368 research outputs found

    NASA Technology Applications Team: Commercial applications of aerospace technology

    Get PDF
    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994

    NASA Technology Applications Team: Commercial applications of aerospace technology

    Get PDF
    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994

    Análise colaborativa de grandes conjuntos de séries temporais

    Get PDF
    The recent expansion of metrification on a daily basis has led to the production of massive quantities of data, and in many cases, these collected metrics are only useful for knowledge building when seen as a full sequence of data ordered by time, which constitutes a time series. To find and interpret meaningful behavioral patterns in time series, a multitude of analysis software tools have been developed. Many of the existing solutions use annotations to enable the curation of a knowledge base that is shared between a group of researchers over a network. However, these tools also lack appropriate mechanisms to handle a high number of concurrent requests and to properly store massive data sets and ontologies, as well as suitable representations for annotated data that are visually interpretable by humans and explorable by automated systems. The goal of the work presented in this dissertation is to iterate on existing time series analysis software and build a platform for the collaborative analysis of massive time series data sets, leveraging state-of-the-art technologies for querying, storing and displaying time series and annotations. A theoretical and domain-agnostic model was proposed to enable the implementation of a distributed, extensible, secure and high-performant architecture that handles various annotation proposals in simultaneous and avoids any data loss from overlapping contributions or unsanctioned changes. Analysts can share annotation projects with peers, restricting a set of collaborators to a smaller scope of analysis and to a limited catalog of annotation semantics. Annotations can express meaning not only over a segment of time, but also over a subset of the series that coexist in the same segment. A novel visual encoding for annotations is proposed, where annotations are rendered as arcs traced only over the affected series’ curves in order to reduce visual clutter. Moreover, the implementation of a full-stack prototype with a reactive web interface was described, directly following the proposed architectural and visualization model while applied to the HVAC domain. The performance of the prototype under different architectural approaches was benchmarked, and the interface was tested in its usability. Overall, the work described in this dissertation contributes with a more versatile, intuitive and scalable time series annotation platform that streamlines the knowledge-discovery workflow.A recente expansão de metrificação diária levou à produção de quantidades massivas de dados, e em muitos casos, estas métricas são úteis para a construção de conhecimento apenas quando vistas como uma sequência de dados ordenada por tempo, o que constitui uma série temporal. Para se encontrar padrões comportamentais significativos em séries temporais, uma grande variedade de software de análise foi desenvolvida. Muitas das soluções existentes utilizam anotações para permitir a curadoria de uma base de conhecimento que é compartilhada entre investigadores em rede. No entanto, estas ferramentas carecem de mecanismos apropriados para lidar com um elevado número de pedidos concorrentes e para armazenar conjuntos massivos de dados e ontologias, assim como também representações apropriadas para dados anotados que são visualmente interpretáveis por seres humanos e exploráveis por sistemas automatizados. O objetivo do trabalho apresentado nesta dissertação é iterar sobre o software de análise de séries temporais existente e construir uma plataforma para a análise colaborativa de grandes conjuntos de séries temporais, utilizando tecnologias estado-de-arte para pesquisar, armazenar e exibir séries temporais e anotações. Um modelo teórico e agnóstico quanto ao domínio foi proposto para permitir a implementação de uma arquitetura distribuída, extensível, segura e de alto desempenho que lida com várias propostas de anotação em simultâneo e evita quaisquer perdas de dados provenientes de contribuições sobrepostas ou alterações não-sancionadas. Os analistas podem compartilhar projetos de anotação com colegas, restringindo um conjunto de colaboradores a uma janela de análise mais pequena e a um catálogo limitado de semântica de anotação. As anotações podem exprimir significado não apenas sobre um intervalo de tempo, mas também sobre um subconjunto das séries que coexistem no mesmo intervalo. Uma nova codificação visual para anotações é proposta, onde as anotações são desenhadas como arcos traçados apenas sobre as curvas de séries afetadas de modo a reduzir o ruído visual. Para além disso, a implementação de um protótipo full-stack com uma interface reativa web foi descrita, seguindo diretamente o modelo de arquitetura e visualização proposto enquanto aplicado ao domínio AVAC. O desempenho do protótipo com diferentes decisões arquiteturais foi avaliado, e a interface foi testada quanto à sua usabilidade. Em geral, o trabalho descrito nesta dissertação contribui com uma abordagem mais versátil, intuitiva e escalável para uma plataforma de anotação sobre séries temporais que simplifica o fluxo de trabalho para a descoberta de conhecimento.Mestrado em Engenharia Informátic

    A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques

    Get PDF
    A growing trend for information technology is to not just react to changes, but anticipate them as much as possible. This paradigm made modern solutions, such as recommendation systems, a ubiquitous presence in today's digital transactions. Anticipatory networking extends the idea to communication technologies by studying patterns and periodicity in human behavior and network dynamics to optimize network performance. This survey collects and analyzes recent papers leveraging context information to forecast the evolution of network conditions and, in turn, to improve network performance. In particular, we identify the main prediction and optimization tools adopted in this body of work and link them with objectives and constraints of the typical applications and scenarios. Finally, we consider open challenges and research directions to make anticipatory networking part of next generation networks

