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Résumé 
Le foie est un organe vital ayant une capacité de régénération exceptionnelle 

et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume 

du foie est un outil important pouvant être utilisé comme marqueur biologique de 

sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les 

hépatectomies majeures, l’embolisation de la veine porte et la transplantation.  

La méthode la plus répandue sur la base d'examens de tomodensitométrie 

(TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le 

contour du foie sur plusieurs coupes consécutives, un processus appelé la 

«segmentation».  

Nous présentons la conception et la stratégie de validation pour une méthode 

de segmentation semi-automatisée développée à notre institution. Notre méthode 

représente une approche basée sur un modèle utilisant l’interpolation 

variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La 

méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. 

Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre 

méthode semi-automatisée de segmentation avec deux études transversales 

conçues rétrospectivement. Les résultats de nos études de validation suggèrent que 

la méthode de segmentation confère une fiabilité et répétabilité comparables à la 

segmentation manuelle. De plus, cette méthode diminue de façon significative le 

temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. 

D’autres études pourraient incorporer la volumétrie afin de déterminer des 

marqueurs biologiques de maladie hépatique basés sur le volume tels que la 

présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume.  
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Abstract 
The liver is a vital abdominal organ known for its remarkable regenerative 

capacity and fundamental role in organism viability. Assessment of liver volume is 

an important tool which physicians use as a biomarker of disease severity. Liver 

volumetry is clinically indicated prior to major hepatectomy, portal vein 

embolization and transplantation. 

The most popular method to determine liver volume from computed 

tomography (CT) and magnetic resonance imaging (MRI) examinations involves 

contouring the liver on consecutive imaging slices, a process called 

“segmentation”. Segmentation can be performed either manually or in an 

automated fashion. 

We present the design concept and validation strategy for an innovative 

semiautomated liver segmentation method developed at our institution. Our 

method represents a model-based approach using variational shape interpolation 

and Laplacian mesh optimization techniques. It is independent of training data, 

requires limited user interactions and is robust to a variety of pathological cases. 

Further, it was designed for compatibility with both CT and MRI examinations. 

We evaluated the repeatability, agreement and efficiency of our 

semiautomated method in two retrospective cross-sectional studies. The results of 

our validation studies suggest that semiautomated liver segmentation can provide 

strong agreement and repeatability when compared to manual segmentation. 

Further, segmentation automation significantly shortens interaction time, thus 

making it suitable for daily clinical practice.  

Future studies may incorporate liver volumetry to determine volume-averaged 

biomarkers of liver disease, such as such as fat, iron or fibrosis measurements per 

unit volume. Segmental volumetry could also be assessed based on 

subsegmentation of vascular anatomy. 
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1 Introduction 
This dissertation introduces an original software approach to 3-dimensional 

liver segmentation from multi-planar imaging. The sophistication of modern 

imaging techniques allow the physician to visualize human anatomy in an 

unparalleled fashion. Images generated from modalities such as computed 

tomography (CT) and magnetic resonance imaging (MRI) are of higher quality, 

acquired faster and provide wider coverage than in prior years. This has led to a 

surge in the amount of data that must be scrutinized during each imaging 

examination.  

The scientific community has countered with computer-aided tools, which 

assist the physician in efficiently extracting relevant information from each 

imaging exam. One such image processing tool consists of delineation of a region 

of interest on CT and MRI images for volumetric analysis. This process is called 

segmentation and its optimization has been a research focus over decades within 

the biomedical field. 

Organ segmentation has a variety of medical applications ranging from 

surgical simulation to radiotherapy planning. The medical literature describes 

numerous segmentation methods and algorithms adapted for different target 

organs. The liver remains one of the most challenging organs to efficiently 

segment due to, among other reasons, its highly variable shape and close proximity 

to other organs and tissues. 

Segmentation has traditionally been performed by manually outlining the liver 

contour on each individual CT or MRI image. Given the hundreds of images 

acquired on each examination, the manual method is too time-consuming and 

cumbersome for daily clinical use. Segmentation automation is essential to 

improve time-efficiency without sacrificing volumetric accuracy and repeatability.  

The primary aim of this thesis is to describe the development and validation of 

an innovative semiautomated liver segmentation method developed at our 
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institution. We wish to assess the method's accuracy, repeatability and efficiency 

in segmenting both CT and MRI examinations. 

 

1.1 The Liver 

"He bound devious Prometheus with inescapable harsh bonds, fastened 

through the middle of a column, and he inflicted on him a long-winged eagle, 

which ate his immortal liver, but it grew as much in all at night as the long-winged 

bird would eat all day." 

   - Hesiod's Theogony (1) 

 

 Prometheus is a Titan from Greek mythology known for gifting mankind 

with fire stolen from Mount Olympus. As punishment, he was chained and 

condemned to having an eagle eternally feast on his liver. The legend specifies that 

his "immortal liver" would grow each night, suggesting that the ancient Greeks 

were aware of the liver's regenerative capacity (2). The metaphorical significance 

of the liver has been highlighted in other texts where it is equated with the eternal 

soul and with intelligence (3).  

Evolutionary events have indeed imparted the liver with a remarkable capacity 

to regenerate following loss of mass in vertebrates (4). This is likely a result of the 

essential bodily functions the liver performs and its fundamental role in organism 

viability. This regenerative capacity had been mythologized since ancient times. 

 While liver divination may not be as popular today, the liver's role as a 

vital organ is definitely recognized. The liver is the largest human organ and is 

located in the right upper quadrant of the abdomen, below the diaphragm, adjacent 

to the stomach and overlying the gallbladder. The hepatocyte is the basic 

metabolic cell of the liver. Millions of hepatocytes constitute the lobule, which is 

the basic functional unit. The liver is known to have a role in roughly 500 vital 

bodily functions (5). Though out of the scope of this dissertation, some of these 
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roles include: digestion (bile production), metabolism (i.e. proteins, carbohydrates, 

lipids), synthesis (i.e. albumin, hormones), storage (i.e. glycogen, vitamins), 

detoxification (i.e. alcohol, drugs) and immunity (5). 

 The liver is closely associated with three major blood vessels: the hepatic 

artery, the portal vein and the inferior vena cava (IVC). The hepatic artery supplies 

the liver with oxygenated blood stemming from the abdominal aorta. The portal 

vein supplies the liver with nutrient-rich blood derived from gastro-intestinal 

organs (i.e. stomach, small bowel and colon). These two vessels along with the 

common bile duct enter the liver through a deep fissure at its inferior surface 

known as the porta hepatis, or simply, the liver hilum.  

Every liver lobule is supplied by a tributary of the hepatic artery, portal vein 

and common bile duct. Each lobule is drained by a branch of the hepatic veins, and 

subsequently, the IVC. The IVC is a retroperitoneal structure that runs along the 

right side of the vertebral column, lateral to the aorta (Figure 1.1). The right, 

middle and left hepatic veins drain into the IVC at the level of thoracic vertebrae 

eight. 
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Figure 1.1: 3D rendering of the liver and associated vascular structures 

Basic anatomical structure of the liver and spatial relationship with major vascular 

structures; the aorta and branches (red) and the IVC and hepatic veins 

(blue/yellow). The three hepatic veins are pictured draining into the IVC, a 

retroperitoneal structure. This usually occurs at the level of thoracic vertebrae 

eight. Image courtesy of Gabriel Chartrand. 

 

Couinaud classification  

 Claude Couinaud introduced the Couinaud classification system in 1957 

(6). The system describes functional liver anatomy by dividing the liver into eight 

independent segments. Each segment has its own respective vascular inflow, 

outflow, biliary and lymphatic drainage. This segmental classification is of 

particular importance during surgical planning as independent segments may be 

resected without affecting the remaining ones. Further, using a common 

classification system allows for simple communication between physicians from 

different specialties when describing focal liver lesions (7). The eight functional 

segments are separated based on vascular anatomy as follows: 
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1. The horizontal plane of the portal vein bifurcation divides the liver 

into upper and lower sections.  

2. The vertical plane of the middle hepatic vein divides the liver into two 

halves, establishing the right liver and the left liver. 

3. The right hepatic vein divides the right liver into anterior and posterior 

segments. 

4. The left hepatic vein divides the left liver into medial and lateral 

segments. 

 Though Couinaud initially described segments based on portal vein 

branching, the working system is actually based on the three hepatic veins (7). 

Segment I (caudate lobe) is formed by the liver tissue located between the portal 

bifurcation and the IVC. The remainder of the segments (II to VIII) are numbered 

in a clockwise fashion (Figure 1.2).  
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Figure 1.2: Couinaud classification of liver segments.  

The portal vein bifurcation establishes a horizontal plane dividing the liver into 

upper and lower sections. The middle hepatic vein divides the liver into the right 

(white) and left liver (orange). Segments II-VIII are numbered clockwise 

beginning at segment II (8). 

 

1.2 Liver Volumetry 

The liver is subject to variety of diverse pathology which is often debilitating 

to the individual patient. Medical and surgical treatments offered for these 

pathologies range from pharmaceutical management to surgical excision or 

transplant. Assessment of liver volume represents a basic tool which physicians 

often use for diagnosis of diffuse or metastatic liver disease that may present as 

hepatomegaly.  

The need for accurate liver volumetry has been expressed in both medical and 

surgical contexts. Medically, the liver volume is known to be an important 

prognostic indicator in compensated cirrhosis (9) and fulminant liver failure (10). 
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Linguraru et al. also recently described the clinical significance of volumetry in 

assessing hepatomegaly (11).  

In the surgical context, liver volumetry is essential during hepatectomy 

planning to ensure residual liver regeneration and prevent post-operative hepatic 

failure (12). The importance of volumetry in surgical planning for orthotopic liver 

transplantation (13) and living-donor liver transplantation (14-17) has been 

emphasized. Other local liver interventions including radiotherapy, radio-

frequency ablation and cryo-ablation may also require liver volume assessment 

prior to treatment (18), especially if the patient has previously undergone 

hepatectomy. 

The role of liver volume as a potential biomarker for liver disease and the 

established clinical indications for volumetry are described in Sections 2.2 and 

2.3, respectively. 

Traditionally, liver size has been estimated crudely. Medical students are 

taught early in training how to inspect, palpate, percuss and auscultate the 

abdomen in order to elicit pathological involvement. The standard physical exam 

includes a measurement of liver size using manual palpation and percussion to 

identify the liver margins (19). 

Liver size varies greatly and is dependent on a variety of factors including: 

age, body size, shape, underlying pathology and more importantly, the 

examination technique used (i.e. palpation, percussion or radiographic). In 1977, 

the mean liver size was thought to be 7 cm for women and 10.5 cm for men, a liver 

span of two to three centimeters smaller or larger by physical exam being 

considered abnormal (20). Techniques measuring one-dimensional length are often 

criticized as they are rudimentary and subject to significant variability depending 

on underlying liver shape, pathology and degree of lung inflation. Further, livers 

of different shape and volume may have the same cranial-caudal length (Figure 

1.3). 
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Figure 1.3: Variability in liver shape and size 

Livers of different shape and volume may have the same cranial-caudal length, as 

demonstrated with these three examples. This observation highlights the limitation 

of reporting a one-dimensional measures of length, a well-entrenched practice, as a 

surrogate measure of liver volume. Image courtesy of Dr. An Tang. 

 

The advent of modern cross-sectional imaging techniques provided additional 

tools to estimate liver volume. Assessment of whole liver volume using CT was 

initially demonstrated in 1979 as a means to compare the effect of portosystemic 

shunts on hepatic structure and function (21). Heymsfield et al. measured the 

volume of a cadaveric liver using CT images and showed a discrepancy of less 

than 5% with volume obtained from the water displacement method (21).  

Today, CT and MRI are commonly used to meet the clinical need of accurate 

estimation of liver volume. Use of CT is often preferred due to its easier 

accessibility, high spatial resolution, robustness and short acquisition time (14, 22, 

23). MRI offers multiple contrast mechanisms and ability to simultaneously assess 

vascular anatomy, biliary anatomy and liver parenchymal pathology (24). Further, 

MR imaging minimizes the risk of radiation exposure and nephrotoxicity which 

are concerns for CT imaging (24, 25). 

The most popular method to determine liver volume from CT and MRI 

images involves contouring the liver outline on consecutive imaging slices, a 

process called “segmentation”. Segmentation refers to delineation of a region of 

interest from the background. 

 

Clinical Background 
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1.3 Liver Segmentation 

In vivo assessment of liver volume is problematic as it is impossible to 

directly obtain an exact measurement. As explanting an organ from a living being 

would be unrealistic, indirect measurements via imaging post-processing tools are 

sought. Segmentation software indirectly measures volume by identifying the 

number of voxels, or the smallest distinguishable box-shaped parts of a 3D space, 

belonging to an organ of interest. The volumetric error is thus directly proportional 

to the error associated with identification of voxels.  

A common approach used in image segmentation consists of demarcating the 

contours of a structure of interest to identify the number of enclosed voxels. 

Despite significant technical advances in the field of image processing, this 

segmentation is often performed manually in the clinical setting (Figure 1.4). The 

manual segmentation of a liver from CT or MRI images must be performed on 

each axial slice and can take an image analyst anywhere from 30 to 90 minutes 

(26). It is time-consuming, cumbersome and expensive and thus not ideal for busy 

clinical practice. 

 

 
Figure 1.4: Manual segmentation. 

Three selected axial images from a contrast enhanced CT examination 

demonstrating segmentation of liver contours. Segmentation is performed to 

enclose the voxels belonging to a structure of interest and indirectly measure 

volume. 
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Alternatively, liver segmentation methods requiring minimal to no user input 

have been a research focus in the field of biomedical engineering for decades. 

Though numerous studies have proposed semi- or fully-automated segmentation 

methods, these have not necessarily translated to routine clinical use (27). Limited 

clinical validation studies for these methods, rather than lack of technical 

ingenuity, are cited as the cause of this slow adaptation by the medical community 

(28). 

In their study, Udupa et al. classified the weaknesses of image segmentation 

algorithm evaluation frameworks into two categories: related to available 

resources or related to the employed methodology (28). Reasons thought to limit 

the performance of segmentation algorithms include: small sample sizes, data sets 

not reflective of clinical problems, inappropriate ground truth for comparison and 

poorly defined performance metrics (27, 28). 

In order to overcome these methodological weaknesses, a validation 

framework for a novel automated segmentation method should include, at 

minimum, the following elements (28): 

1. Use of a valid reference standard. 

2. Datasets for validation which are reflective of actual clinical practice; 

real cases rather than ideal cases. 

3. Clear metrics for measurement of segmentation precision, accuracy, 

efficiency and error. 

4. Comparison of metrics for each method using effective statistical 

tools.  

We attempted to incorporate these defined elements in the validation of our 

novel segmentation method. 
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1.4 Thesis Structure 

This dissertation has been written in such a 

manner that it is relevant to a broad range of 

readers including medical students, 

radiologists, hepatologists, hepatobiliary 

surgeons and biomedical engineers. 

Figure 1.5 provides a roadmap to the 

material covered in various sections. Medical 

students should read this document 

sequentially. Radiologists will be most 

interested in the figures and tables 

accompanying the text and may peruse these in 

sequential order to find areas of interest. 

Physicians with intimate knowledge about liver 

disease and clinical indications for liver 

volumetry may proceed directly to Section 3. 

Those specifically interested in the clinical 

validation steps should focus on Sections 4 and 

5. 

 

 

 

 

 

 
Figure 1.5: Dissertation 

roadmap. 
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Section Descriptions 

• Section 2 summarizes the most common liver diseases currently affecting those 

living in the Western world. Liver volume is defined as a biomarker which can be 

used in the management and treatment of these diseases. The most common 

clinical indications for performing liver volumetry are reviewed. Finally, manual 

and automated liver volumetry methods are introduced. 

• Section 3 introduces the design concept and workflow of the semiautomated 

liver segmentation software developed at our institution. The three main steps 

required to perform segmentation: initialization, optimization and correction are 

described in detail. The final section describes a proof of concept study where the 

multi-modality versatility of the segmentation method was tested using CT and 

MRI datasets. 

• Section 4 describes a retrospective, cross-sectional study which evaluated our 

segmentation method on patients who underwent contrast-enhanced CT prior to 

major hepatectomy between October 2006 and April 2009. This study was an 

initial validation step of our method for CT-based imaging. 

• Section 5 describes a retrospective, cross-sectional study which evaluated our 

segmentation method on subjects who required preoperative evaluation with both 

CT and MRI within two weeks between January 2010 and March 2013. This study 

compared the results obtained from semiautomated segmentation of CT and MRI 

images. 

• Section 6 summarizes the lessons learned during this research process, the 

challenges ahead and points to future research directions. 



 

 

2 Liver Volumetry 

2.1 Liver Diseases 

The liver is intimately involved in most vital processes taking place within the 

human body. Consequently, a variety of chronic infections and diseases can 

pathologically affect it. In March 2013 the Canadian Liver Foundation 

commissioned a report entitled "Liver Disease in Canada, a Crisis in the Making", 

which assessed the extent of liver disease affecting the Canadian population (29). 

The report estimates that one in ten Canadians have some form of liver disease and 

the related death rate has risen nearly 30% over eight years (29).  

More than 95% of all deaths from liver disease are attributable to either viral 

hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease (NAFLD), 

cirrhosis or hepatocellular carcinoma (HCC). These disease processes ultimately 

result in the need for medical treatment, liver transplantation or hepatectomy and 

represent important global health concerns. 

 

2.1.1 Viral Hepatitis  

Viral hepatitis refers to liver inflammation and injury secondary to viral 

infection. Of the offending viruses, hepatitis B and C most commonly infect the 

liver causing extensive mortality and morbidity (29). Both are blood-borne 

infections which spread through close contact with infected body fluids.  

Hepatitis B is a double-stranded DNA virus of the Hepadnaviridae family. By 

definition, an acute hepatitis B infection lasts six months or less without any 

permanent damage to hepatocytes and with development of future immunity. A 

chronic hepatitis B infection lasts longer than 6 months and is usually life-long. 

Untreated chronic infection may eventually lead to cirrhosis in 15-20% of cases 

(29). Primary liver cancer develops with an incidence of 0.2-0.6% in the non-

cirrhotic/hepatitis B population and 5-8% in the cirrhotic/hepatitis B population 



 SECTION 2. LIVER VOLUMETRY  

 14 

(29). Chronic hepatitis B is highly prevalent (5-12%) amongst Canadian 

immigrant populations (30, 31). Treatment of chronic infection with anti-viral 

medications can improve liver function, reduce progression of fibrosis and 

cirrhosis and reduce the risk of HCC development. All Canadian provinces have 

instituted either neonatal or adolescent universal vaccination programs against 

hepatitis B (29). 

 Hepatitis C is single-stranded RNA virus of the Flaviviridae family. Acute 

infection with hepatitis C is rarely symptomatic. Failure to spontaneously clear the 

infection leads to chronic infection, with possible progression to cirrhosis and liver 

failure. Liver failure secondary to chronic hepatitis C infection represents the most 

common indication for liver transplantation in Canada (29). At time of reporting, 

hepatitis C has a peak prevalence in middle-aged individuals aged 30-59 years. 

Hepatitis C is considered a curable disease with anti-viral treatment regimens 

including interferon alpha, ribonucleic acid analogs (Ribavirin) and protease 

inhibitors. Cure rates range from 60-75% depending on the genotype and treatment 

length (29). No vaccination strategies currently exist against Hepatitis C, although 

several are in development (32). 

 

2.1.2 Alcoholic Liver Disease 

Alcoholic liver disease results from excessive alcohol consumption and 

represents an important cause of worldwide morbidity and mortality. Alcohol 

causes damage to hepatocytes directly as a toxic substance and indirectly by 

promoting hepatitis C infection and insulin resistance with subsequent fatty liver 

disease (29).  

Alcoholic liver disease exists in two main forms: acute alcoholic hepatitis and 

alcoholic cirrhosis. Alcoholic hepatitis is usually characterized by acute clinical 

and biochemical evidence of liver failure. In the context of pre-existing cirrhosis, 

this condition can be fatal. Lesser but prolonged drinking can lead directly to 
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alcoholic cirrhosis, which has a very poor prognosis as 47% of those afflicted die 

within 5 years (28).  

 

2.1.3 Non-Alcoholic Fatty Liver Disease  

 Non-Alcoholic Fatty Liver Disease (NAFLD) is an infiltrative disease of the 

liver associated with obesity and type 2 diabetes. NAFLD is linked to a group of 

conditions collectively termed the "metabolic syndrome". This syndrome is 

characterized by a resistance to insulin that favors the intracellular accumulation of 

fatty acids and triglycerides (33). Fatty acids are known to cause oxidative stress 

by stimulating stellate cells responsible for hepatic injury and fibrosis, eventually 

leading to cirrhosis (34). NAFLD is currently the most common liver disease 

affecting the Canadian population (29).  

This disease evolves through a spectrum of three main stages. The initial stage 

is steatosis, a broad term denoting fat accumulation within the liver without 

significant inflammation or fibrosis. The second stage is non-alcoholic 

steatohepatitis (NASH), where fat accumulation is associated with inflammatory 

changes and scarring. Of the patients who evolve to NASH, half will develop liver 

fibrosis, whereas nearly 20% will experience either cirrhosis or liver failure (35, 

36). Cirrhosis represents the third stage of the disease. The stages and 

complications of NAFLD are outlined in Figure 2.1. 
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Figure 2.1: Pathophysiology, risk factors and potential complications of NAFLD 

The main stages of NAFLD (i.e. steatosis, NASH and cirrhosis) are outlined in 

yellow. The major risk factors for NAFLD (i.e. type 2 diabetes, obesity and 

metabolic syndrome) are associated with insulin resistance.  Insulin resistance 

promotes the intracellular accumulation of fatty acids which can eventually lead to 

hepatic injury, fibrosis and cirrhosis. Cirrhosis and associated complications are 

discussed in Section 2.1.4. Image courtesy of Dr. An Tang. 

 

2.1.4 Cirrhosis 

Cirrhosis represents the end-stage of many chronic liver diseases which cause 

necrosis of hepatocytes through a variety of insults (i.e. viruses, alcohol, fat). 

Pathologically, the characteristics findings in cirrhosis are: fibrosis, nodular 

regeneration and distortion of hepatic architecture (37). Eventually, functional 

liver tissue is replaced by non-functional scar tissue leading to liver failure.  

Other complications of cirrhosis include: increased pressure in the venous 

system draining to the liver (portal hypertension) leading to bleeding from 

distended veins into the GI system (variceal bleeding), fluid accumulation in the 

abdominal cavity (ascites) and behavioral changes due to accumulation of toxic 

metabolites (hepatic encephalopathy) (29). Cirrhotic patients have a per-year risk 

of 1-8% for developing HCC (29). The clinical severity of cirrhosis is assessed by 

the Child-Pugh scoring system to advise clinical decisions regarding 

transplantation or hepatectomy.  
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Metformin is recommended as the initial treatment for type 2 diabetes15, 16. This medication has also been 
proposed as an effective agent for the treatment of NAFLD. Cases series including healthy volunteers 
showed improvement in alanine aminotransferase (ALT) values, liver histology or qualitative measurements 
of fatty infiltration17-20. However, in a randomized controlled trial that studied patients with type 2 diabetes, 
metformin had a neutral effect on liver fat infiltration (13 % fat fraction before treatment, 14 % after 
treatment, NS) 21.  
 
Whenever glycemic target are not reached with oral hypoglycemic agents, insulin can be 
introduced15. However, insulin causes weight gain, is considered lipogenic and shown to promote steatosis 
when administered as an IV infusion22. Unexpectedly, a recent pilot study of the combined treatment with 
metformin and subcutaneous insulin has shown conflicting results. Indeed, a 45% reduction in steatosis was 
observed after 3 months of insulin14. To date, because of a lack of published information on steatosis 
response to insulin therapy, it has been difficult to predict the impact of insulin on fatty liver. 
 
In the light of the obvious limitation carried by metformin and insulin, pioglitazone appears to be an 
appealing alternative for patients who have both type 2 diabetes and fatty liver disease. Pioglitazone  
decreases insulin resistance, improves glucose and lipid metabolism. Agents from the thiazolidinedione 
(TZD) class (troglitazone, rosiglitazone, and pioglitazone) have been associated with steatosis reduction 
between 39% and 51% after 3-6 months of therapy21, 23, 24. In a placebo-controlled trial in subjects with type 
2 diabetes with NASH, the administration of pioglitazone led to metabolic and histologic improvements13. 
 
Update as of May 10, 2011 
On April 26, 2011, Lewis et al. published the preliminary results of a longitudinal cohort study of an 
increased risk of bladder cancer among pioglitazone users of >24 months of therapy (RR 1.4 [1.03-2.0])25. 
Although the FDA have not yet completed their safety review of pioglitazone (Actos; Takeda 
Pharmaceuticals), we prefer to change medication class before patient enrollment. 
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Radiographic findings in advanced cirrhosis include hypertrophy of liver 

segments I, II and III with concurrent atrophy of segments VI and VII, likely 

related to alteration in hepatic blood flow (37). Frequent imaging features of 

cirrhosis seen on CT are outlined in Figure 2.2. 

 

 
Figure 2.2: Frequent CT imaging features in cirrhosis 

Imaging features in cirrhosis include: surface nodularity, widening of fissures and 

spaces (i.e. periportal, pericholecystic), atrophy of right anterior and left medial 

segments, hypertrophy of lateral segment, blunting of liver edges, posterior 

notching and anterolateral flattening. Other features include presence of 

regenerative nodules, siderotic nodules and secondary signs of portal hypertension. 

Image courtesy of Dr. An Tang. 

 

2.1.5 Liver Cancer  

Hepatocellular Carcinoma  

Hepatocellular carcinoma represents the most common primary liver 

malignancy, constituting roughly 85% of all primary liver cancers (29). HCC 

typically develops in the context of cirrhosis. Major risk factors include: hepatitis 

B and C infection, alcoholism, biliary cirrhosis, food toxins, congenital biliary 

atresia, hemochromatosis, alpha-1 antitrypsin deficiency, type 1 glycogen storage 

disease and Wilson's disease (38). Both the incidence and associated mortality of 
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HCC have been increasing in Canada (29). This is partly attributed to more 

widespread hepatitis infections (39).  

The Liver Imaging Reporting and Data System (LI-RADS) is an imaging 

classification system developed specifically for liver lesions (40). The LI-RADS 

score indicates the relative risk of a lesion being HCC in the context of 

predisposing risk factors, such as cirrhosis. Major imaging criteria for diagnosis of 

HCC include: arterial phase hyper-enhancement, portal venous or delayed venous 

phase washout, presence of capsule appearance and a specific pattern of threshold 

growth (40). An example of HCC with classic imaging findings is shown in 

Figure 2.3.  

 

 
Figure 2.3: Classical imaging finding in HCC 

A lesion highly suspicious for HCC is noted within the left lobe of the liver. The 

lesion displays characteristics imaging features of HCC: arterial phase 

hyperenhancement, contrast washout in portal venous and delayed phases, 

peripheral rim of smooth hyperenhancement in portal venous and delayed phases 

(capsule) and threshold growth (new lesion larger than 10mm represents threshold 

growth) (40). Image courtesy of Dr. An Tang. 

 

Experts recommend screening for patients at high risk for developing HCC as 

cure rates associated with early diagnosis (prior to symptoms) approach 90% (29). 
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In North America, screening every six months with ultrasound examination is 

recommended for patients at sufficient risk (41). Common treatment options for 

HCC include partial hepatectomy, transplantation, ablation techniques, trans-

arterial chemoembolization (TACE), chemotherapy, radiotherapy and palliative 

therapy. 

Metastases 

Metastases to the liver are very common, with studies suggesting that they 

occur 18-40 times more often than primary liver tumours (42). The most common 

sites that metastasize to the liver are: gastro-intestinal organs draining via the 

portal vein (i.e. colorectal, pancreatic, esophageal, gastric, neuroendocrine, 

gastrointestinal stromal), genitourinary (i.e. ovarian, renal, endometrial), breast, 

lung, melanomas and sarcomas (43).  

Experience from colorectal carcinoma (CRC) can be used to demonstrate the 

burden of hepatic metastases. CRC represents the third most common cancer in the 

Western world (44). The liver represents the most common site of metastases with 

roughly 50% of patients with CRC developing hepatic metastases (44, 45). 

Hepatic metastases will be the main cause of mortality in two-third of patients 

with CRC (44).  

 

2.2 Liver Volume as a Biomarker 

Biomarkers 

A biomarker is defined by the National Institutes of Health (NIH) as: "a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention" (46). Various types of biomarkers and their 

characteristics are summarized in Table II.I. The characteristics of an ideal 

biomarker, regardless of intended purpose, are also described. 
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Table II.I: Types of biomarkers  

References (46-48). 

Biomarker Characteristics 

Antecedent Used to identify the risk of developing a disease. 

Ex: Blood cholesterol concentration and risk of heart 

disease. 

Screening Used to screen for subclinical disease. 

Ex: Screening mammogram to detect early breast cancer. 

Diagnosis Used as a diagnostic tool to identify those with a disease.  

Ex: Blood glucose concentration for diagnosis of diabetes 

mellitus. 

Staging Used to stage or classify extent of disease. 

Ex: Prostate-specific antigen (PSA) concentration to reflect 

extent of metastatic disease. 

Prognostic Used as an indicator of disease prognosis. 

Ex: Tumour measurements after chemotherapy treatment. 

Surrogate end-

point 

Used to substitute for a clinical endpoint, expected to predict 

clinical benefit. 

Ex: Human immunodeficiency virus (HIV) viral load as a 

surrogate end-point for acquired immunodeficiency 

syndrome (AIDS) diagnosis. 

Ideal Biomarker - Accurate 

- Reproducible 

- Sensitive and specific for given outcome 

- Easy to interpret 

- Acceptable to the patient 

- Data suggests that levels of biomarker will alter 

management 
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Liver Volume as a biomarker 

The development of biomarkers for liver disease represents a growing 

research field within hepatology. The significant worldwide burden of liver 

disease, the late manifestations of symptoms with advanced disease, an intrusive 

reference test (liver biopsy) and the lack of validated tools to assess therapeutic 

efficacy are promoters of such research (49).  

Liver volume determined from imaging examinations represents a non-

invasive tool which has been explored in studies as a potential biomarker. For 

example, it is standard clinical practice to consider the future liver remnant (FLR) 

as a surrogate for hepatic reserve prior to hepatectomy (see Section 2.3.1).  

