure using the boundary map-derived 
parcels as network nodes. See the text for names of each colored community. Middle: the 
network structure of the brain calculated using every voxel as a network node (Power et al. 
2011). Bottom: spatial overlap of the parcel- and voxel-wise community assignments. 
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Use of parcels in individual subjects 

We examined how similar the group-average parcel connectivity patterns were to 

the connectivity patterns seeded from the same parcel in each individual. Across all 

subjects and parcels, the average Fisher transformed spatial correlation (Z(r)) between 

subject and group connectivity patterns was .57 ± .15. However, we observed that the 

average Z(r) across parcels was not uniform across subjects, ranging from .34 to .69. 

We tested whether this variability was related to how much data had been collected on 

a subject. We observed a nonlinear relationship between the number of timepoints 

analyzed and the average subject-group Z(r) across parcels (Figure 7, left). The 

average Z(r) for 84 subjects with less than 300 uncensored timepoints (12.5 min) 

ranged from .35 to .64, with 48 subjects having a Z(r) less than .55, but the average Z(r) 

for 36 subjects with more than 300 uncensored timepoints ranged from .56 to .68. 

We also observed that subject-group Z(r)s were not uniform across different 

parcels, ranging from .32 to .73 (Figure 7, top right). Specifically, parcels in medial 

occipital cortex, lateral and medial parietal cortex, insular cortex, medial prefrontal 

cortex, and pre/postcentral gyrus tended to have a Z(r) around .6 or above, with parietal 

Default mode parcels (posterior cingulate/precuneus and angular gyrus) having the 

highest Z(r), around .7. When analysis was restricted to the 36 subjects with more than 

300 timepoints, Z(r) values increased in 355 of 356 parcels; however, the spatial pattern 

of Z(r) across parcels did not change (Figure 7, bottom right). This suggests that 

including subjects with insufficient data reduces the reliability of parcel connectivity 

estimates globally rather than in specific parcels. 
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Figure 3-7. Group-average parcel connectivity is similar to subject-level connectivity, but this 
similarity varies across parcels and subjects. Left: the average Fisher-transformed correlation 
between group- and subject-level parcel connectivity patterns for each subject, plotted against 
the number of time points in each subject’s resting-state data. Top right: the average group–
subject correlation for each parcel, averaged across all subjects. Bottom right: the average 
group–subject correlation for each parcel, averaged across subjects with >300 time points (12.5 
min) of resting-state data. 
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3.5 Discussion 

In this study we described a method for building discrete parcels from RSFC 

boundary maps. We also described a homogeneity-based metric to evaluate the quality 

of the parcellation, and we demonstrated that the boundary map-derived parcels were 

highly homogenous. We found that the parcellation was significantly more homogenous 

than size and shape-matched random parcellations in two independent datasets. We 

also found that the boundary map-derived parcellation had higher overall homogeneity 

and performed better relative to random parcellations than a number of alternative 

parcellations. We additionally observed a high degree of overlap between the boundary 

map-derived parcels and several known cytoarchitectonic areas, with subdivisions 

within the cytoarchitectonic areas corresponding to functional differences. We further 

examined the network structure of the boundary map-derived parcels, and we found 

that it closely matched the previously described voxelwise structure of the brain. Finally, 

we observed that boundary-derived parcel connectivity patterns were mostly reliable 

across individual subjects. 

There are good a priori reasons to believe that RSFC boundary maps have real 

utility for areal parcellation of human cortex. First, RSFC-based techniques are 

noninvasive and can be applied to any subject population that does not exhibit severe 

movement during scanning. Second, RSFC is believed to represent some combination 

of direct and indirect structural connectivity (Honey et al., 2009; Vincent et al., 2007) 

and a statistical history of functional coactivations (e.g., Dosenbach et al., 2007); as 

such, it reflects some combination of a region’s function and connectivity, which are two 

of the major measures proposed to dissociate cortical areas (Felleman & Van Essen, 
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1991). Third, RSFC boundary maps in particular have been shown to not only identify 

where RSFC patterns change, but also to correspond with task activation patterns and 

to known areal borders based on architectonic divisions (Wig et al. 2014b). This cross-

modality validation indicates that strong RSFC boundaries are very likely to index 

cortical area divisions in many cases. 

 

Boundary Map-Based Parcellation Generates Parcels that Conform to 

Cytoarchitectonic Areas 

We observed that the boundary map-derived parcellation contained parcels that 

had very strong overlap with the known extent of area 17, as defined by Fischl et al. 

(2008) and mapped to the cortical surface by Van Essen et al. (2012). Other known 

cortical areas, such as somatomotor areas 2, 3, and 4, were overlapped by a 

combination of several parcels. These observations—that parcel borders conform to 

cytoarchtectonically-based estimates of human cortical areas—lend substantial face 

validity to the parcellation.  

However, the fact that somatomotor areas were subdivided into multiple parcels 

suggests that the present parcellation does not faithfully replicate all architectonic areas, 

but may instead over-parcellate some areas. We predicted that over-parcellation would 

be most likely to occur in topographically organized architectonic areas, such as 

somatomotor cortex, that are known to have subregions with dissociable functional 

responses (Rao et al., 1995), including dissociable RSFC responses (Long et al., 2014). 

Indeed, over-parcellation based on function is the most likely explanation for the 

subdivisions within somatomotor areas, as we observed that at least some of those 
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subdivisions were functionally relevant, conforming to the boundaries between different 

functional activation patterns resulting from motor movements of different body parts. 

The present boundary map-derived parcellation should thus be considered a functional 

parcellation; as such, it provides complementary information about brain organization 

that cannot be observed via anatomy.  

By contrast, area hOc5 (also known as the MT+ complex) was only moderately 

well-matched by a too-large parcel in the left hemisphere, and did not match any parcel 

in the right hemisphere. This failure to parcellate the area may be related to the known 

individual variability in hOc5 (Malikovic et al. 2007), which is greater than that of any 

other area investigated here (Van Essen et al., 2012). Inconsistent locations of cortical 

areas across subjects would reduce the likelihood that the boundary mapping procedure 

can successfully identify the area’s border. 

In total, the boundary map-derived parcellation consisted of 422 discrete parcels. 

This number of parcels falls above the range of 150 to 200 human cortical areas per 

hemisphere estimated by Van Essen et al. (2012). It is possible that, like the 

somatomotor cortex, various other architectonic cortical areas may be functionally 

subdivided by the present parcellation, resulting in an inflated number of parcels. 

 

Boundary Map-Based Parcellation Generates Parcels that are Functionally 

Homogenous 

Overall, the boundary-derived parcels had highly homogenous RSFC patterns, 

with an average parcel homogeneity of almost 90%. This high degree of homogeneity in 
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RSFC patterns indicates that most parcels represented regions of uniform BOLD signal, 

which is an expected characteristic of most cortical areas.  

Only a few parcels had low homogeneity (see Figure 3). Some of these parcels—

e.g., in medial and anterior inferior temporal lobe, and in inferior insula—were near low-

SNR areas, and may have had somewhat degraded signal; thus, low homogeneity is 

not surprising in these parcels. Other parcels—in right angular gyrus, right occipital 

cortex, bilateral occipitotemporal cortex, and left frontal eye fields—more likely 

represent local failures of the RSFC boundary mapping procedure, in which a true 

border between cortical areas was not successfully delineated. 

 

Homogeneity-based Parcellation Evaluation Must Account for Parcel Size 

and Shape 

The boundary map-derived parcels were not only highly homogenous, they were 

also much more homogenous than a null model consisting of 1000 identical 

parcellations that were randomly rotated into a new position on the cortical surface. The 

use of a null model is necessary for true evaluation of a parcellation, as the 

homogeneity measure of a given parcel is strongly dependent on the parcel’s size (see 

Figure 3 and Supplemental Figures 4 and 5). A similar effect was reported by Craddock 

et al. (2012), who found that the homogeneity of both clustering-derived and random 

parcels varied strongly as a function of the number of clusters specified (which will vary 

inversely with parcel size). By examining homogeneities of individual parcels, we show 

that this effect is specifically driven by parcel size; this can be appreciated by 

examination of the parcel size vs homogeneity plots of the randomly rotated parcels 
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(gray points in Fig 3; black points represent the mean homogeneity across rotations). As 

discussed in the Methods, this effect likely arises because small randomly placed 

parcels are more likely to fall within large homogenous regions such as the medial 

posterior parietal cortex, while large randomly placed parcels are more likely to sprawl 

across multiple cortical areas. The effect of parcel size is also likely constrained by the 

smoothness of the data, which is affected by averaging across variable subjects, the 

application of geodesic Gaussian smoothing during data processing, and the intrinsic 

spatial autocorrelation of the BOLD signal. If these explanations are correct, then a 

parcel’s homogeneity will depend not only on its size, but also on the regularity of the 

parcel’s shape, as an elongated parcel is more likely to sprawl across multiple cortical 

areas and extend beyond the intrinsic smoothness of the data than a circular parcel with 

the same surface area. This means that any appropriate null model of homogeneity 

must account both for a parcel’s size and its shape. Of previously published RSFC-

based parcellation approaches, only Craddock et al. (2012) compared their parcellation 

to a null model; however, that null model was simply the same number of randomly 

generated parcels. That null model thus maintains the average parcel size, but it does 

not attempt to match these sizes on a parcel-to-parcel basis or to maintain the shape of 

parcels, as the present null model does. 

 

Boundary Map-Derived Parcellation Performs Better Than Alternative 

Parcellations 

We tested the homogeneity of the boundary map-derived parcellation using a 

second dataset, such that the parcel creation procedure was completely independent of 
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the data in which it was tested. We found that the parcellation was still highly 

homogenous, and still much more homogenous than its null model, suggesting that 

these boundary map-derived parcels represent a robust central tendency of the 

population and can be applied to other datasets, even ones collected with different 

sequences on different scanners. Further, the boundary map-derived parcellation was 

both more homogenous and more homogenous compared to its null model than any 

other putative areal-level parcellation tested, suggesting that it better represents 

functionally homogenous cortical areas than any of the other parcellations. 

Parcellations derived from network detection approaches (the clustering-based 

approach proposed by Yeo et al. (2011) and the community detection procedure 

described in Power et al. (2011)) performed reasonably well when compared to their 

null models (particularly the Yeo parcellation), suggesting that these parcellations 

contain substantial information about the structure in the data. However, the raw 

homogeneities of the parcels in this parcellation were only moderate. This likely 

indicates that these approaches, which are designed to identify large-scale brain 

systems or networks, do not parcellate the brain finely enough to represent sub-

systems-level distinctions between adjacent regions. Such distinctions, as 

demonstrated by Wig et al. (2014b), likely reflect areal divisions in the brain, as they 

indicate where multiple regions with similar but discrete connectivity patterns interact 

within larger systems. The fact that such divisions are not reflected in the Yeo and 

Power parcellations indicates that those parcellations are closer to systems-level 

divisions of the brain than true parcellations of cortical areas.  
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Parcellations based on the NCUT criterion (Craddock et al., 2012, Shen et al., 

2013) were moderately homogenous; however, the Shen parcellation was only 

marginally more homogenous than its null model, while the Craddock parcellation was 

not more homogenous than its null model. This poor performance on a homogeneity-

based measure is surprising, given that clustering techniques such as these are 

designed to group similar signals together, which in theory should produce homogenous 

parcels. Blumensath et al. (2013) recently argued that parcels produced using the 

NCUT criterion described in Craddock et al. (2012) are dependent primarily on the 

specified cluster number rather than on the underlying data, as highly reproducible 

NCUT parcels could be produced using random data. The present results are a further 

demonstration that NCUT-derived parcels do not represent the underlying data structure 

well. 

The Brodmann parcellation (Brodmann, 1909) had low homogeneity, but was 

more homogenous than any of its null model parcellations. This suggests that, like the 

Yeo and Power parcellations, this parcellation does successfully represent structure in 

the data, but is too under-parcellated to represent true cortical areas. This perspective 

agrees with modern attempts to anatomically parcellate human cortex, which frequently 

observe more fine-grained architectonic divisions than those reported by Brodmann 

(e.g., Morris et al. 2000, retrosplenial cortex; Öngür et al. 2003, orbitofrontal cortex; 

Morosan et al. 2005, superior temporal gyrus; Caspers et al. 2006, inferior parietal 

cortex; Scheperjans et al. 2008, superior parietal cortex; Kujovic et al. 2013, extrastriate 

visual cortex). 
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The AAL parcellation (Tzourio-Mazoyer et al. 2002) had the lowest homogeneity 

of all parcellations and was not better than its null model. Indeed, there was no 

expectation that the AAL parcellation would represent the structure of RSFC data, as 

previous work has indicated that AAL regions are worse than RSFC-based parcellation 

schemes at representing cortical areas (Craddock et al. 2012; Blumensath et al. 2013; 

Shen et al. 2013). 

The Power ROIs (from Power et al., 2011) had both high homogeneity and were 

significantly better than all null model parcellations. These ROIs, which were derived 

partly from an earlier, less precise version of the present boundary mapping procedures, 

have been used in the field for a variety of purposes, including investigation of motion-

related artifacts (Power et al. 2012), functional connectivity dynamics (Glerean et al. 

2012), task control processes (Cole et al. 2013), and deficits related to 

neuropsychological disorders such as Autism (Rudie et al. 2013), attention deficit 

hyperactivity disorder (Eloyan et al. 2012), and schizophrenia and bipolar disorders 

(Argyelan et al. 2014). The present results suggest that these ROIs are reasonable 

estimates of cortical area centers, though not of full cortical areas, as they do not 

attempt to define the boundaries of areas. 

One other RSFC-based whole-brain areal parcellation scheme has recently been 

proposed (Blumensath et al. 2013), but we were not able to compare this scheme 

against the present boundary map-derived parcellation, as it was never applied to group 

average data. Blumensath et al. reported that subject-level parcels could be created 

using a region growing approach constrained by hierarchical clustering. Further, they 

reported that, compared to parcels derived using the NCUT technique (Craddock et al. 
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2012), these parcels were more reliable, better represented RSFC pattern transitions, 

and better aligned with task activation patterns. However, it is unclear if this method 

could produce reasonable group average parcels. 

 

Parcel-based Network Structure Corresponds With Voxelwise Network 

Structure 

We used a community detection procedure (Infomap; Rosvall and Bergstrom et 

al., 2008) to identify the network structure of boundary map-derived parcels, and we 

compared it to the previously described network structure of the brain defined using 

every voxel in the brain as a node (the “Power communities” described above; Power et 

al., 2011). Every community found in the Power communities was also observed in the 

parcel communities except for one in anterior medial temporal lobe. These included a 

number of large, highly replicated communities such as the Default, Fronto-parietal, and 

Cingulo-Opercular communities. They also included smaller communities, such as a 

retrosplenial/temporal community, a cingulate-precuneus community, and a superior 

temporal lobe community, which have been identified only recently using advanced 

network analysis techniques (Power et al., 2011; Yeo et al., 2011). The observation that 

parcel-based communities replicate both large, easily detected RSFC systems and 

small, subtle RSFC systems indicates that the present parcellation captures the overall 

network structure of the brain in considerable detail. The fact that this detailed structure 

is represented without the need for voxel level granularity suggests that the present 

parcellation is appropriate for use in certain network analyses, such as graph theory 
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analysis, which benefit from a limited number of rational, neurobiologically-based nodes 

in order to be interpretable (Power et al., 2013; Wig et al., 2011). 

One additional community was observed in the parcel-wise analysis that has not 

been observed in previous work: a community in the marginal sulcus and frontal eye 

fields (magenta in Figure 6). These areas were incorporated into the Cingulo-opercular 

and Dorsal attention systems, respectively, in the Power communities. We are not 

aware of any work demonstrating that these regions operate as a coherent unit; by 

contrast, it is well established that the frontal eye fields are a central node of the Dorsal 

attention system (Corbetta and Shulman 2002). Further, we observed that this 

community only emerged at relatively sparse thresholds; at more dense thresholds, it 

was split and incorporated into Cingulo-opercular and Dorsal attention communities, as 

in the Power voxelwise communities (see Supplemental Figure 7). We thus speculate 

that this newly observed community may represent an over-separation of existing 

communities rather than a real brain system. 

 

Most Group-Defined Parcels Reliably Represent Individual Subject 

Connectivity, Especially for High-Data Subjects 

An important goal of this work is to create parcels representing cortical areas that 

can be interrogated in individual subject data. Conducting fMRI analysis in a parcel-wise 

fashion is an ideal form of data reduction (Wig et al. 2011), as it involves analyzing 

several hundred relatively independent, homogenous parcel-averaged signals rather 

than 65,000+ noisy, non-independent voxel signals. In principle, applying these parcels 

to subject-level task analysis would thus not only decrease the need for multiple 
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comparisons correction, but would greatly increase the power of the analysis, as 

averaging a homogenous signal across a parcel would reduce noise levels. We 

examined whether the boundary map-derived parcels could be used for individual 

subject analysis. We found that on average, subject connectivity maps had high spatial 

correlations to group level maps, suggesting that in general, extracting and averaging 

subject-level data from a group-average parcel is a valid approach.  

However, we also observed that this degree of similarity was not uniform across 

subjects and parcels. For a given subject, connectivity similarity with the group was 

observed to be strongly and nonlinearly related to the amount of data the subject 

retained after motion censoring: subjects with greater than 12.5 minutes of data had 

high average similarity to the group, while subjects with less than 12.5 minutes of data 

were variable in how similar they were to the group. This finding emphasizes the need 

to acquire large amounts of data for reliable RSFC estimates, which has been well 

characterized by Anderson et al. (2011), who similarly demonstrated nonlinear effects of 

scanning time on RSFC reliability. Specifically, they found that reliability increased as 

1/sqrt(scanning time). A similar relationship may be present in the current data, though 

we found that fitting this curve to the scanning time/group similarity relationship 

explained only about 33% of the variance in group similarity, so we hesitate to draw any 

strong conclusions about the nature of this effect.  

A number of parcels were observed to have high homogeneity, indicating that the 

parcel was well-formed in the group, but nevertheless had relatively low subject-group 

similarity. The most likely explanation for this phenomenon is inter-individual variability 

in functional connectivity. Indeed, the locations of the most variable parcels—in lateral 
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prefrontal cortex and lateral temporal-occipital cortex (green and purple in Figure 3)—

correspond to regions previously reported to have particularly high inter-subject 

variability in RSFC patterns (Mueller et al. 2013). While most boundary map-derived 

parcels are appropriate for subject-level data analysis, these few parcels may be too 

variable for such a purpose. Ideally, issues of inter-subject variability could be avoided 

by creating single-subject parcels from subject-level boundary mapping. In theory, such 

subject-level parcels could then be matched to each other for averaging or comparison 

across subjects; this procedure would constitute an areal-level registration. Blumensath 

et al. (2013) previously demonstrated that whole brain parcellations can be created at 

the individual subject level, though in that work no attempt was made to match parcels 

to each other across subjects, which would be needed for true parcel-level cross-

subject analysis. Future work may explore the feasibility and utility of subject-level 

parcel matching. 

 

Limitations 

While this parcellation scheme is homogenous, replicates the network structure 

of the brain well, and has similar connectivity patterns across individuals, it may not yet 

constitute a truly reliable whole-brain parcellation. Most parcels are highly homogenous, 

but some (e.g. in lateral occipital cortex) appear to be inaccurate and/or under-

parcellated. Other regions may be somewhat over-parcellated. For example, while the 

parcellation describes some subdivisions in somatomotor cortex that correspond with 

functional activation patterns, other subdivisions have no known functional relevance, 

and they divide the motor and somatosensory strips into an arguably implausible 
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number of parcels. It is likely that more accurate parcellations addressing these issues 

may be generated in the future as higher resolution datasets with more per-subject 

timepoints become available. 

