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Abstract—Reconstruction of the anterior cruciate ligament
(ACL) through arthroscopy is one of the most common pro-
cedures in orthopaedics. It requires accurate alignment and
drilling of the tibial and femoral tunnels through which the
ligament graft is attached. Although commercial computer-
assisted navigation systems exist to guide the placement of these
tunnels, most of them are limited to a fixed pose without due
consideration of dynamic factors involved in different knee flexion
angles. This paper presents a new model for intraoperative
guidance of arthroscopic ACL reconstruction with reduced error
particularly in the ligament attachment area. The method uses
3D preoperative data at different flexion angles to build a subject-
specific statistical model of knee pose. To circumvent the problem
of limited training samples and ensure physically meaningful pose
instantiation, homogeneous transformations between different
poses and local-deformation finite element modelling are used to
enlarge the training set. Subsequently, an anatomical geodesic
flexion analysis is performed to extract the subject-specific
flexion characteristics. The advantages of the method were also
tested by detailed comparison to standard Principal Component
Analysis (PCA), nonlinear PCA without training set enlargement,
and other state-of-the-art articulated joint modelling methods.
The method yielded sub-millimetre accuracy, demonstrating its
potential clinical value.

Index Terms—Magnetic resonance imaging (MRI), Atlases,
Image-guided treatment, Probabilistic and statistical methods,
Shape analysis, Surgical guidance.

I. INTRODUCTION

ANTERIOR cruciate ligament (ACL) reconstruction is a
common orthopaedic procedure. In the UK, it accounts

for 40 % of all sports-related injuries [1]. An ACL injury
typically occurs when there is a violent twist or hyperextension
of the knee, with ACL-deficiency associated with an increased
rate of degenerative changes and meniscal injuries. The ACL
reconstruction surgery consists of the replacement of the knee
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ligament with a graft inserted via tunnels drilled through the
tibia and femur. The surgery is performed using arthroscopy in
a minimally invasive fashion and successful clinical outcome
depends upon the structural and functional accuracy while
placing the tunnel [2].

Currently commercially available computer-assisted navi-
gation systems for orthopaedic procedures such as KneeNav
[3], OrthoPilot [4], CASPAR [5], and BrainLab [6] involve
extensive user input and rely on optical markers requiring a
direct line of sight. In addition, they often require manual
registration, which is a time-consuming process exacerbated
when using several anatomical landmarks. Furthermore, the
osseous fixation of reference arrays is an invasive process
and may lead to complications [7]. Therefore, given these
technical challenges, there is a need for accurate real-time
3D visualisation of the surgical field, including ligaments,
tendons, and the surrounding anatomical structures with due
consideration of different flexion positions. In particular, the
system should offer increased value by reducing the amount
of operator input and the invasiveness to the patient.

In this paper, we propose to minimise the invasiveness
of intraoperative tracking of the knee pose by incorporating
preoperative information about the shape and the motion range
of the knee bones. This information can be integrated into a
statistical model and then used to train the algorithm to match
to new flexions during the procedure when the knee is bent at
different angles for better access. The parameterised anatomic
model can subsequently be overlaid on the arthroscopic camera
view to enhance the visualisation of structures in the field-of-
view and to improve orientation at the surgical site. In addition,
the intraoperative statistical model of flexion can simulate the
range of motion of the repaired joint by using patient-specific
data. The statistical model built previously from ACL-torn
knee scans can be updated with intraprocedural arthroscopic
images. Finally, a dynamically fitted flexion model can be used
as a virtual fixture for an arthroscopic robot to avoid damaging
surrounding soft tissue.

Since their introduction by Cootes et al. [8], statistical shape
models (SSMs) have been a popular method for mathemati-
cally expressing not only shape, but also pose variations. The
pose instantiation ability of statistical modelling suggests its
potential use in tracking the bones subject to rigid transfor-
mations during knee flexion. This approach will be pursued in
this work.

For tracking the pose of known objects, in the early years,
Stark and Fuchs approached the problem in two steps. They
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first applied an active contour model [9] extended with a
shape-change predicting Kalman filter, followed by a pose
estimation from the 2D outline rotation and translation [10].
Combination of shape and pose estimation was performed in a
maximum a posteriori framework [11] in an iterative process.
Models for ACL reconstruction were first developed as early as
1999 [12]. Intraoperative instantiation based on a small patch
on the femur was the final guidance goal. The method was
tested both on simulated and real intraoperative data. Knee
motion was taken into consideration only later [13]; a SSM of
knee kinematics was fitted intraoperatively from fluoroscopic
images, obtaining submillimetre accuracy. Recently, particular
interest has been directed to multi-object SSM in orthopaedic
procedures. In [14], Fitzpatrick et al. built a 3D model of
the patella and femur from MRI. Mechanical flexion was also
integrated in a joint shape-pose vector and its performance
was compared to a finite element model.