Okazaki et al. assessed whether liver segment volume indexes calculated from 

MRI examinations varied in different forms of cirrhosis (50). They found that 

enlargement of the caudate lobe was more frequent in alcoholic cirrhosis than in 

virus-induced cirrhosis. 

 Zhou et al. explored the correlation between hepatic lobe volume variations 

in patients with virus-induced cirrhosis and severity of disease on 16-slice MDCT 

(51). They found that volume enlargement of the left lateral segment was absolute 

in Child-Pugh class A and B patients while enlargement of the caudate lobe was 

absolute in Child-Pugh class A patients. 

Bora et al. elicited a positive correlation between hepatosteatosis and liver 

volume in patients with non-alcoholic fatty liver disease (52). 

Crippin et al. investigated whether liver volume for ideal body weight could 

serve as a prognostic indicator in patients with cirrhosis (53). They found that liver 

volume could indeed predict survival in patients with cirrhosis caused by 

hepatocellular disease. Patients with smaller volumes had a statistically significant 

increase in transplant or death while those with larger volumes had a statistically 

significant survival advantage.  
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Imaging-based biomarkers  

Imaging based techniques have recently been investigated as biomarkers of 

diffuse liver disease. For example, studies have attempted to quantify hepatic fat 

using MRI-based methods. These methods are non-invasive and may be as 

accurate and reproducible as liver biopsy, the current gold standard. Given the 

prevalence of NAFLD, early steatosis detection and measurement are crucial to 

institute appropriate management.  

Liver biopsy is considered the gold standard for diagnosis of hepatic steatosis 

but has several limitations: it is invasive, has poor patient acceptance, has a risk of 

hospitalization of 1-5% and mortality rates between 0.01-0.1% (54-56). Further, it 

is prone to inter-observer variability and sampling errors (57). For these reasons, it 

is not considered acceptable for routine use in the fatty liver disease population. A 

reliable, reproducible and accurate method for fat quantification is thus needed. 

Imaging-based techniques have emerged to assess liver fat content using 

magnetic resonance spectroscopy (MRS) (58, 59) and MRI (60-62). These 

techniques exploit the fact that fat resonates at a lower frequency than water when 

subjected to a homogeneous magnetic field (63). Such techniques can estimate the 

liver proton-density fat fraction (PDFF) which represents the fraction of proton 

density attributable to hepatic fat (60). PDFF maps can be translated pixel-by-pixel 

onto source images to generate parametric maps which illustrate the amount and 

distribution of fat throughout the liver (64). 

Tang et al. recently introduced a novel volume-average biomarker: the total 

liver fat index (TLFI) in patients with NASH (65). It is defined as the product of 

the segmented liver volume by the average PDFF within the segmented volume. 

The study showed that a biomarker such as TLFI could be used to accurately 

monitor liver fat burden and its longitudinal change over time in the setting of a 

clinical trial. 

Future studies may also incorporate liver volumetry to calculate other volume-

averaged biomarkers of liver disease, such as,iron per unit volume (66). This 
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demonstrates the importance of liver volume as both a stand-alone and combined 

biomarker. 

 

2.3 Clinical Indications for Liver Volumetry 

As was demonstrated in the previous section, there are many reasons to 

perform either partial or complete liver volumetry. The established clinical 

indications for liver volumetry are: major hepatectomy, portal vein embolization 

and transplantation. 

 

2.3.1 Future Liver Remnant (FLR) Prior to Major 
Hepatectomy  

Liver resection, or hepatectomy, is performed for a variety of reasons 

including benign pathology (i.e. giant hemangiomas, hepatic adenomas, large 

cysts), malignant pathology (i.e. HCC, cholangiocarcinoma, metastases), 

infectious pathology (i.e. pyogenic or amebic abscess) and biliary or hepatic 

trauma. Hepatectomy is the treatment of choice for primary or metastatic liver 

tumours, providing the best chance for long-term patient survival (67, 68).  

Major hepatectomy implies resection of four or more liver segments. The 

common types of major hepatectomy are demonstrated in Figure 2.4. 

 



 SECTION 2. LIVER VOLUMETRY  

 24 

 
Figure 2.4: Types of major hepatectomy. 

White segments are planned for surgical resection. (a) Complete right 

hepatectomy, (b) extended right hepatectomy, (c) complete left hepatectomy and 

(d) extended left hepatectomy. Extended right hepatectomy represents the most 

common type of major hepatectomy. Figure adapted from Terminology of liver 

anatomy and resections (8) (69).  

 

The volume of the liver which remains post-hepatectomy is of particular 

clinical value. During surgical planning it is termed the "future liver remnant" 

(FLR) volume. The FLR volume post-hepatectomy is a direct indicator of residual 

liver function and post-operative outcome (70). It is also one of the only 

independent predictive factors of post-operative liver dysfunction (70). 

 There have been recent increases in extended hepatectomies as definitions of 

resectability have expanded, thus leaving less remnant liver (70, 71). Liver 

volumetry is currently indicated in patients undergoing major hepatectomy or 

having underlying liver disease (44, 70) to ensure adequate functional remaining 

liver.  
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It is vital to accurately establish both anticipated FLR volume and total liver 

volume (TLV) prior to hepatectomy. To be considered safely resectable, the 

FLR/TLV ratio must be > 26.5% for normal livers, > 40% in high-grade steatosis, 

and > 50% in cirrhosis, reflective of the underlying hepatic parenchymal quality 

(44, 72). This is visually demonstrated in Figure 2.5. 

 

 
Figure 2.5: FLR/TLV ratio prior to hepatectomy.  

To be considered safely resectable prior to hepatectomy, the FLR/TLV ratio must 

be > 26.5% in underlying normal livers, > 40% in high-grade steatotic livers and 

> 50% in cirrhotic livers (8). 

 

Examples of FLR/TLV ratio calculations prior to hepatectomy and how they 

impact clinical judgment are demonstrated in Figures 2.6 (normal), 2.7 (steatosis) 

and 2.8 (cirrhosis). 
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Normal liver 

 
Figure 2.6: Future liver remnant volume calculation in normal liver.  

(a) Axial enhanced CT image shows colorectal liver metastasis involving right 

posterior segments (VI and VII). (b) Resection diagram shows the intended 

complete right hepatectomy surgery planned. (c) 3D-rendering image shows 

surgical planning for complete right hepatectomy. FLR/TLV ratio was estimated 

to be 33%. (d) Axial unenhanced CT image of the same patient shortly after 

complete right hepatectomy. Actual FLR/TLV ratio was calculated to be 36% (8). 

Figure (c) courtesy of Dr. Franck Vandenbroucke-Menu. 
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Steatosis  

 
Figure 2.7: Future liver remnant volume calculation in fatty liver.  

(a) Axial enhanced CT image shows colorectal liver metastasis involving segments 

V, VI, VII, and VIII. (b) Diagram showing the intended complete right 

hepatectomy surgery planned. (c) 3D-rendering image shows surgical planning for 

complete right hepatectomy. FLR/TLV ratio was estimated to be 46%. (d) Axial 

enhanced CT image of the same patient after complete right hepatectomy. Actual 

FLR/TLV ratio was calculated to be 60%. Figure (c) courtesy of Dr. Franck 

Vandenbroucke-Menu (8). 
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Cirrhosis 

 
Figure 2.8: Future liver remnant volume calculation in cirrhotic liver.  

(a) Axial enhanced CT image shows colorectal liver metastasis involving segments 

II, III, and IV. (b) Diagram showing the intended extended left hepatectomy 

surgery planned. (c) 3D-rendering image shows surgical planning for extended left 

hepatectomy. FLR/TLV ratio was estimated to be 45%. (d) Axial enhanced CT 

image of the same patient after extended left hepatectomy. Actual FLR/TLV ratio 

was calculated to be 49%. Figure (c) courtesy of Dr. Franck Vandenbroucke-Menu 

(8). 

 

2.3.2 Portal Vein Embolization 

 Portal vein embolization (PVE) is a minimally invasive pre-operative 

procedure performed by an interventional radiologist. It entails the selective 

occlusion of the portal blood supply to certain liver segments, redistributing blood 
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flow towards segments which will remain post-hepatectomy. The ultimate goal is 

to reduce the risk of post-operative complications by intentionally causing 

hypertrophy if the residual liver (i.e. increase mass of the anticipated FLR). 

Studies have shown improvement in liver function post extended hepatectomy in 

patients undergoing PVE compared to without (44) (73). 

Indications for PVE rely on factors which may impact the FLR volume 

required for adequate post-hepatectomy liver function (44). Underlying liver 

disease, recent chemotherapy and the extent of the planned resection are all 

important factors. PVE is indicated when the FLR/TLV ratio is ≤ 20% in a normal 

liver, ≤ 30% in the setting of recent chemotherapy, or ≤ 40% in a fibrotic or 

cirrhotic liver. This is visually demonstrated in Figure 2.9. 

 

 
Figure 2.9: FLR/TLV ratio prior to portal vein embolization. 

Portal vein embolization is indicated when the FLR/TLV ratio is ≤ 20% in an 

underlying normal liver, ≤ 30% in the setting of recent chemotherapy, or ≤ 40% in 

a fibrotic or cirrhotic liver (8). 

 

Liver volumetry is clinically indicated to initially calculate the FLR/TLV ratio 

and 3-4 weeks after PVE to assess volume and extent of hypertrophy (44). An 

example of a case requiring PVE prior to right hepatectomy is shown in Figure 

2.10. 

Portal Vein Embolization!

0%! 50%! 100%!75%!25%!

Percentage of total liver volume (TLV)!

FLR !
≤ 20 %!

FLR !
≤ 30 %!

FLR !
≤ 40 %!

Normal liver!

Recent chemotherapy!

Fibrosis/cirrhosis!



 SECTION 2. LIVER VOLUMETRY  

 30 

 
Figure 2.10: Portal vein embolization prior to right hepatectomy 

(a) Axial enhanced CT image shows colorectal liver metastasis involving segments 

V, VI, VII (only VII shown). (b) Embolization of the portal vein branches to 

segments V through VIII was performed using a Lipiodol-glue mixture. Final 

portogram is shown. (c) Axial enhanced CT image obtained 1 month after right 

PVE shows hypertrophy of future liver remnant. (d) Axial enhanced CT image of 

the same patient after right hepatectomy (8). 

 

2.3.3 Living Donor Liver Transplantation 

Due to increasing demand and scarcity of cadaveric livers, alternatives have 

been sought to basic orthotopic liver transplantation. Transplantation of the left 

lateral segment from a living donor is performed for the pediatric population, but 

this does not provide adequate hepatic volume for adult recipients (74). Similarly, 

d.!c.!

b.!a.!
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cadaveric split-liver transplantation may not provide adequate hepatic volumes for 

two adult recipients (75). 

Living donor liver transplantation is being increasingly performed, exploiting 

the regenerative capacity of the liver. Pre-operative imaging of the donor is 

performed to exclude hepatic lesions, assess for diffuse liver disease and assess 

vascular and biliary anatomy (24). Moreover, pre-transplant liver volumetry is 

indicated as appropriate graft size is a major indicator of successful clinical 

outcome for both donor and recipient. 

 In living donor transplantation, a FLR-TLV ratio of 30-40% is required by 

the donor for survival (76, 77). In the recipient, the graft size to recipient body 

weight ratio ideally must be higher than 0.8-1.0% (78). Alternatively, the graft size 

to standard liver volume (calculated from body surface area) ratio must be higher 

than 50% for the recipient (79). 

Insufficient graft size may lead to "small-for-size syndrome" in the recipient. 

In this syndrome the graft is too small to meet functional demands resulting in 

liver failure and possibly death in the absence of re-transplantation (80). An 

example of size incompatibility during living donor liver transplantation is 

provided in Figure 2.11. 
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Figure 2.11: Size incompatibility in living donor liver transplantation.  

In this live liver donation, both the donor and recipient had transient hepatic 

insufficiency due to small-for-size liver: (a) Axial enhanced CT image of a 26-

year-old living liver donor. The total liver volume (TLV) was 1754 mL. The 

donated liver volume was 980 mL and the residual liver volume was 774 mL 

(44.2% of the TLV). (b) Diagram showing the intended right split liver surgery 

planned for living donor liver transplantation. (c) Post-liver transplantation axial 

enhanced-CT image showing hypertrophied left liver of the donor. (d) Post-liver 

transplantation axial enhanced-CT image of a 53-year-old man who was the 

recipient of the right liver transplant (8). 
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2.4 Reference Methods for Liver Volumetry 

2.4.1 Formula-based  

In 2002, Vauthey et al. established formulas to calculate total liver volume 

based on body surface area and body weight (73). Total liver volumes were 

measured in 292 patients from segmentation of CT scan images at four different 

sites. The study assumed that the volumetric methods used to calculate total liver 

volumes correlated with actual liver volume. Formulas were established using 

patient's body surface area (BSA) and body weight using regression analysis as 

follows: 

1. TLV = - 794.41 + 1267.28 x BSA (square meters) 

2. TLV = 191.80 + 18.51 x weight (kilograms) 

The authors cautioned that these formulas should be considered estimates due 

to the variability in correlation of total liver volume with body surface area (r2 = 

0.46) and body weight (r2 = 0.49). The study had excluded patients with any kind 

of diffuse liver disease thus limiting extrapolation to these patient groups. Though 

other formulas to estimate total liver volume have been proposed, the ones 

described in this study remain widely used in the clinical setting. 

 

2.4.2 Surgical Specimen 

In the validation of their automated liver volumetry methods, many authors 

have used surgical resection specimens as the volumetric reference standard. 

Hermoye et al. compared the accuracy and repeatability of MRI-based 

semiautomatic liver volumetry with surgical graft volume in living liver transplant 

donors (79). The donors underwent either left lateral segmentectomy, complete left 

or complete right hepatectomy. The liver grafts were flushed successively through 

a portal vein cannula. The grafts were then weighed using a calibrated scale. Graft 
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weight was converted to graft volume by assuming a liver density of 1.0 g/cm3, 

and this was used as the reference standard. 

Nakayama et al. compared in vivo CT-based automated volumetry with 

surgical liver volume using native livers of patients awaiting living related liver 

transplants (14). First, the relationship between liver weight and liver volume was 

determined by means of a regression analysis in seven other transplant patients. 

Liver volume was determined by placing excised livers in a water bath filled with 

distilled water at 25°C and measuring water displacement. Liver weight was 

determined by directly weighing the specimens on a scale. This provided a 

regression line (y=1.06) for the relationship between liver weight and volume.  

Thirty-five recipients had their native livers excised prior to obtaining a liver 

related transplant. The gallbladder, portal structures, attachment ligaments and 

tissues were removed and all blood was drained. The specimens were then directly 

weighed and their volume was determined based on the previously created 

regression line. The study found excellent correlation between liver weight and 

volume (r=0.957, p<0.01). This volume served as the reference standard in the 

comparison with the automated method.  

Lemke et al. developed equations to calculate the expected intra-operative 

weight and volume of living donor's right liver lobes using pre-operative CT-based 

volumetry (15). The right liver lobe specimens were flushed through all vascular 

structures at the liver hilum immediately after resection. Specimens were weighed 

with electronic laboratory scales. The specimens were then placed in a cylindrical 

6L glass container filled with sterile 4°C physiologic saline. The volume of the 

displaced liquid was measured and was assumed to correspond to volume of the 

immersed liver specimen. Regression analysis determined two linear equations 

which can be used to calculate intra-operative volume (Vintraop=(0.656 x Vpreop)+ 

87.629mL) and weight (Wintraop= (0.678 g/mL x Vpreop)+143.704g) from pre-

operative CT liver volume. The study found adequate correlation between 

preoperative volumetric measurements and intraoperative volume (r=0.834, 

p<0.001) and weight (r=0.870, p<0.001).  
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However, the study found a substantial discrepancy (mean deviation 34.3%) 

between pre-operative and intra-operative hepatic volume measurements. Possible 

explanations included: perioperative loss of blood (81), deviation between 

assumed physical density of the liver (1g/cm3) and actual physical density (81) and 

influence of altered perfusion states (secondary to hemodynamic drugs, blood loss, 

clamping of vessels) on liver volume (15, 82). 

 

2.4.3 Manual Segmentation 

The most common current method to estimate the liver volume involves 

manually delineating the liver outline on consecutive CT and MRI images, a 

process called "segmentation". Manual segmentation has been used in many 

studies as the reference standard for evaluating CT-based volumetry (13, 14, 17, 

18, 27) and MR-based volumetry (83-90). 

Typically, axial CT and MRI images are saved as Digital Imaging and 

Communications in Medicine (DICOM) files and uploaded to imaging post-

processing display software. Image analysts then manually contour the liver using 

a cursor. The most basic tool is a pencil or spline widget which positions nodes 

along the liver boundary (Figure 2.12a). The aim is to delineate the liver outline 

on each axial slice. Large vessels abutting the liver periphery such as the main 

portal vein and inferior vena cava are usually excluded, while vessels completely 

surrounded by liver parenchyma are included. The number of pixels within each 

contour provides a cross-sectional liver area on a slice-by-slice basis (Figure 

2.12b). This area is then multiplied by the slice thickness and the summation of 

each section volume provides the total liver volume for each patient. There is 

significant variability in terms of imaging post-processing software and type of 

contouring tools used. 
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Figure 2.12: Manual segmentation.  

 (a) Manual liver segmentation consists of contouring, or tagging, pixels belonging 

to the liver on every slice of a CT or MRI image. The most basic tool is a pencil or 

spline widget where nodes are manually positioned along the liver boundary. 

Image obtained using Osirix image post-processing software (Osirix Foundation, 

Geneva, Switzerland). (b) Once the segmentation complete, volumetry is obtained 

based on pixel size and slice spacing (8). 

 

Manual liver volumetry has been criticized for being overly time-consuming 

for clinical purposes, often requiring 30-90 minutes to assess the liver volume of 

one patient (26). Further, there is inherent inter-observer and intra-observer 

variability given the visual judgment required when tracing contours. Precision in 

manual segmentation is dependant on various factors such as user experience, 

sharpness of liver boundaries, the window level settings affecting image display, 

computer monitor settings and user vision characteristics (28), all of which can 

introduce variability. Despite these shortcomings, manual segmentation remains 

the most popular reference standard for the validation of CT and MRI-based liver 

volumetry methods. 

 

2.5 Automated Liver Segmentation 

The development and validation of automated liver segmentation methods 

represents a very active research area. Various liver segmentation pitfalls (see 

a.! b.!



 SECTION 2. LIVER VOLUMETRY  

 37 

Section 3.1) make it difficult to design an automated tool that is functional in 

every clinical situation. Therefore, clinicians often prefer manual segmentation as 

it is easier to implement though cumbersome and not adapted to clinical reality.  

This section addresses various automated segmentation methods (contour 

optimization, interactive and fully automated) in order of increasing complexity. A 

outline is provided in Figure 2.13. 

 

 
Figure 2.13: Automated liver segmentation outline.  

Liver segmentation methods may rely on (a) manual, (b) semiautomated, or (c) 

fully automated workflows. Most workflows require a combination of 2D or 3D 

initialization, refinement, and editing techniques. VOI = Volume of interest. MPR 

= Multi-planar reconstruction (8). 

 

2.5.1 Contour Optimization Techniques  

As described in Section 2.4.3, manual segmentation consists of contouring the 

liver on each slice of a CT or MRI exam. This is a very time-consuming procedure 

and precision is dependent on a variety of user-dependant factors. To improve time 

efficiency and precision, several automated contour optimizations techniques have 

been proposed which can supplement manual segmentation.  
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Active contours 

In the active contour approach (91), the segmentation is defined by an 

outlining contour for which internal forces (rigidity), counterbalance external 

forces, defined by the underlying image data. For this iterative algorithm to reach 

convergence on the desired segmentation, parameters need to be carefully tuned 

and the image adequately pre-processed. This equilibrium can be difficult to 

achieve when the initial solution is too far from the liver boundary, which causes 

the active contour to fall into a local minimum or leak into adjacent organs. 

Implemented methods therefore use this algorithm in combination with a robust 

initialization method that can provide an as close as possible solution so that the 

contours converge in few iterations (Figure 2.14).  

Of note, the active contours technique serves as the basis for software created 

by Tomovision SliceOmatic® for manual segmentation. This software was used to 

establish the manual reference standard in the studies presented in Sections 4 and 

5. 

 

 
Figure 2.14: Active contours technique.  

(a) For a given axial slice, an image analyst roughly contours the liver using a 

cursor. (b) and (c) These contours (snakes) then evolve a coarse contour based on 

image salient features and “snap” to the liver contour (8). 

 

Livewire 

In the livewire approach (92), an image is interpreted as a weighted graph. 

Image pixels are represented by graph vertices and graph edges connect adjacent 

a.! b.! c.!
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pixels with their weights representing the cost of connection (23). As the user 

clicks on the boundary to establish a "seed point", the possible minimal cost paths 

to all other points on the image are computed. Another boundary point can then be 

chosen via the "free point" (the mouse's current position). As the mouse is moved 

over other points, the boundary behaves like a livewire, connecting the seed point 

with the free point via a minimal cost path along the liver edge (Figure 2.15) (23). 

The 2D livewire technique serves as the basis for software created by MeVis 

HepaVision® for manual segmentation (23). 

 

 
Figure 2.15: Livewire technique 

(a) The user sets the "seed point" by clicking on the liver boundary. (b) As the 

mouse is moved over other points, the boundary behaves like a live wire 

connecting the seed point to the free point (c) via a minimal cost path along the 

liver edge (8). 

 

Shape Interpolation 

Shape interpolation allows the user to obtain a plausible complete 3D shape 

from a limited number of contours (93). This technique will be discussed in detail 

in Section 3.2. 

 

2.5.2 Interactive Segmentation Techniques  

Interactive or semiautomated segmentation techniques aim to reduce the 

amount of user input by relying on various types of interactions to steer the 

a.! b.! c.!a.! b.! c.!
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segmentation process. These methods are most intuitive in 2D, but also supports 

3D and 4D segmentation.  

Often, the user may have to initialize the segmentation process by positioning 

nodes manually around the liver contour.  

 

Intensity-based methods 

Among intensity-based methods, traditional approaches such as region-

growing (94) (Figure 2.16) have been used, which perform voxel or texture 

classification in feature space. These methods are usually computationally efficient 

and produce excellent results when the liver's intensity is homogeneous. The main 

downside is that no shape control is enforced, leading to rough edges and 

important leakage across the organ's boundary. Given that the heart, the stomach, 

the spleen and intercostal muscles may have similar densities, no interface clearly 

defines the liver. Consequently, these adjacent organs are often partly included and 

hard to dismiss automatically, requiring substantial user interaction to achieve 

desired results. 

 

 
Figure 2.16: Seeded region-growing technique 

(a) Seeds are initially positioned inside the regions of interest. (b) and (c) Pixels 

are iteratively aggregated if their intensity is similar to those already tagged (94) 

(8). 

 

a.! b.! c.!a.! b.! c.!
a.! b.! c.!
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Graph-cut 

The graph-cut requires the user to roughly paint some foreground an 

background pixels (95). Based on graph analysis and optimization, a cut is then 

performed to separate the foreground and background areas in the most 

homogeneous regions. 

   

2.5.3 Automated Segmentation Techniques  

Other methods aim at complete automation of liver segmentation. Automated 

segmentation methods usually perform well on typical datasets but often require 

manual adjustments on pathological and unusual cases. 

 

Statistical shape models 

To further constrain segmentation outcomes, global shape models were 

proposed to prevent deviation from a reasonable liver shape and to prevent 

segmentation leakage. Previous studies have used a single prior model which was 

subject to local curvature and global shape forces (96). Since the liver varies 

considerably amongst patients, a single prior shape is limited in coverage of the 

wide range of liver morphologies. Therefore, most recent approaches depend on 

statistical shape models (SSM) to expand the range of admissible liver shapes (97). 

In these approaches, the image information drives the deformation of a surface 

mesh parameterized by its principal shape components within a hyperspace of 

admissible shapes (Figure 2.17).  
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Figure 2.17: Statistical shape models 

To restrict the segmentation to a set of admissible liver shapes, a shape database is 

compiled, from which any new liver shape is expressed by a set of parameters 

called modes of variation. The various modes of variation (typically roughly 30 

modes) are adjusted to fit the liver shape on image features. Statistical shape 

models impose hard restriction on the segmentation outcome by integrating prior 

shape. However, training data cannot capture all variation and therefore are 

sometimes too limiting to accurately model specific livers (8). 

  

The SSM approach provides a clear advantage over traditional active 

contours. Further, it has been shown to reliably produce accurate segmentation in 

noisy data and remain robust to common segmentation pitfalls such as contact with 

adjacent organs by imposing important shape constraints (27). However, the 

training phase involved is elaborate and represents a disadvantage. Moreover, the 

resulting model might be too constraining to reach liver shapes with features that 

weren't considered in the training data, leading to potential limitations on 

pathological or previously resected livers. 
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Recently, a liver segmentation competition compared liver segmentation 

algorithms on a common database of contrast-enhanced CT images at the MICCAI 

2007 Grand Challenge (27). The study supported the use of both statistical shape 

information and model-based approaches to accurately represent liver structure 

variability (27). The authors also found that while statistical-based methods are 

certainly beneficial for automated segmentation, they are too constraining to reach 

precision and need to be coupled with a secondary segmentation method, such as 

graph-cut.  

 

3D deformable models 

A 3D extension of the active contours approach (Section 2.5.1) led to the 3D 

deformable models technique. This technique results in a 3D surface mesh which 

evolves inside the patient’s dataset (26). The mesh may be subject to a non-rigid 

registration scheme based on Laplacian mesh deformation (98) which precisely 

deforms the shape towards the liver boundary. If carefully tuned, an approximate 

shape or a simple sphere is sufficient to initialize the process. This technique is 

described in detail in Section 3.2.2. 

 

k-means 

Classification algorithms, such as the k-means, attempt to label pixels as liver 

parenchyma based on their intensity and their texture properties (99). Since this 

often leads to coarse segmentation, it is generally combined with morphological 

operations such as mask erosion or dilation to eliminate structures having the same 

intensity. 

 



 SECTION 2. LIVER VOLUMETRY  

 44 

2.5.4 Advanced Segmentation Methods 

Combination methods 

The presented segmentation methods are seldom used on their own. Advanced 

segmentation strategies often rely on combinations of various concepts. For 

instance, pixels classified by k-means with high confidence can be used as a 

background/foreground labeling for a graph-cut optimization. Statistical shape 

models may be used as robust initialization for unconstrained 3D active contour 

models. 

A summary of advantages and limitations of various segmentation methods 

illustrated in the previous sections is provided in Table II.II. Green boxes indicate 

desirable features, whereas red boxes indicate limitations of various strategies. 

Manual segmentation methods require significant interaction and are time-

consuming. Assisted contouring improves reproducibility and robustness. Semi-

automation shortens interaction time. Fully automated segmentation methods are 

reproducible and rapid, but complex to implement and may fail.  

 

 Table II.II: Summary of advantages and limitations of various segmentation 

methods.  

Reference (8) 

 
 

Pros and Cons of Segmentation Methods!

Approaches! Methods! Reproducibility! Robustness! Time! Interactivity! Complexity of 
implementation!

2D!

Manual!

↑! ↑! ↑↑! ↑↑! ↓↓!
Manual with 
assisted 
contouring! ↑↑! ↑↑! ↑! ↑! ↓!

2D/3D!

User-initialized 
& 
semiautomated! ↑! ↓! ↓! ↓! ↑!
Fully automated 
segmentation! ↑↑! ↓↓! ↓↓! ↓↓! ↑↑!

Table 1. Summary of advantages and limitations of segmentation methods illustrated previously. Manual segmentation methods 
require significant interaction and are time-consuming. Assisted contouring improves reproducibility and robustness. Semi-
automation shortens interaction time. Fully automated segmentation methods are reproducible and rapid, but complex to 
implement and may fail. Green boxes indicate desirable features, whereas red boxes indicate limitations of various strategies.!
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Outsourcing 

Alternatively, private companies such as MeVis Medical Solutions® and 

EDDA Technology, Inc. offer a variety of segmentation, visualization, and 

analysis tools using their own proprietary software.  

As noted from the MeVis website (http://www.mevis.de/en/): "On the basis of 

computed tomography (CT) or magnetic resonance imaging (MRI) data, the 

MeVis Distant Services (MDS) team of specialists develops detailed treatment 

scenarios, including three-dimensional presentations of the liver anatomy, exact 

volume quantifications and risk analyses." 

Typically select DICOM images are sent to the company's file transfer 

protocol server. Segmentation images and mesh are then returned to the customer. 

The mesh can be manipulated a posteriori for surgical planning. 

 

MRI-based methods  

Though liver segmentation literature mostly pertains to CT imaging, there has 

been limited research more specifically oriented toward MRI-based methods. MRI 

offers a broader range of tissue contrast, providing additional tissue 

characterization sequences for detection of liver pathologies. Being less invasive 

than CT, it is suggested that it could satisfy preoperative imaging needs for volume 

measurements and surgery planning simultaneously.  

MRI segmentation involves additional challenges as described in Section 

3.1.3, including: poor resolution, motion artifacts due to long acquisition time and 

most notably, intensity inhomogeneities. Since there is a wider range of 

acquisition parameters for MRI and no common segmentation database is yet 

publicly available, the comparison and validation of segmentation algorithms are 

still subject to database variability. Few MRI-based automated or semiautomated 

segmentation techniques have been reported in the medical literature. Table II.III 

summarizes a selection of MRI-based techniques which have recently been 



 SECTION 2. LIVER VOLUMETRY  

 46 

reported in the literature. Key results from each are discussed elsewhere in the 

manuscript. 