It should also be noted that the present approach results in a purely functional 

parcellation that, while containing substantial information about the location and extent 

of anatomical cortical areas, nevertheless does not perfectly converge with a true 

anatomical areal parcellation. Indeed, the topological functional organization of some 

cortical areas makes it unlikely that specific anatomical area boundaries could ever be 

derived from purely functional measures like RSFC. In their classic parcellation of 

macaque visual cortex, Felleman and Van Essen (1991) remark that ideally, each 

cortical area should be uniquely identifiable using any of several modalities (connectivity, 

architectonics, topographic organization, functional responses, or behavioral 

consequences of lesions). In practice, they found that not every area could be identified 

using every method; often only one or two of these methods dissociated a specific area. 

This suggests that comprehensive categorization of all cortical areas in the human 

cortex will require further data from additional modalities. 

 

Conclusions 

Here we demonstrate that parcels created from RSFC boundary maps overlap 

with known architectonic areas and have highly homogenous connectivity patterns. We 

also demonstrate that these parcels are far more homogenous than a null model in two 

independent datasets, indicating that the parcellation not only captures the structure of 

the data, but that it generalizes across different subject pools, scanners, and scanning 
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sequences. Further, no other parcellation tested was as homogenous or had as large a 

homogeneity difference compared to its null model. The proposed parcellation scheme 

thus appears to better represent functional divisions within the human brain than any 

other RSFC-based parcellation scheme yet published. A modified version of this 

parcellation created by combining both datasets (Supplemental Figure 10) is publically 

available at http://www.nil.wustl.edu/labs/petersen/Resources.html.  
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3.7 Supplementary Figures 
 

 
Supplementary Figure 3-1. Improved RSFC boundary mapping procedures reduce noise in 
boundary maps, resulting in stronger edges and “deeper” non-edge areas. Left: boundary map 
(top) and histogram of boundary map values (bottom) created using procedures described in the 
main text. Right: boundary map (top) and histogram of boundary map values (bottom) created 
using procedures from Wig et al. (2013).  
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Supplementary Figure 3-2. Boundary maps from Dataset 1 (left) and Dataset 2 (middle) are 
highly similar. Right: overlap between boundary maps from Datasets 1 and 2 after thresholding 
both at the 75th percentile of boundary map values. Black: Dataset 1 boundaries; red: Dataset 2 
boundaries; yellow: boundaries overlapping between datasets. 
 

 
Supplementary Figure 3-3. Parcels created using other thresholds for parcel merging do not 
well-fit the features of the boundary map. Left: boundary map. Top right: parcels created using 
the 20th percentile of boundary map values as a merge threshold. Many regions appear over-
parcellated (red circles). Bottom right: parcels created using the 70th percentile as a merge 
threshold. Many regions appear under-parcellated (green circles). 
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Supplementary Figure 3-4. Parcel homogeneity is dependent on parcel size across all 
parcellation schemes tested. Colored dots in each plot indicate the homogeneities of the tested 
parcels. Gray dots indicate the homogeneities of null model versions of each parcel (rotated to a 
different cortical location), while black dots indicate the means of the null model parcel 
homogeneities. Colored and black lines represent lowess fit curves of the real parcel 
homogeneities and null model parcel homogeneities, respectively. 
 

 
Supplementary Figure 3-5. Boundary map-derived parcels are the most homogenous even 
when parcel size is taken into account. Colored lines indicate lowess fit curves of parcel 
homogeneities against parcel size (as in Supplementary Figure XX); black line indicates fit 
curve of null model parcels from all parellations. The boundary map-derived parcel 
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homogeneities depend on parcel size, but the fit curve is elevated above the curve of every 
other alternative parcellation scheme. 
 

 
Supplementary Figure 3-6. Boundary map-derived parcels match known cortical areas and 
functional activation patterns in the right hemisphere. Left and middle: a variety of 
cytoarchitectonically-defined cortical areas (Fischl et al., 2008) were matched by boundary map-
derived parcels. Area 17 overlapped very well with one parcel, but area hOc5 did not overlap 
well with any parcel. Area 2, 3, and 4 overlapped with several adjacent parcels. Right: parcel 
divisions within cytoarchitectonic areas 2, 3, and 4 corresponded with divisions between 
activation clusters from motor movements of the left foot, left hand, and tongue (Barch et al., 
2013). 
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Supplementary Figure 3-7. Infomap community assignments at every network density 
threshold tested, from 1.0% to 3.0%. 



	142	

 

 
Supplementary Figure 3-8. Most parcellations created by Craddock et al. (2012) are not 
significantly homogenous compared to 200 iterations of a tailored null model, across different 
numbers of clusters. Red dots indicate mean parcel homogeneity for a given parcellation with 
cluster number indicated by the x-axis; black dots indicate mean homogeneity of each null 
model iteration. * indicates p<.05 (i.e., mean parcel homogeneity was better than homogeneities 
from at least 190 null model iterations). No tested parcellations were more homogenous than all 
null model iterations. 
 

 
Supplementary Figure 3-9. Parcellations created by Shen et al. (2013) with cluster numbers 
100 and 200 are not significantly homogenous compared to 200 iterations of a tailored null 
model. Red dots indicate mean parcel homogeneity for a given parcellation with cluster number 
indicated by the x-axis; black dots indicate mean homogeneity of each null model iteration. 
Neither tested parcellation reached significance (i.e. was more homogenous than at least 190 
null model iterations). 
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Supplementary Figure 3-10. Parcellation derived by combining Datasets 1 and 2 and applying 
the boundary mapping procedure to the combined dataset. Colors represent the community 
structure of the parcellation calculated using the infomap procedure, with the same color 
mapping described in the main text. This parcellation is publically available at 
http://www.nil.wustl.edu/labs/petersen/Resources.html. 
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Supplementary Figure 3-11. When tested in Dataset 2 using a previously devised 
homogeneity metric (from Craddock et al., 2012), results are very similar to results obtained 
using the PCA-based homogeneity metric. Top: the spatial distribution of boundary map-derived 
parcel homogeneities is very similar to those obtained from the PCA-based homogeneity metric 
(top left of Figure 4, main text). Bottom: the average homogeneity across parcels of each 
parcellation (red dots) compared to the average homogeneity across parcels of each of 100 null 
model iterations (black dots) demonstrated a pattern very similar to that obtained from the PCA-
based homogeneity metric (bottom of Figure 4, main text). ** indicates the parcellation was 
more homogenous than all of its 100 null model iterations (i.e., p<.01); * indicates the 
parcellation was more homogenous than at least 95 of its null model iterations (p<.05). 
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4.1 Abstract 
 
Resting state functional magnetic resonance imaging (fMRI) has enabled description of 

group-level functional brain organization at multiple spatial scales. However, cross-

subject averaging may obscure patterns of brain organization specific to each individual. 

Here, we characterized the brain organization of a single individual repeatedly 

measured over more than a year. We report a reproducible and internally valid subject-

specific areal-level parcellation that corresponds with subject-specific task activations. 

Highly convergent correlation network estimates can be derived from this parcellation if 

sufficient data are collected – considerably more than typically acquired. Notably, within-

subject correlation variability across sessions exhibited a heterogeneous distribution 

across the cortex concentrated in visual and somato-motor regions, distinct from the 

pattern of inter-subject variability. Further, although the individual’s systems-level 

organization is broadly similar to the group, it demonstrates distinct topological features. 

These results provide a foundation for studies of individual differences in cortical 

organization and function, especially for special or rare individuals. 

 

4.2 Introduction 
 

The human brain exhibits a substantial degree of anatomic and functional 

variability across individuals. This fundamental observation has both frustrated and 

intrigued investigators who have sought to relate individual differences in brain 

organization to normal variability in behavior and cognition, as well as to the 

pathophysiology of disease (Devlin et al., 2007; Van Essen et al., 2007). Sophisticated 

strategies for transforming inter-subject anatomical variability into standard volumetric 
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and, more recently, surface-based common spaces allow meaningful comparisons 

across individuals (Fischl et al., 1999; P. T. Fox et al., 1985). However, such 

transformations necessarily obscure individual variability in functional organization. Just 

as no single brain is representative of a population, no group-averaged brain represents 

a given individual. Furthermore, an observed pattern of functional brain organization in 

an individual may reflect persistent traits shaped by development and genetics, but may 

also relate to current state or environmental effects. Ultimately, accurate identification of 

brain-behavior relationships will require precise characterization of brain organization in 

individuals that takes into account both measurement error and intra-individual sources 

of variability.  

Great advances recently have been made in describing group-average functional 

brain organization using resting state functional connectivity (RSFC). RSFC is based on 

the observation that the blood oxygen level dependent (BOLD) fMRI signal is correlated 

between spatially separated but functionally related regions of the brain (Biswal et al. 

1995). Using this non-invasive technique, functional organization has been identified at 

the systems and areal level – two discrete scales of brain organization (Churchland et 

al., 1988). At the systems level, many investigators have used a variety of methods to 

produce increasingly comprehensive RSFC-based descriptions of distributed cortical 

and subcortical systems (Choi et al., 2012; Dosenbach et al., 2007; Doucet et al., 2011; 

Power et al., 2011; Yeo et al., 2011) that appear to correspond with functional systems 

co-activated by tasks (Power et al., 2011; Smith et al., 2009). At the areal level, (Cohen 

et al., 2008a) have shown that RSFC exhibits abrupt transitions between cortical areas, 

i.e. regions of cortex that classically can be discriminated by multiple convergent 
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properties including function, architectonics, connectivity, and topographic organization 

(D. J. Felleman et al., 1991a). Based on this observation, the whole cortex has been 

divided into discrete functional parcels, some of which correspond to task activations 

and cytoarchitectonically-defined areas (Gordon et al., 2014b; Wig et al., 2014b; Yeo et 

al., 2014). Indeed, definition of cortical regions that segregate functional areas of this 

type should be an important first step in pursuing network-level analyses that reflect 

relevant neurobiological principles (Power et al., 2011; Smith et al., 2011; Wig et al., 

2011b). Thus, RSFC has enabled clear progress in the understanding of brain function 

and organization at multiple scales in groups of subjects, providing a powerful context 

for understanding brain function. However, these group-level analyses, which 

necessarily describe group-average data, provide only an approximate view of any 

individual’s brain organization, potentially obscuring meaningful individual differences in 

cortical organization. 

Here, we develop a detailed description of individual functional areal and 

systems brain organization, including how such organization differs from group-level 

estimates of organization. Importantly, precise estimates of individual functional brain 

organization can only be obtained by acquiring sufficient data to overcome sampling 

error and other sources of variability. RSFC studies commonly acquire only 5-10 

minutes of scan time on each participant, based on recommendations given in past 

reports (Damoiseaux et al., 2006; Shehzad et al., 2009; Van Dijk et al., 2010). This 

quantity of individual data may be adequate for characterizing group-level patterns of 

functional brain organization and group-level differences. However, more recent reports 

have suggested that reliability is substantially improved with more than 10 minutes of 
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data (Anderson et al., 2011; Birn et al., 2013; Hacker et al., 2013). Most dramatically, 

Anderson and colleagues (2011) have reported that at least 25 minutes of scan time 

and, in some cases, as much as 4 hours is needed to distinguish an individual from the 

group on the basis of RSFC. The total quantity of data required to accurately estimate 

whole-brain descriptions of functional organization in an individual remains an open 

question. 

To address these considerations, we repeatedly studied one individual over more 

than a year, accumulating 14 hours of resting state fMRI, as part of an extensive 

phenotypic assessment of a single human. Using these data, we define a subject-

specific areal parcellation and compare it against task activations acquired in the same 

subject. We then demonstrate the reliability and inter-session variability of correlation 

networks derived from this parcellation. Finally, we report the commonalities and 

idiosyncrasies of system topology, i.e. the specific spatial adjacencies of functional 

systems with respect to each other as identified by RSFC, in the individual as compared 

to a group of normal control subjects (and we further validated these observations in a 

second highly-sampled subject). This approach highlights the challenges that inter- and 

intra-subject variability bring to understanding functional brain organization. It also sets 

the stage, in this dataset, for relating longitudinal dynamics of brain function to 

behavioral and metabolic variability (detailed in Poldrack et al. (in revision)), and, more 

broadly, provides a model for the detailed characterization of functional brain 

organization in special or rare individuals using RSFC. 
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4.3 Results 

Subject-specific areal parcellation 

Evaluation of subject-specific RSFC-based parcellation 
 

An individual subject parcellation was generated using data from 84 resting 

state sessions following the RSFC-gradient based procedure described in detail 

in (Gordon et al., 2014b) and (Wig et al., 2014b). In brief, this method uses 

spatial gradients in the similarity of neighboring RSFC maps to identify transitions 

in RSFC across the cortical surface. Consistent edges identified in these gradient 

maps can be used to generate discrete parcels using the watershed transform 

(see Supplemental Materials). The parcellation defined by this method 

demonstrated high reproducibility, such that parcellations derived from two 

distinct subsets of 42 sessions exhibited considerable overlap (yellow vertices in 

Figure 1A). The Dice coefficient between these parcellations was 0.87. We 

further evaluated the internal validity of the parcels generated from the entire 

dataset using a homogeneity measure defined as the percent of variance 

explained by the first principal component of the RSFC patterns from all the 

vertices in each parcel (Gordon et al., 2014b). Mean homogeneity across all 

parcels was 86.5% ± 7.3% (Figure 1B). This mean homogeneity was significantly 

greater than that obtained in any of 1000 null model parcellations generated by 

randomly rotating the original parcellation around the cortical surface (Z-score = 

23.1, p<0.001; Figure 1C on the left). Notably, homogeneity of the RSFC-derived 

parcels did not strongly vary by parcel size (red line in Figure 1C), unlike the 
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parcels generated by the null model, which decreased in homogeneity with 

increasing size (black line), suggesting that the parcellation method can 

accurately define putative functional areas of variable size. Further, the subject-

specific parcellation performed better than our previously-defined group 

parcellation (Gordon et al., 2014b) evaluated in the same way in the subject data 

(Z-score = 2.1, p=.015) and much better than the AAL atlas (Z-score = -1.3, 

p=.907).  

 

Figure 4-1. Subject-specific parcellation is reproducible and internally valid. A) RSFC-based 
parcellation produces highly overlapping (yellow) parcel boundaries in two independent subsets 
of sessions (n = 42 per subset). B) Homogeneity of each parcel calculated as the percent of 
variance explained by the first eigenvector computed from PCA of the RSFC patterns from 
vertices in the parcel. C) Homogeneity of real parcels (red dots) by parcel size compared to 
homogeneity of null model parcels (gray dots).  Black dots indicate median homogeneity across 
iterations for each null model parcel. Lowess fit lines highlight the effect of parcel size on 
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homogeneity for the individual subject parcels (red line) and the null model parcels (black line). 
D) Mean homogeneity across parcels in the real parcellation (red dot) is significantly higher (Z-
score = 23.1) than the mean homogeneity from null model parcellations (black dots). 

 

Comparison of subject-specific RSFC-based parcels with task fMRI 
responses 
 

If parcels defined by RSFC plausibly reflect cortical functional areas, they 

should correspond to areas defined by other measures of brain functional 

organization. In the past, we have reported alignment of group-average RSFC-

boundaries with both probabilistic cytoarchitectonic maps and group-level task 

activation maps (Gordon et al., 2014b; Wig et al., 2014b). Although we 

(necessarily) have no histological measurements in this individual, fMRI 

responses to a large set of tasks were collected, allowing for both qualitative and 

quantitative assessments of within-subject correspondence between task and 

rest. 

 

Correspondence with retinotopy 

Putative boundaries between early cortical visual areas V1, V2, and V3 

were identified by demarcating reversals in the polar angle map responses to a 

rotating flickering checkerboard stimulus. Both dorsal and ventral borders of the 

functionally-defined V1 corresponded well to RSFC-defined parcel edges in both 

hemispheres (Figure 2; magenta arrows). The boundary between dorsal V2 and 

dorsal V3 also corresponded to parcel edges in both hemispheres. However, 

there was no apparent parcel edge corresponding to the boundary between 
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ventral V2 and V3 in either hemisphere. Notably, the RSFC parcellation identified 

additional boundaries that do not correspond to early visual area boundaries. 

Some of these boundaries, particularly near the occipital pole, may relate to local 

changes in signal quality due to magnetization susceptibility inhomogeneity. 

Further, more boundaries within the left V1 region were observed than in right V1. 

This hemispheric asymmetry may reflect weak correlation gradients in the right 

hemisphere below the edge detection threshold. Of particular interest, however, 

are the boundaries observed both dorsally and ventrally perpendicular to the long 

axis of areas V2 and V3. These boundaries reflect relatively large correlation 

gradients that may relate to distinctions between foveal and peripheral 

representations of the visual field (cyan arrows) as has been observed in group-

averaged data (Buckner et al., 2014; Yeo et al., 2011).   
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Figure 4-2. Parcel boundaries defined in individual correspond with boundaries between 
retinotopically defined visual regions derived from the same subject. Magenta arrows indicate 
correspondence between the RSFC-based parcel boundaries and the boundary between V1 
and V2 areas. Cyan arrows indicate RSFC-based parcel boundaries that may represent 
distinctions between foveal and peripheral representations in the visual field. 

 

Correspondence with evoked responses to a set of tasks 

If RSFC-defined parcels correspond to discrete functional areas, then focal 

responses to tasks should fall within parcel boundaries. To test this 

correspondence, we evaluated responses to all contrasts in all tasks and 

computed the fraction of thresholded responses contained within RSFC-defined 

parcels (fractional overlap).  Raising the statistical threshold (reducing the area of 

“activation”) is expected to systematically increase the fractional overlap (Figure 
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3B). We found that, averaged across all the task contrasts, this fraction was 

greater than chance at all t-statistic thresholds (Figure 3B). Further, at an 

arbitrary task map threshold of t=2.3 (two-tailed ~p<0.1), 22 of the 27 task 

contrasts showed significantly higher overlap with the true parcels than the null 

model (p<0.05; Figure 3C). Activation maps from contrasts in the motion 

discrimination (3 of 5 contrasts with p<0.01), object localizer (10 of 10 contrasts 

with p<0.01), and verbal working memory tasks (1of 3 contrasts with p<0.01) 

corresponded particularly well to RSFC parcels, while responses to the N-back (1 

of 6 contrasts with p<0.01) and spatial working memory (0 of 3 contrasts with 

p<0.01) tasks corresponded somewhat less well. 
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Figure 4-3. RSFC-based parcellation corresponds with task activations. A) Parcellation 
boundaries overlaid on an example task contrast from the motion discrimination task. B) The 
average fraction of task-activated vertices that fall within parcels across all 27 task contrasts by 
t-stat threshold. Expected fraction by chance of task-activated vertices falling within parcel 
boundaries is 0.696 (dotted line). C) Each colored dot represents the fraction of task-activated 
vertices that fall within parcel boundaries for each task at a single t-statistic threshold (t=2.3) 
compared to a null model. The null distribution reflects task/parcel area overlap from rotated real 
parcel boundaries (black dots). Gray bar indicates real parcellation showed significantly more 
overlap with task-activated vertices than null parcellations (p<0.05). 

