106,843 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe statistical study of anatomy is one of the primary focuses of medical image analysis. It is well-established that the appropriate mathematical settings for such analyses are Riemannian manifolds and Lie group actions. Statistically defined atlases, in which a mean anatomical image is computed from a collection of static three-dimensional (3D) scans, have become commonplace. Within the past few decades, these efforts, which constitute the field of computational anatomy, have seen great success in enabling quantitative analysis. However, most of the analysis within computational anatomy has focused on collections of static images in population studies. The recent emergence of large-scale longitudinal imaging studies and four-dimensional (4D) imaging technology presents new opportunities for studying dynamic anatomical processes such as motion, growth, and degeneration. In order to make use of this new data, it is imperative that computational anatomy be extended with methods for the statistical analysis of longitudinal and dynamic medical imaging. In this dissertation, the deformable template framework is used for the development of 4D statistical shape analysis, with applications in motion analysis for individualized medicine and the study of growth and disease progression. A new method for estimating organ motion directly from raw imaging data is introduced and tested extensively. Polynomial regression, the staple of curve regression in Euclidean spaces, is extended to the setting of Riemannian manifolds. This polynomial regression framework enables rigorous statistical analysis of longitudinal imaging data. Finally, a new diffeomorphic model of irrotational shape change is presented. This new model presents striking practical advantages over standard diffeomorphic methods, while the study of this new space promises to illuminate aspects of the structure of the diffeomorphism group

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Investigating Cardiac Motion Patters Using Synthetic High-Resolution 3D Cardiovascular Magnetic Resonance Images and Statistical Shape Analysis

    Get PDF
    Diagnosis of ventricular dysfunction in congenital heart disease is more and more based on medical imaging, which allows investigation of abnormal cardiac morphology and correlated abnormal function. Although analysis of 2D images represents the clinical standard, novel tools performing automatic processing of 3D images are becoming available, providing more detailed and comprehensive information than simple 2D morphometry. Among these, statistical shape analysis (SSA) allows a consistent and quantitative description of a population of complex shapes, as a way to detect novel biomarkers, ultimately improving diagnosis and pathology understanding. The aim of this study is to describe the implementation of a SSA method for the investigation of 3D left ventricular shape and motion patterns and to test it on a small sample of 4 congenital repaired aortic stenosis patients and 4 age-matched healthy volunteers to demonstrate its potential. The advantage of this method is the capability of analyzing subject-specific motion patterns separately from the individual morphology, visually and quantitatively, as a way to identify functional abnormalities related to both dynamics and shape. Specifically, we combined 3D, high-resolution whole heart data with 2D, temporal information provided by cine cardiovascular magnetic resonance images, and we used an SSA approach to analyze 3D motion per se. Preliminary results of this pilot study showed that using this method, some differences in end-diastolic and end-systolic ventricular shapes could be captured, but it was not possible to clearly separate the two cohorts based on shape information alone. However, further analyses on ventricular motion allowed to qualitatively identify differences between the two populations. Moreover, by describing shape and motion with a small number of principal components, this method offers a fully automated process to obtain visually intuitive and numerical information on cardiac shape and motion, which could be, once validated on a larger sample size, easily integrated into the clinical workflow. To conclude, in this preliminary work, we have implemented state-of-the-art automatic segmentation and SSA methods, and we have shown how they could improve our understanding of ventricular kinetics by visually and potentially quantitatively highlighting aspects that are usually not picked up by traditional approaches

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    Constrained Statistical Modelling of Knee Flexion from Multi-Pose Magnetic Resonance Imaging

    Get PDF
    © 1982-2012 IEEE.Reconstruction of the anterior cruciate ligament (ACL) through arthroscopy is one of the most common procedures in orthopaedics. It requires accurate alignment and drilling of the tibial and femoral tunnels through which the ligament graft is attached. Although commercial computer-Assisted navigation systems exist to guide the placement of these tunnels, most of them are limited to a fixed pose without due consideration of dynamic factors involved in different knee flexion angles. This paper presents a new model for intraoperative guidance of arthroscopic ACL reconstruction with reduced error particularly in the ligament attachment area. The method uses 3D preoperative data at different flexion angles to build a subject-specific statistical model of knee pose. To circumvent the problem of limited training samples and ensure physically meaningful pose instantiation, homogeneous transformations between different poses and local-deformation finite element modelling are used to enlarge the training set. Subsequently, an anatomical geodesic flexion analysis is performed to extract the subject-specific flexion characteristics. The advantages of the method were also tested by detailed comparison to standard Principal Component Analysis (PCA), nonlinear PCA without training set enlargement, and other state-of-The-Art articulated joint modelling methods. The method yielded sub-millimetre accuracy, demonstrating its potential clinical value

    Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model

    Get PDF
    Modern medical imaging modalities provide large amounts of information in both the spatial and temporal domains and the incorporation of this information in a coherent algorithmic framework is a significant challenge. In this paper, we present a novel and intuitive approach to combine 3-D spatial and temporal (3-D + time) magnetic resonance imaging (MRI) data in an integrated segmentation algorithm to extract the myocardium of the left ventricle. A novel level-set segmentation process is developed that simultaneously delineates and tracks the boundaries of the left ventricle muscle. By encoding prior knowledge about cardiac temporal evolution in a parametric framework, an expectation-maximization algorithm optimally tracks the myocardial deformation over the cardiac cycle. The expectation step deforms the level-set function while the maximization step updates the prior temporal model parameters to perform the segmentation in a nonrigid sense
    corecore