 

Table II.III: Summary of MRI-based liver segmentation techniques 

Authors Patients Segmentation 
Techniques 

MRI 
Sequence 

Reference 
Standard 

Mazonakis et 
al. 2002. 
(83) 

n=38 
(consecutive) 

Manual- 
Semiautomated. 
Stereology (Point-
counting) 

2D FLASH 
T1 gradient 
echo 

Manual 

Hermoye et al. 
2005. 
(79) 

n = 18 
(living 
transplant 
donors) 

Semiautomated. 
Geometric 
deformable 
models, level-set 

Contrast-
enhanced T1, 
fast-field 
echo 

Surgical 
graft 
weight 

Farraher et al. 
2005. 
(85) 

n=27  
(normal and 
pathological 
livers) 

Semiautomated. 
Dual space 
clustering 
algorithm 

Mixed fast 
spin-echo 
pulse 

Manual 

Sahin et al. 
2006. 
(100) 

n=5  
(cadaveric 
livers) 

Manual- 
Semiautomated. 
Stereology (Point-
counting) 

Spin-echo Manual 

Siewart et al. 
2010. 
(101) 

n=10  
(routine 
examinations) 

Automated. 
Intensity-based, 
morphological 
region-growing 

3D T1 
LAVA 

Manual 

Gloger et al. 
2010. 
(102) 

n=20 
(variable) 

Automated. 
Probability map, 
region-growing  

T1 FLASH 
3D VIBE 

Manual 

Rusko and 
Bekes. 2011. 
(103) 

n=60  
(variable) 

Automated. 
Probabilistic 
models, intensity-
based 

LAVA Manual 

Torkzad et al. 
2012. 
(88) 
 

n=41 
(consecutive) 

Manual-
Semiautomated. 
Stereology (Point-
counting) 

T1  Manual 

Huynh et al.  
2014. 
(90) 

n=23 
(variable liver 
disease) 

Automated. 
Geodesic active 
contours, level-set 

T1 LAVA Manual 
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Lopez-Mir et 
al. 2014. 
(104) 

n=17  
(variable 
training 
dataset) 

Automated. 
watershed 
transform and 
stochastic 
partitions 
 

Contrast-
enhanced T1 

Manual 

 

 

A novel segmentation method 

In Section 3 we propose a novel method that can be effectively used for liver 

segmentation for both CT an MRI images, which has rarely been previously 

reported in the medical literature. Specifically, we address the shape initialization 

problem with implicit shape modeling and combine it with a shape deformation 

scheme based on Laplacian mesh optimization. It is independent of training data, 

requires modest user interactions and is robust to a wide variety of pathological 

cases. Two correction tools based on the same deformation scheme are further 

implemented which allows the user to further improve the segmentation.  



 

 

3 Segmentation Software 

3.1 Software Concept  

Based on our combined experience in liver imaging and software 

development, our research team developed a list of features expected from an 

automated liver segmentation solution. These needs are summarized in Table III.I 

and expanded on in further detail below. 

 

Table III.I: Features expected from an automated liver segmentation solution 

Categories Needs 
Clinical needs -Efficient clinical workflow 

-Possibility to delegate segmentation to technologist/image 
analyst 
-Ability to edit segmentation results 
-Trackability 
-User-friendly interface 
-Accurate 
-Reproducible 
-Robust 
-Fully automated vs. semiautomated 
-Efficient (<10 minutes/case) 
-Compatible with CT and MRI images 

Quantitative output -Uniform segmentation approaches  
-Can report accurate whole liver volume (< 5% error) 
-Can extract 3-dimensional liver mesh 

Minimal Error -Minimize: 
 -Error linked to method initialization 
 -Error linked to modality 
 -Error linked to patient anatomy 

 

3.1.1 Clinical Needs 

Liver segmentation solutions are developed to address the clinical needs of 

physicians and to implement research and development methods developed by 

biomedical engineers. However, it is unrealistic to expect users in these domains to 
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perform liver segmentation on a daily basis. Current practice includes delegation 

of segmentation tasks to radiology technologists, image analysts or trainees. Being 

provided with the vital information obtained from liver segmentation allows 

physicians to concentrate on patient care, thus optimizing clinical workflow. 

A liver segmentation graphical interface should be intuitive enough to allow 

routine operation by users with variable levels of training. Thus, key anatomical 

landmarks and image projections required for liver segmentation should be clearly 

identifiable. Furthermore, the software should allow for quality control (i.e. 

validation and correction) of the segmentation results by the clinician at a later 

time, if needed. 

The graphical interface employed for our segmentation method included axial, 

coronal and sagittal planes of the abdomen; similar to an imaging workstation 

during routine clinical practice. A 3D projective view where all initial drawn 

contours could be visualized was also available. An example of the graphical 

interface used for semiautomated segmentation is provided in Figure 3.1.  
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Figure 3.1: Graphical interface for semiautomated liver segmentation. 

The user is provided with axial, coronal and sagittal planes of the abdomen as well 

as a 3D projective view where all initial drawn contours can be visualized. The 

user can scroll through images similar to an imaging workstation interface. 

 

The accuracy, precision, and robustness of the automated segmentation 

method should be validated against a reference standard. Common reference 

standards used in validation of liver volumetric methods are described in Section 

2.4. For our validation purposes we chose a manual segmentation method 

supplemented with an active contours technique. Our validation scheme is further 

described in Sections 3.4, 4 and 5.  

While full automation may appear ideal, it is often associated with additional 

problems. Heimann et al. describe fully automated liver segmentation methods as 

those where "each algorithm had to use the same set of parameters for all test 
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images" (27). Conversely, interactive or semiautomated segmentation methods are 

those which "require a certain amount of user interaction to complete" (27). This 

user interaction can range from placing a single seed point within a region on 

interest to extensive manual alterations of the segmentation mesh. 

As shown in Table II.II, though fully automated segmentation methods are 

reproducible and rapid, they are also complex to implement and lack robustness. 

Inevitably, automated methods will generate errors due to unforeseeable 

anatomical variants or technical challenges. The MICCAI 2007 Grand Challenge 

(27) found that, on average, interactive (i.e. semiautomated) segmentation methods 

were more accurate and reliable than fully automated methods. The larger standard 

deviation of automated methods was attributed to increased outlier errors (27).  

A semiautomated liver segmentation method provides a suitable trade-off 

between full automation and manual segmentation. Such a hybrid method 

incorporates input from the user with a sophisticated understanding of liver 

imaging with automation of repetitive steps best performed by software. Human 

feedback can thus be provided at critical steps during segmentation to avoid error 

propagation. 

A total interaction time of less than ten minutes for semiautomated liver 

segmentation would be ideal for practical purposes. Any task that requires a longer 

period away from clinical work would not be sustainable in the context of a busy 

radiology practice. Furthermore, sample size requirements to use parametric 

statistical tests and to obtain sufficient power in clinical studies typically require at 

least thirty patients. The manual segmentation of a liver can surpass 30 minutes 

per case. Thus, lengthy segmentation solutions may extend time required in 

validation of new segmentation methods and make them non-feasible. In our 

experience, a segmentation method that requires 5-10 minutes of total interaction 

time offers the right balance of user feedback and software automation. 

A final clinical need we wished to address was the ability to segment both CT 

and MRI images using the same automated method. Though a vast amount of 
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literature exists regarding CT-based segmentation, published automated MR-based 

segmentation methods are limited as they are more difficult to develop and 

validate (90). Even more scarcely described in the clinical literature is a method 

compatible with both modalities. The feature-matching step (Section 3.2.2) which 

identifies the actual liver boundary for both CT and MRI images established the 

multi-modality versatility of our method. Section 5 describes a validation study for 

our segmentation method using CT and MRI images.  

 

3.1.2 Quantitative Output 

In order to generate uniform segmentation results which are comparable, 

segmentation rules should be instituted and clearly explained to image analysts. 

General consensus is to exclude major vessels which abut the liver periphery, such 

as the main portal vein and inferior vena cava. Other vessels which are completely 

surrounded by liver parenchyma (i.e. portal vein branches, hepatic veins and 

hepatic arteries) are generally included in the segmentation. Tumours and other 

pathologic structures peripherally located in the liver parenchyma are also usually 

included. As we will discuss in Section 3.1.3, at times it may be difficult to 

distinguish the boundaries between liver and surrounding structures due to similar 

tissue density, leading to segmentation error. 

Once the liver has been completely segmented, the software should provide 

whole-liver volume with minimal input. In addition, the 3D segmented liver 

envelope should be exported and saved as a mesh that can be read by other 

software. Comparison of surface meshes provides an additional tool to compare 

segmentation accuracy both visually and with mathematical concepts. 

Recently, segmentation evaluation frameworks have been criticized for using 

liver volume alone to evaluate the quality of segmentation results (27). To 

facilitate the comparison between segmentations and objectively assess technical 

improvements from different research groups, several performance measures have 
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been proposed by the liver segmentation community to highlight different aspects 

of segmentation agreement. These measures are summarized in Appendix 1. 

 

3.1.3 Sources of Error  

There are multiple potential sources of error which must be accounted for in 

the development of an automated liver segmentation method. In this context, error 

is defined as any element which impedes a segmentation method from producing 

exact results. This section describes potential sources of error related specifically 

to method initialization, choice of imaging modality, patient anatomy and 

evaluation frameworks. Possible solutions are also provided. 

 

Error linked to method initialization 

The susceptibility of a segmentation algorithm to certain sources of error is 

intrinsically linked to the type of algorithm used and its limits of use. Methods 

based on deformable models, such as the one described in this dissertation, usually 

contain three main steps: initialization of the model, identification of certain image 

characteristics and model deformation. The initialization step is classically the one 

most prone to error. 

The deformable models approach requires the user to manually input an initial 

solution which can range from rough to precise. The more elaborate the 

initialization, the less the possibility of segmentation divergence and error. 

However, intricate initializations are lengthy to implement thus compromising 

efficiency. 

The initialization of a surface model may be performed via a simple sphere 

within a region of interest or from numerous organ contours leading to a detailed 

model. When the morphological variability of an organ is low, such as for a bony 

structure, a low input initialization sequence may be sufficient. This would not be 

adequate for an organ such as the liver which demonstrates significant variability 
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amongst patients. In addition, it may be affected by numerous pathological 

conditions (i.e. cirrhosis, tumours) which cause its surface to be irregular. 

On CT, liver density is usually relatively distinct from those of neighboring 

structures. For this reason, use of a classical technique such as region-growing 

may be considered for initialization. However, at times the liver parenchyma is 

indistinguishable or of similar density to adjacent organs. In these instances, 

region-growing may fail; either extending to adjacent organs or incompletely 

encompassing the liver parenchyma (Figure 3.2). On MRI, lack of a clear density 

interface between the liver and adjacent structures also makes the use of region-

growing problematic. 

 

 
Figure 3.2: Initialization errors 

Use of a region-growing technique to initialize CT-based automated segmentation 

may result in (a) adequate initialization, (b) extension to adjacent organs such as 

the spleen, (c) complete failure without adequate delineation of the liver. Figure 

used with permission from Gabriel Chartrand. 

 

Our solution to the initialization problem involves manual delineation of the 

liver with six drawn contours. Two contours are placed per orthogonal plane in 

such a way to globally outline the liver contour while being sufficiently apart to 

capture specific hepatic features.  In our experience, this number of contours is 

sufficient to generate a reliable initial shape, findings corroborated by Wimmer et 

al. (105). 

a.! b.! c.!
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From these initial sparse contours, it is possible to interpolate a 3D surface 

model using variational shape interpolation (106). This method is compatible with 

both CT and MRI images. Also, it allows the software to generate an initial shape 

quickly without the use of statistical shape models which have inherent limitations 

(described in Section 2.5.3). The initial shape is formed independent of image data 

and instead depends on user input which is assumed to more exact. As such, the 

initialization becomes robust and converges to the segmentation solution more 

rapidly. 

 

Error linked to modality 

The modality used for segmentation purposes dictates the quality of features 

which can be extracted from images. The more difficult it is to extract a coherent 

feature, the higher the risk of segmentation divergence. Image acquisition 

parameters and imaging artifacts directly influence segmentation results and 

represent important potential sources of error.  

Liver CT and MRI acquisitions are typically performed with breath-hold to 

limit the effects of respiration on image quality. CT offers rapid image acquisition 

and thus excellent spatial resolution. MRI is known for longer image acquisition 

and requires a compromise between spatial resolution, signal-to-noise ratio and 

acquisition time. Slice thickness may be increased to obtain adequate z-axis 

coverage of the entire liver to accommodate the limited breath-hold capacity of 

some patients. This results in partial volume effects when voxels located at the 

interface of two structures with different signal characteristics must be averaged. 

In addition, large spaces between voxels need to interpolated making the 

volumetric calculations more prone to error. 

Slice thickness has also been shown to impact automated liver volumetry 

results (79, 86, 107). Sahin et al. show that 4-5mm thick slices are most suitable to 

accurately estimate liver volume using MR imaging as compared to 2.5, 7.5 and 

10mm thick slices (86). Reiner et al. suggest 6mm slice thickness on CT and 8mm 
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on MR provided a reasonable trade-off between volumetric precision and time 

efficiency (107). Our validation study in Section 5 used average slice thicknesses 

of 2.5mm for CT and 5.5mm for MR. We believe these were optimal for the 

purposes of validation of our semiautomated method.  

Use of volumetric imaging (3D MRI) allowed us to overcome errors 

associated with large slice thicknesses and gaps between slices. Rofsky et al. 

introduced 3D spoiled gradient echo sequences in 1999 (108). These MR pulse 

sequences allow near isotropic 3D imaging of the liver in one breath hold resulting 

in images with high spatial resolution. For our study we used a commercial 

sequence known as Liver Acquisition and Volume Acquisition (LAVA) sequence 

based on earlier 3D spoiled gradient-recalled echo sequences. 

Both CT and MRI are prone to imaging artifacts, or elements within an image 

which do not represent normal patient anatomy and impact image interpretation. 

Artifacts can negatively influence automated segmentation methods causing 

segmentation error.  

On CT, metallic objects such as surgical material can cause streak artifacts. 

These are typically more pronounced on MRI as metallic objects cause "blooming" 

when they locally influence the magnetic field. Blooming artifact can distort the 

image at the liver boundary causing segmentation error in these locations. Motion, 

pulsation and partial volume artifacts have also been shown to interfere with 

segmentation accuracy (79, 90). Artifacts and imaging pitfalls commonly seen on 

MRI are displayed in Figure 3.3. 
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Figure 3.3:. Imaging pitfalls which may degrade liver segmentation on MRI.  

Axial T1-weighted fat-saturated images with contrast injection depict: (a) severe 

motion artifact, (b) partial volume averaging of the liver parenchyma with the 

gallbladder (arrows), (c) ghost artifact with the aorta (arrow), (d) inhomogeneous 

fat saturation (white arrows) and fat-water swap in the liver (arrowheads) (8). 

 

The deformable models approach offers good resistance to noise and metallic 

artifacts on CT due to iterative and incremental rigid transformations. Artifacts on 

MRI which obscure the liver boundary are also overcome by conserving rigid 

boundaries. In addition, surfaces can be corrected directly by the user in areas 

degraded by artifact. 

 

Pitfalls of Segmentation on MRI!
Fig 21. Illustrations of imaging pitfalls which may 
degrade liver segmentation based on MRI.!
!
(a) Axial T1-weighted fat-saturated image after 

Gd-BOPTA injection of a 73-year-old man 
shows severe motion artifacts.!

(b) Axial T1-weighted fat-saturated image after 
Gd-BOPTA injection of a 61-year-old man 
demonstrates partial volume averaging of the 
liver parenchyma with the gallbladder 
(arrows).!

(c) Axial T1-weighted fat-saturated image after 
Gd-BOPTA injection of a 47-year-old woman 
depicts ghost artifact with the aorta (arrow). !

(d) Axial T1-weighted fat-saturated image after 
Gd-BOPTA injection of a 60-year-old man 
shows inhomogeneous fat saturation (white 
arrows) and fat-water swap in the liver 
(arrowheads).!

a.! b.!

c.! d.!
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Error linked to anatomy 

Certain liver anatomical characteristics inevitably cause segmentation 

difficulties. Segmentation error on CT images is often noted at the interface of 

liver parenchyma and the adjacent intercostal muscles, diaphragm, spleen, stomach 

and heart (Figure 3.4). Review of the CT segmentation literature corroborates 

error at low contrast boundaries (27), at the liver hilum, adjacent to tumours, at 

hepatic fissures and near vascular insertions. 

 

 
Figure 3.4: Imaging pitfalls which may limit liver segmentation on CT.  

(a) Axial enhanced CT image of a 62-year-old woman shows indistinct liver-

spleen boundaries (arrows). (b) Axial enhanced CT image of a 47-year-old man 

depicts segmentation challenges caused by ill-defined and non-continuous borders 

found near the liver dome (arrows). (c) Axial enhanced CT image of a 73-year-old 

man shows partial volume averaging between the left liver and the heart (arrows) 

(8). 

 

Similar areas cause segmentation error on MRI. Under-segmentation on MRI 

occurs at low-contrast liver boundaries and areas of inhomogeneous density 

whereas over-segmentation usually occurs at organs abutting the liver (90).  

Cirrhosis, steatosis, polycystic diseases, regions of ablation and malignancies 

(particularly tumours at the liver border) can cause highly irregular liver 

morphology. This can affect automated segmentation results, stifling the evolution 

of a deformable model to a complex form due to multi-lobulated contours. 

Pitfalls of Segmentation on CT!
Fig 20. Illustrations of imaging pitfalls which may limit liver segmentation based on CT.!
!
(a) !Axial enhanced CT image of a 62-year-old woman shows indistinct liver-spleen boundaries (arrows).!
(b) Axial enhanced CT image of a 47-year-old man depicts segmentation challenges caused by ill-defined and non-continuous 

borders found near the liver dome (arrows).!
(c) !Axial enhanced CT image of a 73-year-old man shows partial volume averaging between the left liver and the heart (arrows).!

a.! c.!b.!
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Error associated with complex morphologies can be overcome by increased 

user interaction. Implementing more complex initialization strategies such as 

increasing the amount of detail per contour may improve segmentation accuracy in 

these difficult areas. Deformable models are not typically adapted to propagate 

into small regions such as hepatic fissures or vascular insertion sites. Error at these 

sites may be rectified by interactive correction tools, as are described in Section 

3.2.3. 

 

3.2 Segmentation Method  

The proposed method was developed at the Laboratoire de recherche en 

imagerie et orthopédie (LIO, Montreal, Canada) with collaboration from the 

clinical and engineering teams. The code was implemented in C++ using VTK 

(Kitware Inc., 2014, Clifton Park, NY) as a rendering external library. 

The semiautomated segmentation method consists of 3 main phases (Figure 

3.5). First, a 3D surface mesh is interpolated from a few user-generated contours 

of the liver. For each vertex of the generated mesh, matched features 

corresponding to the liver boundary are identified in the dataset. A Laplacian mesh 

optimization then deforms the mesh toward the matched features, while preserving 

surface smoothness. Finally, the user can manipulate and correct the final mesh. 
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Figure 3.5: Proposed segmentation method. 

The proposed segmentation method is composed of three phases: initialization, 

optimization and correction. Figure used with permission from Gabriel Chartrand 

and authors of (109). 

  

3.2.1 Initialization Phase 

The aim of the initialization phase is to provide a tool for the user to easily 

generate a reliable initial solution from as few interactions as possible. During this 

first step, the user is presented a graphical interface with traditional multi-planar 

views (i.e. axial, coronal, sagittal) and a 3D projective view where all drawn 

contours can be visualized. The user then clicks in the selected view to position 

nodes around the liver contour which are automatically connected by a cardinal 

spline (Figure 3.6A).  

Once the contour is closed, nodes can be moved, removed or added until the 

contour satisfactorily outlines the liver shape in the chosen view. Furthermore, the 

contours are automatically optimized using image warping and a minimal path 

algorithm, inspired from (110), to precisely delineate the liver boundary (Figure 

3.6B). This automatic contour optimization step differed slightly for CT and MRI 

images and is further described in Chartrand et al. (109). Positioning 2 contours 

per orthogonal plane generally provide enough constraints to produce an adequate 

initial solution. If needed, further contours can be added after the following 

interpolation step if the resulting shape is too far from the desired segmentation. 
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Variational shape interpolation 

Variational shape interpolation (93) is a powerful shape interpolation method 

based on radial basis function (RBF) interpolation. This method is applied to 

generate a 3D surface mesh from these initial sparse contours.  

As previously described by Heckel et al. (93), variational shape interpolation 

is a method which interpolates a 3D function of the form f(x) = V , where x = {x; 

y; z}, implicitly embedding the interpolated shape at its zero level-set. To obtain 

this function, a set of valued interpolation nodes ci need to be defined on the 

surface of the target shape, as well as inside and outside the shape. The value f(ci) 

= 0 is assigned to nodes lying on the desired surface, while interior and exterior 

nodes are assigned negative and positive values respectively, in such a way that 

the resulting iso-surface f(x) = 0 outlines the shape's boundary.  

To better approximate the liver boundary orientation, we rely on the image 

information underlying the provided contours to define the oriented interpolation 

nodes. Since these were automatically optimized to fit onto the liver boundary, the 

underlying gradient information is assumed to globally represent the liver 

boundary. Every provided contour is regularly sampled at a given step. For each of 

these samples, the gradient orientation of the image data is estimated. For the 

gradient orientation to be robust to image noise and adequately represent the liver 

boundary normal direction, the image data is smoothed by a Gaussian kernel prior 

to sampling the gradient. The sampled gradient orientation is then inspected for 

inconsistencies, such as normal flipping, and further smoothed along the contour 

path to ensure smooth and continuous values (Figure 3.6C).  
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Figure 3.6: Initialization phase. 

(A). The input spline in red generated with nodes in blue and optimized contour in 

green. (B) Detail of contour optimization. (C) Surface normals (blue arrows) of a 

single contour (red spline) estimated from image gradient information. Desired 

shape overlaid in pale red. Figure used with permission from Gabriel Chartrand 

and authors of (109). 

 

Additionally, estimated 3D normals deviating from its associated projected 

contour normal for more than 45° are discarded. Finally, for each oriented sampled 

nodes, interpolation nodes are translated inward and outward along the final 

gradient orientation (Figure 3.7A). Once the weights are computed, the resulting 

function implicitly defines a 3D manifold that intersects every previously defined 

contours. The final surface can then be extracted by evaluating the function over 

the domain of interest and then using an iso-surface algorithm to generate the 

surface mesh (Figure 3.7C). Mathematical equations for variational shape 

interpolation are beyond the scope of this thesis, but are described in Chartrand et 

al. (109). 
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Figure 3.7: Variational shape interpolation. 

(A) Variational shape interpolation rely on a set of sparse nodes with negative 

values inside the desired shape (red dots), positive values outside (green dots) and 

null values at the interface (yellow lines). (B) The resulting interpolation function 

is evaluated on a lattice from which a surface mesh is extracted using an iso-

surface algorithm (C). Figure used with permission from Gabriel Chartrand and 

authors of (109). 

 

3.2.2 Shape Deformation phase 

Once the liver shape has been properly initialized, it is close to the desired 

segmentation but does not precisely overlap. This step is based on a Laplacian 

mesh optimization method (98), used as an iterative non-rigid registration 

approach to segmentation.  

 

Feature matching  

Feature-matching assigns each vertex of the initial 3D surface mesh with a 

corresponding target point representing the most probable location of the liver 

boundary. This target point is determined along intensity profiles as the point of 

maximal intensity difference between inward (liver) and outward (non-liver) 

intensities. This step differs for CT (Figure 3.8A) and MRI (Figure 3.8B) images, 

thus establishing the multi-modality versatility of the segmentation method. 

For CT, since most of the liver parenchyma lies within a specific intensity 

range, the intensity profiles (gray signal in Figure 3.8C) are rescaled according to 
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a Gaussian transfer function (blue signal in Figure 3.8C) parameterized by the 

estimated mean intensity and standard deviation of the liver. After this operation 

the liver boundary, if apparent along the rescaled intensity profile, should present 

itself as a signal jump for normals pointing inward. To identify this feature, we 

rely on the sum of absolute differences similarity measure. 

On MRI, rescaling the interpolated intensity profiles by a Gaussian transfer 

function would not be helpful due to intensity inhomogeneities across the liver 

parenchyma. However, since the liver is enhanced with a contrast agent in a late 

acquisition phase, its intensity is likely different from adjacent tissues though not 

entirely constant.  

In this context, a metric inspired from Chan and Vese (111) was used where 

the difference between the mean intensity before and after the target feature of the 

profile is maximized. However, the maximum of the resulting signal, as seen on 

the blue signal in Figure 3.8D, is not always located at the liver boundary since 

the fat/muscle interface might display a strong intensity difference.  

The obtained signal is therefore multiplied by the profile intensity (gray signal 

in Figure 3.8D) to favour bright features over darker ones. The signal is further 

multiplied by the profile's intensity derivative (green signal in Figure 3.8D) to 

favour edges as well. The target feature is then obtained from the maximum value 

and its location on the resulting signal (red signal in Figure 3.8D).  

At each iteration, the shape progressively converges toward the desired 

segmentation and thus the length of the search space is linearly reduced to account 

for the mesh closing in on the patient's anatomy. Though the MRI feature 

matching method is prone to be noisy as the gradient is multiplied, our results 

generated few outliers and the large majority of our segmentations converged 

appropriately. 

 



 SECTION 3. SEGMENTATION SOFTWARE  

 65 

 
Figure 3.8: Feature matching strategy 

The feature matching step identifies along intensity profile (A,B; green lines) the 

most probable location of the liver boundary. (C) For CT, a signal jump window is 

swept against the Gaussian rescaled profile to compute the sum of absolute 

differences similarity metric. (D) For MRI, the difference between the average 

intensity before and after every possible feature position along the profile is 

computed and weighted by the profile's intensity derivative. Figure used with 

permission from Gabriel Chartrand and authors of (109). 

 

 

Laplacian mesh optimization 

After the matching step, every vertex is assigned to a target with a certain 

confidence weight. While the target features might globally correspond to the liver 

boundary, they are most likely not assigned to their optimal location relative to one 

another. Laplacian mesh optimization (98) ensures that vertex relocation preserves 

a smooth local curvature while deforming the mesh toward their matched features. 

Mathematical equations for variational Laplacian mesh optimization are beyond 

the scope of this thesis, but are further described in Chartrand et al. (109). 
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3.2.3 Interactive Corrections Phase 

At times, the initial 3D surface mesh might be too distant for the intensity 

profile to reach the liver boundary. Additionally, adjacent structures may display 

similar intensity to the liver parenchyma leading to target error. To recover cases 

where the segmentation might diverge from the patient's anatomy, two interactive 

corrections tools were implemented to impose additional constraints on the shape 

evolution. No regulation with respect to prior shape anatomy was used in this 

phase. The tools described below were intended for small corrections only. 

The first correction tool (Figure 3.9A) allows the user to manipulate the 

surface mesh from the multi-planar view of the user interface. This tool allows the 

user to click on the surface mesh and manipulate it to the desired location. After 

releasing the mouse button, a locally constrained version of the Laplacian mesh 

optimization is launched.  

The second correction tool (Figure 3.9B) allows the user to input constraint 

curves, the same way as in the initialization phase, to prevent the shape from 

evolving toward misleading features. If such constraints are defined prior to shape 

optimization, the curves are regularly sampled and each of the resulting constraint 

node is matched with the closest vertex on the surface mesh. This correction tool is 

particularly useful where large areas are missing clear boundary information or 

showing confusing features. 
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Figure 3.9: Interactive correction tools  

(A) The first correction tool allows the user to manipulate the surface mesh from 

the MPR views. (B) The second tool allows the user to input strong positional 

constraint curves. Figure used with permission from Gabriel Chartrand and authors 

of (109). 

 

3.3 Software Validation Strategy 

As part of our research program, we devised a strategy to clinically validate 

our semiautomated liver segmentation method. The validation was performed in 

vivo with manual segmentation used as the reference standard. We were fortunate 

to have diverse patient databases representing a spectrum of liver disease available 

for our validation purposes. 

As a first step, we introduced our novel semiautomated segmentation method 

as a proof of concept study. To study the method's multi-modality versatility, it 

was tested on diverse CT and MRI datasets. Semiautomated and manual 

segmentation were compared using segmentation performance measures which 

highlight various aspects of segmentation agreement. This study will be described 

in Section 3.4, summarizing the findings of a paper by Chartrand et al. (109). 

As a second step, we evaluated the repeatability, agreement and efficiency of 

our method on a database of 41 subjects who underwent major hepatectomy 

between October 2006 and April 2009 and had a pre-operative contrast-enhanced 

CT. Segmentation quality was evaluated using segmentation performance 
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measures. This study will be described in Section 4, summarizing the findings of a 

paper by Gotra et al. (112). 

As a third step, we compared the repeatability, agreement and efficiency of 

liver MRI- and CT-based semiautomated segmentation. The validation database 

consisted of 31 subjects with a spectrum of liver disease who required preoperative 

evaluation with both CT and MRI within two weeks between January 2010 and 

March 2013. Segmentation quality was once again evaluated using segmentation 

performance measures. This study will be described in Section 5, summarizing the 

findings of a paper by Gotra et al. (113). 

 

3.4 Semiautomated Liver Segmentation on CT and MRI 

In this section we summarize the findings of a paper by Chartrand et al. 

entitled "Liver Segmentation on CT and MR using Laplacian Mesh Optimization" 

(109).  

As co-author for this manuscript, I was an active member of the research team 

responsible for creating the semiautomated liver segmentation method described. I 

provided clinical perspective and expertise during the developmental stages of the 

method. I participated in both the manual and semiautomated segmentation steps 

required for validation. Finally, I participated in the revision steps during 

manuscript drafting. This paper is currently being finalized prior to submission in 

a biomedical engineering journal not yet determined. 

 

3.4.1 Introduction 

Automated liver segmentation is a challenging task in the field of medical 

image processing. Usually performed on contrast-enhanced CT images, it provides 

physicians with 3D models and precise regions of interest for the evaluation of 
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numerous clinical parameters relevant in virtual surgery planning, radio-therapy 

planning and image-guided surgery.  

The development and validation of automated liver segmentation methods 

represents a very active research area. The liver is an organ associated with various 

segmentation pitfalls. It can appear poorly contrasted on CT and MRI images 

(Figure 3.10A), and is often in contact with adjacent organs which have the same 

image texture such as the spleen (Figure 3.10B), the heart (Figure 3.10C), and the 

stomach.  

The shape of the liver varies considerably from one patient to another and its 

appearance is additionally variable depending on the medical or surgical history. 

The liver comprises intricate details such as vascular insertions and hepatic 

fissures which are difficult for automated algorithms to master. 

Furthermore, imaging artifacts resulting from uneven contrast diffusion on CT 

or intensity inhomogeneities on MRI (Figure 3.10D) can impair automated 

segmentation processes. All these pitfalls combined makes it difficult to design an 

automated tool that is functional in every situation. Therefore, clinicians often fall 

back to manual segmentation though it cumbersome and not adapted to clinical 

reality. 

