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Abstract

In this master’s thesis, an industrial control system together with a network camera
and servo motors were used to automate a ball and plate labyrinth system. The two
servo motors, each with its own servo drive, were connected by joint arms to the
plate resting on two interconnected gimbal frames, one for each axis. A background
subtraction-based ball position tracking algorithm was developed to measure the
ball-position using the camera. The camera acted as a sensor node in a control
network with a programmable logical controller used together with the servo drives
to implement a cascaded PID control loop to control the ball position. The ball
reference position could either be controlled with user input from a tablet device, or
automatically to make the labyrinth self-playing.

The resulting system was able to control the ball position through the labyrinth
using the camera for position feedback.

Keywords ball and plate, computer vision, background subtraction, PID, object
tracking
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1
Introduction

Alten has developed a large (almost 1×1 m) labyrinth game, where the challenge
consists of navigating a ball through a labyrinth equipped with an industrial control
system from ABB, while avoiding obstacles in the forms of holes (see Figure 1.1).
The control system is hidden inside the labyrinth and consists of a programmable
logic controller (PLC), two servo motors with drives, an inclinometer and a WLAN
router for external communication. The user commands are in the form of desired
game board angles (i.e. setpoints) that are sent from an Android tablet application.

The aim of this master’s thesis is to develop a fully automatic, self-playing
labyrinth game based on computer vision feedback. The position of the ball should
be estimated using an Axis camera mounted above the game board. The first step is
to implement a mode where user commands from the tablet are interpreted as ball
position setpoints rather than angle setpoints, and where the actual ball position is
regulated by the system. In the next step, the ball should follow a pre-specified path
from start to finish on the board.

A key question to investigate in the thesis is how to best use computer vision
to implement a ball tracking algorithm, as well as how to deal with the timing,
synchronization and communication between the various components of the system
in order to achieve short cycle times and delays. The PLC, the camera and the tablet
run different operating systems and are all programmed in different languages, which
represents another challenge.

1.1 Goal
The goal of the project can be broken down into some intermediate goals:

• Design and implement a ball tracking algorithm for the camera.

• Implement a distributed control system managed by the PLC.

• Implement an Android client application.

• Optimize and tune the system to allow the labyrinth to be self-playing.

1



Chapter 1. Introduction

Figure 1.1 The labyrinth game developed by Alten

Completing these goals will achieve the specified task.

1.2 Individual Contributions
The work on this master’s thesis has had a big focus on implementation of the
different components: the camera, PLC and Android applications. The first objective
of the work was to find a good algorithm for the ball tracking. This led to the
investigation and testing of the methods described in Section 2.2 which was done
together. Daniel’s previous experience and knowledge of C programming proved
valuable when implementing the camera application. Daniel also stands for the PLC
implementation. Fredrik has led the work on the Android application. The final
tuning of the system was done together.

1.3 Outline
This thesis is organized as follows: Chapter 2 contains background information about
related work as well as some condensed information on subjects such as computer
vision and tracking, i.e. filtering, transforms and background subtraction algorithms.
The background chapter also contains a section on relevant control theory used
in this thesis. Chapter 3 describes all different hardware components used for the
system. It does also contain information on related software used together with the
hardware components. Chapter 4 is the largest chapter and covers the implementation
of all different system parts from system design to actual software. In Chapter 5,

2



1.3 Outline

resulting data presenting the performance of the completed system can be found,
and in Chapter 6, the implications of these results are discussed. The last chapter,
Chapter 7, draws conclusions from the observed results and the previous discussion.
This chapter also includes possibilities for future work that could be done to improve
or increase the functionality of the labyrinth game system.
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2
Background

2.1 Ball and Plate

2.1.1 Introduction
The labyrinth system is essentially a ball and plate process which in turn is a general-
ization of the ball and beam process. In the ball and beam process the ball is moving
in one dimension back and forth on a beam, whereas in the ball and plate process,
the ball moves in two dimensions. The step between these two is not very large, but
makes the recognition of the ball location using a camera a bit more difficult. Both
the beam and plate based processes are well known in the automatic control society
and are widely used for educational purposes.

2.1.2 Related Work
Many different implementations of both ball and plate and ball and beam processes
have been made utilizing different kinds of ball tracking methods and controlling
setups. Here follows a sample of related work.

Ball on Plate Balancing System by Andrews, Colasuonno and Herrmann
In [Andrews et al., 2004] the process of designing, developing and controlling a ball
on plate system is presented. The ball position is measured using the resistive touch
screen which act as plate and controlled by a full state-feedback controller. One of
the things that distinguishes this report is that all components used are kept track of
and a price of the system is estimated.

LEAP, A Platform for Evaluation of Control Algorithms by Öfjäll
In [Öfjäll, 2010] the original BRIO labyrinth game is used as the hardware. The goal
is to develop an evaluation platform for control algorithms, hence the name LEAP,
(Labyrinth Evaluation of Algorithms Platform). The control algorithms used are
classical PID and also a learning algorithm, Locally Weighted Projection Regression.
The ball position is tracked using a camera feeding images to a computer that runs
an approximate median background model. The computer also runs software to send
control signals to the servos controlling the plate angles and receive to user input.

5



Chapter 2. Background

Dynamic Ball and Plate Control verification on Magnetic Suspension Platform
Using Enforced Fuzzy Logic Control by Lin and Huang
The paper presented by Lin and Huang, [Lin and Huang, 2012], presents a ball on
plate system consisting of a touch panel connected in the center to a pedestal that can
tilt its top using magnetic suspension. The ball position is tracked using the resistive
touch panel and controlled using enforced fuzzy logic.

Vision Algorithms for Ball on Beam and Plate by Espersson
In Esperssons’ master’s thesis report, [Espersson, 2013], a computer vision tracking
system is introduced for tracking a ball on a beam and also on a plate. The algorithm
uses a Hough line transform to locate the beam using a USB webcamera. The ball
is located using Hough circle transform that detects the edges of the ball. This is
sufficient as both the beam and plate are monochromatic. Using special markers in
the ends of the beam and corners of the plate the angles can also be measured. The
control is executed using cascaded PID controllers.

Vision Based Balancing Tasks for the iCub Platform by Levinson, Silver and
Wendt
In [Vision Based Balancing Tasks for the iCub Platform: A Case Study for Learning
External Dynamics], a case study for controlling a ball and beam system and a ball
and plate system using a humanoid robot is described. The robot holds the beam or
plate in its hand and uses one of its eye-cameras, centered on the process, as vision
input. The computer vision is done by color channel separation which requires some
different colored markers and a colored ball for detection of the different components.
The control is done by a state feedback controller with integral action.

2.1.3 System Model
The ball and plate system is easily broken down to its one-dimensional sibling, the
ball and beam process, from which the full system can be described by extending the
model to two dimensions. In Figure 2.1 the process is visualized, where the loose
arm represents the connection with the motor shaft with angle α , and θ is the angle
of the beam. Letting J be the moment of inertia of the ball, and R be the ball radius,
the dynamics of the ball in one direction are derived as

0 =

(
J

R2 +m
)

r̈+mgsinθ −mrθ̇ 2,

which when linearized around θ = 0 gives(
J

R2 +m
)

r̈ =−mgθ .

The angle of the beam is related to the motor shaft connection angle α as θ = d
l α .

Substituting this in the equation above gives(
J

R2 +m
)

r̈ =−mg
d
l

α .
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2.1 Ball and Plate

θ
l

α

2l

d

r

Figure 2.1 Beam system

By taking the Laplace transform of this and rearranging it, the transfer function is
found as

P(s) =
R(s)
α(s)

=− mgd

l
(

J
R2 +m

) 1
s2 ,

which in state space form will look like[
ṙ
r̈

]
=

[
0 1
0 0

][
r
ṙ

]
+

 0
−mgd

l( J
R2 +m)

α ,

y =
[
1 0

][r
ṙ

]
.

where y is the output. From this one can see that the ball dynamics is a double
integrator process which with sampling time h and using zero-order-hold sampling
translates to the discrete system

r(tk+1) =

[
1 h
0 1

]
r(tk)+

[
h2

2
h

](
−mgd

l( J
R2 +m)

)
α(tk).

By replacing r with x and y as r=
[
x y ẋ ẏ

]T
and letting α be the motor shaft

angle in the x-direction and β the angle in the y-direction, the system is expanded to
two dimensions. Assuming that the plate is quadratic, and that the motor shaft arms
are of equal lengths, one gets the following discrete system:

r(tk+1) =


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

r(tk)+




h2

2
0
h
0

α(tk)+


0
h2

2
0
h

β (tk)


(
−mgd

l( J
R2 +m)

)
.
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Chapter 2. Background

2.2 Computer Vision

2.2.1 Object Detection and Tracking
One large area in computer vision is object detection and tracking. A lot of focus
has been put on detection of humans, and especially face recognition, which is now
commonly found in cameras for automatic focusing and also in other applications.
There are a few different techniques for finding and tracking objects in a picture or
video, a few of them are given a brief description here.

Kalman Filtering The Kalman filter, first proposed by Rudolf E. Kalman in
[Kalman, 1960], has been used in computer vision tracking since the mid 1980s
[Szeliski, 2011]. There have been many different implementations done over the
years spanning both regular linear systems and some extended Kalman filters for
tracking more complex trajectories. Here follows a short description of the Kalman
filter. For more extensive reading see [Glad and Ljung, 2003] and [Cuevas et al.,
2005].

A discrete, linear dynamical system can be described mathematically by a state
space model with a state or state vector xk, observed states yk, control input uk and
matrices A, B, C and D on the form

xk = Axk−1 +Buk +wk
yk = Cxk +Duk +vk,

where wk is the process noise and vk is the measurement noise. Here they are both
assumed to be additive, white and Gaussian noise with zero mean and covariance
matrices Qk for wk and Rk for vk. The measurement noise is assumed to be uncorre-
lated with the process noise, i.e. E[vnwT

n ] = 0. In vision tracking there is no control
input; hence, uk ≡ 0 and the matrices B and D are irrelevant.

The Kalman filter can be shown to give the optimal linear estimation of the state
vector with respect to the variance of the state error, x̃k = xk− x̂k. The estimated state
x̂k|k−1 is calculated using the covariance information Qk, Rk and the state estimate
covariance Pk|k−1 for weighting. The subscript n|k denotes the estimation at time n
given system updates until time k.

The next state of the system is estimated as

x̂k+1|k = Ax̂k|k

Pk+1|k = APk|kAT +Qk.

When the measurement at k+1 is available the prediction is updated as

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1−C · x̂k+1|k

)
Pk+1|k+1 = Pk+1|k−Kk+1CPk+1|k,

8



2.2 Computer Vision

where K is the Kalman gain, which in turn is given by

K = Pk+1|kCT
(

CPk+1|kCT +Rk

)−1
.

2.2.2 Filtering
Low-Pass Filtering Low-pass filters are used to attenuate high-frequency signals
while allowing lower frequencies to pass through. Low-pass filters are therefore
useful to remove the effects of high-frequency noise on signals. A simple example
of a low-pass filter is an exponentially weighted smoothing of an input signal xt at
time t. The filtered output signal yt is given by

yt = αxt +(1−α)yt−1,

where α is a smoothing factor (0 < α < 1). The filter output depends only on the
current input and the previous output and is therefore efficient to implement.

Gaussian Smoothing Gaussian smoothing or blurring is a common filtering tech-
nique used in image processing to smooth images and thereby reduce high-frequency
noise [Szeliski, 2011]. The filtered image is calculated by convolving the image with
a matrix produced from a two-dimensional Gaussian function

G(x,y) =
1√

2πσ2
e−

x2+y2

2σ2

with a specific standard deviation σ .

2.2.3 Image Gradients
An image gradient gives the change of color intensity in an image and is defined as

∇ f (x,y) =
∂ f
∂x

x̂+
∂ f
∂y

ŷ,

and can be calculated using e.g. the one-dimensional finite differential operators
[−1,0,1] and [−1,0,1]T using the surrounding pixels, or more advanced operators
such as the Sobel operator.

2.2.4 Hough Transform
The Hough transform is a well-known technique that uses a voting-system to find
line locations in images [Szeliski, 2011]. It can also be used to locate other features,
for example, circles. Consider an image f that includes a circle with a known radius r
at an unknown location in the image. The image gradient gives a vector-field oriented
perpendicular to the edges in the image, and assuming each edge pixel could be part
of the circle edge, there are two potential positions

f (x,y)+ r
∇ f
‖∇ f‖

9



Chapter 2. Background

and
f (x,y)− r

∇ f
‖∇ f‖

at a distance r and perpendicular to the edge which could be the circle center. These
two positions are therefore voted on by the current pixel. After all pixels have voted,
the position with the highest number of votes should be considered the most likely
location for the sought after circle.

2.2.5 Binary Morphology
Introduction Binary morphology is a mathematical theory for geometrical process-
ing and analysis on binary structures such as binary images or matrices [Szeliski,
2011].

Dilation One common operator is dilation. Dilation means that given a binary
matrix A and a structuring element B, A is dilated so that for any marked pixel in A,
the surrounding pixels marked in the structuring element B oriented on the currently
evaluated pixel in A are also marked, i.e.

A⊕B =
⋃
b∈B

Ab,

or the union of the positive translations of A with the coordinates b ∈ B.
For example, with

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B =

0 1 0
1 1 1
0 1 0

 ,

and B having its origin in the center, the dilation is

A⊕B =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 .

Erosion Another common operator is erosion, which instead unmarks pixels in an
image A if they are not covered by the structural element B, i.e.

A	B =
⋂
b∈B

A−b,

or the intersection of the negative translations of A with the coordinates b ∈ B.

10



2.2 Computer Vision

For example, with

A =


1 1 1 1 1
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

 , B =

0 1 0
1 1 1
0 1 0


and B having its origin in the center, the erosion is

A	B =


1 1 1 1 1
1 1 0 1 1
1 0 0 0 1
1 1 0 1 1
1 1 1 1 1

 .

2.2.6 Image Moments
Image moments are used in computer vision to e.g. compute pixel mass centroids,
and are defined as a weighted average

Mp,q = ∑
x

∑
y

xpyqI(x,y)

for a grayscale or binary image I. With p = 0 and q = 0, M0,0 gives the pixel mass or
sum of all pixel values for an image. M1,0 will give the moment in the first direction,
and M0,1 will give a moment in the second direction. From mechanics it is known
that the center of mass, or centroid, of the image can be calculated as

(x,y) =
(

M1,0

M0,0
,
M0,1

M0,0

)
.

2.2.7 Background Subtraction
Introduction Background subtraction is a set of techniques used in image process-
ing and computer vision to separate foreground and background in images, i.e. to
find areas that are changing over time in image sequences. There are a multitude of
different techniques used and this section will briefly give an introduction to some of
them. For an introduction on other techniques, as well as performance evaluation,
see [Toyama et al., 1999] or [Piccardi, 2004].

Frame Differencing Given that you have knowledge of the exact background
composition of a specific image it seems very natural that the foreground of the image
can be extracted by removing the known background using a simple difference, e.g.
with a image represented as a matrix I so that I(x,y) is the color value of the pixel at
location (x,y),

Iforeground(x,y) =
∣∣I(x,y)− Ibackground(x,y)

∣∣ .
11



Chapter 2. Background

This does, however, require that background pixels are static and that foreground
pixels are non-static.

With a video sequence this can be used to detect movement between frames by
simply using the last frame as the background reference for the next frame, e.g.

Dk = |Ik− Ik−1|

will yield the absolute difference or movement Dk comparing the current frame Ik
to the previous Ik−1. This simple approach can unfortunately not be expected to
generate too good results as there may be other differences between the frames
except what is defined as movement. Changes in lighting and noise are examples,
and they create frame differences that generally are uninteresting when trying to
detect movement of objects.

Running Average Models From photography it is known that when a picture is
taken with a very long exposure time only the background is captured, and the light
reflected by passing objects have such a small effect on the resulting image (short
fraction of the total exposure time) that they are not visible. The same technique can
be applied to extract the background from a video sequence by simply averaging the
frames to produce a background. The impact of non-static pixels will then only be
small and thus not visible. For example, one could at a current frame use the mean
value of the previous frames I as the background B by taking

Bk+1 =
1
k

k

∑
i=1

Ii,

or in a recursive manner,

Bk+1 =
(k−1)Bk + Ik

k
,

with B1 = 000, and thus get the foreground Fk at time k

Fk = |Ik−Bk| .

The background can, however, not be expected to be constant over longer time
intervals. Lighting might, for example, change during the course of a day, and it might
be better to model the background as the average of limited number of sequential
frames, or by using an adaptive model (or low-pass filter, see Section 2.2.2), where
the latest frame is weighted into the model using an adaptation factor α , e.g.

Bk+1 = αIk +(1−α)Bk.

Adaptive Two Part Filter A method using a two part background subtraction is
proposed in [Gruenwedel et al., 2013]. The approach is to combine an autoregressive
moving average filter with two background models at different adaption speeds. The
first filter models the long-term background and the second filter works with a higher
adaption rate and models the short-term background.
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2.2 Computer Vision

This approach uses the two different background states to find the current fore-
ground: a short-term background Bs, and a long-term background Bl . From these
background states, two binary foreground masks, Fs and Fl , short-term and long-
term respectively, are calculated. The short-term foreground is calculated by simply
thresholding the current image frame Ik against the current short-term background
state using the threshold Tl , i.e.

Fs,k(x,y) =

{
1 if

∣∣Ik(x,y)−Bs,k(x,y)
∣∣≥ Tl

0 otherwise.

To calculate the long-term foreground one starts by thresholding, as in the short-
term foreground, but using a higher threshold Th ≥ Tl (in order to avoid smaller
changes that are handled by the short-term model) to get

Ak(x,y) =

{
1 if

∣∣Ik(x,y)−Bl,k(x,y)
∣∣≥ Th

0 otherwise.

The long-term foreground should also consider pixels nearby already marked pixels
in A if they are also marked in Fs; thus, by applying a morphological dilation to A
one can get the long-term foreground

Fl,k = (Ak⊕C)◦Fs,k

where ◦ denotes the Hadamard product (element-wise product) and A⊕C denotes
the morphological dilation of A using the structural element

C =

0 1 0
1 1 1
0 1 0

 ,

i.e. a diamond shape. This allows pixels that are marked as foreground pixels in the
short-term model to be marked as part of the foreground as long as they are close to
pixels detected as foreground pixels in the long-term model.

Now, the detected foreground F is calculated by combining the short-term- and
long-term foregrounds,

Fk = Fs,k ◦Fl,k = Fl,k,

which results is the long-term foreground since the short-term foreground is used in
conjunction with a dilation to mark pixels in the long-term foreground.

In order to apply the same method on the next frame in a video, the background
states have to be updated. The short-term background should simply be updated by a
linear interpolation (or low-pass filter) using the current frame, i.e.

Bs,k+1 = αsIk +(1−αs)Bs,k,

13



Chapter 2. Background

where 0 < αs < 1 is the short-term adaptation rate.
The long-term background should, however, only be updated in areas without

foreground activity in order to avoid taking into account temporary variations; thus,

Bl,k+1 = (111−Fk)◦αl(Ik−Bl,k),

where 0 < αl < 1 is the long-term adaptation rate.
Since the long-term background state should describe the current image back-

ground over a longer period of time than the short-term state, the adaption rates
should be related as αs > αl , so that the short-term model is updated faster than the
long-term model.

Approximate Median Background Model The Approximate Median Background
Model method was originally described in [McFarlane and Schofield, 1995] and
has also been used in traffic surveillance video tracking [Sen-ching S. Cheung
and Kamath, 2007]. The background is modeled using a reference image which is
updated with every new frame. Each pixel in the reference image is compared with
the corresponding image pixel in the image. If the value of the pixel in the reference
image is larger than in the current frame the reference pixel value is decreased, and
if the pixel value is greater in the current frame the reference pixel value is increased.
The pixel values of the reference image will converge to a value where half of the
updating values are larger than, and half less than this value–the median. Using
the median instead of the mean creates a better resistance towards outliers; hence,
a moving target in the image will not be added to the background as fast using
the median as it would using the mean. This means that in order to create a valid
reference image, the target must be moving or not present in the initial frames.

The implementation of this algorithm is very simple and thus also very computa-
tionally efficient. The notation of the algorithm is found in Table 2.1 and the pseudo
code for the algorithm tried in this report in Algorithm 1. The method is widely
known and this algorithm structure is found in [Wood, 2007].

xt(i) pixel value at time t for pixel i
ft frame at time t

m(i) median estimate for pixel i
α adaption rate
T threshold
B̂ binary background/foreground image

Table 2.1 Notation for approximate median algorithm

Kalman Filter Background Estimation Kalman filtering is a widely used tech-
nique for tracking linear dynamical systems. Many different versions have been
proposed for background modeling, where the simplest ones use only the pixel in-
tensity. One of the simpler versions described in [Karmann and Brandt, 1990] uses
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2.2 Computer Vision

Algorithm 1 Approximate Median Filtering
for all pixels in ft do

if xt(i)> m(i) then . Approximate median
m(i)← m(i)+α

else
m(i)← m(i)−α

end if
if |xt(i)−m(i)| ≤ T then . Segment background/foreground

B̂← 1
else

B̂← 0
end if

end for

the intensity and its temporal derivative to create a background model. This method
has been described in numerous papers, for example in [Sen-ching S. Cheung and
Kamath, 2007], and in [Ridder et al., 1995]. The intensity of a pixel s(x,y) at time t
is the system input. The state of the system at time ti is represented by ŝ(x,y, ti), and
ˆ̇s(x,y, ti) is the estimated variance. The estimation is updated as follows:[

ŝ(x,y, ti)
ˆ̇s(x,y, ti)

]
=

[
s̃(x,y, ti)
˜̇s(x,y, ti

]
+K(x,y, ti)

s(x,y, ti)−H

[
s̃(x,y, ti)
˜̇s(x,y, ti)

] ,

where the prediction is calculated as[
s̃(x,y, ti)
˜̇s(x,y, ti)

]
= A

[
ŝ(x,y, ti−1)
ˆ̇s(x,y, ti−1)

]
with the constant matrices A and H:

A =

[
1 0.7
0 0.7

]
, H =

[
1 0

]
.

The Kalman gain is set to

K(x,y, ti) =

[
k1(x,y, ti)
k2(x,y, ti)

]
,

k1(x,y, ti) = k2(x,y, ti) = α ·m(x,y, ti−1)+β ·
[
1−m(x,y, ti−1)

]
,

where m(x,y, ti−1) is a thresholded binary map of the background/foreground seg-
mentation

m(x,y, ti−1) =

{
1 if d(x,y, ti−1)≥ Th
0 else,

d(x,y, ti−1) =
∣∣s(x,y, ti−1)− ŝ(x,y, ti−1)

∣∣ ,
15



Chapter 2. Background

with a constant threshold Th. The number 1 represents foreground pixels, and the
number 0 represents background pixels. If the difference between the estimated
background pixel value and the measured value is larger than the threshold, the pixel
belongs to the foreground, in which case α is the Kalman gain, and if the pixel belongs
to the background, i.e. d(x,y, ti−1)< Th then β is the gain factor. The threshold has to
be chosen in such a way that illumination changes are adapted fast into the estimated
background. The parameters α and β can be thought of as different adaption rates
where α is a slow adaption rate to keep foreground pixels from blending in to the
background and β is a fast adaption rate to suppress background noise from the
foreground estimation, i.e. α < β .

2.3 Control Theory

2.3.1 PID
Introduction The labyrinth control system consists of several control loops based
on PID control. The control signal v(t) of a PID controller at time t can be mathe-
matically described as

v(t) = K

e(t)+
1
TI

t∫
e(τ) dτ +TD

d
dt

e(t)

 ,

where the error is defined as e(t) = ysp(t)− y(t), ysp is the setpoint, K is the pro-
portional gain, TI is the integral time, and TD is the derivative gain of the controller
[Årzén, 2012]. This simple variant can be improved further by limiting the derivative
gain, adding anti-windup to the integrator, and setpoint weighting.

Setpoint Weighting Setpoint weighting is easily implemented on the proportional
part P(t) as

P(t) = K
(

βysp(t)− y(t)
)

0≤ β ≤ 1,

where the parameter β is used to weight the setpoint so that the proportional part
of the controller only operates on a fraction of the reference signal. It has been
empirically shown that using setpoint weighting can lead to smaller overshoots
[Årzén, 2012].

Setpoint weighting is also typically used on the derivative part D(t), e.g.

D(t) = K TD
d
dt

(
γ ysp(t)− y(t)

)
0≤ γ ≤ 1,

and the weight γ is most commonly set to zero [Årzén, 2012] so that the derivative
part only operates on the measurement signal.
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Figure 2.2 Block diagram of a PID controller with setpoint weighting, limited
derivative gain and tracking-based anti-windup

Derivative Gain Limit A pure derivative term will result in large amplification of
measurement noise [Årzén, 2012]. By approximating the derivative transfer function
as

sTD ≈
sTD

1+ sTD/N
,

the high frequency gain is limited by N, which is called maximum derivate gain.
The purpose of limiting the derivative gain is to avoid the risk of measurement noise
amplification in the control signal.

Anti-Windup When using a controller with integral action on a system that can be
saturated, the integral action can result in the actuator remaining saturated as the error
changes. This is called integrator windup, and in the labyrinth system, it is necessary
to implement anti-windup such that this unwanted phenomena is avoided. There
are several ways of implementing anti-windup. One easy way to avoid windup is to
introduce conditional integration, i.e. shutting of the integral part when the system is
far from steady-state. Another alternative is to use tracking based anti-windup by
adding a new parameter TT , tracking time, and change the update formula for the
integral part I(t) to

I(t) =
t∫ K

TI
e(τ)+

1
TT

(
u(τ)− v(τ)

)
dτ ,

where u(t) = sat(v(t)) is the saturated control signal.
A block diagram showing the structure of a PID controller with setpoint weighting

(γ = 0), maximum derivative gain N and tracking-based anti-windup is shown in
Figure 2.2.
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Figure 2.3 Example of a cascaded control loop

Cascading The servo drives used to control the servo motors of the labyrinth have
a number of cascaded control loops. At the lowest level, one has to control the
current output to the motors; however, it is also desirable to control the velocities
and positions of the motors, as well as the angular position of the labyrinth frame
board, and also the ball position.

A useful property of PID controllers are that they can be cascaded efficiently so
that the output of one controller is used as input to another one. One advantage of
using cascaded PID loops is that at the inner process, i.e. the plate angle, disturbances
can be handled faster and corrected before causing disturbances on the primary
process, the ball position, [Hägglund, 2000]. An example of a cascaded loop is seen
in Figure 2.3.

Discretization Since a digital control system is to be implemented, any controllers
used must be discretized. The sampling time used is denoted h and the sample points
tk. The proportional part with setpoint weighting translates directly to the discrete
case as

P(t) = K(βysp(t)− y(t)) −→ P(tk) = K(βysp(tk)− y(tk)).

The integral part needs to be approximated using an appropriate method. Some
methods that might be of interest are forward differences, backward differences
or Tustin’s approximation. Using a forward difference approximation leads to the
integral part

I(tk+1) = I(tk)+
Kh
Ti

e(tk).

Adding tracking-based anti-windup to this gives

I(tk+1) = I(tk)+
Kh
Ti

e(tk)+
h
Tt
(u(tk)− v(tk)),

where u(tk) is the saturated control signal and v(tk) is the non-saturated control
signal.

The derivative part also needs to be approximated. Using any of the three approx-
imation methods previously mentioned leads to the same form,

D(tk) = adD(tk−1)−bd(y(tk)− y(tk−1)),
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2.4 Pathfinding

but with different formulae for calculating ad and bd . Using the most common
method, backward differences, ad and bd are defined by

ad =
Td

Td +Nh
, bd =

KTdN
Td +Nh

.

This version of the derivative part includes a limitation of the gain as discussed
earlier.

The control signal can finally be written as

v(tk) = P(tk)+ I(tk)+D(tk).

To read more about the results of approximating the integral and derivative part,
see [Årzén, 2012] where all of the above formulas are collected, or [Wittenmark
et al., 2012] for an implementation example.

2.3.2 Event Based Control
The traditional focus of automatic control is periodic control systems [Åström, 2008].
In such periodic control, continuous signals are sampled at fixed intervals to provide
their discrete counterparts. However, for some systems it may be interesting to instead
consider event based control, in which asynchronous events dictate control signal
updates. If one has limited computational resources it may be preferred to only
perform calculations when they are actually needed. And for some systems there
might be no reason to update the control signal until a specific event occurs, e.g.
when a signal passes a certain trigger level (such as when controlling a tank level).

It has been shown that event-based PID controllers work well for some systems
[Årzén, 1999].

2.4 Pathfinding
For the labyrinth to be able to be self-playing it must somehow be able to control
setpoints automatically. This can, for example, be done by using a set of waypoints
or connected nodes that are automatically traversed. The first waypoint will be the
first setpoint, and when the ball is close enough to the current setpoint, the setpoint is
changed to the next waypoint. To be able to determine these waypoints automatically,
one can use pathfinding. To find the best way through a graph of connected nodes,
there exist several search algorithms. A seasoned but still popular and effective
algorithm is A* (pronounced A-star). The A* algorithm was first described in [Hart
et al., 1968] and will be given a short introduction here.

2.4.1 A*
Given a map of points (where every point represents either clear space or an obstacle),
a starting point and a finish point, one wants to find the best way from start to finish
while avoiding obstacles.
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Chapter 2. Background

The A* algorithm utilizes two sets, one open and one closed. The open set
contains points that might fall along the path and therefore need to be checked while
the closed set contains points that have been visited and do not need to be rechecked.

Begin at the starting point, add it to the open set, and look for adjacent points
that are in reach, optionally including diagonal moves, and add them to the open
set while defining the starting point as their parent. The starting point might now be
dropped from the open set and added to the closed one.

Next subject is to calculate the cost of stepping to each point. The total cost, F ,
is the sum of the past cost, G, and the future cost, H,

F = G+H.

The past cost is the cost of reaching the particular point from the starting point,
counting that each step has a specified cost. The future cost is an admissible heuristic
estimate of the distance to the finish point, for example, this might be the straight line
to the finish point. It is advantageous to use rounded numbers so that computations
are kept simple.

Using the cost F as comparison, the point with the lowest F in the open set is
chosen as the next point. The new point is dropped from the open set and added to
the closed set. For all reachable adjacent points that are not already in the closed
set, check if the cost G using this path is lower than before. If so, the current point
should be considered the parent. All adjacent points that are not already in the open
or closed set should be added to the open set, saving the current point as their parent.

The procedure is now repeated until the finish point is added to the closed set
or the open set is empty, in which case there is no path. With the finish point on the
closed set the trace of parents will show the best path from start to finish point.
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3
Hardware

3.1 Introduction
The labyrinth consists of a 0.80×0.80×0.45 m (w × d × h) plywood box with a
transparent plexiglass plate top mounted in a two-piece wooden gimbal frame, see
Figures 3.1 and 3.2. Beneath the gimbal frame is a tilted plexiglass plate to catch
the ball when it falls through the holes in the labyrinth and to dispose it in a tube
that dispenses the ball. A list of the available hardware is presented in Table 3.1.
All control components are mounted on the bottom of the box, except for the panel
which is mounted on the side of the box for easy access. Inside the box there is also
a WLAN router to allow external connections from an Android device, and three
LED strips that can be controlled for visual effect. The camera is mounted on a fixed
stand above the maze to get a good overview of the entire game board. The ball used
is a simple steel ball with a diameter of 3 cm.

Device Type Manufacturer Quantity

PLC AC500 ABB 1
Control panel CP635 ABB 1
Servo drive MicroFlex e150 ABB 2
Motor BSM63N-275AF Baldor 2
Gear head alphira 060-100 Wittenstein 2
Inclinometer ACS-020 Posital 1
Camera P3367 Axis 1
Tablet Nexus 7 / K008 ASUS 2

Table 3.1 Hardware components
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Figure 3.1 Overview of the labyrinth and the camera attachment

3.2 Servo Drives
The labyrinth setup includes two MicroFlex e150 servo drives which each contain
hardware for alternating current output to control an AC motor. The drives operate at
230 VAC one- or three-phase input with 24 VDC control input. The drives control
the feed to the servo motors and contains three cascaded control loops and some
feed-forward and filtering functionality. The innermost loop controls the current
feed, and on top of this loop there is another for controlling the motor velocity. The
outermost loop is used for position control, i.e. the rotation angle of the servo axis.
The motors have line encoders for feedback, with a line count of 2500. The drives
support EtherCAT communication (see Section 3.3) and existing software libraries
for the AC500 PLC allow for communication between PLC and drives to e.g. alter
setpoints and monitor error statuses.

