5,067 research outputs found

    Atlas-Based Prostate Segmentation Using an Hybrid Registration

    Full text link
    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.Comment: International Journal of Computer Assisted Radiology and Surgery (2008) 000-99

    A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases

    Full text link
    Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50 CT volumes of patients' heads. The MMRep algorithm succeeded in all 60 cases, yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with submillimetric surface representation accuracy, directly exploitable within a commercial FE software

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Semiautomated 3D liver segmentation using computed tomography and magnetic resonance imaging

    Get PDF
    Le foie est un organe vital ayant une capacité de régénération exceptionnelle et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume du foie est un outil important pouvant être utilisé comme marqueur biologique de sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les hépatectomies majeures, l’embolisation de la veine porte et la transplantation. La méthode la plus répandue sur la base d'examens de tomodensitométrie (TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le contour du foie sur plusieurs coupes consécutives, un processus appelé la «segmentation». Nous présentons la conception et la stratégie de validation pour une méthode de segmentation semi-automatisée développée à notre institution. Notre méthode représente une approche basée sur un modèle utilisant l’interpolation variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre méthode semi-automatisée de segmentation avec deux études transversales conçues rétrospectivement. Les résultats de nos études de validation suggèrent que la méthode de segmentation confère une fiabilité et répétabilité comparables à la segmentation manuelle. De plus, cette méthode diminue de façon significative le temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. D’autres études pourraient incorporer la volumétrie afin de déterminer des marqueurs biologiques de maladie hépatique basés sur le volume tels que la présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume.The liver is a vital abdominal organ known for its remarkable regenerative capacity and fundamental role in organism viability. Assessment of liver volume is an important tool which physicians use as a biomarker of disease severity. Liver volumetry is clinically indicated prior to major hepatectomy, portal vein embolization and transplantation. The most popular method to determine liver volume from computed tomography (CT) and magnetic resonance imaging (MRI) examinations involves contouring the liver on consecutive imaging slices, a process called “segmentation”. Segmentation can be performed either manually or in an automated fashion. We present the design concept and validation strategy for an innovative semiautomated liver segmentation method developed at our institution. Our method represents a model-based approach using variational shape interpolation and Laplacian mesh optimization techniques. It is independent of training data, requires limited user interactions and is robust to a variety of pathological cases. Further, it was designed for compatibility with both CT and MRI examinations. We evaluated the repeatability, agreement and efficiency of our semiautomated method in two retrospective cross-sectional studies. The results of our validation studies suggest that semiautomated liver segmentation can provide strong agreement and repeatability when compared to manual segmentation. Further, segmentation automation significantly shortens interaction time, thus making it suitable for daily clinical practice. Future studies may incorporate liver volumetry to determine volume-averaged biomarkers of liver disease, such as such as fat, iron or fibrosis measurements per unit volume. Segmental volumetry could also be assessed based on subsegmentation of vascular anatomy

    Deep learning for medical image processing

    Get PDF
    Medical image segmentation represents a fundamental aspect of medical image computing. It facilitates measurements of anatomical structures, like organ volume and tissue thickness, critical for many classification algorithms which can be instrumental for clinical diagnosis. Consequently, enhancing the efficiency and accuracy of segmentation algorithms could lead to considerable improvements in patient care and diagnostic precision. In recent years, deep learning has become the state-of-the-art approach in various domains of medical image computing, including medical image segmentation. The key advantages of deep learning methods are their speed and efficiency, which have the potential to transform clinical practice significantly. Traditional algorithms might require hours to perform complex computations, but with deep learning, such computational tasks can be executed much faster, often within seconds. This thesis focuses on two distinct segmentation strategies: voxel-based and surface-based. Voxel-based segmentation assigns a class label to each individual voxel of an image. On the other hand, surface-based segmentation techniques involve reconstructing a 3D surface from the input images, then segmenting that surface into different regions. This thesis presents multiple methods for voxel-based image segmentation. Here, the focus is segmenting brain structures, white matter hyperintensities, and abdominal organs. Our approaches confront challenges such as domain adaptation, learning with limited data, and optimizing network architectures to handle 3D images. Additionally, the thesis discusses ways to handle the failure cases of standard deep learning approaches, such as dealing with rare cases like patients who have undergone organ resection surgery. Finally, the thesis turns its attention to cortical surface reconstruction and parcellation. Here, deep learning is used to extract cortical surfaces from MRI scans as triangular meshes and parcellate these surfaces on a vertex level. The challenges posed by this approach include handling irregular and topologically complex structures. This thesis presents novel deep learning strategies for voxel-based and surface-based medical image segmentation. By addressing specific challenges in each approach, it aims to contribute to the ongoing advancement of medical image computing.Die Segmentierung medizinischer Bilder stellt einen fundamentalen Aspekt der medizinischen Bildverarbeitung dar. Sie erleichtert Messungen anatomischer Strukturen, wie Organvolumen und Gewebedicke, die für viele Klassifikationsalgorithmen entscheidend sein können und somit für klinische Diagnosen von Bedeutung sind. Daher könnten Verbesserungen in der Effizienz und Genauigkeit von Segmentierungsalgorithmen zu erheblichen Fortschritten in der Patientenversorgung und diagnostischen Genauigkeit führen. Deep Learning hat sich in den letzten Jahren als führender Ansatz in verschiedenen Be-reichen der medizinischen Bildverarbeitung etabliert. Die Hauptvorteile dieser Methoden sind Geschwindigkeit und Effizienz, die die klinische Praxis erheblich verändern können. Traditionelle Algorithmen benötigen möglicherweise Stunden, um komplexe Berechnungen durchzuführen, mit Deep Learning können solche rechenintensiven Aufgaben wesentlich schneller, oft innerhalb von Sekunden, ausgeführt werden. Diese Dissertation konzentriert sich auf zwei Segmentierungsstrategien, die voxel- und oberflächenbasierte Segmentierung. Die voxelbasierte Segmentierung weist jedem Voxel eines Bildes ein Klassenlabel zu, während oberflächenbasierte Techniken eine 3D-Oberfläche aus den Eingabebildern rekonstruieren und segmentieren. In dieser Arbeit werden mehrere Methoden für die voxelbasierte Bildsegmentierung vorgestellt. Der Fokus liegt hier auf der Segmentierung von Gehirnstrukturen, Hyperintensitäten der weißen Substanz und abdominellen Organen. Unsere Ansätze begegnen Herausforderungen wie der Anpassung an verschiedene Domänen, dem Lernen mit begrenzten Daten und der Optimierung von Netzwerkarchitekturen, um 3D-Bilder zu verarbeiten. Darüber hinaus werden in dieser Dissertation Möglichkeiten erörtert, mit den Fehlschlägen standardmäßiger Deep-Learning-Ansätze umzugehen, beispielsweise mit seltenen Fällen nach einer Organresektion. Schließlich legen wir den Fokus auf die Rekonstruktion und Parzellierung von kortikalen Oberflächen. Hier wird Deep Learning verwendet, um kortikale Oberflächen aus MRT-Scans als Dreiecksnetz zu extrahieren und diese Oberflächen auf Knoten-Ebene zu parzellieren. Zu den Herausforderungen dieses Ansatzes gehört der Umgang mit unregelmäßigen und topologisch komplexen Strukturen. Diese Arbeit stellt neuartige Deep-Learning-Strategien für die voxel- und oberflächenbasierte medizinische Segmentierung vor. Durch die Bewältigung spezifischer Herausforderungen in jedem Ansatz trägt sie so zur Weiterentwicklung der medizinischen Bildverarbeitung bei

    Automatic Multi-organ Segmentation on Abdominal CT with Dense V-networks

    Get PDF
    Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deeplearning- based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the GI tract (esophagus, stomach, duodenum) and surrounding organs (liver, spleen, left kidney, gallbladder). We directly compared the segmentation accuracy of the proposed method to existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 vs. 0.71, 0.74 and 0.74 for the pancreas, 0.90 vs 0.85, 0.87 and 0.83 for the stomach and 0.76 vs 0.68, 0.69 and 0.66 for the esophagus. We conclude that deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures
    • …
    corecore