We present in this work a semiautomated segmentation compatible with both 

CT and MRI images. The process is quickly initialized by the user drawing a few 

contours on multi planar views to globally outline the liver shape. A 3D surface 

model is then interpolated and automatically optimized to best fit image features. 

Two correction tools were also implemented to further correct the liver model until 

satisfaction. The proposed segmentation method, which was tested on CT and 

MRI datasets, was thoroughly analyzed and compared to contemporaneous 

methods. 
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Figure 3.10: Common liver segmentation pitfalls on CT and MRI.  

(A) Poor contrast with intercostal muscles (M). (B) Contact with the spleen (S). 

(C) Contact with the heart (H). (D) Variable signal intensity due to field 

inhomogeneity (measured intensity values in white). (E) Various acquisition 

artifacts such as truncation artifacts or (F) partial volume effect with adjacent 

organs (right kidney) due to large slice thickness. (L=Liver, M=Muscle, S=Spleen, 

H=Heart). Figure used with permission from Gabriel Chartrand and authors of 

(109). 

 

3.4.2 Materials and Methods 

The proposed semiautomated segmentation method being evaluated in this 

study was described in detail in Section 3.2. 

Thirty CT examinations were obtained from the SLIVER07 repository, a 

common database of contrast-enhanced CT images available for training purposes 

(27). Following approval from the institutional review board, 20 MRI 

examinations from patients being referred for hepatic surgery with a variety of 

liver pathologies were also acquired. CT images in the portal venous phase and 

MRI 3D Liver Acquisition with Volume Acceleration (LAVA) sequences with 

contrast injection were selected for segmentation purposes. 
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Reference segmentations were generated by a radiology resident using slice-

wise manual segmentation with the "snake" tool using SliceOMatic 4.3 Rev-11 

software (TomoVision, Montreal, Canada). Semiautomated segmentations were 

successfully performed for all available CT and MRI datasets. 

Several segmentation performance measures have been proposed by the liver 

segmentation community to highlight different aspects of segmentation agreement 

(definitions provided in Appendix 1). These were used to compared 

semiautomated and manual segmentation results. 

 

3.4.3 Results 

For the semiautomated method average initialization time was 115 seconds. 

Average optimization time was 60 seconds for CT images and 15 seconds for MRI 

images. Average interactive correction time was 180 seconds. 

Average performance error measures for CT and MRI-based segmentation are 

provided in Table III.II. These are compared to results from other published 

methods. Most of the results reported on CT data were previously obtained from 

the SLIVER07 challenge test data. The MRI-based methods were tested on 

varying datasets 
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Table III.II: Comparison of segmentation performance measures  

CT MRI 
 VOE RVD ASD  VOE RVD ASD 
Foruzan et 

al. (114) 
8.3 1.8 1.4 Gloger et al. 

(115) 
10.6 4.7 n/a 

Peng et al. 

(116) 
5.5 1 0.8 Huynh et al. 

(90) 
12.0 3.6 n/a 

Lopez-Mir et 

al. (94) 
6.3 -2.4 0.8 Lopez-Mir et 

al. (104) 
9.5 n/a n/a 

Maklad et al. 

(117) 
5.8 -0.6 0.9 Siewert et al. 

(101) 
n/a 4.2 n/a 

Linguraru et 

al. (118) 
8.0 2.2 1.4 Proposed 

Method 

7.6 1.6 1.5 

Beichel et al. 

(119) 
5.2 1.0 0.8     

Freiman et 

al. (120) 
8.6 2.8 1.5     

Kainmuller 

et al. (121) 
7.0 -3.6 1.1     

Heiman et al. 

(122) 
9.7 n/a 1.6     

Soler et al. 

(123) 
n/a n/a 2.0     

Aoyama et 

al. (124) 
n/a 2.2 n/a     

Proposed 

Method 
5.2 1.1 1.0     

VOE: Volumetric Overlap Error (%), 0% for a perfect overlap between 

segmentations. 
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RVD: Relative Volume Difference (mm), 0mm implies that the segmentation 

volumes are identical. 

ASD: Average Symmetric Surface Distance (mm), 0mm implies perfect 

segmentation. 

 

Examples of raw segmentation results following initialization and 

optimization phases with corresponding manual segmentations are provided in 

Figure 3.11.  
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Figure 3.11: Examples of segmentation results.  

Examples of segmentation results before manual corrections were made, with the 

corresponding ground truth segmentations on CT (A-D) and MRI (E-H). (A) The 

circle represents an area of the liver in contact with intercostal muscles which was 

successfully outlined. (B),(E), (F) and (G) display typically obtained results. (C) 

and (H) display peripheral tumours adequately included in the segmentation. (D) 

illustrates the difficulty of modeling thin and elongated features such as hepatic 

fissures. Figure used with permission from Gabriel Chartrand and authors of (109). 
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3.4.4 Discussion 

Overall performances were inferior on MR images, which was to be expected 

due to signal heterogeneity, parallel imaging artifacts, susceptibility artifacts due 

to metal and air/tissue interfaces and partial volume effects due to slice thickness. 

These factors combined inevitably make manual and automated segmentation less 

accurate and prone to differ. 

The segmentations on CT obtained using the SLIVER07 test data were 

submitted to the challenge organizers, which placed this method in 9th position 

amongst 80 contestant as of December 2014. 

By visually reviewing the optimization results, we noted that the main areas of 

discrepancy were recurrent. The inclusion or the exclusion of the IVC often varies 

from one user to another. In the SLIVER07 database, the IVC was modeled in a 

way to preserve the continuity of the liver parenchyma's surface (Figure 3.11A), 

whereas the proposed method lent itself better to a complete inclusion or 

exclusion. Similarly, the portal vein was often modeled differently than the 

reference with the proposed method (Figure 3.11C).  

Hepatic fissures led to important surface errors (Figure 3.11D). Unless they 

were modeled initially, the rigidity of the surface mesh prevented it from 

propagating into these thin and elongated features. Poor contrast with intercostal 

muscle was well managed in general (Figure 3.11A) but failed completely in two 

particular cases which we considered outliers in this study.  

The MRI feature matching strategy is implicitly less specific than the one 

applied for CT due to the inherent difficulty to model the liver appearance. 

Consequently, the convergence was less pronounced and the surface mesh was 

more easily attracted to erroneous features such as the anterior cortex of the right 

kidney (Figure 3.11H). 

Despite the minor errors reported, the proposed method overall performed 

well and achieved good results against common segmentation pitfalls such as 
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peripheral tumours (Figure 3.11A) and intensity inhomogeneities (Figure 3.11G-

H) on MRI.  

Beside satisfying the initial design objective of being free from training data 

and working on both CT and MRI, the method remained robust to most of the 

cases and provides intuitive and efficient correction tools to manipulate the 

segmentation until satisfaction. Moreover, the average segmentation time was 

reasonably under 5 minutes with an unoptimized implementation and free 

parameters being easily and instinctively set. 

 

3.4.5 Limitations 

We note however that our study involves some limitations. First of all, manual 

segmentation, commonly accepted as a gold standard surrogate in segmentation 

literature, inevitably lead to intra- and inter- reader variability on repeated 

segmentations, as discussed in a recent study (125). This is especially true for MRI 

liver segmentation, where partial volume effect are substantial, leading to some 

axial images being hard to interpret.  

Furthermore, in some cases, a clear consensus regarding vessel and hepatic 

fissure exclusion can hardly be established. These areas often impact importantly 

surface distance performance metrics, even though they are less relevant toward 

the clinical outcome.  

Additionally, since manual segmentation was supported by a 2D snake tool 

which evolves input contours on highest gradient, the segmentation was slightly 

overestimated due to some partial volume effect.  

Finally, in the current implementation, the graphical user interface did not 

permit contour initialization in arbitrary slice orientations. This limited the 

possibility for the user to model in the initial surface mesh some structures such as 

hepatic fissures which are seldom aligned with the orthogonal viewing planes. 
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3.4.6 Conclusion 

We present in this paper a semiautomated segmentation method that can be 

used for both CT and MRI liver segmentation. A primary aim was to overcome the 

need for training data while remaining robust and efficient on a wide range of 

pathological livers. Correction tools were implemented to provide the user the 

means to improve the segmentation until satisfaction.  

Obtained results show that the Laplacian mesh optimization framework can 

achieve excellent segmentation in a short time with limited interaction. Adaptation 

to other MRI sequences as well as vascular subsegmentation will be addressed in 

the future. 



 

 

4 Validation of a Semiautomated Liver 
 Segmentation Method Using CT for 
 Accurate Volumetry 

 

As first author of this manuscript, I was involved in all aspects from study 

design to manuscript drafting. I was an active member of the team responsible for 

developing the liver segmentation method by providing clinical perspective. I 

participated in the ethics submission, raw data collection, manual and 

semiautomated segmentation steps for validation and statistical analysis. I led the 

manuscript drafting and revision process under the supervision of Dr. An Tang. 

This paper was accepted for publication in Academic Radiology in September 

2015. For full text, please see Appendix 2. 

 

4.1 Abstract 

Rationale and objectives: To compare the repeatability and agreement of a 

semiautomated liver segmentation method with manual segmentation for 

assessment of total liver volume on CT (computed tomography). 

Materials and Methods: This retrospective, institutional review board-

approved study was conducted in 41 subjects who underwent liver CT for 

preoperative planning. The major pathologies encountered were colorectal cancer 

metastases, benign liver lesions and hepatocellular carcinoma. This semiautomated 

segmentation method is based on variational interpolation and 3D minimal path-

surface segmentation. Total and subsegmental liver volumes were segmented from 

contrast-enhanced CT images in venous phase. Two image analysts independently 

performed semiautomated segmentations and 2 other image analysts performed 

manual segmentations. Repeatability and agreement of both methods were 
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evaluated with intra-class correlation coefficients (ICC) and Bland-Altman 

analysis. Interaction time was recorded for both methods. 

Results: Bland-Altman analysis revealed an intra-reader agreement of -1 ± 27 

mL; (mean ± 1.96 standard deviation) with ICC of 0.999 (p < 0.001) for manual 

segmentation and 12 ± 97 mL with ICC of 0.991 (p < 0.001) for semiautomated 

segmentation. Bland-Altman analysis revealed an inter-reader agreement of -4 ± 

22 mL with ICC of 0.999 (p < 0.001) for manual segmentation and 5 ± 98 mL with 

ICC of 0.991 (p < 0.001) for semiautomated segmentation. Inter-method 

agreement was found to be 3 ± 120mL with ICC of 0.988 (p < 0.001). Mean 

interaction time was 34.3 ± 16.7 minutes for the manual method and 8.0 ± 1.2 

minutes for the semiautomated method and (p < 0.001). 

Conclusion: A semiautomated segmentation method can substantially shorten 

interaction time while preserving a high repeatability and agreement with manual 

segmentation. 

 

4.2 Introduction 

Assessment of liver volume is a mandatory step prior to extended 

hepatectomy for determining the anticipated future liver remnant and prior to 

living donor liver transplantation for selection of appropriate candidates (13, 72, 

126). Liver volumetry requires a multiplanar imaging modality. CT is currently the 

preferred imaging modality for surgical planning due to its superior spatial 

resolution and short acquisition time (14, 22, 23). Use of CT in pre-surgical 

imaging allows for concomitant assessment of vascular anatomy and quality of 

liver parenchyma and allows determination of total and lobar volume (16). 

The reference standard method to estimate liver volume involves manually 

delineating the liver outline, a process called “segmentation”, on consecutive CT 

images. This method is cumbersome, time-consuming and impractical for 

widespread clinical use (17, 127, 128). Formula-based liver volume estimation 
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using patient height and weight has also been proposed (129). However, this 

approach is based on a linear regression equation and is not specific to patient 

anatomy (130). 

Automated segmentation algorithms provide several advantages such as 

shorter processing time, greater agreement and repeatability (18, 23, 79, 131). 

Although numerous studies have proposed semi- or fully-automated liver 

segmentation methods from CT datasets, these methods have not necessarily been 

translated to clinical use (27). Reasons limiting the performance of segmentation 

algorithms have included: small sample sizes, data sets not reflective of clinical 

problems and poorly defined performance metrics (27, 28). Recently, 

segmentation evaluation frameworks have been criticized for using liver volume 

alone to evaluate the quality of segmentation results (27). To facilitate the 

comparison between segmentation methods and objectively assess technical 

improvements from different research groups, several error measures have been 

proposed by the liver segmentation community to highlight different aspects of 

segmentation agreement: volumetric overlap error, average symmetric surface 

distance, root mean square symmetric surface distance and maximum symmetric 

surface distance (27).  

 

4.2.1 Hypothesis 

In this article, we introduce a novel semiautomated liver segmentation method 

for CT based on variational interpolation and minimal path surface segmentation. 

We hypothesized that this method would improve repeatability and agreement 

with manual segmentation while providing faster (i.e. more efficient) segmentation 

time. Our method is an improvement to previously published methods as no 

statistical shape model was imposed, which permits more segmentation flexibility 

for pathological or livers with unusual shape. This method is compatible with both 

CT and MR datasets, which has not been previously described to our knowledge. 
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Finally, the method is equipped with mesh-based correction tools which allow the 

user to achieve greater precision during interactive segmentation. 

 

4.2.2 Aim 

The primary aim of this study was to compare the repeatability, agreement 

and efficiency of a semiautomated liver segmentation method by using manual 

segmentation as the reference standard. A secondary aim was to evaluate the 

quality of segmentation using error metrics based on volume overlap and surface 

distances. Subsegmental volumetry was also performed based on vascular 

landmarks and classic anatomic principles defined by Couinaud (6). 

 

4.3 Materials and Methods 

4.3.1 Study Design 

Our institutional review board approved this retrospective, cross-sectional 

study. Requirements for informed consent were waived. 

 

4.3.2 Study Subjects 

Our validation database consisted of 41 subjects (22 men, 19 women; mean 

age, 55 years) who underwent hepatectomy between October 2006 and April 2009 

at our institution. Patients were included if they had primary or metastatic liver 

tumours and underwent major hepatectomy (≥ 3 Couinaud segments) during the 

study period. Each patient had a pre-operative CT scan within three months of 

surgery. Hepato-biliary surgeons at our hospital independently determined 

indications for pre-operative imaging according to clinical standard of care without 

influence for study inclusion. Study subjects’ demographic and clinical 

information are summarized in Table IV.I. 
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Table IV.I: Subject demographics  

Characteristic Data 
Total subjects, N (%) 41 (100) 

Sex 

 Male (%) 

 Female (%) 

 

22 (54) 

19 (46) 

Age (y) 

 Mean ± SD 

 

55 ± 13 

Body mass index in adults (kg/m2) 

Mean ± standard deviation 

 

26 ± 5 

Pathologies 

Colorectal metastases 

Hepatocellular carcinoma 

Benign liver lesions 

Biliary trauma 

Cholangiocarcinoma 

Cystadenocarcinoma 

Cholangitis 

 

27 (66) 

4 (10) 

5 (12) 

1/41 (2) 

2 (5) 

1 (2) 

1 (2) 

 

4.3.3 CT Imaging Technique 

CT was performed using two MDCT scanners under standard abdominal 

imaging protocols. Twenty-five study patients were scanned with a 16-detector 

scanner (Lightspeed 16, GE Medical Systems, Waukesha, WI) and 16 patients 

were scanned with a 64-detector scanner (Brilliance 64, Philips Medical Systems, 

Cleveland, OH).  

The parameters for the 16-detector scanner were: rotation time, 0.8 seconds; 

detector collimation, 16 x 1.25 mm; helical pitch, 1.375; tube voltage, 120-140 

kV; X-ray tube current: 75-440 mA; tube current–time product, 250 mAs. The 
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parameters for the 64-detector scanner were: rotation time, 0.75 seconds; detector 

collimation, 64 x 0.625 mm; helical pitch, 0.891; tube voltage, 120 kV; X-ray tube 

current: 151-499 mA; tube current–time product, varied based on noise index.  

Image reconstruction was in a 282-500 mm display field of view, depending 

on the patient’s physique. Reconstruction section thickness was 2.5 mm. 

Reconstructed CT slices had a matrix size of 512 x 512 pixels with pixel spacing 

ranging from 0.55-0.98 mm. Prior to all examinations, a weight-adjusted dose of a 

non-ionic, low osmolar, iodinated contrast agent (95-200 ml Isovue; Bracco 

Diagnostic Inc., Princeton, NJ) was administered intravenously with a 20-gauge 

needle at a rate of 4 ml/second. All CT protocols included an arterial phase and 

portal venous phase with delays of 40 seconds and 60 seconds respectively. 

 

4.3.4 Study Workflow 

The portal venous phase from the 41 subjects was used for segmentation as it 

provides homogeneous enhancement of the liver parenchyma and maximizes 

contrast between liver and non-liver structures. Liver segmentation (manual and 

semiautomated) was performed independently by four image analysts (one 

radiology resident, two medical students and one biomedical engineering PhD 

candidate) participating in research within the department of Radiology. Prior to 

this study, the image analysts received 10 hours of training in liver anatomy and 

software segmentation. Furthermore, the manual segmentation results used as the 

reference standard were supervised by an abdominal radiologist (7 years of 

experience).  

Two image analysts performed manual segmentation while the other two 

undertook semiautomated segmentation. This ensured adequate estimation of 

agreement and intra- and inter-observer repeatability. Image analysts performed 

repeat segmentations in a random order one week later to prevent recall bias. 

Image analysts were blinded to the results of their first segmentation and to the 
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results of the other readers. Interaction time was recorded for both segmentation 

methods. 

 

4.3.5 Manual Segmentation 

Axial portal venous phase CT images for each patient were saved as DICOM 

files and uploaded onto an imaging post-processing display software (SliceOmatic 

4.3 Rev-11, TomoVision, Montreal, Canada). For a given axial slice, two image 

analysts manually outlined the liver using a cursor to contour the liver. These 

curves then automatically deformed to precisely delineate the liver. This process 

generated "active contours" which are virtual curves that can be projected within 

images to delineate the liver boundary based on an energy equation (see Section 

2.5.1) (91). Each axial slice required further manual deformation of the active 

contours to completely outline the liver. Large vessels abutting the liver periphery 

such as the main portal vein and inferior vena cava were excluded, but not vessels 

surrounded by liver parenchyma. The number of pixels within each contour 

provided the liver area on a slice-by-slice basis. This cross-sectional area was 

multiplied by the slice thickness and the summation of each section volume 

provided the total liver volume for each patient. Volumes and masks obtained 

from manual segmentation were used as the reference standard. 

 

4.3.6 Semiautomated Segmentation and Subsegmentation 

Our semiautomated segmentation method was developed at the Imaging and 

Orthopaedics Research Laboratory (LIO, Montreal, QC) with collaboration from 

the clinical and engineering teams. The method was developed and tested using 

MATLAB (2012a, The MathWorks, Inc., Natick, MA, USA) computational 

software. Axial portal venous phase CT images for each patient were saved as 

DICOM files and uploaded to the segmentation program. An overview of the user 
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and computer tasks involved in semiautomated liver segmentation is provided in 

Figure 4.1. 

 

 
Figure 4.1: Overview of steps in CT-based semiautomated liver segmentation. 

The user initiates segmentation by roughly delineating the liver contour on 4-6 

slices. The software then uses variational interpolation to generate an initial 3D 

shape. This 3D shape is deformed manually then automatically by minimal path 

surface segmentation. Vessels are excluded using a locally seeded region growing 

technique. The software then calculates liver volume for each slice. 

 

Initially, a seed is positioned within the liver to define a volumetric spherical 

region of interest used to estimate the mean intensity and standard deviation. 

These values are used to automatically adjust the displayed contrast level and 
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windowing to enhance the liver boundary against adjacent tissue. A liver 

probability density map is then generated by applying a Gaussian transfer function.  

In order to generate an initial shape without any prior knowledge, the liver is 

manually delineated on 1-2 slices for each orthogonal plane to globally outline the 

liver shape. This delineation process is assisted by a snapping algorithm based on 

image-warping and minimal path segmentation (132). As a result, the drawn 

contours dynamically snap onto the liver surface. 

Variational interpolation is applied to these sparse contours to interpolate a 

smooth surface mesh composed of vertices and triangular faces intersecting the 

contours initially delineated (93, 106). In order to simplify the segmentation 

problem to a narrow band along the prior shape's surface, the mesh is further 

converted to a quadrangular mesh through surface parameterization (133). This 

allows the unfolding of the prior shape and the narrow band subspace which 

simplifies further segmentation. 

The parameterized surface is then subject to two concurrent segmentations 

operations. First, the user can iteratively deform the mesh in 3D by adjusting the 

contours to align with actual liver anatomy. Second, the user can prompt an 

automated minimal surface segmentation technique to precisely delineate the liver 

boundary, a 3D extension of a method described by Chav et al. (132) . 

The final segmented mesh is converted to a volumetric mask to exclude vessel 

insertion points and hepatic fissures with a local region growing tool. The cross-

sectional area of each mask was multiplied by the slice thickness and the 

summation of each section volume provided the total liver volume for each 

patient.  

For sub-segmentation, three vertical planes were defined by drawing lines 

through the left, middle, and right hepatic veins and their insertion at the inferior 

vena cava (IVC). The portal vein bifurcation established a horizontal plane to 

divide segments II/III, IVa/IVb, V/VIII and VI/VII. A polygon was then drawn to 

encapsulate liver tissue between the posterior aspect of the portal bifurcation and 
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the IVC. This polygon was propagated (using an automated tool) to other slices to 

define the caudate lobe (Figure 4.2). Whole and segmental liver volumes are 

reported in Table IV.II. 

 

 

Figure 4.2: Liver Subsegmentation. 

(A) Axial CT slice demonstrating caudate lobe, and segments II, IVa, VII and 

VIII. Three vertical planes are defined by drawing lines through the left, middle, 

and right hepatic veins and their insertion at the IVC. A polygonal shape is 

propagated to define caudate lobe. (B) and (C) Oblique anterior-posterior and 

posterior-anterior 3D renderings defining the liver subsegments. 
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Table IV.II: Whole and segmental liver volumes by reader. 

Readers 1 (Manual) 3 (Semiautomated) p-valuea 
Whole liver volume 

(mL)b 
1689 ± 478 1688 ± 497 0.92 

Readers 1 2 p-valuea 
Segmental volume 

(mL)b 
   

I 41 ± 16 53 ± 37 0.01 
II 204 ± 110 186 ± 77 0.31 
III 97 ± 66 74 ± 57 0.05 
IVa 186 ± 77 205 ± 83 0.18 
IVb 84 ± 54 101 ± 87 0.10 
V 292 ± 99 278 ± 116 0.26 
VI 221 ± 110 202 ± 114 0.14 
VII 278 ± 106 292 ± 132 0.24 
VIII 292 ± 103 306 ± 121 0.23 
 
a Probability associated with a Student's paired t-test with a two-tailed distribution. 
b Results reported as mean ± standard deviation. 

 

4.3.7 Statistical Analysis 

Statistical analyses was performed with SPSS software for Windows, version 

21.0 (Chicago, IL). Whole and segmental liver volumes were compared using 

paired T-tests. Intra-class correlation coefficients (ICC) were used to determine 

intra-reader, inter-reader and inter-method variability of hepatic volume.  

Bland-Altman analyses were used to determine intra-reader, inter-reader and 

inter-method agreement. The agreement for liver volume between readers and 

segmentation sessions was reported as bias ± 1.96 SD of the differences, followed 
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by the 95% limits of agreement interval (134). P-values were calculated for Bland-

Altman analyses to evaluate for systematic bias different from 0.  

A sub-group analysis was performed in patients with hepatocellular carcinoma 

(HCC). This analysis was done to determine whether the presence of underlying 

fibrosis or cirrhosis, which are risk factors for HCC development, affected the 

results of semiautomated liver volumetry.  

The differences between semiautomated and manually segmented surface 

meshes were analyzed with 4 additional error measures: volumetric overlap error, 

average symmetric surface distance, root mean square (RMS) symmetric surface 

distance and maximum symmetric surface distance (27). The formulas to calculate 

these segmentation error measures are reported in Appendix 1. 

 In addition, paired T-tests were used to compare the total interaction time 

for semiautomated segmentation with manual segmentation time.  

 

4.4 Results 

4.4.1 Volumes 

The mean semiautomated whole liver volume was 1688 ± 497 mL, whereas 

the reference standard volume was 1689 ± 478 mL (P = .92). Mean segmental 

volumes are demonstrated in Table 4.2. The only statistically significant difference 

when comparing segmental volumetry was for the caudate lobe (P = .01). 

 

4.4.2 Variability 

 Overall 8 measurements of ICC representing intra-reader, inter-reader and 

inter-method variability of hepatic volume measurements were calculated, these 

are summarized in Table IV.III. Correlation was high with an agreement between 

the eight ICC measures of 0.995 (95% confidence interval [CI]: 0.992-0.997). 
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Correlation between semiautomated and manual volumetry was established with 

inter-method ICC values ≥ 0.988 (P< .001). Correlation for segmental volumetry 

readings varied greatly with values ranging from 0.331 (segment III) to 0.831 

(segment VII). 
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Table IV.III: Intra-reader repeatability, inter-reader and inter-method agreement 

Comparison Readers ICCa Bland-Altman (mL)b 
Repeatability on whole liver volume    

 -Intra-reader manual 1 vs 1 0.999 -1 ± 27 (-28, 26) 
 2 vs 2 1.000 -6 ± 11 (-17, 6) 
 -Intra-reader semiautomated 3 vs 3 0.995 -3 ± 67 (-70, 64) 
 4 vs 4 0.991 12 ± 97 (-85, 109) 
Agreement on whole liver volume    

 -Inter-reader 1 vs 2 0.999 -4 ± 22 (-27, 18) 
 3 vs 4 0.991 5 ± 98 (-93, 103) 
 -Inter-methodc 1 vs 3 0.992 -2 ± 93 (-95, 91) 
 1 vs 4 0.988 3 ± 120 (-117, 124) 
Agreement on segmental volumes    

 -Inter-reader    

   Segment I  1 vs 2 0.585 12 ± 59 (-47, 71) 
  Segment II 1 vs 2 0.399 -17 ± 207 (-224, 190) 
  Segment III 1 vs 2 0.331 -23 ± 139 (-162, 116) 
  Segment IVa 1 vs 2 0.458 18 ± 164 (146, 182) 
  Segment IVb 1 vs 2 0.713 16 ± 121 (-105, 181) 
  Segment V 1 vs 2 0.758 -14 ± 150 (-164, 136) 
  Segment VI 1 vs 2 0.728 -20 ± 162 (-182, 142) 
  Segment VII 1 vs 2 0.831 14 ± 144 (-130, 158) 
  Segment VIII 1 vs 2 0.812 14 ± 139 (-125, 153) 
a ICC = Intra-class correlation coefficient. 
b Bland-Altman = Results reported as bias ± repeatability coefficient (1.96 SD); 

(95% limits of agreement interval), rounded to whole numbers. 
c Inter-method agreement is reported 1 vs 3 and 1 vs 4, which represent the worst-

case scenarios when comparing manual and semiautomated volumetry. 
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4.4.3 Repeatability 

Bland-Altman analysis showed excellent repeatability for both manual and 

semiautomated CT-based volumetry (Table IV.III). Intra-reader agreement for the 

manual method was -6 ± 11 mL with limits of agreement of -17 and 6 mL (P= 

.426). The semiautomated method displayed higher bias: 12 ± 97 mL and wider 

limits of agreement: -85 and 109 mL in the repeatability calculations (P= .291).  

 

4.4.4 Agreement 

Bland-Altman analysis showed good agreement between readers for each 

method and between methods (Table IV.III). Inter-reader agreement for the 

manual method had a bias of -4 ± 22 mL with limits of agreement of -27 and 18 

mL (P= .009). Inter-reader agreement for the semiautomated method had a bias of 

5 ± 98 mL and limits of agreement of -93 and 103 mL (P= .293). Inter-reader 

agreement for segmental volumes demonstrated generally large limits of 

agreement; ranging from -47 and 71 (segment I) to -224 and 190 (segment II). 

These limits of agreement were wider than those for whole liver volumetry.  

The agreement between manual and semiautomated volumetry methods was 3 

± 120 mL with limits of agreement of -117 and 124 mL (P= .434), represented in 

Figure 4.3. Examples of concordant and discordant cases between readers are 

demonstrated in Figures 4.4 and 4.5 respectively. 
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Figure 4.3: Inter-method agreement. 

Bland–Altman plot of the volume difference between semiautomated and manual 

segmentation of computed tomography images and the mean volume (reader 1 vs. 

reader 4). Mean difference was demonstrated with solid line and 95% limits of 

agreement with dashed lines. 
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Figure 4.4: Concordant liver segmentation. 

67-year-old woman with colorectal metastases. A and B, Original (A) and 

annotated (B) Axial CT slice demonstrating concordance between four readers 

using manual and semiautomated liver segmentation methods. Reader 1 manual = 

red tracing, reader 2 manual = green tracing, reader 3 semiautomated = blue 

tracing, reader 4 semiautomated = yellow tracing. 

 

 
Figure 4.5: Discordant liver segmentation. 

30-year-old woman with choledochal cyst. A and B, Original (A) and annotated 

(B) Axial CT slice demonstrating discordance between four readers using manual 

and semiautomated liver segmentation methods. Reader 1 manual = red tracing, 

Reader 2 manual = green tracing, Reader 3 semiautomated = blue tracing, Reader 

4 semiautomated = yellow tracing. Discordance between readers is found at the 

interface between the liver (L) and the spleen (S), the liver hilum and the 

peripheral segment 8 liver lesion.  
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4.4.5 Patients with HCC 

Sub-group analysis in patients with HCC (n = 4) revealed correlation between 

semiautomated and manual volumetry with inter-method ICC values ≥ 0.985. 

Repeatability studies showed intra-reader agreement for the manual method was -4 

± 17 mL with limits of agreement of -21 and 13 mL, and for the semiautomated 

method was 32 ± 74 mL with limits of agreement of -42 and 106 mL. The 

agreement between manual and semiautomated volumetry methods in this sub-

group of patients was 23 ± 119 mL with limits of agreement of -96 and 142 mL. 

