
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Easy Dataflow Programming in Clusters with
UPC++ DepSpawn

Basilio B. Fraguela, Diego Andrade

Abstract—The Partitioned Global Address Space (PGAS) programming model is one of the most relevant proposals to improve the

ability of developers to exploit distributed memory systems. However, despite its important advantages with respect to the traditional

message-passing paradigm, PGAS has not been yet widely adopted. We think that PGAS libraries are more promising than languages

because they avoid the requirement to (re)write the applications using them, with the implied uncertainties related to portability and

interoperability with the vast amount of APIs and libraries that exist for widespread languages. Nevertheless, the need to embed these

libraries within a host language can limit their expressiveness and very useful features can be missing. This paper contributes to the

advance of PGAS by enabling the simple development of arbitrarily complex task-parallel codes following a dataflow approach on top of

the PGAS UPC++ library, implemented in C++. In addition, our proposal, called UPC++ DepSpawn, relies on an optimized multithreaded

runtime that provides very competitive performance, as our experimental evaluation shows.

Index Terms—libraries, parallel programming models, distributed memory, multithreading, programmability, dataflow

✦

1 INTRODUCTION

WHILE the exploitation of parallelism is never trivial,
this is particularly true in the case of distributed

memory systems such as clusters. The traditional approach
to program these systems has relied on a message-passing
paradigm provided by libraries available in the most suc-
cessful programming languages for these platforms. This
paradigm, based on isolated local views of separate pro-
cesses that communicate by means of explicit messages,
typically under an SPMD programming style, enables very
good performance. Unfortunately it also leads to programs
that are, in general, difficult to develop, debug and main-
tain. For this reason there has been extensive research on
alternatives to express parallel applications on clusters.

One of the most successful abstractions proposed for the
development of distributed-memory applications is that of
a Partitioned Global Address Space (PGAS) [1], in which
processes have both a private and a shared address space,
the latter one being partitioned among them. Thanks to
the distributed shared space, PGAS environments offer pro-
gramming abstractions similar to shared memory, which
are much more programmer-friendly than those of the
traditional model based on separate local spaces for each
process. For example, PGAS fosters the usage of one-sided
communications, which contrary to the traditional message-
passing paradigm, do not require the attention of the pro-
cess that owns the accessed remote data. The shared view of
the distributed data also simplifies the expression of large
distributed data structures of any kind, the impact being
more noticeable on irregular and pointer based data struc-
tures. Another advantage is that the distinction between
private and shared space and the partitioning of the latter
one allows users to reason about locality and access costs.

• Grupo de Arquitectura de Computadores, Facultade de Informática, Uni-
versidade da Coruña, Campus de Elviña, s/n. 15071 A Coruña, Spain.
Phone: +34-981-167000-1219. Fax: +34-981-167160.
E-mail: {basilio.fraguela, diego.andrade}@udc.es

Namely, the private space is always the one that can be more
efficiently accessed and the shared local space is accessible
in very similar times, while the accesses to remote shared
data are the most expensive ones by far. This model has
been implemented in a wide variety of languages [2], [3],
[4], [5], [6] and libraries [7].

In our opinion, expressive libraries integrated in widely
used programming languages simplify the adoption of new
programming paradigms compared to new languages. The
most important reasons for this are that they facilitate code
reusability as well as integration with existing tools and
frameworks, some of them so important as OpenMP or
CUDA, and they usually present shorter learning curves
than new languages. Given these advantages, reimplement-
ing these languages as libraries in traditional languages that
offer good expressivity looks like a promising idea. This
is the case of UPC [3], which has been implemented as
the UPC++ library in the widespread C++ language [8].
As an indication of its impact, UPC++ was found to be
the most widely used alternative to MPI at NERSC in [9]
despite its relative recency, which supports our opinion on
the advantages of libraries with respect to new languages.

