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ABSTRACT

CLOUD COMPUTING COST AND ENERGY OPTIMIZATION THROUGH FEDERATED

CLOUD SOS

The two most significant differentiators amongst contemporary Cloud Computing service providers

have increased green energy use and datacenter resource utilization. This work addresses these

two issues from a system’s architectural optimization viewpoint. The proposed approach herein,

allows multiple cloud providers to utilize their individual computing resources in three ways by:

(1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via

aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more

renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative

paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control

methodology that is tuned to obtain both financial and environmental advantages. It also supports

dynamic expansion and contraction of computing capabilities for handling sudden variations in

service demand as well as for maximizing usage of time varying green energy supplies. Herein

we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye

on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes

unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent

cloud services retain their independent ownership, objectives, funding, and sustainability means.

This work analyzes the core SoS requirements, concept synthesis, and functional architecture.

It suggests a physical structure that simulates the primary SoS emergent behavior to diminish un-

wanted outcomes while encouraging desirable results. The report will analyze optimal computing

generation methods, optimal energy utilization for computing generation as well as a procedure for

building optimal datacenters using a unique hardware computing system design based on the open-

Compute community as an illustrative collaboration platform. Finally, the research concludes with
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security features cloud federation requires to support to protect its constituents, its constituents

tenants and itself from security risks.
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Chapter 1

Introduction

Organizations that serve and process a large number of simultaneous users along with large

quantities of data are termed “cloud computing services." These services enable convenient, on-

demand network access to a shared pool of configurable computing resources. Cloud computing

provides a rapidly growing share of IT resources. IT related spending toward workload processing

increased 32.8 percent in 2014, 29 percent in 2015 and 29 percent during 20161. Also, grid energy

sources, powered by hydrocarbons, is increasing undesired CO2 emissions, which are growing

from a 2011 level of 21.3 MtCO2e and are expected to rise to 39.1 MtCO2e by 20202. This carbon

footprint, makes cloud computing one of the largest emerging sources of undesired CO2 emissions.

There is a need to create an efficient and transparent eco-system that allows cloud clients to

match its IT expenses with its planned cost structure as well as use more green energy to power the

cloud datacenters. The author proposes a new paradigm that will enable multiple cloud providers

to utilize both more efficient computing and increased use of green energy resources by forming

a proposed cloud federation. From the Service Provider (SP) customer’s perspective, their organi-

zation’s IT total-cost-of-ownership is expected to shift from a capital-expense-based organization,

e.g., on-premise deployments, to operational-expense-based organization, e.g., cloud service sub-

scriptions.

The author proposes a new paradigm that allows multiple cloud providers to utilize computing

resources optimally. This will be possible by: (1) lowering the required number of datacenters

deployed per Cloud service provider (CSP); (2) scheduling available energy needs via aggregators,

and lastly by (3) employing, where appropriate, more renewable and carbon-free green energies.

In our research herein our approach is quantified and standardized, considering the efforts at the

datacenters within a single cloud provider as the baseline. The Federated Cloud demonstrates

1Gartner Says Worldwide Cloud Infrastructure-as-a-Service Spending to Grow 32.8% in 2015

2GeSI SMARTer2020 The Role of ICT in Driving a Sustainable Future. 2015. GeSI
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the utility of a software container-based paradigm for achieving dense and elastic computing load

management technologies. Federated Cloud is centered on several discreet Linux Software Con-

tainers, managed by a Kubernetes resource management system3 that acts as the governance en-

gine. Moreover, the proposed solution scales and optimizes cross-datacenters’ deployments and

cross-regional deployments by suggesting a cross-cloud provider’s resource sharing collaboration

via a cloud aggregator. Furthermore, it suggests that operating datacenters employ maximum green

energy sources.

In the proposed cross-cloud coordinator service, the proposed deployment of computing con-

tainers sought to reduce the datacenters’ projected carbon emissions growth, and quantify improve-

ments in CPU core allocation, network bandwidth, and digital storage. This Cloud Federation pro-

posal is a novel method to aggregate cloud-computing offerings. Cloud Federation will, for the

first time, offer a new paradigm, under one umbrella, addressing the core operational objectives of

the current public cloud providers and their consumers. This work describes a cloud computing

environment that is seen to be both financially attractive and elastic. The simulations validate the

concept through detailed cross-regional tests. The ability to aggregate allows the federated cloud to

act as one cohesive cloud and provides the required capacity and maximum variable green energy

to its users and service aggregators.

Below we outlined future needs and problems, we will deal with and established the ground-

work for commercial development and deployment of a proposed embodiment of a federated cloud

service as a complex adaptive system(CAS) [22, 77]. In short, we outlined the CAS needs analy-

sis, the concept of operation, the design principles, the essential requirements, and some proposed

metrics for operational benchmarking.

The rest of the work is organized as follows. Chapter 2 discusses the relevant terminology used

in the paper. Chapters 3-6 assesses the benefits of a Cloud Federation and whether there is a prac-

tical approach to satisfy such needs. Chapter 7 investigate emergent behavior by the constituent

systems through simulations that were used to optimize of costs and resource utilization. Chapter 8

3http://kubernetes.io
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furthers the research about the computing paradigm to be adopted as well as the anticipated impact

on the computing hardware equipment industry (Chapter 9). We will also extend the investigation

of clean energy use for cloud federation workloads (Chapter 10-12). Finally, we will review the

cyber-security aspects of the cloud federation and suggests a tool which predicts and detects the

anomalous behaviors based on the resource consumption (Chapter 13).

1.1 Terminology

The following section briefly defines the important terms used in this paper.

CAS(Complex Adaptive Systems): This is a generic term of extensively distributed systems. Sage

and Cuppan (2001) describe System of Systems or Federation of Systems as a type of CAS. We

use CAS as an abstraction of both systems types as we analyze the characteristics of both systems

types.

SP (Service-Provider): SP, the customer, usually an organization with end-users who require pro-

cessing of IT workloads.

CSP (Cloud-Service-Provider): CSP, one of the CAS constituents. offers computing resources,

digital storage and network bandwidth to its customers and the Cloud Federation to process its

workloads. Also, it provides and the software that provision and manage cloud service.

Public cloud. It offers computing resources, e.g. network broadband, computing, storage, and

infrastructure applications over the public Internet. The organization, who chooses to run their

workloads on the public cloud is considered as a cloud tenant. Public Cloud providers adhere to

service level agreement for service availability and security.

Private cloud: It can include the public cloud offerings, excluding the multi-tenancy property.

However, multi-tenancy can be implemented within the enterprise that operates the private cloud.

Therefore, the implementation might be customized to adhere to specific enterprise needs.

Hybrid cloud: The hybrid cloud aggregates several public and private clouds to run heterogeneous

workloads that might span across different geographical locations and enterprises.

Workloads. These are the organization’s IT needs to serve and process both users’ IT services and

3



data. Cloud workloads are broadly of two types: online system, and offline system. The former

provides low-latency, read/write access to data. For example, a web user requests a web page to

load online and serve within a fraction of a second. The latter provides batch-like computing tasks

that process the data offline, which is reported later to users by the systems servers; for example,

the search results based on a pre-calculated index. Production offline workloads usually comprise

mainly unstructured data sets, such as click stream, web graph, and sensors data. The service level

objectives (SLO) for online jobs span a fraction of a second, and those for offline job goals hours,

days and, sometimes weeks.

Control Plane: This is the software that automatically controls the operations of software-based

systems. It is a rule-based system that accepts signals from various systems components and acts,

based on a pre-defined policy.

SLA (Service Level Agreement): This is an agreement between the Cloud-Service Provider and

its customers, the Service-Providers. It often includes guaranteed levels of availability, network

latency, and numerous other provisions.

ODM (Original Device Manufacturer): This is an emerging manufacturing paradigm. In terms of

computing equipment, a manufacturer no longer manufactures equipment, exclusively for name-

brand vendors. This means that cloud-service providers operating at scale could buy equipment

from an ODM supplier and run any software on it. Also, service providers can work directly with

multiple merchant silicon chip vendors and have full access to chipset programming.

COTS Equipment. This refers to commercial off-the-shelf (COTS) equipment, software mod-

ules, support components, etc. These are the already-built products offered by commercial ven-

dors. Within the context of this paper, a customized solution must be designed if a piece of COTS

equipment cannot be used.

JBOD (Just a bunch of disks) refers to multiple hard disk drives linearly aggregated and managed

as a single logical volume with no redundant array of independent disks (RAID) functionality.

Thus, JBOD does not feature any redundancy, and the failure of a single hard drive causes data

corruption. Therefore, JBOD deployments require an additional software solution that partitions

4



the data across independent JBOD instances.

MoE, MoP. Measures of effectiveness and performance are represented by the acronyms MoE and

MoP, respectively.
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Chapter 2

Needs Analysis for Cloud Federation SoS

The first step in system development process is needs analysis [44]. Chapters 1-7 assesses the

benefits of a Cloud Federation and whether there is a practical approach to satisfy such needs.

The primary requirements for providing these benefits by a Cloud Federation are twofold: the first

accrues to the CSP and the latter to the SP (the customer) who wishes to offload its workloads to the

cloud and meet surge and disaster recovery contingencies in a cost-effective manner. The following

section explains both these perspectives. Finally, chapters 8-13 investigate critical federated cloud

characteristics.

2.0.1 The Cloud-Service-Provider

Accommodating variable demands for computing resources requires an immense capacity, as it

calls for providing for the maximum demand within the SLA requirements. For a single CSP that

controls the entire computing resources, the only way to provide enough leeway to deal with sud-

den variations in the demand for computing resources is by providing for significant overcapacity.

This is seldom energetically or economically optimal. Moreover, single CSPs tend to monop-

olize the market, and will not ensure fair market competition, optimal customer satisfaction, or

optimized service rates.

In the case of multiple available CSPs, such as Amazon Web Service, Google Compute Engine,

etc., there are sufficient numbers of providers to allow for a competitive marketplace. However,

from the service provider’s perspective, optimal utilization is challenging, as every CSP builds

computing capacities based on its load and market share projections. In some cases, this drives

them to underutilization of massive datacenter deployments. In other situations, the CSPs suffer

over-utilization because of a miss in the market share, load and reliability projections. Both cases

lead to sub-optimal utilization. In the first case, the operational cost will be higher for the generated

6



revenue; in the latter, SLA might be violated and may prove detrimental to the customer’s (SP) trust

in the service.

One of the important goals of Cloud Federation is to balance the processing resource pools

and optimize utilization. Also, distributing the workload across several providers creates surge

capability and utilization enhancement that allows reasonable rates for the customer SPs who wish

to use general computing services.

2.0.2 The Service Provider

While operating in a cloud environment, the SPs are most interested in three aspects: (1)Avail-

ability: Reliable service conditions that make its services available to the users it serves. Reliability

is defined by SLA and is measured by the allowed unavailability, aka, downtime. Such measure-

ments are done with the help of independent third party service .e.g., Gartner’s CloudHarmony4.

(2)Latency: Some of the SPs workloads are sensitive to network latency, which is defined

by the time the service takes to respond to a user or other sub-system request. In the case of

a service that runs in a geo-location, which is different from that of the end-user or other sub-

systems, the network latency can impact the overall service performance. Therefore, SPs who run

latency-sensitive workloads prefer to provide their service by maintaining optimal proximity to its

end-users or sub-systems in which SPs’ workloads interoperate with.

(3)Adaptability: The Vendor lock-in risk is one of the core business risks that every enterprise,

who wishes to offload its workloads to the cloud, faces. Current IT practices rely on common

standards and protocols that allow organizations to switch components or elements in their IT

operations. However, cloud computing disrupts most of these practices. Onboarding into a single

CSP introduces a risk vector that locks the SP to use the CSP’s platform, API’s and tools. Adopting

a single CSP requires an operational adaptation to CSP’s methods. New needs on the SP side or

changes in the CSP service terms might sub-optimize the operations of the SP. A Federated Cloud

4Research and compare cloud providers and services https://cloudharmony.com/status
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removes that risk vector by creating a CSP agnostic apparatus that allows the SP to adapt when the

vendor lock-in plays a critical role in the migration decision.

2.0.3 Resulting Operational Objectives

The overall objectives of the federated cloud are to provide a financially attractive, multi-tenant,

elastic computing environments that support dynamic expansion or contraction of computing capa-

bilities for handling sudden variations in service demands and energy supplies. More specifically,

the objective is to provide a service of immense computing capacity that is agile enough to adhere

to local regulatory and compliance rules, as well as offer flexible pricing options. Figure 2.1 de-

picts the first step in defining the operational objectives of this SOS Cloud Federation. The SoS

functions denoted by the leaf nodes in Figure 2.1 will be fulfilled through the SoS constituents.

Figure 2.1: Initial operational objectives analysis. The tree head denotes the overarching objective, a financially at-

tractive and elastic computing environment. The primary branches depict the Cloud Federation SoS primary objectives

that distill into functions.

2.1 What kind of System is a Cloud Federation?

The following section analyzes the characteristics of Cloud Federation system. The analysis is

based on the five characteristics proposed by [71], as also by [56], whose suggestions are meant

for complex adaptive systems, such as Cloud Federation.

Operational Independence of the Individual Systems: A Cloud federation is composed of many

CSPs that are independent and useful individually. Amazon Web Service, Google Cloud Platform,

8



and IBM Bluemix are Cloud Federation constituent candidates that provide cloud computing ser-

vices outside of a Cloud Federation. The Cloud Federation customers, the SPs, are independent

business units that can choose to process their workloads with one or more constituent CSPs, as

well as through the Cloud Federation. Finally, the Cloud Federation’s Clouds-Broker and Clouds-

Coordinator are partially independent, regarding of the functionality and services they provide to

their users, the CSPs, and SPs.

Managerial Independence of the Systems: A CSP candidate must be operated and managed

independently of the other CSP candidates to allow a fair market for the Cloud Federation cus-

tomers. Clouds-Broker and Clouds-Coordinator also have to be managed separately from the rest

of the CSP constituents to avoid the possible conflicts of interest in assigning workloads among

the participating CSPs.

Geographic Distribution: Some of SP workloads are attuned to a geographic location. e.g.,

network latency is the canonical example of the essential properties Cloud Federation will optimize

based upon the way individual CSP’s currently address it. Cloud federation aggregates various

CSPs’ services, deployed across different geographic locations so that its workloads are processed

with the required proximity to its customers. For example, live video streaming, hosted by an SP,

needs to be streamed to its users, maintaining proximity from its targeted users. Such workloads

currently require processing by a CSP that operates a datacenter in that geographic location. Also,

when attempting to employ green energy, the CSP will have to function in the form of a datacenter

with sub-power stations in different geographic locations.

Emergent Behavior: The Cloud Federation attempts to optimize the operation cost of its con-

stituent CSPs by aggregating different CSP datacenter deployments. Such service might impact

the price for computing services offered to customers (SPs) by CSPs. Also, a CSP’s operating

costs might be affected when combining green energy with the cost of energy provided by the grid.

The simulation described in Section 6.4 (Cloud Federation Emergent Behavior) will discuss a few

of the major emergent behaviors expected of Cloud Federation.
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Evolutionary Development: A Cloud federation is never considered fully-formed or complete.

CSPs of all sorts of shapes can onboard to the Cloud Federation and process SP workloads. SPs can

demand new services through new interfaces offered by Clouds-Broker and Clouds-Coordinator.

Such changes, reconciled with the CSP constituents through improved management processes,

contribute to Cloud Federation development and benefits.

This particular Cloud Federation is best understood as a System-of-Systems (SoS). This new

paradigm, which impacts the constituent cloud services, is based on newly available Service Level

Agreements between the federated cloud and the constituent cloud services. However, the con-

stituent cloud services need to retain independent ownership, objectives, funding, and customer

relationships and business models. Thus, the primary goal of a Cloud Federation is to provide

flexible pricing options, maximize and distribute computing load utilization, and minimize energy

use. Since our Federated Cloud paradigm spans different regulatory sovereignties, it must also be

tailored to adhere to local regulatory and compliance rules. Federating containerized loads leads to

the improved use of computing resources and resiliency of system. In a later section, another type

of Federated Cloud architecture for complex adaptive systems, the Federation of Systems (FoS),

will be explored and we will show that FoS attributes do not fit Cloud Federation, as contended by

[71].

2.2 Concept Exploration of Cloud Federation

The core operational objectives, depicted in Figure 2.1, will serve as a reference for exploring

the operational concepts and constraints of the Cloud Federation. First, the projected workload

prescribed by the SPs to process using the Cloud Federation will be defined. Next, the computing

resources and systems that handle the workloads and the resource management strategy will be

synthesized. This is followed by the pricing model, hardware, deployment and security aspects.

These allow an SP to deploy the software that integrates with the Cloud Federation control systems.

This will be discussed in section 6 on Concept Architecture.
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SP Workloads

SP Workload types are twofold: online and offline. The online workloads can be classified

into two types: (1) low-latency (10%) and (2) streaming-oriented (90%). The first type of online

workload refers to such user’s queries as those for a web page. Such a call is expected to return

within 100’s of milliseconds. The second type relates to video streaming scenarios such as those of

Netflix or YouTube. Streaming-oriented calls also need to be returned to the user within the same

range as that of low-latency requests of the first content chunks, but further requests can be served

with latencies in order of minutes.

The offline workloads are batch-like computing tasks that process the data independently of

online connected systems, often with long lead times, and which are later served by other systems,

e.g., search results based on a pre-calculated index. Offline production workloads comprise mainly

of unstructured data sets, such as click stream, web graph, and sensors data. The service level

objectives (SLO) for offline jobs range between hours, and sometimes days. Further, workloads

are processed and managed by software tools, which comprise software binaries that are deployed

on the CSP and the Clouds-Broker platforms.

The Computing Resources

A cloud computing system comprises two interleaved core elements: hardware, and software.

The hardware components include servers, racks, power and cooling system; the software compo-

nents use the hardware to process the computing workloads. CSP systems comprise one or more

datacenters. The datacenter includes clusters of racks, chassis and computing servers that store in-

formation in digital format and connect networking equipment. Also, the datacenter includes both

peripheral mechanical and electrical elements. A typical datacenter electrical system comprises a

power substation, diesel-based generator, main switchboards (MSB), and a backup battery system.

The mechanical elements incorporate cooling systems, fire sprinkler systems, and the construction

that hosts the datacenter elements [9].

Computing resources are used to operate the software that allows the service, i.e., the control

plane, to process the SP workloads, i.e., the data plane. Each and every resource is measured using
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standard quantifications, e.g., the bit rate for network bandwidth, CPU time for computing, and

bytes for digital storage. Also, on the software level, the computing resources are containerized

to provide allocation density, elasticity that yields to optimal computing resource utilization and

enhanced security [23].

Pricing

Pricing of the Cloud Federation services offers financially attractive opportunities for SPs who

wish to offload some of their workloads into a generic cloud computing environment. Also, Cloud

Federation pricing enhances the CSP’s traditional business model by leasing computing resources

to the Cloud Federation customers and increasing its resource utilization.

One of the core functional requirements of the Federation is handling the various pricing mod-

els offered by the SoS to CSPs. The pricing scheme should provide an elastic model that allows the

customers to allocate and deallocate resources automatically through a call to the Cloud Federa-

tion control plane. The following section presents a brief description of the three canonical pricing

plans offered today by CSPs: On demand, Spot-price, and Subscription.

On-demand: This is the most expensive option for the SP customer as it offers no guarantees to

the CSP. Thus, the CSP’s pricing structure is higher for demands of dynamic nature.

Spot-price: As in the smart grid marketplace, customers can bid for resources per demand. Al-

though spot-price allows for low cost, the computing tasks might include a universal support for

pause-and-resume, whenever the spot price exceeds the bid price.

Subscription: This allows the CSP to commit its available capacity with a guaranteed income.

Subscription also allows the SP to control and manage its operational expenses. But, subscription

deprives the SP subscriber of elasticity by charging the SP for times the leased resources run idle.

A subscription-based scheme is an optimal option for customers with predicted usage patterns.

The authors add here another, fourth, pricing scheme, namely the performance based price [39].

The performance-based price defines the service rates by a set of performance-related parameters,

e.g., work volume, average load, peak load, or deadline parameters. An SP can place a bid on

minimum or maximum capacity for a particular set of performance metrics. Performance-based
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pricing becomes attractive when the cloud service scale is big enough to allow a sufficient resource

pool to enable granularity in the sets of possible performance attributes.