 

4.4.6 Error Measures 

Measures of segmentation agreement are summarized in Table IV.IV. All 

four error calculations were slightly larger for semiautomated when compared to 

manual methods. Volumetric overlap error was 2.9% for manual segmentation and 

4.4% for semiautomated segmentation. Overall, inter-method comparisons of 

manual and semiautomated segmentation yielded very low error. Volumetric 

overlap error was 6.4 ± 1.4% (mean, standard deviation), average symmetric 

surface distance was 1.0 ± 0.2 mm, root mean square symmetric surface distance 

was 1.8 ± 0.5 mm and maximum symmetric surface distance was 17.0 ± 5.1 mm. 

Examples of 3D renderings with minimal and substantial surface distance error are 

shown in Figure 4.6. 
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Table IV.IV: Segmentation performance measures 

Error 

Measures 
Ideal Value Intra-reader 

manual 
(R1-R1') a 

Intra-reader 

semiautomated 
(R3-R3') a 

Inter-

method 
(R1-R3) 

Volumetric 

overlap error 

(%) 

0 %b 2.9 ± 0.8 4.4 ± 1.3 6.4 ± 1.4 

Average 

symmetric 

surface distance 

(mm) 

0 mm 0.4 ± 0.1 0.7 ± 0.3 1.0 ± 0.2 

Root mean 

square 

symmetric 

surface distance 

(mm) 

0 mm 0.9 ± 0.2 1.6 ± 0.5 1.8 ± 0.5 

Maximum 

symmetric 

surface distance 

(mm) 

0 mm 11.8 ± 4.9 17.2 ± 5.2 17.0 ± 5.1 
 

 

Note: Results reported as mean ± standard deviation. 
a R1 and R1' indicate the first and second segmentations by Reader 1 respectively. 

R3 and R3' indicate the first and second segmentations by Reader 3 respectively. 

b 0% volumetric overlap error indicates perfect overlap between segmentation 

masks, whereas 100% volumetric overlap error indicates no overlap between 

segmentation masks. 
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Figure 4.6: 3D surface distance error. 

68-year-old woman with colorectal metastases. Anterior-posterior and posterior-

anterior 3D renderings comparing surface distance error between semiautomated 

and manual segmentations. Areas in green represent absence of error (perfect 

overlap between segmentations) and areas in red represent surface distance error 

(in mm). Small amounts of error are observed at the liver dome and along the 

inferior vena cava. 

 

4.4.7 Time 

Mean interaction time was 34.3 ± 16.7 minutes per case for the manual method 

and 8.0 ± 1.2 minutes per case for the semiautomated method (P < .001) 

 

4.5 Discussion  

4.5.1 Summary of Work 

This cross-sectional study evaluated the repeatability, agreement and 

efficiency of a semiautomated liver segmentation method by using manual 

segmentation as the reference standard. Overall, we found excellent correlation 

between semiautomated and manual segmentation volume measurements. The 

semiautomated method was found to have high inter-reader and intra-reader 

repeatability. Further, strong agreement was found between the semiautomated 
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and manual methods when comparing volume measurements. Finally, 

semiautomated liver volumetry was found to be time efficient. 

Recently, an engineering competition comparing various liver segmentation 

algorithms on a common database of contrast-enhanced CT images was held (27). 

On average, interactive (i.e. semiautomated) segmentation methods that 

incorporated user input were found to be more accurate and reliable than fully 

automated methods. The larger standard deviation of automated methods was 

attributed to increased outlier errors (27). The study supported the use of both 

statistical shape information and model-based approaches to accurately represent 

liver structure variability (27).  

In this study we evaluated a semiautomated segmentation method for CT 

images which did not require prior statistical information input. Our method 

represents a model-based approach and is a 3D extension of a technique developed 

for segmentation of femoral heads in biplane radiography (132). In introducing our 

novel method and validation framework, we address three limitations to 

segmentation performance described in the literature (28). First, we used a diverse 

surgical database to ensure that the method is reliable in pre-hepatectomy patients 

with a variety of hepatic pathologies. Second, we evaluated the inter-observer, 

intra-observer, and inter-method variability in hepatic volumes. Third, we also 

evaluated the quality of segmentation by using volumetric and surface error 

measures described in the biomedical engineering literature (27). The comparison 

of index and reference standard segmentation meshes permit visualization of 

discrepancies and provide feedback for future improvement. 

 

4.5.2 Main Findings 

In our study intra-reader, inter-reader and inter-method variability was 

assessed using ICC measures. Overall correlation was very good with an average 

ICC value of 0.995, indicating low variability in the measures. Semiautomated 

volumetry also achieved excellent correlation with manual volumetry (ICC ≥ 
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0.988). A study by Suzuki et al. comparing automated and manual volumetry of 

living-donor livers during transplantation achieved similar results, ICC = 0.994 

(17). 

Bland-Altman analysis showed excellent repeatability for both manual and 

semiautomated methods, however the semiautomated method displayed higher 

bias. Unfortunately, we were not able to identify other studies which compared 

repeatability in this way for comparison. Semiautomated liver segmentation has 

inherent "problem regions" including the interface with adjacent structures, around 

blood vessels and in the hilum of the liver which may have lead to higher error. 

We attempted to limit such error by optimizing the initialization step of our 

segmentation method. 

In our study, mean volume difference between readers for semiautomated 

segmentation was found to be 5 ml with limits of agreement of -93 and 103 mL in 

the Bland-Altman analysis. Similar inter-reader agreement was found in a study 

examining volumetry of resected liver specimens with achieved limits of 

agreement of -190 and 178 mL (135). Our narrower limits of agreement may be 

attributed to our readers performing segmentation on each axial slice rather than 

on every fourth slice as in the study by Karlo et al. (135). This potentially 

restricted the amount of volumetric error being interpolated to adjacent slices and 

led to excellent inter-observer agreement in our study. 

Mean volume difference between semiautomated and manual CT-based 

volumetry methods was 3 mL with limits of agreement of -117 and 124 mL. These 

results are an improvement when compared to recently published studies which 

achieved limits of agreement of -230.3 and 327 mL (14), -211 and 278 mL (17) 

and -503 and 509 mL (13). Our narrow limits of agreement may be attributed to a 

variety of factors. The small degree of user feedback during manual correction of 

the segmentation masks likely improved the precision of semiautomated 

volumetry. Further, our CT-based volumetry was performed on a population of 

pre-hepatectomy patients rather than pre-transplant patients. The smoother liver 
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contours in this population, as compared to cirrhotic patients in the transplant 

group, may have improved agreement and precision of our method.  

We anticipate that a study using the same methodology as ours on a cirrhotic 

population may yield less favorable results due to the more difficult segmentation 

inherent to nodular and dysmorphic end-stage livers. Similarly, other factors 

affecting hepatic parenchyma and contour, such as heterogeneous tumours, post 

procedural changes, or diffuse hepatic processes may also affect volume 

agreement. Nakayama et al. previously demonstrated that automated segmentation 

of damaged and deformed livers led to larger relative errors than in healthy livers 

(14). In our study, four patients had hepatocellular carcinoma. A review of their 

records revealed Child-Pugh scores between 5 and 7 (i.e. class A or B). 

Furthermore, imaging did not reveal dysmorphic livers except one patient who had 

marked segment IV atrophy. Our study was not powered to draw comparison 

between cirrhotic and non-cirrhotic patients by inferential statistics. Future studies 

on repeatability and agreement of liver segmentation may target patients with liver 

fibrosis or cirrhosis. 

We chose to report our results according to the Bland-Altman method (134) 

after diligent consultation with the statistical team. Application of the Bland-

Altman method for comparison between two techniques (e.g. semiautomated vs. 

manual segmentation) is commonly used to assess "accuracy", whereas 

comparison of repeated measurements (e.g. reader 1 vs. reader 1) is commonly 

used to assess "precision". The Bland-Altman method assumes (in order for the 

limits to be valid) that the error variance is constant whether expressed as a 

percentage or absolute value. In our article we chose to express the error as mean 

differences with accompanying limits of agreement for consistency with prior 

literature.  

Overall, use of semiautomated segmentation greatly reduced the average time 

required for hepatic volume determination. Mean interaction time using the 

semiautomated method was found to be 8.0 ± 1.2 minutes per case. This is similar 

to recently published studies of semiautomated liver segmentation methods which 
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found interaction times of 20 minutes (136), 7 minutes (119) and 4.4 ± 1.9 minutes 

(14). Manual segmentation is often considered to be too time-consuming for 

clinical purposes (28). Thus, a four-fold decrease in mean interaction time is 

clinically relevant. Manual corrections within our interactive method remained the 

most-time consuming step. Improving the initialization process may reduce the 

need for manual correction except at liver borders, where low-contrast boundaries 

exist with adjacent organs (79). Wider limits of agreement were noted for 

semiautomated than for manual segmentation. This increased variability represents 

a trade-off due to faster segmentation.  

To compensate for the lack of specificity of volume comparison, we 

incorporated four novel error metrics into our segmentation evaluation framework. 

These metrics apply concepts of volumetric overlap and surface distance and allow 

for a more robust assessment of segmentation performance. Volumetric overlap 

error (also known as Jaccard distance), measures the dissimilarity between two 

segmentation results and is defined as 1 minus the ratio of intersection and union 

between two segmentations; a volumetric overlap error of 0% indicates perfect 

overlap, which is a segmentation goal. The three remaining error metrics (average, 

root mean square, and maximum symmetric surface distance) are computed from 

the distribution of minimal distances between each surface point of the 

semiautomated segmentation and surface points from its corresponding manual 

segmentation; a value of 0 mm represents the ideal value for these 3 error metrics.  

Using a variety of error metrics is preferred for broad segmentation quality 

evaluation (27). Our volumetric overlap error of 6.4 ± 1.4% was similar to those 

achieved in other studies; 5.2 ± 0.9% (119), 5.8 ± 1.4% (18)and 3.8 ± 2.2% (11). 

Overall, our method achieved very comparable error calculations to the best 

interactive segmentation methods at the MICCAI 2007 Grand Challenge (27, 119). 

At present time, there is no required performance specifications for error metrics, 

but only ideal values which are not attainable. Yet, higher values do not disqualify 

automated segmentation techniques as long as they are reproducible and efficient.  
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4.5.3 Liver Subsegmentation 

Given recent surgical advances, including increases in extended 

hepatectomies, split-liver and living donor transplantation, establishing segmental 

and remnant liver volumetry is of growing importance. Subsegmentation was 

performed using classic vascular landmarks to divide the hepatic segments. 

Segmentation of the caudate lobe proved to be difficult as the boundaries were 

defined somewhat arbitrarily and not by vascular structures. Inter-reader 

correlation for segmental volumetry was found to be variable and limits of 

agreement were wider than those for whole liver volumetry. This can partially be 

explained by our choice of portal venous phase for segmentation purposes. The 

hepatic veins were not always clearly visible which may have increased the 

subjectivity in drawing the three vertical planes. In the future, alternative 

acquisition phases may be acquired to facilitate sub-segmentation. More reliable 

subsegmentation methods may also be developed based on patient-specific 

vascular anatomy. 

 

4.5.4 Surgical Planning 

Prior to major liver hepatectomy, the future liver remnant-to-total liver 

volume ratio must be calculated (77). This ratio must be > 26.5% in patients with 

healthy livers, > 40% in patients with high-grade steatosis, and > 50% in patients 

with cirrhosis (72). For this application, the level of agreement and reproducibility 

required is ± 5% (44). Prior to living donor liver transplantation, the liver graft-to-

recipient weight ratio must be calculated. This ratio must be > 0.8% and adapted to 

the recipient's Child's class to avoid small-for-size syndrome (77). Although the 

level of agreement and reproducibility required for this application has not been 

specified, it is assumed to be the same as for major liver hepatectomy.  

Measuring future liver remnant (FLR) volume was thought to be out of the 

scope of this manuscript for a variety of reasons. Our primary aim was to 
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accurately establish whole-liver volume as an important preliminary step before 

more complex segmentation procedures. Furthermore, while our dataset included a 

variety of liver pathologies and morphologies, not all patients specifically 

underwent extended hepatectomy, the usual indication for calculating FLR. 

Finally, determining the FLR requires a clinical judgment regarding resection 

margin and anticipated resection plane by a hepatobiliary surgeon. For all these 

reasons, calculation of this parameter was not an aim of our study because it does 

not lead itself to automation. 

 

4.5.5 Segmentation Error 

When visually comparing segmentation error between readers, discordance 

was often found at the interface between the liver and adjacent structures 

(stomach, diaphragm and body muscles), around blood vessels and in the hilum of 

the liver. Other studies have corroborated similar problem regions for liver 

segmentation. Heimann et al. described segmentation error at low-contrast 

boundaries and near tumours (27). Campadelli et al. described over-segmentation 

errors near the stomach and body muscles (23). Masutani et al. mentioned similar 

density of adjacent organs as a source of error (22). We limited such error by 

adjusting windowing relative to the mean liver density. 

 

4.5.6 Limitations 

Our study had some limitations. First, manual segmentation, as a reference 

standard, is not perfect. However, it is widely accepted in the literature and in 

standard clinical practice (13, 14, 17, 18, 27). Resected surgical liver volume or 

weight have also been described as alternative reference standards (12, 14, 15, 

135). However, resected specimens can provide a false estimation of in vivo liver 

volume due to decreased hydrostatic pressure and blood loss from the ex vivo 

specimens (15, 135). Further, CT-based volumetry methods have been shown to 
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inaccurately estimate liver volume when compared to actual surgical resection 

volumes (135). These physiological variations are best avoided with the use of an 

in vivo reference standard such as manual segmentation. 

Second, we did not perform a systematic study of segmentation robustness by 

varying acquisition parameters such as slice thickness and injection delays (131). 

Yet, the purpose of our study was to simplify workflow and shorten segmentation 

time while maintaining good agreement (79). Third, we did not exclude all vessels 

in our segmentations. Standard practice remains to exclude major vessels, but to 

include intrahepatic vessels in the total liver volume calculation (79).  

 

4.5.7 Conclusion 

In conclusion, our validation study suggests that a semiautomated liver 

segmentation method may provide high repeatability and strong agreement when 

compared to manual segmentation, while substantially shortening interaction time. 

The quality of segmentation results was confirmed by error metrics based on 

overlap and surface distances. Future directions include automation of segmental 

volumetry based on vascular anatomy (137) and adaptation of this method to MR-

based liver volumetry (101). 

  

 



 

 

5 Comparison of MRI and CT-based 
 Semiautomated Liver Segmentation: a 
 Validation Study 

 

As first author of this manuscript, I was involved in all aspects from study 

design to manuscript drafting. I was an active member of the team responsible for 

developing the liver segmentation method by providing clinical perspective. I 

participated in the ethics submission, raw data collection, manual and 

semiautomated segmentation steps for validation and statistical analysis. I led the 

manuscript drafting process under the supervision of Dr. An Tang. The results of 

this paper were presented at the American Roentgen Ray Society annual meeting 

in Toronto, Canada in April 2015. This paper is currently being finalized prior to 

submission in a medical journal. 

 

5.1 Abstract 

Rationale and Objectives: To compare the repeatability, agreement and 

efficiency of MRI- and CT-based semiautomated liver segmentation for 

assessment of total liver volume.  

Materials and Methods: This retrospective study was conducted in 31 

subjects who underwent contemporaneous liver MRI and CT. Total liver volumes 

were segmented from contrast-enhanced 3D gradient-recalled echo MRI sequences 

and CT images. Semiautomated segmentation was based on variational 

interpolation and Laplacian mesh optimization. All segmentations were repeated 

after two weeks. Manual segmentation of CT images using an active contour tool 

was used as the reference standard. Repeatability and agreement of the methods 
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were evaluated with intra-class correlation coefficients (ICC) and Bland-Altman 

analysis. Total interaction time was recorded. 

Results: Intra-reader ICC were ≥ 0.987 for MRI and ≥ 0.995 for CT. Intra-

reader repeatability was 30 ± 217 ml (bias ± 1.96 SD) (95% limits of agreement: -

187 to 247 ml) for MRI and -10 ± 143 ml (-153 to 133 ml) for CT. Inter-method 

ICC between semiautomated and manual volumetry were ≥ 0.995 for MRI and ≥ 

0.986 for CT. Inter-method agreement was -14 ± 136 ml (-150 to 122 ml) for MRI 

and 50 ± 226 ml (-176 to 276 ml) for CT. Interaction time (mean ± SD) was 

significantly shorter for MRI-based semiautomated segmentation (7.2 ± 0.1 min, p 

< 0.001) and for CT-based semiautomated segmentation (6.5 ± 0.2 min, p < 0.001) 

than for CT-based manual segmentation (14.5 ± 0.4 min).  

Conclusion: MRI-based semiautomated segmentation provides similar 

repeatability and agreement to CT-based segmentation for total liver volume.  

 

5.2 Introduction 

Accurate assessment of liver volume is fundamental in hepatic surgery prior 

to major hepatectomy and transplantation. Performing liver volumetry is of 

growing importance given recent increases in extended hepatectomies, split-liver 

and living-donor liver transplantations (70). Automation of liver volumetric 

methods has been shown to improve repeatability and accuracy while reducing 

processing times (18, 23, 79). 

Liver segmentation has traditionally been performed on CT images due to 

easy accessibility, short acquisition time and high spatial resolution (14, 22, 23). 

However, MRI offers the advantage of simultaneous assessment of vascular and 

biliary anatomy and biomarkers of diffuse liver disease (fat, iron, and fibrosis) (24, 

60, 65, 66). Advances in MRI techniques have prompted new indications for 

accurate whole liver segmentation in estimating volume-averaged biomarkers, 
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such as steatosis distribution maps (64, 65, 71). Furthermore, MRI minimizes the 

risk of radiation exposure and nephrotoxicity (24, 25).  

Studies examining automated liver volumetry on MRI are limited, presumably 

because of increased variability and difficulty compared to CT (90). Once 

validated, automated liver volumetry could be integrated into a complete 

preoperative evaluation which includes assessment of vascular and biliary 

anatomy and diffuse liver disease on MRI (24, 71). 

Though numerous studies have previously proposed automated segmentation 

methods, these have not necessarily translated to routine clinical use (27). 

Limitations in clinical validation, rather than lack of technical ingenuity, are 

thought to be the cause of this slow adaptation by the medical community (28). In 

order to overcome such methodological weaknesses, a validation framework for a 

novel automated segmentation method should include the following elements (28): 

use of a valid reference standard; datasets for validation which are reflective of 

actual clinical practice; clear metrics for measurement of segmentation precision, 

accuracy, efficiency and error; and comparison of metrics using effective 

statistical tools. We attempted to incorporate these defined elements into our 

validation framework. 

In this article, we evaluate a novel semiautomated segmentation method 

which uses variational shape interpolation and a Laplacian mesh optimization 

framework (26). This method is compatible with both MRI and CT, which has 

only sparingly been previously described (89). The method does not require prior 

statistical input and includes mesh-based correction tools to improve precision 

during interactive segmentation.  

 

5.2.1 Aims 

The primary aim of our study was to compare the repeatability, agreement and 

efficiency of liver MRI- and CT-based semiautomated segmentation when 
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compared to CT-based manual segmentation. A secondary aim was to validate 

segmentation quality using error metrics which highlight various aspects of 

segmentation agreement and facilitate comparison with prior literature (27). 

 

5.3 Materials and Methods 

5.3.1 Study Design 

Our institutional review board approved this retrospective, cross-sectional 

study. Requirements for informed consent were waived. 

 

5.3.2 Study Subjects 

Patients were included if they underwent both MRI and CT examinations 

within two weeks between January 2010 and March 2013 for preoperative 

assessment of hepatobiliary and pancreatic disease. The MRI study protocol was 

required to include gadolinium injection. The CT study protocol required image 

acquisition in portal venous phase. A total of 31 subjects (18 men, 13 women; 

mean age, 59 years) requiring preoperative evaluation using MRI and CT were 

included. These subjects had a spectrum of liver diseases. Study subjects’ 

demographic and clinical information are summarized in Table V.I. 
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Table V.I: Subject Demographics  

Characteristic Data 
Total subjects, n (%) 31 (100) 
Sex 
 Male (%) 
 Female (%) 

 

18 (58) 
13 (42) 

Age (y), mean ± SD 59 ± 11 
Weight (kg), mean ± SD 80 ± 20 
Body mass index (kg/m2), mean ± SD 28 ± 6 
Pathologies, n (%) 
Colorectal metastases 
Pancreatic metastases 

Other metastasis 
Intraductal papillary ductal neoplasm 
Ampulloma 

Hepatic abscess 

Hepatocellular carcinoma 

Klatskin tumour 

Living donor, pre-op evaluation 

Pancreatic pseudocyst 

Indeterminate hepatic lesion 

 

12 (39) 
6 (19) 
4 (13) 

2 (7) 
1 (3) 
1 (3) 
1 (3) 
1 (3) 
1 (3) 
1 (3) 
1 (3) 

 

5.3.3 MRI Technique 

MRI was performed with a 1.5-T unit (Discovery MR450, GE Medical 

Systems, Milwaukee, WI) using a 12-channel phased-array body coil. 

Segmentation was subsequently performed on the portal venous phase of a 

dynamic contrast-enhanced fat-suppressed 3-dimensional (3D) T1-weighted 

gradient-recalled echo (GRE) sequence (LAVA sequence). The 3D GRE sequence 
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parameters were: repetition time, 3.9 - 4.8 msec; echo time, 1.7 - 2.1 msec; flip 

angle, 12°; section thickness, 4 - 8 mm (average 5.5 mm); spacing between 

sections, 2.2 - 4.5 mm (average 2.7 mm); field of view, 380 mm; reconstruction 

matrix, 256 x 256 or 512 x 512 and parallel imaging acceleration factor, 2. A 

weight-adjusted dose (0.1 mmol/kg body weight) of gadobenate dimeglumine 

(MultiHance; Bracco Diagnostic Inc., Princeton, NJ) was administered 

intravenously as a bolus at a rate of 2 ml/s using a power injector (Mallinckrodt, 

Optistar™ Elite, St. Louis, MO), followed by saline flush of 15 ml. 

 

5.3.4 CT Imaging Technique 

CT imaging was performed with a 64-detector MDCT scanner (Brilliance 64, 

Philips Medical Systems, Cleveland, OH) under standard abdominal imaging 

protocols. The parameters were: rotation time, 0.75 seconds; detector collimation, 

64 x 0.625 mm; helical pitch, 0.9; tube voltage, 120 kV; X-ray tube current: 126 - 

499 mA; tube current–time product, varied based on noise index. Image 

reconstruction was in a 282 - 500 mm display field of view, depending on the 

patient’s physique. Reconstruction section thickness was 2.5 mm with section gap 

of 2 mm. Reconstructed CT slices had a matrix size of 512 x 512 pixels with pixel 

spacing ranging from 0.55 - 0.78 mm. Prior to all examinations, a weight-adjusted 

dose of a non-ionic, low osmolar, iodinated contrast agent (375 mgl/ml Isovue; 

Bracco Diagnostic Inc., Princeton, NJ) was administered intravenously at a rate of 

4 ml/second. All CT examinations included a portal venous phase with delay of 60 

seconds. 

 

5.3.5 Study Workflow 

Liver segmentation was performed by three image analysts; two radiology 

residents (AG, KV; 2 and 3 years of experience respectively) and one biomedical 

engineering PhD candidate (GC, 3 years of experience). The image analysts were 
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previously trained during a CT-based liver segmentation validation study on a 

different data set. Two analysts independently performed semiautomated 

segmentation of MRI and CT images. The same analysts repeated segmentation in 

a random order two weeks later to prevent recall bias. A third analyst performed 

manual segmentation of CT images to establish the reference standard. The 

manual segmentation results were supervised by an abdominal radiologist (AT, 8 

years of experience). Image analysts were blinded to their own segmentation 

results and to the results of the other readers. Interaction time was recorded for all 

segmentations. 

 

5.3.6 Manual Segmentation 

To establish the reference standard, axial portal venous phase CT were 

uploaded onto an imaging display software (SliceOmatic 4.3 Rev-11, TomoVision, 

Montreal, QC). Analysts manually outlined the liver using a cursor on each axial 

slice. This allowed for the creation of "active contours" which could be propagated 

to adjacent slices (91). Furthermore manual deformation of the active contours was 

performed for each axial image to adequately delineate the liver. Cross-sectional 

areas were compiled and multiplied by the slice thickness to obtain section 

volumes. These were added to determine the total liver volume for each patient. 3-

D surface meshes created for each liver were used for visual comparison and error 

metric calculations. Manual segmentation of MR images was also separately 

performed in a similar manner. These segmentations were specifically used for 

error metric calculations when comparing semiautomated MRI and manual MRI 

surface meshes. 

 

5.3.7 Semiautomated Segmentation 

The semiautomated segmentation method was developed at the Imaging and 

Orthopaedics Research Laboratory (LIO, Montreal, QC) in collaboration with the 
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biomedical imaging team. The method is adapted from a previously validated 

method for CT-based liver segmentation (112), which was modified for 

compatibility with both MRI and CT modalities. The code was implemented in 

C++ using VTK (Kitware Inc., 2014, Clifton Park, NY) as a rendering external 

library. Contrast-enhanced MRI and CT examinations were uploaded to the 

segmentation program. The user (interactive) and automated (computer) tasks 

required for semiautomated liver segmentation are presented in Figure 5.1. The 

segmentation method consists of 3 main steps. 

 

Initialization 

In order to generate an initial shape, the user must click to position nodes 

around the liver contour in multi-planar views, from which a contour is 

interpolated. The drawn contours automatically snap onto the liver boundary using 

an algorithm based on image warping and minimal path segmentation (26). 

Generally, two contours per orthogonal plane are sufficient to generate the initial 

shape. An energy-minimizing implicit function (variational shape interpolation) is 

then applied to generate a 3D surface mesh (93, 106). 

 

Shape Deformation 

After adequate initialization of a primary liver shape, an automated 

optimization method is used to further refine the segmentation. Feature-matching 

assigns each vertex of the initial 3D surface mesh with a corresponding target 

point representing the most probable location of the liver boundary. This target 

point is determined along intensity profiles as the point of maximal intensity 

difference between inward (liver) and outward (non-liver) intensities. For MRI, the 

inward intensity is predicted for each vertex based on intensity of surrounding 

tissues, while for CT it is a fixed value based on estimated liver parenchymal 

intensity. Laplacian mesh optimization (98) is used to deform the mesh vertices 
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towards their matched targets on the liver boundary while ensuring a smooth local 

curvature. 

 

Interactive Corrections 

At times, the initial 3D surface mesh might be too distant for the intensity 

profile to reach the liver boundary. Additionally, adjacent structures may display 

similar intensity as the liver parenchyma leading to target error. For such cases, a 

correction tool was implemented to modify the final mesh shape. This tool allows 

the user to click on the surface mesh and manipulate it to the desired location. This 

launches a locally-constrained optimization of the mesh with relocation of adjacent 

vertices. 
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Figure 5.1: Semiautomated liver segmentation of CT and MRI images. 

The user initially delineates the liver surface (2 contours per multi-planar view) 

from which an initial shape is defined. Variational shape interpolation is then 

applied to generate a 3D surface mesh. Feature-matching and Laplacian mesh 

optimization deform the mesh vertices towards matched targets on the actual liver 

boundary. The surface mesh can then be further manipulated with the aid of 

locally-constrained optimization. 

 

5.3.8 Statistical Analysis 

Statistical analyses was performed with SPSS software for Windows, version 21.0 

(Chicago, IL). Mean whole liver volumes obtained from semiautomated 

segmentation of MRI and CT images were calculated by averaging the four 

readings for each modality. Intra-class correlation coefficients (ICC) and Bland-

Altman analysis were used to determine intra-reader repeatability for 

semiautomated segmentation of CT and MRI images. ICC and Bland-Altman 
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analysis were also used to determine inter-reader and inter-method agreement, 

with manual CT-based segmentation being used as the reference standard for the 

latter. The agreement for liver volume was reported as bias ± 1.96 SD of the 

differences, followed by the 95% limits of agreement interval (134).  

 

The differences between semiautomated and manually segmented surface meshes 

for both MRI and CT were analyzed with 4 additional error measures: volumetric 

overlap error, average symmetric surface distance, root mean square (RMS) 

symmetric surface distance and maximum symmetric surface distance. Detailed 

description of these error metrics can be found in a study by Heimann et al. (27). 

In addition, paired T-tests were used to compare total interaction time for MRI- 

and CT-based semiautomated segmentations with CT-based manual segmentation.  

 

5.4 Results 

5.4.1 Liver Volumes 

The mean liver volume obtained from semiautomated MRI segmentations was 

1831 ± 679 ml (mean ± 1.96 SD), from semiautomated CT segmentations was 

1756 ± 702 ml, and from manual segmentation of CT images (reference standard) 

was 1817 ± 680 ml. 

Detailed repeatability and agreement results are reported for both readers in 

Table V.II. To simplify the results in this section, we report the weaker (i.e. larger 

limits of agreement) results obtained by readers 1 or 2 below. 
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Table V.II: Intra-reader repeatability, inter-reader and inter-method agreement 

Comparison Readers ICCa Bland-Altman (ml)b 
Repeatability    

Intra-reader semiautomated MRI 1 vs 1' 0.997 -19 ± 94; (-113, 75) 
 2 vs 2' 0.987 30 ± 217; (-187, 247) 
Intra-reader semiautomated CT 1 vs 1' 0.997 15 ± 98; (-83, 113) 
 2 vs 2' 0.995 -10 ± 143; (-153, 133) 
Inter-reader Agreement    

Inter-reader semiautomated MRI 1 vs 2 0.996 6 ± 123; (-117, 129) 
Inter-reader semiautomated CT 1 vs 2 0.996 20 ± 125; (-105, 145) 
Inter-method Agreement 
Semiautomated MRI vs. manual CT  

 

1 
2 

 

0.997 
0.995 

 

-20 ± 107; (-127, 87) 
-14 ± 136; (-150, 122) 

Semiautomated CT vs. manual CT 1 
2 

0.986 
0.989 

50 ± 226; (-176, 276) 
70 ± 202; (-132, 272) 

a ICC = Intra-class correlation coefficient. 
b Bland-Altman = Results reported as bias ± repeatability coefficient (1.96 SD); 

(95% limits of agreement interval), rounded to whole numbers. 