Despite the advantages of PGAS approaches and the
large set of semantics and mechanisms they provide, they
still lack important features available in other parallel frame-
works. This way, a common restriction we have found is
that although PGAS environments exhibit a large variety
of synchronization mechanisms, from full/empty bits [5]
or synchronized blocks [6] to clocks [4] and locks [3], it is
difficult to efficiently develop many algorithms whose tasks
present complex patterns of dependencies using these ap-
proaches. A very effective mechanism to express this kind of
algorithms is to rely on the implicit dependencies between
the tasks that are given by the definition of their inputs and
outputs. While this strategy is supported by several tools
with very different nature [10], as far as we know, none of
them is integrated and relies on the semantics of a PGAS

© 2019 IEEE. This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The Version of Record is available online at: https://
doi.org/10.1109/TPDS.2018.2884716

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

environment. In this paper we present UPC++ DepSpawn,
which is, to our knowledge, the first tool to support this
approach for the implementation of complex task-parallel
applications in a PGAS environment. Given our previous
discussion, which favors the use of libraries over new lan-
guages, our proposal is a library that operates on UPC++ [8]
in the widely used C++ language. The pure library ap-
proach is supported by metaprogramming, extending the
mechanisms and semantics of the DepSpawn library [11] in
shared-memory systems to PGAS environments. As we will
see, UPC++ DepSpawn not only enables a terse, simple and
efficient mechanism to build codes using a dataflow model
of computation in distributed memory environments, but
it also facilitates the exploitation of multithreading within
each process used in a PGAS application. This way, UPC++
DepSpawn is very well suited for the programming of
current multi-core clusters, where it is often the case that
a combination of process and thread-level parallelism is
required to achieve the best performance.

The rest of this manuscript is organized as follows. First,
Sections 2 and 3 briefly introduce UPC++ and Depspawn,
respectively, explaining the programming style they lead to.
Then, Section 4 presents our proposal to support the devel-
opment of PGAS applications whose tasks are automatically
synchronized and scheduled based on their implicit data
dependencies. This is followed by an evaluation in Section 5
and a discussion of the related work in Section 6. The last
section is devoted to our conclusions and future work.

2 PGAS PROGRAMMING WITH UPC++

Introduced in [8], UPC++ is an implementation of the UPC
language [3] in C++ by means of a library. It exploits
the large number of features of the C++ language, which
supports several programming paradigms, such as object-
oriented and generic programming, and powerful mecha-
nisms such as operator overloading and templates. These
properties not only give place to a high level of expressivity
that reaches a level similar to that of new languages, but
they also make C++ libraries competitive with compilers by
enabling the movement of some computations from runtime
to compile time, making UPC++ competitive with compiler-
based approaches in [8]. In addition, the large expressivity
of C++ allowed UPC++ to go beyond the properties of UPC,
implementing new powerful features such as multidimen-
sional distributed arrays or remote function invocations.
Let us now briefly introduce the core features of UPC++
required to understand our contribution.

UPC++ applications consist of multiple concurrently ex-
ecuting control flows that in UPC are called threads. Because
our proposal allows exploiting a new level of parallelism
inside each one of these execution units that is akin to
standard threads, in the rest of this paper we will use the
term process to refer to the traditional UPC threads. As in
any PGAS environment, each one of these processes has a
private memory space, which is separate and independent
for each process, and a shared global address space that
all the processes can see, even if they are executing in
a distributed memory environment. This shared space is
partitioned among the processes, so that each process has
a portion that is local to it, in the sense that it can access

1 shared_array<int, 4> av(100);

2 shared_array<int> bv(100);

3

4 ...

5

6 void update(global_ref<int> a, int b) {

7 // computations that use a and b

8 // to compute tmp, e.g. int tmp = a + b;

9 a = tmp;

10 }

11

12 ...

13

14 for(int i = myrank()*4; i < 100; i += ranks()*4)

15 for(j = i; j < std::min(i+4, 100); j++)

16 update(av[j], bv[j]);

Listing 1: UPC++ example

it faster because it is located in its physical neighborhood,
while the portions associated with other processes typically
incur slower access times, for example because they are
located in other nodes in a cluster.

While data objects built in UPC++ programs using the
regular C++ notation are located in the private space of each
process, the creation and manipulation of data structures in
the shared memory space requires the usage of the UPC++
library. Its API provides functions to allocate and deallocate
memory in this space as well as class templates that allow
representing and accessing data located in the shared space.
This is the case of the shared scalars shared_var<T> of
a given type T, which are placed in the local memory of
process 0, but can be accessed by any process. Another rep-
resentative class is shared_array<T, B>, which provides
shared arrays of elements of type T distributed in chunks
of B elements across the spaces with affinity to the different
UPC++ processes following a block-cyclic distribution. The
argument B is optional, the default value being 1, which
leads to a cyclic distribution of the array contents. A final
example are the pointers global_ptr<T> and references
global_ref<T> to elements of type T located in the shared
space, which behave as their traditional counterparts, but
just allowing to access shared data that can be either local or
remote. On top of these and other related elements, UPC++
also provides higher level components such as multidimen-
sional domains and shared arrays [8], [12].

The usage of the UPC++ data structures located in the
shared space makes transparent the access to remote data
because the syntax is the same no matter the accessed item
is located in the portion of the shared space with affinity
to the considered process or not. However for performance
reasons, users should minimize the accesses to remote data
as much as possible. Listing 1 exemplifies the UPC++ pro-
gramming style with a parallel computation on a shared
array av of 100 elements divided in a block cyclic fashion
in blocks of four elements among the UPC++ processes.
Namely, the purpose of the code is to store in each element
av[j] the result of a computation that depends on the
original value of av[j] and the element bv[j] of another
array that follows a cyclic distribution. The computation
is performed in function update, whose parameters are a
global reference to an integer (global_ref<int>), which

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

just as regular references allows reading and modifying
the associated integer, and a regular C++ int. When this
function is invoked as update(av[j], bv[j]), the index-
ing of the shared arrays generates global references. The
global reference obtained from av[j] is stored in the formal
parameter a of the function, while the global reference from
bv[j] is implicitly transformed into an int, which may im-
ply a communication if the data is remote, and then stored
in the parameter b. This way, through the global reference,
the function can read and modify the underlying element
av[j] and use as input the integer read from bv[j]. Notice
that all the behaviors described are analogous to the ones we
would expect when considering standard C++ references,
just happening in the shared space.

A naı̈ve approach to perform this computation would
be to write a simple loop between 0 and 99 that executes
update(av[j], bv[j]) for each j. This would be incor-
rect because since the execution is SPMD, all the processes
would perform the computations and assignments to all the
positions of the array, resulting not only in bad performance
but also in incorrect results since many processes could use
as input elements of av already written by others. Our code
follows a correct and performant approach in which the
loop on i iterates on the beginning of each block assigned
to our rank, obtained by means of the function myrank(),
while the loop on j iterates on the elements of the current
block. This way, not only are the results correct because each
element is written by a single process, but the performance
is also optimized. The reason is that each process works on
the portion of the distributed array av located in its local
memory, avoiding communications for reading and writing
it. This way there will only be communications for bv[j]

when it turns out to be remote.
Other relevant components of the API include shared

space synchronous and asynchronous bulk data transfer
functions, remote procedure invocation functions, and sev-
eral synchronization mechanisms that will be discussed in
Section 4. Interestingly, the possibility of creating both local
and remote asynchronous tasks in UPC++ turns it into an
Asynchronous PGAS (APGAS) environment [13], contrary
to UPC.

We note for completeness that every UPC++ application
must invoke function init(&argc, &argv) before using
any UPC++ runtime routine or shared space variable. As
expected, in this invocation argc and argv are the standard
parameters of the main function. Similarly, it should shut
down the UPC++ environment before exiting by invoking
the provided function finalize().

It deserves to be mentioned that at the point of writ-
ing this manuscript a new version of UPC++ has been
proposed [14], which further proves the interest of this
environment. Besides appearing after the development of
our library, its specification is yet in draft mode and the
implementation is still in progress. For these reasons our
proposal and most discussions in this paper target [8]. While
the new UPC++ implementation provides more powerful
mechanisms in several areas than [8], as the other PGAS
approaches we know of, it does not offer anything similar to
UPC++ DepSpawn, thus it would also benefit from a version
of our library. For this reason we will also briefly discuss
how our work would integrate with this new proposal.

1 Tile A[N][N];

2

3 ...