Computing Hardware

As cloud computing becomes the primary method to run information and communication ser-

vices, IT-related spending on datacenter workload processing must also increase, as has been the

case during the last three years. A substantial part of the expenditure is presently dedicated to

building datacenter deployments across the globe. The computing hardware equipment forms the

core of the datacenters; its specification is currently dictated by name-brand proprietary vendors

with commodity products that encompass the vendors data center offerings. The datacenter oper-

ators are thus required to adjust their architecture to the offerings of various equipment vendors to

best run their services. This approach tends to be over specified and otherwise suboptimal, because

most data center needs might require only general purpose computing features. As a consequence

of this some of the system components remain entirely unused or underutilized.

[9] propose a model that mimics the open source software paradigm and provides a metric

for scientific measurement of the hardware computing system design. For this, it uses the Open

Compute community framework as an illustrative collaboration platform. The Open Compute

community allows for continuous improvement in the equipment specification process, based on

both customer’s (SP) and operator’s (datacenter) needs, along with the evolving vendor’s con-

straints. The community eliminates the dependency on proprietary design and allows the design to

be modified organically, not only by the systems’ vendors but also the systems’ operators, as well

as cloud providers.

Continuous Deployment and Integration

One of the Cloud Federation’s goals is to enable the SPs with IT agility in their application and

workloads to run efficiently within the Cloud Federation. IT-agility is also required in the software

that runs the Federation control plane, as it helps the SPs in innovating at a faster pace by building

a cloud-native software in a more fault-tolerant and safe deployment environment.
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Deployment and integration capabilities require visibility in service status. Also, they need

support in detecting and isolating faults to limit the risk associated with a failure or security inci-

dent, besides enhancing robustness and resilience. Continuous integration refers to the processes

comprising service life cycles (such as those described in ITIL 3, IBM’s SOMA (Service Oriented

Modeling and Architecture) and various other industry standards), commencing from the moment

a code is ready for a test and ending when it handles the production workloads. Continuous in-

tegration includes automated deployment, rollback, test, staging, and deployment of production

services for both SP, CSP, and the Federation control plane. Moreover, the full software develop-

ment lifecycle will have to be implemented and managed for Federated Clouds, consistent with the

standards and best practices for system lifecycle processes.

Security and Compliance

From the security viewpoint, the SoS Cloud Federation may be considered as a cloud of clouds.

In implementing the controls, security operations and monitoring, the CSPs are required to ensure

Confidentiality, Availability, and Integrity of each Cloud system and the data contained therein. On

inheriting the security measures, the Cloud Federation will include in them supervisory controls,

because, while dynamically balancing resources amongst the CSPs, the federation needs to ensure

that malware or data loss doesn’t occur even when there is the slightest exposure to data storage

architecture. Moreover, resource allocations occur dynamically and automatically for a workload

that needs to be optimized, and this requires that computing, communication, and data sharing are

carried out securely. This aspect has been treated in a separate dedicated paper.

2.3 Concept Architecture phase in Cloud Federation

The following section explores the characteristics of a Cloud Federation SoS and its con-

stituents, i.e., their autonomy, interfaces, interactions, and control methods. The concept synthesis

section defines the functional architecture, and finally, a linear model is proposed, which allows

initial analysis of dynamic behavior of the Cloud Federation as a SoS. The model will simulate the

important aspects of the CSPs, their elements, and their interaction with the Federated Cloud SoS
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control systems. The Cloud Federation architecture comprises multiple CSPs, Clouds-Coordinator,

and Clouds-Broker systems.

Clouds-Coordinator: The coordinator acts as an information registry that stores the CSPs pric-

ing offers and demand patterns. Clouds-Coordinator regularly updates the CSPs availability and

offering prices. Also, the Clouds-Coordinator will help in employing, where appropriate, more

renewable and carbon-free energies [13].

Clouds-Broker: Clouds-Broker will manage the membership of the constituent CSPs. Both

CSPs and SPs will use the Clouds-Broker to onboard to the Cloud Federation. Also, the Clouds-

Broker will act on behalf of the SP for resource allocation and provisioning requests. Clouds-

Broker also ensure continuous deployment of SP’s software, configuration, and data to one or

more CSPs’ assets, thus helping the SoS to achieve its IT agility goal.

Figure 2.2: Proposed Cloud Federation Systems of System comprises CSPs and SP that are managed by Clouds-

Broker and Clouds-Coordinator

2.3.1 Interfaces and Interactions

SPs, CSPs, Clouds-Broker and the Clouds-Coordinator will expose interfaces that allow neces-

sary and more optimal interactions as a system than as a set of individual component systems. This

15



section describes the interface approaches chosen by the authors for Federated SoS constituents’

interactions. The communication approach is biased towards loosely coupled messages. However,

for, “on-behalf" interactions, agent-based methods are suggested.

By sending loosely coupled message communication, the sender does not expect an immediate

response. As the tasks proceed asynchronously, a message queue might build up amongst the

interacting components. Therefore, the interface between the sender and the message queue should

include a positive or negative acknowledgment indicator through which the sender can convey the

logical expectation of an action to happen from potential recipients; for example, SP places a bid

for computing resources. The Clouds-Broker process other requests while acknowledging the SP

bid request.

As a principle, a mere signal is not enough of an indication that the message has been processed

by the destination service. It merely indicates that it has safely arrived at the message queue

component and that the sender would like to notify the entire front-end service about the semantics

of a record that has been stored in their cache. Moreover, the recipient side will have to support an

additionally acknowledge interface that allows the message queue to clear up the read messages. In

the unlikely event of the recipient not consuming the message because of an issue, the interface will

enforce a timeout duration associated with a message that can trigger a negative acknowledgment

back to the sender. It is up to the message originator to decide how to handle such a negative

acknowledgment.

The interaction between the federated cloud customers and the cloud providers will be a

brokered-based communication. Brokered communication is probably the most popular method

for interfacing between components in distributed Internet-based systems [81]. Thus, the inter-

actions between the Clouds-Coordinator and the Clouds-Broker have negotiated communications

so that the SPs and CSPs can cooperatively make decisions for lease or release of computing re-

sources.

This negotiation paradigm raises the issue of whether to employ software agents.Agents can

act on behalf of the SP and make a proposal to a server agent. The server agent attempts to satisfy
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the client’s proposal, which might involve communication with other services. Having determined

the available options, the server agent then offers the client agent one or more options that closely

matches the original proposal of the client agent. The client agent may then choose one of the

options, request for more options, or reject the offer. If the server agent can satisfy the client

agent’s request, then it accepts the request; otherwise, it rejects. The canonical example for such a

scenario is an SP seeking a spot or performance price through the Clouds-Broker system.

2.3.2 The SoS Functional Architecture

Much of the interest in Cloud Federation, as a SoS, is focused on the desire to integrate existing

CSPs systems for achieving new capabilities that are not available with a single CSP. Specifically,

it mitigates vendor lock-in to the enterprise, optimize resources utilization and reduced carbon

footprint by a CSP’s datacenters. The current environment requires that participating CSPs are

operationally and managerially independent, evolutionarily developed with emergent behavior, and

are geographically distributed [69].

In our Cloud Federation SoS, the CSPs interact voluntarily to fulfill the agreed upon benefi-

cial collective purposes. The primary enablers, the Clouds-Coordinator and the Clouds-Broker,

collectively decide how to provide or deny service, thereby providing means for enforcing and

maintaining the required standards and compliance [25]. Also, the Cloud Federation allows auton-

omy to its CSPs’ constituents to decide how to fulfill the purpose of the SoS and its business goals.

The following section discusses the SoS management, implementation, engineering, and design

considerations [24].

Management and Oversight

The core constituents of the Cloud Federation are the SP and the CSP. Both have their owners,

stakeholders, users, and business processes, which lead to overlapping authorities with the other

participating CSPs and SPs. Further, the lack of common powers and funding pose challenges

to the Cloud Federation management and governance. One of the solutions proposed for similar

SoS leadership dilemmas is well documented in SEBoK [4]. The solution supports a community
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approach that establishes SoS principles. The community seeks consensus when one of the Fed-

eraton principles comes into question. This is a proven approach, as most of the Internet-based

communities are managed with the same modus operandi [70].

The community-based cooperation between CSPs will help to maintain a reliable service by

forming joint control systems such as the Clouds Coordinator that will increase the individual

CSP’s resource utilization and reduce cost by aggregating demand. One might refer to such coop-

eration as organic regulation. The SPs are interested not only in reliable service but also in an opti-

mized price for computing resources. Therefore, part of the agreement should include deregulation

of prices and alignment of the computing capacity deployment with the SP demand. The authors

believe that the price for computing resource, offered by the Cloud Federation, will be one of the

important and interesting emergent behaviors of the SoS. They are exploring, through simulation

and with real workloads, how the cost of computing resources is affected through deregulation of

the SoS.

Engineering Design and Implementation Consideration

As in management processes, technical engineering considerations are implemented at two

levels: first at the CSP level and the second at the federation level. In case the two levels do not

overlap, the two models co-exists well. However, in the event of a conflict, the CSP will seek

to reconcile its engineering or operational requirements with the federation and vice versa; for

example, the CSP is required to deploy a datacenter in a region to accommodate its customer’s

needs, unfederated SP. In such cases, the CSP might deploy the datacenter, but the CSP will not

allow placing the datacenter in the federation pool; therefore, the action taken does not drive down

the computing prices of the already planned resources pool provided by the Cloud Federation.

For adoption to Cloud Federation, the SP requires standard tools that allow deployment and

integration of its software, and data for processing a workload. In most cases, the CSP offers such

platform to its customers. However, the Clouds-Coordinator and the Clouds-Broker are required

to offering a generic method to the SP for deployment and integration with the Cloud Federa-

tion. Therefore, the CSP has to modify its systems’ boundaries and interfaces by exposing generic
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interfaces that do not exist otherwise. For example, the CSP might implement tightly-coupled

interactions between its resource managers and computing resources.

Testing, validation, and learning also pose challenges when implemented within the Federated

Cloud. Joint, end-to-end testing turns into a complicated technical management process. Intro-

ducing systems enhancements across life-cycles of multiple systems requires different interaction

methods than those used within the same CSP and SP. It is particularly so when the systems have

to support both new and legacy systems. Thus, automated and asynchronous testing and evaluation

processes that span across the SoS can alleviate the technical process complexity [83].

Metrics Measurement

The Cloud Federation requires the definition of two core sets of metrics: (1) project metrics

and (2) process metrics. The project metrics measure the success of the SP and CSP projects

i.e., CSP wishes to introduce a change to some of the Cloud Federation constituents that might

impact interfaces with the Clouds-Broker or Clouds-Coordinator as well as the SPs. The Cloud

Federation needs to establish a standard for change management through a set of metrics, relating

to the stability of requirements, the quality of project planning, adherence to project schedules, the

verification, validation, and documentation of proposed changes, and quality of project reviews

[44].

Process metrics will serve as the operational measurement standard between the Cloud Fed-

eration, and its constituents (CSPs) and customers (SPs). SP workloads are often handled by

mission-critical business processes, and hence the ability to track and measure the workload status

is crucial to the success of an SP when it is running in the cloud. Defining a cohesive set of metrics

that is agreeable to CSPs is challenging, as it might conflict with the semantics of some of the CSP

metrics. Also, some of the semantics might require detailed metrics that CSPs wish not to expose

outside of its system boundaries. Therefore, in the set of parameters to be defined by the Cloud

Federation, the focus will be on the quantitative measures that will be used to assess, uncover prob-

lems and provide a basis for improving the SP workload, hosted in the Cloud Federation. Figure

2.3 describes the possible set of states of SP workload. The authors propose that the Cloud Feder-
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ation, through its Clouds-Coordinator, will expose a set of metrics for SPs that are based on the SP

workload status. SPs can define a set of measurements that include the SP workload semantics.

Figure 2.3: Proposed Cloud Federation Systems of System comprises CSPs and SP that are managed by Clouds-

Broker and Clouds-Coordinator

2.3.3 Cloud Federation - FoS or SoS?

[71] suggest two types of relevant Federated System complex adaptive systems: System of

Systems (SoS) or Federation of Systems (FoS). FoS can be considered as an SoS with a very limited

amount of centralized control and authority. In other cases, FoS creates a coalition of its constituent

systems, which together form a decentralized power and authority with potentially different new

perspective behaviors. Some of the essential requirements from the Cloud Federation side are

centralized command and control functionalities, such as cross CSP cyber-security services, and

objective computing metering that is decoupled from the CSP metering systems. Also, the Cloud

Federation will have to ensure fair market to its customers and the SP by ensuring that there will

be no price-fixing across CSPs.
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According to [71], SoS property and subsidiarity are crucial to FoS. Subsidiarity claims that

power belongs to the lowest possible point among the SoS constituents. In Cloud Federation,

neither the CSP nor the SP possesses any systemic power, except for the choice of participating

or not participating in the federation. Moreover, the Clouds-Broker and Clouds-Coordinator have

the power to decide about SP’s workload assignment to CSP, which can dictate computing price,

without consulting CSP or SP.

On the other hand, obtaining and maintaining a systems engineering ecology is vital to achiev-

ing a sustainable system, which is manifested by forming virtual organizations that foster cross

system collaboration [36], an example of which is the Open Compute Project5. Also, “separation

of power" is an FoS property where the commands and control systems do not reside within the

boundaries of the same system. In Cloud Federation, the Clouds-Broker oversees SP workload

matches, and Clouds-Coordinator the workload assignments. Both of them impact two of the im-

portant emergent behaviors, namely Computing price for SP and resource utilization for CSP. [71]

and [36] suggest no set of CAS properties that defines whether Cloud Federation is an FoS or

an SoS. However, based on the set of FoS properties that Cloud Federation lacks, [24] considers

Cloud Federations need to be a collaborative SoS.

2.3.4 Cloud Federation Emergent Behavior

The following paragraph describes few of the emergent behaviors anticipated by the Cloud

Federation.

Computing Price

A core objective of Cloud Federation is to provide for its customer’s fair pricing for general

computing service. Failing to offer a more cost-effective computing service than that of a CSP

directly might invalidate the need for the Cloud Federation service to its customers. The Section

on Concept Exploration proposes several price schemes offered by the Cloud Federation. As a

deregulated system, computing prices will be determined by CSP’s supply and SP’s demand. The

5http://www.opencompute.org
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Federation Clouds-broker is the system that determines the price offered to the SPs. The initial

impact of the Cloud Federation on the computing price will be examined in the simulation section.

Computing Resource Utilization

Another core objective of Cloud Federation is optimizing CSP resource utilization. Most CSPs

seek more market share in competition with other CSPs. An outcome of such competition is the

ever-growing infrastructure in the form of new datacenters across the globe, with no countervailing

forces to meet user demand more efficiently and to satisfy societal, environmental and energy

requirements. This sub-optimum use of infrastructure increases the carbon footprint, attributable

to cloud computing services and also drives up the costs to CSPs. The simulation section explains

the possible utilization of computing resource by the Cloud Federation in processing SP workloads.

Carbon Footprint by Computing Resources

Meeting the Federally mandated approach of maximizing the use of green energy in operating

datacenters (for a government with recommendations for private sector use as well) requires an

energy source-demand coupling scheme that ensures SLO levels of power availability, but with

structural bias towards green energy sources over hydrocarbon fueled energy sources. The system

that can accomplish this will have to provide seamless failover, in case of sudden interruption in

green energy, to grid energy sources or vice versa.

SP workloads require different service level requirements. Serving systems’ workloads com-

prise interactive sessions that pivot on minimum latency. However, low latency is less critical in

analytical on-demand streaming, because application clients use buffering techniques to mitigate

long latency effects. Therefore, on-demand streaming workloads fit, more tightly than the interac-

tive workloads do, with the observed intermittent and varying green energy availability character-

istics.

Green energy supply is unpredictable and requires a complex, adaptable, resource allocation

system to provide SP services with steady energy supplies, ensuring concurrently minimal carbon

footprint. Such dynamic green power resources can be available in a smart grid only with real-
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time communications of both short term and predictive energy needs from cloud service providers

to green energy providers. The green energy providers will have to disclose the availability of

energy dynamically to CSPs, who, in turn, publish their changing energy demands for near-term

computing. The SPs can then better maximize the use of green energy for on-demand streaming

processes.

[13] and [14] simulate an opportunistic power-mix approach for processing analytical work-

loads. Their approach demonstrates that potential carbon-footprint savings can be achieved with

opportunistic methods. The experiment simulated the usage of green 708 kWh out of the total 3,252

kWh required for analytical systems workload processing i.e. 22% less carbon emission. Fifty-

percent of the total workload consumption, i.e., 1822 kWh, was processed by brown energy because

of false-positive events, i.e., the coordinator assigned a job with no sufficient green recourses to

process the job. The authors believe that optimizing the coordinator algorithm can improve the

footprint reduction up to 50% for offline workloads and 30% for general workloads6.

Figure 5.9 shows the job-placement ranges, denoted by the dotted line in both the PV and the

Wind plots. Any value above the zero level is indicative of potential benefit. However, such cases

are subject to false positive events that can occur because of an unpredicted drop in availability.

Computing Hardware Equipment Price

The cloud computing hardware elements include servers, racks, power and cooling systems.

The software elements use this equipment to process the computing workloads. The dominant

software paradigm is open, and the source code is freely available and modified according to an

open source community. The computing hardware system has neither an open standard, nor has

it evolved best open practices for designing a warehouse scale computing system. It is presently

dictated by a few name-brand proprietary vendors, such as IBM, Hewlett-Packard, and Dell.

These vendors often offer a tailored business solution in which the equipment design interaction

methodologies are derived, based on that single path perspective. Cloud federation is projected to

6Cloud Computing, Server Utilization, & the Environment, https://aws.amazon.com/blogs/aws/cloud-computing-

server-utilization-the-environment/
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Figure 2.4: Job placement ranges denoted by the doted line in both the PV and the Wind plots. Any values above

the zero levels indicate on potential benefits. However, assigned jobs might not be able to fully processed when

unpredicted drop in the availability.

change the space of hardware by disaggregation, and the evolvements of the ODM market opened

up the equipment hardware design to the collaboration of more contributors. Every contributor

brings vital data to the design process, and the systems engineers will help to compare various

alternatives by providing a framework that converts individual data to a standard measure.

2.4 Modeling Approach and Simulation of Primary Scenarios

The authors propose here a resource allocation model that is based on best industry practices

[37, 38]. In general, SP wishes to run a collection of tasks that define the job. The tasks include

resource allocation, data partitioning, fetching data from a source location, its processing, and
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aggregating the results. The author envisions a semantics between SPs and Clouds-Broker that

allows the job to be submitted and controlled by the Clouds-Coordinator at the CSP’s resources.

A job includes five main states: submitted, outstanding, running, paused, and finished. Figure 2.3

depicts the job state transition. Job submission through outstanding is controlled by the Clouds-

Broker, and pending through finished states are controlled by the Clouds-Coordinator. Practical

examples may, however, cover more states and sub-states. For simplicity, the authors prefer to use

the five states that articulate the interactions between the SoS constituents.

The authors have used one-month of Google’s cluster-usage traces that include mixed cloud

workload. They cover 650K jobs running across 12000 machines in a single datacenter [84]. The

goal of the traces is to simulate realistic demand patterns generated by SP that can later help in as-

sessing the SoS emergent behavior, such as the price for computing resource, datacenter utilization,

and security risks.

2.4.1 SoS Modeling and Simulation

The core value proposition of cloud-federation is twofold: fair computing price for SPs and

optimized energy utilization by the CSPs’ datacenters. The following section models the interac-

tion between various systems of Cloud Federation that reflects the SoS emergent behavior when

attempting to achieve these two objectives.

For this purpose, the author used SoS engineering analysis developed by Osmundson et al.

[64]. The methodology includes a sequence of analysis, transformation, model building, and sim-

ulations. The scenario development has been done in the Needs Analysis section, and the Concept

Exploration section defined the SoS elements and threads. The following paragraph attempts to

represent the operational architecture through simulation.

The goal of this section is to understand some aspects of the SoS emergent behavior and their

impact on its constituents. First, SoS’s impact on the computing price offered to the SPs by the

CSPs through the federation is discussed and then the impact on the CSP’s datacenter utilization.
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The simulation shows that the Cloud Federation might help CSP in improving its use of resources

and reduce the overall CSP carbon-footprint.

Simulation - SoS Cost Impact

The objective of simulation is to depict the possible SoS emergent behavior, and its impact on

the computing price to SP. Simulink was used as the simulation tool. The Simulink model mimics

the general model shown in Figure 2.2. The model includes a set of CSP instances, CSP1...CSP3,

that generate supply messages to Clouds-Broker system, using uniform random objects, and four

SP instances, SP1..SP4 that create computing demands messages to a dedicated Clouds-Broker

interface. Three CSPs were chosen to mimic the current market CSP: Amazon Web Services,

Google Cloud Platform and IBM Bluemix.

The simulation product was depicted by the Price Scope object. For simplicity, the price gen-

erated was for enterprise-grade CPU performance, for example, Intel Xeon E5 processors that

are suitable for production workloads, such as moderate-traffic websites. The simulated Clouds-

Broker system included static summation and transfer functions that mimic electronic-commerce

system, which implements fair marketplace.

The simulation spanned across 80 days, during which period, the CSPs could onboard the

Cloud Federation and the SPs could submit workload jobs to the Clouds-Broker that were later

coordinated through Clouds-Control system. The simulation duration included one CSP only,

processing four SPs workload requests. During t7 − t17, two more CSP were added to the SoS

pool. During t18 − t69, three CSPs processed the intermittent SP workloads generated. In t65, two

CSPs stopped accepting new workload requests by the Clouds-Broker, while the SPs reduced the

workload requests to be processed by the SoS.

The cloud-federation price impact simulation (see Figure 2.6) shows one of the important val-

ues that cloud-federation brings to its constituent SPs. It shows price stabilization phase throughout

the period the CSP was reporting on computing resources availability. The emergent behavior of

the Cloud Federation can be analyzed by comparing the price offered outside the Cloud Federation,

in the absence of SoS trading agents. The current simulation exhibits a limited design that repre-
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sents deregulated SoS operations, which optimize the cost for SP. Future studies should include

regulated SoS, as the one that occurred in the Power Grid SoS [18].

Figure 2.5: Cloud Federation simulation architecture attempt to assess the impact of the federation on comput-

ing prices offered for SP and CSP’s datacenter utilization. The Simulink simulation includes three CSP instances,

CSP1...CSP3, that generates supply messages to Clouds-Broker system using uniform random objects and four SP

instances, SP1..SP4, that generates computing demands messages to a dedicated Clouds-Broker interface.

Simulation - SoS Computing Utilization Impact

Another cloud-federation emergent behavior handles CSP resource utilization. The simu-

lation assesses the impact on datacenter resources utilization by applying known optimization

solvers through the clouds-coordinator. The authors used linear programming solver to find a

job-assignment strategy, minimizing thereby the datacenter cost of operations, while obeying a set

of datacenter’s operational constraints. The job simulation shown in Figure 2.7 under SP1..SP4
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Figure 2.6: Cloud Federation impact on price simulation shows one of the important values that Cloud Federation

brings to SPs. It shows the computing price stabilization process when more CSPs reports on computing resources

availability.

depicts the job creation rate across 24 hours span, across 30 minutes for each period [84]. The

simulation shows CSPs utilization, based on optimal job assignment.

The core objective of optimization function is allocation of virtual-CPU (vCPU) for job exe-

cution. The authors simplified the model by optimizing a single resource i.e. CPU. The model

can be extended to more practical scenarios that include digital storage requirements and network

broadband. Both are proxy to vCPU and hence the simplification. Let G(g, p) denote the cost

of vCPU assignment function, where g denotes the cost job assignment of some vCPU. p means

the pool of demand for g measured by the cost of #vCPU
hour

. Let C(g, fc) denote the cost function

for generating G(g, p), in which fc denotes the power cost measured in vCPU/J . Finally, let Ic

denotes the initial cost for running a computing cluster in a CSP facility.
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The simulation objective is to maximize

f = G(g, p)− C(g, fc)− Ic

where f denotes the CSP optimized utilization.

G =
n
∑

i=1

gi · pi and C =
n
∑

i=1

powerusei · fci

The utilization upper-bound constraint does not allow CSP utilization rates, f(CSPi), of more

than 80%, consequent to which 20% of the computing resources is left unutilized for unexpected

bursts. Another cross-CSP constraint ensures that running optimized f(CSPj) does not deviates

from other f(CSPi) by more than 10%. The authors applied Matlab linprog with the linear

inequality constraints specified as the A matrix required by linprog. The linprog execution

yielded the job-assignment shown in Figure 2.7 across 48 periods, each of 30 minutes. The sim-

ulation shows that the requests for job originates by SP1...SP4 and the job assignments by the

clouds-coordinator of the available CSP1.CSP3. The job assignments in periods 12, 20, 25 were

done prior to the actual executions, because of execution latency caused by Ic. Finally, the simula-

tion exhibit the Cloud Federation fairness in the workload balancing across the constituents CSPs.

Finally, it optimizes the utilization of each of the CSP resources.

Simulation - SoS Carbon Footprint Impact

From another simulation reported in green cloud coordination paper [13], the authors estimated

the impact on the carbon footprint projected to be reduced or, in some cases, eliminated by cloud

computing. The utilization of green energy is strongly coupled with the workload type. The

authors presented the results of two simulations of two different types of workload. The power-mix

approach adopted in both the experiments was an opportunistic match of possible SP workloads

and available wind and green solar energy.
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Figure 2.7: Cloud-federation impact on CSP’s datacenter utilization simulation. It shows how CSP utilization is dis-

tributed homogeneously among CSP1...CSP3, thus (1) providing fair business platform for CSPs and (2) optimizing

resources utilization that reduces redundant carbon footprint originated by under-utilized datacenters

Initial Conclusions and Outstanding Investigations Areas

We investigated emergent behavior by the constituent systems through simulations that were

used to optimize of costs and resource utilization (Chapter 8). The following chapters will further

research the computing paradigm to adopted as well as the anticipated impact on the computing

hardware equipment industry (Chapter 9). We will also extend the investigation of clean energy use

for cloud federation workloads (Chapter 10-12). Finally, we will review the cyber-security aspects

of the cloud federation and suggests a tool which predicts and detects the anomalous behaviors

based on the resource consumption (Chapter 13).
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Chapter 3

Cloud Federation Computing Paradigm

Containers is a technology that better enables the service providers who seek simultaneously

both scale and elasticity. Each job in the service provider business comes with a service-level

agreement (SLA) between the customers and the cloud service provider. SLA expresses the con-

tractual maximum latency for allocating the computer resources to execute a specific job require-

ment. Immediate response requires short duration SLA agreements, for example, via live video

conferencing. In contrast financial-batch calculations possess asynchronous nature, and require

SLA’s of hours to weeks to detail the assurances and expectations. The overriding goal is to opti-

mally allocate resources to jobs based on a specific customer’s needs, and further to reclaim these

resources once the job is satisfactorily done. Density is the ability to pack maximum number of

occupied resources on a single physical compute unit and a crucial factor in operations efficiency

as the cost of operating a physical compute unit is known e.g. electricity, cooling, etc. The more

tenants running in a single physical unit, the more revenue generated by the baseline compute re-

sources. The ability to migrate running jobs within SLA agreements that allow the shared resource

pool to fulfill the density property is key. Shifting running tasks across the resource pool enables

enhanced elasticity and guarantees safe resource over-provisioning when needed.

The exponential increase in demand and complexity of the present networks, threatens to vio-

late both cost and capacity aspects. Although, the prevalent technology, hypervisor-based virtual-

ization, supports multi-tenancy, its density and elasticity are not optimal and often too slow for the

ever-growing demand for the varied needs of compute, storage and network resources. Hypervisor

based virtualization offers a full-blown operating system but requires additional compute capacity

to accommodate the technology.
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3.0.1 Why not Hypervisor-based VM?

In short we judge to fulfill multi-tenancy it is best done with a hypervisor-based architecture

with container-based virtualization. In short the combination has better performance as we show

herein.

There are two core paradigms to fulfill multi-tenancy in a full blown compute resource that

is, hypervisor-based with container-based virtualization. Hypervisor virtualization technology is

mature and has an excellent track record for security and compatibility. However, hypervisors have

performance characteristics that restrict and rule out their use in some scenarios that requires both

density and elasticity. Hypervisor-based virtualization is based on emulating virtual HW. In short,

the hypervisor itself emulates system HW that includes: virtual CPU and I/O resources controls

and virtual machine monitor (VMM), on top of that emulation a kernel (OS) is being booted so

that one can run processes on that OS.

Containers in contrast are not based on that paradigm. The container based paradigm relies

on shared OS. i.e. any new containers are most likely to share a similar kernel with other con-

tainers. The overall OS resources allocation depends on the way the containers are configured. In

hypervisor paradigm, every instance is totally separated from the other virtual machines. That is,

different OS instances are not sharing any configuration or code. In containers, every resource,

configuration, or code can be shared with other container instances.

Containers-based virtualization still suffers from several operational weaknesses such as secu-

rity and heterogeneously. Therefore, it is impossible to run both Windows and Linux containers on

the same host, as they are not sharing the same kernel while hypervisor-based paradigm allows this

duality. Security wise, containers are not as secured as hypervisors because they share the kernel.

There were few kernel exploit cases of unauthorized access to /proc/pid/mem [28] were deemed

sufficiently risky.

Figure 3.1a depict the classic hypervisor case; the hypervisor kernel emulates virtual HW for

the virtual machines that run its appropriate kernel that runs a full operating system up to the

application level. Figure 3.1b describes the container added case where the two virtual instances
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Figure 3.1: Hypervisor and Containers Paradigm - Block Diagram.

run a distinct optimized set of libraries and the combination runs an application. Containers are

faster in the initialization phase because it is not required to initialize a virtual HW and it also

avoids the interaction with the HW devices. In some cases, containers can share the same init

system and runtime libraries, so the application layer is the only isolated layer [58]. With such

containers boot time can be as fast as it takes a process to get going within the operation system.

Therefore, the start time of a container-based VM can be in the order of milliseconds as oppose to

minutes for hypervisor-based VM. The fast initiation time is one of the elasticity property that is

vital in utility computing.

The storage footprint analysis of each paradigm shows a significant difference. If we compare

the paradigm side by side, the stack of containers is a lot thinner as oppose to the hypervisor-based

stack. Below we will show that a typical hypervisor-based stack requires an order of gigabytes of

storage while an application container requires only megabytes. Therefore, the optimized storage

footprints we propose also support the elasticity property because it can be moved and scaled

efficiently and avoid service interruption. The benchmark detailed below will show that only the
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containers lightness makes them far more dense and elastic as oppose to the existing "plain vanilla"

hypervisor paradigm.

Because containers can operate on the Linux kernel, we will show that vertical scaling can

happen instantaneously but is effectively altering a resource limit within a process. As for hori-

zontal scaling, their size makes them easily transferable to other machines and increase capacity.

Memory scale-up in hypervisor-based technology is rapid as it only requires a resource allocation

modification. However, a memory scale-down event in hypervisor requires a kernel boot or doing

a balloon inflation [72] or both.

The proxy experiment detailed below will show that the horizontal scaling allows containers

to be 3-100 times more elastic than hypervisor-based VM. This is one of the benefits that util-

ity computing gets out of containers because the containers are more elastic than the hypervisors.

However, containers convey only a uniform platform per vertical host. The main container’s disad-

vantage is the homogenous nature of the kernel e.g. Windows and Linux instances cannot co-exist

with the same container host. However, utility computing is homogeneous by nature as its value

proposition comprise of elasticity and density rather than a heterogeneous platform.

3.0.2 Brief Virtualization Technologies Survey

Hypervisors. represents an execution platform based on shared but isolated OS instances. It

allows a multi-tenant secure system without using dedicated hardware (HW) because hypervisor

runs the guest OS instances in the form of virtual machines. A hypervisor is a layer that fully em-

ulates the required HW and firmware for running an OS instance. Hypervisors existed since 1960s

in many forms. VMware is probably the first company that enabled hypervisors for enterprises of

all sizes. Later on, Microsoft Hyper-V, XEN and KVM offered more advanced hypervisors.

Para-virtualization. Introduced the Zen paradigm that is the theory that hypervisor-based op-

erating systems cannot run virtualized applications and kernels as fast as native HW. Therefore,

both the hypervisor and guest OS needs to alter their kernel physically to make it run as fast as
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bare metal. The argument that supported para-virtualization was that HW cannot run fast enough

using the emulation paradigm. Later on, Intel and AMD added an extra feature for the hypervisor

and closed the gap between fully virtualized and para-virtualized systems [66].

Unix Containers Solaris Zones and AIX LPAR and WPAR are shared-kernel-based virtualiza-

tion technologies that use similar principles as Linux containers e.g. Namespace and CGroups. Its

core value proposition to its customers is the ability to run hybrid proprietary Unix multi-tenant

applications. e.g. the ability to run Solaris 8, 9, and 10 on a Solaris Zones Guest domain host. 7

Linux Containers. The first Linux containers were formed in 2005 by open source Virtuoso

(OpenVZ). In 2006, CGroups was introduced and used by Google for search engine containers.

The first Linux containers implementation, LXC was released in 2008. Later on, OpenVZ, Docker

and other solution use the same API with different management wrappers tools. LXC comprise of

CGroups and Namespace API.

Windows-based Containers. are collections of normal Windows processes, isolated from the

rest of the system so that they don’t conflict with each other, plus the ability to create an image

with all the libraries and configuration needed to launch an application. Conceptually, the closest

equivalent in Windows to cgroups and namespace isolation are Job Objects. However, Job Objects

does not allow the same level of quota control for resources such as IO, network or namespace

isolation for devices, users and individual processes [89].

3.0.3 Linux Containers

CGroups. controls resource allocation to groups of processes such as CPU, Memory, IO band-

width, and network bandwidth. It means that it take a group of processes and restrict the amount

of resources that they consume. This is how LXC impose resource limit on all Linux containers.

7ORACLE SOLARIS 10 (2013) Retrieved from oracle.com/us/products/servers-storage/solaris/solaris-10-

overview-ds-075575.pdf
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Although there are many resources to control, the experiment below will focus on IO, CPU and

Memory allocation per control group.

Namespace. is the isolation method. It separates resources to make them visible only to pro-

cesses within the Namespace. There are currently six main namespace within the Linux kernel:

Network, UNIX Timesharing (UTC), Mount, User, IPC, and process ID[54]. The Mount names-

pace allows us to have a mount-tree per container. IPC Interprocess communication namespace

makes the IPC semaphore unique per container. The Process ID namespace allows containers to

maintain its own process ID sequence. The User namespace provides the isolation between users.

The Network namespace provides isolation associated with networking e.g. network device, IP

protocol stack, IP routing, firewall rules, port numbers, etc. Containers can use all of these com-

bination namespaces or indeed none of them. Namespace allows design secure containers with all

the six namespaces as oppose to a lighter container that implements only a few. It depends on use

case the container will enable [15].

Security with Containers. There is a contention that containers are not secure as hypervisors.

The core security challenges with containers are the ability the potential resources leak between

containers. The canonical example for such challenge will be hostile root. The Hostile Root issue

discusses the root user of one of the containers accessing resources other than its own container.

Since Linux 3.10 the namespace API implementation eliminates any chance of such security leak.

It uses the new Linux capabilities. The standard nobody user gets the root privileges within a con-

tainer. That means that if a user escapes from that container the user is nobody in the host. i.e. root

on the container is not root on the host [54].

The Value Proposition

As stated previously, the compute container’s value proposition is a tenancy. Allowing as much

application tenants to run within a single compute resource will increase the density and better uti-

lize the resource. Enabling multi-tenant application requires a significant investment in application
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modifications. e.g. adopting the application resource allocation to be shared with identical com-

ponents such as IP routing tables, IP addresses, ports, filesystem mount points, IPC resources, etc.

Moreover, it is coupling between the application and the infrastructure. The virtualization promise

helped to address the challenge but in a more expensive way.

Compute containers allow the transformation of a single-tenant application to a multi-tenant

application by containerizing it. All it requires is to give it a mount space with private data store

with network namespace for a new IP address. Then one can fork the same container n times with

different namespace for each fork. Because each fork is lightweight it can easily replicate across

different multiple machines that reside on a different geo-locations to maintain a fine-grained re-

source allocation and elastic service model. This is an example of elastic and dense multi-tenant

application.

The hypervisors-based technology significantly optimized for the critical computing design

principals, e.g., density and elasticity, in the last decade. In fact, containers-based deployments

in public cloud today are used in conjunction with hypervisors. We argue that virtualization and

containerization symbiotic is an emergent behavior rather than desired system design that attains

the required computing properties enumerated herein.

Implementation

Overview. The prototype goal is to exemplify a fine-grained compute resource allocation

enabled by the containerized paradigm. It will show the resources allocation ratio between the

hypervisor and container virtualization. The prototype includes a vertical cluster of a multi-tier

application that spans across different Linux containers and hypervisor instances. The required

compute resources for such layers vary, front-end servers focus on managing effective cache layer

that provide fast response to the end-user. The backend layer might consume CPU cycles for

sorting and compute request originated by the front-end layer. The middle tier comprises of a

queue that mediate between the front-end and the backend tiers by creating events based on a

policy to be processed by the backend rule engines.

System Architecture. The prototype application comprises of three layers. Presentation layer that
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operates over HTTP protocol and accepts two request types, /GET and /PUT data. In case of get

data request, the logic layer act as a cache layer. It will first attempt to fetch the data from its local

cache and alleviate /GET calls requests from the database layer. Only requests for records that

are not stored in the cache will be fetched from the database layer. In case of a /PUT call, the

front-end layer will publish an event to the middleware layer that will queue the request for the

backend’s rule engine servers. The job will be processed according to a policy-based process that

later on will be stored in the database layer. In case of a a /PUT to an already exist record the

cached recored will be invalidated synchronously and notify the entire front-end servers.

The various components uses a simple data structures and open-source based packages. The

presentation layer comprises of a Node.js web server. The logic layer comprises of application

server, and cache server. The application server uses Python-based library Flask 8. The in-memory

cache store and the data layer is based on Redis key-value cache engine 9. It allows backend com-

ponents to subscribe to events generated by the front-end layer for asynchronous processing.

Prototype Workload. The application will serve as a network planning service that accepts routers

locations, build a graph and return the shortest path from the start router to the goal vertex. The get

request will accept a graph identifier and two vertices. It will return the shortest path between the

two points. The put request will accept a graph identifier and at least one coordination and create

a new graph or append it to an already exist one.

Goal. The prototype attempts to illustrate the value customers would like to get from a utility-

computing service, a fine-grained resource allocation when using Linux-Containers. We will build

a complex multi-layer vertical node that can easily scale-out horizontally in case of growing end-

user demand. Moreover, scale-in when user demand decreases. We will compare the tradeoffs for

deploying and maintaining such architecture in hypervisor virtualization and containerized fash-

ion. The goal is to show how a Linux-container-based application is more efficient and profitable

when it fulfills the density and elasticity properties. The success indicator will be the dollar cost

8Flask; (2011) Retrieved from flask.pocoo.org

9Redis; (2013) Retrieved from redis.io
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spent to generate the same allegedly customer requests.

Limitation. As the prototype run on the public cloud environment, scale-in and out events use

the cloud provider dedicated mechanisms such as Azure Autoscaling and the Pivotal ‘cf scale app‘

command. Although we used equivalent resources models among the providers, we rely on the

correctness of such mechanism and the providers billing fairness.

Experiment Details. We studied the initialization time among the different public cloud providers.

The initialization time is measured from the time the start command was executed until the appli-

cation accepted HTTP traffic. The test client we used is an Apache JMeter instance that captures

the start timestamp and spawning an HTTP client threads every second. The JMeter log will be

the initialization time evidence. To eliminate the network latency we chose the closest region in

the public-cloud provider options. i.e. US West. We also validated the latency among the two

providers using the ping command. The ping tool provides the latency i.e. how long it takes for

a single packet to get from the client host to the cloud service. The latency test included 100 (-c

100) pings with 0.1 (-i 0.1) second as the interval between each ping. The latency evaluation was

performed against the following DNS entries:

ping -c 100 -i 0.1 lxc-cis606.cloudapp.net/ lxc-cis606.cfapps.io

where cloudapp.net is a Azure domain and cfapps.io is a Cloud Foundry domain.

The latency value from the JMeter instance to the cloud providers was 150ms.

The second part of the experiment dedicated to the benefits of a fine-grained resource alloca-

tion system. It included vertical and horizontal scale-out and scale-in events that originated by the

cloud provider autoscaling mechanisms.

Operational Definitions. The load is generated by an application loader (JMeter script). The

loader application measures the various transaction per second(/GET,/PUT). Let Throughput be

the set of transaction per seconds the loader able to get from the service. The experiment in-

cludes two runs. One against the containers-based cloud environment and a second with just a

hypervisor-based environment. Let Utilization(%) be the set of CPU and Memory measurements

on the application instances. Allocation is a function that map transient utilization ui to number of
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core allocated. Each core is 2.5GHz with a 1GiB memory. We generated n samples where each

Utilization sample denote by ui and 0 <i≤ n.

FAllocation(ui) =















































ui − 1 : if 0 < ui ≤ 20

ui : if 20 < ui ≤ 50

ui + 1 : if 50 < ui ≤ 70

2 · ui : if 70 < ui

(3.1)

The utilization granularity in Eq. 3.1 was chosen based on previous capacity analysis of multi-

tier cloud application [35, 40, 86]. The functions applied through both Pivotal.io and Azure.com

developer portals 10. The JMeter loader will measure throughput generated by two types of calls

/GET and /PUT. There were two types of PUT calls, medium and large. Medium calls included

graphs with 50 vertices with an average vertex degree 5. Large calls comprised of graphs with

100 vertices with an average vertex degree 10. The purpose of the two graph types is to test

granular data usage while generating high CPU and memory during the shortest-path calculation.

The results will include three metric sets, Utilization, Allocation, and Throughput. The desired

optimization is defined by Eq. 3.2 as the ratio between the resource allocation using the container

and hypervisor virtualization paradigms.

Optimization(%) =

∑n
i FContainersAllocation(ui)

∑n
i FHypervisorAllocation(ui)

(3.2)

3.0.4 Evaluation

The experiment comprises of two studies: (1) Discrete experiments that proof the container

uniqueness as oppose to the bare-metal and hypervisor-based virtualization. (2) A Linux-container-

based prototype comprises of three application layers that fulfill both properties, elasticity, and

10http://docs.pivotal.io/pivotalcf/customizing/autoscale-configuration.html; http://azure.microsoft.com/en-

us/documentation/articles/cloud-services-how-to-scale/
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density. The prototype11 described in the Implementation section will be deployed in both hyper-

visor and container based public platforms and compared on ground of density and elasticity.

Discrete Performance Study

Resources density depends on the framework ability to migrate running components across the

resource pool. A component migration comprise of packaging the component code, replicate it,

unpack, and run it in the new hosted environment. We implemented a simple web application that

accepts HTTP POST requests, logs the call and write to a persistence storage. We also used the dd

utility to generate local CPU, and I/O load. The goal is to evaluate initialization time and storage

overhead when running in a hypervisor and container-based environments. The discrete evaluation

was performed on the following platforms:

Hardware. A physical server with four cores Intel(R) Core(TM) i7-3615QM CPU @ 2.30GHz.

The RAM size was 8GB.

Hypervisor. The hypervisor we used was Linux CentOS 6 with KVM support. The guest OS

was Linux CentOS 6. The virtual hard drive space configured for the server edition is 5GB

with minimum 1 GB RAM.

Container. The container platform we used was LXC-1.1.2 runs on Linux CentOS 6

Initialization Time

We first tested the time it takes to initialize a single application instance i.e. guest OS instance

in hypervisor-based virtualization and a single Linux container in LXC host. The guest OS init

time in Table ?? shows the containers-based virtualization core advantage. The time its takes to

spawn a Linux-container instance is in the order to forking native OS process as oppose to an order

of minutes in hypervisor-based technology.

11Retrieved from github.com/yahavb/MultiLayerApp
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Table 3.1: Initialization Time - The hypervisor takes a couple of seconds while LXC is almost instantaneously. Op-

timized Guest OS init time is in the order of minutes while LXC uses the same kernel i.e. instantaneously. Hypervisor

is a separate process than the OS kernel and requires 15% overhead

Category KVM LXC

Init Time(sec) 8 1

Guest OS Init Time (seconds) 120 4

CPU Usage - no load (%) 15 3

Storage Footprint and Usage

We measured the storage footprint and usage of each virtualization paradigm during the simu-

lation of read and write operations. Measuring the storage footprint of each virtualization paradigm

requires access to the hosting environment. As public cloud providers does not provide access to

the hypervisor or the LXC instance, we used a physical server with four cores Intel(R) Core(TM)

i7-3615QM CPU @ 2.30GHz. We explored two types of scale-in/outs, vertical and horizontal. Ver-

tical scale-out describes the process of provisioning additional resources such as CPU, memory or

I/O. Increasing dynamically the memory allocation in hypervisor-based VM known as ballooning.

For ballooning the KVM instances, we issue the balloon-inject-host-pressure command. For LXC,

we created a blkio cgroup [85] which controls the I/O policies enforced by the LXC process. The

test included write operation of 5 GiB. 1MB per request with 5000 requests i.e.

dd if=/dev/zero of=cis606-rw-load bs=1M count=5000

Figure 3.3 shows minimal throughput impact when CPU, memory and I/O allocations dynam-

ically changed when using Linux Containers. Hypervisor had a severe performance impact while

resources modified dynamically. Table 3.2 depicts the advantages containers (LXC) have on hy-

pervisors (KVM) in storage and memory footprints e.g. 30 times less static storage footprint and

Guest OS init time. Having a memory footprint in the order of 30 MB allows easy live migration

of VM across geo-locations for increasing usage density.
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Table 3.2: Storage Footprint - The hypervisor requires its software code and the Guest OS image for each VM. LXC

share the same image of the hosted OS. The RSS requires 0.5GiB for hypervisor is it runs a full OS while LXC use

30MB that comprise of container namespace

Category KVM LXC

Static Storage footprint (GiB) 9 0.29

Guest OS Init Time(seconds) 120 4

Total Resident Set Size (MB) 500 30

3.0.5 Observation

The pricing model 12 of both services we used in the experiment are based on memory and

CPU. Table 3.3 depicts the similarity between the two cloud providers pricing models. Its main

purpose is to establish a cross-cloud-services pricing baseline that will help to assess the potential

resource allocation optimization.

The experiment included three core sections. The first was a medium and large /PUT request

with a corresponding GET request for utilizing the cache layer. Each new GET request consumes

more CPU and Memory as it calculates the graph’s shortest-path for all vertices and store it in

memory. During the cache buildup pages, the throughput, ranges between 7 to 10 GET and PUT

transaction per second. During that phase, the number of 1GiB cores increases until it stabilizes

towards 1:20. At that point, the majority of the load comprises of 90% /GET requests of already

exists graphs and 10% of /PUT requests for new graphs. From 1:20 to 1:50 the throughput rises to

24 transactions per seconds while the utilization decreases because most of the GET requests were

fetched from the cache memory.

Based on the Optimization Equation 3.2, Figure 3.4 shows more granular CPU cores allocation

and deallocation than in Figure 3.4 resulting 22% less resource allocation in container-based tech-

nology. Moreover, the two utilization functions are similar enough to conclude the optimization as

the standard deviation of both utilization measurements are below 0.133 and average of 35%. Also,

the cumulative distribution allocation function 3.6 shows the similarity between the two functions.

12http://azure.microsoft.com/en-us/pricing/;http://run.pivotal.io/pricing/
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Table 3.3: Pricing Model - The pricing model of Pivotal.io and Azure Pricing Model Comparison. Both services

collect $0.03 per hour of 1GiB memory

Cloud

Provider

Utilization

Model

Utilization

Units

Price

per

Unit

azure.com
CPU & Mem-

ory Centric

1 core per

0.76GiB
$0.036

pivotal.io
Memory Cen-

tric

1 core per

1GiB
$0.03

3.0.6 Related Work

Prior work leveraged VM consolidation approaches that re-pack VMs into fewer physical ma-

chines to increase density [75]. It explored a just-in time approach to VM consolidation by tran-

sitioning VMs to an inactive state when idle and activating them on the arrival of client requests

[43]. Although the prior work supports greater VM density, it is still limited by the number of VMs

that could be hosted in the one inactive state. If idle VMs were hosted in multiple inactive states,

VM density can be increased further while ensuring small miss penalties.

3.0.7 Conclusion for Cloud Federation Computing Paradigm

We explored the container-based virtualization technology as a novel method to increase allo-

cated resources density in utility computing. Our numerical evaluation shows that Container-based

virtualization enables both lighter storage and memory footprints that help migrate VMs across dif-

ferent locations for maintaining optimized resource allocation. Moreover, it allows an optimized

granular resource allocation and deallocation. Its proven capability to dynamically modify its CPU,

memory and IO allocations with minimal impact on performance; exemplify the elasticity aspects

achieved when applied to utility computing. In summary, container-based virtualization allows

cloud providers to increase resource density; that in turn reduces operations costs for providers

and cloud tenants through enabling fine-grained allocation of memory and processing units.
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Figure 3.2: Experimental Setup
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Figure 3.3: LXC provides the ability to modify CPU, Memory, and IO allocations dynamically with minimal perfor-

mance impact while hypervisor requires significant performance impact

Figure 3.4: Hypervisor- Utilization/Throughput/Cost - Cache buildup during the first 1:20 hours load; Using 44

cores of 1GiB; During the high load segment (1:20-1:50) consumes 28 cores.
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Figure 3.5: Container - Utilization/Throughput/Cost - Similar to Fig. 3.4, however, core allocation/deallocation is

done in higher granularity resulting in 22% less allocated CPU core resources

Figure 3.6: Cumulative Distribution Allocation Function - Both distribution functions, shows that the probability of

similar allocation for both experiments is high.
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Chapter 4

Computing Hardware Equipment

Organizations that serve and process a large number of simultaneous users and an immense

amount of user data are termed cloud computing services. These services enable convenient, on-

demand network access to a shared pool of configurable computing resources. Cloud computing

includes private, public, and hybrid forms. In 2014, IT-related spending toward workload pro-

cessing increased by 32.8% and grew by a further 29% in the following year; it is expected to

have grown by 29.1% during 2016 [60]. This has raised environmental concerns, as hydrocarbon-

powered grid energy has become increasingly devoted to cloud computing’s growing power needs.

Cloud computing is therefore one of the largest energy users in the information spectrum and re-

quires establishing best practices for engineering. This chapter outline a new method that develops

an effective conceptual, preliminary, and detailed design for the computing equipment hardware

used in cloud computing. Both a reduction to total energy use and the maximization of green grid

energy fractions for total energy use will be addressed.

A cloud computing system comprises two interwoven core elements: hardware and software.

The hardware element includes servers, racks, and power and cooling systems, while the software

element uses this hardware to process workloads. The predominant software paradigm is open with

a freely available source code capable of modification by an open-source community. Conversely,

compute equipment hardware systems have no open standard, nor have open best practices for

designing a warehouse-scale computing system evolved. It is presently dictated by proprietary

vendors, such as IBM, Hewlett-Packard, and Dell. These vendors often offer a tailored business

solution in which the equipment design interaction methodologies are derived from that single path

perspective.
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4.0.1 The Business Aspect of Equipment Design and Manufacturing

Previously, proprietary compute equipment vendors have had full control over what software

runs best on their fundamental chipset engine. Historically, these vendors offered model specifi-

cations that best fit their own products rather than heterogeneous systems, such as a public cloud.

Proprietary vendors often embedded management systems into their products that forced cloud

providers to use exclusively use that vendor’s equipment.

Core goals for cloud computing have been to provide hyper-scale IT agility and rapid resource

allocation between computer systems while reducing operation costs. When specific needs are

attached to a vendor’s product, operators are required to adjust their architecture to the various

vendor systems to run their service. This solution is suboptimal as specific needs might include

the use of generic computer features in large scales, which can leave some system components

nearly or totally unused. Proprietary hardware adds high reliability features on the component

level where they are not needed, such as in cold backup systems, and where 99.999% availability

is not required. Our model includes a cohesive approach that considers the overall scenario and

suggests specifications for discrete components.

Our goal is to provide a new compute equipment design methodology that does not solely rely

on proprietary hardware and software vendors. It invites systems operators and cloud computing

providers to participate and suggest improvements to our already available IT equipment specifi-

cations based on their prior experiences. We suggest a new design for scenarios not used yet in the

industry e.g., a dedicated data center for cold storage.

Building a community that includes both IT equipment operators and the suppliers of software

and hardware will foster collaboration, which will enable cloud operators to achieve both opti-

mized costs and increased IT agility. This community will eliminate dependency on proprietary

design and allow for organic design modification not only by systems vendors but also by sys-

tems operators and cloud providers [34]. In this study, we will present a model that mimics the

open-source software paradigm and provides a metric for the technical measurement of computer

systems’ hardware design. Using the Open Compute community as an illustrative collaboration
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platform, this paper presents a methodology to both gather and release specifications to the profes-

sional community. This methodology continuously improves previous specifications based on the

needs of both customers and operators along with evolving vendor constraints.

We begin by first discussing the relevant terminology used in this paper. We then analyze the

requirements for optimal gathering in a general systems engineering process. This is followed by

an exploration of the principles that motivate our design. We then measure system performance

and, lastly, present our conclusions.

4.0.2 Systems Analysis and Design

A systems engineering process is driven primarily by system capabilities and customer needs. It

ensures the orderly realization of the system configuration, composition, operations, maintenance,

support, sustainment, and disposal [30]. In general, the three major phases in systems design are:

high level conceptual design, preliminary detailed design, and detailed design. Each phase results

in increasingly focused system specifications. Clearly, each phase’s system specification relies on

legacy specification phases as well.

The conceptual design phase yields the system operation requirements. It describes the opera-

tional scenarios, e.g., the type of workloads the cloud system will process. The preliminary design

ensures that the operations requirements conform to the functional analysis and allocation at the

subsystem level and the performance requirements of subsystems or the system components. The

initial design phase also establishes the product specification Type C and Type D [30].

During the preliminary design phase, we determine whether we are able to use COTS equip-

ment or if we must design a system element from scratch. The initial design phase also defines

the specification associated with a process or service, e.g., manufacturing a new element or assem-

bling a group of COTS-based elements into a system component Type D [30]. The preliminary

design phase results in product specifications that describe both the quantitative and qualitative

measurements to which the detailed design must conform.
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We believe that efficient cloud computing service design is strongly coupled with systems en-

gineering practices. Recent advances in the field of hardware and software disaggregation and the

evolution of the ODM market have opened up hardware design to more contributors working in

collaboration. Every contributor brings vital data to the design process, and systems engineering

allows for a comparison of equivalent alternatives by providing a framework that converts subjec-

tive data into a common measure.

4.0.3 Computing Equipment Elements

The following section will describe elements of the compute equipment used in cloud comput-

ing systems, which later be used as the basic element sets for specification.

Cloud computing system are composed of one or more data centers. A data center includes

clusters of racks, chassis and servers that store information in digital storage and are connected

by networking equipment. Data centers also include both peripheral, mechanical, and electrical

elements. A typical electric system is made up of a power substation, a diesel-based generator, a

main switchboard (MSB), and a backup battery system. The mechanical elements include cooling

systems, fire sprinkler systems, and the building that houses the data center itself.

Figure 4.1 depicts the major computer elements of a basic data center, which is composed of

computer server clusters that are aggregated by chassis and racks. Racks are usually fed by separate

power distribution unit (PDUs). To guarantee a continuous power supply, PDUs are connected to

an uninterruptible power supply (UPS) that connects to the primary power source through the

automatic transfer switch (ATS). The racks are also connected to the data center backbone network

through the top-of-the-rack (ToR) switch; the servers are also connected to the ToR switch.

The core categories of compute equipment are: (1) networking switches and routers, (2) com-

puter servers, (3) digital storage servers, (4) chassis and hardware management, and (5) the power

supply. These categories are mapped to design principles and form a measurable effectiveness

value in the equipment specification that best fits the user’s needs.
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Figure 4.1: Datacenter Architecture - Compute server clusters aggregated by racks and chassis. Racks are fed by

separate Power Distribution Unit (PDU) that connects to Uninterruptible Power Supply (UPS) that connects to the

primary power source through Automatic Transfer Switch (ATS).

Computer servers include the power supply, motherboards, CPU sockets, gigabit ethernet links,

disk drivers, and SSD storage cards that hook into PCI cards. For redundancy, more than one of

each element is built into a configuration, e.g., We are going to use two mechanical element types

for specification: gear and tray [59]. Here, gear is defined as the equipment that plugs directly

into the live power supply, and tray is a gear element that plugs into a chassis or rack. Figure

4.2 illustrates a computer server design composed of elements form different ODMs, which were

designed in collaboration with the cloud service provider [59]. The design framework we propose

in this study will be exercised through a customized storage computer server designed by the Open

Compute community [59].
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Figure 4.2: Mechanical drawings of Facebook’s Dragonstone server. The server has a two sockets server node on the

left, redundant power supply in the middle, and then space for 3.5-inch disk drives of SSD storage from Fusion-io in

a storage sled on the right. The server is based on Intel Windmill board, redundant power supplies from two different

suppliers. Power One and Delta were designed in collaboration with Facebook to fit the middle tray and feed the server

node and the storage.

4.0.4 Design Principles for Computing Equipment

Cloud computing has three core characteristics: (1) on-demand computing processing, digital

storage availability, and network broadband; (2) multi-tenancy enabled by resource pooling; and

(3) elastic resource allocation [31]. The following section will describe the principles to be used

in this study for the suggested open system design specification paradigm. The principles goal is

to allow effective trade-off analysis when designing a tailored cloud-based system that requires

compute equipment.

Design for functionality. All is derived from the technical capability to accomplish the product’s

intended mission, e.g., the ability to compute operations such as arithmetic or logical operation
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and store the result in a durable digital storage. Also, for sustaining a measurable workload of such

compute operations.

Design for interoperability. This level pertains to the product’s capability to operate in a system

with external components. Interoperability for computer-related products refers to the ability to

share a standard hardware and software interface that can be used to perform a system operation,

e.g., various components that are physically interconnected using standard connectors. Suboptimal

interoperability may require custom adapters to connect components to each other. Additionally,

hardware elements should be integrated directly into the hosting system, e.g., racks should inte-

grate directly into data center air containment solutions [59].

Design for sustainability. This refers to the energy wasted by the product throughout its lifecycle,

e.g., the power drained at a constant rate measured in Joules or, more commonly, kilowatt hours

(kWh), from the power source to perform the product function. Sustainability is also concerned

with the amount of greenhouse gases, toxic substances, and air or water pollution that the product

generates. Additionally, it describes the ability to reuse or recycle some of the product’s elements

upon certain usage time. A sustainable design minimizes non-recyclable components.

Design for reliability. covers the operational failure ratio. Reliability is often measured in terms

of mean time between failure (MTBF). The goal is to maximize the operational reliability by min-

imizing the failure ratio and optimizing the system redundancy level.

Design for maintainability. reflects the ease, accuracy, and economy of maintaining the system.

It is often measured by the mean corrective maintenance time (Mct). The objective is to minimize

the maintenance time and labor hours while maintaining the system with compliance to the manu-

facturer guidelines. e.g., data cables are located on the front of the rack.

Design for usability and safety. This concerns system interfaces between users and the system

equipment or facility. System usability will help to assess the required skill set and training for

the operation and maintenance of the system. Safe and usable systems also minimize human error

while maximizing productivity and safety.

Design for supportability and serviceability. This centers on increasing the accessibility to ele-
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ments that requires maintenance. Also, It also includes, the ability to diagnose a component health.

e.g., component faults are identifiable from the front of the rack. Routine service procedures do

not require tools.

Design for affordability. Often, referred to the economic feasibility of purchasing or leasing a

component or even a whole system throughout its life cycle. Affordability is measured with direct

relation to the overall project budget.

4.0.5 Developing a Decision Model for

Compute Equipment Requirements

Enabling a cloud computing service’s computer capacity includes various decision assessment

processes. In general, decision evaluation theory relies on three core factors: money invested in the

service, money flow modeling, and economic optimization modeling. This section will introduce

a framework rooted in decision evaluation theory, which will be based on the multiple criteria enu-

merated in previous sections as well as a concern for risk and uncertainty, e.g., an unexpected surge

or plunge in computer resource demand. Additionally, we will propose a decision evaluation dis-

play as a means to present and consider alternatives in the context of multiple compute equipment

design principles and limiting factors, e.g., predicated required capacity and workloads.

Comparing Effective Design Alternatives

To compare different compute-equipment design alternatives, it is vital to convert differently

sized criteria to a common measure. The conversion allows for an equivalence compression, e.g.,

transforming MTBF, carbon footprint or Mct values that a piece of compute equipment might

support into a common measure would allow for an objective assessment. Qualitative measures

should also be converted to a similar scale.

A correct conversion model for existing quantitative and qualitative criteria is key to the success

of the design process. The conversion process is modeled on existing systems. If the desired

system does not yet exist, an analog model will be used through simulation and experimentation.

Experimentation includes direct evaluation, where the equipment is subject to manipulation and
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the results observed, e.g., designing a new server might include modifications to the placement

of elements, such as the motherboard, processing elements (the CPU and GPU), and non-volatile

memory (the SSD drive). It may also include the construction of a full prototype to be used with

its peripheral components, e.g., a new server installed in a previously designed and compatible

chassis or rack.

The conversion model we propose is based on prototypes and simulations, which were done on

a full set of compute equipment that support common utility computing scenarios. Each solution

relates to a specific component, and the scenario conveys the relevant design principles considered

in the analysis.

Quantitive Measurement

The most commonly used technical methods for measuring operational and performance prop-

erties are the Measures of Effectiveness (MoE) and the Measure of Performance (MoP) According

to [30] the MoE refers to the scenario we wish to implement. A few of the scenarios that we ex-

amine include cold storage, high-density I/O, server cooling, and more. Our proposal develops a

set of MoPs for each MoE based on a list of design principles. The following section will discuss

a solution to a cold storage scenario and quantify the plausible MoP values that will be aggregated

based on MoE merits.

Design Example - Cold Storage

Digital information is stored in digital storage devices. Existing storage devices support rigid

requirements classifications. For an illustrative example, consider HDD-based, SSD-based and

tape-based storage solutions. As specified by the MoE, cold storage devices store data that are

almost never read, but which must be fetched for use within seconds when required. Among them,

SSD-based solutions respond within milliseconds and fit frequently accessed data. Conversely,

response times for tape-based storage devices may last several minutes. Finally, while HDD-based

devices can respond within the required time, they require extensive compute resources relative to

the frequency of the data’s use.
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The following tables 4.2, 4.3, and 4.4 captures the result of the initial step in the proposed

design framework. Table 4.1 displays the results of the initial analysis in the proposed design

framework. The MoP values are determined by previously studied prototypes, experiments con-

ducted for similar products, and feedback received from the Open Compute community. A value

of one indicates a poor fit (e.g., tape-based devices are too-slow for cold storage), a value of four

indicates a moderate fit (e.g., tape-based devices depend on available COTs; therefore, the interop-

erability fit is moderate), and a value of seven indicates a nearly optimal fit (e.g., dependency on

COTS vendors for HDD-based and SSD based products).

Table 4.1: COTS Cold Storage Measures of Performance

Design principle MoP Tape MoP HDD MoP SSD

Functionality 1 10 10

Interoperability 4 7 7

Sustainability 10 7 8

Reliability 4 7 9

Maintainability 9 9 9

Usability 9 9 9

Supportability 7 7 7

Affordability 9 9 9

Table 4.2: COTS HDD-Based Cold Storage Measures of Performance

Design principle MoP Value Premise

Functionality 10 Fit to needs

Interoperability 7 Depends on available COTS

Sustainability 7 Device consumes energy 24x7

Reliability 7 Moderate MTBF

Maintainability 9 Fit to needs

Usability 9 Fit to needs

Supportability 7 Depends on COTS vendor

Affordability 9 Depends on COTS vendor

Figure 4.3 depicts the predicted performance of a design alternative across the design principles

for compute equipment. An initial analysis shows that COTS-based products provide suboptimal

solutions. In an optimal design, we would see the radar plot spread uniquely across the design

principles. Therefore, the design requires additional alternatives, i.e., a custom solution.
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Table 4.3: COTS SSD-Based Cold Storage Measures of Performance

Design principle MoP Value Premise

Functionality 10 Fit to needs

Interoperability 7 Depends on available COTs

Sustainability 8 Consumes less energy

Reliability 9 Fit to needs

Maintainability 9 Fit to needs

Usability 9 Fit to needs

Supportability 7 Depends on COTS vendor

Affordability 9 Depends on COTS vendor

Table 4.4: COTS Tape-Based Cold Storage Measures of Performance

Design principle MoP Value Premise

Functionality 1 Too Slow

Interoperability 4 Depends on available COTs

Sustainability 10 Device consumes energy on-deman

Reliability 4 Susceptible to bits of dust and grit in the data centre air

Maintainability 9 Fit to needs

Usability 9 Fit to needs

Supportability 7 Depends on COTS vendor

Affordability 9 Depends on COTS vendor

A custom storage solution that satisfies the design principles requires a full-stack approach

to sustainability and interoperability. This solution has three parts: the facility, the rack, and the

server. Our new design will seek to reduce greenhouse gas emissions, allow the various product

capabilities to operate with each other, and improve maintainability, usability and safety.

With regard to the facility, reducing greenhouse gas emissions requires the construction of a

new building that uses relatively low amounts of power. A large amount of floor space is also

needed to accommodate compute equipment that supports up to one exabyte per data hall. By

assuming that this dedicated facility will support offline workloads and not live production work-

loads, we are able to remove redundant electric system, such as UPSs and diesel generators.

For maintainability and usability, the rack component requires easy installation and efficient

service operations. Unlike standard racks, data cables should be located in front of the rack. Fur-

thermore, component faults should be identifiable from the rack, and routine service procedures

should not require any tools [59].
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Figure 4.3: This radar plot depicts the anticipated performance of a design alternative across the design principles for

compute equipment. An initial analysis shows that COTS-based products provide suboptimal solutions. In an optimal

design, we would like to see the radar plot spread uniquely across the design principles. Therefore, the design requires

additional alternatives, e.g., a custom solution.

For sustainability, non-recyclable components should be minimized and racks should be in-

tegrated directly into the datacenter’s air containment solutions with no additional adapters. At

the server level, we suggest the use of Open Vault [59] as it is a simple and cost-effective storage

solution with a modular I/O topology that is compatible with Open Rack and other rack solutions.

Open Vault also offers high disk densities (30 drives in a 2U chassis) and can operate with almost

any host server.

Decisions Involving Equipment Criteria

In general, design decisions involve multiple criteria that jointly influence the alternatives under

consideration. The following section will present a formal approach to handling multiple criteria
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that incorporates the MoE and MoP. We will also continue the design for the cold storage scenario

and explore more methods to assess the alternatives’ effectiveness.

The custom option appears to optimize most of the design criteria. However, it is not yet clear

if the design satisfies the affordability criteria (an MoP value of four). Our approach will adopt one

of the decision models under uncertainty. At this point, we have a finite set of design alternatives;

our next step will be to reduce the MoP assessments in Table 4.1.

To do this, we will first eliminate the alternatives that do not function as needed. The tape-based

solution does not comply with the solution?s functionality requirements. Design alternatives with

similar values can also be reduced. The remaining alternatives will be analyzed for functionality,

interoperability, sustainability, reliability, and supportability.

Interoperability is assessed by examining the impact on costs when operations of a certain scale

are deployed across different data centers. With regard to sustainability, if an alternative requires

more electrical energy, it will generate a larger carbon footprint, which might result in increases

to the carbon taxes paid by the operator. Reliability measures might be less critical for some

architectures that can be diminished with optimized supportability: If the product is resilient to

sporadic failures (manifested in moderate MTBF values), optimized supportability can be masked

from the end-user, e.g., part replacement does not require the tedious troubleshooting process that

is usually mandatory under maintenance contracts with the product vendor.

We will now evaluate the costs for the remaining alternatives based on the estimated workloads

for the cold storage scenario. This evaluation will serve as a discussion point for decisions ap-

proached under uncertainty. This analysis will rely on a set of estimates about the end users and

their system-usage patterns to predict the compute workloads that the cold storage service will be

required to process.

Equation 4.1 estimates the annual requirements for digital storage capacity. nu indicates the

number of active users, is is the average size of image file uploaded by a user. vs denotes the

average video size uploaded by a user. µ denotes the content attenuation coefficient i.e. the time it
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takes the content to be a candidate to be stored in a cold storage. User behavior patterns indicates

negligible number of access to content after 10 days. Finally, Cstorage denotes the annual digital

storage capacity.

Cstorage(nu, is, vs) =
nu(idaily + vdaily) · ndays

µ
=

1.00 · 109(5 · 30MB + 1 · 250MB) · 360

20
= 6.5483EB (4.1)

Assuming a standard server storage capacity is Sstorage = 2 × 2TB disk drives and a standard

datacenter has Nservers = 40, 000 servers. Therefore, the required dedicated datacenters for cold

storage depicts in Eq.4.2

DataCenters =
Cstorage

Sstorage ·Nservers

=
6.54 · 106

4.29 · 101
= 42.92 (4.2)

The entire workload is distributed across 40 regions worldwide hence the estimated annual Cstorage

capacity justifies the deployment of a dedicated datacenter for cold storage to address the organi-

zation needs. Building dedicated datacenter for particular scenario such cold-storage, allows the

designer to assume special conditions in the datacenter such as cooling the aisle only to 77◦F in-

stead of the required 68◦F by most COTS vendors. In some cases, custom server-only cooling can

compensate on the additional aisle heat.

The next topic we need to address is whether HDD or SSD is the preferred approach for the

dedicated datacenters. The predicated usage pattern of the cold-storage service requires some of

the storage devices to be idle during most of the time. According to [87], the power consumption

of HDD device when idle is 8.84 times than equivalent SSD-based device. However, the cost of

SSD disks is double than HDD devices. Therefore, the dedicated datacenter will comprise of both

SSD and HDD devices.

An optimal supportability requires the product software to integrate with the software that

operates the IT equipment, the firmware. It enables an easy troubleshooting when identifying a

faulty component. Also, the integration between the two software stack enable the self healing

capability and auto remediation. Such integration with a COTS-based product is more complex
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and sometime impossible. Finally, such supportability will minimize human intervention when

attempting to remediate an issue. When a local outage requires human intervention, the escalation

is done after at least one automatic remediation steps. Achieving such remediation and repair

capability requires an open interface across the entire software and firmware stack.

Based on the discussion above, we are going to introduce a new set of futures. Future in our

case is an business reality that the cold storage service will help to fulfill. Let E denote the set

of possible futures in operation cost. Ei denote a cumulative wight of the overall operational

and capitalize costs of an alternative i e.g. COTS HDD, COTS SSD, and Custom. The set of

futures were assessed by the required scale i.e. the sizing and other design alternatives tradeoffs.

For simplicity we will use fibonacci numbers for the cost estimates to remove ambiguity between

different futures and design alternatives.

Table 4.5: Operational costs based on business prediction that affects the cold-storage design-estimates are given

in Fibonacci numbers to remove ambiguity. e.g. in case slow user-base growth and we use the expensive custom

alternative, then the cost will be 1597 the 18th member in Fibonacci sequence. In case of sharp user growth and

we used the HDD COTS-based alternative, we will spend more to address the supportability and the sustainability

challenges. Therefore, 1597 was assigned for that case.

Future growth Sharp Moderate Slow Cumulative wight Hurwicz rule α = 0.6

HDD 1597 233 89 38 616

SSD 987 377 144 42 555

Custom 21 987 1597 49 492

The trivial decision approach will be to choose the Ei that complies with min(Ei). However,

the proposed alternatives included with certain risks, and uncertainty where no meaningful data

are available. Hence, probability risks may occur. Systems research today suggests several deci-

sion making under uncertainty [30] (1) Laplace Criterion (2) Maximin and MaxiMax Criteria (3)

Hurwicz Criterion. The Laplace Criterion assume a homogenous distribution of risks in which the

average predicated cost will mark the optimal future. The Maximin and Maximax criteria suggests

extreme risk probabilities. i.e. maximin is based on pessimistic view of the outcome of the set

E. Maximax rule express the extreme optimistic of the risks. The two criteria helps to assess the

upper and lower bounds of the various design alternatives.

62



Because previous criteria are based on extreme cases there is a need for another factor that will

assess in the decision process. We will introduce another optimism or pessimism factors α among

the extremes of previous criteria. This approach called the Hurwicz rule. The optimism index

range is 0 ≤ α ≤ 1 so α = 0 is the most pessimist asseuesnt that will converge with the maximin

criteria and α = 1 with the maximal criteria. Eq.4.3 depicts the Hurwicz rule we are going to apply

on the future set E we gathered in previous design phases.

max{α[maxEi] + (1− α)[minEi]} (4.3)

Applying the Hurwicz rule on Table.4.5 along with factoring the cumulative values that we cal-

culated in the previous design phase yields the last column, Hurwicz rule with α = 0.6 as our

optimism factor. Based on the assumptions and analysis we made, the custom option is the pre-

ferred design approach for the cold-storage service.

4.0.6 Conclusions for Cloud Federation Computing Equipment

Cloud computing continues to reshape both large enterprises and small business throughout

many industries. It drives the business needs by virtue of greater scale, agility and quicker time to

market. Cloud computing creates new demands for more compute hardware equipment of general

use. These demands drives transition from closed proprietary platforms to open platforms. The

new open platforms will foster collaboration that will enable cloud operators to run optimized

costs and with increased IT agility. Also, it removes the dependency in proprietary design and

allows the design to be modified organically not only by the systems vendors but also the systems

operators as well as the various cloud providers. We present a model that mimics the software open

source paradigm and provides a metric for technical measurement of the hardware compute system

design. The methodology continuously improves previous specifications based on both customer

and operator needs along with evolving vendor constraints using Systems Engineering theory for

mitigating certain risks, and uncertainty.

63



Chapter 5

Clean Energy Use for Cloud Federation Workloads

Over the past decade, cloud-based systems have been required to serve an increasing demand

from users work flows and data. Cloud-based systems may be classified into two categories: serv-

ing systems and analytical systems. The former provides low-latency read or write access to data.

For example, a user requests a web page to load online or requests video or audio streaming. The

latter provides batch-like compute tasks that process the data offline that are later sourced to the

serving systems. The service level objectives (SLO) for serving jobs are on the order of fractions

of a second, while the SLO for analytical jobs are on the order of hours, sometimes days.

Today, public cloud service providers (CSP) attempt to process both of these workloads with

a rich platform that guarantees cost and SLO to their clients. Cloud computing is an emerging

infrastructure with limited regulation and compliance requirements [57]. Recently the Office of

Management and Budget issued a Federal Data Center Optimization Initiative that promotes in-

creasing use of Green Energy and increased utilization efficiency for all US Federal datacenters

[68]. Specific target numbers are set for the end of fiscal year 2018. This publication addresses how

those federal requirements may be attained and how federated cloud computing is a key enabler

for attaining those performance targets.

Beginning in 2013, the US government initiated a carbon-tax on IT organizations to encourage

major CSPs to pursue green energy opportunities for their datacenters operations [73]. US data-

centers are projected to consume approximately 73 billion kWh by 2020 [73] with a corresponding

increase greenhouse gases. Green energy generation growth is expected to triple by 2040 [65].

However, there is no cohesive system existing to coordinate the rising datacenter energy demand

with rising green energy supply. This chapter utilizes Cloud-Federation as a multi-cloud resource

coordination system that matches computational resource demands with available energy supply

to maximize the utilization of green energy for processing cloud-workloads.
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Most CSPs seek more market share in competition with other CSPs. One outcome of such

competition is an ever-growing infrastructure in the form of new datacenters across the globe with

no countervailing forces to meet user demand more efficiently and satisfy societal environmental

and energy requirements. This sub optimum use of infrastructure increases the carbon footprint

attributable to cloud computing services and also drives up costs to CSP’s. The following sections

investigate two types of workloads, serving and analytical systems. This chapter will focus on

two workload types, On-demand streaming as a representation of serving systems. It will also

investigate analytical systems and present a unique model that allows optimal clean energy usage.

5.0.1 Enabling Green Content Distribution Network by Cloud Orchestra-

tion

On-demand streaming constitutes up to 85% of Internet traffic consumption [46]. On-demand

streaming content is managed and distributed by content service providers. It then cached and dis-

tributed by Content Delivery Networks(CDN) located at the edges of the Internet network close to

the consumers. Because streaming constitutes such a large fraction of Internet resource consump-

tion, this paper will, of necessity, focus on methods to employ green energy to better operate CDN

instances of on-demand streaming jobs, which include both video and audio content.

Meeting the Federally mandated approach of maximizing the utilization of green energy to

operate CDN instances (for government with recommendations for private sector use as well)

requires an energy source-demand coupling scheme that insures SLO levels of power availability

but is structurally biased towards green energy sources over hydrocarbon fueled energy sources. A

system to accomplish this will have to provide seamless failover in the case of sudden interruption

of green energy to grid-energy sources or vice versa i.e., fallback from grid-energy to green energy

when surplus green energy is available.

User expectations in on-demand streaming requires different service level requirements than

other serving systems workloads. Serving systems workloads are comprised of interactive ses-

sions that pivots on minimum latency. However, low latency is less critical in analytical on-demand
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streaming since application clients use buffering techniques to mitigate long latency effects. There-

fore, on-demand streaming workloads fits, more closely than interactive workloads, with the ob-

served intermittent and varying green energy availability characteristics.

Green energy supply is unpredictable and requires a complex, adaptable, resource allocation

system to provide CDN services with steady energy supplies while concurrently seeking minimal

carbon footprint. This dynamic availability of green energy resources in a smart grid requires real

time communication of both short term and predictive energy needs from cloud service providers

to green energy providers. The green energy providers need to disclose availability dynamically

to CSPs, who, in turn, disclose their changing energy demands for near term computing. SPs can

then better maximize the use of green energy for on-demand streaming processing.

This is a classical resource management and coordination problem [51]. The following ap-

proach builds upon prior work that was done in this area [13, 50], specifically that done on al-

leviating the sudden lack of green energy to meet low-latency workloads. The approach herein

employs an application-buffering scheme that better allows for opportunistic, green, on-demand

streaming processing. It requires an extended, cohesive, federated system that aggregates supply

and demand across multiple geographic locations employing the smart grid command and control

infrastructure to achieve an optimal dynamic matching of green energy sources and computing

loads.

This chapter proposes an implementation that utilizes a control component in a federated cloud

that coordinates and optimizes the resource allocation among the participant CDN providers. It

treats the volatile nature of green energy resources as a resource allocation problem, the solution of

which is a resource orchestration system that is optimized with the goal to operate increasingly near

to the limit of supply by green energy sources constrained by SLO reliability requirements. This

system will be demonstrated by modeling a prototype that simulates resource allocation in a micro

federated cloud eco-system to achieve an energy supply-computation demand match optimized

within seconds.
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Since the focus of this work is on green energy utilization in a federated cloud, the scheduling

algorithms and resource management issues, while important, are discussed only to the extent

necessary to help the reader understand the required architecture for heterogeneous energy compute

clustering. This work is meant both as a case study in energy utilization, and a presentation of a

novel method of coordinating high-velocity data streams, and extended to a unified orchestration

system, to optimize the performance of federated cloud systems.

The chapter starts, with the on-demand streaming economics, increased green energy utiliza-

tion and anticipated smart grid progressions as applied to on-demand streaming. Then it discusses

the green energy utilization problem is analyzed. Finally, we present a cloud coordinator proto-

type that is built on Kubernetes [17], an open source cluster manger, and extend that prototype

to discusses the need for and requirements of a unified system that orchestrates cluster compute

resources in a federated cloud.

On-Demand Streaming and CDN

Over the last decade, video and audio traffic became the dominant segment of consumer inter-

net traffic. Cloud service-providers such as Netflix, Amazon Instant and YouTube disrupted the

prior linear TV data distribution model. Also, video streams delivered by mobile terminals grew

as mobile connectivity improved [62]. Video streaming is expected to constitute up to 85% of

Internet consumers traffic [46] within a few years. The US portion of video streaming is 14%13

and the number of US Unique IPv4 connected addresses is 17% [62]. The streaming workload

is comprised of live streaming and on-demand streaming, with the relative fractions of 6% and

94% respectively [46]. Other predictions support similar ratios, 12% live-streaming and 88% for

on-demand.

A key driver for the rapid expansion of streaming video was the shift from specialized stream-

ing protocols and infrastructures such as RTSP, and RTMP [55] to a simple HTTP progressive

download protocol. This led to a shift from proprietary streaming appliances to commodity servers.

13Internet Statistics retrieved from https://www.statista.com/chart/2647/global-internet-usage-by-the-numbers/
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In turn, this change removed a barrier for CDN’s to process on-demand workloads. Most present

day, CDN service providers support a seamless integration with cloud-based object storage that

pipelines the digital content from the organization site to the CDN instance that runs at the Internet

provider edge14. Furthermore, the HTTP chunk-based streaming protocol support in a CDN allows

the client application sufficient time to detect the optimal CDN instance to handle user workload.

The optimal CDN instance assignment is done by the cloud control plane resource manager. The

prototype described below will demonstrate such optimal resource allocation.

We used server utilization and power metrics from [62, 73] to design the prototype. Most of

these sources we considered have limited utilization rates and server utilization distribution. Also,

utilization and power consumption do not scale linearly [7]. However, for clarity, in the interest of

maintaining focus on the larger goal of the paper, CDN resource management systems for green

energy utilization, we assumed linear relationships and accepted the risk of loss of accuracy in our

estimates. High fidelity simulation accuracy is not critical for the goal of this chapter.

Energy Saving Potential in Operating a Distributed CDN Resource Management System

The approach is to aggregate the required traffic for on-demand workload processing, and use

standard compute device specification to assess the electrical energy and carbon footprint that will

be required by that workload15.

The estimated data rate for streaming is given as Stotal = 63000PB/mo (where PB is Petabytes).

Figure 5.1 shows users workload pattern of 9 busy hours in which the workload spans throughout

13 hours a day which yield 126PB/sec/mo/ The on-demand streaming portion is estimated as

78% across four main US regions denoted by k = 4, the number of region used, for the purposes

of this paper although k can be varied depending upon the degree of granularity desired in the

simulations. Son−demand denote the on-demand portion.

14Cloud Front reference retrieved from https://aws.amazon.com/cloudfront/

15OpenCompute Project, Servers Specification guide retrieved from http://www.opencompute.org/wiki/Server
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Figure 5.1: On-Demand Video views observed throughout 48 hours with 1-hour increments. Data was fitted with

smoothingspline for curve and surface fitting [46]

Son−demand = Stotal · 78% = 49140PB/mo

nhours/day denotes the number of effective hours in a day for streaming.

nhours/day = nbusy + k = 13

Drate =
Son−demand

nhours/day

= 126PB/sec/mo

Nmax denotes the estimated number of required servers in maximum CPU capacity. Nmax is

bounded by the maximum network throughput a single server can ingest. Standard commodity

servers can handle up to 8.5Gbps i.e. 1.026GB/sec.
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Nmax =
Drate

Tmax

=
126 · 106GB/sec

1.026GB/sec
= 118588235.3

uopt denotes the CPU utilization factor so servers has sufficient capacity to handle management

tasks. We estimate 60% utilization factor uopt = 100/60.

Nopt = Nmax · uopt = 118588235.3 ·
100

60
= 197647058.8

Es denotes the midrange server energy consumption for various server types s. We consider three

types of servers:(1) compute server(5kWh/server), (2) digital storage server(1.7kWh/server) and

(3) network server(1kWh/server). Storage server acts the digital storage controller. The network

server acts as the router and switch. The compute server is the server that processes the on-demand

streaming.

Ey = Nopt ·
∑

s∈S
Es (5.1)

= Nopt · (5kWh+ 1.7kWh+ 1kWh)

= 1.521 · 106kWh/mo = 18.26GWh/y

The saving potential from running on-demand video streaming using green energy resources is

18.26GWh a year based on current on-demand consumption and expected to grow 89% by 2019

16. i.e. 34.5GWh per year for on-demand streaming. The next sections will explain the challenges

in utilizing green energy followed by a method that that addresses some of these challenges and

thereby maximizes the utilization of green energy.

5.0.2 Coordinating Green Clouds as Data-Intensive Computing

The following paragraph focuses on analytical systems workloads that typically comprise 48%

of the cloud workload [3]. Also, some of the workloads patterns can be predicted as recurring

16https://www2.deloitte.com/content/dam/Deloitte/in/Documents/technology-media-telecommunications/in-tmt-

rise-of-on-demand-content.pdf
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jobs [33] and the deadlines for analytical jobs are more liberal by an order of magnitude than the

serving jobs. Finally, one of the ways to handle offline workloads is to process the data streams

offline through a highly scalable data-parallel frameworks like MapReduce by submitting jobs to

a control plane [26].

This chapter proposes a component in a federated cloud that will optimize the resource allo-

cation and coordination among the participant CSPs. It will also focus on addressing the time

and power volatile nature of renewable energy resources as a fast date problem. It will present a

resource management system with a goal to increase the utilization of data-centers, and to operate

increasingly to the limit of supply by renewable energy sources. Finally, a prototype is built to

simulate resources allocation in a micro federated cloud eco-system to achieve a supply demand

optimized match within seconds.

Clean energy sources are time and power volatile and require complex resource allocation

and coordination systems to maintain highly available data-center service with steady energy at a

minimal carbon footprint. Further, availability of clean energy resources in a smart grid can be

pushed from a variety of energy sources deployed across the nation as can the pull needs of data-

service centers. Thus, CSPs will publish their compute resources availability, and service providers

(SP), will publish their changing energy demands for near term computing. These streams of

data include both high-volume and high-velocity characteristics termed a fast-data problem [48].

Our proposal uses as a base previous work that was done in this area [16, 50, 53]. However,

previous work treated clean energy within a single data-center operated by a CSP. The proposal

below suggests an extended cohesive system that aggregates supply and demand across multiple

geographic locations employing the smart grid sense command and control to achieve an optimal

match.

Optimum Clean Energy Utilization is a Fast-Data Problem!

This study suggests that efficient, clean energy utilization requires three consecutive steps: (1)

Clean energy resource availability signals. (2) Exploration and analysis of prior years seasonal

solar data and current weather reports and evolving green energy capacity availability planning.
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(3) Acting fast enough based on the predictive analysis. The last step is the key component in

solving the optimum allocation problem.

We judge that that clean energy utilization is different from the classic big-data problem such

as the Hadoop MapReduce Method. Big-data solutions solve the case where the data is at rest,

not fully consistent (aka eventual consistency) and require liberal SLO that is later provided as

computing trends, and other business intelligence applications. However, our case handles data

in motion that requires consistent, real-time aggregation, and transaction processing. That is per-

event decision making using both real-time contextual and historical data as dual guides for proper

algorithms. Finally, we argue that based on the clean energies’ volatile nature, processing streams

of compute demand and clean energy supply requires that a need for a compute resources can be

addressed with a currently available demand.

5.0.3 Why is Green Energy Utilization Hard?

The following section describes why utilizing green energy for compute purposes, while a

justifiable goal, is limited by SLO reliability. It will present a scenario where balancing time-

varying energy generation patterns with changing dynamic energy demands of cloud computing

sometimes conflict. The green energy time varying generation patterns considered by us focuses

on wind and solar generation. Figure 5.4 show historical data on dynamic nature of green energy

sources and Figure 5.5 shows the dynamic cloud energy demand.

Frequency Stability in Wind-Power Generation

The daily wind power variation characteristics will be employed as a metric that illustrates the

duration and level for a given amount if wind energy availability. The electricity generation process

from wind is comprised of a wind turbine extracting a kinetic energy from the air flow. The wind is

rarely steady; it is influenced by the weather system and the ground surface conditions, which are

often turbulent [27]. Also, the generation process must happen at the same instant it is consumed

unless it is stored in grid level battery banks. Unfortunately, grid level energy storage technology

is not keeping up with grid level energy generation technology [29].
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Sample wind and power generation data were obtained from NREL [29]. We used datasets

from 2006-2012 across different regions in the US and aggregated more than 600 observations.

Finally, the data were fit using smoothing splines17. The usable power generated from a wind

turbine is generally described by a Rayleigh distribution [27]. It defines three main points in the

wind power generation process: (1) the cut-in is the minimum viable wind speed for electricity

generation from a wind turbine. (2) the rated level, describes the point where the power reached

its local maximal capacity without adverse effects on the turbine life by too strong a wind. (3)

Cut-Off, is the term for the local minimum for the generation cycle. Beneath that speed, there is

not enough power for viable electricity generation. Thus, if the wind velocity is too low, the data-

server gets no wind energy. Figure 5.2 shows wind generation variations that crudely fit a Rayleigh

distribution with b = 300 assuming the form of the Rayleigh Probability Distribution Function is:

f(x|b) =
x

b2
e

−x2

2b2

The measured generation cycles range between 140 and 180 minutes per cycle. Equation 5.2

expresses the generated power by a wind turbine, given a wind velocity. The function g describes

a viable electricity generation given a wind power. The wind power availability indications will be

generated by a wind turbine and fed into the coordinator database as a potential power source to

datacenters in a region. Our prototype will assume wind power availability indications as the wind

tuple {region,cut-in,rated,cut-off} indications.

Poutput(windv) =































0 : if windv ≤ rated

g(windv) : if rated < windv ≤ cout

0 : if windv ≤ cout

(5.2)

17Matlab Smoothing Splines retrieved from https://www.mathworks.com/help/curvefit/smoothing-

splines.html?requestedDomain=www.mathworks.com
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Figure 5.2: Aggregated wind power measurements between 2007-2012 that fits Rayleigh Distribution with b=300

Efficiency and Daily/Hourly Availability in Solar-Power Generation

Photovoltaic solar (PV) energy availability is defined by the solar power intensity denoted by

s(Watts/m2), which varies with local daylight hours and the clear or cloudy sky conditions [29].

Moreover, the PV cells are most effective at lower temperatures [79]. The PV cells electrical power

generation, defined by Equation 5.3, is a function of the solar intensity denoted by ηsolar. Solar

power generation also depends on the PV power efficiency denoted by s. It encapsulates both

the predicated temperature,the sky conditions, the solar cell efficiency, and the DC to AC inverter

efficiency. The solar cell area denoted by a(m2).

Poutput(s) = ηsolar · s · a (5.3)

Our prototype will assume solar power availability indications as the solar-tuple {region,power-

efficiency}. Based on the solar generation pattern presented in figure 5.3, the generation prediction

utilizes the the local time in a region and the given power-efficiency

Optimum Green Energy Utilization for On-Demand Streaming is a Resource Management

Problem!

This study suggests that efficient; green energy utilization for on-demand video streaming

workloads has three main requirements: (1) efficient compute resource discovery, (2) efficient
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Figure 5.3: Aggregated solar power generation between 2008-2011 taken in Palm Springs CA, Prescott Airport CPV,

AZ and Nevada Solar One, NV, indicating on a stable and fixed solar-based power [29]

load balancing among the provisioned compute resources and (3) smart failover mechanism that

mask failover events from green CDN-edge instance to grid CDN-edge instance while end-users

stream on-demand video [2]. These are discussed below.

Compute Resources Discovery. This assessment comprises both internal and external dis-

covery. Internal discovery refers to CDN-edge instances that run in compute pods that must be

able to be easily discovered and connected to control-plane endpoints consistently regardless of

which cloud-service-provider is hosting the CDN-edge. External discovery refers to the ability of

end-users discovering CDN-edge instances through DNS services for HTTP(S) on-demand video

streaming.

Optimal Load Balancing is the seeking of the "best" CDN-edge, based on optimization crite-

ria, for any given the workload processing. After initial discover and connection, clients should be

served by the optimal instances based on proximity from the end-users, current load factor, and the

availability of green energy resources. e.g., session requests originated from New Jersey should be

served by US East as oppose to US West to avoid latency and signal loss.

Efficient Failover is a main component for on-demand video streaming based on green en-

ergy. If the endpoint becomes unavailable, in this case due to a sudden lack of green energy, the

system must failover the client to another available endpoint that manages the streamed content.
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Also, failover must be completely automatic i.e. the clients end of the connection remains intact,

and the end-user oblivious to the failover event, which means that the end-user’s client software

requires no support handling failover events. Finally, multiple CDN-edge instances co-located

in a region should be accessible by end-users through Domain Naming Service (DNS), as most

clients-streaming (browsers) software supports DNS resolutions for finding available CDN-edges.

The green energy utilization model for processing on-demand video streaming is different than

the classic scheduling problem where classical optimal resource allocation techniques are applied

[8, 88]. We argue that based on the green energies’ volatile nature and the on-demand video stream-

ing workload characteristics, the optimal resource allocation approach should be opportunistic.

It requires an effective resource management system for processing on-demand video streaming

workloads. Our prototype will employ a Kubernetes flavor "Ubernetes" that implements the three

main requirements above.

5.1 Clean Energy Mix Evaluation for Online On-Demand Sys-

tem

In the following section we evaluate a compute load coordination system component that har-

monizes on-demand streaming job demands with available compute resources, with priority given

to those powered by green energy sources. Such resources will be published to the coordination

system through a resource availability tuple {region,cut-in,rated,cut-off,power-efficiency}, where

region indicates the geographic availability region. power-efficiency indicates solar or wind based

energy power efficiency. cut-in, rated and cut-off the values appropriate to those energies.

On-demand streaming job demand includes the specific region, total-job workload, load-factor,

as well as contract deadline SLA. The load-factor indicates the required number of CPU cores

per the total-job-workload. The geographic region indication will be used to optimize the match

between the supply and demand. Also, the total-job-workload and the deadline will be compared

against the cut-in,rated, cutoff time for wind or power-efficiency for solar, based on the published

load-factor.
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We suggest a hybrid datacenter that does not deviate from the common datacenter architecture.

The core difference lies on an automatic transfer switch (ATS) that switches between different

available power sources: generator, grid or green energy when available. In both cases the data-

center design does not change and requires incremental changes only by adding green energy

power sources to the datacenter’s ATS’s (Figure 4.1).

We suggest two types of compute clusters, green-clusters powered by green energy and grid-

clusters powered by the electrical grid. Figure 4.1 shows a simplified datacenter power distribu-

tion that supports green energy sources. In such datacenter, both serving and analytical systems

deployed in grid clusters. Further, for incoming analytical workloads, few clusters use green re-

sources when there are a viable green energy and mostly standby. As a mitigation strategy, a com-

pute live migration procedure will be available in case of unpredicted lack of renewable resources

during a workload processing which presents a risk for SLO violation.

5.1.1 Experiment Planning

Below is simulation of a cross-regional platform that is comprised of control-plane, workload-

plane and coordinating components. This will be embodied in a resource allocation system (Ku-

bernetes). This system will: (1) provision resources to be neared users; (2) optimize utilization

by prioritizing the use of underutilized resources; and (3) seamlessly remove malfunctioning hard-

ware from the system. The control-plane will enable an effective compute resource provisioning

system that spans across different public cloud providers and regions. The coordinating compo-

nents will accept user-workload demands as well as green energy availability from various regions

and opportunistically seek to process streaming workloads using compute resources provisioned

by green energy resources. The workload-plane will be comprised of edge streaming servers that

process the end-user on-demand video streaming. It will built of standard Apache HTTP18 servers

that runs on the edge location.

18Apache Web Server reference retrieved from https://httpd.apache.org
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The control-plane software infrastructure is based on Kubernetes [17], it facilitates internal

discovery between CDN instances so instances can connect across different cloud boundaries and

regions. Further, end-users can discover the optimal CDN-edges that are (1) nearby, (2) less loaded

and (3) healthy. Finally, the Kubernetes automation framework allows the failover mechanism with

no dependency upon the end-user client. In particular, we will exploit the livenessProbe option that

automatically removes green-compute pods, a set of CDN-edge instances, in case of a sudden lack

of green energy.

The coordinator component accepts incoming supply and demand traffic, calculates a potential

match, within minutes, and notifies back the CSP and the SP for transaction completion. We use

Redis19 as the in-memory data store as the database that stores the system supply and demand

calls originated by the end-user workload. The workload is generated by Jmeter instances20. The

workload generated based on the on-demand video views observed by [62] depicted in Figure 5.1.

Green energy availability simulated based on the known regional patterns depicted by Figure 5.2

and Figure 5.3.

We count the number of matches i.e. on-demand video streaming processed by CDN-edge

instances operating on green energy. Also, we measure the false-positive cases where a match was

suggested but did not met the SLO’s deadline due to a violation that caused by a sudden lack of

green energy resources. We use the data to extrapolate the possible energy (kWh) that could be

generated by the using green CDN-edge instances depicts in Equation 5.1.

5.1.2 Execution - The Preparation

The prototype experiment included the setup of three virtual datacenters deployed in different

regions: (1) Central US, (2) West US and (3) East US. The clusters were sized based on US

population distribution21 by regions i.e. 20% for West US, 40% for East US and 40% Central US.

19http://redis.io

20http://jmeter.apache.org

21US Population Distribution retrieved from https://www.census.gov/popclock/data
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The cluster sizes for West US, Central US, and East US are 3, 7 and 7 machines respectively. Each

machine is standard 2-CPU cores with 7.5GB of memory. Also, the user demand simulation will

rely on the US population distribution. Finally, the green energy supply simulation will be based

on wind or solar availability observed in the various regions.

The control-plane is comprised of docker API server and controller-manager. The controller

coordinator component will need to allocate resources across several geographic regions different

cloud providers. The API server will run a new federation namespace dedicated for the experiment

in a manner such that resources are provisioned under a single system. Since the single system may

expose external IPs it needs to be protected by an appropriate level of asynchronous encryption22.

For simplicity, we use a single cloud provider, Google Container Engine, as it provides a multi-

zone production-grade compute orchestration system. The compute instances that process the user

workloads are deployed as Docker containers that run Ubuntu 15 loaded with Apache HTTP server.

For simplicity, we avoid content distribution by embedding the video content to be streamed in the

Docker image. We run 52 Docker containers that span across the three regions and act as CDN-

edges. Green CDN-edge instances differ from grid CDN-edge instances by Kubernetes labeling.

The simulation of the hybrid datacenter is depicted in Figure 4.1.

A coordination database system that aggregates green energy, solar or wind, availability, was

built in software. When energy sources manifest the cut-in patterns depicted by Equation 5.2 and

Equation 5.3, the coordination system starts green CDN edges in the availability regions. Also,

when green energy availability reaches cut-off rates, the coordination system turns off green CDN

edge instances.

5.1.3 Baseline and Variability of Workloads

The baseline execution included data populations of both green energy availability and user de-

mand for for video streaming. The data population was achieved by the Kubernetes-based Jmeter

batch jobs. The loader jobs goal is to populate the coordinator database with green energy supply

22Simulation code and data retrieved from https://github.com/yahavb/green-content-delivery-network
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based on using a Weibull distribution, which is a generalization of the Rayleigh distribution de-

scribed above for wind and a normal distribution for solar. Also, the user demand was populated

according to the observed empirical patterns depicted by Figure 5.1.

We simulated the availability and unavailability of green energy using Jmeter-based workload

plan against the coordination system. Our implementation starts green CDN-edge instances op-

portunistically upon green energy availability. Once a CDN-edge instance declares its availability

it processes live workloads.

We use the Kubernetes livenessProbe for communication between CDN-edge instance pool

and its load-balancer that divert traffic to its pool members. Finally, another workload Jmeter-

based simulator generates on-demand streaming calls. This workload simulates end-user demand.

It includes HTTP progressive download calls to pre-deployed video media in the CDN-edges.

5.1.4 Main Execution

In each of the three regional CDN-edge clusters the Kubernetes Jmeter batch jobs that gen-

erated green availability traffic to the coordination component were executed. The simulation is

comprised of availability indication that are based on Figure 5.2 and Figure 5.3. We randomized

solar production by using a factor of α = 0.2 based on collected data between 2008-2011 in Palm

Springs CA, Prescott Airport CPV, AZ and Nevada Solar One, NV [73]. Also, we randomized

the wind production by a factor of β = 0.4 based on collected data between the years 2007-2012

[29]. The demand simulations included a set of calls to the coordinator component spread across

48 hours. The calls originated from three different timezones. The supply simulations consist of

wind and solar-based energy time and power windows.

The experiment executions generated two main data traces that we used for the resulting gen-

eration computation. The first trace is the simulators logs. The simulator logs includes the demand

and supply records. Demand records stored in the Redis key-value store under the key "Deman-

dEvents" followed by timestamp, region and the required compute capacity. The supply calls were

stored in the Redis key-value store under the key "SupplyEvents" follows by timestamp, region
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and supply phase i.e. cutin, cutout or rated. For query simplicity the loader ingested three types of

records for each supply and demand the by the keys: (1) supply or demand (2) timestamp, and (3)

by region. This approach optimized the coordinator queries by timestamp and regions for green

CDN-edge instances allocation.

The second trace is the actual allocation logs. It is generated by the coordination system that

invokes the Kuberenetes command for green CDN-edge instances initialization and disposal. This

was used to determine the green energy utility translated into energy (kWh) that did not use grid

energy sources.

Limitations

Every supply and demand was recorded three times to ease the query process. This approach

was used since Redis provided limited query abilities by different keys. This approach might suffer

data inconsistency issues where a supply metric was successfully committed to one key recode but

missing on other key. Production systems should add extra safety gates when ingesting data. We

used Redis because of its popularity in the Kubentese community. However, our approach is not

limited to Redis or other database systems for that matter.

When measuring the green energy overall utility, we used the container initialization and dis-

posal as indication that green energy utility was used. Specifically, we used the ‘kubectl logs POD‘

command based on the assumption that the coordination system invocation commands are tightly

coupled with green energy availability. It is likely that collecting the actual video streaming traces

through the various Apache access logs of the CDN-edges will be more accurate.

In the case of a sudden lack of green energy while streaming video a failover occurs. Such

failover event relies on domain naming services (DNS), the impact of DNS caching was not in-

cluded since that might cause streaming delay on the user side. Also, when the coordinator algo-

rithm determines there is enough green energy available it will take grid pods down and activate

green pods up in a controlled fashion e.g., one at a time so that no requests are lost during the

transition phase. For simplicity, the algorithm avoid that.
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5.1.5 Analysis

The green energy supply simulation plotted in Figure 5.4 shows the energy generation in MW

for both wind and solar sources. The simulated amounts were adjusted to the amount observed in

the traces between 2007-2012 [29].

The user workload simulation plotted in Figure 5.4 follows the observed user patterns depicts

in Figure 5.1. Also, it shows the aggregated green energy availability for each region. The cloud-

coordinator uses these data sets to determine if there is enough green energy available before

provisioning green-pods and possibly taking grid-pods down. The utility of the green energy was
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Figure 5.4: Green energy availability simulated in MW across three regions. Amounts are adjusted to NERL mea-

surements i.e., wind generation in West US moderate, Central US outstanding, East US fair. For solar generation in

West US strong, Central US moderate-high, and East US low.
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calculated based on the cases where sufficient green energy was available to run the green-CDN

pods within the same region. Otherwise cross-regional latencies might degrade the on-demand

video experience. The measurements in Figure 5.5 were adjusted to the estimates of required

energy (kWh) for operating the green compute pods. The case where there was negative green

energy available it was considered as a miss in the overall utility reckoning.
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Figure 5.5: Video on-demand user workload per region adjusted with user population opposed to aggregated green

energy availability, solar and wind energy.

5.1.6 Discussion on Energy Mix when Processing CDN Workloads

The scenario described above simulated the usage of green 801.3 kWh out of total 3642 kWh

to process the video on-demand streaming workload. i.e. 22% by opportunistic matching. When
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counting the utility per region West US used 42% of the green energy. Central US used 28% of

the simulated green energy. East US utilized only 18% as the initial ratio between user demand

and green energy availability was relatively low. Although West US reached 40% utilization it

contributed nationally only to the 20% portion it contains from the entire experiment test set. By

way of comparison, Jeff Barr of AWS noted that their data centers utilize a 28% cleaner power

mix23. Extrapolating the simulation results to the initial assessment in Equation 5.1 yields to a

saving of:

(18.26(GWh) · 1.89) · 0.1($/kWh) · 22% = $759, 250.8/year

5.2 Clean Energy Mix Evaluation for Offline System

In the following section we evaluate a coordination component that harmonizes analytics jobs

demands with available compute resources powered by green energy resources. Such resources

will be published to the coordination system through a resource availability tuple {region,cut-

in,rated,cut-off,power-efficiency}, where region and power-efficiency indicates solar or wind based

energy and region, cut-in, rated and cut-off of those energies.

Analytics job demand includes the specific region, total-job workload, load-factor, as well as

contract deadline stermed tuple. The load-factor indicates the required number of CPU cores per

the total-job-workload. The region indication will optimize the match between the supply and

demand. Also, the total-job-workload and the deadline will be checked against the cut-in-rated,

cutoff time for wind or power-efficiency for solar, based on the published load-factor.

We will suggest a hybrid data center structure that does not deviate from the common data-

center architecture. The core difference lies on an automatic transfer switch (ATS) that switches

between different available power sources: generator, grid or clean-energy when available. In both

cases the data-center design does not change and requires incremental changes only by adding

clean-energy power sources to the datacenter’s ATS’s (Figure 4.1).

23Amazon Web Services Sustainability reference retrieved from https://aws.amazon.com/about-aws/sustainability/
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Figure 4.1 shows a simplified data-center power distribution that supports clean energy sources.

In a data-center with available clean-energy resources for both serving and analytical systems

deployed in brown clusters. Further, few clusters use green resources when there are a viable clean

energy and standby for incoming analytical workloads. As a mitigation strategy, a compute live

migration procedure will be available in case of unpredicted lack of renewable resources during a

workload processing with a risk for SLO violation.

5.2.1 Experiment Planning

We wish to simulate an isolated group of computing resources so it can operate by various

energy resources, especially available green ones. We use a group of leased resources from existing

cloud providers to form a virtual-data-centers set that operates in a federated scheme. Each virtual-

data-center includes with internal arbitrator component that collects and aggregates internal signals

about its utilization and availability. The arbitrator then reports to the central coordination system.

We use Apache Mesos24 for the virtual-data-center abstraction.

Also, we build a highly available coordination component that accepts incoming supply and

demand traffic, calculates a potential match, within minutes, and notifies back the cloud-service-

provider and the service-provider for transaction completion. We use VoltDB25 as the database and

application server for the coordinator component.

Finally, we simulate customer’s demand for compute resources through client simulator with

a Java-based application that generates pseudo demand traffic to the coordinator service. The

coordinator service will run on separate resources pool than the virtual-data-centers and the client

simulator.(Figure 5.6)

The data collected includes customer workload for processing and jobs deadline. Also, the

number of matches the coordination component found and processes by green clusters without

SLO. Finally, we measure the false-positive cases where a match was suggested but not met the

24http://mesos.apache.org

25http://voltdb.com
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SLO’s deadline due to a violation that caused by a sudden lack of clean energy resources. We use

the data to extrapolate the possible carbon-footprint that could be generated by the used virtual

clusters.

The research goal is to show a significant improvement in the carbon emission generation by

data-centers. Let MtCO2e denote the carbon emission. Electrical usage can be consumed by the

Consumers set: {cooling, storage, servers, CPU, power} systems and denoted by EU measured

in kWh. The average regional carbon dioxide emissions measured in lbs/kWh and denoted by

REco2 . Therefore, the total electrical usage is:

EUTotal(kWh) =
∑

ci∈Consumers
EU(ci) (5.4)

and the carbon footprint generated by the workload is:

MtCO2e =
EUTotal(kWh) ·REco2(lbs/kWh)

2, 204.6(lbs)
(5.5)

As the experiment uses virtual data-centers, we do not have access to the power consumption by

the cooling, power and storage system. The results capture compute jobs durations measure in

server CPUcore
time

and use the average Thermal Design Power (TDP) of 200W per core (0.2kW). ci

and ti denotes the number of cores and time used per job respectively. The electric usage by server

(EUservers) will be the sum of the electric utilization of the executed jobs that was matched by the

coordinator component (Equation 5.6)

EUservers(kWh) =

jobs
∑

i=1

ci · 0.2 · ti (5.6)

We assume a linear relation between the power utilization of the cooling, power and storage sys-

tems with the servers power utilization. (Equation 5.4)
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5.2.2 Execution - The Preparation

The Preparation for the execution included the setup of the three virtual data-centers each with

6 machines D4 series with 8 Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz cores, 10Gbps NICs,

28 GB memory and run Ubuntu 15.0. Each virtual data-center is located in a different geo-location.

The virtual data-centers were simulated by Mesosphere cluster with three jobtracker(Mesos mas-

ters) and three tasktracker(Mesos slaves). We installed Hadoop Cloudera CDH 4.2.1-MR1 on the

takstrackers. The Coordinator Database run on a separate resource pool with 1 machine D series

similar to the virtual data-centers specification. Finally, the loaders run on an 3 D2 series machines

with 2 cores Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz cores, 10Gbps NICs, 7 GB memory

and run Ubuntu 15.0. Apache Hadoop ships with a pre-built sample app, the ubiquitous WordCount

example. The input data file was created using /dev/urandom on the takstrackers hosts26. The

input data file was copied to the HDFS directory that was created as part of the Hadoop preparation

(/user/foo/data).

Anticipated Required Deviations from the original job plan. The original plan was to

simulate the scenario where the customer keeps his data at a different location than it might be

processed. We plan on using a job migration scheme that was originally designed for workload

migration across different geo-location[16]. The suggested method optimizes the bandwidth costs

of transferring application state and data over the wide-area network. Our experiment generated

the data file at the loader host and did not include the job migration. We believe that including

the job migration aspect could impact the presented results. However, the job migrations proven

efficiency and later studies minimize that deviation.

5.2.3 Baseline and Variability of Workloads

Baseline. The execution baseline included a load that runs without the coordinator component

i.e. loaders generated load to the virtual data-centers resources for 48 hours. The load scenario

included a single file generation that was submitted to one of the tasktrackers. The output of each

26https://github.com/yahavb/GreenCloudCoordination/
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executed jobs included the CPU time spent for each execution. The data collection included the

execution log of the command: Hadoop jar loader.jar wordcount /user/foo/data /user/foo/out.

Variability of Workloads. The workload comprises of data files with words that need to be

counted using the Hadoop WordCount. The load complexity depends on two factors, the file ran-

domness level, and its size. We rely on the native operating system randomness, and our virtual

data-centers and loaders are homogeneous. Therefore, the size is the remaining factor for differ-

entiating workload types. We evaluated the federated-cloud coordinator by generating three load

types simultaneously. The three types intend to cover the following cases (1) A match was found

between workload and sufficient green energy resources. (2) A match was found, but there was not

enough power to complete the job with no SLO deadline violation. (3) Like the former but with

SLO deadline violation. The three types will be uniquely distributed across wind and solar based

virtual data-centers.

5.2.4 Main Execution Issues

In each jobtracker host in a virtual data-center, we executed a simulator that generated green

availability traffic to the coordination component. The simulation comprises of availability indica-

tion that are based on figure 5.2 and figure 5.3. We randomized solar production by using a missing

factor of α = 0.2 based on collected data between 2008-2011 in Palm Springs CA, Prescott Air-

port CPV, AZ and Nevada Solar One, NV [29]. Also, we randomized the wind production by a

missing factor of β = 0.4 based on collected data between the years 2007-2012 [29]. The demand

simulations included a set of calls to the coordinator component spread across 48 hours triggered

by a Monte Carlo simulation inspired by [32]. We built a Rayleigh-based distribution model in the

Monte Carlo simulation using Matlab Statistics and Machine Learning Toolbox27. The calls origi-

nated from three different timezones. Each call comprises of the tuple {region,total-job-workload,

load-factor, contract deadlines}. The supply simulators are comprised of the wind and solar-based

energy time and power windows. Supply call to the coordinator includes the tuple {region,cut-

27https://www.mathworks.com/products/statistics.html
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in,rated,cut-off,power-efficiency}. The coordinator runs a temporal stored procedure that find a

match between the supply and demand data. When a match found, the coordinator generates an

assignment call to the jobtracker in the corresponded virtual data-center to execute the jobs. The

execution will fetch the data to be processed and report temporal statuses to the coordinator. Every

status call generates a check against the current demand levels in the particular region. If the de-

mand changed, and the request cannot be fulfilled, the job considered as false-positive. If the jobs

are completed successfully, the request counted as success along with the Core/hour saved.

5.2.5 Analysis

The experiment executions generated three core data logs that we used for the result generation.

The first data set is the simulators logs. The simulator logs comprise of the demand records.

Demand records stored in the Demand VoltDB table. The supply calls were stored in the Supply

VoltDB table. The match transactions stored in the Jobs VoltDB table with status and the number

of cores/hour used for the job. Status values can be Success or False-Positive. Figure 5.8 shows the

two supply indications. Both signals were generated based on Equation 5.2 and Equation 5.3. The

demand data was generated based on known usage patterns that are spread across three timezones.

5.2.6 Discussion on Energy Mix when Processing Offline Workloads

The experiment simulated the usage of green 708 kWh out of total required 3,252 kWh for

analytical systems workload processing i.e. 22% less carbon emission (Equation 5.5). 1822 kWh,

50% of the total workload consumption, was processed by brown energy because of false-positive

events i.e. the coordinator assigned a job with no sufficient green recourses to process the job. We

believe that optimizing the coordinator algorithm can improve the footprint reduction up to 50%.

Figure 5.9 shows the job placement ranges denoted by the dotted line in both the PV and

the Wind plots. Any values above the zero levels indicate on potential benefits. However, such

cases are subject to false positive events that can occur when a unpredicted drop in the availability.

Further, such cases utilize the hybrid data center power scheme describes in figure 4.1.
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5.2.7 Conclusions for Clean Energy Use in Federated Cloud

The future growth of cloud computing will increase its energy consumption as a fraction of

grid power and will cause a significant addition to the ever growing carbon emission since 70%

of US power is generated by hydrocarbon fired power plants. Using rapidly emerging green en-

ergy for processing cloud computing workloads can limit the anticipated carbon emission growth.

However, balancing time varying green energy utilization with time varying energy demands of

cloud computing is a complex task that requires sophisticated command and control prediction

algorithms beyond the scope of this paper but are emerging in the form of a smart grid system of

systems [10]. Our study shows that green energy utilization for on-demand streaming workload is

best described as a resource management problem. The solution presented demonstrates real time

balance of green resource supply and cloud computing workload demand and utilizes Ubernetes

an open source container cluster manager. The results approximate within 21% those observed

in a single cloud instance in the field. Our study also shows that green energy utilization for of-

fline workload processing is a fast data problem. It’s solution best utilizes VoltDB, an in-memory

database, to allow near-time response for green resources supply and workload demand. Our fu-

ture work will focus on optimizing the false-positive ratio, to further reducing the cloud computing

carbon footprint by up to 50%.
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generates pseudo demand that sends data to process
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Figure 5.7: Green Energy availability simulated across six different timezones, three for PV power and the bot-

tom three for wind. These indications are fed, in near-time, to the coordinator database that runs a temporal stored

procedure that seeks for match with pending registered jobs.
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Figure 5.8: A Monte-Carlo-based simulated compute demand across six different timezones, three for PV power

and the bottom three for wind. These indications are fed, in near-time, to the coordinator database that runs a temporal

stored procedure that seeks for match with available green energy.
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Chapter 6

Semantic-less Breach Detection of Polymorphic

Malware in Federated Cloud

As an increasing fraction of computing services move to the Cloud, there will be a prolifera-

tion of software characteristics, service models, and deployment options. Many organizations are

moving into hybrid cloud/hosted computing models. A Cloud Service Provider (CSP) goal is to

maximize its market share among the potential Service Providers (SP). Accommodating variable

demands for computing resources requires an immense capacity, as it calls for providing for the

maximum demand. In some cases, this drives them to underutilization of massive datacenter de-

ployments. In other situations, the CSPs suffer over-utilization because of a miss in the market

share, load and reliability projections. Both cases lead to sub-optimal utilization.

From the SPs perspective, they are most interested in availability and adaptability. The former

refers to reliable service conditions that make its services available to the users it serves. The

latter relates to the Vendor lock-in risk[49]. Single CSP provides a sub-optimal solution to the SP

thus multi-cloud become an attractive solution. However, multi-cloud solution implemented by the

SP requires expensive adaptations to the CSP’s tools and service constructs that may vary among

different CSPs.

Cloud Federation is a new paradigm that allows many CSPs to utilize computing resources

optimally [11, 13]. Also, it allows SP to avoid the Vendor lock-in risk and provide service avail-

ability that can not be provided by a single CSP. No matter what the architecture, there is a need

for to ensure the security and information assurance to users. Cloud Federation is an advanta-

geous structure for aggregating cloud based services under a single umbrella to share resources

and responsibilities for the benefit of the member cloud service providers. Federation is useful

not only for sharing resources amongst cloud service providers but also for providing enclaves for

interactions to perform domain-specific missions such as electrical grids and supply chains.
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The Federation will need to assure that data transfers amongst the Federation’s CSPs are secure.

The Federation will, above all, need to detect any anomalous behavior occurring in transactions

and resource sharing. In addition to the growing number of security tools, there is a need to

log and identify security issues requiring attention early on in the process. In particular, breach

detection in inter-cloud data transfer and communications is a particularly serious issue because of

the possibility of an attacker potentially gaining access to more than one CSP federation member.

It is the purpose of this paper to describe security best practices for Cloud Federation. The paper

also describes a tool and technique for detecting anomalous behavior in resource usage across the

federation participants. Specifically, this method is developed for Cloud Federations since they

have to deal with a heterogeneous multi-platform environment with a diverse mixture of data and

security log schema, and it has to do this in real time. This Semantic-less tool is described below

after a description of the context of the issue.

The reminder of sections is organized as follows, Section 13.1 (Cyber Security Challenges in

Federated Cloud) describes the core challenges of such inter-cloud system in a multi-layer model;

Section 13.2 (Semantic-less Breach Detection) discuss the tool we suggest for detecting the behav-

ior of the anomalous system that runs in the Cloud Federation; Section 13.3 (Evaluation) discuss

the breach-detection tool prototyped; finally, Section 13.4-13.6 (Execution and Analysis) analyze

and present the prototype results.

6.0.1 Cyber Security Challenges in Federated Cloud

The Cloud Federation has a global scale software and hardware infrastructure. We describe a

progressive layers security model starting from the physical security of data centers, progressing

to the hardware and software that underlies the infrastructure, and the constraints and processes to

support the Cloud Federation operational security. The following section describes the Cloud Fed-

eration cyber security design throughout the data processing life cycle at a Cloud Federation. e.g.,

enables secure communication with tenants (SP) and its customers or control plane communication

including CSP, Cloud-Brokers, and Clouds-Coordinator.
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Figure 6.1 describes the cyber security layers offered by the Cloud Federation. The following

paragraph briefly describes the security elements corresponded with each layer28. Our extended

cyber security model will emphasize the operational security with unique breach detection method-

ology. This was done since the operational security corresponds to the perimeter security of an

enterprise system and the interface to the Federation members. Also, it will suggest a system for

encryption of both inter micro-services communication with emphasis on cross-CSP for tenants’

workloads.

Infrastructure Security

The required baseline security level needed for cloud federation constituent’s systems is refer-

enced in Figure 2.2. It includes deployed facilities and computer systems managed by the CSPs or

the Federation. The larger CSP’s often exceed these baselines.

Datacenter Premises. CSPs design and build its data centers based on its expected comput-

ing capacities and service reliability manifested by their SLA and the redundancy levels of sub

systems[42, 61]. The datacenter incorporates various components of physical security protections.

Access to such facilities is governed by the CSP security operations. It uses technologies such as

biometric identification, metal detection, metal detectors, and CCTV solutions [63].

Hardware Design. CSPs data centers run computing server machines fed by power distribution

units and connected to a local network that is all connected to the edge of the wide network. The

computing, digital storage, and networking equipment require a standard that ensures the required

audit and validation of the security properties by components [9, 47], e.g., hardware security chip

[76].

Machine Identity. confirms that any participating computing server in Cloud Federation can be

authenticated to its CSP machine pool throughout a low-level management services[76]

Secure Start-Up. Ensures that CSPs servers are booting the correct software stack. Securing un-

derlining components such as Linux boot loaders, OS system images and BIOS by cryptographic

28We extrapolate Google Cloud security model from https://cloud.google.com/security/security-design/
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signatures can prevent an already compromised server from being continuously compromised by

an ephemeral malware.

Operational Security

Operational security comprises the business flows between the SP with the cloud federation

and the CSP it uses for processing workloads. The following section briefly discusses the required

cybersecurity measures needed for SP and CSP business scenarios in a cloud federation.

Cross-SP Access Management: SP workloads are manifest in two workload types, (1) short-lived

workloads. i.e., jobs that are terminate upon completion, and (2) long-lived workloads. i.e. ser-

vices. The former workload might require connectivity to external services during its processing.

The latter might expose serving endpoints to other services. e.g., short-lived jobs might require

persistent storage to write its job results hence connecting to BigTable29 storage server provisioned

by other CSPs, which, in turn, require access management that uses credentials and certificates

stored within the Cloud Federation.

SP Front End Service Discovery: Long-lived workloads might expose public facing endpoints for

serving other workloads or end-user requests. SP front-end services require publishing endpoints

to allow other workloads within or external to the cloud Federation to discover their public facing

entry point and this requires service discovery capabilities. Service discovery endpoints, and the

actual service endpoints, are prone to risks such as Denial of Service attacks or intrusions origi-

nated by an attacker. We argue that current solutions offered by individual CSP’s are sub-optimal

because of the target scope of the intrusion. i.e., assuming an attack probability for a given CSP,

running several CSPs reduces the risk by a factor of the number of CSPs. Later sections will

formulate the risk function and show how cloud-federation minimizes those challenges by using

the semantic-less breach detection system and show how most risks originate by crossing machine

boundaries.

Secure Continues Deployment: Continuous Deployment (CD) is the function that allows cloud-

29https://cloud.google.com/bigtable/
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native applications to get updated through an automated pipeline that is initiated by a new or

updated code submission, compiled, tested through various quality gates until it is certified for

deployment of the production systems and deployed seamlessly. Continues deployment enables

cloud applications to innovate faster and safer no matter what number of machines are in the ser-

vice pool. A secure continuous deployment service requires secured SP code and a configuration

repository that authenticates to the target computing resource regardless of the CSP network seg-

mentation. Traditional network segmentation, or fire walling, is a secondary security mechanism

that is used for ingress and egress filtering at various points in the local network segment to prevent

IP spoofing[6, 67]

Authentication and Authorization. In a federated cloud architecture, deployed workloads might

require access to other services deployed by the federation. The canonical example will be an end

user request service deployed in the Federation that triggers another micro-service within the SP

architecture. Such cascading requests require multilayered authentication and authorization pro-

cesses. i.e., a micro-service calls another micro-service and authenticate on behalf of the end user

for audit trails supported by the end-user authentication token and the cascading micro-service

tokens generated throughout the end user request. Figure 6.2 depicts the data flow during a call

initiated by SP Micro-Service that runs in one of the federation’s CSP denoted by CSPi and CSPj .

A call initiated from SPn that was provisioned in the federation as msn. The call destination runs

on a different and sometimes the same SP. Let SPm denote the destination SP. The call payload

is encrypted by SPn private key. The call arrived at an SPm endpoint and checked for admis-

sion. SPm admission control decrypts the call payload using SPn public key that was submitted

throughout the on-boarding process to the Cloud Federation. It is verified for authenticity and au-

thorization of allowed call-sets. If admitted, SPm calls and process the get_data() call and sends

back the response to the originating SP , SPn.

Breach Detection: The Cloud federation comprises various workload types that are owned by dif-

ferent autonomous organizations. Breach detection includes a complex data processing pipeline

that integrates system signals originated from specific users of a CSP service as well as the poten-
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tial cloud federation tenants. System signals are comprised of network devices as well as signals

from infrastructure services. Only in recent years, after the growing numbers of data breaches and

liabilities arising from losses,[5, 45, 74] have organizations started to incorporate business related

metrics for breach detection[52]. Both data pipelines need to generate operational security warn-

ings of potential incidents. The output of such warnings usually alerts security operations staff to

potential incidents that require the relevant team’s triage and response as appropriate.

Such methods are sub-optimal in a Federated Cloud for two main reasons: (1) different data sets

are owned by different organization departments that are not integrated physically, schematically

or semantically, (2) Lack of unification of both data sets as accomplished by fusion requires a

complex transformation of both data sets semantics into a single data set. The above situation

exacerbated when migrating the workload to the cloud as it introduces another orthogonal data

set that contributes to complexity. The following sections propose a method for breach detection

that collapses the three silos into a cohesive semantic-less data set that will enhance the Cloud

Federation services detection breaches to an extent limited by available data and their investment

in detection .i.e. allowing methods to the tenants to incorporate more data about their workload for

more automatic detection.

6.0.2 Semantic-less Breach Detection

Malware infected cloud-computing-workloads introduces three core risks for organizations (1)

Service unavailability, (2) Data breach , and (3) Data corruption. There is a need for breach detec-

tion system that helps to determine whether a workload is infected as well as the type of exploited

risk type as enumerated above. Breach detection system effectiveness is influenced by a number

of factors. We focused on the human social factor and the emergent public cloud offering. The

following paragraph describes the important factors required for optimized breach detection. This

mode of breach detection has to span the heterogeneous schema employed by the various federa-

tion members.
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The Human Social Factor

Enterprise IT is typically organized into silos. e.g., IT operations, network operations, database

administration, and product engineering. The silos goal is to allow field-based ownership. Usu-

ally, silo teams are governed by different management hierarchies, communication styles, and

vocabularies i.e. semantics. As as far as cyber security goes, semantics manifest by a particular

interpretation of intrusion or breach. e.g., malware sending data to C&C might not impact the

normal operation of a workload. Thus, product owners are oblivious to that risk while network

operations detect unusual egress or ingress traffic usage patterns.

Enterprise IT workloads deployed as SP workload requires adopting unified cyber security

best practices that overcome the different management hierarchies, communication styles, system

security pans, data scheme, semantics and, vocabularies. The next paragraph shows how Federated

Cloud helps enterprise IT improve its cyber security resiliency by offering a prediction tool that

allows SP to apply proactive policies to mitigate potential threats.

The Cloud Federation Factor

Public Cloud services exacerbate the organization’s human factor risk by introducing an ad-

ditional silo that is often separated from the organization it serves. Public cloud operations are

agnostic to its tenant’s workload semantics by definition. CSPs configure their multi-tenancy to

allow business with conflict of interest to run its workload on the same platform. Such practices

and policies, augment the lack of cohesive view required for optimized malware detection.

Workloads deployed in public cloud services are not limited to known machine boundaries

as traditional on-premise models offer. Although CSPs feature cyber security mechanisms that

attempt mimicking the traditional computing workload hosting, workloads artifacts are under the

CSP control. As such, the cloud client workloads might be compromised. Thus, there is a need

for another cyber security dimension for the SP workload that overcomes the lack of control when

running in the cloud.

We proposed a unique self-learning methodology that removes the need for tenant information

that streamlines semantic-less information from the various software stacks of the Cloud Federa-
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tion, including both tenant metrics and control-plane metrics. Also, it streamlines training data of

security incidents shared in collaborative platforms outside the Cloud Federation. We also argue

that a Cloud Federation optimizes such collaboration and self-learning process. We prototyped

a system that implements such self-learning system that resulted in up to 87% True-Positive rate

with 93% True-Negative.

Workload data and usage patterns form a critical path for the SP business success. The leakage

of some of the workload data and usage patterns impose a threat to the SP business. This challenge

represents a new threat of organizational espionage as well as attacks on the SP service that impacts

SP business continuity. Therefore, sharing semantics breaks the isolation between the two systems

and might hold the hosting system accountable for security attacks in CSP or Cloud Federation

platforms. Also, transforming every workload semantics into a coherent model that aggregates

numerous SP workloads requires a significant amount of investment. SPs will be reluctant to

make such an investment, especially since it doesn’t produce income. Therefore, this method

has a low likelihood of being implemented. Therefore, enabling a method that eliminates SP

investment and business risks is a key for the breach detection system success. Finally, a Cloud-

Federation provides a centralized view of cross-CSP operations. Such centralized view allows SP

workload deployment to different CSPs to gather a rich data set that will be available for malware

identification and later, for predictive analytics. We suggest a method that captures computing

resources usage and intra federation traffic and infers potential breach or disruption to proactively

alerts CSP security stakeholders about suspicious cyber instances.

From Workload Semantics to Semantic-less

Cloud workloads are broadly composed of two types: online system, and offline system. The

former provides low-latency, read/write access to data. For example, a web user requests a web

page to load online and serve within a fraction of a second. The latter provides batch-like com-

puting tasks that process the data offline, which is reported later to users by the system servers;

for example, the search results based on a pre-calculated index. Offline production workloads are

102



usually comprised of mainly unstructured data sets, such as click stream, web graph, and sensors

data[11, 13].

The semantic-less detection will address the polymorphic malware case as its data stream are

abstracted from computing activity. More specifically, a tenant’s workload in a federated cloud

manifested by software containers that are limited to not more than (1) namespace per tenant

for isolation and (2) limited to a resources control groups(aka cgroup)30 Control groups are the

mechanism for limiting computing server host CPU, Memory, Disk I/O and Network I/O usage

per namespace. That is the foundation of Linux Containers, which alludes to the existing methods

of measurements of the metrics set, CPU, memory and I/O usage. We call this set the behavioral

attributes set. Access to cgroup and namespace configuration and control is available on the host

level i.e. the host OS that runs the multi-tenant workloads i.e. a control-plane component.

Data Collection

Both Cyber Security leaders and national agencies agree that addressing emerging cyber risks

require sharing cyber attacks retrospects and their historical behavior, and discovered vulnerability

reports as a foundation for collaboration, predictive time series analysis, risk quantification and

risk allocations all leading to safer cyber services [21, 41]. Incidents are often documented in

unstructured reports that require a manual analysis to identify trends[80].

To assess whether or not a system was breached, it is required to establish malicious system

behavior patterns and then decompose those patterns into generic computing system metrics that

can later be classified as harmful or safe. The following paragraph includes the source datasets we

chose to assess the initial malicious patterns and their detectability by our method. We continued

by decomposing the data and removing the tenant semantics. That allows a generic pattern of

malicious activity dataset that can be used as a training data for the supervised model.

30https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
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Source Datasets

We choose the National Vulnerability Database (NVD)[19] and the Vocabulary for Event Record-

ing and Incident Sharing (VERIS) [78]. Both datasets included thousands of reported incidents

spanning across various categories. Our model focuses on (1) Unauthorized access attempts, (2)

Suspicious Denial of Service, and (3) Data Stealing Malicious Code, including ransomware in-

stances. We filtered the incidents that conform to the categories and performed a qualitative as-

sessment of the identified breach impacts. Lastly, for simplicity, we appllied an additional category

that distinguishes the target component reported, service-based or client-based. We included only

the service-based incidents. i.e., reported incidents that clearly targeted desktops and workstations

were not included in defining tenant semantic structures.

We applied filters for training data accuracy. Filters for VERIS dataset included server work-

loads as indicated in Section 4.2.1, i.e., Authentication Server, Backup Server, Database Server,

DHCP Server, Directory Server(LDAP, AD), Distributed control system, Domain Name Server,

File Server, Mail Server, Mainframe Server, Web Application Server, and Virtual Machine Server[78].

Assets operating systems were filtered to Linux and Unix as such operating systems are more

prevalent in servers than Windows, MacOSX, and mobile device operating systems.

VERIS dataset includes incident actions. We filtered the action types that fit the paper focus

workloads. i.e. Brute Force, Cache Poisoning, Cryptanalysis, Fuzzing, and HTTP Request Smug-

gling attacks. We excluded Buffer overflow cases as such attacks can be prevented in deterministic

methods and common in Windows-based operating systems[82]. The dataset size following the

refinement is 5015 incidents. Table 6.1 summarizes the dataset we used for the training data.

Table 6.1: Summary of datasets used

Malware Category modus operandi Number of In-

cidents

Brute Force Exhaustive effort of data encryption 946

Cache Poisoning Corrupt data is inserted into the cache database e.g., DNS 894

Cryptanalysis Exhaustive effort of data encryption 750

Fuzzing Injects random bad data into an application to break it 946

HTTP Request Smuggling Exhausting a proxy cache by sending HTTP requests 639

Data stealing malware Data transmitting across unencrypted network 840
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Removing the Tenant Semantics

Our approach attempts to detect anomalies in both control-plane and tenant activities that con-

form to suspicious patterns. In Section 13.2.4 Data Collection, we defined a categorical dataset that

adheres to real incident data. This data applies to potential breaches for server-based workloads.

We stipulate, for the purposes of this paper that such server-based workload will obey similar

suspicious patterns when deployed in the cloud.

In this paragraph, we transformed the categorical dataset into a multivariate time series data

that can be used for supervised anomaly detection. The multivariate set is comprised of general

operating system observations that do not include any workload semantics but could be used for

contextual anomaly detection. The contextual attributes are used to determine the position of an

instance on the entire series. We showed that, based on collected incident data, the conversion of

behavior patterns to multivariate time-series satisfies effective breach detection of any malware,

conventional or polymorphic.

We gathered the operations reported in the incident reports (Table 6.1) and inferred about the

operating system resources consumed during the malware lifespan. Table 6.2 depicts the rela-

tionship between the malware characteristics and operating system usage. Figure 6.3 describes

a workload sample, video-on-demand. It shows the common pattern of the operating system re-

sources usage that will be used as multivariate time series data sequences. The Evaluation section

describes in more details the nature of the data and how it translates into meaningful time series

data.

Table 6.2: Dataset Classification

Malware Category OS Resources Patterns

Brute Force Extensive CPU, Memory, I/O to disk or network

Cache Poisoning Extensive I/O to disk or network

Cryptanalysis Extensive I/O to disk or network

Fuzzing Network I/O Ingress

HTTP Request Smuggling Network I/O Egress

Data stealing malware Network I/O Egress
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Prediction Methodology

We used the data gathered in Table 6.2 for formulating the anomaly detection problem of

polymorphic malware[20]. The detection approach includes three distinct methods: (1) Detecting

anomalous sequences in OS usages time series events, (2) Detecting anomalous subsequences

within OS usages time series, and (3) Detecting anomalous OS usages events based on frequency.

Let T denote a set of n training sequences based on OS usage generated by CSPs, SPs, and the

Federation control plane. Also, S denote a set of m test sequences generated based on Table 6.2,

we find the anomaly score A(Sq) for each test sequence Sq ∈ S, with respect to T . T mostly

includes normal OS usage sequences, while S includes anomalous sequences.

The semantic-less tool output produces a score for a scanned training sequence T using Regres-

sion. i.e., forecast the next observation in the time series, using the statistical model and the time

series observed so far, and compare the forecasted observation with the actual observation to de-

termine if an anomaly has occurred[20]. For simplicity, our model uses TensorFlow for regression

calculation[1].

6.0.3 Evaluation

We prototyped Cloud Federation system that mimics that properties analyzed in section 2,

Cloud Federation. The prototyped system includes the component that is depicted in Figure 2.2.

For the scope of the prototype, we enabled semantic-less metrics from both SPs and CSPs to

improve correlation efficiency. CSP data sharing limits the effectiveness of any cyber analytical

technique and, in practice will represent a compromise between improved cyber security and CSP

privacy and confidentiality. With that proviso, in the following section, we evaluate a computer

load coordination system component that manages on-demand streaming, generates T , a set of n

training sequences based on OS usage generated by CSPs, SPs, and the Federation control plane.

We chose on-demand video streaming as Video streaming is expected to constitute up to 85%

of Internet consumers traffic within a few years[12]. Also, we showed that video-on-demand

streaming follows a pattern of usage that can be monitored for breach detection that can help
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on-demand SP to seamlessly improve their consumer’s privacy and provide their studio’s safe e-

commerce platform.

Experiment Planning

Below is a simulation of a cross-regional platform that is comprised of control-plane, workload-

plane and coordinating components. This will be embodied in a resource allocation system(Kubernetes).

This system provisions resources to be a priority of being near, users. The control-plane enables an

effective compute resource provisioning system that spans across different public cloud providers

and regions. Also, it collects operating systems usages for both the SP workload and control-

planeThe coordinating components will accept user-workload demands as well as green energy

availability from various regions and opportunistically seek to process streaming workloads using

compute resources provisioned by green energy resources. The workload-plane will be comprised

of edge streaming servers that process the end-user on-demand video streaming. It will be built on

standard Apache HTTP31 servers that run on the edge location.

The control-plane software infrastructure is based on Kubernetes32, it facilitates internal dis-

covery between Apache HTTP server instances so instances can connect across different cloud

boundaries and regions. This architecture provides an open architecture that enables continuous

monitoring. In a real world federation the data load may require several big data nodes and sub-

stantial compute capacity. This is a demonstration and proof of concept on a finite scale to permit

model and parameter tracking and adjustment.

6.0.4 Execution

The System Preparation

The prototype experiment included the setup of three virtual datacenters deployed in different

regions: (1) Central US, (2) West US and (3) East US. The clusters were sized based on US

31Apache Web Server reference retrieved from https://httpd.apache.org

32Kubernetes reference retrieved from http://kubernetes.io
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population distribution33 by regions i.e. 20% for West US, 40% for East US and 40% Central US.

The cluster sizes for West US, Central US, and East US are 3, 7 and 7 machines respectively. Each

machine is standard 2-CPU cores with 7.5GB of memory.

The control-plane comprised of Kubernetes API server and controller-manager. The controller

coordinator component will need to allocate resources across several geographic regions to dif-

ferent cloud providers. The API server will run a new federation namespace dedicated for the

experiment in a manner that such resources are provisioned under a single system. Since the single

system may expose external IPs, it needs to be protected by an appropriate level of asynchronous

encryption34.

For simplicity, we use a single cloud provider, Google Container Engine, as it provides a multi-

zone production-grade compute orchestration system. The compute instances that process the user

workloads are deployed as Docker containers that run Ubuntu 15 loaded with Apache HTTP server.

For simplicity, we avoided content distribution by embedding the video content to be streamed in

the Docker image. We ran 52 Docker containers that span across the three regions and acted as

Content Delivery Network edges.

Baseline and Execution

The baseline execution included data populations for video streaming. The data population was

achieved by the Kubernetes Jmeter batch jobs. The loader jobs goal is to generate traffic that obeys

the observed empirical patterns depicted in Figure 6.3. The system usage for both control-plane

and SP capture, through cAdvisor, a kubernetes resource usage, and performance analysis agent.

The agent, from every node in a cluster, populates system usage data to Heapster, a cluster-wide

aggregator of monitoring and event data 35.

We labeled the system usage with the semantic-less dimensions, Network egress was measured

by thousands of transmitted packets (k-TX), Disk writes per second (k-write/sec) and CPU usage

33US Population Distribution retrieved from https://www.census.gov/popclock/data tables.php

34Simulation code and data retrieved from https://github.com/yahavb/green-content-delivery-network

35https://kubernetes.io/docs/user-guide/monitoring/
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per container (%). The Heapster aggregated the data based on the labels that are later pushed to

centralized database, influxDB. We also used the influxDB HTTP API to inject randomized system

usage data according to the three labels, CPU, network and disk usage. Those considered as the

anomalous sequences Sq ∈ S. We used Figure 6.3 as a baseline sequence that randomized using

NumPy36. The randomization followed the malicious usage patterns described in Table 6.2.

The execution required a TensorFlow session that looped through the dataset multiple times,

update the model parameters and obtain the anomaly score A(Sq) for each test sequence Sq ∈ S,

on T . The breach and anomaly detection was performed using the following data streams and

learning algorithms.

Limitations

We used influxDB because of its seamless integration with Kubernetes Monitoring system.

However, our approach is not limited to influxDB or other database systems for that matter. We

used TensorFlow for regression and anomaly score calculation. We did not use long training se-

quences. The maximum duration spanned across 48 hours. Training with longer sequences using

long-running jobs and TensorFlow model checkpointing would improve our results. Our test con-

tent variety was limited and fixed. That might impact the generated tests sequences stability. Larger

content variety would require longer training sequences for optimal detection.

6.0.5 Analysis

The prototype included two core datasets, normal (Figure 6.3) and malicious (Figure 6.4). The

CPU usage in the normal dataset fit the viewing patterns at the first half of the run. The second

half required less CPU due to the caching mechanism applied in the Apache HTTP server that

alleviates the need for the CPU when served through a cache. The Disk write pattern manifested

similar content caching schema. The network egress ratio was not impacted by the caching schema.

The malicious dataset used the malware classification table (Table 6.2). Figure 6.4, shows a

semantic-less behavior for ransomware malware that attempts to encrypt data while serving work-

36Package for scientific computing with Python, numpy.org
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load. Suspicious signals denoted by a star and o markers for CPU and disk write respectively.

Based on the dataset classification, ransomware requires no network egress but CPU for data en-

cryption and writing back to disk the encrypted payload. Our prototype included similar patterns

depicted in Table 6.2 with a similar approach as done for ransomware.

The model attempted to detect anomalous subsequences within Sq. e.g., Snet for network, Scpu

for CPU, and Srw for disk read and write transactions. We used a scoring based techniques for each

of the observed sequences. The score range is between [-10,10] and executed 2000 training epochs.

Scores that are closed to 10 indicates on a potential breach. Negative scores indicates normal

behavior. The scores in Figure 6.4 is max(Snet, Scpu, Srw). The maximum-based aggregation was

chosen for simplicity as each training sequence plays an equal role in the potential for breach.

Other anomalies might use different type of aggregations. According to the anomaly scores shown

in the experiment, up to 87% was True-Positive of detected breaches and 93% of the detections

where True-Negative.

6.0.6 Conclusions for Semantic-Less Breach Detection in Federated Cloud

Security practices traditionally focus on prevention and tightening perimeter boundaries. How-

ever, with the advent of disparate, distributed, large scale, multi-tenant environments such as the

proposed Cloud Federation, the traditional perimeter boundaries along with traditional security

practices are changing. Defining and securing asset boundaries is more challenging and the sys-

tem perimeter boundaries are more susceptible to breach. In this paper, we proposed a proactive

approach for detecting a breach in a cloud workload. Such method requires no upfront investment

from the monitored services. Upfront investments are often one of the main barriers to securing

cloud service. Our tool eliminates such need and uses general system usage patterns that help to

predict potential breach proactively.
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Figure 6.1: Cloud Federation Cyber Security Model includes two core layers, infrastructure security and operational

security
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Figure 6.2: Authentication and authorization in Cloud Federation Cross-SP model
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Figure 6.3: Workload semantics sample transformed into semantic-less training sequences
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Figure 6.4: A Ransomware Anomalous Workload semantic-less sample
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Chapter 7

Conclusion

Cloud computing is reshaping IT for both public sector, the private sector and military en-

terprises. Cloud computing drives new modes of considering computing needs in terms of scale,

agility and marketing speed. Cloud computing creates new demands for more computing hardware

equipment of general and specialized use. These demands are what drive the transition from a one-

fits-all solution to the distributed Federated SoS paradigm. The new collaborative SoS requires a

new control methodology that turns out to be both financially attractive and environmentally sig-

nificant. The architecture is designed so that the constituent cloud providers retain independent

ownership, objectives, funding, and sustainability means. In the authors’ paradigm, any changes in

the constituent cloud provider’s business processes are based on cooperative agreements between

the Federation and the cloud providers. Finally, explored emergent behavior by the constituent

systems was explored through simulations that were used to optimize of costs and resource utiliza-

tion.
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