 

5.4.2 Intra-reader Repeatability 

 The ICC were above 0.987 for MRI-based intra-reader repeatability and 

above 0.995 for CT-based intra-reader repeatability. Bland-Altman analysis 

revealed an intra-reader repeatability of 30 ± 217 ml (mean ± 1.96 SD) (95% limits 

of agreement: -187 to 247 ml) for MRI-based semiautomated segmentation and -

10 ± 143 ml (-153 to 133 ml) for CT-based semiautomated segmentation. 
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5.4.3 Inter-Reader Agreement 

The ICC was 0.996 for MRI- and CT-based inter-reader agreement. Bland-

Altman analysis revealed an inter-reader agreement of 6 ± 123 ml (-117 to 129 ml) 

for MRI-based semiautomated segmentation and 20 ± 125 ml (-105 to 145 ml) for 

CT-based semiautomated segmentation. 

 

5.4.4 Inter-Method Agreement 

The ICC were above 0.995 for MRI-based semiautomated segmentation and 

above 0.986 for CT-based semiautomated segmentation when compared to manual 

CT. Bland-Altman analysis revealed an inter-method agreement of -14 ± 136 ml (-

150 to 122 ml) for MRI-based semiautomated segmentation (Figure 5.2) and 50 ± 

226 ml (-176 and 276 ml) for CT-based semiautomated segmentation when 

compared to manual CT (Figure 5.3). 
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Figure 5.2: Inter-method agreement (Semiautomated MRI vs. manual CT). 

Bland-Altman plot of the volume difference between MRI-based semiautomated 

and CT-based manual liver segmentation and their mean volume for reader 2. 

Mean bias demonstrated with solid line and 95% limits of agreement with dashed 

lines. 
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Figure 5.3: Inter-method agreement (Semiautomated CT vs. manual CT). 

Bland-Altman plot of the volume difference between CT-based semiautomated 

and CT-based manual liver segmentation and their mean volume for reader 1. 

Mean bias demonstrated with solid line and 95% limits of agreement with dashed 

lines. 

 

5.4.5 Clinical Examples 

Examples of concordant and discordant cases displaying MRI- and CT-based 

semiautomated segmentations are shown in Figures 5.4 and 5.5 respectively. 
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Figure 5.4: Concordant liver segmentation. 

61-year-old male with a Klatskin tumour. (A) MRI and (B) CT axial images 

demonstrating segmentation concordance between readers using manual and 

semiautomated segmentation methods. Manual CT = green tracing, reader 1 

semiautomated = blue tracing, reader 1' semiautomated = red tracing, reader 2 

semiautomated = magenta tracing, reader 2' semiautomated = yellow tracing. 

 

 
Figure 5.5: Discordant liver segmentation. 

47-year-old man with pancreatic cancer metastases. (A) MRI and (B) CT axial 

images demonstrating segmentation discordance between readers using manual 

and semiautomated segmentation methods. Segmentation error on MRI and CT is 

noted at indistinct boundaries with adjacent organs (stomach, body muscles, 

vessels) and at the liver hilum. Segmentation error on MRI is also noted at convex 

boundaries and areas of high curvature. Manual CT = green tracing, reader 1 

a.! b.!

a.! b.!a.! b.!
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semiautomated = blue tracing, reader 1' semiautomated = red tracing, reader 2 

semiautomated = magenta tracing, reader 2' semiautomated = yellow tracing. 

 

5.4.6 Error Measures with MRI 

Intra-reader measures of MRI-based segmentation performance were 

comparable between readers 1 and 2. Comparison between semiautomated MRI 

and manual MRI surface meshes for reader 2 revealed volumetric overlap error of 

11.6 ± 3.4% (mean ± standard deviation), average symmetric surface distance was 

2.3 ± 0.6 mm, root mean square symmetric surface distance was 28.0 ± 10.4 mm 

and maximum symmetric surface distance was 3.8 ± 1.2 mm (Table V.III). 

 



 SECTION 5. COMPARISON OF MRI AND CT-BASED SEMIAUTOMATED LIVER SEGMENTATION 

 122 

Table V.III: Segmentation performance measures for MRI 

Error 

Measures 
Ideal 

Value 
Intra-reader: 

semiautomated MRI 
 

Inter-method: 

semiautomated MRI vs 

manual MRI 
 

R1 vs R1'a 
 

R2 vs. R2' R1 
 

R2 

Volumetric 

overlap error 

(%) 

0 %b 5.6 ± 1.9 8.9 ± 5.2 9.2 ± 1.9 11.6 ± 3.4 

Average 

symmetric 

surface 

distance 

(mm) 

0 mm 1.2 ± 0.4 1.7 ± 0.9 1.9 ± 0.4 2.3 ± 0.6 

Root mean 

square 

symmetric 

surface 

distance 

(mm) 

0 mm 21.3 ± 6.4 25.0 ± 10.6 24.9 ± 9.9 28.0 ± 10.4 

Maximum 

symmetric 

surface 

distance 

(mm) 

0 mm 2.5 ± 0.8 3.1 ± 1.4 3.2 ± 0.9 3.8 ± 1.2 

Note: Results reported as mean ± standard deviation. 
a R1 and R1' indicate the first and second segmentations by reader 1 respectively.  
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b 0% volumetric overlap error indicates perfect overlap between segmentation 

masks, whereas 100% volumetric overlap error indicates no overlap between 

segmentation masks. 

 

5.4.7 Error Measures with CT 

Intra-reader measures of CT-based segmentation performance were 

comparable between readers 1 and 2. Comparison between semiautomated CT and 

manual CT surface meshes for reader 1 revealed volumetric overlap error of 9.2 ± 

2.5% (mean ± standard deviation), average symmetric surface distance of 1.7 ± 0.4 

mm, root mean square symmetric surface distance of 24.9 ± 6.9 mm and maximum 

symmetric surface distance of 3.0 ± 0.9 mm (Table V.IV). 
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Table V.IV: Segmentation performance measures for CT 

Error 

Measures 
Ideal 

Value 
Intra-reader: 

semiautomated CT 
 

Inter-method: 

semiautomated CT vs 

manual CT 
 

R1 vs R1'a 
 

R2 vs. R2' R1 R2 

Volumetric 

overlap error 

(%) 

0 %b 5.8 ± 2.7 5.8 ± 1.7 9.2 ± 2.5 9.1 ± 2.1 

Average 

symmetric 

surface 

distance 

(mm) 

0 mm 1.2 ± 0.5 1.0 ± 0.3 1.7 ± 0.4 1.8 ± 0.4 

Root mean 

square 

symmetric 

surface 

distance 

(mm) 

0 mm 27.5 ± 15.7 23.4 ± 7.4 24.9 ± 6.9 27.7 ± 14.1 

Maximum 

symmetric 

surface 

distance 

(mm) 

0 mm 2.8 ± 1.6 2.2 ± 0.7 3.0 ± 0.9 3.2 ± 1.4 

Note: Results reported as mean ± standard deviation. 
a R1 and R1' indicate the first and second segmentations by reader 1 respectively.  
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b 0% volumetric overlap error indicates perfect overlap between segmentation 

masks, whereas 100% volumetric overlap error indicates no overlap between 

segmentation masks. 

 

5.4.8 Time 

Interaction time (mean ± SD) per case was significantly shorter for MRI-

based semiautomated segmentation (7.2 ± 0.1 min, p < 0.001) and for CT-based 

semiautomated segmentation (6.5 ± 0.2 min, p <0.001) than for CT-based manual 

segmentation (14.5 ± 0.4 min). 

 

5.5 Discussion  

5.5.1 Summary of Work 

This retrospective study evaluated the repeatability, agreement and efficiency 

of MRI- and CT-based semiautomated segmentation, using CT-based manual 

segmentation as the reference standard method. A strength of our study lies in the 

paired comparison of two imaging modalities, while using the same independent 

reference standard. Our choice of a semiautomated liver segmentation method was 

supported by recent studies which found interactive methods to be generally more 

accurate and reliable than fully automated methods (27). Segmentation was easily 

customized for MRI and CT using a varying feature-matching strategy, 

demonstrating the multi-modality versatility of our method. 

 

5.5.2 Main Findings 

Overall, semiautomated volume measurements for both MRI and CT strongly 

correlated with volumes obtained by manual segmentation. MRI-based and CT-

based semiautomated volumetry were highly repeatable and showed strong 
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agreement with the manual method. Intra-reader repeatability for MRI-based 

semiautomated segmentation was comparable to the results for CT. However, 

Bland-Altman analysis showed slightly higher repeatability coefficients compared 

to previous studies evaluating automated segmentation methods with two readers. 

Mazonakis et al. (83) examined 38 consecutive patients referred for MRI 

examination and found repeatability coefficients of 51.6 and 68.2 ml, while 

Hermoye et al. (79) studied 18 liver donors and found repeatability coefficients of 

52 and 64 ml. Our study examined only pathological livers which may explain 

increased variability in the repeatability calculation. 

Our study showed superior ICC values for MRI-based inter-method 

agreement compared to prior studies: 0.98 (85, 89, 90) and 0.76 - 0.93 (88). 

Further, our limits of agreement were similar to those obtained in recent studies: -

108 to 91 ml (83), -163 to 134 ml (90), and -278 to 204 ml (88). 

Inter-method agreement between CT-based semiautomated segmentation and 

manual segmentation compared favorably to recently published studies. Previous 

studies have shown ICC values for CT-based semiautomated segmentation from 

0.94 to 0.994 (17, 89) and limits of agreement of -117 to 124 ml (112), -230.3 to 

327 ml (14), -211 to 278 ml (17), and -503 to 509 ml (13). 

Segmentation quality was further evaluated with volumetric and surface error 

measures which have previously been used in the setting of segmentation 

evaluation frameworks (112, 138). The comparison of meshes obtained from 

semiautomated and manual methods also aided in the direct visualization of 

segmentation discrepancies. In order to adequately evaluate MR segmentation 

meshes, we also performed manual MR segmentation. This was required as inter-

modality comparison of meshes (i.e. semiautomated MR and manual CT) are not 

possible due to inherent differences in image acquisition such as variable breath-

holds and elastic liver deformation. Such a comparison would result in 

misregistration of meshes and artificial elevation of surface error measures. 
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For MRI, the comparison between semiautomated and manual surface meshes 

revealed a volumetric overlap error similar to CT: 11.6 ± 3.4%. Our results were 

comparable to another MRI-based automated segmentation study which achieved 

volumetric overlap error of 11.2%, average symmetric surface distance of 2.2 mm, 

and maximum symmetric surface distance of 34 mm (103).  

Semiautomated segmentation significantly reduced the interaction time 

required for determination of liver volume. Recently published studies have 

described semiautomated segmentation times ranging from 8 ± 2 min to 13.3 ± 4.5 

min for MRI-based methods (71, 85) and from 4.4 ± 1.9 min to 8.0 ± 1.2 min for 

CT-based methods (14, 112, 139). 

 

5.5.3 Segmentation Error 

Segmentation errors on MRI were noted at similar locations to CT: primarily 

at the liver interface with adjacent structures (muscles, diaphragm, spleen, 

stomach), at the liver hilum, adjacent to tumours and near blood vessels. In 

addition, areas of convex and concave boundaries and high curvature (such as liver 

dome) contributed significantly to segmentation error. Under-segmentation on 

MRI occurred at low-contrast liver boundaries and areas of inhomogeneous 

density whereas over-segmentation usually occurred at organs abutting the liver, 

as noted by Huynh et al. (90). Motion, pulsation and partial volume artifacts have 

also been shown to impede segmentation accuracy. 

 

5.5.4 Limitations 

Our study had certain limitations. First, our choice of manual CT 

segmentation as the reference standard for validating a MRI-based semiautomated 

method had not previously been described. Other studies validating automated 

MRI methods have traditionally relied on manual MRI segmentation as the 

reference standard. We opted for an independent reference standard in order to 
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validate both MRI- and CT-based semiautomated segmentation as our method is 

compatible with both. This common standard promotes head-to-head comparison 

of automated segmentation accuracy between MRI and CT, which previously was 

not addressed. Manual CT segmentation has been used as the reference standard in 

numerous other similar studies. Resected surgical volume or weight may also have 

been alternate reference standards. However, in vivo liver volume may be falsely 

estimated due to blood loss and changes in hydrostatic pressure following surgical 

resection (15, 107, 135), thus making manual segmentation a more reliable choice. 

Second, our validation scheme utilized similar MRI acquisition parameters as 

we did not perform a systematic study of segmentation robustness. As in previous 

studies, a 3D T1-weighted GRE sequence was used for MRI-based segmentation 

(107, 135). The portal venous phase was chosen as it maximizes contrast between 

the liver and adjacent structures (17).  

Third, subsegmentation based on patient-specific vascular anatomy was not 

performed. Further, as in previous studies, intrahepatic vessels were included in 

the liver volume assessment though major vessels were excluded (79). Future 

research directions may include automated vascular sub-segmentation to 

accurately determine segmental liver volumetry. 

 

5.5.5 Conclusion 

In conclusion, our validation study suggests that a semiautomated liver 

segmentation method compatible with both MRI and CT can provide strong 

agreement and repeatability when compared to manual segmentation, while 

shortening interaction time. Given recent advances in MRI-based biomarkers of 

chronic liver disease, accurate estimation of liver volume using MRI is of 

significance. Automated volumetry could also be integrated into a complete MRI-

based preoperative evaluation to assess vascular and biliary anatomy and liver 

quality. Future studies may validate alternative MRI sequences for liver 
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volumetry, particularly fat quantification sequences and study vascular sub-

segmentation.



 

 

6 Conclusion 

6.1 Future Work 

Vascular subsegmentation 

The Couinaud classification scheme is a simple system to divide the liver into 

subsegments based on expected vascular anatomy. This scheme has been criticized 

as it provides an anatomic estimation and is not tailored to patient-specific 

anatomy. Future trends include liver subsegmentation based on supplying (i.e. 

hepatic artery, portal vein) or draining (i.e. hepatic vein) vasculature. This will 

require segmentation of all vascular structures as well as the hepatic parenchyma 

itself (Figure 6.1). Patient-specific subsegmentation, which takes into account 

various anatomic variants, will provide surgeons with vital anatomic information 

prior to complex hepatic resections and living-donor transplantations. 

 

 
Figure 6.1: Liver subsegmentation according to vascular anatomy.  

Axial contrast-enhanced CT scan shows the segmented (a) arterial, (b) portal 

venous, and (c) hepatic venous structures. 3D rendering in the same patient shows 

the corresponding segmented (d) arterial, (e) portal venous vascular structures, and 

(f) hepatic venous structures (8). 

 

Vascular Subsegmentation!
Fig 22. Illustrations of liver subsegmentation according to vascular anatomy. Axial contrast-enhanced CT scan shows the 
segmented (a) arterial, (b) portal venous, and (c) hepatic venous structures. 3D rendering in the same patient shows the 
corresponding (d) arterial, (e) portal venous vascular structures, and (f) hepatic venous structures. The next step is to perform 
liver subsegmentation according to territory supplied by hepatic artery/portal vein or drained by hepatic veins for surgical planning.!

a.! c.!b.!

d.! f.!e.!
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Virtual Surgical planning 

Thought private companies offer a variety of liver segmentation and surgical 

planning services, they are often expensive and time-consuming to obtain. The 

related cost makes it difficult for each patient to undergo a virtual surgical 

planning procedure prior to hepatecomy or transplantation. Future trends in liver 

segmentation include in-house solutions for surgical planning. Accurate 

parenchymal and vascular segmentation must be combined with 3D modeling to 

provide such solutions (Figure 6.2). 
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Figure 6.2: Virtual Surgical Planning. 

Tumour visualization: (a) Axial enhanced CT image shows a right liver 

metastasis centered in segment V (arrow). The patient also had a metastasis 

involving segment VII (not shown). (b) Axial enhanced CT image shows a left 

liver metastasis in segment III (arrow). Surgical simulation and volume 

planning: (c) 3D-rendering image shows surgical planning for complete right 

hepatectomy. (d) 3D-rendering image shows surgical planning for segmentectomy 

of segment III. Residual hepatic liver volume after both procedures was estimated 

to be 27%. Right portal embolization was thus performed before right 

hepatectomy. Images 6.2c and d courtesy of Dr. Franck Vandenbroucke-Menu (8). 

 

6.2 Closing Words 

Liver disease is an important public health concern with substantial morbidity 

and mortality associated with disease progression. There is a significant need for 

better tools to diagnose and monitor biomarkers of liver pathology. Our 

Virtual Surgical Planning!

Reference!
Images courtesy of IRCAD (www.visiblepatient.com).!

Fig 11. Virtual Surgical Planning.!
!
Tumor visualization:!
(a) !Axial enhanced CT image shows a right 

liver metastasis centered in segment V 
(arrow). The patient also had a metastasis 
involving segment VII (not shown).!

(b) !Axial enhanced CT image shows a left liver 
metastasis in segment III (arrow).!

!
Surgical simulation and volume planning:!
(c) !3D-rendering image shows surgical 

planning for complete right hepatectomy.!
(d) !3D-rendering image shows surgical 

planning for segmentectomy of segment III. 
Residual hepatic liver volume after both 
procedures was estimated to be 27%. Right 
portal embolization was thus performed 
before right hepatectomy.!

a.! b.!

c.! d.!
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segmentation software represents a non-invasive, imaging-based method to 

procure vital information regarding 3D liver shape and volume. 

The research presented in this dissertation is part of a larger research program 

involving MR-based quantification of liver biomarkers coordinated by my 

research director, Dr. An Tang. The development and validation of our 

segmentation method contributes to this program by providing a tool for accurate 

and reliable liver volume assessment.  

If validated for clinical usage, this method could be integrated with other 

MRI-based biomarkers of disease (i.e., fat, iron, fibrosis, inflammation) to 

determine pathology density throughout the entire liver volume. Conversely liver 

biopsy, the current reference standard, provides sampling of an extremely small 

portion of the liver and is an invasive procedure. 

In the development of our method, we opted for a model-based approach 

which used implicit modeling for shape initialization combined with a shape 

deformation scheme based on Laplacian mesh optimization. A primary goal was to 

develop a method compatible with both CT and MRI images as this has rarely 

been described in the medical literature. Further, we aspired to overcome the need 

for training data while maintaining accuracy and repeatability on a wide range of 

pathological livers.  

Results from our cross-sectional studies suggest that we were able to achieve 

these stated goals. In doing so, we demonstrated that semiautomated liver 

segmentation represents a feasible alternative to volumetric methods currently 

employed in the clinical setting. 

My hope is that this dissertation provides the reader with a more sophisticated 

understanding of automated liver volumetry from the clinical perspective. I look 

forward to the day when I am able to quickly evaluate liver volume and other 

biomarkers of liver disease for each patient while reviewing their CT or MRI 

examinations.



 

 

 

Bibliography 
Publications by our research team are in bold characters 

 

1. Caldwell RS. Hesiod's Theogony. Cambridge, MA: Focus Information 

 Group 1987;1987:59. 

2. Chen TS, Chen PS. The myth of Prometheus and the liver. Journal of the 

 Royal Society of Medicine. 1994;87(12):754-5. 

3. West ML. Hesiod: Theogony. Oxford: Clarendon Press. 1966. 

4. Michalopoulos GK. Liver regeneration. Journal of cellular physiology. 

 2007;213(2):286-300. Epub 2007/06/15. 

5. Boyer TD, Manns MP, Sanyal AJ, Zakim D. Zakim and Boyer's 

 Hepatology: A Textbook of Liver Disease: Saunders/Elsevier; 2012. 

6. Couinaud C. Le Foie: études anatomiques et chirurgicales. Paris: Masson. 

 1957. 

7. Fasel JH, Schenk A. Concepts for Liver Segment Classification: Neither 

 Old Ones nor New Ones, but a Comprehensive One. Journal of clinical 

 imaging science. 2013;3:48. Epub 2013/11/15. 

8. Gotra A, Chartrand G, Vu K, Vandenbroucke-Menu F, Kauffmann C, 

 Gallix B, et al., editors. Liver Segmentation: A Primer for Radiologists. 

 Radiological Society of North America 2014 Scientific Assembly and 

 Annual Meeting; 2014; Chicago, IL. 

9. Zoli M, Cordiani MR, Marchesini G, Iervese T, Labate AM, Bonazzi C, et 

 al. Prognostic indicators in compensated cirrhosis. The American journal of 

 gastroenterology. 1991;86(10):1508-13. Epub 1991/10/01. 

10. Sekiyama K, Yoshiba M, Inoue K, Sugata F. Prognostic value of hepatic 

 volumetry in fulminant hepatic failure. Digestive diseases and sciences. 

 1994;39(2):240-4. Epub 1994/02/01. 



BIBLIOGRAPHY 
 

 

 cxxxv 

11. Linguraru MG, Sandberg JK, Jones EC, Petrick N, Summers RM. 

 Assessing hepatomegaly: automated volumetric analysis of the liver. 

 Academic radiology. 2012;19(5):588-98. Epub 2012/03/01. 

12. Yamanaka J, Saito S, Fujimoto J. Impact of preoperative planning using 

 virtual segmental volumetry on liver resection for hepatocellular 

 carcinoma. World journal of surgery. 2007;31(6):1249-55. 

13. Luciani A, Rusko L, Baranes L, Pichon E, Loze B, Deux JF, et al. 

 Automated liver volumetry in orthotopic liver transplantation using 

 multiphase acquisitions on MDCT. Ajr. 2012;198(6):W568-74. Epub 

 2012/05/25. 

14. Nakayama Y, Li Q, Katsuragawa S, Ikeda R, Hiai Y, Awai K, et al. 

 Automated hepatic volumetry for living related liver transplantation at 

 multisection CT. Radiology. 2006;240(3):743-8. Epub 2006/07/22. 

15. Lemke AJ, Brinkmann MJ, Schott T, Niehues SM, Settmacher U, Neuhaus 

 P, et al. Living donor right liver lobes: preoperative CT volumetric 

 measurement for calculation of intraoperative weight and volume. 

 Radiology. 2006;240(3):736-42. 

16. Kamel IR, Kruskal JB, Pomfret EA, Keogan MT, Warmbrand G, 

 Raptopoulos V. Impact of multidetector CT on donor selection and surgical 

 planning before living adult right lobe liver transplantation. Ajr. 

 2001;176(1):193-200. 

17. Suzuki K, Epstein ML, Kohlbrenner R, Garg S, Hori M, Oto A, et al. 

 Quantitative radiology: automated CT liver volumetry compared with 

 interactive volumetry and manual volumetry. Ajr. 2011;197(4):W706-12. 

 Epub 2011/09/24. 

18. Massoptier L, Casciaro S. A new fully automatic and robust algorithm for 

 fast segmentation of liver tissue and tumors from CT scans. European 

 radiology. 2008;18(8):1658-65. Epub 2008/03/29. 

19. Castell DO, O'Brien KD, Muench H, Chalmers TC. Eastimation of liver 

 size by percussion in normal individuals. Annals of internal medicine. 

 1969;70(6):1183-9. Epub 1969/06/01. 



BIBLIOGRAPHY 
 

 

 cxxxvi 

20. Castell DO, Frank BB. Abdominal examination: role of percussion and 

 auscultation. Postgraduate medicine. 1977;62(6):131-4. Epub 1977/12/01. 

21. Heymsfield SB, Fulenwider T, Nordlinger B, Barlow R, Sones P, Kutner 

 M. Accurate measurement of liver, kidney, and spleen volume and mass by 

 computerized axial tomography. Annals of internal medicine. 

 1979;90(2):185-7. Epub 1979/02/01. 

22. Masutani Y, Uozumi K, Akahane M, Ohtomo K. Liver CT image 

 processing: a short introduction of the technical elements. European journal 

 of radiology. 2006;58(2):246-51. 

23. Campadelli P, Casiraghi E, Esposito A. Liver segmentation from computed 

 tomography scans: a survey and a new algorithm. Artif Intell Med. 

 2009;45(2-3):185-96. Epub 2008/12/09. 

24. Fulcher AS, Szucs RA, Bassignani MJ, Marcos A. Right lobe living donor 

 liver transplantation: preoperative evaluation of the donor with MR 

 imaging. Ajr. 2001;176(6):1483-91. 

25. Brenner DJ, Hall EJ. Computed tomography--an increasing source of 

 radiation exposure. The New England journal of medicine. 

 2007;357(22):2277-84. Epub 2007/11/30. 

26. Chartrand G, Cresson T, Chav R, Gotra A, Tang A, De Guise J, 

 editors. Semi-automated liver CT segmentation using Laplacian 

 meshes. 2014 IEEE International Symposium on Biomedical Imaging; 

 2013; Beiing, China. 

27. Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, 

 et al. Comparison and evaluation of methods for liver segmentation from 

 CT datasets. IEEE Trans Med Imaging. 2009;28(8):1251-65. Epub 

 2009/02/13. 

28. Udupa JK, Leblanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, et 

 al. A framework for evaluating image segmentation algorithms. 

 Computerized medical imaging and graphics : the official journal of the 

 Computerized Medical Imaging Society. 2006;30(2):75-87. Epub 

 2006/04/06. 



BIBLIOGRAPHY 
 

 

 cxxxvii 

29. Sherman M, Bilodeau M, Cooper C, Mackie D, Depew W, Villeneuve J-P, 

 et al. Liver Disease in Canada: A Crisis in the Making. An Assessment of 

 Liver Disease in Canada. 2013 March 2013. Report No. 

30. Chaudhary RK, Nicholls ES, Kennedy DA. Prevalence of hepatitis B 

 markers in Indochinese refugees. Canadian Medical Association journal. 

 1981;125(11):1243-6. Epub 1981/12/01. 

31. Wong WW, Minuk GY. A cross-sectional seroepidemiologic survey of 

 chronic hepatitis B virus infections in Southeast Asian immigrants residing 

 in a Canadian urban centre. Clinical and investigative medicine Medecine 

 clinique et experimentale. 1994;17(5):443-7. Epub 1994/10/01. 

32. Strickland GT, El-Kamary SS, Klenerman P, Nicosia A. Hepatitis C 

 vaccine: supply and demand. The Lancet Infectious diseases. 

 2008;8(6):379-86. Epub 2008/05/27. 

33. Brunt EM. Pathology of nonalcoholic steatohepatitis. Hepatology research : 

 the official journal of the Japan Society of Hepatology. 2005;33(2):68-71. 

 Epub 2005/10/11. 

34. Brunt EM. Nonalcoholic steatohepatitis. Seminars in liver disease. 

 2004;24(1):3-20. Epub 2004/04/16. 

35. Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Annals of 

 internal medicine. 1997;126(2):137-45. Epub 1997/01/15. 

36. Preiss D, Sattar N. Non-alcoholic fatty liver disease: an overview of 

 prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci 

 (Lond). 2008;115(5):141-50. Epub 2008/07/30. 

37. Gupta AA, Kim DC, Krinsky GA, Lee VS. CT and MRI of cirrhosis and its 

 mimics. Ajr. 2004;183(6):1595-601. Epub 2004/11/18. 

38. Abbas AK, Cotran SC, Kumar V, Robbins SL, Fausto N. Robbins & 

 Cotran Pathologic Basis of Disease: Saunders; 7 edition; 2004. 

39. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: 

 Globocan 2000. International journal of cancer Journal international du 

 cancer. 2001;94(2):153-6. Epub 2001/10/23. 



BIBLIOGRAPHY 
 

 

 cxxxviii 

40. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging 

 Reporting and Data System): summary, discussion, and consensus of the 

 LI-RADS Management Working Group and future directions. Hepatology. 

 2015;61(3):1056-65. Epub 2014/07/22. 

41. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. 

 Hepatology. 2011;53(3):1020-2. Epub 2011/03/05. 

42. Namasivayam S, Martin DR, Saini S. Imaging of liver metastases: MRI. 

 Cancer imaging : the official publication of the International Cancer 

 Imaging Society. 2007;7:2-9. Epub 2007/02/13. 

43. Doherty GM, Way LW. Current Surgical Diagnosis & Treatment: Lange 

 Medical Books/McGraw-Hill; 2006. 

44. Abdalla EK, Adam R, Bilchik AJ, Jaeck D, Vauthey JN, Mahvi D. 

 Improving resectability of hepatic colorectal metastases: expert consensus 

 statement. Annals of surgical oncology. 2006;13(10):1271-80. Epub 

 2006/09/07. 

45. Geoghegan JG, Scheele J. Treatment of colorectal liver metastases. Br J 

 Surg. 1999;86(2):158-69. Epub 1999/04/01. 

46. Biomarkers and surrogate endpoints: preferred definitions and conceptual 

 framework. Clinical pharmacology and therapeutics. 2001;69(3):89-95. 

 Epub 2001/03/10. 

47. Ramachandran U, Alurkar V, Thaplia A. Pattern of cardiac diseases in 

 children in Pokhara, Nepal. Kathmandu Univ Med J (KUMJ). 

 2006;4(2):222-7. Epub 2008/07/08. 

48. Manolio T. Novel risk markers and clinical practice. The New England 

 journal of medicine. 2003;349(17):1587-9. Epub 2003/10/24. 

49. Aithal GP, Guha N, Fallowfield J, Castera L, Jackson AP. Biomarkers in 

 liver disease: emerging methods and potential applications. International 

 journal of hepatology. 2012;2012:437508. Epub 2012/12/05. 

50. Okazaki H, Ito K, Fujita T, Koike S, Takano K, Matsunaga N. 

 Discrimination of alcoholic from virus-induced cirrhosis on MR imaging. 

 Ajr. 2000;175(6):1677-81. Epub 2000/11/25. 



BIBLIOGRAPHY 
 

 

 cxxxix 

51. Zhou X, Kitagawa T, Hara T, Fujita H, Zhang X, Yokoyama R, et al. 

 Constructing a probabilistic model for automated liver region segmentation 

 using non-contrast X-ray torso CT images. Med Image Comput Comput 

 Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2006;9(Pt 

 2):856-63. 

52. Bora A, Alptekin C, Yavuz A, Batur A, Akdemir Z, Berkoz M. Assessment 

 of liver volume with computed tomography and comparison of findings 

 with ultrasonography. Abdom Imaging. 2014;39(6):1153-61. Epub 

 2014/04/30. 

53. Hagan MT, Sayuk GS, Lisker-Melman M, Korenblat KM, Kerr TA, 

 Chapman WC, et al. Liver volume in the cirrhotic patient: does size matter? 

 Digestive diseases and sciences. 2014;59(4):886-91. Epub 2014/02/08. 

54. Fernandez-Salazar L, Velayos B, Aller R, Lozano F, Garrote JA, Gonzalez 

 JM. Percutaneous liver biopsy: patients' point of view. Scand J 

 Gastroenterol. 2011;46(6):727-31. Epub 2011/03/04. 