    A survey of online data-driven proactive 5G network optimisation using machine learning

    Get PDF
    In the fifth-generation (5G) mobile networks, proactive network optimisation plays an important role in meeting the exponential traffic growth, more stringent service requirements, and to reduce capitaland operational expenditure. Proactive network optimisation is widely acknowledged as on e of the most promising ways to transform the 5G network based on big data analysis and cloud-fog-edge computing, but there are many challenges. Proactive algorithms will require accurate forecasting of highly contextualised traffic demand and quantifying the uncertainty to drive decision making with performance guarantees. Context in Cyber-Physical-Social Systems (CPSS) is often challenging to uncover, unfolds over time, and even more difficult to quantify and integrate into decision making. The first part of the review focuses on mining and inferring CPSS context from heterogeneous data sources, such as online user-generated-content. It will examine the state-of-the-art methods currently employed to infer location, social behaviour, and traffic demand through a cloud-edge computing framework; combining them to form the input to proactive algorithms. The second part of the review focuses on exploiting and integrating the demand knowledge for a range of proactive optimisation techniques, including the key aspects of load balancing, mobile edge caching, and interference management. In both parts, appropriate state-of-the-art machine learning techniques (including probabilistic uncertainty cascades in proactive optimisation), complexity-performance trade-offs, and demonstrative examples are presented to inspire readers. This survey couples the potential of online big data analytics, cloud-edge computing, statistical machine learning, and proactive network optimisation in a common cross-layer wireless framework. The wider impact of this survey includes better cross-fertilising the academic fields of data analytics, mobile edge computing, AI, CPSS, and wireless communications, as well as informing the industry of the promising potentials in this area

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    Social Learning Systems: The Design of Evolutionary, Highly Scalable, Socially Curated Knowledge Systems

    Get PDF
    In recent times, great strides have been made towards the advancement of automated reasoning and knowledge management applications, along with their associated methodologies. The introduction of the World Wide Web peaked academicians’ interest in harnessing the power of linked, online documents for the purpose of developing machine learning corpora, providing dynamical knowledge bases for question answering systems, fueling automated entity extraction applications, and performing graph analytic evaluations, such as uncovering the inherent structural semantics of linked pages. Even more recently, substantial attention in the wider computer science and information systems disciplines has been focused on the evolving study of social computing phenomena, primarily those associated with the use, development, and analysis of online social networks (OSN\u27s). This work followed an independent effort to develop an evolutionary knowledge management system, and outlines a model for integrating the wisdom of the crowd into the process of collecting, analyzing, and curating data for dynamical knowledge systems. Throughout, we examine how relational data modeling, automated reasoning, crowdsourcing, and social curation techniques have been exploited to extend the utility of web-based, transactional knowledge management systems, creating a new breed of knowledge-based system in the process: the Social Learning System (SLS). The key questions this work has explored by way of elucidating the SLS model include considerations for 1) how it is possible to unify Web and OSN mining techniques to conform to a versatile, structured, and computationally-efficient ontological framework, and 2) how large-scale knowledge projects may incorporate tiered collaborative editing systems in an effort to elicit knowledge contributions and curation activities from a diverse, participatory audience

    Easy Dataflow Programming in Clusters with UPC++ DepSpawn

    Get PDF
    Versión final aceptada de: https://doi.org/10.1109/TPDS.2018.2884716This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The Version of Record is available online at: https://doi.org/10.1109/TPDS.2018.2884716[Abstract]: The Partitioned Global Address Space (PGAS) programming model is one of the most relevant proposals to improve the ability of developers to exploit distributed memory systems. However, despite its important advantages with respect to the traditional message-passing paradigm, PGAS has not been yet widely adopted. We think that PGAS libraries are more promising than languages because they avoid the requirement to (re)write the applications using them, with the implied uncertainties related to portability and interoperability with the vast amount of APIs and libraries that exist for widespread languages. Nevertheless, the need to embed these libraries within a host language can limit their expressiveness and very useful features can be missing. This paper contributes to the advance of PGAS by enabling the simple development of arbitrarily complex task-parallel codes following a dataflow approach on top of the PGAS UPC++ library, implemented in C++. In addition, our proposal, called UPC++ DepSpawn, relies on an optimized multithreaded runtime that provides very competitive performance, as our experimental evaluation shows.This research was supported by the Ministerio de Economía, Industria y Competitividad of Spain and FEDER funds of the EU (TIN2016-75845-P), and by the Xunta de Galicia co-founded by the European Regional Development Fund (ERDF) under the Consolidation Programme of Competitive Reference Groups (ED431C 2017/04) as well as under the Centro Singular de Investigación de Galicia accreditation 2016-2019 (ED431G/01). We also acknowledge the Centro de Supercomputación de Galicia (CESGA) for the use of their computers.Xunta de Galicia; ED431C 2017/04Xunta de Galicia; ED431G/0

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    corecore