 

Areal network reliability and variability 

Evaluation of how much data are needed for brain network estimation 
 

Using the parcel-wise correlation matrix as a practical proxy for overall 

brain organization, we investigated how much resting state fMRI time is needed 
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to obtain convergent estimates. The results are based on 1000 random 

samplings of the data acquired over 84 sessions split into two halves. To ensure 

direct node-to-node comparability, we used the parcels derived from all 84 

sessions to define parcel-wise timecourses for both halves of the data (see 

Figure S1 for system assignment). We observed very high measured correlation 

( r!) between the two halves of the data comprising 42 sessions each 

(r!=0.99±0.002; Figure 4A). This result defined the upper-limit of correlation 

network reproducibility to which smaller quantities of data were compared. The 

average correlation of only one session (9 min) from one half of the data with the 

full set of sessions from the other half of the data was r! = .82 ± .04. A steep 

increase in average similarity (r!=.92±.01) was observed with three sessions (27 

min). Additional improvements were observed up to approximately 10 sessions 

(90 min; r!=.97±.005), after which the similarity more slowly approached the 

asymptotic value of r! =0.99 (Figure 4B). The graph shown in Figure 4B 

theoretically is a sigmoid of functional form, r! = 1 1 + ξ! , where ξ!  is 

dominated by a term that is inversely proportional to the quantity of available data 

(see Figure S2 and the Appendix in Supplemental Materials for an algebraic 

derivation of the sigmoidal functional form and relevant formulae). This functional 

form yields a very good fit to the empirical data and can be used to compute a 

given similarity to the "true" value. The relevant quantities to compute this model 

are the measurement error of the correlation between a given parcel pair and the 
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range of correlation values in the set of parcel pairs. Although it is impractical to 

derive a theoretical reproducibility curve for more complex measurements, e.g., 

parcellation, limited testing demonstrated that these measurements have lower 

reproducibility than the correlation matrices with similar quantities of data. For 

example, the Dice coefficient between a parcellation generated from one session 

(9 minutes) vs. 42 sessions is ~0.27. 

Additionally, we found that the correlation matrices calculated from one 

half of the data converged just as quickly, or even slightly faster, with the other 

half of the data when sampling shorter epochs over more sessions (e.g., 4.5 

minutes from two sessions compared to 9 minutes from one session; Figure 4C, 

red line). This rapid convergence was also seen even with contiguous segments 

as short as 1.125 minutes of data sampled from more sessions (i.e. 1.125 

minutes from 8 sessions compared to 9 minutes from one session; Figure 4C, 

blue line).  
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Figure 4-4. Convergence of resting state correlation estimates requires significant amounts of 
data. A) Example parcel correlation matrices computed from each half of the data. The parcels 
are sorted by system with black lines indicating system boundaries (see Figure S1 for system 
assignments). B) Pearson correlation (rM) of parcel-based correlation matrix from one half of the 
data with the correlation matrix generated from increasing amounts of data drawn from the other 
half. Represented are the mean (solid line) and standard deviation (dotted lines) of this 
correlation from 1000 random samplings of 84 sessions. C) Correlation when the same amount 
of time is drawn from a larger number of sessions, e.g. 18 minutes drawn from 4.5 minutes of 4 
sessions (point on red line) is compared to 18 minutes drawn from 9 minutes of 2 sessions 
(point on black line). 

 

Comparison of within-subject variability and between-subject variability 
 
 Within-subject variability was computed as the standard deviation of the 

correlation estimated between each parcel-pair across all 84 sessions (using 

individual system assignment, see Figure S1). Within-subject variability was non-

uniformly distributed across systems, with higher variability observed in 

correlations within and between somato-motor and visual regions (Figure 5A, left). 
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Relatively less variability was observed between fronto-parietal, default mode, 

ventral attention, and medial parietal regions. The average variability across all 

correlations for each parcel confirmed the pattern of relatively larger variability in 

visual, somato-motor, and dorsal attention regions compared to the rest of the 

brain (Figure 5A, bottom). This pattern is distinct from the pattern of between-

subject variability computed over group-defined parcels observed in our 120-

subject dataset (Figure 5B; group system assignment defined in (Gordon et al., 

2014b)). Between-subject variability was relatively higher in fronto-parietal, 

cingulo-opercular, attentional, and default mode regions than in visual, auditory 

and somato-motor regions, as previously reported (Mueller et al., 2013). It should 

be noted that correlation variability generally was much higher across individuals 

than across sessions within the individual, particularly in the fronto-parietal, 

cingulo-opercular, attentional and default regions.  
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Figure 4-5. Across-session compared to across-subject variability in resting state correlations. 
A) Above, parcel-to-parcel correlation standard deviation across sessions based on the 
individual subject parcellation and system assignment (see Figure S1). Below, the average 
correlation standard deviation for each parcel across all of its connections. B) Above, parcel-to-
parcel correlation standard deviation across subjects using the group parcellation and system 
assignment reported in (Gordon et al., 2014b). Below, the average correlation standard 
deviation for each parcel across all of its connections. 

 A potential source of inter-session variability in the individual is that on 

Tuesdays (n = 40 sessions) the subject fasted and abstained from caffeine to 

prepare for a blood draw, while on Thursdays (n = 32 sessions) the subject was 

fed and caffeinated. We observed differences in correlation strengths between 

Tuesday and Thursday, with increased correlations within and between somato-

motor and extrastriate visual regions (Vis 2) on Thursdays relative to Tuesdays 

(see Figure S3A; further detailed in Poldrack et al (in revision)). Although these 
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effects of day likely account for some of the observed variability reported above, 

correlation variability was still relatively higher in visual and somato-motor 

regions in Tuesday or Thursday acquisitions considered separately (Figure S3B). 

 

Vertex-wise system estimation 
 
Comparison of individual system definition to group system definition 
 
 Systems were defined using Infomap-based community detection in the 

individual and compared to similar results obtained in the group (Figure 6). The 

systems have been color-coded using the same scheme where possible. Most 

systems were grossly topologically similar in the individual and the group 

including: default mode, visual, dorsal attention, ventral attention, fronto-parietal, 

cingulo-opercular, salience, auditory, somato-motor, medial parietal, and parieto-

occipital systems. Furthermore, this commonality extended to detailed features of 

systems. For example, smaller regions of the fronto-parietal system in the 

anterior insula and in dorsal medial prefrontal cortex appear in both the individual 

and the group (magenta circles). The overall Dice coefficient between the 

individual and group consensus maps is 0.52.  

By contrast, some features of the system maps were markedly different 

between the individual and the group. The Infomap algorithm did not define 

lateral somato-motor (orange arrows) or medial temporal systems in the 

individual, as were found in the group. On the other hand, the individual had a 

clearly defined primary visual system that was not seen in the group (olive 
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arrows). Prior reports (McAvoy et al., 2008; Xu et al., 2014) suggest that the 

presence of a primary visual system and the lack of the ventral somato-motor 

system might relate to a difference in eye state between the individual (eyes 

closed) and group (eyes open) data. Indeed, an additional 100 minutes of eyes 

open data collected in the individual as part of a validation dataset confirmed that 

the effect of eye state is localized primarily to occipital cortex and regions 

adjacent to the pre- and post-central gyri, identified as visual, somato-motor and 

dorsal attention regions in this individual (see Figure S4).  

 

Figure 4-6. Primary subject Infomap-based community detection produces resting state 
community topology similar to a 120-subject group average dataset. The maps depicted here 
represent a single view of community identity collapsed across multiple edge density thresholds 
(additional edge densities are found in Figure S5). Magenta circles highlight similarities between 
the individual and the group in the fronto-parietal system. Orange arrows point to the lateral 
somato-motor system present in the group but not the individual, while olive arrows point to the 
primary visual system present in the individual but not the group. 
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Several additional systems were also observed in the primary subject that 

were not present in the group consensus map. Unlike the primary visual system, 

which was seen at every tested edge density, these unknown systems were only 

observed at lower edge densities (see Figure S5), indicating that they were less 

readily separable from other systems and therefore may be of dubious status. 

One further observation worth noting is that the group consensus map includes a 

region in the lateral occipital-temporal cortex (between the default mode and 

visual systems) without system assignment; in the individual, this same region 

showed unambiguous system affiliation (Figure 6, green squares). 

 Fine-grained features in the individual’s system map were present across 

many edge densities. Although we cannot specifically address all of these 

features, we highlight the pattern of correlation in two adjacent regions of the 

lateral frontal cortex in the individual relative to the group (Figure 7). In the 

individual, these two adjacent regions showed starkly divergent patterns of 

functional connectivity: the Infomap algorithm identified the more anterior region 

as part of the cingulo-opercular system and the more posterior region as part of 

the fronto-parietal system. In contrast, the same two adjacent regions in the 

group showed only local differences in functional connectivity and essentially no 

long-range differences. Furthermore, a direct comparison of RSFC maps, vertex 

by vertex, between the individual and the group confirmed a group-individual 

discrepancy in the example lateral frontal region of Figure 7, as well as many 

other focal regions with distinct patterns of RSFC (Figure S6A, top row). To 
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ensure that the observed differences between the primary subject and the group 

were not related to differences between scanners and fMRI sequence 

parameters, an additional validation dataset (100 minutes eyes-closed rest) was 

collected on the primary subject at the Washington University site with the same 

fMRI sequence as the group data. The focal individual vs. group differences were 

replicated in the validation dataset (Figure S6A, second row).   

 

Figure 4-7. Example of idiosyncratic patterns of functional connectivity in an individual. Two 
nearby regions of interest (white spheres) in the lateral frontal cortex have the same system 
identity in the group (fronto-parietal) but different system identities in the individual (cingulo-
opercular and fronto-parietal).  Above, correlation maps from these two regions have very 
similar patterns in the group, with the largest differences occurring locally. Below, The same two 
regions demonstrate starkly different correlation patterns in the individual, with large regions of 
cortex showing large differences in correlation. 
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To evaluate whether such focal differences are unique to this particular 

highly-sampled individual or a more general feature of individual brain 

organization, we collected an extensive dataset (10 runs of 30-minutes) on an 

additional subject (‘secondary subject’). The Infomap-based community detection 

result at several edge densities are reported for this individual and compared to 

the group system map in Figure S7. This second individual also exhibited many 

of the same systems as the group data. As this individual’s data were collected 

with eyes open, it should be noted that, unlike the primary subject, this individual 

did not have a separate primary visual system but did have a separate ventral 

somatomotor system (Figure S7, middle rows). Further, focal differences 

between this second individual and the group were observed primarily in frontal 

and parietal regions (Figure S7, bottom row), as in the primary subject, although 

the exact locations were different. Together, these observations illustrate the 

existence of idiosyncratic topological features in functional brain organization 

specific to each individual. 

 

4.4 Discussion 
 

We present a description of the functional organization of a single human brain, 

based on functional MRI measurements repeatedly sampled over more than a year. 

Resting-state correlation-based functional organization was highly reproducible in this 

individual. The areal parcellation derived from resting state data corresponded with 

aspects of retinotopically defined visual areas and fMRI responses to task paradigms in 
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the same individual. Across-session variability in RSFC was greater in visual, somato-

motor, and dorsal attention regions relative to other regions, though considerably less 

overall than between-subject variability. Finally, we found that functional systems are 

largely similar in the individual and in the group, but that some features in the individual 

were topologically distinct. 

 

Subject-specific RSFC-based parcels are reproducible and show internal 
validity 
 
 RSFC-based subject-specific parcellation was reproducible across subsets of 

data and internally valid according to the criteria defined in (Gordon et al., 2014b). In 

particular, the subject-specific parcellation exhibited high parcel-wise homogeneity, and 

the whole parcellation was significantly more homogenous than a null model. This result 

suggests that, as a whole, the parcellation effectively delineates functionally 

homogenous cortical areas in this individual, and therefore is likely to represent a 

neurobiologically meaningful basis for brain network analyses (Power et al., 2011; Smith 

et al., 2011; Wig et al., 2011b). 

The final parcellation included 616 parcels across both cortical hemispheres. 

This figure is somewhat greater than the 150-200 human cortical areas per hemisphere 

estimated by (Van Essen et al., 2012a), and also greater than the 333 parcels 

previously identified in group-average data (Gordon et al., 2014b). RSFC-based 

parcellation is capable of finding functional subdivisions within traditionally defined 

cortical areas, e.g., putative distinctions between tongue, hand, and foot representations 

within Brodmann areas 3 and 4 (Gordon et al., 2014b). Here, even finer delineation of 

specific functional subdivisions was possible, most likely because imperfect registration 
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of functional systems across individuals was avoided. Our experience indicates that the 

precise number of parcels and exact position of the parcel boundaries may vary with 

processing choices (e.g., smoothing, edge retention threshold), but the general shape 

and position of parcels does not significantly change. Thus, the current parcel set 

should be viewed as a current best estimate for this subject. 

 

Subject-specific RSFC-based parcels correspond to task-evoked 
responses 
 
 Correspondence between group-level resting state correlation organization and 

task co-activation patterns has been amply documented (Cordes et al., 2000; Power et 

al., 2011; Smith et al., 2009; Wig et al., 2014a). However, subject-specific task-rest 

correspondence has been more difficult to demonstrate.  (Blumensath et al., 2013) have 

reported that RSFC measurements track task responses in individuals. Here, with the 

advantage of a much larger dataset, we observed a significant correspondence 

between subject-specific RSFC-defined parcels and task evoked responses. The V1/V2 

boundary defined by retinotopic mapping clearly corresponded to RSFC-based parcel 

edges. This result replicates, in an individual, our previous observations at the group-

level of a correspondence between RSFC-derived parcels and cytoarchitectonic 

boundaries between probabilistic areas 17 and 18 (Gordon et al., 2014b; Wig et al., 

2014b). Areas V2 and V3 also showed correspondence with RSFC-defined parcel 

edges, albeit less consistently and only dorsally. As noted above, RSFC-defined parcels 

need not correspond exactly with classically defined cortical areas. Indeed, we 

observed RSFC-defined parcel edges in this individual that may correspond to foveal vs. 

peripheral representations of the visual field (Buckner et al., 2014).  
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Similarly, some task responses corresponded better to the RSFC-based 

parcellation than others. In particular, the object localizer, verbal working memory, and 

motion discrimination tasks produced activation patterns that better aligned with parcels 

than the N-back and spatial working memory tasks. Although the reasons for this 

observation are uncertain, one possibility is that some task contrasts may be less 

process-specific than others, leading to a loss of specificity of evoked responses across 

neighboring functional areas. Reduced specificity may reflect multiple distinct processes 

invoked in a given task condition or alternate cognitive strategies used in different task 

sessions. Of course, the set of tasks used for this study does not represent the universe 

of tasks needed to delineate the full complement of cortical functional areas. However, 

the presently demonstrated task-rest correspondence so far observed in this dataset 

validates the principle that subject-specific parcellations can inform future network 

analyses. 

 

Measures of individual functional brain organization converge with 
sufficient data 
 

We found that 9 minutes of data generated respectable reproducibility of 

correlation network estimates with respect to the “true” correlation matrix (average 

r! = 0.82). However, systematically varying the quantity of data revealed greatly 

improved precision of correlation matrix estimates as the quantity of data increased 

from 9 minutes to 27 minutes, and beyond, in accordance with theory taking into 

account measurement error and the range of values in the correlation matrix (see 

Supplemental Materials). This result is consistent with recent reports (Anderson et al., 

2011; Birn et al., 2013; Hacker et al., 2013). Thus, 5-10 minutes of data, as commonly 
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collected in many resting-state studies, may not capture a precise representation of 

stationary functional connectivity features of individual subjects. Further, it should be 

noted that the presented reproducibility values correspond to the relatively robust 

measure of correlation estimates from mean parcel timecourses. Achieving similar 

levels of reproducibility for more fine-grained measures of brain organization (e.g., 

parcellation) may be expected to require extended per-subject datasets, as collected 

here.  

It is possible to effectively measure individual brain organization with multiple 

scans of shorter length (e.g., 5 minutes), provided that a sufficient number of scans are 

acquired. This observation may have implications for study designs in populations in 

which longer scans may be difficult to obtain (e.g., children).  Functional connectivity 

estimates in the primary subject converged at approximately 100 minutes of total 

scanning time. Although acquiring this much data in individuals is not feasible in many 

contexts, 100 minutes could be seen as aspirational for those interested in 

comprehensively characterizing single-subject features of RSFC, which may be 

desirable when investigating the network organization of special or rare individuals. 

 

Sources of within-subject variability in functional connectivity are different 
than sources of between-subject variability 
 
 Within-subject variability in RSFC was not uniformly distributed across the cortex. 

In particular, visual, somato-motor and some dorsal attention regions were more 

variable than other regions of the brain. In stark contrast, between-subject variability 

was relatively lower in somato-motor and visual regions than in default mode, 

attentional, and control network regions. This result expands on previous findings 
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reported by Mueller et al (2013) and suggests that sources of within-subject variability 

vs. between-subject variability are distinct. Specifically, the large between-subject 

variability of correlation estimates in frontal and parietal regions may reflect inter-

individual variability in cortical folding patterns (Hill et al., 2010), variable localization of 

functional areas with respect to sulcal anatomy (Frost et al., 2012), and/or variable 

system topologies (as discussed below). These factors could lead to misalignment of 

cortical regions thereby increasing apparent correlation variability as assessed by the 

group-averaged parcellation used here. However, anatomical variability cannot explain 

the presently observed pattern of within-subject correlation variability. Other than 

measurement error (the dominant source of variance according to the model defined in 

the Appendix), there are several known biological sources of within-subject variability. In 

particular, slow biological processes such as diurnal rhythms have been shown to 

significantly modify spontaneous BOLD activity (Hodkinson et al., 2014; Shannon et al., 

2013). In the present case, however, the vast majority of scans were collected at the 

same time of day (7:30 AM). More generally, any intra-day BOLD fluctuations longer 

than ten minutes are unobservable with this data. Alternatively, numerous studies have 

demonstrated specific effects of different cognitive and behavioral contexts on resting-

state activity (e.g., (Gordon et al., 2014a; Lewis et al., 2009; Tambini et al., 2010). Such 

cognitive/behavioral contexts could not be entirely controlled from session to session 

and therefore may have contributed to cross-session variability. A third possible source 

of variability is metabolic state (i.e. fed or fasted, caffeinated or uncaffeinated) – 

addressed in more detail below. Other unidentified sources of RSFC variability are likely 

to exist (e.g., fluctuating hormones, mood, gene expression, longitudinal seasonal or 
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aging-related changes, etc.), the discovery of which is one of the explicit objectives of 

acquiring this dataset (described in Poldrack et al (in revision)), but discussion of which 

is out of scope in the present report. Although sampling error is the primary source of 

variability in functional connectivity estimates, those additional sources of variability 

contribute to the necessity of acquiring large quantities of data to obtain stable 

measurements of brain organization.  

Systematic effects attributable to fasted/uncaffeinated (Tuesdays) vs. 

fed/caffeinated (Thursdays) states were observed in extrastriate visual regions and 

somato-motor regions. This result is consistent with the previous finding that caffeine 

reduces measured RSFC in motor cortex (Rack-Gomer et al., 2009). Although 

fasting/caffeination accounts for some of the increased within-subject variability 

described above, within-subject variability was still relatively higher in somato-motor and 

particularly visual regions in Tuesday and Thursday acquisitions considered separately. 

This residual variability most likely reflects variable arousal across sessions, as 

(Tagliazucchi et al., 2014) have recently reported increased BOLD variance in somato-

motor and visual regions during light sleep relative to waking. Unfortunately, we did not 

acquire simultaneous EEG-fMRI to confirm this possibility. However, Poldrack et al (in 

revision) found that the effect of Tuesday vs. Thursday differences on connectivity 

within these networks was partially attributable to fatigue measured immediately after 

the scan. In any case, multiple sources of variability potentially affect day-to-day 

correlation estimates in an individual. Hence, a comprehensive picture of functional 

organization may not be achievable in a single session. On the other hand, inter-
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session variability is dwarfed by between-subject variability. Hence, inter-individual 

variability is the dominant confound in studies of group-level differences. 

 

Individual functional brain organization shows similar system definition as 
group but also exhibits distinct functional topology 
 
 Almost all of the RSFC systems and their topological relations identified in the 

individual were also found in the group. Several spatial motifs in the adjacencies of 

group-average systems observed in prior work (Power et al., 2011) are also present in 

the individual, including the default/salience/cingulo-opercular and the somato-

motor/dorsal-attention/fronto-parietal interfaces. The presence of these topological 

motifs (salience and dorsal-attention) in both individuals provides further evidence that 

they are not the result of intermixed signals generated by averaging, a concern posed in 

the previous work. On the other hand, the frontal-parietal-temporal subgraph found in 

that work, interposed between default and fronto-parietal systems (light blue in Power 

2011), does not have an analogous system in these individuals. Additional highly-

sampled subjects will be needed to confirm whether this is a general observation of 

individual functional brain organization. The two most notable differences between the 

individual and the group Infomap results are the absence in the individual of the lateral 

somato-motor system and the presence of an additional system in primary visual cortex. 

These differences are consistent with previously described effects of eyes closed 

(individual) vs. eyes open (group) resting state data. The eyes closed state has been 

shown to increase spontaneous BOLD fluctuations in visual and somato-motor regions 

(McAvoy et al., 2008), and enhance visual:somato-motor correlations (Xu et al., 2014). 

Direct comparison of eyes closed and eyes open data collected in our validation dataset 
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confirm that eye state has localized effects in visual, somato-motor, and adjacent 

regions (see Figure S4). These differences in RSFC between eye states likely account 

for several of the system-level differences between the individual and the group. 

However, eye state does not explain the more focal differences discussed below. 

 Figure 7 highlights a detailed topological feature that is notably different in the 

primary subject as compared to the group. This and other topological differences 

between the primary subject and the group apparent in Figure 6 (e.g., fronto-parietal 

system patches in the right medial prefrontal and posterior cingulate cortex; ventral 

attention and default mode patches in left middle frontal gyrus) and between the second 

subject and the group (see arrows in Figure S7) indicate clear individual differences in 

RSFC (see Figure S6A and S7 bottom row). The group data were geodesically 

registered on the surface based on macro-anatomic sulcal and gyral features; this 

registration represents the current state of the art, but it does not achieve a true area-to-

area registration (Frost et al., 2012). Thus, group-level averaging of RSFC patterns 

necessarily blurs over functionally variable regions, creating the appearance of reduced 

topological complexity. Such blurring may explain the inability to assign a system 

identity to the blank region in lateral occipital-temporal cortex in the group result, where 

there are clear system identities in each individual (Figure 6).  

The observation of distinct topological features in individuals raises an interesting 

possibility concerning brain organization. If we assume that brain systems are 

composed of functionally related cortical areas, and that cortical areas are unlikely to be 

translated over large distances across the cortical surface, then the present evidence 

suggests that some cortical areas are connected to different systems in different 
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individuals. In other words, some cortical areas may be functionally variable across 

individuals in their general relationships with other brain areas. Verification of this 

possibility will require collecting similarly massive data sets on more than just two 

individuals.  

Further, from a methodological standpoint, this observation may have important 

implications for techniques that attempt to incorporate functional responses into a 

registration algorithm. Registration strategies have been proposed to improve alignment 

between subjects taking into account functional variability (Robinson et al., 2014; 

Sabuncu et al., 2010). However, these schemes rely on having sufficient data in each 

individual to accurately estimate individual functional topography. Further, such 

registrations can only align topologically consistent features. If, however, individuals 

exhibit true topological differences in functional organization, e.g., different numbers of 

disjoint regions within a given system or different systems attributed to a given cortical 

area, then complete subject-to-subject alignment in brain space may be not be 

achievable. Again, confirmation of this possibility will require reliable characterization of 

the functional brain organization of multiple highly sampled individuals. 

 

Conclusion 
 

 This dataset was originally collected in order to comprehensively and 

longitudinally phenotype a single human with the objective of relating dynamics in brain 

function to other biological and environmental variables. Successful attribution of such 

relationships requires accurate description of the individual’s functional brain 

organization. We have used this rich dataset to characterize the functional brain 
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organization of the individual at multiple scales and to determine how it varies over 

repeated sessions. We observed broad similarity as well as intriguing specific 

differences with group data. Any study reporting observations in one or two subjects has 

necessarily limited generality. Specific features described in these individuals could be 

explained as idiosyncratic (perhaps reflecting willingness to undergo such extensive 

self-experimentation). Therefore, we do not assign specific meaning to the detailed 

features observed here. However, we believe that the reliable presence of these 

detailed features in each individual must motivate further studies of this type. These 

studies may inform the understanding of individual differences in brain function and, 

potentially, cognition. In particular, we believe that the subject-specific approach 

outlined here may be essential for understanding the functional brain organization of 

unique or rare subjects (e.g., cognitive savants, rare disease populations, or brain-

injured subjects like H.M.). Indeed, the present results provide a foundation for analyses 

of brain-behavior relationships that respect the specific anatomic and functional 

contours of a particular individual’s brain.   

 

4.5 Experimental Procedures 
 
Ethical review 

The University of Texas Office of Research Support reviewed the 

procedure for collecting the primary subject data and determined that it did not 

meet the requirements for human subjects research as defined by the Common 

Rule (45 CFR 46) or FDA Regulations (21 CFR 50 & 56), and thus institutional 

review board (IRB) approval was not necessary. Transfer of this data to 
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Washington University for analysis and all datasets collected at Washington 

University were performed with the approval of the Washington University IRB.  

 

Highly Sampled Subject Characteristics 

The primary subject (author RP) is a right-handed Caucasian male, aged 

45 years-old at the onset of the study. RP is generally healthy apart from mild 

plaque psoriasis. Prior to initiation of the pilot period, RP had a physical 

examination with full blood workup revealing no significant findings. RP has a 

history of anxiety disorder, but no other neuropsychiatric disorders. An additional 

extensive dataset was acquired in a right-handed, 34-year-old Caucasian male 

(author ND). ND was scanned at Washington University.  

 

Primary Subject Data Acquisition  

The primary data in the primary subject were collected over the course of 

532 days. Scans were performed at fixed times of day: Mondays at 5 pm, and 

Tuesdays and Thursdays at 7:30 am. Imaging was performed with a Siemens 

Skyra 3T MRI scanner using a 32-channel coil and a multi-band EPI (MBEPI) 

sequence [TR = 1.16 seconds; 2.4 mm isotropic voxels] (Moeller et al., 2010). 

Resting-state fMRI was acquired in the eyes-closed condition. 84 sessions were 

used in the present analyses. The first minute of each resting state scan was 

discarded to exclude transient fMRI responses evoked by the scan start and 

noise-cancelling headphones.  A series of tasks also were collected at various 
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times during the scanning period (n=51 task fMRI sessions) including N-back, 

motion discrimination, object presentation, verbal working memory, spatial 

working memory and retinotopy. See Supplemental Materials for acquisition and 

task fMRI details.  

To control for site/scanner differences in comparisons of the primary 

subject vs. the group, a validation dataset was collected at Washington 

University using the same fMRI sequence as in the 120-subject group. This 

dataset comprised ten 10-minute runs of eyes closed resting state data and ten 

10-minute runs of eyes open (and fixated) resting state data. All data for this 

subject are available at the OpenfMRI repository 

(http://openfmri.org/dataset/ds000031). See Table S1 for comparison of 

acquisition parameters for all collected datasets. 

 

Secondary Subject Data Acquisition  

Subject ND was scanned at Washington University using a 3T TIM TRIO 

scanner equipped with 12-channel coil and a single-band EPI sequence [TR = 

2.2seconds; 4-mm isotropic voxels]. Ten 30-minute eyes open resting-state runs 

with passive fixation (total 300 minutes) were acquired over 10 days. Subjects 

ND and RP were analyzed using the same procedures. 
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Group Data Acquisition and Processing 

Group comparisons were based on an extant dataset of 120 subjects 

studied at Washington University. These subjects have been characterized in 

great detail elsewhere (Gordon et al., 2014b; Power et al., 2014; Wig et al., 

2014b). All subjects were healthy young adults (60 females, mean age = 25 

years, age range = 19-32 years), native speakers of English and right-handed. 

Subjects were screened to exclude a history of neurological or psychiatric 

diagnoses. Informed consent was obtained in all subjects. Resting state fMRI 

with eyes open and fixated on a crosshair was acquired using a 3T TIM TRIO 

system equipped with a 12-channel coil and a single-band EPI sequence [TR = 

2.5 seconds; 4 mm isotropic voxels]. The group data were processed as 

described in (Gordon et al., 2014b). Processing of the group data did not include 

field distortion correction, as field maps were not acquired in all subjects. 

 

fMRI Preprocessing  

Functional data were preprocessed to reduce artifact and to maximize 

cross-session registration. Data were resampled to 3-mm isotropic atlas space 

including mean field distortion correction and motion correction in a single 

interpolation step. Additional RSFC preprocessing followed the procedures 

described in (Power et al., 2014), including motion scrubbing; white matter, 

ventricle, and global signal regression; and temporal filtering. See Supplemental 
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Materials for details of distortion correction, fMRI preprocessing, and RSFC 

preprocessing. 

 

Surface processing and CIFTI generation 

Surface extraction and sampling of functional data to the brain surface 

followed procedures similar to those previously described in (Glasser et al., 

2013). Processed RSFC data were sampled to subject-specific FreeSurfer 

generated surfaces and registered to a common fs-LR space (Van Essen et al., 

2012a). The surface data were combined with volumetric subcortical data into 

CIFTI format using Connectome Workbench. See Supplemental Materials for 

more details. 

 

Parcellation Validation 

The single-subject parcellation was generated following the procedures 

described in detail in (Gordon et al., 2014b) and (Wig et al., 2014b); details in 

supplementary methods). Parcel homogeneity was evaluated as the percent of 

variance explained by the first eigenvector computed from a principal component 

analysis (PCA) of the RSFC patterns from all vertices in the parcel (Gordon et al., 

2014b). The overall homogeneity of the parcellation was compared to a null 

model consisting of the homogeneity computed from 1000 random rotations of 

the parcellation on the surface. The validated parcellation forms the basis for 

many of the analyses reported here.  
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Task vs. Rest comparison 

Under the assumption that task activations should correspond to RSFC-

defined parcels rather than parcel boundaries, we measured the fraction of task-

activated vertices that fell within the RSFC-defined parcels. A measured fraction 

greater than the expected fraction from random placement of non-edge parcel 

vertices (~70% of the cortical surface) would indicate correspondence between 

the parcellation and the task activations. However, to account for the known 

spatial autocorrelation of BOLD fMRI data and the topological dependencies of 

the parcel detection procedure, i.e. the fact that boundary vertices will by 

definition neighbor other boundary vertices, we developed a further null model to 

test for correspondence between task and rest. As in the parcellation 

homogeneity validation (Gordon et al., 2014b), we randomly rotated the true 

parcellation along the cortical surface 1000 times. We then computed the fraction 

of task-activated regions that fell within the randomly rotated parcels. Regions 

with particularly low SNR as measured by mean BOLD fMRI across all sessions 

(mode 1000-normalized voxel value < 800) were ignored. From this null 

distribution, we derived a non-parametric statistic of significance indicating how 

well each task activation corresponded to the true parcellation. 

 

Evaluating parcel-wise correlation estimate convergence 

We used the parcels derived from all 84 sessions to extract parcel-wise 

resting state timecourses from each session. Cross-correlation of these 
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timecourses was computed to define parcel-by-parcel correlation matrices 

representing the areal-level brain network. A split-half procedure was used to 

evaluate how much data were needed to obtain convergent estimates of this 

parcel correlation matrix. The 84 sessions were repeatedly split into two 

randomly selected subsets of sessions. A correlation matrix was computed using 

concatenated timecourses from all the sessions of one subset (n = 42; 380 

minutes of data). The similarity between this ‘true’ correlation matrix and the 

correlation matrix derived from varying amounts of the remaining subset of 

sessions was computed using Pearson’s correlation (r!, measured correlation 

matrix similarity). To evaluate the effect of session variability over and above 

pure scan time we also computed the correlation matrix similarity to matrices 

generated by contiguous sampling of the same number of frames but from a 

larger number of sessions (e.g., 9 minutes from 1 session compared to 9 minutes 

from 4.5 minutes of 2 sessions). 

 

System Assignment 

The system organization of the vertex/voxel-wise and parcel-wise graphs 

were computed using the Infomap algorithm (Rosvall et al., 2008), following 

(Power et al., 2011), where graph nodes represent either cortical surface vertices 

and sub-cortical/cerebellar voxels, or parcel-based regions of interest. A cross-

correlation matrix of the concatenated time courses from all sessions defined the 

edges between nodes. For parcels, these time courses were computed by 
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averaging timecourses across all vertices within the parcel. Vertex connections 

within 10 mm of each other (or 30 mm between parcel centers) were removed 

from consideration to avoid correlations attributable to spatial smoothing. 

Geodesic distance was used for surface connections and Euclidean distance for 

sub-cortical and interhemispheric connections. System assignments were 

computed at a range of edge densities (0.05% to 5%). Systems with 400 or fewer 

vertices or voxels (or 8 or fewer parcels) were considered unassigned and 

removed from further consideration. 

The Infomap procedure was also applied to the group dataset. The 

systems generated in this way followed very closely the results reported in 

(Power et al., 2011), with the refinement of improved cross-subject alignment 

attributable to surface registration. A ‘consensus’ assignment was derived by 

collapsing across thresholds as described in (Gordon et al., 2014b), giving each 

node the assignment it has at the sparsest possible threshold at which it was 

successfully assigned. The subject’s Infomap-derived systems were matched to 

the group consensus systems by computing the average geodesic distance 

between the vertices of each system in the individual system map and the 

closest vertex of each system in the group system map, and vice versa. System-

to-system assignment was determined by minimizing this distance metric across 

all systems using the Hungarian algorithm (Bourgeois, 1971). The edge density 

with the least overall cost to match with the group consensus map formed the 

basis for the individual consensus map. The present network assignment 
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procedure is not meant to provide an exhaustive description of network 

organization and may not capture non-hierarchical network features. We also do 

not report subcortical or cerebellar Infomap results as network assignment for 

these regions typically requires specialized analysis procedures (see e.g. 

(Buckner et al., 2011; Greene et al., 2014; Zhang et al., 2008). 
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4.8	Supplemental	Materials	

Supplemental Figures 

 
Supplementary Table 4-1. Data acquisition parameters for single subject and group datasets.

 

 
Supplementary Figure 4-1. Consensus system assignments of RSFC-defined parcels derived 
by the Infomap algorithm. Naming conventions follow, where possible, prior literature defining 
these systems, in particular: default (Raichle et al., 2001), fronto-parietal, cingulo-opercular 
(Dosenbach et al., 2008; Dosenbach et al., 2006), dorsal attention (Corbetta et al., 2002), 
ventral attention (Corbetta et al., 2008), and salience (Seeley et al., 2007). 

 
 



	204	

 
Supplementary Figure 4-2. A) Mean squared error (over parcel pairs) vs. measurement time 
plotted on logarithmic coordinates. See Appendix for complete theory. Attributing measurement 
error entirely to the quantity of available fMRI data leads to 𝝈𝜹𝟐 = 𝝐𝟐 𝑻, where 𝑻 is in units of 
minutes. Equivalently, 𝒍𝒏𝝈𝜹𝟐 = 𝒍𝒏𝝐𝟐 − 𝒍𝒏𝑻 . The unconstrained linear fit equation is 𝒍𝒏𝝈𝜹𝟐 =
−𝟏.𝟕 − 𝟎.𝟗𝟔𝒍𝒏𝑻. However, if the slope is assumed to be exactly -1 (i.e, not -0.96), the fit 
equation is 𝒍𝒏𝝈𝜹𝟐 = −𝟏.𝟒𝟗 − 𝒍𝒏𝑻 . Thus, 𝝐𝟐 = 𝒆!𝟏.𝟒𝟗 = 𝟎.𝟐𝟐𝟓 . B) Model-based correlation 
similarity curve compared to empirical correlation similarity curve (same as in Figure 4B).  The 
uncorrected model omits variance not attributable to sampling error. The corrected model is 

𝒓𝑴 = 𝟏 𝟏 + 𝟏 𝝈𝒛 𝒓
𝟐 [𝝐𝟐 𝑻 +  𝝈𝒏𝟐], where 𝝈𝒛 𝒓

𝟐 = 0.0461 and 𝝈𝒏𝟐 = 0.00065. 
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Supplementary Figure 4-3. A) Differences in correlation matrices derived from Tuesday and 
Thursday sessions. Mean parcel-correlation matrix on Tuesdays (Uncaffeinated/fasted) and 
Thursdays (Caffeinated/fed).  Far right, the difference in correlation between Tuesdays and 
Thursdays. The module assignments follow the key in Figure S1. B) Intra-subject correlation 
variability computed separately for Tuesday (Uncaffeinated/fasted) and Thursday 
(Caffeinated/fed) sessions. Above: Across-session standard deviation of parcel-to-parcel 
correlations. Below: For each parcel, the average standard deviation of correlation between that 
parcel and every other parcel. 
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Supplementary Figure 4-4. Comparison of eyes open to eyes closed data collected at 
Washington University. A) Spatial correlation at each vertex between correlation maps from 
eyes closed and eyes open data.  The least similarity can be observed in visual cortex. There is 
also relatively less similarity in regions along the pre- and post-central gyri, identified as parts of 
the somatomotor and dorsal attention systems in this individual. B) Infomap-based community 
detection from eyes open and eyes closed data. Results represent a single view of community 
organization at 1.4% edge density in each condition. The system affiliation is largely similar 
between the two conditions. Notable differences are present in medial visual cortex, in which the 
eyes closed condition exhibits a primary visual/extriatriate cortex division (blue arrows) that is 
not present in the eyes open condition, while the eyes open condition exhibits a potential 
foveal/peripheral division (green arrows) that is not present in the eyes closed condition. 
Additional differences are in the central sulcus, in which the eyes open condition has a ventral 
somatomotor system (orange) not present in the eyes closed condition. Finally, at this edge 
density, the eyes open condition exhibits a separation between left and right fronto-parietal 
systems (yellow and orange-yellow, respectively) not apparent in the eyes closed condition.  
 



	207	

 
Supplementary Figure 4-5. Individual subject system assignments derived by Infomap from 
multiple edge density thresholds. Note that the unknown systems are only observed at lower 
edge densities. Also, the somato-motor and visual systems join together at higher edge 
densities, while most other large distributed systems remain relatively unchanged. 
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Supplementary Figure 4-6. Cortical regions that are similar between the individual and group 
in RSFC. At each vertex, the RSFC maps were computed for both the individual and the group-
averaged data and then compared to each other by spatial correlation (r). Blue regions indicate 
generally focal regions with starkly different patterns of RSFC between the individual and the 
group. 
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Supplementary Figure 4-7. Secondary subject functional brain organization compared to group 
organization. (Top row) Infomap-based systems in group average data (same image as in 
Figure 6). (Middle rows) Infomap-based community detection at multiple edge densities (0.7%, 
2%, 3%) from 300 minutes of eyes open resting-state data in secondary subject. (Bottom row) 
Spatial correlation at each vertex between correlation maps from secondary subject and group 
average data. Blue arrows highlight regions that show focal discrepancies in RSFC between the 
secondary subject and the group data that correspond with distinct system topology. 
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Supplemental Experimental Procedures 
 
 
Primary Subject Data Acquisition 

The primary dataset on the individual was performed on a Siemens Skyra 3T 

MRI scanner with a 32-channel head coil at the University of Texas at Austin. Additional 

data on this individual was collected at the Washington University site using the exact 

same BOLD sequence as the group data (described below under ‘Group Data 

Acquisition’). 