55. Bravo AA, Sheth SG, Chopra S. Liver biopsy. The New England journal of 

 medicine. 2001;344(7):495-500. Epub 2001/02/15. 

56. Joy D, Thava VR, Scott BB. Diagnosis of fatty liver disease: is biopsy 

 necessary? European journal of gastroenterology & hepatology. 

 2003;15(5):539-43. Epub 2003/04/19. 

57. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, 

 et al. Sampling error and intraobserver variation in liver biopsy in patients 

 with chronic HCV infection. The American journal of gastroenterology. 

 2002;97(10):2614-8. Epub 2002/10/19. 

58. Longo R, Pollesello P, Ricci C, Masutti F, Kvam BJ, Bercich L, et al. 

 Proton MR spectroscopy in quantitative in vivo determination of fat 

 content in human liver steatosis. J Magn Reson Imaging. 1995;5(3):281-5. 

 Epub 1995/05/01. 

59. Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, 

 et al. Measurement of intracellular triglyceride stores by H spectroscopy: 



BIBLIOGRAPHY 
 

 

 cxl 

 validation in vivo. The American journal of physiology. 1999;276(5 Pt 

 1):E977-89. Epub 1999/05/18. 

60. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of 

 liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson 

 Imaging. 2011;34(4):729-49. Epub 2011/09/20. 

61. Yokoo T, Bydder M, Hamilton G, Middleton MS, Gamst AC, Wolfson T, 

 et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy 

 of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. 

 Radiology. 2009;251(1):67-76. Epub 2009/02/18. 

62. Yokoo T, Shiehmorteza M, Hamilton G, Wolfson T, Schroeder ME, 

 Middleton MS, et al. Estimation of hepatic proton-density fat fraction by 

 using MR imaging at 3.0 T. Radiology. 2011;258(3):749-59. Epub 

 2011/01/08. 

63. Dixon WT. Simple proton spectroscopic imaging. Radiology. 

 1984;153(1):189-94. Epub 1984/10/01. 

64. Le TA, Chen J, Changchien C, Peterson MR, Kono Y, Patton H, et al. 

 Effect of colesevelam on liver fat quantified by magnetic resonance in 

 nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology. 

 2012;56(3):922-32. Epub 2012/03/21. 

65. Tang A, Chen J, Le TA, Changchien C, Hamilton G, Middleton MS, et 

 al. Cross-sectional and longitudinal evaluation of liver volume and 

 total liver fat burden in adults with nonalcoholic steatohepatitis. 

 Abdom Imaging. 2015;40(1):26-37. Epub 2014/07/13. 

66. Hernando D, Levin YS, Sirlin CB, Reeder SB. Quantification of liver iron 

 with MRI: state of the art and remaining challenges. J Magn Reson 

 Imaging. 2014;40(5):1003-21. Epub 2014/03/04. 

67. Imamura H, Seyama Y, Kokudo N, Aoki T, Sano K, Minagawa M, et al. 

 Single and multiple resections of multiple hepatic metastases of colorectal 

 origin. Surgery. 2004;135(5):508-17. Epub 2004/05/01. 

68. Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, et al. Improving 

 survival results after resection of hepatocellular carcinoma: a prospective 



BIBLIOGRAPHY 
 

 

 cxli 

 study of 377 patients over 10 years. Annals of surgery. 2001;234(1):63-70. 

 Epub 2001/06/23. 

69. Pang YY. The Brisbane 2000 terminology of liver anatomy and resections. 

 HPB 2000; 2:333-39. HPB : the official journal of the International Hepato 

 Pancreato Biliary Association. 2002;4(2):99; author reply -100. Epub 

 2008/03/12. 

70. Ferrero A, Vigano L, Polastri R, Muratore A, Eminefendic H, Regge D, et 

 al. Postoperative liver dysfunction and future remnant liver: where is the 

 limit? Results of a prospective study. World J Surg. 2007;31(8):1643-51. 

 Epub 2007/06/07. 

71. d'Assignies G, Kauffmann C, Boulanger Y, Bilodeau M, Vilgrain V, 

 Soulez G, et al. Simultaneous assessment of liver volume and whole 

 liver fat content: a step towards one-stop shop preoperative MRI 

 protocol. European radiology. 2011;21(2):301-9. Epub 2010/09/04. 

72. Lim MC, Tan CH, Cai J, Zheng J, Kow AW. CT volumetry of the liver: 

 where does it stand in clinical practice? Clin Radiol. 2014;69(9):887-95. 

 Epub 2014/05/16. 

73. Vauthey JN, Chaoui A, Do KA, Bilimoria MM, Fenstermacher MJ, 

 Charnsangavej C, et al. Standardized measurement of the future liver 

 remnant prior to extended liver resection: methodology and clinical 

 associations. Surgery. 2000;127(5):512-9. Epub 2000/05/20. 

74. Low HC, Da Costa M, Prabhakaran K, Kaur M, Wee A, Lim SG, et al. 

 Impact of new legislation on presumed consent on organ donation on liver 

 transplant in Singapore: a preliminary analysis. Transplantation. 

 2006;82(9):1234-7. Epub 2006/11/15. 

75. Busuttil RW, Goss JA. Split liver transplantation. Annals of surgery. 

 1999;229(3):313-21. Epub 1999/03/17. 

76. Lo CM, Fan ST, Liu CL, Wei WI, Lo RJ, Lai CL, et al. Adult-to-adult 

 living donor liver transplantation using extended right lobe grafts. Annals 

 of surgery. 1997;226(3):261-9; discussion 9-70. Epub 1997/10/27. 



BIBLIOGRAPHY 
 

 

 cxlii 

77. Ben-Haim M, Emre S, Fishbein TM, Sheiner PA, Bodian CA, Kim-

 Schluger L, et al. Critical graft size in adult-to-adult living donor liver 

 transplantation: impact of the recipient's disease. Liver Transpl. 

 2001;7(11):948-53. Epub 2001/11/08. 

78. Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, et 

 al. Impact of graft size mismatching on graft prognosis in liver 

 transplantation from living donors. Transplantation. 1999;67(2):321-7. 

 Epub 1999/02/12. 

79. Hermoye L, Laamari-Azjal I, Cao Z, Annet L, Lerut J, Dawant BM, et al. 

 Liver Segmentation in Living Liver Transplant Donors: Comparison of 

 Semiautomatic and Manual Methods. Radiology. 2005;234(1):171-8. 

80. Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, et al. Small-for-

 size graft in living donor liver transplantation: how far should we go? Liver 

 Transpl. 2003;9(9):S29-35. Epub 2003/08/28. 

81. Lemke AJ, Hosten N, Neumann K, Muller B, Neuhaus P, Felix R, et al. 

 [CT volumetry of the liver before transplantation]. RoFo : Fortschritte auf 

 dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 

 1997;166(1):18-23. Epub 1997/01/01. CT-Volumetrie der Leber vor 

 Transplantation. 

82. Frericks BB, Kiene T, Stamm G, Shin H, Galanski M. CT-based liver 

 volumetry in a porcine model: impact on clinical volumetry prior to living 

 donated liver transplantation. RoFo : Fortschritte auf dem Gebiete der 

 Rontgenstrahlen und der Nuklearmedizin. 2004;176(2):252-7. Epub 

 2004/02/12. CT-basierte Lebervolumetrie im Tiermodell: Bedeutung fur 

 die klinische Volumetrie im Rahmen der Leberlebendspende. 

83. Mazonakis M, Damilakis J, Maris T, Prassopoulos P, Gourtsoyiannis N. 

 Comparison of two volumetric techniques for estimating liver volume 

 using magnetic resonance imaging. J Magn Reson Imaging. 

 2002;15(5):557-63. Epub 2002/05/09. 

84. Hermoye L, Laamari-Azjal I, Cao Z, Annet L, Lerut J, Dawant BM, et al. 

 Liver segmentation in living liver transplant donors: comparison of 



BIBLIOGRAPHY 
 

 

 cxliii 

 semiautomatic and manual methods. Radiology. 2005;234(1):171-8. Epub 

 2004/11/27. 

85. Farraher SW, Jara H, Chang KJ, Hou A, Soto JA. Liver and Spleen 

 Volumetry with Quantitative MR Imaging and Dual-Space Clustering 

 Segmentation. Radiology. 2005;237(1):322-8. 

86. Sahin B, Ergur H. Assessment of the optimum section thickness for the 

 estimation of liver volume using magnetic resonance images: a 

 stereological gold standard study. European journal of radiology. 

 2006;57(1):96-101. Epub 2005/08/23. 

87. Gloger O, Tonies KD, Liebscher V, Kugelmann B, Laqua R, Volzke H. 

 Prior shape level set segmentation on multistep generated probability maps 

 of MR datasets for fully automatic kidney parenchyma volumetry. IEEE 

 Trans Med Imaging. 2012;31(2):312-25. Epub 2011/09/23. 

88. Torkzad MR, Noren A, Kullberg J. Stereology: a novel technique for rapid 

 assessment of liver volume. Insights into imaging. 2012;3(4):387-93. Epub 

 2012/06/15. 

89. Suzuki K, Huynh HT, Liu Y, Calabrese D, Zhou K, Oto A, et al. 

 Computerized segmentation of liver in hepatic CT and MRI by means of 

 level-set geodesic active contouring. Conf Proc IEEE Eng Med Biol Soc. 

 2013;2013:2984-7. Epub 2013/10/11. 

90. Huynh HT, Karademir I, Oto A, Suzuki K. Computerized liver volumetry 

 on MRI by using 3D geodesic active contour segmentation. Ajr. 

 2014;202(1):152-9. Epub 2013/12/29. 

91. Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. 

 International Journal of Computer Vision. 1988;1(4):pp. 321-31. 

92. Falcão AX, Udupa JK, Samarasekera S, Sharma AS, Hirsch BE, Lotufo 

 RA. User-steered image segmentation paradigms: live wire and live lane. 

 Graph Models Image Process. 1998;60(4):233-60. 

93. Heckel F, Konrad O, Hahn HK, Peitgen HO. Interactive 3D Medical Image 

 Segmentation with Energy-Minimizing Implicit Function. Computers & 

 Graphics. 2010;35(2):275-87. 



BIBLIOGRAPHY 
 

 

 cxliv 

94. Lopez-Mir F, Gonzalez P, Naranjo V, Pareja E, Alcaniz M, Solaz-Minguez 

 J, editors. A Fast Computational Method Based on {3D} Morphology and a 

 Statistical Filter. International Work-Conference on Bioinformatics and 

 Biomedical Engineering IWBBIO 2013; 2013; Granada, Spain. 

95. Boykov YY, Jolly MP. Interactive graph-cuts for optimal boundary & 

 region segmentation of objects in N-D images. International Conference on 

 Computer Vision (ICCV). 2001;I:105-12. 

96. Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, et 

 al. Fully automatic anatomical, pathological, and functional segmentation 

 from CT scans for hepatic surgery. Comput Aided Surg. 2001;6(3):131-42. 

 Epub 2001/12/18. 

97. Lamecker H, Lange T, Seebass M. Segmentation of the liver using a 3D 

 statistical shape model. ZIB-Report 2004;04-09. 

98. Nealen A, Igarashi T, Sorkine O, Alexa M. Laplacian mesh optimization 

 Proceedings of the 4th international conference on Computer graphics and 

 interactive techniques in Australasia and Southeast Asia - GRAPHITE '06. 

 2006. 

99. Lim SJ, Jeong YY, Ho YS. Automatic liver segmentation for volume 

 measurement in CT images. . J Vis Commun Image R. 2006;17(4):860-75. 

100. Sahin B, Mazonakis M, Akan H, Kaplan S, Bek Y. Dependence of 

 computed tomography volume measurements upon section thickness: an 

 application to human dry skulls. Clin Anat. 2008;21(6):479-85. Epub 

 2008/07/16. 

101. Siewert R, Schnapauff D, Denecke T, Tolxdorff T, Krefting D. Automatic 

 Liver Segmentation in Contrast-enhanced MRI. Bildverarbeitung für die 

 Medizin. 2010;volume 574 of CEUR Workshop Proceedings. CEUR-

 WS.org:pp. 405-9. 

102. Gloger O, Kuhn J, Stanski A, Volzke H, Puls R. A fully automatic three-

 step liver segmentation method on LDA-based probability maps for 

 multiple contrast MR images. Magnetic resonance imaging. 

 2010;28(6):882-97. Epub 2010/04/23. 



BIBLIOGRAPHY 
 

 

 cxlv 

103. Rusko L, Bekes G. Liver segmentation for contrast-enhanced MR images 

 using partitioned probabilistic model. International journal of computer 

 assisted radiology and surgery. 2011;6(1):13-20. Epub 2010/06/15. 

104. López-Mor F, Naranjo V, Angulo J, Alcañiz M, Luna L. Liver 

 segmentation in MRI: A fully automatic method based on stochastic 

 partitions. Computer methods and programs in biomedicine. 

 2014;114(1):11-28. 

105. Wimmer A, Soza G, Hornegger J, editors. Two-stage semi-automatic organ 

 segmentation framework using radial basis functions and level sets. . 

 Proceedings of MICCAI 2007 Workshop: 3D Segmentation in the Clinic-A 

 Grand Challenge,; 2007. 

106. Turk G, O'Brien J. Modelling with Implicit Surfaces that Interpolate. ACM 

 Transactions on Graphics. 2002;21(4):pp. 855-73. 

107. Reiner CS, Karlo C, Petrowsky H, Marincek B, Weishaupt D, Frauenfelder 

 T. Preoperative liver volumetry: how does the slice thickness influence the 

 multidetector computed tomography- and magnetic resonance-liver volume 

 measurements? Journal of computer assisted tomography. 2009;33(3):390-

 7. 

108. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, et 

 al. Abdominal MR imaging with a volumetric interpolated breath-hold 

 examination. Radiology. 1999;212(3):876-84. Epub 1999/09/09. 

109. Chartrand G, Cresson T, Chav R, Gotra A, Tang A, de Guise JA. 

 Liver  Segmentation on CT and MR Using Laplacian Mesh 

 Optimization. 2015. 

110. Chartrand G, Chav R, Cresson T, Chantrel S, de Guise JA, editors. 

 Live minimal path for interactive segmentation of medical images, 

 Proc. SPIE 9413. Medical Imaging 2015: Image Processing, 94133U; 

 2015; Orlando, Florida. 

111. Chan TF, Vese LA. Active contours without edges. IEEE transactions on 

 image processing : a publication of the IEEE Signal Processing Society. 

 2001;10(2):266-77. 



BIBLIOGRAPHY 
 

 

 cxlvi 

112. Gotra A, Chartrand G, Massicotte-Tisluck K, Morin-Roy F, 

 Vandenbroucke-Menu F, de Guise JA, et al. Validation of a 

 Semiautomated Liver Segmentation Method Using CT for Accurate 

 Volumetry. Academic radiology. 2015. Epub 2015/04/25. 

113. Gotra A, Chartrand C, Vu KN, Vandenbroucke-Menu F, Massicotte-

 Tisluck K, de Guise JA, et al. Comparison of MRI and CT-based 

 Semiautomated Liver Segmentation: a Validation Study 2015. 

114. Foruzan AH, Chen YW, Zoroo RAF, A. , Sato Y, Hori M, Tomiyama N. 

 Segmentation of liver in low-contrast images using K-means clustering and 

 geodesic active contour algorithms,. IEICE Transactions on Information 

 and Systems. 2013;E96-(D)(4):798-807. 

115. Gloger O, Toennies K, Kuehn JP. Fully automatic liver volumetry using 

 3D level set segmentation for differentiated liver tissue types in multiple 

 contrast MR datasets.  Lecture Notes in Computer Science. Ystad, 

 Sweden2011. p. 512-23. 

116. Peng J, Wang Y, Kong D. Liver segmentation with constrained convex 

 variational model. Pattern Recognition Letters. 2013. 

117. Maklad AS, Matsuhiro M, Suzuki H, Kawata Y, Niki N, Moriyama N, et 

 al. Blood vessel-based liver segmentation through the portal phase of a ct 

 dataset. SPIE Medical Imaging, International Society for Optics and 

 Photonics. 2013:86700X-X. 

118. Linguraru MG, Sandberg JK, Li Z, Shah F, Summers RM. Automated 

 segmentation and quantication of liver and spleen from CT images using 

 normalized probabilistic atlases and enhancement estimation. Medical 

 physics. 2010;37(2). 

119. Beichel R, Bauer C, Bornik A, Sorantin E, Bischof H. Liver segmentation 

 in CT data: A segmentation refinement approach. Proc MICCAI Workshop 

 3-D Segmentat Clinic: A Grand Challenge. 2007:pp. 235-45. 

120. Freiman M, Eliassaf O, Taieb Y, Joskowicz L, Sosna J, editors. A bayesian 

 approach for liver analysis: algorithm and validation study. Medical image 

 computing and computer-assisted intervention: MICCAI; 2008: 



BIBLIOGRAPHY 
 

 

 cxlvii 

 International Conference on Medical Image Computing and Computer-

 Assisted Intervention 11 (Pt 1). 

121. Kainm	
�uller D, Lange T, Lamecker H, editors. Shape constrained 

 automatic segmentation of the liver based on a heuristic intensity model. 

 Proc MICCAIWorkshop 3-D Segmentation Clinic: A Grand Challenge; 

 2007. 

122. Heimann T, Munzing S, Meinzer HP, Wolf I. A shape-guided deformable 

 model with evolutionary algorithm initialization for 3D soft tissue 

 segmentation.  Lecture Notes in Computer Science. Kerkrade, 

 Netherlands2007. p. 1-12. 

123. Soler L, Delingette H, Malandain G, Ayache N, Koehl C, Clement JM, et 

 al. An automatic virtual patient reconstruction from CT-scans for hepatic 

 surgical planning. Studies in health technology and informatics. 

 2000;70:316-22. 

124. Aoyama M, Nakayama Y, Awai K, Inomata Y, Yamashita Y. A simple 

 method for accurate liver volume estimation by use of curve-fitting: a pilot 

 study. Radiological physics and technology. 2013;6(1):180-6. 

125. Gotra A, Chartrand C, Vu KN, Vandenbroucke-Menu F, Massicotte-

 Tisluck K, de Guise JA, et al., editors. Comparison of MRI and CT-

 based Semiautomated Liver Segmentation: a Validation Study ARRS, 

 American Roentgen Ray Society; 2015; Toronto, Canada. 

126. Van den Broek MA, Olde Damink SW, Dejong CH, Lang H, Malago M, 

 Jalan R, et al. Liver failure after partial hepatic resection: definition, 

 pathophysiology, risk factors and treatment. Liver international : official 

 journal of the International Association for the Study of the Liver. 

 2008;28(6):767-80. Epub 2008/07/24. 

127. Pizer SM, Fletcher PT, Joshi S, Gash AG, Stough J, Thall A, et al. A 

 method and software for segmentation of anatomic object ensembles by 

 deformable m-reps. Medical physics. 2005;32(5):1335-45. Epub 

 2005/06/30. 



BIBLIOGRAPHY 
 

 

 cxlviii 

128. Gao L, Heath DG, Kuszyk BS, Fishman EK. Automatic liver segmentation 

 technique for three-dimensional visualization of CT data. Radiology. 

 1996;201(2):359-64. 

129. Vauthey J-N, Abdalla EK, Doherty DA, Gertsch P, Fenstermacher MJ, 

 Loyer EM, et al. Body surface area and body weight predict total liver 

 volume in Western adults. Liver Transplantation. 2002;8(3):233-40. 

130. Ribero D, Chun YS, Vauthey JN. Standardized liver volumetry for portal 

 vein embolization. Seminars in interventional radiology. 2008;25(2):104-9. 

 Epub 2008/06/01. 

131. Bae KT, Giger ML, Chen CT, Kahn CE, Jr. Automatic segmentation of 

 liver structure in CT images. Medical physics. 1993;20(1):71-8. 

132. Chav R, Cresson T, Kauffmann C, de Guise JA. Method for fast and 

 accurate segmentation processing from prior shape: application to 

 femoral head segmentation on x-ray images. Proc of SPIE. 

 2009;7259:72594Y-Y-8. 

133. Praun E, Hoppe H. Spherical parametrization and remeshing. ACM 

 Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2003. 

 2003;22(3):pp 340-9. 

134. JM B, DG A. Statistical methods for assessing agreement between two 

 methods of clinical measurement. Lancet. 1986;327(8476):307-10. 

135. Karlo C, Reiner CS, Stolzmann P, Breitenstein S, Marincek B, Weishaupt 

 D, et al. CT- and MRI-based volumetry of resected liver specimen: 

 comparison to intraoperative volume and weight measurements and 

 calculation of conversion factors. European journal of radiology. 

 2010;75(1):e107-11. 

136. Dawant BM, Li R, Lennon B, Li S. Semi-automatic segmentation of the 

 liver and its evaluation on the MICCAI 2007 grand challenge data set. . 

 Proc MICCAI Workshop on 3-D Segmentat Clinic: A Grand Challenge. 

 2007:215-21. 



BIBLIOGRAPHY 
 

 

 cxlix 

137. Bauer C, Pock T, Sorantin E, Bischof H, Beichel R. Segmentation of i

 nterwoven 3d tubular tree structures utilizing shape priors and graph cuts. 

 Med Image Anal. 2010 Apr;14(2):pp. 172-84. 

138. Heimann T, Wolf I, Meinzer HP. Active shape models for a fully 

 automated 3D segmentation of the liver--an evaluation on clinical data. 

 Med Image Comput Comput Assist Interv Int Conf Med Image Comput 

 Comput Assist Interv. 2006;9(Pt 2):41-8. Epub 2007/03/16. 

139. Lee J, Kim N, Lee H, Seo JB, Won HJ, Shin YM, et al. Efficient liver s

 egmentation using a level-set method with optimal detection of the initial l

 iver boundary from level-set speed images. Computer methods and 

 programs in biomedicine. 2007;88(1):26-38. 

140. Arya S, Mount D, Netanyahu N, Silverman R, Wu A. An optimal 

 algorithm for approximate nearest neighbor searching. J ACM. 

 1998;45(6):pp. 891-923. 

141. Huttenlocher D, Klanderman D, Rucklige A. Comparing images using the 

 Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. Sep. 

 1993;15(9):pp.850-63.



 

 

 

 

Appendix  
Appendix 1. Segmentation Performance measures. 

 

Volumetric overlap error  

The volumetric overlap error (VOE) is determined using the ratio of 

intersection and union between two segmentations, A (automated segmentation) 

and M (manual segmentation) (27). It is calculated as: 

 

The VOE is 0% for a perfect overlap between segmentations and 100% for 

segmentations with no overlap. 

 

Relative volume difference 

The relative volume difference (RVD) between the two segmentations A and 

M is calculated as (27): 

 

 A value of 0mm implies that the volumes of the two segmentations A and M 

are identical. 

 

Average symmetric surface distance  

The average symmetric surface distance (ASD) of surface voxels from 

segmentations A and M is given in millimeters. For each surface voxel from 

segmentation A, the Euclidean distance to the closest surface voxel of M can be 
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calculated (27, 140). The average of all calculated distances from A to M and M to 

A gives the ASD, with a perfect segmentation giving a value of 0 mm (27). 

Assuming that S(A) = the set of surface voxels for semiautomated 

segmentation A, S(M) = set of surface voxels for manual segmentation M and the 

shortest distance between v (arbitrary voxel) to S (A) is: 

 

where (∥·∥) denotes the Euclidean distance then the ASD is calculated as (27): 

 

 

Root mean square symmetric surface distance 

The root mean square symmetric surface distance (RMSD) uses the ASD 

previously described, however the Euclidean distances between surface voxels of 

A and M are squared. A perfect segmentation gives a value of 0 mm. The RMS 

symmetric surface distance is calculated as (27): 

 
Maximum symmetric surface distance 

The maximum symmetric surface distance (MSD) utilizes the maximum 

Euclidean distance between surface voxels from segmentations A and M (27, 141). 

A perfect segmentation yields a distance of 0 mm. The MSD is given in 

millimeters and calculated as (27): 
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Appendix 2. Manuscript: Validation of a Semiautomated Liver Segmentation 

Method Using CT for Accurate Volumetry. 

Published in Academic Radiology (112). Full text reproduced with permission 
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Validation of a Semiautomated Liver
Segmentation Method Using CT for

Accurate Volumetry

Akshat Gotra, MD, Gabriel Chartrand, B.Eng, Karine Massicotte-Tisluck, Florence Morin-Roy, MD,

Franck Vandenbroucke-Menu, MD, Jacques A. de Guise, Ph.D Eng, An Tang, MD, MSc

Rationale andObjectives: To compare the repeatability and agreement of a semiautomated liver segmentationmethodwithmanual seg-

mentation for assessment of total liver volume on CT (computed tomography).

Materials andMethods: This retrospective, institutional review board–approved studywas conducted in 41 subjects who underwent liver
CT for preoperative planning. The major pathologies encountered were colorectal cancer metastases, benign liver lesions and hepatocel-

lular carcinoma. This semiautomated segmentation method is based on variational interpolation and 3D minimal path–surface segmenta-

tion. Total and subsegmental liver volumes were segmented from contrast-enhanced CT images in venous phase. Two image analysts

independently performed semiautomated segmentations and two other image analysts performed manual segmentations. Repeatability
and agreement of both methods were evaluated with intraclass correlation coefficients (ICC) and Bland–Altman analysis. Interaction time

was recorded for both methods.

Results: Bland–Altman analysis revealed an intrareader agreement of �1 � 27 mL (mean � 1.96 standard deviation) with ICC of 0.999
(P < .001) for manual segmentation and 12� 97 mL with ICC of 0.991 (P < .001) for semiautomated segmentation. Bland–Altman analysis

revealed an interreader agreement of �4 � 22 mL with ICC of 0.999 (P < .001) for manual segmentation and 5 � 98 mL with ICC of 0.991

(P < .001) for semiautomated segmentation. Intermethod agreement was found to be 3� 120 mL with ICC of 0.988 (P < .001). Mean inter-
action time was 34.3 � 16.7 minutes for the manual method and 8.0 � 1.2 minutes for the semiautomated method (P < .001).

Conclusions: A semiautomated segmentation method can substantially shorten interaction time while preserving a high repeatability and

agreement with manual segmentation.

Key Words: Segmentation; liver volumetry; semiautomated; agreement; repeatability.
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A
ssessment of liver volume is a mandatory step before

extended hepatectomy for determining the antici-

pated future liver remnant and before living-donor

liver transplantation for selection of appropriate candidates

(1–3). Liver volumetry requires a multiplanar imaging

modality. Computed tomography (CT) is currently the

preferred imaging modality for surgical planning because of

its superior spatial resolution and short acquisition time

(4–6). Use of CT in presurgical imaging allows for

concomitant assessment of vascular anatomy and quality of

liver parenchyma and allows determination of total and

lobar volume (7).

The reference standardmethod to estimate liver volume in-

volves manually delineating the liver outline, a process called

‘‘segmentation,’’ on consecutive CT images. This method is

cumbersome, time-consuming, and impractical for wide-

spread clinical use (8–10). Formula-based liver volume esti-

mation using patient height and weight has also been

proposed (11). However, this approach is based on a linear

regression equation and is not specific to patient anatomy (12).
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TABLE 1. Subject Demographics

Characteristic Data

Total subjects, N (%) 41 (100)

Sex

Male (%) 22 (54)

Female (%) 19 (46)

Age (years)

Mean � standard

deviation

55 � 13

Body mass index in adults (kg/m2)

Mean � standard

deviation

26 � 5

Pathologies

Colorectal metastases 27 (66)

Benign liver lesions 5 (12)

Hepatocellular

carcinoma

4 (10)

Cholangiocarcinoma 2 (5)

Biliary trauma 1 (2)

Cystadenocarcinoma 1 (2)

Cholangitis 1 (2)
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Automated segmentation algorithms provide several ad-

vantages such as shorter processing time, greater agreement,

and repeatability (6,13–15). Although numerous studies

have proposed semiautomated or fully automated liver

segmentation methods from CT data sets, these methods

have not necessarily been translated to clinical use (16). Rea-

sons limiting the performance of segmentation algorithms

have included small sample sizes, data sets not reflective of

clinical problems, and poorly defined performance metrics

(16,17). Recently, segmentation evaluation frameworks have

been criticized for using liver volume alone to evaluate the

quality of segmentation results (16). To facilitate the compar-

ison between segmentation methods and objectively assess

technical improvements from different research groups,

several error measures have been proposed by the liver seg-

mentation community to highlight different aspects of seg-

mentation agreement: volumetric overlap error, average

symmetric surface distance, root mean square (RMS) sym-

metric surface distance, and maximum symmetric surface dis-

tance (16).

In this article, we introduce a novel semiautomated liver

segmentation method for CT based on variational

interpolation and minimal path surface segmentation. We

hypothesized that this method would improve repeatability

and agreement with manual segmentation while providing

faster (ie, more efficient) segmentation time. Our method is

an improvement to previously published methods as no

statistical shape model was imposed, which permits more

segmentation flexibility for pathological or livers with unusual

shape. This method is compatible with both CTand magnetic

resonance (MR) data sets, which has not been previously

described to our knowledge. Finally, the method is equipped

with mesh-based correction tools which allow the user to

achieve greater precision during interactive segmentation.

The primary aim of this study was to compare the repeat-

ability, agreement, and efficiency of a semiautomated liver

segmentation method using manual segmentation as the refer-

ence standard. The secondary aim was to evaluate the quality

of segmentation using error metrics based on volume overlap

and surface distances. Subsegmental volumetry was also per-

formed based on vascular landmarks and classic anatomic

principles defined by Couinaud (18).
MATERIALS AND METHODS

Our institutional review board approved this retrospective,

cross-sectional study. Requirements for informed consent

were waived.
Study Subjects

Our validation database consisted of 41 subjects (22 men and

19 women; mean age, 55 years) who underwent hepatec-

tomy between October 2006 and April 2009 at our institu-

tion. Patients were included if they had primary or metastatic

liver tumors and underwent major hepatectomy (three or
more Couinaud segments) during the study. Each patient

had a preoperative CT scan within 3 months of surgery.