The parameters of the drives can be modified using the accompanying Mint
Workbench software and a USB connection. The Mint software has several features
such as:

• Automatic tuning of control parameters for different bandwidths with or with-
out load.
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3. Motor (x-axis)
4. Motor (y-axis)
5. Servo drive (x-axis)
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7. PLC with I/O and EtherCAT
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9. Control panel
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11. 24 VDC PSU
12. Contactors for motor supply current
13. 12 VDC PSU

Figure 3.2 The labyrinth system
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• Manual fine tuning of control parameters with possibilities to measure physical
parameters such as electrical properties, and calculation of control parameters.

• Possibilities to run tests and to check performance.

• The ability to change numerous parameters other than directly control-related
ones, with ability for custom programming of the drives.

• Monitoring and resetting of error alarms, etc.

3.3 EtherCAT
EtherCAT, or Ethernet for Control Automation Technology, is an Ethernet based
fieldbus system. Fieldbus is a common name for a number of computer network
protocols used in industry for distributed communication in automated systems which
have real-time communication requirements. A distributed real-time control system
consists of a network of different nodes such as sensors, actuators and controllers
[Nilsson, 1998]. The controller nodes will read measurement values from the sensor
nodes and calculate control signals that are sent to the actuator nodes.

Ethernet is probably the most used technology for local area networks. It is,
however, not intended to be used for real-time communication [Nilsson, 1998]. But
due to Ethernet being a commonly used technology, several real-time communica-
tion technologies have been based on it. Some examples other than EtherCAT are
PROFINET and Ethernet Powerlink.

EtherCAT overcomes the limitations of Ethernet by having slave devices read
data from and write data to frames as the frames are passing through the devices
[EtherCAT]. By also sharing frames between devices, the frame delays are reduced
to nanoseconds and the usable data rate increased to over 90 % [EtherCAT].

3.4 Controller
The ABB AC500 PLC supports flexible software development and supports multiple
tasks. As a modular scalable device, it is easy to add and configure different types of
input-, output- and communication modules.

The PLC is accompanied by the Control Builder Plus software and additional
CoDeSyS and Panel Builder software that can be used for:

• hardware and parameter configuration

• I/O mapping

• programming

• visualization
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• debugging, diagnostics and tracing

The PLC programming environment supports all the programming languages defined
in the IEC 61131-3 standard:

• ladder diagram

• function block diagram

• structured text

• instruction list

• sequential function chart

In addition to these languages, it is also possible to use the C programming language
together with an external compiler.

In the used setup, both Ethernet and EtherCAT modules are available for commu-
nication, and for I/O, both digital and analog inputs and outputs are available.

3.5 Camera
The Axis P3367 camera supports a resolution of 1600×1200 pixels at 30 frames
per second and is running a Linux-based operating system on a ARTPEC-4 processor
architecture.

3.5.1 VAPIX
VAPIX is an Axis developed API (application programming interface) based on
standard HTTP and RTSP protocols for communicating with and controlling Axis
cameras. The API is simple to use and there is support for several other features than
just taking pictures or streaming video, such as:

• audio

• motion detection

• pan, tilt, zoom

• triggers and events

• parameters

• image overlays and view areas

• I/O and serial ports

Since one can simply use HTTP, it is easy to implement applications using VAPIX
using most languages and on most platforms. Most commands can be issued directly
from a web browser. For VAPIX documentation see [VAPIX®].
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3.5.2 ACAP
Since the camera runs Linux it is possible to also develop applications that can be
run on the camera itself. For this purpose, Axis has a SDK (software development
kit), ACAP (Axis Camera Application Platform), which includes C libraries with
interfaces for:

• media and image capture

• application parameters

• HTTP interfaces

• events

• license keys

• fixed point math

• image processing

Development using ACAP is perhaps not as straight-forward as using VAPIX,
but it does allow for e.g. an image processing server that can send results to clients.

The image processing library included is named RAPP (Raster Processing Prim-
itives) and contains many useful operations. The library is open-source and the
documentation is available in [RAPP User’s Manual].

3.6 Tablet Devices
The Nexus 7 is a tablet device with a 7” LED touch screen running Android OS 4.3
(JellyBean). It has a quad-core 1.2 GHz processor and features an accelerometer and
a gyro which are interesting for this application.

The purpose of the tablet devices is for a user to interact and control the system.
Since the tablets contain gyroscopes, it is possible to tilt them to provide angular
setpoints to control the labyrinth board angles in two dimensions. They should also
be used to control ball position setpoints, ideally from a labyrinth layout where the
current ball position can be viewed and the setpoint can be set on the screen.
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4
Implementation

4.1 System Design

4.1.1 Hardware
The goal with the implementation is to allow a user to be able to control the position
of the ball in the labyrinth using a tablet device, or to allow the labyrinth to be self-
playing. The camera should measure the ball position and the PLC should control the
servo drives which in turn control the servo motors. The servo motors are connected
to two joint arms which in turn are connected to the two gimbal mounted frames.
The rotation of the motors will then translate to rotation of the two frames which are
resting on ball bearings. Each motor will control a separate axis, one x-axis and one
y-axis.

The labyrinth size has been kept small enough to allow it to be moved easily
through doors. This means that the space for mounting devices is limited, and that
if a motor should spin out of control, the inertia can damage other equipment such
as the PLC; therefore, a maximum operating angle has to be defined for the motors.
This angle is approximately 30° or±15°. Should any of the motor angles exceed this
limit, the power driving the motors has to be cut immediately. Also, with moving
parts, it is important to have an emergency button to provide the same functionality.
The 230 VAC power supply to the servo motors is controlled by the PLC using
contactors (or electronic switches), which can be switched from the 24 VDC digital
output of the PLC.

4.1.2 Network Design
The PLC is selected to be the master device in the network, to which other devices
should connect. The PLC is most suitable for this as the control signals to the servo
drives have to be sent on the EtherCAT network, which only the PLC and the drives
are connected to.
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Figure 4.1 System network overview

Since it is possible to develop software to be run directly on the camera, and as the
camera is designed to be able to handle image processing, it is suitable to implement
the tracking algorithm directly on the camera. This is also efficient in the sense that
no images have to be sent over the network, and thus the latency between an image
being captured and processed can be minimized. The camera should therefore be
treated as a position sensor in the distributed network. The position sensor should
ideally be implemented to run in an event-based fashion. When tracking is active,
any new position measurement should be relayed to the system controller as fast as
possible, and having the master device or PLC request data from the position sensor
would only create unnecessary overhead.

Since the latency of the system should be minimized, it is sensible to transfer all
data using UDP datagrams rather than TCP packets in order to avoid the overhead
introduced by package acknowledgments and ordering restrictions that exist when
using TCP. This does imply that signals might not be received in the exact order
they were sent: However, considering the size of the local network used, this is
unlikely, and should it occur, it can simply for the position sensor be considered as
measurement noise.

The result is a star-topology network as shown in Figure 4.1. The PLC acts as
master device or control node, the camera and tablet as sensor nodes, and the servo
drives as both sensor and actuator nodes. To calibrate the servo drives correctly,
there is also an inclinometer, which can measure angles in two dimensions. The
inclinometer is a completely analog device which is connected to the analog input of
the PLC.

4.2 Controlling Setpoints
The system setpoints are to be controlled from a tablet device and sent to the PLC.
Two different types of control modes should be available:
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• frame angle control

• ball position control

With the frame angle control mode, the user should be able to use the gyroscope that
is built into the tablet device to provide the reference angles in two dimensions. This
means that the user can simply tilt the tablet device in a desired angle, and that angle
should then be reflected by the labyrinth.

In the other mode, the position of the ball should be controlled. By tilting the
tablet device it should be possible to control the change of the reference position,
e.g. a small angle will move the reference position at a slow speed. It should also
be possible to change the setpoint by touch input, e.g. by pressing a position on the
screen.

Finally it would also be interesting to provide a multiplayer-mode, where two
users have one tablet each, and each user controls one of the axes, either in angle or
position control mode.

To provide feedback to the user, measurement values should be transferred to the
tablet(s) during all modes. These measurement values should include both the current
actual angles and the current ball position. The angle values can then be drawn on
the tablet screen together with the reference values. The ball position should be
visualized on either a drawn labyrinth reflecting the real one to indicate the tracked
position, or using an image stream from the camera as a background.

4.3 Selection of Ball Tracking Algorithm

4.3.1 Background Subtraction
It became clear early on that a background-subtraction based algorithm was needed
to cope with the background noise from all background components as well as from
the moving frame. Initial attempts with gradients for circle detection with the Hough
transform (see Section 2.2.4) for feature extraction proved very hard because of the
background complexity. Figure 4.2(a) shows the labyrinth background and Figure
4.2(b) show the gradient magnitudes calculated from the same image. The image
gradients show many circular features and it is hard to locate the ball. The Hough-
transformed image using the approximate ball radius is seen in Figure 4.2(c), and
shows that the ball is not easy to differentiate from the background.

By using Python together with SciPy, NumPy and the OpenCV computer vision
library it was possible to test the performance of the background subtraction tech-
niques discussed in Section 2.2.7. The adaptive background algorithm described in
[Gruenwedel et al., 2013] proved suitable due to it being relatively easy to implement
on an embedded system as the algorithm is not as computationally intensive as other
algorithms. The adaptive algorithm is also supposed to perform as well as other
more complex background subtraction algorithms such as those based on mixtures of
Gaussian models [Gruenwedel et al., 2013].
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Thus, the foreground Fk at time k, containing any currently moving objects, is
composed of a short-term foreground Fs and a long-term foreground Fl ,

Fk = Fs,k ◦Fl,k,

where

Fs,k(x,y) =

{
1 if |Ik(x,y)−Bs,k(x,y)| ≥ Tl

0 otherwise,

and
Fl,k = (Ak⊕C)◦Fs,k

with

Ak(x,y) =

{
1 if |Ik(x,y)−Bl,k(x,y)| ≥ Th

0 otherwise.

So far there are two threshold parameters Tl and Th (Tl < Th) which control how
the foregrounds are created from the short-term background Bs, the long-term back-
ground Bl and the current image frame Ik. The matrix C denotes the diamond-shaped
structural element (see Section 2.2.5) used for the morphological dilation when
calculating the long-term foreground.

The adaption rate parameters αs and αl (αs > αl) control how fast the back-
grounds are updated as the input images change. The short-term background is
updated using the exponentially weighted low-pass filter

Bs,k+1 = αsIk +(1−αs)Bs,k,

and the long-term background is updated as

Bl,k+1 = (111−Fk)◦αl(Ik−Bl,k).

However, background subtraction and foreground detection is not sufficient on
its own for tracking, and thus the algorithm needs to be extended.

4.3.2 Glare Removal
One major issue to tackle is the glare effects due to the labyrinth having reflective
boards of plexiglass, with one of them attached to the moving gimbal frame (see
figure 4.2(a)). A very small movement of the plexiglass frame may, depending on
the surrounding lighting conditions, move the reflections across the image.

The moving reflections caused by the change of the plexiglass angle creates
significant illumination changes between frames and causes unwanted foreground
detection. However, since the ball is spherical, any light directed at the ball will be
reflected in several different directions and thus assure that the ball will never be as
illuminated as a plane reflecting a direct light source such as the plexiglass does.
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(a) Background and glare effects on image (b) Gradient magnitudes

(c) Hough transformed image for circle-
features

(d) Example of tracking scenario with fore-
ground detection of edges

Figure 4.2 Image examples

Using the spherical properties of the ball, it is possible to remove the glare effects
on the foreground detection by simply using a glare threshold Tg, and only accept
pixels below this threshold as part of the foreground; thus, the glare pixels G for the
current image frame Ik are given by

Gk(x,y) =

{
1 if Ik(x,y)≥ Tg

0 otherwise,

and the foreground is thus redefined to ignore the glared areas as

Fk = Fs,k ◦Fl,k ◦ (111−Gk) = Fl,k ◦ (111−Gk).

4.3.3 Filtering
When the gimbal frame moves fast, foreground detection will occur at the edges of
the labyrinth. This is because the movement causes pixel intensity changes in lines
along the moving edges. This behavior can be observed in Figure 4.2(d), where the
lighter areas indicate foreground detection. The moving ball is detected, but there
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is also foreground detection along the edges of the upper left corner; however, as
these detections occur in lines in contrast to the pixel-masses from the moving ball,
it is possible to apply a low-pass filter to the foreground to reduce the edge detection
values relative to the ball detection values as there is no foreground detection on the
sides of the frame edges.

So, after having calculated the binary foreground matrix for the current image
frame, the foreground should be converted to a non-binary matrix, to which e.g. a
Gaussian filter can be applied. The filtering process will also eliminate outlier pixels
such as image noise, which can come from e.g. blinking status LEDs on the PLC,
etc.

4.3.4 Position Estimation
Once the foreground has been filtered and smoothed one can search the image for its
maximum value and its location. This location should then represent the approximate
center of the foreground object moving the most; thus, this location can be considered
to be the current ball position. If the ball lies still for some time it will blend into the
background model and therefore not be detected. Though, the last detected position
is still known by the system and when the ball starts moving it will appear in the
foreground again.

Earlier, the reflection from the spherical ball was discussed. The glare removal
stage is based on the fact that light will be spread when hitting the reflective ball.
But a light source above the labyrinth will still cause some reflection on the central
part of the ball, which will be considered as glare and be removed. This would then
imply (of course depending on the filtering stage) that under such circumstances, the
maximum foreground location will not be located at the central part of the ball, but
rather, closer to an edge.

Also, when the ball is not moving at all, there should be no new position de-
tections; however, small image noise such as e.g. shadows, can introduce small
foreground detections. To avoid such false positives, another threshold is introduced.
A detected ball position should only be accepted if the maximum filtered foreground
value is larger than a specified threshold Tf .

4.3.5 Local Search
One observation is that in-between sampled image frames, the ball can only be
expected to move a certain distance from its previous position; thus, one can limit
the search for a new ball position to an area around the previous ball position.

This area does depend on the speed of the ball. If the ball is lying still, it can
only accelerate a certain amount before the next image is sampled and can thus only
move a limited distance. But with a high velocity, the ball can travel a much larger
distance.
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To be able to decide around which position the local search should be conducted,
a Kalman filter is applied to predict the most likely position of the ball in the next
frame. The tracking in the next frame is then limited to an area around the predicted
position.

By limiting the image tracking algorithm to a small area, the computational cost
required is significantly reduced especially for filtering operations as the number of
required pixel operations is reduced. Also, by limiting the search to a localized area,
the number of false positives could be expected to be reduced.

The introduction of localized search allows for improvements to the ball position
detection in the foreground. Instead of using the maximum filtered foreground value,
it is now possible to calculate the centroid, or pixel mass center of the localized area.
This can be done by calculating the image moments in both dimension as well as the
total pixel mass sum to get a position

(x,y) =
(

M1,0

M0,0
,
M0,1

M0,0

)
.

This would not have been very effective over a large area containing outliers as the
moments would potentially add undesirable weights to the total moments depending
on outlier locations.

Also, rather than thresholding the maximum value to decide whether a detection
should be accepted or not, one can now use the local pixel mass sum M0,0 instead.

4.3.6 Kalman Filter
To use a Kalman filter to estimate the ball position in the next frame one must first
select a model for the ball position. For each axis of the labyrinth, the angle will
determine the ball acceleration unless there is a wall obstructing the ball. Including
angle measurements to the model would mean expanding both the model itself and
also the communication in the system why it is not implemented. Also if the ball
is leaning against a wall the angle measurement would not be of any use since the
acceleration of the ball would still be zero.

A simple model will be to consider the changes in acceleration as white noise
with some estimated variance. With a position x(t) at time t, the acceleration will
then be

ẍ = w(t)

where w(t) is white noise with a variance σ2
w. Assuming that the white noise will

be constant between samples, i.e. w(t)≡ w(tk)≡ wk for t ∈ [tk, tk+1] the state space
model becomes

xk+1 = xk +hẋk +
h2

2
wk

ẋk+1 = ẋk +hwk,
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with a sampling period h. On matrix form this becomes[
xk+1
ẋk+1

]
=

[
1 h
0 1

][
xk
ẋk

]
+

[
h2

2
h

]
wk.

Assuming that the white noise is Gaussian with zero mean, i.e. wk ∼ N(0,Qk), the
process noise covariance matrix Qk becomes

Qk = E[wkwT
k ] =

[
h2

2
h

][
h2

2 h
]

σ2
w =

[
1
4 h4 1

2 h3

1
2 h3 h2

]
.

Also, with a measurement noise vk ∼N(0,Rk) having a variance σ2
v the measurement

covariance matrix can be written as

Rk = E[vkvT
k ] =

[
1 0
0 1

]
σ2

v ,

and since there is no control feedback (B = 0) the filter model becomes

xk = Axk−1 +wk

yk = Cxk +vk.

The full state transition matrix for the two positions x(t) and y(t) with corresponding
velocities is then

A =


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

 ,

and the full process noise covariance matrix

Qk =


1
4 h4 0 1

2 h3 0
0 1

4 h4 0 1
2 h3

1
2 h3 0 h2 0
0 1

2 h3 0 h2


assuming that the x and y positions are uncorrelated in their movement. Only the
positions can be measured and thus only the positions should be extracted from the
state vector. The velocity can not be measured and should be estimated by the filter;
therefore, the matrix C should be defined as

C =

[
1 0 0 0
0 1 0 0

]
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to extract the measured position values from the estimated states when calculating
the Kalman filter innovation.

Since the tracking algorithm requires an initial position, it can be assumed that
a correct one will be provided initially and that the state estimate matrix x̂k can be
initialized with the initial position and that the state estimate covariance matrix Pk
can be set to zero initially.

The Kalman filter estimated position can now be used to select around which
location the local search should occur, and the full tracking algorithm is given in
Figure 4.3.

4.3.7 Normalized Parameters
The ball detection algorithm features a number of parameters whose values have
to be determined. It is, however, clear that illumination plays a great role in how
these values should be set. In a dark environment, threshold values have to be set
much lower compared to a bright environment. For example, consider the visibility
of a shadow. In a very bright environment, the darkness of a shadow will stand out
significantly from its surroundings, whereas in a dark environment it will be hard to
differentiate. It is thus reasonable to assume that if parameter values are set relative
to the current illumination level, they will scale better with changes in illumination.
All threshold values should therefore be set between zero and one to be considered
relative to the current illumination level; thus, applying a threshold T to a matrix A
to create a resulting matrix B will result in

B(x,y) =

1 if
∣∣∣A(x,y)

maxA

∣∣∣≥ T

0 otherwise.

4.4 Camera Implementation

4.4.1 Overview
The camera implementation is done in C using the Axis ACAP SDK. The resulting
code is then cross-compiled and wrapped in a camera application package that can be
transferred to the camera for execution. The P3367 camera can handle a maximum
frame rate of 30 frames per second. To be able to utilize all frames, the ball tracking
algorithm will have to be able to meet a deadline of ≈ 33 milliseconds per frame.
Also, higher processing speed will reduce the measurement latency in the control
system. Some approaches for improving the performance are:

• Avoidance of floating point number calculations by using fixed-point numbers
instead.
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Figure 4.3 Overview of the full tracking algorithm. An input image results
in either a new detected position or no detection, after which the background
models are updated as indicated by the dashed lines.
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• Correct handling of multidimensional arrays, e.g. memory layout requirements
such as alignment, and respecting the layout requirements for loop-processing,
etc.

• Correct usage of pointers and pointer restrictions to avoid context-switching
overhead and to allow the compiler to produce more efficient code.

• Sub-image processing.

The ACAP SDK provides some of this functionality already with the included
fixed-point mathematics library and the RAPP image processing library. The fixed-
point library uses 32-bit wide datatypes and supports several mathematical functions.
The RAPP image processing library includes a vast number of image processing
functions, and other functions, such as (from [RAPP User’s Manual]):

• aligned image buffer allocation

• pixelwise operations

• statistical operations

• spatial filtering

• border padding

• geometrical transformations

• conditional operations

• integral images, etc.

The RAPP library handles two different types of images: unsigned 8-bit images
and binary images. The 8-bit image pixels can assume values between 0-255. For
binary images, each pixel only uses a single bit of the image buffer. For performance,
all image buffers must fulfill certain alignment requirements [RAPP User’s Manual].
The entire image buffer must be aligned, and the row dimension, or the number of
bytes to the pixel at the same column on the next row must also be aligned. The actual
image data inside the buffer must also start at an alignment boundary or alignment
multiple with a potential bit-offset value for binary images; thus, when allocating
image buffers for the tracking algorithm, it is important that these requirements are
followed. Some image processing operations, such as filtering, are calculated by
convolving the image using a certain filter kernel. For border pixels, this means that
pixels outside the actual image may be processed depending on the kernel size; thus
it is also useful to allocate images with a certain number of pixels used for padding.

37



Chapter 4. Implementation

Kalman
filter module

Background
model module

Fixed point
matrix

operations
module

Image
processing

helper module

Tracking
algorithm
module

Main module

Figure 4.4 Camera application modules

4.4.2 Module Implementation
To cope with the buffer requirements, a module was implemented to provide consis-
tent allocation and initialization of image buffers. This helper module also contains
functions for calculating pointers to image start positions inside buffers and the
values for used row dimensions.

The actual tracking algorithm can be layered by breaking it down into sepa-
rate modules as seen in Figure 4.4. The background module handles the adaptive
background models and produces a foreground from a passed image buffer.

The Kalman filter module contains the Kalman filter implementation, which takes
a measured position as input to produce an estimated position as output. The Kalman
filter module relies on an extension module of the fixed-point mathematics library
that provides matrix allocation and matrix operations such as addition, multiplication,
transpose multiplication and inversion.

The tracking module uses the background module and the Kalman filter module
to implement the tracking algorithm by using the Kalman filter output to select a
region for localized sub-image search.

4.4.3 Application Implementation
The ACAP SDK provides a parameter interface that allows for predefined parameters
to be edited directly from the camera web interface using the included event-model.
This allows for easy parameter changes.
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The application requires two different threads. The first thread is used to receive
UDP datagrams, and it will be blocked when waiting for new datagrams to appear
in the buffer. The second thread will run the actual image capturing, tracking and
sending of the resulting position datagrams. The image capturing and tracking are
implemented using a simple state machine with four modes: idle, starting, running
and stopping. A mutex allows the state machine to be controlled from the datagram
reception thread.

The parameter interface requires parameter handlers to be registered for the
different parameters. These handlers are then entered externally, which means that
mutex locks are also required as memory barriers for parameter values.

The media stream from which images are captured is configured to receive Y800
monochrome 8-bit images which can be directly copied to the tracking algorithm
input buffer.

The state machine execution is detailed in Figure 4.5. During the idle mode,
the camera will simply wait for instructions to start and then change mode. When
starting, the image media stream will be started, the initial ball position will be read
and the tracker will be initiated by allocating all buffers required by the different
modules. When the start-up procedure is completed, the state machine will be in
the running state. When running, the application will wait for the next image frame
from the media stream and then copy the image data to a buffer. The buffer will
be processed by the tracking algorithm, and if the algorithm detects a new ball
position, this position will be sent to a configured control server. Before repeating
the procedure, the application will check for instructions to stop the tracking. When
stopping, allocated resources will be freed and states will be reset before again
entering the idle mode.

4.5 Control

4.5.1 Driver Control Loop
Each servo drive includes a cascaded control loop as seen in Figure 4.6.

The many available control parameters of the servo drive loops can be automati-
cally tuned using the Mint Workbench software using a USB connection. For further
fine tuning, the parameters can be changed manually.

The only parameter that has to be set by the operator is the controller bandwidth,
which is individually set for each control loop. The control loops are cascaded in the
following order: a PI control loop for current control, a PI control loop for velocity,
and a PID control loop for the angular position. The filters seen in Figure 4.6 are not
used in this implementation. For the drives to work properly, a fairly low controller
bandwidth for the position and velocity has to be chosen at 250 rad/s. The PI loop
for the current is automatically tuned with a bandwidth of 2000 rad/s.
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Figure 4.5 Camera implementation state machine

Figure 4.6 The cascaded servo drive control loop. From [User’s manual:
MicroFlex e150 servo drive 2013].
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4.5.2 Ball Position Control
Using an event-based controller for the ball position is tempting. If the labyrinth
process tries to keep the ball at a certain position, it is reasonable to assume that the
control signal does not need to change unless the ball position deviates and an error
is introduced; however, a potential issue with event-based control for the system is
that unless the proportional gain is large enough to overcome friction, the integral
part will not increase to do so.

The speed of the camera is dependent on several factors. First of all, the frame
rate is limited to 30 frames per second by the hardware. Then each frame has to be
processed by the tracking algorithm and the result be sent in a datagram over the
network. The camera also runs other applications, such as a web server, and the task
scheduling will also affect the speed. The tracking algorithm speed is also varying as
the speed of image operations depends on image data.

When the camera actively supplies new position measurements, the ball position
control signal should be updated as these measurements are received by the PLC.
If the ball is not moving, no new position measurements will be received. The
control signal should then be updated periodically at a predefined interval set at
the achievable frame rate of the camera when running the tracking algorithm. The
controller should also be reset every time the tracking is restarted so that the previous
integral part is zeroed.

The ball position measured by the tracking algorithm may be rather noisy as
the algorithm will not always be able to locate the exact center of the ball. The
positions will be varying in an area close to the center, which can be considered as
measurement noise. The measurement noise may be problematic for the position
controller, particularly effecting the derivative part. An additional low-pass filter is
therefore introduced to filter the position reference signal as it is fed to the controller.

The full control loop including the ball position control is shown in Figure 4.7.

4.6 Communication Protocol

4.6.1 Overview
The camera should act as an event-triggered sensor and push ball position measure-
ments to the PLC as soon as new values are available. The PLC should process the
values and send control signals to the servo drives. The tablet device(s) should send
the control loop reference values. The communication protocol should use UDP
datagrams which implies potential data loss. The protocol details are available in
Appendix A.2.

4.6.2 Communication Between Camera and PLC
When it comes to the network communication between the camera and the PLC, the
following requirements apply:
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• The PLC must be able to change the mode of the camera.

• The PLC must be able to set the initial ball position used by the tracking
algorithm.

• In order for the PLC to know whether or not the camera is connected to the
control network and running, a heartbeat functionality is needed.

• The camera must be able to send measurement values to the PLC.

• The camera must be able to acknowledge commands sent from the PLC.

The initial position is required to start the tracking, and sending a new initial
position can be combined with starting the tracking. By using four bytes it is possible
to send two coordinates with values 0-65535, which should be more than sufficient.
The camera can then acknowledge that it has received the initial position and is
starting by returning a simple acknowledgment byte. To stop the tracking when
it is not needed, the PLC should simply be able to send a stop byte and receive a
stop-acknowledgment byte.

The heartbeat functionality is needed by the PLC to ensure that the whole system
is functional. It would be no point to allow a user to control the ball position if the
camera is not running correctly. The camera will be emitting heartbeat bytes. When
idle, the heartbeat will be sent periodically at a predefined interval, and when the
tracking is active, the heartbeat will be sent when no new position measurements are
available. When position measurements are available, they will instead suffice as a
guarantee that the camera is running. Should the PLC not receive heartbeat messages
or position measurements under a predefined timeout interval, the camera should be
considered as disconnected from the network.

4.6.3 Communication Between Tablet Devices and PLC
The communication between the PLC and the tablet device(s) has slightly more
requirements than the communication between the camera and the PLC:

• The tablet devices should be able to connect and disconnect from the PLC.

• Once a tablet device connection has been accepted by the PLC, the PLC should
acknowledge the connection success to all connected tablet devices.

• Connections to the PLC should be maintained by answering periodic heartbeats
emitted from the PLC.

• The tablet devices should be able to select the current control mode: angle or
position control. The mode changes must include the initial ball positions to
initiate the tracking algorithm.

• The PLC should confirm control mode changes.
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• Both angle and position setpoints should be sent from the tablet devices as the
values change.

• Angle and position measurement values should be sent from the PLC to the
tablet devices as the values change.

• Upon errors, e.g. if the emergency stop button is pressed, the tablet devices
should be informed.

• The PLC should be able to handle connections from two tablet devices simul-
taneously.

• The tablet devices must be informed if they both are connected at the same
time, implying that the multiplayer mode is enabled.

• When the multiplayer mode is active, the tablet devices need to be informed
about the setpoints of each other as well as which axis is controlled by which
device.

A connection should be initiated by sending a connection byte to the PLC, which
the PLC will reply to if it has a free connection slot available and the connection is
accepted. This will initiate the periodic heartbeat byte messages emitted from the
PLC to the connected tablet. If the tablet receives a heartbeat message, it should
respond back with the same heartbeat to inform the PLC that it is still connected. By
failing to respond to heartbeat messages for a certain connection timeout, a connected
tablet device will be considered to have disconnected; thus, to disconnect, the tablet
device will just have to stop responding to messages from the PLC.

The message for changing modes will include the 4-byte initial ball position
and will be acknowledged by the PLC sending back a status message. The status
message will contain information about the current mode and if multiplayer is active.
If multiplayer is active, the assigned axis to be controlled will also be included in
the status message. Should a status message be lost, the PLC will resend one upon
receiving a new mode change request, or by receiving an illegal message during the
current mode. The position setpoints are sent as 4 bytes with the desired location in
reference to the camera image coordinate system. The angle setpoints are also sent
as 4 bytes, but have to be translated. An angle setpoint value of θ degrees will be
transformed to an integer value x to be sent as

x = round(100 ·θ)+18000.

This allows angle values to be sent in a range of −180° to 180° with a resolution
of 0.01°. The measured angle and position values are sent in the same way as the
setpoint messages, but to the tablets as measurement messages. Errors are relayed to
the tablets by reserving an error mode bit in the status messages.
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When the multiplayer mode is active, the PLC logic will handle the relaying of
setpoints across the tablet devices automatically. New status messages will be sent
out if a second tablet connects, and the PLC will start to relay measurement values
between the tablet devices. Also, when multiplayer is active, it is possible for the
tablets to send shorter setpoint messages with values for only one axis.

4.7 PLC Implementation

4.7.1 Introduction
The PLC logic is implemented using the high level structured text programming
language. The implementation is structured in different layers using different function
blocks. Function blocks are essentially functions with input and output signals, that
have an internal state. The function blocks are handled and executed by different
programs, which in turn are executed by different tasks.

4.7.2 Details
An overview of the implementation layers is given in Figure 4.8. There are two axis
programs, each executing an axis function block, one for each axis. These blocks
handle the motion control communication with the servo drives by reading global
angle setpoint variables and sending motion requests to the drives.

The incliner program is used to read analog signals from the inclinometer and
rescale the values to actual degrees, and the LED program controls a set of LED
arrays for visual connection feedback to users. The emergency stop program monitors
the servo drives for errors as well as checks if the emergency stop button has been
pressed. In case of errors, the contactors supplying the servo motors with current
will be disabled.

The main program contains all communication and essentially acts as a bridge
between the camera, the control loop and the tablet devices by running a number of
different function blocks and relaying signals in-between them. The main program
also manages the tablet connections based on client-unique IP addresses.

The client reception function block checks the datagram buffer on the port
open for client connections and parses the byte data into different output signals
corresponding to the different commands that can be sent to the PLC together with
parameters. The client status, measurements and multiplayer blocks are used to send
the corresponding messages to connected devices. Input parameters, such as angle
values are automatically converted and put into byte buffers that can be sent to a
specified client. Each client has its own heartbeat block, which uses a timer to send
heartbeat messages at a predefined interval.

The camera manager function block manages the camera transfer and reception
blocks. The manager will internally make sure that acknowledgments are received
from the camera–if not, commands are automatically resent if possible. The manager
will also be monitoring the heartbeat status of the camera.
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The PID function blocks contain the discrete PID controller implementation
based on Section 2.3.1. Each block has inputs for reference signal, measurement
signal, resetting and different control parameters. The blocks will themselves measure
sample times between invocations that are used to calculate the control signal outputs.
It is also possible to disable integral or derivative action if needed. Listing 4.1 contains
part of the PID function block implementation and shows how the control signal is
calculated.

Listing 4.1 Part of PID function block implementation
CurrentTime := SYS_TIME(EN := TRUE); (* Get current system time *)
h := CurrentTime - LastSampleTime;
LastSampleTime := CurrentTime;

P := K * (SetPoint - Actual); (* Calculate proportional part *)

IF Td <> 0.0 THEN (* Calculate derivative part *)
ad := Td / (Td + N * h);
bd := K * N * ad;
D := ad * D - bd * (Actual - PreviousActual);
PreviousActual := Actual;

ELSE
D := 0.0;

END_IF;

v := P + I + D;

Output := LIMIT(LimitMin , v, LimitMax); (* Limit the output signal *)

IF Ti <> 0.0 THEN (* Update integral part *)
bi := K * h / Ti;
ar := h / Tt;
I := I + bi * (SetPoint - Actual) + ar * (Output - v);

ELSE
I := 0.0;

END_IF;

The PID function blocks are managed by the cascade controller blocks. The
cascade controller blocks take a control mode input signal which will determine
whether the outermost cascaded ball position loop will be used or not. If is the position
loop is to be used, the PID blocks will be used to calculate the angle reference signal
output of the cascade blocks. The angle reference signal is written to global angle
setpoint variables, which the axis control blocks will use to update the servo drive
setpoints.

4.7.3 Scheduling
The PLC scheduling is done manually. A set of different tasks are created, and each
task is assigned one or more programs to execute. There are three different types of
tasks:
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• cyclic

• freewheeling

• event-triggered

Cyclic tasks are released at specified intervals and event-triggered tasks are released
when specified internal or external events occur. Freewheeling tasks are immediately
released when the PLC starts, and when completed, restart again immediately. All
tasks are also assigned static priorities, which dictate how preemption is performed.
If two tasks to be executed have the same priorities, the task with the longest waiting
time will be executed first [User Manual for PLC Programming with CoDeSys 2.3
2010].

For this implementation; three tasks are required as shown in Figure 4.8. A
high-priority cyclic emergency task will monitor the emergency stop and axis errors
at frequent intervals.

The axis control or servo drive communication will be handled in a separate task.
This task will have a medium priority, and it will be triggered by an external coupler
event from the EtherCAT bus to synchronize with the telegrams.

The third task will be the main task that handles the camera and tablet com-
munication as well as the ball position controllers. The main task will have lowest
priority and will be freewheeling. The main task will thus execute continuously
unless preempted by the other tasks.

The PID controllers should, however, not be allowed to freewheel in their exe-
cution as that may lead to them being executed too fast compared to the position
measurement sample rate, which might cause problems (see Section 2.3.2). A timer
will be used to control how often the control signals will be updated at a minimum.

4.8 Tablet Device Implementation

4.8.1 Overview
The tablets used are Android-based and the control application has therefore been
implemented in Java. The implementation was based on an existing partial imple-
mentation which only supported angle control, but most of it was redone to match
the updated functionality requirements. Here follows some information about the
classes used. For a full walk-through of the different views in the application, refer
to Appendix A.1.

4.8.2 Details
This section is based on Figure 4.9.

The MainActivity provides the initial start screen where application settings
can be altered. The communication with the PLC does not start until the “Play”
button is pressed, which starts the GyroscopeActivity.
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Figure 4.9 Overview of the tablet implementation classes and data flows

The GyroscopeActivity is the actual main activity which holds together all
components of the application including user input and graphical output. For com-
munication there are two main classes, a BinaryMessageHandler for receiving
messages and a MessageThread for sending control messages to the PLC.

The GyroscopeHandler class extends AsyncTask which is used to handle UI
operations in the background of an Activity (in this case the GyroscopeActivity).
By accessing the data from the tablet accelerometer, it can read at what angle the
tablet is held. This angle is also the output to the PLC. This class is also used to
send position reference values. When controlling the ball position, the value sent
is calculated by simply adding the angle values in each direction to the previous
position. Optionally one can set a gain for the angle and position to get a more or
less sensitive control.

The BinaryMessageHandler class also implements AsyncTask and is used for
receiving all messages from the PLC. The content of a message is parsed using
a helper class and then sent forth to the content-corresponding function in the
GyroscopeActivity. This class is also responsible for keeping up the connection
by sending heartbeat messages in response to the ones from the PLC.

The MessageThread has a queue for sending connect and mode change
messages from the GyroscopeActivity to the PLC. Since the messages are
UDP datagrams there is no direct confirmation of reception on the other end;
therefore, the messages will be sent again and again until confirmation is re-
ceived via the BinaryMessageHandler. The messages are then deleted from the
GyroscopeActivity.
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The GraphHelper class holds all the graphs for the UI, including both the
actual graphs and the ball position graph. Most communication is sent from the
GyrosopeActivity to the GraphHelper, for example, initialization of graphs and
value updates, but some data is also collected from here, i.e. the initial reference
position for the ball, which has to be prespecified for the camera software to initialize.

Automatic Mode To give the system its self-playing ability, setpoints are read from
a text file using the Pathfinder. The setpoints are added to a list which is returned
to the GyroscopeActivity, which starts an instance of BallGuide taking the list as
input. The BallGuide will then go through the list sending a new setpoint as the ball
closes in on the current one. The actual position is constantly updated and the error
between that and the setpoint has to be below a specified threshold before the next
setpoint is sent.

50



5
Results

5.1 Camera Implementation & Tracking Algorithm

5.1.1 Parameters
The tracking algorithm parameters were tuned by hand to reduce false positives (or
noise) with a fast response time. The optimal values are found in Table 5.1. The
Kalman filter predictions did not improve the localized search, and hence, no filter
parameters are included in the table.

5.1.2 Performance
To achieve the maximum possible camera frame rate of 30 frames per second, the
tracking algorithm has to meet a deadline of ≈ 33 ms per frame. Figure 5.1 shows a
cumulative normal distribution plot of the time required for the tracking algorithm
to process a single frame using a resolution of 320×240 pixels, corresponding to 3
pixels per cm, under varying movement of the tracked ball. The processing speed
at this resolution averages 19 milliseconds and is skewed towards smaller values.
According to the plot, the deadline should be met with a probability of almost 99 %.

Parameter Symbol Value
Local area size - 16-24 pixels
Glare threshold Tg 0.4-0.5
Search threshold Tf 0.06-0.08
Short-term background model threshold Tl 0.05
Short-term background model adaptation rate αs 0.7-0.8
Long-term background model threshold Th 0.1
Long-term background model adaptation rate αl 0.1

Table 5.1 Tracking algorithm parameters
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Figure 5.1 Tracking algorithm time per frame
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Figure 5.2 Camera tracking algorithm cycle time

Figure 5.2 shows a cumulative normal probability plot of the total cycle time
required for the camera to get the next image pointer, perform the tracking and
send the resulting position (if a new position is found) using the same resolution
of 320× 240 pixels under varying movement of the tracked ball. The total cycle
time is on average slightly more than twice as large as the actual tracking algorithm
processing time, implying a smaller frame rate than 30 frames per second. At 95 %
probability, a frame rate of ≈ 20 frames per seconds is achieved.
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Figure 5.3 Tracked ball position in pixels compared to actual ball position

Figure 5.3 shows a sample tracking scenario with the actual path traveled by the
ball against the positions reported by the tracking algorithm. As seen in Figure 5.4,
the absolute error distance between the tracked position and the actual position is
most commonly one pixel large, with larger errors being uncommon.

5.1.3 Latency
To evaluate the network performance, the latency between the camera and the PLC
was measured with the results as a cumulative normal probability plot in Figure 5.5.
The latency seems fairly normal distributed with a low mean of approximately 0.9
ms.
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Figure 5.5 Latency between camera and PLC
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5.1.4 Scheduling
The execution times of the emergency and motion control tasks of the PLC were very
low and did not cause any performance loss from preemption of the task handling the
PID controllers and the client communication. Potential issues can however occur if
a client sends too much data and the datagram buffers are filled faster than they can
be processed and depleted.

5.2 Control
The performance of the control loops was evaluated for both angular control and ball
position control with the complete physical setup. The results are presented below.

5.2.1 Angle Control
The performance of the servo drive angle control for some angle steps is seen
in Figure 5.6. The maximum output is ±3°. All parameters and performance are
equivalent for the two axes, why only one axis is addressed here.

5.2.2 Position Control
The used values for the ball position control loops for both axes are listed in Table
5.2. The controller gain is set relatively low but with a large derivative gain to prevent
overshooting. The integral time is used primarily to overcome friction when reference
changes are small. The maximum servo acceleration/deceleration is chosen so that
the response is fast without loss of stability.
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Parameter Symbol Value
Proportional gain K 0.08
Integral time Ti 10
Derivative gain Td 1.1
Integral reset time Tt 30
Maximum derivative gain N 20
Setpoint weight β 1
Maximum servo acceleration/deceleration - 120 ·3.6°/s2

Table 5.2 Position control PID parameters

0 2 4 6 8 10 12 14 16 18 20

80

100

120

140

160

Time (s)

Po
sit

io
n

Setpoint
Position
Filtered Position

Figure 5.7 Position control in x-direction

The performance of the ball position control is shown in two examples in Figures
5.7 and 5.8, which show the responses of the loops for different reference signal
changes. These figures clearly show that the ball position measurement signal is
rather noisy but that the low-pass filter removes high frequencies that have a negative
impact on the derivative action. The derivative action limits overshooting, but this
also results in a limited response time.
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Figure 5.8 Position control in y-direction
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6
Discussion

6.1 Tracking Algorithm & Camera Implementation
Tests with the tracking algorithm showed that the Kalman predictions used to deter-
mine the location for the localized search in the next frame did not show any tracking
improvement as the used model only handles linear movement. Any sudden setpoint
changes or wall collisions would result in bad predictions; thus, the size of the search
area could not be reduced further and the Kalman filter predictions were removed
from the final implementation.

A Kalman filter with linear movement could, however, be useful to follow the
ball position in a scenario without obstacles. Also, if the ball should not always be
visible for the camera, a Kalman filter can be used to estimate the position as long
as the ball is hidden. There also exist extended Kalman filters which support more
complex forms of movement, such as e.g. Brownian motion. This was, however, not
investigated further since the tracking performed well without Kalman filtering and
there was no desire to increase the computational load on the camera processor.

At the initial state of the project there were thoughts on implementing a correction
for the barrel distortion seen in the images of the system, i.e. the lines at the edges
are not straight but slightly bulged out. The distortion makes the ball location differ
slightly from the actual position. At the end the conclusion was that it was not needed
since it had such small impact on the measured position and that the ball positioning
control would compensate for it.

6.2 PID Tuning

6.2.1 Servo Drives
Initially, the frame was attached directly to the motors without any gear-boxes. This
meant that the motors only had a very small position range to operate in, and also, that
they had to handle more inertia. When automatically tuned, the motors performed
badly and the system would often start to oscillate on reference angle changes except
very small ones. Also, any load disturbances on the frame would quickly make the
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system oscillate. By manually reducing the controller gains, it was possible to control
the angles in a limited range and with a limited controller speed. It was, however, not
possible to add the additional ball position control loop without the system becoming
unstable.

By adding gearboxes with a 1:100 scaling to the servo motors, the automatic
tuning of the servo drives produced a very accurate angle control with fast response
times. The gearing increases the operating range of the motors and reduces the torque
required to control the game board angles.

6.2.2 Ball Position Loop
By low-pass filtering the ball position signal before feeding it to the controller, the
derivative performance of the controller improved.

One important parameter for the stability of the position loop turned out to be
the maximum allowed acceleration and deceleration of the servo motors. A low
acceleration limit would mean that the response time of the loop was not fast enough
to prevent large overshoots. However, a large limit would result in rapid decelerations
that would cause vibrations in the entire frame. These vibrations are a result of the
connections between the motors and the frames being slightly flexible with pin-
connected joints. A more solid construction could possibly eliminate the vibrations
and allow for higher accelerations and decelerations without loss of stability.

6.3 Network Delay Considerations
Since all components are physically close, there should not really be any significant
bottlenecks introduced by network latency or delays. Also, the measured latency
between the camera and PLC was very low. The speed of the tracking algorithm is
the major contributor to delays.

6.4 Control

6.4.1 Angle Control
The performance of the angle control performed by the frequency drivers is adequate.
The delays seen in Figure 5.6 are expected since the control signal is taking steps
between the minimum and maximum output angle.

6.4.2 Ball Position Control
Looking at the plots in Figures 5.7 and 5.8, one can see quite long rise times. This
is expected, since the system (i.e. the ball) is quite slow. The thing that needs to
be avoided is overshoot and especially disturbance in the axis not responsible for
the current movement when doing a one-dimensional move. The disturbance comes
from the camera signal incorrectly estimating the exact center of the ball.
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Something else that is not optimal is the locked position seen last in Figure 5.8,
where the ball stops near the setpoint. This is due to friction, i.e. when the ball is
still it needs a push to start moving again. A conclusion from this is that the integral
action is not always able to satisfy its purpose. It would be good to implement
some functionality that makes it possible to raise the gain of the integral action or
implement some friction compensation, for example, dither.

One issue with the ball position control is that the only inclinometer available
stopped functioning. This meant that the angle calibration had to be done manually
and measured by the servo drives. An angle of zero degrees would therefore not
necessarily be exactly zero degrees; thus, an output control signal with value zero
would most often not result in the labyrinth plane resting completely horizontally.
This stationary error was hard to overcome if the calibration differed to much from
reality, as the proportional action would too large to be compensated for.
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7
Conclusions

7.1 Summary
In this thesis, a background subtraction based algorithm for tracking a moving ball
on a moving labyrinth plane has been designed. The algorithm has been used to
implement a camera-based sensor that feeds measured positions to a controller in a
distributed network. Using a cascaded PID control loop, the controller has been able
to control the ball position on the labyrinth plane using reference signals from one or
two tablet devices also connected to the network. A predefined setpoint layout can
also be used to make the labyrinth self-playing.

7.2 Stability Issues
The system in its original state, without the gearboxes, would not have made the
control feasible. Despite large efforts on controlling the ball position without the
gearboxes, no satisfactory results were achieved. With the gearboxes added, the
system performs well.

7.3 Pathfinding
The investigated pathfinding algorithm, A*, is implemented but not used in the clients
due to time limitations and the perception that a simple list of prespecified setpoints
would suffice for the application. There is also a binary map of the Alten maze
available in the code.

7.4 Camera Vision
A drawback of using a transparent labyrinth is that the algorithm used for distin-
guishing the ball needs to subtract everything that is not moving. This means that if
the ball moves very slowly the tracking might be lost due to high threshold values
on the images. Another drawback is that the algorithm might favor one side of the
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ball due to surrounding light sources. A brighter side of the ball will be easier to
find, which makes the tracking somewhat biased and the positioning inexact. If the
background was solid and without distractions, a gentler thresholding could be used.
This would make the whole ball visible in the filtered image resulting in a more exact
positioning. Even though it would be nice with better tracking, a non-transparent
labyrinth would defeat the purpose of the labyrinth as a concept for showcasing the
control system.

The combination of a short-term and a long-term model to form the background
model used has been shown to be successful. The fast responses of the short-term
model combined with the insensitivity to noise of the long-term model results in a
background model combining these properties.

7.5 Further Work
There are a number of possibilities for future work to improve the performance of
the labyrinth control:

• Increase stability by implementing new control method or observer.

• Replace camera with new one with more computational power (e.g. ARTPEC-
5) and possibly higher frame rate.

• Implement an algorithm for finding the ball, such that no initial position has to
be chosen.

• Implement an algorithm that automatically finds and zooms in on the labyrinth
so that the camera placement does not affect the game.

• Implement friction compensation for the ball to start rolling when the ball
velocity is zero.

• Construct new joint arms to replace the shaky ones connecting the motors and
the gimbal frames.

By construction new arms between the motors and the frames it should be
possible to avoid vibrations that currently occur. This would then allow control
parameters to be changed so that the control can be performed faster without losing
stability.

A new camera with more computational power could allow for a higher frame
rate and a higher image resolution. A higher image resolution would provide more
accurate control of the ball position as there would be more pixels per length unit.
The higher frame rate would, if not limited by other factors, provide faster control of
the system.
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A
Appendix

A.1 Labyrinth – Android Application
Here follows a walk-through of the android application for the labyrinth game. The
first screen that meets the player when launching the application is the start screen of
the MainActivity as seen in Figure A.1(a). From here the settings menu is available
where the player can adjust some parameters, such as the angle or position gain.
When the “Play” button is pressed the GyroscopeActivity will be launched.

A.1.1 Start Screen
When the GyroscopeActivity is launched, it sends a connect message to the PLC
and waits for acknowledgment. The PLC responds with a message that tells whether
the system is ready or not. If it is not ready, there will be an error message telling that
the motors need to be calibrated. If the system is ready and in level mode, the screen
in Figure A.1(b) will be shown. Here the player chooses the initial ball position
along with the desired game mode. When the start button is pressed, a new connect
message will be sent to the PLC with the desired mode and initial ball position. The
PLC acknowledges the message by a responding status message with the new mode

(a) MainAcitivity (b) GyroscopeActivity

Figure A.1 Start screens
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and the selected mode layout appears on the screen. Whenever the player is in game
mode, one can return to the start screen by pressing the back button in the bottom
of the screen. This sends a new connect message telling the system to level out and
stops the GyroscopeHandler so that no new setpoints are sent. The “Labyrinth”
button at the top of the screen will be visible during all game modes. By pressing it
the GyroscopeActivity is closed and the application returns to the MainActivity
start screen.

A.1.2 Angle Mode
If the player chooses to play the angle mode the first screen will be Figure A.2(a).
The values plotted are the x and y angles of the device with added gain and color
coding according to the values shown in the top left and right corner. For easier
control, a low gain is recommended. If the player taps the screen once, the second
angle mode layout, shown in Figure A.2(b), will appear. Here there are two plots,
one for x and one for y, showing the tablet angles and the angles of the plate. If the
screen is tapped again, the third angle layout appears (see Figure A.2(c)). Here the
two plots from the previous screen are mashed together and shown beside a camera
image of the labyrinth, and the current tracked ball position is marked by a red cross.
If the screen is tapped a third time, the first angle layout in Figure A.2(a) will appear
again. Whenever a new screen is shown or something changes in the system, there
will be a “toast” shown, as seen in Figure A.2(b), telling what is shown on the screen.

A.1.3 Position Mode
If the player chooses position mode, the layout will be that of Figure A.2(d). When
in position mode, the GyroscopeHandler will send position setpoints by adding the
current angle values of the tablet to the current position. This will move the position
setpoint in a “ramping” way that ensures stability of the PLC controller. There is
also a possibility to tap the screen to specify a setpoint.

A.1.4 Auto Mode
In auto mode, the player chooses which maze is used (see Figure A.2(e)). When a
maze is chosen, some buttons will appear as in Figure A.2(f). Pressing “Calculate”
will make the Pathfinder read the list of setpoints provided from a text file. Pressing
“Start” will make the BallGuide start to move along the list of setpoints. The “Clear”
button is used if the player wants to stop the path calculations or stop the BallGuide
from executing the whole list of setpoints.
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(a) Angle – Big graph (b) Angle – Split graph

(c) Angle graph and camera image (d) Position mode

(e) Auto mode (f) Auto mode

Figure A.2 Game mode layouts

71



Appendix A. Appendix

A.1.5 Multiplayer
When playing in multiplayer mode, it is recommended to connect one tablet first
and wait for the start screen. Then, the second player connects and gets the second
player start screen. The start screens of the two players will now be the ones seen in
Figure A.3(a) and A.3(b). The first player to connect will be in control of the x-axis
as indicated by the arrow on the start screen, and the second player will be in control
of the y-axis. When playing in angle mode, there are two layouts available. The split
screen seen in Figure A.3(c) showing the other players reference value in red, and the
layout with a mashed plot and a camera image seen in Figure A.3(d). The position
mode layout is almost identical to the single player case except that the other players
reference value is shown in red as in Figure A.3(e).
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(a) First player start screen (b) Second player start screen

(c) Multiplayer split graph (d) Multiplayer angle graph and camera
image

(e) Multiplayer position mode

Figure A.3 Multiplayer layouts
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A.2 Communication

A.2.1 Tablet to PLC
The UDP datagrams sent from the tablet to the PLC can have data lengths of one,
three or five bytes depending on the message sent. The first byte of every message is
a control letter that defines what action to take, except for the heartbeat, which only
consist of one byte with value zero. Table A.1 contains details on the datagrams sent
from the tablet devices to the PLC.

Message Type Byte Value Description
Connect to PLC 0 C
Heartbeat response 0 0

Change to angle mode

0 A
1 X high
2 X low
3 Y high
4 Y low

Change to ball position mode

0 P
1 X high
2 X low
3 Y high
4 Y low

Change to off mode (level out) 0 O

New angle values

0 B
1 X high
2 X low
3 Y high
4 Y low

New position values

0 Q
1 X high
2 X low
3 Y high
4 Y low

Table A.1 UDP datagrams sent from tablet to PLC
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A.2 Communication

A.2.2 PLC to Tablet
When the PLC receives a connect message or if there is a change of some sort, for
example when another player connects, a status update message is sent to the tablet as
a confirmation. The standard in-game message sent is the measured values message,
which tells the angle of the plate and the position of the ball. When in multiplayer
mode, the measured values message is sent along with the setpoint from the other
player so that the angle or position setpoint of the other player’s device is available
for plotting. See Table A.2 for details on the datagrams sent from the PLC to tablet
devices.

Message Type Byte Value Description

Connect message / Status update

0 S
1 Start / reset done
2 Current mode
3 Multiplayer
4 Player number

Heartbeat 0 0

Measured values

0 M
1 X high
2 X low
3 Y high
4 Y low
5 X high
6 X low
7 Y high
8 Y low

Setpoint from other player
0 N
1 Setpoint high
2 Setpoint low

Table A.2 UDP datagrams send from PLC to tablet
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A.2.3 Camera to PLC
See table A.3 for details on the datagrams sent from the camera to the PLC.

Message Type Byte Value Description

Ball position

0 X high
1 X low
2 Y high
3 Y low

Heartbeat 0 0
Start acknowledgment 0 A
Stop acknowledgment 0 S

Table A.3 UDP datagrams from camera to PLC

A.2.4 PLC to Camera
See table A.4 for details on the datagrams sent from the PLC to the camera.

Message Type Byte Value Description
Start message without initial position 0 0

Start message with initial position

0 X high
1 X low
2 Y high
3 Y low

Stop message 0 S

Table A.4 UDP datagrams from PLC to camera
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