4

5 void dgemm(Tile& dest, const Tile& a, const Tile& b) {

6 // Implements dest = dest + a x b

7 }

8

9 for(i = 0; i < dim; i++) {

10 spawn(potrf, A[i][i]);

11 for(r = i+1; r < dim; r++) {

12 spawn(trsm, A[i][i], A[r][i]);

13 }

14 for(j = i+1; j < dim; j++) {

15 spawn(dsyrk, A[j][i], A[j][j]);

16 for(r = j+1; r < dim; r++) {

17 spawn(dgemm, A[r][j], A[r][i], A[j][i]);

18 }

19 }

20 }

21

22 wait_for_all();

Listing 2: Cholesky DepSpawn example

3 TASK PARALLELISM WITH DEPSPAWN

DepSpawn [11], available at http://depspawn.des.udc.es, is
a library that supports task-parallelism expressed by means
of functions that carry their dependencies only through
their arguments. A unique characteristic of DepSpawn with
respect to other approaches in this field is that the labeling
of the dependencies is totally implicit. Namely, rather than
requiring the annotation of the functions with directives or
using an explicit library API to specify the dependencies,
they are directly inferred from the type of the formal param-
eters of the functions. In C++, which is the host language for
DepSpawn, the type of the parameters of a function indicate
whether the associated arguments will be passed by value
or by reference, and whether they will be modifiable or not,
which is indicated by the const type qualifier. Arguments
passed by value are copied, so that their modifications
inside the function cannot be observed outside. This way,
DepSpawn regards all arguments passed by value as only
inputs to the functions. Similarly, while the parameters
that have a constant reference type do not perform such
copy, being associated with the original argument, they
indicate that the argument provided will not be modified.
As a result, they are also only considered as task/function
inputs. Finally, non-constant reference parameters allow
both reading and modifying the associated argument, and
constitute thus both inputs and outputs of the considered
task/function.

This implicit approach for the computation of the depen-
dencies gives place to a very terse notation for the expres-
sion of parallelism. Namely, while DepSpawn provides a
richer API, two functions suffice to express complex task-
parallel applications with arbitrary dependencies among
their tasks. The first one is spawn, which requests the
execution of the function f with the arguments a, b, c,
. . . as a parallel task that respects the dependencies on its
arguments using the notation spawn(f, a, b, c, ...).
The second one is wait_for_all, which waits for all the
pending tasks to finish. This is illustrated in Listing 2,
which uses DepSpawn to express a task-parallel Cholesky
factorization performed by tiles of a given type Tile. The
figure includes a sketch for function dgemm that shows that

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

the task parameters rely on the standard C++ datatypes. In
this case DepSpawn will infer that the first argument can be
both read and written, while the remaining ones are only
inputs.

While the idea of running out of order tasks whose
dependencies are extracted from the parameter types could
be implemented by means of a layer on top of existing
task parallel frameworks with support for dependencies,
DepSpawn provides its own engine, which is heavily decen-
tralized and parallelized [11]. The current implementation
of the DepSpawn runtime works on top of the Intel R©

Threading Building Blocks (TBB) library [15], whose low
level API is used for the construction of the low level tasks.
Its main responsibility is the scheduling of these tasks once
DepSpawn informs TBB that they are ready for execution.
Finally, it deserves to be mentioned that DepSpawn, which
only supports shared-memory environments, has been com-
pared in terms of performance and programmability to
some of the most relevant alternatives in this field achieving
satisfactory results [10].

4 UPC++ DEPSPAWN

Before delving into the details of our proposal, we will
motivate its interest. UPC++ [8] provides synchroniza-
tions mechanisms based on locks, barriers, futures, fin-
ish constructs, and events. The three latter mechanisms
are related to remote function invocation based on the
async function, which allows requesting the execution of
arbitrary functions in remote locations using the syntax

future<T> f = async(place)(function, args)

where place can be a single thread ID or a group of threads.

The execution is asynchronous, so that the invoking thread
only waits for the result when it tries to use the returned
future. Finish constructs can be used to wait for the comple-
tion of asynchronous tasks spawned in a given syntactical
scope. Finally, events are objects that specify dependencies
between asynchronous tasks. Each event can be associated
with one or several tasks as postcondition or precondition
for its/their execution. An event is signaled when all the
tasks it has been associated with as postcondition have
finished. At that moment, it allows the execution of those
tasks to which it has been associated as precondition. The
fact that each UPC++ task can only trigger and depend on a
single event severely restricts the set of dependency patterns
that can be efficiently represented by this mechanism. Let us
consider for example the simple task dependency graph in
Fig. 1, in which task T2 is required in two different sets
of dependencies. Although multiple tasks can be registered
with the same event, so that it is only complete when all of
them finish, if for example we register T1 and T2 directly
in the same event, it cannot be later used to indicate the
dependencies for Ty without artificially including T1 as one
of its dependencies, which is not the case. The simplest
solution for this problem using the syntax and semantics
described in [8] is shown in Listing 3. The code triggers two
separate empty tasks when T2 finishes, which is indicated
by event e2. This way each one of them can contribute to a
different event, one of them being ex, which controls the
execution of task Tx and the other one being ey, whose
signaling allows the execution of task Ty.

T1 T2 T3

Tx Ty

Fig. 1: A simple task dependency graph

1 event ex, ey, e2;

2 async(p1, &ex)(T1); // Signals ex after T1 finishes

3 async(p2, &e2)(T2);

4 async(p3, &ey)(T3);

5 // Runs empty lambda after e2 is signaled,

6 //then signals event ex

7 async_after(px, &e2, &ex)([](){});

8 // Runs Tx after event ex is signaled

9 async_after(px, &ex)(Tx);

10 async_after(py, &e2, &ey)([](){});

11 async_after(py, &ey)(Ty);

Listing 3: Implementation of the task dependency
graph in Fig. 1 using UPC++ events

While these facilities allow the construction of complex
task dependency graphs, they are clearly more limited and
imply much more programming effort than a dataflow
approach, where the dependencies are implicitly expressed
by the data used by each task. The UPC++ futures proposed
in [8] are definitely a step in the right direction, but they
have many restrictions. For example, the proposed syntax
can only generate one future per invocation, which forces to
package together results that in an optimal implementation
can have different destinations. In addition, the associated
packing and unpacking contributes to the programming
effort. Also, while futures are well suited to express RAW
(read after write) dependencies, they do not seem a natural
option to express WAW and mainly WAR dependencies. It is
also noticeable that they can introduce important overheads,
as the fact that they hold the result of computations implies
that they cannot be directly stored in their final destina-
tion when they are not simply temporaries. This can be
particularly inconvenient when it affects data in distributed
structures, as it can give place to unneeded communications.
Being complex objects by themselves, the correct handling
of futures can require additional management in certain
environments. This is the case of sharing non-thread safe
futures between threads. Similarly, many future implemen-
tations are not serializable and/or cannot be shared by
multiple processes in distributed memory. This makes it
hard to share them as dependences of tasks to be executed in
different processes, unless a master-slave model is followed
in which a single process orchestrates all the tasks. Since the
master needs to set up all the dependencies, receive all the
notifications and submit all the tasks to the slaves upon the
readiness of the involved futures, it can become a natural
bottleneck. Also, because of the need to either block or poll
on the futures until their results are ready, they give place to
suboptimal executions of dataflow codes unless combined
with constructs that allow dynamically triggering tasks only
when the futures they depend on are ready. While most
implementations of futures provide these mechanisms [14],
[16], [17], [18], such elements are missing in [8].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Not only UPC++, but also the other PGAS implemen-
tations we know of would benefit from a totally implicit
dataflow approach. For this reason, we set to provide a
PGAS solution of this kind on top of UPC++ by adopting the
philosophy of DepSpawn. The result, UPC++ DepSpawn, is
now described first in terms of syntax and semantics, and
later in terms of implementation.

4.1 Programming model

UPC++ DepSpawn seeks to enable the clean and efficient
expression of dataflow computations on UPC++ distributed
objects. These will be thus computations broken in tasks
that only communicate through their arguments, and whose
execution will respect their dependencies. The easiest way
to express task-parallel computations is to write them just
as in the sequential version, letting a compiler or runtime
system take care of the parallelization details, which is the
approach followed by DepSpawn. Our proposal inherits
thus this behavior, so that the parallelized codes have
the same structure as their sequential counterparts, just
replacing the invocations to the functions f(args) that im-
plement each task with upcxx_depspawn(f, args). The
library also provides the upcxx_wait_for_all() function
in order to specify synchronization points in which all the
pending tasks must have completed.