Hepatobiliary surgeons at our hospital independently deter-

mined indications for preoperative imaging according to

clinical standard of care without influence for study inclu-

sion. Study subjects’ demographic and clinical information

are summarized in Table 1.
CT Imaging Technique

CTwas performed using two MDCT scanners under standard

abdominal imaging protocols. Twenty-five study patients were

scanned with a 16-detector scanner (Lightspeed 16; GE Med-

ical Systems, Waukesha, WI), and 16 patients were scanned

with a 64-detector scanner (Brilliance 64; Philips Medical Sys-

tems, Cleveland, OH). The parameters for the 16-detector

scanner were rotation time, 0.8 seconds; detector collimation,

16 � 1.25 mm; helical pitch, 1.375; tube voltage, 120–

140 kV; x-ray tube current, 75–440 mA; tube current–time

product, 250 mAs. The parameters for the 64-detector scanner

were rotation time, 0.75 seconds; detector collimation,

64 � 0.625 mm; helical pitch, 0.891; tube voltage, 120 kV;

x-ray tube current, 151–499 mA; tube current–time product,

varied based on noise index. Image reconstruction was in a

282- to 500-mm display field of view, depending on the pa-

tient’s physique. Reconstruction section thickness was

2.5 mm. Reconstructed CT slices had a matrix size of 512 �
512 pixels with pixel spacing ranging from 0.55 to 0.98 mm.

Before all examinations, a weight-adjusted dose of a nonionic,

low-osmolar, iodinated contrast agent (Isovue; Bracco Diag-

nostic Inc., Princeton, NJ) was administered intravenously

with a 20-ga needle at a rate of 4 mL/second. All CT protocols
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included an arterial phase and portal venous phase with delays

of 40 seconds and 60 seconds, respectively.
Study Workflow

The portal venous phase from the 41 subjects was used for seg-

mentation as it provides homogeneous enhancement of the liver

parenchyma andmaximizes contrast between liver and nonliver

structures. Liver segmentationwas performed independently by

four image analysts (one radiology resident, two medical stu-

dents, and one biomedical engineering PhD candidate) partici-

pating in research within the department of radiology. Before

this study, the image analysts received 10 hours of training in

liver anatomy and software segmentation. Furthermore, the

manual segmentation results used as the reference standard

were supervised by an abdominal radiologist (7 years of experi-

ence). Two image analysts performed manual segmentation,

whereas the other two undertook semiautomated segmenta-

tion. This ensured adequate estimation of agreement and intra-

observer and interobserver repeatability. Image analysts

performed repeat segmentations in a random order 1 week later

to prevent recall bias. Image analysts were blinded to the results

of their first segmentation and to the results of the other readers.

Interaction time was recorded for both segmentation methods.
Manual Segmentation

Axial portal venous phase CT images for each patient were

saved as Digital Imaging and Communications in Medicine

(DICOM) files and uploaded onto imaging postprocessing

display software (SliceOmatic 4.3 Rev-11; TomoVision,

Montreal, Canada). For a given axial slice, two image analysts

manually outlined the liver using a cursor to contour the liver.

These curves then automatically deformed to precisely delin-

eate the liver. This process generated ‘‘active contours’’ which

are virtual curves that can be projected within images to delin-

eate the liver boundary based on an energy equation (19).

Each axial slice required further manual deformation of the

active contours to completely outline the liver. Large vessels

abutting the liver periphery such as the main portal vein and

inferior vena cava were excluded but not vessels surrounded

by liver parenchyma. The number of pixels within each con-

tour provided the liver area on a slice-by-slice basis. This

cross-sectional area was multiplied by the slice thickness and

the summation of each section volume provided the total liver

volume for each patient. Volumes and masks obtained from

manual segmentation were used as the reference standard.
Semiautomated Segmentation and Subsegmentation

Our semiautomated segmentation method was developed at

the Imaging and Orthopaedics Research Laboratory (LIO,

Montreal, QC) with collaboration from the clinical and engi-

neering teams. The method was developed and tested using

MATLAB 2012a (The MathWorks, Inc., Natick, MA)

computational software. Axial portal venous phase CT images
1090
for each patient were saved as DICOM files and uploaded to

the segmentation program. An overview of the user and com-

puter tasks involved in semiautomated liver segmentation is

provided in Figure 1.

Initially, a seed is positioned within the liver to define a

volumetric spherical region of interest used to estimate the

mean intensity and standard deviation (SD). These values

are used to automatically adjust the displayed contrast level

and windowing to enhance the liver boundary against adja-

cent tissue. A liver probability density map is then generated

by applying a Gaussian transfer function.

Togenerate an initial shapewithout any prior knowledge, the

liver ismanually delineated on one to two slices for each orthog-

onal plane to globally outline the liver shape. This delineation

process is assisted by a snapping algorithm based on image-

warping and minimal path segmentation (20). As a result, the

drawn contours dynamically snap onto the liver surface.

Variational interpolation is applied to these sparse contours

to interpolate a smooth surface mesh composed of vertices

and triangular faces intersecting the contours initially delin-

eated (21,22). To simplify the segmentation problem to a

narrow band along the prior shape’s surface, the mesh is

further converted to a quadrangular mesh through surface

parameterization (23). This allows the unfolding of the prior

shape and the narrow band subspace which simplifies further

segmentation.

The parameterized surface is then subject to two concur-

rent segmentations operations. First, the user can iteratively

deform the mesh in three dimensions (3D) by adjusting the

contours to align with actual liver anatomy. Second, the

user can prompt an automated minimal surface segmentation

technique to precisely delineate the liver boundary, a 3D

extension of a method described by Chav et al. (20).

The final segmented mesh is converted to a volumetric

mask to exclude vessel insertion points and hepatic fissures

with a local region growing tool. The cross-sectional area of

each mask was multiplied by the slice thickness, and the sum-

mation of each section volume provided the total liver volume

for each patient.

For subsegmentation, three vertical planes were defined by

drawing lines through the left, middle, and right hepatic veins

and their insertion at the inferior vena cava (IVC). The portal

vein bifurcation established a horizontal plane to divide seg-

ments II/III, IVa/IVb, V/VIII, and VI/VII. A polygon was

then drawn to encapsulate liver tissue between the posterior

aspect of the portal bifurcation and the IVC. This polygon

was propagated (using an automated tool) to other slices to

define the caudate lobe (Fig 2). Whole and segmental liver

volumes are reported in Table 2.
Statistical Analysis

Statistical analyses were performed with SPSS software for

Windows version 21.0 (Chicago, IL). Whole and segmental

liver volumes were compared using paired t tests. Intraclass

correlation coefficients (ICCs) were used to determine



Figure 1. Overview of steps in

computed tomography-based semiauto-

mated liver segmentation. The user
initiates segmentation by roughly delin-

eating the liver contour on four to six sli-

ces. The software then uses variational
interpolation to generate an initial 3D

shape. This 3D shape is deformedmanu-

ally then automatically by minimal path–

surface segmentation. Vessels are
excluded using a locally seeded region

growing technique. The software then

calculates liver volume for each slice.

3D, three dimensional.
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intrareader, interreader, and intermethod variability of hepatic

volume. Bland–Altman analyses were used to determine

intrareader, interreader, and intermethod agreements. The

agreement for liver volume between readers and segmentation

sessions was reported as bias � 1.96 SD of the differences,

followed by the 95% limits of agreement interval (24). P values

were calculated for Bland–Altman analyses to evaluate for

systematic bias different from 0. A subgroup analysis was

performed in patients with hepatocellular carcinoma (HCC).

This analysis was done to determine whether the presence of

underlying fibrosis or cirrhosis, which is a risk factor for

HCCdevelopment, affected the results of semiautomated liver

volumetry. The differences between semiautomated and

manually segmented surface meshes were analyzed with four

additional error measures: volumetric overlap error, average

symmetric surface distance, root mean square (RMS),

symmetric surface distance, and maximum symmetric surface

distance (16). The formulas to calculate these segmentation

error measures are reported in Appendix 1. In addition, paired

t tests were used to compare the total interaction time for

semiautomated segmentationwithmanual segmentation time.
RESULTS

Volumes

The mean semiautomated whole-liver volume was

1688 � 497-mL, whereas the reference standard volume
was 1689 � 478 mL (P = .92). Mean segmental volumes are

demonstrated in Table 2. The only statistically significant dif-

ference when comparing segmental volumetry was for the

caudate lobe (P = .01).
Variability

Overall, eight measurements of ICC representing intrareader,

interreader, and intermethod variability of hepatic volume

measurements were calculated; these are summarized in

Table 3. Correlation was high with an agreement between

the eight ICC measures of 0.995 (95% confidence interval,

0.992–0.997). Correlation between semiautomated and

manual volumetry was established with intermethod ICC

values$0.988 (P < .001). Correlation for segmental volume-

try readings varied greatly with values ranging from 0.331

(segment III) to 0.831 (segment VII).
Repeatability

Bland–Altman analysis showed excellent repeatability for

both manual and semiautomated CT-based volumetry

(Table 3). Intrareader agreement for the manual method

was �6 � 11-mL with limits of agreement of �17 and

6 mL (P = .426). The semiautomated method displayed

higher bias of 12 � 97 mL and wider limits of agreement

of �85 and 109 mL in the repeatability calculations

(P = .291).
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TABLE 2. Whole and Segmental Liver Volumes by Readers

Reader 1 (Manual) 3 (Semiautomated) P Value*

Whole-liver

volume (mL)y
1689 � 478 1688 � 497 .92

Reader 1 2 P Value*

Segmental volume (mL)y

I 41 � 16 53 � 37 .01

II 204 � 110 186 � 77 .31

III 97 � 66 74 � 57 .05

IVa 186 � 77 205 � 83 .18

IVb 84 � 54 101 � 87 .10

V 292 � 99 278 � 116 .26

VI 221 � 110 202 � 114 .14

VII 278 � 106 292 � 132 .24

VIII 292 � 103 306 � 121 .23

*Probability associated with a Student paired t test with a two-

tailed distribution.
yResults reported as mean � standard deviation.

Figure 2. (a)Axial computed tomography slice demonstrating caudate lobe and segments II, IVa, VII, and VIII. Three vertical planes are defined

by drawing lines through the left, middle, and right hepatic veins and their insertion at the inferior vena cava. A polygonal shape is propagated to
define caudate lobe. (b,c) Oblique anterior–posterior and posterior–anterior three-dimensional renderings defining the liver subsegments.
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Agreement

Bland–Altman analysis showed good agreement between

readers for each method and between methods (Table 3).

Interreader agreement for the manual method had a bias of

�4 � 22 mL with limits of agreement of �27 and 18 mL

(P = .009). Interreader agreement for the semiautomated

method had a bias of 5 � 98 mL and limits of agreement of

�93 and 103 mL (P = .293). Interreader agreement for

segmental volumes demonstrated generally large limits of

agreement, ranging from �47 and 71 (segment I) to �224

and 190 (segment II). These limits of agreement were wider

than those for whole-liver volumetry.

The agreement between manual and semiautomated volu-

metry methods was 3 � 120 mL with limits of agreement of

�117 and 124 mL (P = .434), represented in Figure 3. Exam-

ples of concordant and discordant cases between readers are

demonstrated in Figures 4 and 5, respectively.
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Subgroup Analysis in Patients with HCC

Subgroup analysis in patients with HCC (n = 4) revealed cor-

relation between semiautomated and manual volumetry with

intermethod ICC values $0.985. Repeatability studies

showed that intrareader agreement for the manual method

was �4 � 17 mL with limits of agreement of �21 and

13 mL and for the semiautomated method was 32 � 74 mL

with limits of agreement of�42 and 106 mL. The agreement

between manual and semiautomated volumetry methods in

this subgroup of patients was 23 � 119 mL with limits of

agreement of �96 and 142 mL.
Error Measures

Measures of segmentation agreement are summarized in

Table 4. All four error calculations were slightly larger for

semiautomated when compared to manual methods. Volu-

metric overlap error was 2.9% for manual segmentation and

4.4% for semiautomated segmentation. Overall, intermethod

comparisons of manual and semiautomated segmentation

yielded very low error. Volumetric overlap error was

6.4 � 1.4% (mean � standard deviation), average symmetric

surface distance was 1.0 � 0.2 mm, RMS symmetric surface

distance was 1.8� 0.5 mm, and maximum symmetric surface

distance was 17.0� 5.1 mm. Examples of 3D renderings with

minimal and substantial surface distance error are shown in

Figure 6.
Time

Mean interaction time was 34.3 � 16.7 minutes per case for

the manual method and 8.0 � 1.2 minutes per case for the

semiautomated method (P < .001).
DISCUSSION

This cross-sectional study evaluated the repeatability, agree-

ment, and efficiency of a semiautomated liver segmentation



TABLE 3. Intrareader Repeatability, Interreader and
Intermethod Agreement

Comparison Readers ICC Bland–Altman (mL)*

Repeatability on whole-liver volume

Intrareader

manual

1 vs. 1 0.999 �1 � 27 (�28, 26)

2 vs. 2 1.000 �6 � 11 (�17, 6)

Intrareader

semiautomated

3 vs. 3 0.995 �3 � 67 (�70, 64)

4 vs. 4 0.991 12 � 97 (�85, 109)

Agreement on whole-liver volume

Interreader 1 vs. 2 0.999 �4 � 22 (�27, 18)

3 vs. 4 0.991 5 � 98 (�93, 103)

Intermethody 1 vs. 3 0.992 �2 � 93 (�95, 91)

1 vs. 4 0.988 3 � 120 (�117, 124)

Agreement on segmental volumes

Interreader

Segment I 1 vs. 2 0.585 12 � 59 (�47, 71)

Segment II 1 vs. 2 0.399 �17 � 207 (�224, 190)

Segment III 1 vs. 2 0.331 �23 � 139 (�162, 116)

Segment IVa 1 vs. 2 0.458 18 � 164 (146, 182)

Segment IVb 1 vs. 2 0.713 16 � 121 (�105, 181)

Segment V 1 vs. 2 0.758 �14 � 150 (�164, 136)

Segment VI 1 vs. 2 0.728 �20 � 162 (�182, 142)

Segment VII 1 vs. 2 0.831 14 � 144 (�130, 158)

Segment VIII 1 vs. 2 0.812 14 � 139 (�125, 153)

ICC, intraclass correlation coefficient; SD, standard deviation.

*Bland–Altman = Results reported as bias � repeatability coeffi-

cient (1.96 SD), (95% limits of agreement interval), rounded to whole

numbers.
yIntermethod agreement is reported 1 versus 3 and 1 versus 4,

which represent the worst-case scenarios when comparing manual

and semiautomated volumetry.

Figure 3. Bland–Altman plot of the volume difference between

semiautomated andmanual segmentation of computed tomography

images and themean volume (reader 1 vs. reader 4). Mean difference

was demonstrated with solid line and 95% limits of agreement with
dashed lines.
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method by using manual segmentation as the reference stan-

dard. Overall, we found excellent correlation between semi-

automated and manual segmentation volume measurements.

The semiautomated method was found to have high inter-

reader and intrareader repeatability. Furthermore, strong

agreement was found between the semiautomated and

manual methods when comparing volume measurements.

At last, semiautomated liver volumetry was found to be

time efficient.

Recently, an engineering competition comparing various

liver segmentation algorithms on a common database of

contrast-enhanced CT images was held (16). On average,

interactive (ie, semiautomated) segmentation methods that

incorporated user input were found to be more accurate

and reliable than fully automated methods. The larger stan-

dard deviation of automated methods was attributed to

increased outlier errors (16). The study supported the use of

both statistical shape information and model-based ap-

proaches to accurately represent liver structure variability (16).

In this study, we evaluated a semiautomated segmentation

method for CT images which did not require prior statistical

information input. Our method represents a model-based

approach and is a 3D extension of a technique developed

for segmentation of femoral heads in biplane radiography
(20). In introducing our novel method and validation frame-

work, we address three limitations to segmentation perfor-

mance described in the literature (17). First, we used a

diverse surgical database to ensure that the method is reliable

in prehepatectomy patients with a variety of hepatic pathol-

ogies. Second, we evaluated the interobserver, intraobserver,

and intermethod variability in hepatic volumes. Third, we

also evaluated the quality of segmentation by using volumetric

and surface error measures described in the biomedical engi-

neering literature (16). The comparison of index and refer-

ence standard segmentation meshes permits visualization of

discrepancies and provides feedback for future improvement.

In our study, intrareader, interreader, and intermethod

variability was assessed using ICC measures. Overall correla-

tion was very good with an average ICC value of 0.995, indi-

cating low variability in the measures. Semiautomated

volumetry also achieved excellent correlation with manual

volumetry (ICC $0.988). A study by Suzuki et al. (9)

comparing automated and manual volumetry of living-

donor livers during transplantation achieved similar results,

ICC = 0.994.

Before major liver hepatectomy, the future liver remnant

(FLR)-to-total liver volume ratio must be calculated (25).

This ratio must be >26.5% in patients with healthy livers,

>40% in patients with high-grade steatosis, and >50% in pa-

tients with cirrhosis (3). For this application, the level of

agreement and reproducibility required is �5% (26). Before

living-donor liver transplantation, the liver graft-to-

recipient weight ratio must be calculated. This ratio must be

>0.8% and adapted to the recipient’s Child class to avoid

small-for-size syndrome (25). Although the level of agree-

ment and reproducibility required for this application has

not been specified, it is assumed to be the same as for major

liver hepatectomy.
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Figure 4. A 67-year-old woman with

colorectal metastases. Original (a) and

annotated (b). Axial computed tomogra-

phy slice demonstrating concordance
between four readers using manual

and semiautomated liver segmentation

methods. Reader-1 manual = red tracing,
reader-2 manual = green tracing, reader-

3 semiautomated = blue tracing, reader-4

semiautomated = yellow tracing. (Color

version of figure is available online.)

Figure 5. A 30-year-old woman with

choledochal cyst. Original (a) and

annotated (b). Axial computed tomogra-

phy slice demonstrating discordance
between four readers using manual

and semiautomated liver segmentation

methods. Reader-1 manual = red tracing,

reader-2 manual = green tracing, reader-
3 semiautomated = blue tracing, reader-4

semiautomated = yellow tracing. Discor-

dance between readers is found at the
interface between the liver (L) and the

spleen (S), the liver hilum, and the periph-

eral segment 8-liver lesion. (Color version

of figure is available online.)
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Measuring FLR volume was thought to be out of the scope

of this article for a variety of reasons. Our primary aim was to

accurately establish whole-liver volume as an important pre-

liminary step before more complex segmentation procedures.

Furthermore, although our data set included a variety of liver

pathologies and morphologies, not all patients specifically un-

derwent extended hepatectomy, the usual indication for

calculating FLR. Finally, determining the FLR requires a clin-

ical judgment regarding resection margin and anticipated

resection plane by a hepatobiliary surgeon. For all these rea-

sons, calculation of this parameter was not an aim of our study

because it does not lead itself to automation.

Bland–Altman analysis showed excellent repeatability for

both manual and semiautomated methods; however, the

semiautomated method displayed higher bias. Unfortunately,

we were not able to identify other studies which compared

repeatability in this way for comparison. Semiautomated liver

segmentation has inherent ‘‘problem regions’’ including the

interface with adjacent structures, around blood vessels, and

in the hilum of the liver which may have led to higher error.

We attempted to limit such error by optimizing the initializa-

tion step of our segmentation method.

In our study, mean volume difference between readers for

semiautomated segmentation was found to be 5 mL with

limits of agreement of �93 and 103 mL in the Bland–Altman

analysis. Similar interreader agreement was found in a study
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examining volumetry of resected liver specimens with

achieved limits of agreement of �190 and 178 mL (27).

Our narrower limits of agreement may be attributed to our

readers performing segmentation on each axial slice rather

than on every fourth slice as in the study by Karlo et al.

(27). This potentially restricted the amount of volumetric er-

ror being interpolated to adjacent slices and led to excellent

interobserver agreement in our study.

Given recent surgical advances, including increases in

extended hepatectomies and split-liver and living-donor

transplantation, establishing segmental and remnant liver

volumetry is of growing importance. Subsegmentation was

performed using classic vascular landmarks to divide the he-

patic segments. Segmentation of the caudate lobe proved to

be difficult as the boundaries were defined somewhat arbi-

trarily and not by vascular structures. Interreader correlation

for segmental volumetry was found to be variable and limits

of agreement were wider than those for whole-liver volume-

try. This can partially be explained by our choice of portal

venous phase for segmentation purposes. The hepatic veins

were not always clearly visible which may have increased

the subjectivity in drawing the three vertical planes. In the

future, alternative acquisition phases may be acquired to facil-

itate subsegmentation. More reliable subsegmentation

methods may also be developed based on patient-specific

vascular anatomy.



TABLE 4. Segmentation Performance Measures

Error Measure

Ideal

Value

Intrareader

Manual (R1–R10)*

Intrareader

Semiautomated

(R3–R30)*
Intermethod

(R1–R3)

Volumetric overlap error (%) 0y 2.9 � 0.8 4.4 � 1.3 6.4 � 1.4

Average symmetric surface distance (mm) 0 0.4 � 0.1 0.7 � 0.3 1.0 � 0.2

Root mean square symmetric surface distance (mm) 0 0.9 � 0.2 1.6 � 0.5 1.8 � 0.5

Maximum symmetric surface distance (mm) 0 11.8 � 4.9 17.2 � 5.2 17.0 � 5.1

Results reported as mean � standard deviation.

*R1 and R1’ indicate the first and second segmentations by reader 1, respectively. R3 and R30 indicate the first and second segmentations by

reader 3, respectively.
y0% Volumetric overlap error indicates perfect overlap between segmentation masks, whereas 100% volumetric overlap error indicates no

overlap between segmentation masks.

Figure 6. A 68-year-old woman with

colorectal metastases. AP and PA

three-dimensional renderings comparing
surface distance error between semiau-

tomated and manual segmentations.

Areas in green represent absence of error
(perfect overlap between segmentations)

and areas in red represent surface dis-

tance error (in mm). Small amounts of er-

ror are observed at the liver dome and
along the inferior vena cava. AP, ante-

rior-posterior; PA, posterior-anterior.

(Color version of figure is available

online.)
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Mean volume difference between semiautomated and

manual CT-based volumetry methods was 3 mL with limits

of agreement of �117 and 124 mL. These results are an

improvement compared to recently published studies which

achieved limits of agreement of �230.3 and 327 mL (5),

�211 and 278 mL (9), and�503 and 509 mL (2). Our narrow

limits of agreement may be attributed to a variety of factors.

The small degree of user feedback during manual correction

of the segmentation masks likely improved the precision of

semiautomated volumetry. Furthermore, our CT-based volu-

metry was performed on a population of prehepatectomy pa-

tients rather than pretransplant patients. The smoother liver

contours in this population, as compared to cirrhotic patients

in the transplant group, may have improved agreement and

precision of our method. We anticipate that a study using

the same methodology as ours on a cirrhotic population

may yield less-favorable results because of the more difficult

segmentation inherent to nodular and dysmorphic end-stage

livers. Similarly, other factors affecting hepatic parenchyma

and contour, such as heterogeneous tumors, postprocedural

changes, or diffuse hepatic processes may also affect volume

agreement. Nakayama et al. (5) previously demonstrated

that automated segmentation of damaged and deformed livers

led to larger relative errors than in healthy livers. In our study,

four patients had hepatocellular carcinoma. A review of their

records revealed Child-Pugh scores between 5 and 7 (ie, class

A or B). Furthermore, imaging did not reveal dysmorphic
livers except one patient who had marked segment IVatrophy.

Our study was not powered to draw comparison between

cirrhotic and noncirrhotic patients by inferential statistics.

Future studies on repeatability and agreement of liver segmen-

tation may target patients with liver fibrosis or cirrhosis.

We chose to report our results according to the Bland–Alt-

man method (23) after diligent consultation with the statistical

team. Application of the Bland–Altman method for compar-

ison between two techniques (eg, semiautomated vs. manual

segmentation) is commonly used to assess ‘‘accuracy,’’ whereas

comparison of repeated measurements (eg, reader 1 vs. reader

1) is commonly used to assess ‘‘precision.’’ The Bland–Altman

method assumes (for the limits to be valid) that the error vari-

ance is constant whether expressed as a percentage or absolute

value. In our article, we chose to express the error as mean dif-

ferences with accompanying limits of agreement for consis-

tency with prior literature.

Overall, use of semiautomated segmentation greatly

reduced the average time required for hepatic volume deter-

mination. Mean interaction time using the semiautomated

method was found to be 8.0 � 1.2 minutes per case. This is

similar to recently published studies of semiautomated liver

segmentation methods which found interaction times of

20 (28), 7 (29), and 4.4 � 1.9 minutes (5). Manual segmenta-

tion is often considered to be too time-consuming for clinical

purposes (17). Thus, a fourfold decrease in mean interaction

time is clinically relevant. Manual corrections within our
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interactive method remained the most time-consuming step.

Improving the initialization process may reduce the need for

manual correction except at liver borders, where low-

contrast boundaries exist with adjacent organs (14). Wider

limits of agreement were noted for semiautomated than for

manual segmentation. This increased variability represents a

trade-off because of faster segmentation.

To compensate for the lack of specificity of volume com-

parison, we incorporated four novel error metrics into our

segmentation evaluation framework. These metrics apply

concepts of volumetric overlap and surface distance and allow

for a more robust assessment of segmentation performance.

Volumetric overlap error (also known as Jaccard distance)

measures the dissimilarity between two segmentation results

and is defined as 1 minus the ratio of intersection and union

between two segmentations; a volumetric overlap error of

0% indicates perfect overlap, which is a segmentation goal.

The three remaining error metrics (average, RMS, and

maximum symmetric surface distance) are computed from

the distribution of minimal distances between each surface

point of the semiautomated segmentation and surface points

from its corresponding manual segmentation; a value of

0 mm represents the ideal value for these three error metrics.

Using a variety of error metrics is preferred for broad segmen-

tation quality evaluation (16). Our volumetric overlap error of

6.4 � 1.4% was similar to those achieved in other studies:

5.2� 0.9% (30), 5.8� 1.4% (15), and 3.8� 2.2% (31). Over-

all, our method achieved very comparable error calculations

to the best interactive segmentation methods at the MICCAI

2007 Grand Challenge (16,30). At present time, there are no

required performance specifications for error metrics but only

ideal values which are not attainable. Yet, higher values do not

disqualify automated segmentation techniques as long as they

are reproducible and efficient.

When visually comparing segmentation error between

readers, discordance was often found at the interface between

the liver and adjacent structures (stomach, diaphragm, and

body muscles), around blood vessels and in the hilum of the

liver. Other studies have corroborated similar problem regions

for liver segmentation. Heimann et al. (16) described segmen-

tation error at low-contrast boundaries and near tumors.

Campadelli et al. (6) described oversegmentation errors near

the stomach and body muscles. Masutani et al. (4) mentioned

similar density of adjacent organs as a source of error. We

limited such error by adjusting windowing relative to the

mean liver density.

Our study had some limitations. First, manual segmenta-

tion, as a reference standard, is not perfect. However, it is

widely accepted in the literature and in standard clinical prac-

tice (2,5,9,15,16). Resected surgical liver volume or weight

has also been described as alternative reference standards

(5,27,32,33). However, resected specimens can provide a

false estimation of in vivo liver volume because of decreased

hydrostatic pressure and blood loss from the ex vivo

specimens (27,32). Furthermore, CT-based volumetry

methods have been shown to inaccurately estimate liver vol-
1096
ume compared to actual surgical resection volumes (27).

These physiological variations are best avoided with the use

of an in vivo reference standard such as manual segmentation.

Second, we did not perform a systematic study of segmen-

tation robustness by varying acquisition parameters such as

slice thickness and injection delays (14). Yet, the purpose of

our study was to simplify workflow and shorten segmentation

time while maintaining good agreement (14). Third, we did

not exclude all vessels in our segmentations. Standard practice

remains to exclude major vessels but to include intrahepatic

vessels in the total liver volume calculation (14).

In conclusion, our validation study suggests that a semiau-

tomated liver segmentation method may provide high repeat-

ability and strong agreement compared to manual

segmentation, while substantially shortening interaction

time. The quality of segmentation results was confirmed by

error metrics based on overlap and surface distances. Future

directions include automation of segmental volumetry based

on vascular anatomy (34) and adaptation of this method to

MR-based liver volumetry (35).
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APPENDIX 1. SEGMENTATION PERFORMANCE
MEASURES

Volumetric Overlap Error

The volumetric overlap error (VOE) is determined using the

ratio of intersection and union between two segmentations,A

(semiautomated segmentation) andM (manual segmentation).

It is calculated as (16),

VOE ðA;MÞ ¼ 1� jAXM j
jAWM j � 100%

The VOE is 0% for a perfect overlap between segmenta-

tions and 100% for segmentations with no overlap.

Average Symmetric Surface Distance (ASD)

The ASD of surface voxels from segmentations A and M is

given in millimeters. For each surface voxel from segmen-
RMSðA;MÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jSðAÞj � jSðMÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi X

sA˛SðAÞ
d2ðsA; SðMÞÞ þ

X
sM˛SðMÞ

d2ðsM ; SðAÞÞ
!vuut

vuuut
tation A, the Euclidean distance to the closest surface voxel

of M can be calculated (16,36). The average of all

calculated distances from A to M and M to A gives the

ASD, with a perfect segmentation giving a value of

0 mm (16).

Assuming that S(A) = the set of surface voxels for

semiautomated segmentation A, S(M) = set of surface vox-

els for manual segmentation M, and the shortest

distance between v (arbitrary voxel) to S(A) is
1098
dðv; SðAÞÞ ¼ minsA˛SðAÞkv � sAk, where ðk � kÞ denotes

the Euclidean distance then the ASD is calculated as (16)
ASDðA;MÞ ¼ 1

jSðAÞj � jSðMÞj

 X
sA˛SðAÞ

dðsA; SðMÞÞ

þ
X

sM˛SðMÞ
dðsM ; SðAÞÞ

!

Root mean square (RMS) Symmetric Surface Distance

The RMS symmetric surface distance uses the ASD previ-

ously described; however, the Euclidean distances between

surface voxels of A andM are squared. A perfect segmentation

gives a value of 0 mm. TheRMS symmetric surface distance is

calculated as (16),
Maximum Symmetric Surface Distance (MSD)

The MSD uses the maximum Euclidean distance between

surface voxels from segmentations A and M (16,37). A

perfect segmentation yields a distance of 0 mm. The MSD is

given in millimeters and calculated as (16),

MSDðA;MÞ ¼ max
�
maxsA˛SðAÞdðsA; SðMÞÞ;

maxsM˛SðMÞdðsM ; SðAÞÞ
�




