785 research outputs found

    The role of the posterior fusiform gyrus in reading

    Get PDF
    Studies of skilled reading [Price, C. J., & Mechelli, A. Reading and reading disturbance. Current Opinion in Neurobiology, 15, 231ā€“238, 2005], its acquisition in children [Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101ā€“110, 2002; Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. Development of neural mechanisms for reading. Nature Neuroscience, 6, 767ā€“773, 2003], and its impairment in patients with pure alexia [Leff, A. P., Crewes, H., Plant, G. T., Scott, S. K., Kennard, C., & Wise, R. J. The functional anatomy of single word reading in patients with hemianopic and pure alexia. Brain, 124, 510ā€“521, 2001] all highlight the importance of the left posterior fusiform cortex in visual word recognition. We used visual masked priming and functional magnetic resonance imaging to elucidate the specific functional contribution of this region to reading and found that (1) unlike words, repetition of pseudowords (ā€œsolst-solstā€) did not produce a neural priming effect in this region, (2) orthographically related words such as ā€œcorner-cornā€ did produce a neural priming effect, but (3) this orthographic priming effect was reduced when prime-target pairs were semantically related (ā€œteacher-teachā€). These findings conflict with the notion of stored visual word forms and instead suggest that this region acts as an interface between visual form information and higher order stimulus properties such as its associated sound and meaning. More importantly, this function is not specific to reading but is also engaged when processing any meaningful visual stimulus

    Word Superiority Effects in Dyslexics

    Get PDF
    Distorting the word superiority effect with intraword spacing was used to investigate the processing difference in single-word reading for dyslexics and controls. Perfettiā€™s Reading model suggests that dyslexics would have reduced processing capacity with intraword spacing. Results from a Covid-modified experimental protocol generally did not support the hypothesis. There was poor differentiation between groups in the word capacity coefficient. Response time by itself was also not informative. However, dyslexics had reduced accuracy in distractor identification across intraword spacings due to the lack of retention in phonological working memory or attention in central executive deficit (Alt, Fox, Levy, et al., 2022; Gray, Green, Alt, et al., 2017) as matching targets was not an issue, only confirmation of an update was problematic. In target identification, early responses and later responses were predictive of WIAT III Pseudoword (phonetic processing) and WAIS-IV Symbol Search (visuospatial matching task). These preliminary results motivate further research regarding word processing differences in dyslexic and controls

    Examining the Central and Peripheral Processes of Written Word Production Through Meta-Analysis

    Get PDF
    Producing written words requires ā€œcentralā€ cognitive processes (such as orthographic long-term and working memory) as well as more peripheral processes responsible for generating the motor actions needed for producing written words in a variety of formats (handwriting, typing, etc.). In recent years, various functional neuroimaging studies have examined the neural substrates underlying the central and peripheral processes of written word production. This study provides the first quantitative meta-analysis of these studies by applying activation likelihood estimation (ALE) methods (Turkeltaub et al., 2002). For alphabet languages, we identified 11 studies (with a total of 17 experimental contrasts) that had been designed to isolate central and/or peripheral processes of word spelling (total number of participantsā€‰=ā€‰146). Three ALE meta-analyses were carried out. One involved the complete set of 17 contrasts; two others were applied to subsets of contrasts to distinguish the neural substrates of central from peripheral processes. These analyses identified a network of brain regions reliably associated with the central and peripheral processes of word spelling. Among the many significant results, is the finding that the regions with the greatest correspondence across studies were in the left inferior temporal/fusiform gyri and left inferior frontal gyrus. Furthermore, although the angular gyrus (AG) has traditionally been identified as a key site within the written word production network, none of the meta-analyses found it to be a consistent site of activation, identifying instead a region just superior/medial to the left AG in the left posterior intraparietal sulcus. These meta-analyses and the discussion of results provide a valuable foundation upon which future studies that examine the neural basis of written word production can build

    Neural Systems for Reading Aloud: A Multiparametric Approach

    Get PDF
    Reading aloud involves computing the sound of a word from its visual form. This may be accomplished 1) by direct associations between spellings and phonology and 2) by computation from orthography to meaning to phonology. These components have been studied in behavioral experiments examining lexical properties such as word frequency; length in letters or phonemes; spellingā€“sound consistency; semantic factors such as imageability, measures of orthographic, or phonological complexity; and others. Effects of these lexical properties on specific neural systems, however, are poorly understood, partially because high intercorrelations among lexical factors make it difficult to determine if they have independent effects. We addressed this problem by decorrelating several important lexical properties through careful stimulus selection. Functional magnetic resonance imaging data revealed distributed neural systems for mapping orthography directly to phonology, involving left supramarginal, posterior middle temporal, and fusiform gyri. Distinct from these were areas reflecting semantic processing, including left middle temporal gyrus/inferior-temporal sulcus, bilateral angular gyrus, and precuneus/posterior cingulate. Left inferior frontal regions generally showed increased activation with greater task load, suggesting a more general role in attention, working memory, and executive processes. These data offer the first clear evidence, in a single study, for the separate neural correlates of orthographyā€“phonology mapping and semantic access during reading aloud

    A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia

    Get PDF
    Childrenā€™s ability to reflect upon and manipulate the sounds in words (ā€™phonological awarenessā€™) develops as part of natural language acquisition, supports reading acquisition, and develops further as reading and spelling are learned. Children with developmental dyslexia typically have impairments in phonological awareness. Many developmental factors contribute to individual differences in phonological development. One important source of individual differences may be the childā€™s sensory/neural processing of the speech signal from an amplitude modulation (~ energy or intensity variation) perspective, which may affect the quality of the sensory/neural representations (ā€™phonological representationsā€™) that support phonological awareness. During speech encoding, brain electrical rhythms (oscillations, rhythmic variations in neural excitability) re-calibrate their temporal activity to be in time with rhythmic energy variations in the speech signal. The accuracy of this neural alignment or ā€™entrainmentā€™ process is related to speech intelligibility. Recent neural studies demonstrate atypical oscillatory function at slower rates in children with developmental dyslexia. Potential relations with the development of phonological awareness by children with dyslexia are discussed.Medical Research Council, G0400574 and G090237

    Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area

    Get PDF
    Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation levelā€“dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled readers

    Discrimination in lexical decision.

    Get PDF
    In this study we present a novel set of discrimination-based indicators of language processing derived from Naive Discriminative Learning (ndl) theory. We compare the effectiveness of these new measures with classical lexical-distributional measures-in particular, frequency counts and form similarity measures-to predict lexical decision latencies when a complete morphological segmentation of masked primes is or is not possible. Data derive from a re-analysis of a large subset of decision latencies from the English Lexicon Project, as well as from the results of two new masked priming studies. Results demonstrate the superiority of discrimination-based predictors over lexical-distributional predictors alone, across both the simple and primed lexical decision tasks. Comparable priming after masked corner and cornea type primes, across two experiments, fails to support early obligatory segmentation into morphemes as predicted by the morpho-orthographic account of reading. Results fit well with ndl theory, which, in conformity with Word and Paradigm theory, rejects the morpheme as a relevant unit of analysis. Furthermore, results indicate that readers with greater spelling proficiency and larger vocabularies make better use of orthographic priors and handle lexical competition more efficiently
    • ā€¦
    corecore