More recently, an articulated SSM (aSSM) was developed
in order to reconstruct the 3D surface of a hip joint from
2D X-ray [15]. The preservation of the relationship between
neighbouring structures was achieved by estimation of the
rotation parameter of the femur around the joint centre from
a given X-ray. The statistical analysis was only applied to the
pose-invariant bone surfaces. Qualitative testing of the bone
intersection was performed. Despite being fast and not needing
training data, the alignment method proposed here relied on
a rotation of the femur about a single axis in the rigid hip
structure. Although this method is applicable to knee flexion,
i.e. the tibia and patella rotating about a fixed axis in the femur,
it does not account for twisting in secondary axes and can lead
to significant alignment error.

From a mathematical point of view, the knee flexion is a
complex pose variation of the bone surfaces, which cannot
be described by a linear function of the degrees of freedom
of the joint components. Thus far, several methods have been
proposed to mitigate this problem. Neural networks were used
to fit nonlinearly distributed data in one of the first attempts
at a so-called nonlinear PCA [16]. The learning followed
hierarchical steps and combined the discrimination between
components with a multi-layer auto-associative perceptron.
The author reported increased classification accuracy with a
lower number of components.

Later on, Principal Geodesic Analysis (PGA) [17] and its
variant Principal Arc Analysis (PAA) [18] were developed.
Fletcher et al. [17] built on the PCA’s limitation to geometric
models of landmarks or of dense contour points only and
developed a method for nonlinear Riemannian symmetric
spaces, including medial representations or parameters of
affine transformation matrices. They used the algorithm to
describe the variability of fibre orientation in diffusion tensor
MRI. Later, it was applied on joint pose+shape models of brain
formations [19]. In their work, the pose and shape vectors
were concatenated and variance-based weights were applied to
balance the principal components. The method demonstrated
improved results compared to a pure shape model. Another
finding was that pose+shape models had a much smaller model
size than simple shape models. A probabilistic framework was
added to PGA and the new method was validated against

simulated sphere data and real brain models [20]. Compared to
PCA on Riemannian data and least-squares (standard) PGA,
probabilistic PGA yielded better accuracy. Using PAA, data
following nongeodesic arcs on a sphere was modelled as
described in [18]. After mapping the points onto a linear
space, PCA was applied and the principal components were
back-projected onto the original manifold. Their method was
validated on medial representations and showed improved
results when compared with PAA, PGA, and PCA.

In order to improve the instantiation abilities of a model
built with a small number of samples, artificial enlargement of
the training set is often performed. One of the first approaches
is the combination of SSMs with finite element analysis [21],
where the finite element method is applied to shapes in the
original training set to generate additional local deformations.
Another training set enlargement approach is based on an
adaptive focus. The algorithm first locks onto the most reliable
structures and then progresses in the hierarchical framework
to model the rest of the shapes [22]. Finally, the training set
can also be enlarged by different quantification of the wavelet
transform coefficients [23]. These methods, alongside non-
rigid scaling, non-rigid movement, and noising, were tested
in a comparative study on cardiac images, with the non-
rigid deformation methods performing best [24]. Non-rigid
movement was consequently described in more detail and
applied for better image segmentation [25]. In the context of
arthroscopic ACL repair, artificial training set enlargement is
important because of the limited number of datasets acquired
preoperatively in the clinical setting. In preparation for the
procedure, the knee may be scanned at as few as four flexion
angles. This results in a small training set which renders
the modelling of the motion range and the prediction about
intraoperative knee poses difficult.

This paper offers a novel addition to the traditional intra-
operative tracking for ACL reconstruction by using a pre-
operative atlas of knee flexion. The research in this article
covers the preoperative model building and involves a new
combination of anatomic geodesic decomposition of a training
set previously enlarged with a new set of piece-wise rigid
transformations. The complexity of the knee flexion, described
mathematically through a nonlinear function of the transfor-
mation parameters, is circumvented by the application of PCA
in the manifold of the parameters themselves, rather than on
the anatomy contours. The results show good accuracy and
render the method potentially applicable in clinical scenarios.

Data from four flexion angles of twenty intact ACL subjects
will be used to generate twenty patient-specific models of
flexion based on nonlinear PCA. The statistical analysis is
performed on an extended training set enlarged from the
four initial flexion shapes by local changes in the flexion
parameter vector. For additional quantitative validation, a knee
phantom was scanned at the four flexion positions similarly
to the human subjects. Moreover, we added three new poses
of the phantom which were not included in the training set.
Finally, the phantom was also scanned at twelve combined
flexion and twisting angles to test the accuracy in modelling
secondary knee motion. In total, eighty-four cross-validation
studies and three blind validation tests on three intermediate
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Fig. 1. (a) Flexion data set for a single patient. (b) ACL attachments on the femur and the tibia for one subject, meshes in full extension. The 3D attachment
point vector was defined as the concatenation of attachment areas for all flexion angles. A bone vertex belonged to the attachment area if it was within 1 mm
from any ACL vertex.

flexion angles, as well as twelve studies of the twisting model
were conducted, with the outcome detailed in the Results and
Discussion sections. Our method was compared to the state-
of-the-art in articulated shape models [15] to demonstrate its
relative merit and potential pitfalls.