 

Anatomical MRI 

T1- and T2-weighted anatomical images were acquired using a protocol 

patterned after the Human Connectome Project (Van Essen et al., 2012b). These data 

were collected for 14 Monday afternoon sessions through 4/30/2013, with a one-year 

follow-up collected on 11/4/2013. T1-weighted data were collected using an MP-RAGE 

sequence (sagittal, 256 slices, 0.7 mm isotropic resolution, TE=2.14 ms, TR=2400 ms, 

TI=1000 ms, flip angle = 8 degrees, PAT=2, 7:40 scan time). T2-weighted data were 

collected using a T2-SPACE sequence (sagittal, 256 slices, 0.7 mm isotropic resolution, 

TE=565 ms, TR=3200 ms, PAT=2, 8:24 scan time).  

 

Field maps 

A gradient echo field map sequence was acquired with the same prescription as 

the functional images. In addition, spin echo field maps were collected with A-P and P-A 

phase encoding. Collection of field maps was discontinued as of 4/30/2013, after 

acquisition of 38 datasets. 
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Resting state fMRI 

Eyes-closed resting-state fMRI (RS-fMRI) was performed in each of the 104 

regular scan sessions throughout the data collection period, using a multi-band echo-

planar imaging (MBEPI) sequence (Moeller et al., 2010) (TR=1.16 seconds, TE = 30 ms, 

flip angle = 63 degrees, voxel size = 2.4 mm X 2.4 mm X 2 mm, distance factor=20%, 

68 slices, oriented 30 degrees back from AC/PC, 96x96 matrix, 230 mm FOV, MB 

factor=4, 10:00 minute scan length). Starting with session 27 (12/3/2012), the number of 

slices was changed to 64 because of an update to the multiband sequence that 

increased the minimum TR beyond 1.16 for 68 slices. Acoustic noise cancellation for 

the resting-state scan was attempted in each session using the Optoacoustics active 

noise cancellation system, but the system occasionally failed to cancel the noise. 

 

Task fMRI 

Task fMRI was acquired with the same scanner sequence as the resting state data. 

N-Back: An n-back task was performed using a blocked design, with a factorial 

combination of memory load (1 vs. 2 back) and stimulus type (faces, houses, and 

Chinese characters) across blocks. 20% of items were targets, and 20% were non-

target foils (acquisition time = 8:00 minutes). This task was performed 15 times across 

different sessions. 

Motion/stop signal: A motion discrimination task with an embedded stop signal task 

was performed 8 times across different sessions. On each trial, a moving dot stimulus 

(Britten et al., 1992) was presented, with coherence of either upward or downward 

motion varying across trials (levels: 0%, 10%, 30%, and 70% coherence). On 25% of 
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trials, a visual stop signal (change of the fixation cross from white to red) was presented, 

at a delay controlled by a 1 up/1down staircase in order to ensure 50% stopping 

accuracy (Logan, 1994). The subject’s task was to perform the motion discrimination as 

quickly as possible, but withhold responses when the stop signal occurred (acquisition 

time = 7:11). 

Object localizer: A multiple-object localizer (including both cropped and naturalistic 

faces, human bodies, human limbs, houses, places, cars, guitars, words, and numbers) 

was performed 8 times (twice each across four sessions; (Troiani et al., 2014)). Each 

stimulus class was presented in 4-second mini-blocks with items presented at 2 Hz (8 

items per mini-block). In each run, 12 mini-blocks of each class were presented along 

12 interspersed 4-second fixation blocks (acquisition time: 5:13). Half of the blocks 

included a single phase-scrambled image; the subject’s task was to press a button 

whenever a phase-scrambled item appeared. 

Verbal working memory localizer: A verbal working memory localizer (Fedorenko et 

al., 2010) was performed 5 times across separate sessions. In each trial, a string of 12 

words (400 ms per word) - either a sentence or a string of non words - was presented 

sequentially, followed by a 1 second probe item; the subject’s task was to decide 

whether the probe item matched any of the words in the preceding string. 

Spatial working memory localizer: A spatial working memory localizer (Fedorenko et 

al., 2013) was performed four times across separate sessions. On each trial, a 4 X 2 

spatial grid was presented, and locations in that grid were presented sequentially (1000 

ms per location), followed by a forced-choice probe between two grids, one of which 
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contained all of the locations presented in the preceding series. In the easy condition, 

one location was presented on each presentation, whereas in the hard condition two 

locations were presented. Twelve 32-second experimental blocks were interspersed 

with 4 16-second fixation blocks (acquisition time = 7:28). 

Retinotopic mapping: Polar angle (with reference to the vertical meridian, with the 

center of fovea as the origin) was mapped using a flickering checkerboard wedge (45 

deg) rotating periodically in a counterclockwise direction through the visual field with a 

cycle duration of 20 seconds. This stimulus creates a wave of activation throughout 

retinotopically organized visual areas, successively and systematically stimulating 

portions of each map. In this way, the entire visual field is represented by a time-

dependent pattern of activity across space. In each of four fMRI runs, the wedge 

completed 12 cycles of rotation (acquisition time = 4:00 per run). 

 

Secondary Subject Data Acquisition 

One additional highly sampled subject was acquired at the Washington University site 

on a Siemens TRIO 3T MRI scanner with a 12-channel head coil. 

 

Anatomical MRI 

Four T1-weighted images were obtained for this subject using an MP-RAGE 

sequence (sagittal, 224 slices, 0.8 mm isotropic resolution, TE=3.74 ms, TR=2400 ms, 

TI=1000 ms, flip angle = 8 degrees). Four high-resolution T2-weighted images were 

also collected (sagittal, 224 slices, 0.8 mm isotropic resolution, TE=479 ms, TR=3200 

ms).  
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Resting state fMRI 

Ten 30-minute runs of resting state fMRI were collected over the course of two 

weeks on this subject.  The subject was instructed to relax while fixating on a black 

crosshair that was presented against a white background. Functional imaging was 

performed using a gradient-echo EPI sequence (TR = 2.2 s, TE = 27 ms, flip angle = 

90°, voxel size = 4 mm x 4 mm × 4 mm, 36 slices). In each session, a gradient echo 

field map sequence was acquired with the same prescription as the functional images. 

 

Group Data Acquisition  

All imaging data for the group dataset was obtained on a Siemens TRIO 3T MRI 

scanner with a 12-channel head coil at Washington University in St. Louis. 

 

Anatomical MRI 

A single T1-weighted image was obtained for each subject using an MP-RAGE 

sequence (sagittal, 176 slices, 1 mm isotropic resolution, TE=3.08 ms, TR=2400 ms, 

TI=1000 ms, flip angle = 8 degrees. To facilitate registration, a T2-weighted turbo spin-

echo structural image (TE = 84 ms, TR = 6.8 s, 32 slices with 1 × 1 × 4 mm voxels) in 

the same anatomical planes as the BOLD images was also obtained. 

 

Resting state fMRI 

During functional MRI data acquisition, subjects were instructed to relax while 

fixating on a white crosshair that was presented against a black background. Functional 

imaging was performed using a gradient-echo EPI sequence (TR = 2.5 s, TE = 27 ms, 
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flip angle = 90°, voxel size = 4 mm x 4 mm × 4 mm, 32 slices). The number of volumes 

collected from subjects ranged from 184 to 729 (mean = 336 frames, 14 min). 

 

Data Processing 

Distortion correction 

Mean field map creation: As field maps were not available for all sessions, a mean field 

map was generated based on the available data. This mean field map was then applied 

to all sessions for distortion correction. To generate the mean field map the following 

procedure was used: (1) Poor quality field maps (4 out of 38) were excluded based on 

visual inspection. (2) Field map magnitude images from selected sessions were 

mutually co-registered.  (3) Transforms between all sessions were resolved. Transform 

resolution reconstructs the n-1 transforms between all images using the n*(n-1)/2 

computed transform pairs. (4) The resolved transforms were applied to generate a 

mean magnitude image. (5) The mean magnitude image was registered to an atlas 

representative template. (6) Individual session magnitude image to atlas space 

transforms were computed by composing the session-to-mean and mean-to-atlas 

transforms. (7) Phase images were then transformed to atlas space using the 

composed transforms, and a mean phase image in atlas space was computed. 

 

Application of mean field map to individual sessions: (1) For each session, field map 

uncorrected data was registered to atlas space. (2) The generated transformation matrix 

was then inverted and applied to the mean field map to bring the mean field map into 

the session space. (3) The mean field map was used to correct distortion in the session 
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space. (4) The undistorted data was then re-registered to atlas space. (5) This new 

transformation matrix and the mean field map then were applied together to resample 

the session data to undistorted atlas space in a single step. 

 

fMRI Preprocessing  

Functional data was preprocessed to reduce artifact and to maximize cross-

session registration.  All sessions underwent intensity normalization to a whole brain 

mode value of 1000 and within run correction for head movement. Atlas transformation 

was computed by registering the mean intensity image from a single BOLD session to 

atlas space via the average (primary subject n = 9; second subject n = 4) high-

resolution T2-weighted image and average (primary subject n = 10; second subject n = 

4) high-resolution T1-weighted image.  All subsequent BOLD sessions were linearly 

registered to this first session (including additional data from the Washington University 

site). Atlas transformation, distortion correction, and resampling to 3-mm isotropic atlas 

space were combined into a single interpolation using FSL’s applywarp tool (Smith et al 

2004). All subsequent operations were performed on the atlas-transformed volumetric 

time series. 

FMRI processing for each of the subjects in the group data was the same as for 

the individual, except atlas registration was performed via a single low-resolution (4 

mm) T2-weighted image and a single high-resolution (1 mm) T1-weighted image, and 

no distortion correction was performed. 
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RSFC preprocessing 

Artifacts were reduced using frame censoring, nuisance regression (excluding 

censored frames), and spectral filtering following (Power et al., 2014). Several sessions 

were discarded based on poor quality on visual inspection, leaving 84 sessions for 

subsequent RSFC processing. Frames with framewise displacement (FD) > 0.25 mm 

were censored, as well as uncensored segments of data lasting fewer than 5 

contiguous volumes (mean frames kept across sessions: 97.1% ± 3.7%). Data from the 

primary subject collected at the Washington University site was censored at FD> 0.5 

mm, as well as uncensored segments of data lasting fewer than 5 contiguous frames 

(frames kept: 93% ± 9%).  For group data and the second highly sampled participant, 

frames with FD > 0.2 mm were censored, as well as uncensored segments of data 

lasting fewer than 5 contiguous frames (frames kept across subjects: 84% ± 16%; 

frames kept in second highly sampled subject: 89% ± 14%). Nuisance regressors 

included whole brain, white matter, and ventricular signals and their derivatives, in 

addition to 24 movement regressors derived by expansion (Friston et al., 1996). 

Interpolation over censored frames was computed by least squares spectral estimation 

to prepare continuous data for subsequent bandpass filtering (0.009 < f < 0.08 Hz; 

(Power et al., 2014)). Censored frames were ignored during the final correlation 

calculations between timecourses.  

 

Surface processing and CIFTI generation 

Surface generation and sampling of functional data to anatomical surfaces for 

both the individual and the group followed a procedure similar to that previously 
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described in (Glasser et al., 2013). First, following volumetric registration, anatomical 

surfaces were generated from the subject’s MP-RAGE image using FreeSurfer’s default 

recon-all processing pipeline (version 5.0). This pipeline included brain extraction, 

segmentation, generation of white matter and pial surfaces, inflation of the surfaces to a 

sphere, and surface shape-based spherical registration of the subject’s ‘native’ surface 

to the fsaverage surface (A. M. Dale et al., 1999; A. M. Dale et al., 1993a; Fischl et al., 

1999; Segonne et al., 2005). The fsaverage-registered left and right hemisphere 

surfaces were brought into register with each other using deformation maps from a 

landmark-based registration of left and right fsaverage surfaces to a hybrid left-right 

fsaverage surface (‘fs_LR’; (Van Essen et al., 2012a) and resampled to a resolution of 

164,000 vertices (164k fs_LR) using Caret tools (Van Essen et al., 2001). Finally, each 

subject’s 164k fs_LR surface was down-sampled to a 32,492 vertex surface (fs_LR 32k). 

The various deformations from the ‘native’ surfaces to the fs_LR 32k surface were 

composed into a single deformation map allowing for one step resampling. A script for 

this procedure is available on the Van Essen Lab website (Freesurfer_to_fs_LR Pipeline, 

http://brainvis.wustl.edu). 

Surface processing of the BOLD data proceeded through the following steps. 

First, the BOLD fMRI volumes are sampled to the subject’s individual ‘native’ 

midthickness surface (generated as the average of the white and pial surfaces) using 

the ribbon-constrained sampling procedure available in Connectome Workbench 0.84. 

This procedure samples data from voxels within the gray matter ribbon (i.e. between the 

white and pial surfaces) that lie in a cylinder orthogonal to the local midthickness 

surface weighted by the extent to which the voxel falls within the ribbon (Glasser et al., 
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2011). Voxels with a timeseries coefficient of variation 0.5 standard deviations higher 

than the mean coefficient of variation of nearby voxels (within a 5 mm sigma Gaussian 

neighborhood) were excluded from the volume to surface sampling, as described in 

(Glasser et al., 2013). Once sampled to the ‘native’ surface, timecourses were deformed 

and resampled from the individual’s ‘native’ surface to the 32k fs_LR surface in a single 

step using the deformation map generated as described above. This resampling allows 

point-to-point comparison between the individual and any other data registered to this 

surface space. Finally, the time courses were geodesically smoothed along the 32k 

fs_LR surface using a Gaussian smoothing kernel (σ = 2.55). 

These surfaces were then combined with volumetric subcortical and cerebellar 

data into the CIFTI format using Connectome Workbench (Glasser et al., 2013), 

creating full brain timecourses excluding non-gray matter tissue. Subcortical (including 

accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and 

cerebellar voxels were selected based on the FreeSurfer segmentation of the individual 

subject. Volumetric data were smoothed within this mask with a 3D Gaussian kernel 

(σ = 2.55) before being combined with the surface data.  

 

Parcellation and Validation 

An individual subject parcellation was generated following the procedures 

described in detail in (Gordon et al., 2014b) and (Wig et al., 2014b), with minor 

modifications related to processing single subject as opposed to group average data. 

For each hemisphere, whole-brain CIFTI-space correlation maps were computed at 

every surface vertex from the BOLD time courses concatenated across all sessions. For 
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each vertex, spatial gradients of the similarity of resting state correlation maps were 

computed along the cortical surface.  Edges in the spatial gradients were identified by 

the watershed transform (Beucher et al., 1979) and averaged across all vertices to 

generate an ‘RSFC-boundary map’ indicating the frequency with which a given vertex 

was identified as an edge. To produce discrete parcels, the watershed transform was 

applied again starting from all local minima. Parcels were merged together if they were 

considered insufficiently dissimilar based on the edge frequency value (below the 55th 

percentile) in the RSFC-boundary map.  We then eliminated all parcels and portions of 

parcels in vertices with high boundary map values (top quartile of values in the 

boundary map), and parcels containing fewer than 20 cortical vertices (~40mm2).  

The internal validity of the parcellation was evaluated following (Gordon et al., 

2014b). First, consistency was assessed by evaluating the overlap of parcellations 

obtained in two independent groups of 42 concatenated sessions. Second, the 

homogeneity of each parcel was calculated as the percent of variance explained by the 

first eigenvector computed from a PCA of the RSFC patterns from vertices in the parcel. 

The homogeneity indicates the extent to which a given parcel has a uniform functional 

connectivity pattern, and thus represents a measure of parcel quality. Finally, the overall 

homogeneity of the parcellation was compared to a null model consisting of the 

homogeneity computed from 1000 random rotations of the parcellation on the surface. 

The validated parcellation forms the basis for many of the subsequent analyses 

reported here.  
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Appendix 
 

As in Figure 4, we evaluate the similarity of a measured vs. "true" functional 

connectivity matrix as the Pearson correlation, 

 𝑟! =  !(!)!"! !(!) !(!)!"! !(!)
!!(!)∙!!(!)

,      [S1] 
 
where 𝑧(𝑟)!" is the measured Fisher z-transformed correlation between parcels 𝑖 and 𝑗, 

and 𝑧(𝑟)!"  is the corresponding "true" value. The bra-ket notation denotes the 

expectation value over all unique (𝑖 ≠ 𝑗) parcel pairs. Thus, [𝑋!" − 𝑋 ]! = 𝜎! is the 

standard deviation (over parcel pairs) of quantity 𝑋. Let 𝛿!" denote the measurement 

error associated with a particular parcel pair. Then, 𝑧 𝑟 !" =  𝑧 𝑟 !" + 𝛿!", and 

 𝑟! =  
𝜎𝑧(𝑟)
2 + 𝑧(𝑟) 𝛿

𝜎𝑧(𝑟)
2 +2 𝑧(𝑟) 𝛿 +𝜎𝛿

2 1/2
𝜎𝑧 𝑟

,      [S2] 

 
in which explicit notation of parcel pair subscripts has been omitted. Since the sampling 

distribution of a Fisher z-transformed Pearson correlation is very nearly normal, it is 

reasonable to assume that the measurement error is zero mean and independent of the 

“true” correlation, i.e., 𝛿 = 0 and 𝑧(𝑟) 𝛿 = 0. It may be noted that variance differs 

over parcel pairs (see Figure 5). However, this does not matter because the relevant 

relationship is the dependence of 𝛿! , i.e., the squared error averaged over parcel pairs, 

on the quantity of available data (N.B.: 𝜎!! =  𝛿! ). Proceeding on this basis, we obtain

 𝑟! =
𝜎𝑧(𝑟)
2

𝜎𝑧(𝑟)
2 +𝜎𝛿

2 1/2
𝜎𝑧(𝑟)

=  1

1+𝜎𝛿
2 𝜎𝑧(𝑟)

2
=  1

1+𝜉2
,    [S3] 

where 𝜉! = 𝜎!! 𝜎!(!)! . 

 If 𝜎!!  is entirely attributable to sampling error, then 𝜎!! = 𝜖! 𝑇, where 𝜖!  is an 

empirical constant. The value of 𝜖! then may be obtained by assuming that 𝜎!! is exactly 
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inversely proportional to 𝑇 (see Figure S2A). The obtained value is 𝜖! = 0.225 for 𝑇 

(observation time) in units of minutes. The model also requires evaluating the variance 

of 𝑧(𝑟) over parcel pairs. In the present data, 𝜎!(!)! = 0.0461.  

 This is a satisfactory approximation in the regime of small 𝑇, as demonstrated in 

Figure S2B. However, the model in which 𝜎!! is entirely attributed to sampling error 

modestly deviates from measured values at large 𝑇. Thus, the measured value of 𝑟! at 

𝑇 =  380 minutes is 0.987, whereas the model obtained so far yields 0.994. This 

discrepancy implies that variance not attributable to sampling error, e.g., inconsistent 

arousal over sessions, also is present. This source of variance is accommodated by 

adding a term to the expression for 𝜉!. Thus, 𝜉! = 1 𝜎! !
! [𝜖! 𝑇 +  𝜎!!], where 𝜎!! is the 

component of variance not attributable to sampling error. At low 𝑇, 𝜖! 𝑇 dominates 𝜉!. 