II. MATERIAL AND METHODS

A. Experimental Setup

The proposed method was tested on MR datasets of the knee
collected from twenty healthy volunteers with intact ACL, as
well as on CT images of a knee phantom. Seven of the subjects
were recruited at Qatar Robotic Surgery Centre (Doha, Qatar)
and Aspetar Orthopaedic and Sports Medicine Hospital (Doha,
Qatar). The remaining thirteen subjects were scanned at the
Biomedical Research Unit (BRU), Royal Brompton Hospital
(London, UK). Written informed consent was signed by all
subjects, in accordance with local ethics guidelines.

The first seven data sets were collected with a 1.5 T Siemens
Espree MRI device, while for the subsequent thirteen, a 3 T
Siemens Skyra machine was used. In both cases, a 3D Dual
Echo Steady State (DESS) sequence (TR/TE 14.8 ms/5.1 ms)
under the Water Excitation imaging protocol was run (flip
angle 25 degrees). The subjects were scanned at four flexion
positions: full extension, 30 degrees, 45 degrees, and 90
degrees (Fig. 1). The angles were measured with respect to the
full extension (0 degrees), as in the case of natural anatomical
knee flexion, and the values were taken from orthopaedic
diagnostic literature [26], [27], [28].

The MR images (Pixel size = 0.46×0.46 mm2; FOV =
150×150 mm2; Slice thickness = 3 mm; Inter-slice thickness
= 3 mm for the 1.5 T scan and Pixel size = 0.7×0.7 mm2;
FOV = 169×180 mm2; Slice thickness = 0.6 mm; Inter-slice
thickness = 0.6 mm for the 3 T scan, respectively) were ori-
ented transversely to capture the anatomy 5 cm underneath
the tibial notch to 5 cm above the femoral condyles to ensure

Fig. 2. Experimental setup for scanning the knee phantom. For cross-
validation of the enlarged training set knee flexion model, scans of the knee
in full extension (FE), 30, 45, and 90 degrees flexion (red circles) were
acquired. Additionally, the knee was scanned in 60 degrees flexion and 5
degrees twisting either side of the normal tibia axis in full extension, 30, 45,
and 60 degrees flexion (green points). This was done in order to validate the
method for simultaneously flexed and twisted knees.

inclusion of patella and ACL. An expert manually delineated
the first seven datasets in OsiriX [29] and the additional
thirteen in Analyze 10.0 (AnalyzeDirect, Overland Park, KS).
The delineated boundaries of the tibia, femur, patella, and ACL
were used to segment the images into binary masks. The binary
masks were fed to the marching cubes algorithm [30] followed
by a Laplacian smoothing filter [31] to generate 3D models of
the knee structures as triangular meshes. Finally, the meshes
were smoothed using the Poisson reconstruction in MeshLab
[32].

For validation, a CLA 10 knee phantom (Coburger Lehrmit-
telanstalt, Coburg, Germany) comprising of femur, tibia, and
ligaments, was scanned using cone-beam CT in a Innova 4100
(GE Healthcare, Little Chalfont, Buckinghamshire, UK) in
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Fig. 3. Alignment of the mesh in the preprocessing step. For each subject, all
femurs in flexion poses were aligned to the full extension mesh. Subsequently,
the transformations of patella and tibia in full extension to the other angles
were computed. These two meshes were used as templates for the final
rendering on the right.

full extension, 30, 45, and 90 degrees flexion. The board
with the flexion marks is depicted in Fig. 2. The knee was
scanned in 5 degrees twisting either side of the tibial axis in
full extension, 30, 45, and 60 degrees flexion. The 5 degree
twisting was chosen to be within the normal range of motion
of a healthy subject [33], which is up to 10 degrees, but this
was also limited in the setup by the mobility of the plastic knee
phantom. This data was acquired in order to test the method
on simultaneously flexed and twisted knees. The femur, tibia,
and ACL were segmented and their surfaces were extracted
using Analyze 10.0 and smoothed in MeshLab.

B. Data Preprocessing

In this study, the orientation of the femur for each subject
was considered fixed throughout the knee flexion. The data
preprocessing comprised of two steps of mesh alignment.
Graphically, these are summarised in Fig. 3. The femur meshes
at 30, 45, and 90 degree flexion were registered to the femur
mesh at full extension using Iterative Closest Point (ICP) [34]
in MeshLab. The femur mesh at full extension was kept as the
subject-specific femur surface from this point on.

Using the femur alignment matrices computed in the afore-
mentioned step, the remaining meshes, comprising of patella,
tibia, and ACL at 30, 45, and 90 degrees flexion, were
subsequently transformed into the full extension coordinate
frame. The transformation matrices of the patella and tibia
in full extension to the other three angles were determined
by ICP, yielding six homogeneous transformation matrices.
The meshes of the knee structures at full extension were used
as templates and transformed to the other poses using the
homogeneous matrices computed with ICP (Fig. 3).

Along with the transformation of the bones (patella, tibia,
and femur), the ACL mesh was also transformed. The ACL
attachment points were determined as the vertices on the femur
and tibia meshes located within 1 mm proximity of the vertices
of the ACL mesh (Fig. 1). For each subject, this represented
two sets of sparse points, one on the femur and one on the
tibia. Because of the assumption of fixed femur, the movement
of the femoral ACL attachment points was neglected in this
paper.

To generate the statistical model of flexion, a template of
the surface vertices in full extension was established from
which the other poses originated. The rigid transformations
moving the knee to the other three angles were computed
with a simple formulation of Horn’s algorithm [35] based
on Singular Value Decomposition (SVD) and orthonormal
matrices that determine the translation of the centre of mass
and subsequently the rotation.

C. Statistical Model of Flexion

The flexion from full extension to any other angle was
mathematically described through the homogeneous matrix
which rigidly transformed the surface of the patella or the
tibia to another flexion angle:

T =

[
R t
0 1

]
(6)

where R was the rotation matrix (Eq. (7), with c = cos and
s = sin), t = [tx, ty, tz]

T the translation vector, and 0 = [0,0,0].
It was assumed that the patella and the tibia were moved

according to two independent transformation laws; thus, three
transformation matrices were computed to align the bones of
each subject, from full extension to each of the other angles.
Each rigid transformation matrix had six parameters describ-
ing the three independent translations and three independent
rotations possible in the geometric space. Each flexion was
therefore fully described by the concatenated transformation
parameters of both patella and tibia matrices.

Extending Cootes’s shape analysis [8] and Fletcher’s
geodesic analysis [17], a statistical analysis was performed
on the concatenated vector of rigid transformation parame-
ters, analogous to Cootes’s shape vector. The transformation
parameters described an anatomical geodesic of knee flexion
angles.

For each subject, the data set comprised four observa-
tions of the random variable p, one measurement pf,s =
[αf,s;βf,s; γf,s; tx,f,s; ty,f,s; tz,f,s] for each flexion pose f ∈
Flexion = {FE.30,45,90} and for each structure s ∈
Structure = {Patella,Tibia}. Therefore, pf was the concate-
nated vector of rigid transformation parameters, with α, β, and
γ the rotation angles about the global x, y, and z axes and
tx, ty, tz the translation parameters. The vectors pf spanned
a 12-dimensional linear space where the random variable
followed a Gaussian distribution (as proved by Kolmogorov-
Smirnov tests for every cross-validation training set, with
significance level 5 %), thus allowing for linear PCA to be
applied. Moreover, p was the input of the embedding function
Φ: M → R(nPatella+nTibia)×3 which took the manifold M , R12 in
this case, to the 3D Cartesian space of nPatella +nTibia vertices:
Φ(pf ) = [φ(pf,Patella)

T,φ(pf,Tibia)
T]T, with

φ(pf,s) = T(α, β, γ, tx, ty, tz)f,s · [xFE,s; yFE,s; zFE,s; 1].

R =

 c(α)c(β) −c(β)s(α) s(β)
c(γ)s(α) + c(α)s(β)s(γ) c(α)c(γ)− s(α)s(β)s(γ) −c(β)s(γ)
s(α)s(γ)− c(α)c(γ)s(β) c(α)s(γ) + c(γ)s(α)s(β) c(β)c(γ)

 (7)
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Fig. 4. The knee flexion is a nonlinear motion. The change from full extension
to 45 degrees is described by a different homogeneous transformation matrix
than from 45 degrees to 90 degrees. (a) Successive application of the 0–45
degree flexion matrix. (b) Application of the ground truth rigid transformation
matrix 0–90 degree flexion. (c) Displacement of the mesh centre caused by
an increase of one unit in each parameter of the global transformation matrix,
1 mm for translation and 1 deg for rotation.

The matrix T was the 4×4 homogeneous transform as in
Eq. (6).

After the preprocessing alignment steps, an analysis of the
linearity of the knee flexion and the dominant degrees of
freedom was performed with the following findings:

• The anatomical knee flexion is a nonlinear transforma-
tion; moving from 45 degrees to 90 degrees is not de-
scribed by the inverse matrix of moving from 45 degrees
to full extension (Fig. 4). The nonlinearity here can be
expressed mathematically as f(α)+f(β) 6= f(α+β) and
f(k · α) 6= k · f(α), where f is a generalisation of the
knee flexion function, α and β are knee flexion angles,
and k > 0 is a constant.

• The dominant motion was identified from the parameters
with the largest contribution towards the displacement of
the patella and tibia mesh centres (Fig. 4). The flexion
angle was primarily defined by a rotation about an axis at
equal angle between the global x and z axis for the patella
and y and z for the tibia, respectively. Additionally to the
dominant rotation, there was significant twisting about the
secondary axes y for patella and x for the tibia.

These findings proved the need for a general learning
algorithm, which did not rely on the geometric bending of
the knee at predefined degrees or on the linearity of the
flexion. Moreover, the model should not simplify the number
of degrees of freedom to the ones which give the most flexion,
as important inaccuracies can sum up from the other secondary
components.

Consequently, a subject-specific statistical flexion model
was developed based on linear PCA of the parameters of
an embedding function, i.e., the rigid transformation matrix.
The mean was computed according to Eq. (8), whereas the
covariance matrix was described by Eq. (9).

p̄ =
1

N

∑
f∈Flexion

pf (8)

Sp =
1

N − 1

∑
f∈Flexion

(pf − p̄) · (pf − p̄)T (9)

The variable p̄ was the subject-specific average pose and Sp
was the covariance matrix of the random variable pf − p̄. The
normalisation constant N was the number of flexion angles in
Flexion.

The PCA model contained only four initial shapes for each
subject. In order to describe new shapes better, a larger training
set was needed. In the next section, a method for artificially
enlarging a small training set is proposed.

D. Enlargement of the Training Set

In a clinical setting for treatment of ruptured ACL, a small
set of preoperative MR images of the knee are typically used
to diagnose the area of intervention and plan the surgical
procedure. For example, the MR data set may be limited to
four stacks of images per patient, not enough to generate an
accurate statistical model. The computed model would not
be able to fit new shapes, even if they lay on the bending
trajectory from full-extension to 90 degrees. This is due to
the nonlinearity of the motion. Simple interpolation of the
parameters with the highest contribution to the flexion (Fig. 4)
would leave out important details, for example twisting about
the secondary y axis for the patella and x axis for the tibia,
resulting in an error outside of the allowable range of 1 mm
[3].

The instantiation error of a model built from only four
flexion angles was computed in four cross-validation cases for
each subject and the median errors were 5.8 mm for patella,
4.8 mm for tibia, and 4.4 mm for the ACL insertion points
on the tibia, largely above 1 mm and deeming the model
unreliable.

Three modes of variation were generated from four shapes,
according to Eq. (10) and (11); these are depicted in Fig. 5.

pLower,m = p̄− 3 ·
√
λm · um (10)

pUpper,m = p̄ + 3 ·
√
λm · um (11)

Here, λm was the m-th eigenvalue of the covariance matrix
computed from the set of parameters pf , f ∈ Flexion, and
um was the corresponding eigenvector. Due to the limited
training set, the model not only yielded large instantiation
errors, but also behaved very rigidly and generated intersecting
invalid meshes such as the lower mode 1 in Fig. 5.

In light of these results, an enlargement of the training
set for a more accurate statistical model was required. The
enlargement method proposed in this paper acted on each
parameter of the vector p separately, decoupling all degrees
of freedom. Each subject-specific training set comprising 12
parameters for the four flexion angles was enlarged. The
method was independent of the geometric angles of 0, 30, 45,
and 90 degrees, only assuming a fairly widely spread space
of the four observed variables.
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Fig. 5. Nonlinear PCA performed on concatenated vertices of all shapes of
one subject. The meshes show the three modes of variation obtainable from
four shapes, with a threefold standard deviation about the mean shape, as in
Eq. (10) and (11). The model was too rigid and generated intersecting meshes,
e.g. lower mode 1.

1) Piece-Wise Rigid Transformation Enlargement: Based
on the adaptive-focus algorithm of Shen and Davatzikos [22]
and the finite element enlargement first presented by Cootes
and Taylor [21], a new method for enlarging the initial data
set was developed. From only N shapes, the algorithm was
able to generate N · 312 additional meshes.

Firstly, the standard deviation of each parameter was com-
puted as in Eq. (12) and concatenated in the standard deviation
vector s. This step was regarded as decoupling of the flexion
parameters.

s =

(
1

N − 1

∑
f∈Flexion

(pf − p̄)2

) 1
2

(12)

Secondly, all tertiary combinations of {−3si, 0,+3si} for
all 12 parameters pi,f , i = 1 . . . 12, f ∈ Flexion, were
computed, so as to span a symmetric space around the average
value of pi,f , as in Eq. (13), where f ∈ Flexion and
cs ∈ {−3, 0, 3}, as shown in Fig. 6(a). This step yielded N12

new values about pf . Applying this algorithm to all initial
shapes resulted in a total of N ·312 meshes, with N the number
of initial samples, i.e. 4 in the original subject-specific training
set.

pfnew
= pf + cs · s (13)

2) Spatial Validity of the Enlarged Training Set: The
{−3si, 0,+3si} shape generation, with si the standard devia-
tion of parameter pi, kept the new objects in an anatomically

Position #1
Position #2
Position #3

Position #1
Position #2
Position #3

(a) (b)

↵� 3�

↵ + 3�
� + 3�

� � 3�
� � 3�

� + 3�
tx + 3� tx � 3�

ty � 3�

ty + 3�
tz + 3�

tz � 3�

Fig. 6. At each knee flexion angle, the pose parameter set of the patella
and the tibia was artificially enlarged. The resulting multi-shape objects were
filtered with an intersection test. (a) The original shape was rigidly transformed
via an artificially generated set of homogeneous parameters. Each parameter
pi,f , i = 1 . . . 12, f ∈ Flexion, was changed in turn to pi,f − 3 · si and
pi,f + 3 · si and all combinations were computed, resulting in 312 vector
values, where si is the standard deviation of parameter pi. (b) For cross-
validation, each initial training set containing three shapes was enlarged with
the non-rigid finite element method, resulting in 3·312 possible shapes, all
based on 3 single shapes.

possible pose to each other, about the mean which was
previously established as a valid orientation of all bones.
However, intersecting objects in the enlarged training set pfnew

could still have been accepted without proper filtering.
An exhaustive search in the 3D space was performed in

order to check the overlaps between all combinations of
femur, patella, and tibia triangular faces. The Interval Overlap
Method [36] was implemented as a C++ library imported into
MATLAB. The algorithm analysed the intersection of all pairs
of planes, each plane including a triangle of either the full
extension femur, or of the newly generated patella or tibia.

With the enlarged data set, Flexionenl, the new mean and
covariance matrix were computed according to Eq. (14) and
(15), where pfenl

were the sets of transformation parameters
pfnew

which generated non-intersecting meshes. With the new
data set being much larger than the dimension of the vectors,
the modes of variation were dictated by the space size of the
parameters pi, 12, and thus 11 modes being generated.

p̄enl =
1

Nenl

∑
fenl∈Flexionenl

pfenl
(14)

Spenl
=

1

Nenl − 1

∑
fenl∈Flexionenl

(pfenl
−p̄enl)·(pfenl

−p̄enl)
T (15)

where p̄enl and Spenl
were the new mean parameter vector

and covariance matrix, respectively, and Nenl was the size of
the enlarged training set.

III. RESULTS

For each subject and each of the four flexion angles, the
training set of the three remaining shapes was enlarged on
a leave-one-out basis (Fig. 6(b)), resulting in 3·312 possible
shapes for each of the 84 leave-one-out tests. The maximal
shape set was then filtered for intersecting meshes with the
Interval Overlap Method [36].

Fig. 7 compares the cross-validation results of using the
initial three-shape training set and the enlarged training set
for all subjects. Specific attention was paid to the instantiation
error at the ACL attachment points. The global instantiation
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Fig. 7. Complete cross-validation results [mm] with median error over all subjects and flexion angles. The upper charts show the median errors over all
surface vertices on patella and tibia in each of the flexion angles. The lower charts show the median error over the ACL insertion points. The box plots depict
the median error (red line) and the 25-75 percentile interval. The whiskers extend to the most extreme data points not considered outliers, covering 99 % of
the data. The median error at the ACL insertion points for Enlarged Parameter PCA was 0.0 mm, with only 11 values out of 84 beyond 1 mm (green line).
The outliers (red crosses) are caused by the bias of the statistics, which drew the medians to 0.0 mm based on the large numbers of zero-value results. The
tabled values underneath each method represent the cumulated global and ACL median errors +/- averages of the 25 and 75 percentiles, similar to the standard
deviation of a normal distribution.

error was computed according to Eq. (16) and the local error
at the ACL insertion points as in Eq. (17).

ef =
1

nPatella + nTibia

∑
s∈{Patella,Tibia}

ns∑
i=1

|R̂f,s ·xi,FE,s+ t̂f,s−xi,f,s|

(16)

eACLf
=

1

nACL

nACL∑
i=1

|R̂f,Tibia·xACLi,FE,Tibia+t̂f,Tibia−xACLi,f,Tibia|

(17)
The ACL error was calculated for the tibial insertions only,

as the femur was fixed throughout the flexion. The estimated
rotation matrix R̂f,s can be obtained from Eq. (7) by replacing
with the instantiated parameters and the translation vector t̂f,s
expressed as [tx,f,s; ty,f,s; tz,f,s]. The vector xi,f,s is a 3D
point describing the position of vertex i of the structure s at
the flexion angle of f . For the ACL error computation, only
the nACL tibia vertices which represented ACL insertion points
xACL,f,Tibia were taken into consideration.

The outliers in the box plots of Fig. 7 (red crosses) were
caused by the imbalanced number of 0.0 mm errors which
drew the statistics towards this value and excluded other non-
zero values as outliers. Although their seemingly large number
threatens the robustness of the proposed method, the error at
the points of interest, i.e. the ACL osseous insertions, remains
under 1 mm (green line in Fig. 7) in 73 out of 84 cross-

validation studies. The outliers distribution is as follows: 4
at FE, 1 at 30 degrees, and 6 at 90 degrees.

These statistics show reduced robustness at the extreme
angles of full extension and 90 degrees, where the difference to
the closest training data of 30 and 45 degrees is large not only
along the bending axis, but also in the parameter space. It can
be inferred that with a better and more uniformly distributed
angle sampling strategy, better results can be achieved.

The proposed method was also tested against the artic-
ulated joint reconstruction in [15]. According to the latter,
the knee joint of each patient had a fixed flexion-extension
axis in the femur. This axis was defined by its unit vector
d=(dx, dy, dz)

T. Furthermore, the knee kinematics about this
axis were simplified to an articulated motion composed of
the rotation Rf,s(d,Θf,s) of the structure s ∈ Structure by
the angle Θf,s (Eq. 16), plus a 3D translation for each bone,
tf,s = [tx,f,s; ty,f,s; tz,f,s]

T, where f ∈ Flexion.
The articulated knee motion parameters d, Θf,s, and tf,s at

each pose were estimated independently of the other angles by
solving the following non-linear least-squares fitting problem
with a Levenberg-Marquardt optimizer:

arg min
d,Θf,s,tf,s

∑
s∈Structure

nVs∑
i=1

‖Rf,s(d,Θf,s)·vFE,s,i+tf,s−vf,s,i‖

where vFE,s,i, i = 1 . . . nVs
were the vertices on the surface
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Fig. 8. Instantiation error of the homogeneous transformation parameters.
Left chart – rotation parameters [deg]. Right chart – translation parameters
[mm]. Light grey – no enlargement. Dark grey – enlargement.

model of the structure s ∈ Structure at the reference position
of full extension, with nVs

the number of vertices in structure
s.

The comparative results of the optimisation for each subject
and each flexion angle are presented in Fig. 7. The median
error in both the global bone instantiation and at the local ACL
attachment proves a better fitting performance of the algorithm
presented in this paper compared to [15]. A Kruskal-Wallis
test was performed to infer statistical difference between the
results of the proposed method and the ones from [15], as
well as between the results of the proposed method and
the linear PCA. The significance level of the statistical test
was computed at 1 % in MATLAB’s implementation of the
Kruskal-Wallis test. The result proved that the median of the
proposed method was not equal to the median in either of
the other two methods compared against. Since their medians
were higher, it was concluded that the error over all subjects
for the enlarged parameter PCA was statistically significantly
lower.

For a statistical model of flexion, of particular interest
were also the fitting errors of the rigid transformation itself,
pi, where p2 = αPatella, p3 = γPatella, p8 = βTibia, and
p9 = γTibia played the most important role as parameters for
the dominant motion (Fig. 4). Fig. 8 shows the median of
the cross-validation results over all subjects and all flexion
angles with and without enlargement of the training set. For
the rotation parameters, the error is given in degrees and for
translational parameters in mm.

A blind validation of the flexion model was performed for
60, 70, and 80 degree flexion of the tibia in the CLA 10 knee
phantom. The training data consisted of the FE, 30, 45, and 90
degree meshes. The global tibial pose instantiation error was
0.0, 0.8, and 0.7 mm, respectively, while at the ACL insertion
points it was 0.0, 0.8, and 1.1 mm, respectively. The low errors
confirmed that the model performed better when the difference
in angles along the bending trajectory was smaller and the data
was more uniformly sampled.

In addition to the validation of the flexion model, a similar
framework was built to test the accuracy in tracking twisting
angles. The original data set included scans of the CLA
10 knee phantom at FE, 30, 45, and 60 degrees flexion,

Upper 
Mode

Average 
Mode

Lower 
Mode

Mode
Variance 137.2 60.4 20.4 3.7 3.6

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Fig. 9. Modes of variation described by the twisting model, starting from
three shapes, at 30 degrees with no twist and at 30 degrees with twist of 5
degrees either side of the tibial axis.

each twisted additionally by 5 degrees either side of the
tibial axis. The training set enlargement was performed for
each flexion angle separately from the others, so that the
modelled motion would be limited to the twisting and invariant
to flexion. Twelve leave-one-out enlargements and validation
tests were performed, one for every position. The median error
of the enlarged model was 1.6 mm, with the local error at the
ACL insertion points averaging 1.1 mm. The enlarged twisting
model was able to describe modes of variation as pictured in
Fig. 9.

IV. DISCUSSION

In this paper, we have presented a new model for intra-
operative pose estimation based on the statistical analysis
of the homogeneous transformation parameters between two
poses of the same object. The training set was enlarged
using piece-wise rigid deformations of the motion parameter
vectors, creating additional poses for learning. The statistical
flexion model combined with the training set enlargement was
assessed in 84 cross-validation and 3 blind validation tests.

A subject-specific flexion model can be seen as the pre-
requisite for augmented reality in arthroscopic ACL repair.
While the diagnostic preoperative scanning can include only
a sparse set of bending and flexion angles, the proposed
enlarged statistical model of transformation parameters could
instantiate new bone poses intraoperatively. In a typical sce-
nario, the arthroscopic view could capture a new pose of the
anatomy. The missing surface and the ACL insertions could be
reconstructed by constraining the flexion model instantiation
according to correspondences on the visuallsed patch.

It should be noted that despite the median error being lower
than that of the other methods, the enlarged PCA on the
transformation matrix parameters yielded 11 outliers outside

Rf,s(d,Θf,s) =

 c(Θf,s) + d2
x(1− c(Θf,s)) dxdy(1− c(Θf,s))− dzs(Θf,s) dxdz(1− c(Θf,s)) + dys(Θf,s)

dxdy(1− c(Θf,s)) + dzs(Θf,s) c(Θf,s) + d2
y(1− c(Θf,s)) dydz(1− c(Θf,s))− dxs(Θf,s)

dxdz(1− c(Θf,s))− dys(Θf,s) dydz(1− c(Θf,s)) + dxs(Θf,s) c(Θf,s) + d2
z (1− c(Θf,s))

 (16)
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the 25–75 percentile interval. This is shown by the red crosses
in Fig. 7. The outliers were also an issue for the linear PCA
on vertices and for the non-enlarged PCA on transformation
matrix parameters, which suggested decreased robustness of
PCA in this case.

However, the robustness of the algorithm was shown to
increase with the MRI resolution. When considering the
number of cross-validation errors at the ACL attachment, the
ratio of errors below 1 mm to errors above 1 mm increased
from 2.5 (first seven subjects, MRI slice thickness 3 mm) to
6.42 (last thirteen subjects, MRI slice thickness 0.6 mm). The
higher imaging resolution allows for better alignment along
the twisting axis in addition to the dominant flexion trajectory.
Thus, the proposed method is superior in performance to
single-axis motion models such as [15].

Due to the nonuniform distribution of the cross-validation
results, there was a narrow interval around the 0.0 mm median.
This caused an exclusion of other values as outliers, despite
being in the 1 mm accuracy band. From the 11 outliers in
Fig. 7, only 6 were beyond the 1 mm mark. The method thus
yielded submillimetre accuracy in 78 out of 84 studies and sta-
tistically significant lower medians than all other comparison
methods. The merit can be attributed to the piece-wise rigid
transformation enlargement, as can be seen from a comparison
with the non-enlarged method. Regarding the sampling angles
used in the model, the blind validation on intermediate meshes
of 60, 70, and 80 degrees showed potential in pose instantia-
tions for angles close to the ones in the training set of FE, 30,
45, and 90 degrees, but poorer results for cross-validation on
extremes such as FE and 90 degrees. Taking into consideration
that the extremes can be acquired preoperatively and included
in the training set, the proposed method results can produce
submillimetre pose fitting accuracy.

The twisting model based on knee flexion scans was com-
puted from flexion invariant shapes by enlarging the data set
within each twisting angle. Despite the intention of emphasiz-
ing only the twisting, the training set enlargement method acts
on secondary pose axes as well, thus influencing the flexion.
This proves that the two knee joint pose changes are coupled
and should be studied together in a complex flexion-twisting
model as proposed.

The statistical flexion model presented in this paper is gen-
erated from intact ACL subjects to demonstrate the feasibility
of the method. Our next step is to assess the method for
ACL reconstruction of patients. It is worth noting that the
multi-object shape modelling approach presented in this paper
only relies on the pose of rigid bodies. The shape itself and
especially the knee kinematics involve a high contribution of
the intact ACL and thus it can be understood that there is
an implicit model of ACL within the rigid multi-object shape.
Nevertheless, even with torn ACL, the function is supported by
the adjacent soft tissue, such as muscles and other ligaments
and tendons. With a subject-specific preoperative model, the
kinematic pattern of any soft tissue can be incorporated. The
only prerequisite is that the flexion angles in the training set
are reproducible.

V. CONCLUSION

In summary, a new combination of statistical models and
piece-wise rigid deformation enlargement was presented. The
training set of the model comprising the parameters of two
rigid transformation matrices was enlarged by local changes in
the motion parameter vector. Subsequently, a statistical model
of flexion based on anatomic geodesic analysis was generated.

Although the method used meshes from MRI scans in four
predefined flexion angles of 0, 30, 45, and 90 degrees, it was
not dependent on the geometric angles built by the femoral and
tibial axes, but only on a good spread of the values in space.
A potential future development point is studying the accuracy
with only three initial meshes and finding the necessary spread
in order to create a good initial training set.

The added value of the proposed approach was clearly
demonstrated by the phantom study using a set of simultane-
ously twisted and flexed phantom knee scans. Twisting is an
important component in the motion of injured ACL patients.
In this paper, the twist was quantified and modelled for the
first time to our knowledge.

Moreover, the proposed training set enlargement strategy
offered a mathematically viable method to bring the model’s
fitting accuracy in the 1 mm error band and thus render it
clinically relevant. This improvement can be inferred from
Fig. 7. The PCA on the parameters of the rigid transformation
matrix was itself the foundation for applying this enlargement
method, by moving the contour representation onto a manifold
where statistical analysis can be performed.

In conclusion, a new combination of a statistical model
based on anatomic geodesic decomposition and of a piece-
wise rigid training set enlargement for intraoperative guidance
of ACL repair was proposed. Taking into account the submil-
limetre accuracy achieved in the validation tests, the proposed
method has clinical potential in reducing the invasiveness of
intraoperative tracking for orthopaedic procedures.
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