However, as 𝑇 → ∞ , only 𝜎!! 𝜎! !
!  remains. Therefore, the value of 𝜎!!  can be 

determined by comparing the data vs. the model at the maximum available value of 𝑇. 

This evaluation leads to 𝜎!! = 0.00065. Thus, in the present results, 𝜎!! constitutes at 

most a minor source of variance, numerically equal to 1.4% of 𝜎! !
! . 
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Chapter 5: Resting state BOLD fluctuations are 
fundamentally stationary 
 

5.1 Abstract 
 
The human brain must be flexible, dynamic and adaptive, yet, at the same time, capable 

of maintaining long-term stability of functional relationships over decades of life. 

Spontaneous BOLD activity measured during the resting-state has proven to be a 

powerful tool for understanding the large-scale functional organization of the brain within 

which these essential activities are embedded. Recently, ongoing changes in cognition 

and behavior have been claimed as evident in reports of dynamic, ‘non-stationary’, 

behavior in spontaneous BOLD activity. Here, we evaluate the claim that resting-state 

BOLD activity is non-stationary. First, we find that observations of dynamics in resting-

state BOLD activity are largely explained by sampling variability. Second, we find that 

the largest part of bona fide non-stationarity is accounted for by head motion. Additional 

non-stationarity may be accounted for by fluctuating wakefulness. Our results suggest 

that, aside from these factors, resting-state BOLD activity is essentially stationary. We 

conclude that spontaneous BOLD activity primarily reflects processes that contribute to 

the long-term stability of functional brain organization. 

5.2 Introduction 

Spontaneous neural activity plays a major role in learning and memory (Wilson et 

al., 1994) as well as synaptic homeostasis (Katz et al., 1996; Penn et al., 1999). In 

humans, study of spontaneous neural activity has greatly accelerated over the last two 

decades following the advent of ‘resting-state’ fMRI, wherein ongoing blood oxygen 

level dependent (BOLD) signal is measured while subjects ‘rest’ in a scanner. This 
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approach has demonstrated significant potential for understanding the brain’s functional 

architecture, as it has been observed that fluctuations in the BOLD signal during rest 

exhibit distributed patterns of correlation that correspond to known functional systems 

(B. Biswal et al., 1995; Power et al., 2011; Smith et al., 2009; Yeo et al., 2011). 

Although the physiological basis of resting state functional connectivity (RSFC) is 

incompletely understood, it is believed to be constrained by axonal connectivity (C. J. 

Honey et al., 2009b), with the caveat that at least some RSFC relationships must reflect 

multi-synaptic pathways (Vincent et al., 2007a). Under this view, RSFC has been 

understood to reflect stable features of brain organization on a timescale of minutes, 

hours, or even days, which accounts for the relative reliability of RSFC estimates 

(Laumann et al., 2015; Shehzad et al., 2009). More recently, however, observations of 

‘dynamics’ in RSFC, i.e. correlations appearing to fluctuate dramatically over shorter 

segments of time (e.g. 1-2 minutes), have been reported (Chang et al., 2010; Hutchison 

et al., 2012) and a large literature has developed trying to characterize these ‘dynamics’ 

and explain their sources (Calhoun et al., 2014; Hutchison et al., 2013; Kopell et al., 

2014).  

A variety of techniques that highlight different aspects of the BOLD signal have 

been used to measure dynamics in RSFC. The most commonly used approach is the 

sliding window technique (Allen et al., 2012; Chang et al., 2010; Hutchison et al., 2012; 

Zalesky et al., 2014) in which an estimate of functional correlation is computed within a 

fixed window around each timepoint in a BOLD dataset. Dynamic behavior has also 

been reported based on transient patterns of co-activation at single or just a few 

timepoints (Karahanoglu et al., 2015; Liu et al., 2013; Tagliazucchi et al., 2012). 
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Frequently, patterns of co-activation or correlation documented with these techniques 

are then clustered into groups representing a set of ‘dynamically’ recurring patterns. 

Observations of ‘dynamic’ RSFC patterns with these methods have been 

interpreted as evidence of ‘non-stationary’ phenomena in the resting state BOLD signal 

and presumed to reflect relevant changes in brain state on a short time-scale. Since the 

content of consciousness varies over time, especially in the absence of imposed tasks, 

it is natural to suppose that RSFC should vary accordingly. Moreover, it is generally 

believed that BOLD fMRI signals indirectly reflect neural activity. Brain activity is 

expected to be dynamic, adaptive, and state-dependent. Indeed, brain recordings in 

other modalities (electrophysiology, EEG, MEG) unambiguously show non-stationary 

behavior related to changes in arousal or task state (Betti et al., 2013; de Pasquale et 

al., 2012). Thus, it follows that resting state BOLD data should be similarly non-

stationary.  

In the present context, it is essential to define what is meant by ‘stationary’. 

Stationarity is a statistical descriptor that applies to the temporal characteristics of a 

process. Specifically, a process is stationary if its moments (mean, variance, kurtosis, 

etc.) are constant over time. Stationarity does not imply that a process is still. For 

example, a frictionless pendulum will remain indefinitely in oscillatory motion, but if the 

amplitude and frequency of the motion are constant then the pendulum is stationary. 

The pendulum in this example does not have constant velocity, but its second-order 

statistics are stationary. The pendulum differs from BOLD timeseries in that it is periodic, 

while BOLD is aperiodic and 1/f-like (He et al., 2010). Nevertheless, the pendulum 

example suffices to illustrate what is meant by stationarity. It is this property that is 
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implicitly evaluated in studies that aim to report the ‘dynamic’ activity of BOLD 

correlations.  

However, there remain significant challenges to interpreting observed dynamics 

in resting state BOLD as representative of non-stationary brain phenomena in the sense 

defined above. First, as a number of authors have begun to point out, current analytic 

techniques are susceptible to spurious ‘non-stationary’ observations if not properly 

employed (Leonardi et al., 2015; Lindquist et al., 2014; Zalesky et al., 2014). In 

concurrence, we believe that much of the literature on this topic has not adequately 

appreciated the nature of sampling variability in second-order statistics (e.g. correlation) 

when measured on limited quantities of data. This failure is illustrated here by applying 

dynamic analyses to simulated stationary BOLD data.  

Second, and perhaps more importantly, there are potential sources of artifactual 

and bona fide non-stationary processes that complicate interpretation of dynamic 

behavior in resting state BOLD. In particular, just as it has clouded interpretation of 

standard RSFC analyses (Power et al., 2012), head motion is not well-accounted for in 

most analyses of RSFC dynamics.  In addition, as Tagliazucchi et al have reported, 

most resting state datasets are contaminated by true ‘state’ changes, namely the 

passage from wake to sleep, and intermediate stages of drowsiness (Tagliazucchi et al., 

2014). To evaluate the role of these processes on resting state ‘dynamics’, we propose 

a simple statistic to measure the multivariate kurtosis of resting state BOLD data 

(Mardia, 1970). Deviations from normality in this statistic should provide evidence for 

changes in the covariance structure of a multivariate process (Martins, 2007). Using this 

statistic, we find that resting state BOLD timecourses behave much like stationary, 
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normal simulations and observed deviations from normality can be explained by 

movement and/or sleep state. Thus, we show that spontaneous neural activity is 

essentially stationary, or at least, much more stationary than has been recently claimed. 

 

5.3 Results 

Simulation maintains covariance and spectral content of real data 

The sampling variability of correlation poses a serious, and increasingly 

recognized (Lindquist), challenge to identifying true fluctuations in resting state 

functional connectivity. Signals with the frequency spectrum of typical BOLD data will 

exhibit large apparent fluctuations in correlation over the time scales often assessed in 

analyses of RSFC ‘dynamics’. Thus, to disambiguate real non-stationarity from 

sampling variability, it is necessary to develop an adequate null model of expected 

fluctuations in the context of stationary correlation. To do this, we generated a 

simulation of BOLD activity that retains both the stationary covariance and spectral 

structure of real BOLD data. The procedure to generate timeseries with these properties 

is outlined in Figure 1. First, we sample a timeseries of random normal deviates of the 

same dimensionality as a real dataset (step 1). These timeseries are then projected 

onto the eigenvectors derived from the stationary covariance structure of a session of 

real data (step 2). Finally, these timeseries are then multiplied in the spectral domain by 

the power spectrum derived from a full-length real dataset (step 3). This procedure 

produces random stationary timeseries with the covariance and spectral structure of 

real data (compare last two rows of Figure 1). These simulated timeseries can then act 

as a null against which to evaluate non-stationary features of real data.  
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Figure 5-1. Steps of stationary BOLD simulation. (1) BOLD timeseries are simulated by first 
sampling random normal deviates. (2) These timeseries are projected onto the eigenvectors 
computed from the average covariance matrix of ten 30-minute sessions of real data from each 
subject. (3) The projected timeseries are then matched to the average parcel-wise power 
spectrum of the real data by multiplication in the spectral domain. The final simulated data share 
the stationary covariance and spectral features of real data (compare to bottom row). 

 

Simulated data produce apparently ‘dynamic’ patterns 

Simulated datasets generated using the stationary model exhibit remarkably 

similar patterns of fluctuation as real data. The rightmost panel of Figure 1 shows the 

sliding correlation computed on the average sliding within-network correlation over time 

(100-second windows) for each stage of the simulation and for real data. The 

covariance- and spectrally-constrained stationary simulation for a given subject exhibits 

fluctuations in within-network correlation that have similar magnitude as real data.  
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Further, these stationary simulations can also produce transient full matrix 

patterns of correlation that resemble ‘states’, as have been described in several recent 

publications (Allen et al., 2012; Hutchison et al., 2015). In Figure 2, we have performed 

a k-means clustering analysis of the sliding correlation matrices computed from both 

real and simulated data. Real sessions with fewer than 50% frames kept after frame 

censoring (FD < 0.2) were ignored in this analysis (see below for more on frame 

censoring).  Ten sessions of simulated data based on each subject were used for the 

simulation dataset. As can be seen in Figure 2A, the clustering extracts matrices that 

have distinctive patterns of correlation. However, the clustered ‘states’ from both real 

and simulated data are nearly identical (k = 7). Further, figure 2B depicts the set of 

sliding correlation matrices (and their ‘state’ assignment) projected onto 2 dimensions, 

illustrating that apparent states in real data are not discernably different from those 

found in stationary simulation. The cluster validity index also indicates that there is no 

distinction in the rank of the divisibility of real and simulated data. Taken together the 

results suggest that there are not observable ‘states’ in real data that are readily 

distinguishable from ‘states’ arising from sampling variability measured in stationary 

simulated data. 
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Figure 5-2. Real and simulated data have the same ‘states’. A) Average correlation matrix from 
each cluster in clustering analysis (k = 7) of sliding correlation. Real and simulated data produce 
very similar ‘state’ patterns. B) Trajectories of sliding correlation matrices from all subjects and 
sessions (except sessions with mean FD>.2) have no obvious state organization when 
projected onto the first principal components. Colors correspond to ‘state’ identity in A). C) 
Cluster validity index by number of clusters is nearly identical between real and simulated data. 

 

Multivariate kurtosis can be used to detect presence of non-stationary 

behavior in multivariate timeseries 

The presence of non-stationarity in a timeseries of the form under consideration 

here, namely a change in second-order statistics, should be reflected in the kurtosis of 

the timeseries’ distribution (e.g., (Martins, 2007)). Therefore, to detect the presence of 

non-stationarity in a set of BOLD timeseries extracted from cortical parcels of interest, 

we adopt a straightforward measure of multivariate kurtosis introduced by Mardia 

(Henze, 2002; Mardia, 1970). This statistic can be used as a test of multivariate 
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normality and is consequently sensitive to changes in the covariance structure of a 

multivariate process. To illustrate this sensitivity to changes in covariance, we have 

generated two simulations of 333-parcel multivariate processes based on the differing 

covariance of real data in eyes open and eyes closed conditions collected as part of the 

MyConnectome Project (Figure 3A; Laumann et al., 2015; Poldrack et al., 2015). In one 

simulation, a single ‘eyes-open’ stationary covariance structure was assumed for the 

entire epoch. In the second simulation, the covariance structure changed from ‘eyes-

open’ to ‘eyes-closed’ halfway through the epoch. While a seemingly large change in 

external stimulation, this represents a well-documented (Laumann et al., 2015; McAvoy 

et al., 2008) but relatively minor change to the overall covariance structure (difficult to 

detect by the naked eye without computing the difference matrix). Prior to kurtosis 

calculation, the process was dimensionality reduced via principal components analysis 

to 30 timeseries. In the limit, the expected kurtosis of a normal stationary multivariate 

process of dimensionality d is d*(d+2). In this work, the multivariate kurtosis of real data 

will always be contextualized with respect to the multivariate kurtosis derived from 

simulated data of the same length but defined to have stationary covariance and 

spectral content. The multivariate kurtosis measure detected increased kurtosis in the 

two-state simulation relative to the one-state simulation (Figure 3B, right). This 

observation suggests that multivariate kurtosis is sensitive to non-stationary features of 

simulated BOLD timeseries. 
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Figure 5-3. Multivariate kurtosis is sensitive to state changes in simulated multivariate data. 
Simulated data with eyes open vs. eyes closed state changes was used to demonstrate that 
multivariate kurtosis is sensitive to bona fide state changes. A) Average correlation matrices 
from real data acquired in eyes open (ten 10-minute sessions) and eyes closed (ten 10-minute 
session) conditions. The primary differences are in visual and somatomotor cortex. B) Average 
sliding correlation of windowed correlation matrix to eyes open and eyes closed correlation 
matrix for two simulations (n = 10000). One simulation is eyes open throughout and the other 
simulation switches to eyes closed halfway through the session. C) Distribution of computed 
multivariate kurtosis values for 10000 iterations of each simulation. Multivariate kurtosis is 
greater for the two-state simulation relative to the one-state simulation. 

 

Timeseries approach normality if high motion frames are removed 

Using the multivariate kurtosis measure, we now consider possible contributing 

sources to apparent non-stationarity in real data. The first, and most obvious, source of 

non-stationarity is head motion. Head motion is known to cause transient whole-brain 

changes in BOLD signal that substantially change measured RSFC (Power et al., 2012; 
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Van Dijk et al., 2012). It is therefore likely to be a source of non-stationarity in the BOLD 

signal. 

As expected, the mean framewise displacement (FD) of each session 

significantly correlates with multivariate kurtosis (Figure 4A). Without FD-based 

censoring or temporal interpolation mean FD correlates with kurtosis at r = 0.50. If we 

apply modern procedures for reducing the impact of head motion by removing and 

interpolating over frames with FD > 0.2 (Power et al., 2014), the correlation decreases 

to r = -0.47. This negative correlation is likely related to several outlier sessions that 

have particularly high head motion and thus few frames remaining after FD censoring. If 

we discard all sessions with fewer than 50% of frames remaining, the correlation is r = -

0.08 (n=81; Figure 4A, bottom). Thus, these head motion correction procedures 

substantially reduce the kurtosis of the timeseries. It is worth noting that there are 

several sessions among the subjects that exhibit multivariate kurtosis values that are 

very close to the kurtosis exhibited by stationary simulated data (blue dots that lie near 

the red lines in Figure 4A). Therefore, by this measure, there are at least some 30-

minute long sessions that exhibited practically no detectable non-stationary phenomena, 

especially after head motion correction. 
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Figure 5-4. Multivariate kurtosis is related to motion. A) Multivariate kurtosis correlations with 
mean framewise displacement (FD) using all 10 sessions from each of 10 subjects. Kurtosis is 
computed on the first 30 principal components derived from each session. The average kurtosis 
of simulated stationary data is indicated by the red line (~950). Correlation with motion is 
substantially reduced after interpolation and masking of censored frames (bottom). B) 
Timepoints from all 10 sessions from one example subject projected on first two principal 
components. Dot color indicates the different sessions. If all timepoints are included there are 
many timepoints with large deviations from the rest of the data. These will contribute to 
measures of excess kurtosis. If timepoints with high FD are censored (here, FD>0.2; the 
censoring procedure also removes stretches of time with less than 5 contiguous frames.), 
almost all of the deviant timepoints are removed and the projection becomes nearly Gaussian. 
B) Multivariate kurtosis as a function of frame censoring FD threshold across all sessions and 
subjects. The shaded error indicates the standard deviation. The red line indicates the average 
multivariate kurtosis from simulated datasets. 

 

To further illustrate the incremental effect of head motion on kurtosis, we present 

timepoints from ten sessions of data (818 frames per session) from a single subject 

after dimensionality reduction (Figure 4B). If all timepoints were included, there were a 

number of timepoints with significant deviations from the rest of the data. These deviant 
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timepoints contributed to excess kurtosis in the data. However, for this subject, many of 

the very deviant timepoints were eliminated if we censored frames with high motion (FD 

> 0.2). In general, across all subjects and sessions, excess multivariate kurtosis 

increases as a function of FD (Figure 4C).  Put another way, as more and more high 

motion frames were removed from consideration by applying more stringent FD 

thresholds, the multivariate kurtosis approaches normality (dotted line; Figure 4C). 

Unfortunately, for many sessions, all of the data would be eliminated before we reach 

this point. 

 

Session by session multivariate kurtosis is correlated with sleep index  

Motion is an obvious source of spurious non-stationarity, but there is another 

known potential source of non-stationarity that we may crudely be able to identify in our 

data. In an essential study, Tagliazucchi and colleagues (Tagliazucchi et al., 2014) 

demonstrated that many datasets that were collected with the intention of acquiring 

awake resting state data are contaminated by sleep. Further, sleep has been 

documented to produce changes in the underlying correlation structure, representing a 

separate state. Thus, unstable wakefulness would be a likely source of bona fide non-

stationarity in resting-state timeseries.  

Following their work, we have developed a simple procedure to assess how 

sleep-like are each of the sessions in our dataset and thus evaluate how much shifting 

between wake and sleep may exist. This mixture of states should be related to 

measures of kurtosis. In particular, we have used the Tagliazucchi dataset, in which 

sleep stage is known, to define a set of voxels by which it is possible to discriminate 
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different stages of sleep. The best regions of the brain to do this are in visual and 

somatomotor cortex, and the thalamus. We ignore the visual regions because our data 

was collected with eyes open (as opposed to the Tagliazucchi data which was collected 

with eyes closed), which may confound the measure. Thus, a covariance matrix of 

somatomotor and thalamic voxels can be computed for stage 0 (awake) and state 1 and 

stage 2 (light) sleep. We then compared covariance of these same voxels from the 30-

minute resting sessions in our dataset to these stage 0 and stage 1/2 exemplars. The 

difference in similarity to stage 1/2 vs. stage 0 sleep is defined as the sleep index, i.e. 

the higher the value of the sleep index the more ‘sleep’-like the session was, suggesting 

unstable wakefulness. Figure S2 illustrates that the sleep index tends to increase over 

the course of scanning session across subjects, as might be expected, providing 

circumstantial evidence that the index may be a useful measure of sleepiness. When 

we compare the sleep index to the multivariate kurtosis of interpolated, frame-censored 

data (excluding sessions with <50% frames, and one session with multivariate kurtosis 

4.7 std greater than the mean), we find a significant correlation between the two 

measures (r = 0.31, p=0.0044; Figure 5). This result provides evidence that, in addition 

to motion, observed non-stationarity may also be related to changing levels of sleep 

over the course of a resting state session. 
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Figure 5-5. Multivariate kurtosis correlates with sleep index. Kurtosis is computed on 
the first 30 principal components derived from each session. Sessions have been 
interpolated and frame censored. Any session with mean FD > 0.2 has been removed. 
One session with a kurtosis measure 4.7 standard deviations from the mean was 
excluded. The average kurtosis of simulated stationary data is indicated by the red line 
(~950). 

 

5.4 Discussion 

Using a multivariate kurtosis statistic and comparing against a stationary 

simulation, we evaluated the presence of ‘non-stationary’ phenomena in resting-state 

BOLD data. We found that resting-state BOLD data appears to be essentially stationary 

to second order. Observed fluctuations in second-order statistics can, to a large extent, 

be attributed to three major factors: 1. sampling variability intrinsic to small quantities of 

data; 2. artifactual signal changes related to head motion; and 3. bona-fide signal 
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changes related to sleep state. These sources of real and apparent non-stationarity, as 

well as the implications of stationary resting-state BOLD, are discussed below. 

 

Much of observed ‘dynamics’ is sampling variability of second-order 

statistics 

The literature has begun to recognize the fundamental importance of adopting 

appropriate techniques and statistical models to assess non-stationarity in resting-state 

BOLD timeseries (Leonardi et al., 2015; Lindquist et al., 2014; Zalesky et al., 2015). 

Standard techniques, especially the sliding window technique, can generate apparent 

fluctuations in correlation. The essential problem is that the sampling error of second-

order statistics is inversely proportional to the period of observation (Laumann et al., 

2015). 

Our observations confirm and expand on these warnings. By using an 

appropriate stationary simulation of BOLD data that incorporates the spectral content 

and system-specific patterns of covariance of real BOLD data, we demonstrate how 

sampling variability can masquerade as ‘dynamics’. Specifically, the observed variability 

of windowed correlations in simulated stationary timeseries is similar in magnitude to 

fluctuations observed in real data (see Figure 1). Moreover, if subjected to a clustering 

analysis, simulated stationary timeseries produce clustered correlation matrices 

(‘states’) very similar to those obtained in real data. Therefore, the appearance of 

discrete ‘states’ in resting-state BOLD timeseries appears to be illusory.  
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Head motion is a large source of artifactual non-stationarity 

Head motion has been clearly demonstrated to bias estimates of correlation in 

standard RSFC analyses (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 

2012), but the problem it poses for dynamic RSFC analyses is perhaps even more 

obvious (Hutchison et al., 2013). While sampling variability can give the appearance of 

‘dynamics’ in resting-state BOLD timeseries, head motion will introduce ‘true’ non-

stationarity into BOLD data, though of no biological interest. Indeed, even small 

movements of the head may be expected to corrupt measures specifically designed to 

detect transient changes in the BOLD signal. As such, we found that measured kurtosis 

is correlated with the level of head motion in a scanning session. Importantly, if we 

adopted modern head motion censoring procedures, including interpolation of high 

motion frames (FD > 0.2) and removal of these frames from analysis (Power et al., 

2014), we substantially reduced the observed multivariate kurtosis. In some cases, this 

maneuver reduced the multivariate kurtosis to be nearly indistinguishable from 

simulated stationary timeseries. Figure 4C suggests that if even more strict movement 

criteria are used more sessions may reach this baseline. These results imply that a 

substantial portion of non-stationarity observed in resting-state BOLD timeseries may be 

related to head motion and urge maximal caution when interpreting measurements of 

dynamic RSFC. Indeed, subject by subject and day by day differences in motion may 

significantly contribute to the variability in dynamic RSFC measures, as others have 

observed (Lindquist et al., 2014), making reliable associations with behavioral measures 

a serious challenge.  
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Unstable wakefulness may introduce bona fide non-stationarity into the 

resting state 

While head motion can introduce true, but artifactual, non-stationarity into 

resting-state BOLD timeseries, real changes in physiological state over the course of a 

scanning session may introduce bona fide non-stationarity. In particular, sleep is 

associated with significant changes in neural activity with specific EEG signatures 

(Dement et al., 1957). Tagliazucchi and colleagues have demonstrated that sleep is a 

real contaminant of many resting state datasets that warrants serious consideration 

when interpreting standard RSFC analyses (Tagliazucchi et al., 2014). Following this 

observation, we hypothesized that fluctuating sleep state may contribute to measured 

non-stationarity in our data, even though subjects were asked to stay awake and keep 

their eyes open for the duration of the scan. This request is a legitimate challenge for 

30-minute scan sessions, as collected here, especially as all sessions were collected in 

the middle of the night (approx. 12 midnight – 2 PM). Consistent with this expectation, 

we found that, after aggressive motion correction, a sleep index based on the 

Tagliazucchi dataset correlated with the remaining measured multivariate kurtosis. Thus, 

at least some observed non-stationarity is likely related to unstable wakefulness over 

the course of the scan.  

Our sleep analysis here has several important caveats. The sleep index is, at 

best, an indirect measure of the presence of sleep stages. We do not have combined 

EEG or other independent measures to verify the characteristic patterns of descent into 

sleep. We also did not use visual cortex in defining the sleep index, even though visual 

cortex can be used to distinguish different stages of sleep in subjects with their eyes 
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closed, as our subject had their eyes open. Finally, accurate measurement of resting-

state functional connectivity in an individual who is struggling to stay awake is very 

challenging as this behavior is frequently associated with increased head motion. Thus, 

periods of unstable wakefulness may have been largely discarded through the motion 

censoring procedure, reducing our sensitivity to the presence of alternate sleep states 

over the course of the scan. 

 

Resting-state BOLD may be essentially stationary to second order over 

short time-scales 

Our results suggest that resting-state BOLD timeseries are essentially stationary, 

or, at least, observable non-stationarity is largely attributable to identified explanatory 

variables (head motion and sleep state). If resting-state BOLD timeseries are indeed 

stationary, what are the neurobiological implications? 

 

Resting state BOLD fluctuations do not primarily reflect online cognitive 

processes 

The property of stationarity may provide further support for the notion that 

resting-state BOLD fluctuations do not primarily reflect online cognitive processes. This 

perspective has been argued previously based on several forms of evidence (Raichle et 

al., 2007): 1. The topography of correlated BOLD activity within functional systems, 

while modified sufficiently to be distinguishable (Tagliazucchi et al., 2014), remains 

largely intact in slow-wave sleep (Samann et al., 2011) and under anesthesia (Palanca 

et al., 2015). Under these conditions, online cognitive activity is presumed to be 
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essentially absent; 2. BOLD responses elicited by a task (i.e. online activity) do not 

perturb ongoing resting-state activity very much, necessitating substantial trial repetition 

to observe task-related effects (Raichle et al., 2006); and we may further add, 3. 

Correlation patterns of resting-state BOLD activity are fairly consistent across subjects 

(Damoiseaux et al., 2006) and within subjects across sessions (Laumann et al., 2015). 

Unconstrained online cognition, on the other hand, might be expected to vary 

considerably from subject to subject or from scan to scan. The observation of 

stationarity on shorter time scales adds further evidence to this argument. 

Unconstrained cognitive processes may be expected to vary considerably over the 

course of a scan, and, at some level, must be reflected in non-stationary neural activity. 

Resting-state BOLD, however, does not appear to reflect this property, suggesting that 

it may not substantially relate to such online neural activity. Rather, resting-state BOLD 

activity may primarily reflect spontaneous offline processes unrelated to immediate 

cognitive experience. 

In particular, stationary spontaneous activity may relate to a necessary feature of 

effective brain function. While the brain must allow for processing of new experiences 

and adaptive plasticity, it must also store information and maintain its functional 

architecture over substantial periods of time, as much as decades. Evidence for stability 

of brain structure has been well established at small spatial scales (Marder et al., 2006), 

and spontaneous activity has been implicated in this process. Indeed, spontaneous 

activity has been shown to play a key role in maintaining functionally appropriate 

patterns of connectivity during development and has been postulated to serve a similar 

role throughout life (Katz et al., 1996; Penn et al., 1999). Thus, patterns of spontaneous 



	247	

activity may both reflect preferred synaptic relationships as well as serve to maintain 

them. In this view, at the larger spatial scale studied here, spontaneous activity may be 

expected to significantly change over long time-scales following persistent changes in 

functional co-activation, as has been demonstrated (Lewis et al., 2009), but, in fact, may 

generally serve to restore synaptic balance in the wake of experience-dependent 

perturbations of synaptic weights (Davis, 2006). Stationarity in resting-state BOLD 

signals over short time-scales may thus reflect the essential long-term stability of 

systems-level neuronal relationships. 

 

Stationarity is consistent with known ‘dynamic’ features of resting-state 

BOLD 

It is important to note that stationarity of second-order statistics in resting-state 

BOLD is compatible with a large repertoire of dynamic behavior and functional 

associations. For example, stationarity does not imply that resting-state BOLD 

fluctuations have no relation to behavior. Several studies have reported effects of 

fluctuations in resting-state activity on cognition (M. D. Fox et al., 2007b; Hesselmann et 

al., 2008; Sadaghiani et al., 2010), and they are in no way gainsaid by the observations 

here. A stationary process can have different properties depending on when it is 

observed. For example, a frictionless pendulum could complete a circuit to turn on a 

light only at one end of its swing. Further, stationarity is consistent with the presence of 

specific spatiotemporal propagating processes as have been reported in resting-state 

data (Majeed et al., 2009; Mitra et al., 2015a). A wave machine operating with fixed 

frequency and intensity on a pool of water will generate a stationary wave that 
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translates through space. Similarly, stationary offline processes may manifest as 

structured spatiotemporal features in BOLD activity. 

 

Conclusion 

This set of analyses does not definitively prove that resting-state-BOLD is devoid 

of non-stationary features. However, we believe that any evaluation of RSFC dynamics 

needs to carefully account for sampling variability and known sources of non-stationarity 

(like head motion and sleep state) to appropriately interpret observations of dynamics. 

Taking these considerations into account, on the other hand, exposes the intriguing 

possibility that resting-state BOLD activity may be essentially stationary, pointing to a 

specific role for this activity distinct from online cognitive processing.  

 

5.5 Methods 

Subjects 

Data were collected on ten healthy, right-handed, young adult subjects (5 

females; age: 24-34). Two of the subjects are authors (ND and SN), and the remaining 

subjects were recruited from the Washington University community. Informed consent 

was obtained from all participants. Imaging was performed over 12 days on a Siemens 

TRIO 3T MRI scanner. 

 

Structural data 

Four T1-weighted images (sagittal, 224 slices, 0.8 mm isotropic resolution, 

TE=3.74 ms, TR=2400 ms, TI=1000 ms, flip angle = 8 degrees) and four high-resolution 
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T2-weighted images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE=479 ms, 

TR=3200 ms) were obtained for each subject. 

 

Surface processing and CIFTI generation 

Surface generation and sampling of functional data to anatomical surfaces 

followed a procedure similar to that previously described in (Glasser et al., 2013). First, 

following volumetric registration, anatomical surfaces were generated from the subject’s 

MP-RAGE image using FreeSurfer’s default recon-all processing pipeline (version 5.0). 

This pipeline included brain extraction, segmentation, generation of white matter and 

pial surfaces, inflation of the surfaces to a sphere, and surface shape-based spherical 

registration of the subject’s ‘native’ surface to the fsaverage surface (A. M. Dale et al., 

1999; A. M. Dale et al., 1993a; Fischl et al., 1999; Segonne et al., 2004). The 

fsaverage-registered left and right hemisphere surfaces were brought into register with 

each other using deformation maps from a landmark-based registration of left and right 

fsaverage surfaces to a hybrid left-right fsaverage surface (‘fs_LR’; (Van Essen et al., 

2012a)) and resampled to a resolution of 164,000 vertices (164k fs_LR) using Caret 

tools (Van Essen et al., 2001). Finally, each subject’s 164k fs_LR surface was down-

sampled to a 32,492 vertex surface (fs_LR 32k). The various deformations from the 

‘native’ surfaces to the fs_LR 32k surface were composed into a single deformation 

map allowing for one step resampling. A script for this procedure is available on the Van 

Essen Lab website (Freesurfer_to_fs_LR Pipeline, http://brainvis.wustl.edu). 

Surface processing of the BOLD data proceeded through the following steps. 

First, the BOLD fMRI volumes are sampled to each subject’s individual ‘native’ 
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midthickness surface (generated as the average of the white and pial surfaces) using 

the ribbon- constrained sampling procedure available in Connectome Workbench 0.84. 

This procedure samples data from voxels within the gray matter ribbon (i.e. between the 

white and pial surfaces) that lie in a cylinder orthogonal to the local midthickness 

surface weighted by the extent to which the voxel falls within the ribbon (Glasser et al., 

2011). Voxels with a timeseries coefficient of variation 0.5 standard deviations higher 

than the mean coefficient of variation of nearby voxels (within a 5 mm sigma Gaussian 

neighborhood) were excluded from the volume to surface sampling, as described in 

(Glasser et al., 2013). Once sampled to the ‘native’ surface, timecourses were deformed 

and resampled from the individual’s ‘native’ surface to the 32k fs_LR surface in a single 

step using the deformation map generated as described above. This resampling allows 

point-to-point comparison between each individual registered to this surface space. 

Finally, the time courses were geodesically smoothed along the 32k fs_LR surface 

using a Gaussian smoothing kernel (σ = 2.55). 

These surfaces were then combined with volumetric subcortical and cerebellar 

data into the CIFTI format using Connectome Workbench (Glasser et al., 2013), 

creating full brain timecourses excluding non-gray matter tissue. Subcortical (including 

accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and 

cerebellar voxels were selected based on the FreeSurfer segmentation of the individual 

subject. Volumetric data were smoothed within this mask with a 3D Gaussian kernel (σ 

= 2.55) before being combined with the surface data. 
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Functional data 

For each subject, thirty contiguous minutes of resting state data were collected 

on ten separate days (total time = 300 minutes per subject). Subjects were passively 

fixated on a white crosshair that was presented against a black background. Functional 

imaging was performed using a gradient-echo EPI sequence (TR = 2.2 s, TE = 27 ms, 

flip angle = 90°, voxel size = 4 mm x 4 mm × 4 mm, 36 slices). In each session, a 

gradient echo field map sequence was acquired with the same prescription as the 

functional images. 

 

Distortion correction 

Mean field map creation: A mean field map was generated based the field maps 

collected in each subject (Laumann et al., 2015). This mean field map was then applied 

to all sessions for distortion correction. To generate the mean field map the following 

procedure was used: (1) Field map magnitude images were mutually co-registered. (2) 

Transforms between all sessions were resolved. Transform resolution reconstructs the 

n-1 transforms between all images using the n*(n-1)/2 computed transform pairs. (3) 

The resolved transforms were applied to generate a mean magnitude image. (4) The 

mean magnitude image was registered to an atlas representative template. (5) 

Individual session magnitude image to atlas space transforms were computed by 

composing the session-to-mean and mean-to-atlas transforms. (6) Phase images were 

then transformed to atlas space using the composed transforms, and a mean phase 

image in atlas space was computed. 
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Application of mean field map to individual sessions: (1) For each session, field map 

uncorrected data was registered to atlas space. (2) The generated transformation matrix 

was then inverted and applied to the mean field map to bring the mean field map into 

the session space. (3) The mean field map was used to correct distortion in the session 

space. (4) The undistorted data was then re-registered to atlas space. (5) This new 

transformation matrix and the mean field map then were applied together to resample 

the session data to undistorted atlas space in a single step. 

 

fMRI Preprocessing 

Functional data was preprocessed to reduce artifact and to maximize cross-

session registration. All sessions underwent intensity normalization to a whole brain 

mode value of 1000 and within run correction for head movement. Atlas transformation 

was computed by registering the mean intensity image from a single BOLD session to 

atlas space via the average high-resolution T2- weighted image (n = 4) and average 

high- resolution T1-weighted image (n = 4). All subsequent BOLD sessions were linearly 

registered to this first session. Atlas transformation, distortion correction, and 

resampling to 3-mm isotropic atlas space were combined into a single interpolation 

using FSL’s applywarp tool (Smith et al., 2004). All subsequent operations were 

performed on the atlas-transformed volumetric time series.  

 

RSFC preprocessing 

Artifacts were reduced using frame censoring, nuisance regression (excluding 

censored frames), interpolation and spectral filtering following (Power et al., 2014). 
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Nuisance regressors included whole brain, white matter, and ventricular signals and 

their derivatives, in addition to 24 movement regressors derived by expansion (Friston 

et al., 1996). To assess the impact of motion on measures of non-stationarity, results 

are presented both with and without the frame censoring and interpolation steps. 

Frames with framewise displacement (FD) > 0.2 mm were censored, as well as 

uncensored segments of data lasting fewer than 5 contiguous volumes (mean frames 

kept across sessions: 72.5% ± 25%). Interpolation over censored frames was computed 

by least squares spectral estimation to prepare continuous data for subsequent 

bandpass filtering (Power et al., 2014). 

 

Region of interest (ROI) definition 

All analyses presented here are based on timeseries extracted using a group-

level cortical parcellation described in (Gordon et al., 2014b). This 333-area parcellation 

covers most of the cortical surface, and has been divided into 12 networks based on the 

Infomap community detection technique (Power et al., 2011; Rosvall et al., 2008). The 

parcels and their network assignments can be seen in Figure S1. 

 

BOLD simulation 

To simulate a stationary surrogate with both the covariance and spectral 

properties of real BOLD we performed the following procedure, outlined in Figure 1. 

First, we sample a timeseries of random normal deviates of the same dimensionality as 

a real dataset (step 1). These timeseries are then projected onto the eigenvectors 

derived from the stationary covariance structure of real data (step 2). Finally, these 
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timeseries are multiplied in the spectral domain by the power spectrum derived from a 

full-length real dataset (step 3). This procedure produces random surrogate timeseries 

with the covariance and spectral structure of real data (compare last two rows of Figure 

1) that is stationary by construction. These simulated timeseries can then act as a null 

against which to evaluate non-stationary features of real data.   

 

Sliding Window Analysis 

To estimate fluctuating connectivity over time, we adopt the sliding window 

strategy commonly used in the literature (Hutchison et al., 2012; Zalesky et al., 2014). 

Specifically, we extract timeseries from the cortical surface using the 333-area 

parcellation described in (Gordon et al., 2014b). Correlations are then computed at each 

timepoint between windowed samples of the timeseries tapered by a Gaussian function 

to center-weight the contribution of proximal timepoints. Window size is adjustable by 

changing the number of frames specified as the full width at half maximum. The 

timeseries are highpass filtered at the frequency of the lowest frequency allowing a full 

cycle given the window length. Here, we use 100s windows, so the timeseries are high-

pass filtered at 0.01 Hz (Leonardi et al., 2015; Zalesky et al., 2015).  To illustrate sliding 

window fluctuations at the network level, we averaged all correlations between regions 

within each network at each window. Real and simulated timecourses of within-network 

connectivity can be seen in Figure 1 in the far right column. 
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State analysis 

To group the correlation patterns generated by the sliding window procedure we 

adopted the k-means clustering algorithm commonly used in the literature (Allen et al., 

2012; Hutchison et al., 2015). The correlation patterns were dimensionality reduced 

from 55278 (333 parcels x 333 parcels) to 30 dimensions by principal component 

analysis (PCA) prior to clustering to reduce computational demand. The Mahalanobis 

(L1) distance function was used to compute the separation between each window’s 

correlation pattern and the k-means algorithm was iterated 100 times with random 

centroid positions to avoid local minima. Windows from all sessions and all subjects 

were used in the clustering, excluding 19 sessions (8 from one subject) that had more 

than half of their frames discarded because of excessive head motion. The window 

length for this analysis was 100 seconds and the windows were overlapping with a 

separation of 11 seconds between window centers, generating 155 windows per 

session. The windowed correlation patterns were mean-centered by run to eliminate 

run-level or subject-level features from contributing to the clustering result. K-means 

clustering was applied in the same manner to 100 sessions of simulated data, where 

each subject’s BOLD power spectrum and covariance was used to generate 10 

sessions. The cluster validity index was used to evaluate the quality of clustering for a 

range of cluster numbers (k=2-10). The cluster validity index was computed as the ratio 

of within-cluster distance to between-cluster distance. 
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Kurtosis of Mardia 

In the general case, tests of second-order multivariate stationarity are evaluated 

in terms of spectral measures (Jentsch et al., 2015). This approach frequently is used in 

the context of electrophysiology e.g., (Halliday et al., 2009; Wong et al., 2006). Here, we 

take a different approach based on demonstrating that BOLD fMRI timeseries are 

consistent with a multivariate normal process. 

In greater detail, we evaluate the multivariate fourth moment (kurtosis) of BOLD fMRI 

data. To obtain a heuristic understanding of the relevance of kurtosis to evaluating the 

stationarity of a second order statistic, recall that statistical theory shows that the 

variance of the mth moment is given by the moment of order 2m (Weatherburn, 1961). 

Thus, the variance of the mean (m  = 1) is given by the variance (m  = 2). 

Correspondingly, the variance of a second order statistic, i.e., the covariance (m = 2) of 

a multivariate process, is related to the multivariate kurtosis (m = 4). Hence, evidence of 

second order stationarity, e.g., lack of significant changes in the covariance structure of 

a multivariate process, is obtained if the multivariate fourth moment (kurtosis) of BOLD 

fMRI data equals that of a perfectly normal and stationary synthetic surrogate.  

Here, we adopt a straightforward measure of multivariate kurtosis introduced by 

Mardia (Henze, 2002; Mardia, 1970). Following the formalism of Henze, let X1,…,Xn 

denote a random sample of size n of a d-dimensional vector, X. The sample covariance 

matrix is defined as: 

 

 S! =  !
!

(X!!
!!! − X!)(X! − X!)′,      (1)  
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where X!  is the mean over n  samples. Given S! , we can compute the squared 

Mahalonobis distance, which reflects the dissimilarity between any particular sample 

and the sample mean: 

 

 D!,!" =  (X! − X!)′S!!!(X! − X!).      (2) 

 

Multivariate kurtosis in the sense of Mardia, b!,!, is simply the trace of the square of the 

squared Mahalanobis distance. Thus, 

 

 b!,! =  !
!

D!,!!!!
!!! .        (3) 

 

In the analyses presented here, multi-dimensional timeseries (both simulated and 

real) were extracted from 333 cortical areas. This number of regions exceeds the 

dimensionality of BOLD fMRI (Cordes & Nandy, NI 2006). Thus, the 333 ×  333 

covariance matrix of the data would be rank deficient, and the inversion required by Eq. 

(2) would be unstable. Accordingly, the dimensionality of the "raw" data was reduced via 

principal components analysis from 333 to 30, thereby stabilizing the kurtosis 

calculation while still retaining a reasonable number of independent signals. In the limit 

of an infinite sample size (n → ∞), the expected multivariate kurtosis of a normal 

stationary multivariate process of dimensionality d is d∙(d+2). In practice, the obtained 

value depends on the sample size. Therefore, in this work, the surrogate data were 

always matched in size to the real data in comparisons of multivariate kurtosis.  
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Sleep Index 

To assess the level of wakefulness in each session we developed a sleep index 

(SI). This sleep index was based on a separate high quality resting state fMRI dataset 

acquired on subjects in known states of wake and sleep as determined by EEG 

(Tagliazucchi et al., 2014). Using these data, we computed the difference between the 

sleep (averaged over N1 and N2 sleep) and wake covariance matrices (wake minus 

sleep), and applied spatial principal components analysis (PCA) to the difference matrix. 

The weights in the first PC highlight those voxels whose covariance structure is 

maximally altered in wake vs. sleep (Mitra et al., 2015b). To select voxels exhibiting 

maximal change, we applied a Fischer-Z transform to the weights in the first PC, and 

selected only voxels whose weights were in the 95th percentile. Voxels in the occipital 

cortex were manually excluded, to avoid confounds arising from the fact that the data in 

the main analysis were acquired in the eyes-open state, whereas the sleep data were 

acquired in the eyes-closed state (during both wake and sleep). Covariance matrices 

from these voxels were computed for each session of each subject in the main dataset. 

These covariance matrices were then compared by Pearson correlation to the 

covariance matrices from the sleep and wake states of the sleep dataset. The sleep 

index was computed as the similarity to the sleep state minus the similarity to the wake 

state. A higher value of the sleep index means the session had covariance relatively 

more similar to sleep than wake. 
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5.6 Supplemental Figures 

 

 
Supplementary Figure 5-1. Cortical parcels and their network assignments. 

 
Supplementary Figure 5-2. Sleep index increases with time in scanner. The blue trace is the 
average value of the sleep index by time in scanner across all sessions and subjects. 
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Chapter 6: Discussion 
6.1 Summary of Results 

In Chapter 2, we presented an approach for non-invasive cortex-wide 

parcellation of the human brain into putative functional areas. By analogy with classical 

tracer-based or architectonic investigations, this technique is based on the idea that 

transitions in patterns of resting-state correlations represent boundaries between 

cortical areas. Cortical areas identified in this way were found, in part, to correspond 

with architectonic divisions, task-based functional localization, and resting state-based 

systems-level cortical divisions. 

Chapter 3 refined and consolidated the approach presented in Chapter 2 with technical 

enhancements and a null model-based evaluation procedure for demonstrating internal 

and external validity of identified cortical areas. Our RSFC gradient-based parcellation 

was found to be superior by this evaluation to several popular RSFC-based or anatomic 

parcellations. 

In Chapter 4, we applied techniques for RSFC-based areal and system definition 

to a highly sampled individual. This analysis revealed that even as they generally share 

most properties of functional organization with group-averaged data, an individual can 

exhibit idiosyncratic features of functional organization. Critically, we also developed a 

model (and related empirical observations) of resting state BOLD variability that allows 

for computation of the quantity of data needed to generate precise estimates of 

correlation. According to this model, sampling error explained most of the observed 

variability in BOLD correlations from day to day, although other sources of variability 
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(e.g. caffeine state) likely contributed to the distinct topographic pattern of within-subject 

variability observed in somatomotor and visual regions.  

The analyses in the highly sampled individuals point to the stability of resting 

state BOLD correlations over relatively long time scales (i.e. day to day or over a year). 

In Chapter 5, however, we studied shorter time-scale variability in resting-state BOLD 

data. In particular, we evaluated the presence of non-stationary properties within 

individual resting state BOLD sessions. We found, first, that sampling variability can 

generate fluctuations in BOLD correlation that are frequently misconstrued as non-

stationary dynamics, and, second, that bona fide non-stationarity in signals can largely 

be explained by head motion and sleep state. We concluded that resting state BOLD 

fluctuations are essentially stationary to second-order (i.e., stable covariance structure) 

over timescales (minutes) that are most often measured in practice. 

In the following section, we will elaborate on some of the themes of this work with 

a particular focus on potential future directions. 

6.2 Comments on using resting-state to study spatial functional 

organization 

Our results suggest that resting state BOLD activity can be used to describe area 

and system-level spatial organization of the human brain. The utility of such descriptions 

is manifest in several domains. Firstly, accurate parcellation of the brain into discrete 

functional areas that does not duplicate or omit constituent elements of the system 

allows for analysis in a lower dimensional space than the physiologically meaningless 

voxel space in which BOLD data is collected (and often analyzed). Further, any sensible 

network-based analysis of information processing in the brain requires that the nodes of 
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the network be meaningfully defined to reflect relevant units of information processing 

(Power et al., 2011; Wig et al., 2011b). We hope that the reported parcellation will be 

productive in this regard. In particular, the present parcellation may form a more 

accurate basis than has previously been available (e.g. the sphere-based nodes of 

(Power et al., 2011) in which to compute and interpret important node properties 

underlying functional network organization, such as within module degree and 

participation coefficient.  

Second, the whole-brain approaches for delineating patterns of spontaneous 

BOLD activity outlined here (and in previous work) potentially expose previously 

unknown functional organization. Presumably, divisions observed in the spontaneous 

BOLD data reflect real distinct functional systems or areas that may not yet have known 

functional roles. For example, functional system delineation through resting state fMRI 

has recently helped to define a previously unrecognized system of regions in the 

parietal cortex hypothesized to be involved in memory processes (Gilmore 2015; Power 

2015). This same system was observed in the highly sampled subject reported in 

Chapter 4, adding further evidence for its discrete existence in individuals. At the level 

of areas, the parcellation reflects a large number of spontaneous BOLD activity-based 

distinctions with often-unknown functional significance. Annotation of the functional 

role(s) of each of the identified areas represents a substantial future undertaking, 

ultimately requiring a compilation of the universe of tasks eliciting discrete functional 

processes. A first step in this direction may be to link databases of extant functional 

activation locations (e.g. Brainmap (P. T. Fox et al., 2002) or SumsDB (Dickson et al., 

2001)) to the resting-state defined cortical areas, as has been demonstrated at the 
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systems-level (e.g. (Smith et al., 2009; Yeo et al., 2014)). It would be of considerable 

interest to note which areas have at least some well-defined processing roles 

dissociable from adjacent regions, and which have not yet been meaningfully 

distinguished by extant tasks, despite being distinguishable by spontaneous BOLD 

activity. Such an analysis might expose the gaps in our current repertoire of functional 

tasks and the limitations of the cognitive ontologies that underlie them (Poldrack, 2010). 

Finally, individual-level identification of the spatial topology of functional 

organization using spontaneous BOLD activity presents several exciting avenues for 

exploring cross-subject functional localization. In particular, in Chapter 4 we observed 

individual-specific topological features in functional organization distinct from group 

average patterns of organization. In this case, these differences could not be easily 

explained away by insufficient data or sampling error. A key next step in understanding 

this observation is to characterize the nature and extent of RSFC variability across 

many individuals. Ideally, we would acquire sufficient data to have precise and accurate 

description of functional organization in each subject, but even with less robust datasets 

we can begin to describe the characteristic patterns of RSFC variability. Figure 6.1 

illustrates the variability of system identification across subjects based on RSFC 

(approximately 12 minutes of data per subject; (Gordon et al., 2015).  
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 Most of the RSFC variability is localized near system borders, but there are 

several regions far from system borders that also exhibited variable system identity 

across subjects. These results confirm the need for further evaluation of functional 

organization of highly sampled individual subjects, but already expose the possibility 

that there may be characteristic alternate patterns of cortical organization that exist in 

different subsets of subjects.  

 

The presence of these topological distinctions gives rise to several intriguing 

questions. Do these topological differences correspond to behavioral attributes of a 

Figure 6-1. Most regions with consistent non-modal system identities in at least 20% of 
subjects are primarily near group average system borders, but some are far from those 
borders. A) Striped colors indicate all vertices where at least 20% of subjects (n=228) 
had the same non-modal system identity, with one color in the stripes representing the 
modal identity and the others representing alternate identities. B) Striped colors indicate 
regions of at least 100mm2 that had consistent non-modal system identities in at least 
20% of subjects (as in the left panel) and that were also at least 8mm from the group 
average system borders. Fourteen such regions can be observed (modified from Gordon 
et al 2015). 
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given subject or do they represent degenerate and equally viable configurations of 

functional organization?  Relatedly, what causes individuals to differ in their topological 

functional organization? Are these differences genetically determined or experience 

driven? Studying the topological similarities in functional organization between identical 

and fraternal twins could help determine the extent to which different functional 

topologies relate to genetic variants. On the other hand, analysis of individuals with 

anatomical deficits (e.g. perinatal strokes) or individuals with radically altered inputs (e.g. 

congenitally blind) could be used to evaluate the impact of environmental context on 

observed cortical functional organization.  

These observations of system variability across subjects also present important 

methodological consequences. Specifically, appropriate comparison of functional 

organization across subjects may require forms of cortical alignment beyond the 

traditional anatomical registrations that are typically applied (e.g. structural volume-

based (Lancaster et al., 1995b) or cortical folding on the surface (A. M. Dale et al., 

1999; Fischl et al., 1999). New approaches using functional, and other, measurements 

of brain properties have been proposed and may usefully improve cortical alignment 

across subjects (Robinson et al., 2014). However, if there are true topological 

differences in functional organization, i.e. a region of cortex functionally connects with 

one system in one person and a different system in the next, comparison between 

subjects may require techniques that align data in a functional space that may not 

necessarily respect anatomical contiguity (Haxby et al., 2011; Sabuncu et al., 2010). 

Such a registration may usefully occur at the voxel-level, but may particularly benefit 

from cross-subject assignment at the areal or systems-level.  
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One final note of caution is warranted when considering the meaning of RSFC-

based descriptions of cortical organization. While it is incredibly valuable to confirm and 

explore where RSFC-based areal or system definition aligns with other brain properties 

such as architectonics, myelin content, or axonal connectivity, it is important to 

recognize that RSFC may not perfectly align with these modalities for biologically 

meaningful reasons. For example, we found RSFC gradients within early visual areas 

that appear to divide foveal and peripheral representations of the visual field (Chapter 4, 

Figure 2). Further, these effects varied by resting state condition at the systems-level. 

Eyes-closed rest demonstrated clear separation of striate and extrastriate visual cortex, 

while eyes-open rest generated foveal and peripheral systems that cut across early 

visual areas (Chapter 4, Figure S4). Thus, spontaneous BOLD activity can reflect 

organization that may be distinct from traditional cortical areas but may be functionally 

explicable. Indeed, spontaneous BOLD may reflect different aspects of underlying 

organization depending on the context in which it is observed. Interpretation of 

functional areas defined by RSFC must be constrained by this observation. 

6.3 Comments on using resting-state to study temporal functional 

organization 

The results reported in the latter chapters of this thesis speak to the stability of 

RSFC patterns at several temporal scales. We have shown that much of the observed 

variance at both long and short scales is accounted for by sampling error. Taken 

together, these observations generally support the view that spontaneous BOLD activity 

primarily supports off-line processes as opposed to moment-to-moment cognition 

(Raichle et al., 2007). However, there are sources of variability in RSFC within a subject 
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that are not attributable to sampling error. We will discuss the challenges involved in 

separating the layers of overlapping functional processes that together form the 

measured BOLD signal and propose future experiments to explore how RSFC may 

reflect underlying changes in physiology. 

As we have seen, while RSFC variability is largely accounted for by sampling 

variability, small but true changes in correlation relationships between cortical areas can 

be observed from day to day (Chapter 4) or within a single scanning session (Chapter 

5). Setting aside motion (which has the most disruptive effect on correlation 

relationships), we have suggested that, in each case, sleep state may be a significant 

contributing factor to fluctuations in RSFC, as Tagliazucchi et al have found 

(Tagliazucchi et al., 2014). We speculate that changes in functional connectivity related 

to shifts in sleep state may represent changes in off-line neural activity as a result of 

changes in the neuromodulatory regime affecting cortical excitability (Steriade et al., 

1976).  

 

Beyond sleep, there are likely other reasons one may observe changes in 

correlated BOLD activity. One obvious possibility is a change in neural activity 

associated with changing cognitive demands. Indeed, using the kurtosis measured 

introduced in Chapter 5, we have found that mixed block/event-related task runs (which 

include inter-block intervals of resting fixation) show increased multivariate kurtosis 

relative to pure resting sessions of the same length (Figure 6.2).  We first note that the 

relatively lower kurtosis of the resting scans suggests that the resting state does not 

contain correlation changes consistent with meaningful changes in cognitive state. This 
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result reaffirms the notion that spontaneous BOLD activity during rest does not reflect 

moment-to-moment changes in cognition.  

On the other hand, the relative increase in kurtosis during task runs indicates that 

there are changes in correlation structure from rest to a goal-directed task state. As 

opposed to the sleep state related correlation changes discussed above, the task-

related changes may represent a fundamentally different online process that 

superimposes on spontaneous activity-dependent correlation. In fact, it has been 

proposed (Al-Aidroos et al., 2012) that focal transient attention-related changes in 

functional connectivity measured by BOLD may relate to transient coupling of local field 

potentials with neuron-level activity (Lee et al., 2005). Together, these observations 

suggest that measured BOLD activity may reflect a complex combination of state-

dependent offline and online processes.  
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Future analyses of task-dependent changes in functional correlation that carefully 

account for trial and block-related evoked effects may help to elucidate the separable 

properties that contribute to dynamic functional network organization during task 

processing. For example, which regions are likely to change most during a task, those 

that are most involved in the task-specific processing or those that are important 

connector nodes (i.e.. high participation coefficient hubs; Power et al., 2013) in the core 

network structure reflected in the resting state? The context-dependent behavior of 

different nodes may reflect the contributions of distinct underlying processes. 

 

Figure 6-2. Relative distributions from 23 subjects of measured multivariate 
kurtosis computed on equal lengths of resting state, a Glass pattern 
coherence discrimination task, a noun vs. verb semantic judgment task, and 
a mental rotation task. Sessions were each 188 frames (TR = 2.5 seconds). 
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Figure 
6-3. Longitudinal variability in brain connectivity. (a) Similarity between connectome-wide 
connectivity patterns across sessions, computed as the Pearson correlation between 
connectivity values across the parcellated connectivity matrix. Values on the diagonal as wells 
as the lower plot represent the similarity between each session and the mean across sessions; 
off-diagonal elements reflect the similarity between each pair of sessions. (b) Time series of 
connectivity within modules (upper panel) and between modules (lower panel). Notations to the 
right of each row mark the presence of significant linear (L) and polynomial (P) trends. Adapted 
from Poldrack, et al 2015. 

While short-term changes in BOLD correlations may be inducible by brief task 

demands, true changes in the core functional architecture reflected in spontaneous 

BOLD activity during rest likely require much longer sustained interventions. In Chapter 

5, we argued that spontaneous BOLD activity reflects preferred synaptic pathways, as 

many others have (Dosenbach et al., 2007; Nelson et al., 2010a). Thus, “core” RSFC 

will not be expected to change without long-term synaptic modification. Interestingly, 

such changes do not appear to be commonplace or widespread over a typical year of a 

person’s life, as measured in the highly sampled subject described in Chapter 4. While 
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there were a few significant trends in within-module connectivity (striate and extrastriate 

visual, somatomotor, dorsal and ventral attention modules), most modules were fairly 

stable over the course of the 18-month study and the network as a whole did not 

change significantly (Figure 6.3; Poldrack et al., 2015). With this general stability in adult 

RSFC as a set point, we are quite interested to know whether RSFC can be 

permanently altered by drastic behavioral modification such as constraining a limb or 

covering an eye. In particular, how long does it take for RSFC to change and settle on a 

new organization? Further, will the presence of ongoing neural plasticity be reflected in 

relatively greater instability in measured spontaneous BOLD activity? Experiments of 

experience-dependent plasticity have been attempted before (Lewis et al., 2009; 

Mackey et al., 2013; Sami et al., 2014), but none have established a timecourse of 

RSFC change or demonstrated long-term persistent changes. Such an experiment 

would require extensive repeated measurements over many days, but may reveal 

important principles of systems-level neural plasticity.  
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