An important issue is how to express the intent of
each task with respect to each parameter of the function
that implements it while allowing remote accesses. For
maximum flexibility, UPC++ DepSpawn supports as task
arguments both regular C++ objects, which are private to
the process, and UPC++ objects from the shared space.
The latter are of particular interest, as they convey the
dependencies with other PGAS processes that can also oper-
ate on them. The C++ pass-by-value and pass-by-reference
semantics discussed in Section 3 can also be applied to
UPC++ objects with some modifications. Namely, the most
widely used UPC++ shared objects are by far its distributed
arrays. As we saw when discussing Listing 1, when one of
such arrays of elements of type T is indexed, we do not
directly get a an item of type T. Rather, the indexing returns
a global_ref<T> object that stores the process and physical
address where the associated element is stored. This global
reference object allows both reading from and writing to that
potentially remote location. Namely, reads are supported
by C++ conversion operators, which implicitly return the
element of type T associated with the global reference
when it is used as input in an expression. Writing to the
remote location is achieved by means of the overload of
the assignment operator of the global_ref<T> class, which
stores in the associated location the value received as right
hand side of the assignment. Altogether, this allows both the
read and the write (assignment) expressions to perform as
expected on shared_arrays. Notice that global references
are thus the equivalent to the & reference C++ operator for
UPC++ shared objects, as they can be also associated with
shared_var scalars. The equivalency also covers the const
type qualifier, as very much like const& C++ standard refer-
ences, global_ref<const T> global references only allow
read accesses to the associated data. Therefore, global ref-
erences will be the parameters used in functions to express

1 shared_array<Tile, 1> A(N * N);

2 #define _(i, j) ((i) * N + (j))

3 ...

4

5 void dgemm(global_ref<Tile> dest, const Tile a,

const Tile b) {

6 // Implements dest = dest + a x b

7 }

8

9 for(i = 0; i < dim; i++) {

10 upcxx_spawn(potrf, A[_(i,i)]);

11 for(r = i+1; r < dim; r++) {

12 upcxx_spawn(trsm, A[_(i,i)], A[_(r,i)]);

13 }

14 for(j = i+1; j < dim; j++) {

15 upcxx_spawn(dsyrk, A[_(j,i)], A[_(j,j)]);

16 for(r = j+1; r < dim; r++) {

17 upcxx_spawn(dgemm, A[_(r,j)]), A[_(r,i)]),

A[_(j,i)]));

18 }

19 }

20 }

21

22 upcxx_wait_for_all();

Listing 4: Cholesky UPC++ DepSpawn example

reference and const reference semantics on data located in
the shared space. The pass-by-value semantics are simply
represented by the use of a regular C++ type, which will be
locally built by the process from the potentially remote data
when the dependencies on it have been fulfilled.

Listing 4 shows the UPC++ DepSpawn version of List-
ing 2, developed according to the explanations above. As we
can see, the biggest complication is that shared_array is a
unidimensional array, which forces to linearize the indexes
of the tiles. It must be noted though that UPC++ developers
offer more complex distributed arrays and of course users
can write their own multi-dimensional array classes with
the elements provided by UPC++, which is in fact what we
did for our tests.

Some characteristics of the programming model are
strongly related to implementation decisions. For example,
since UPC++ follows a SPMD model, we could have chosen
between two alternatives for the execution of the UPC++
DepSpawn applications. One, which we call centralized
model, would have been to execute the dataflow code in
a single process, which would act as master, and to require
the other processes to call a runtime function to operate as
servers during that portion of the execution. The master
could either directly choose which server would execute
each task or populate a task pool from which servers could
take new ready tasks when idle. The second model, which
we call distributed, would require all the processes to run
the code in parallel, agreeing during the execution on who
would execute what. The second option has been chosen,
as the centralized model naturally leads to a bottleneck as
the number of processes involved grows. This is reflected
in Listing 4, where the code shown is executed by all the
UPC++ processes so that all of them have all the informa-
tion on the tasks and dependencies involved, even if each
process will only execute a subset of the tasks.

Also, we felt that in current systems, where every node
has one or several processors with an increasing number of
cores, it made much sense to automatically support the par-
allel execution of multiple tasks in each process by means
of multithreading. Our main aim with this was similar to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

that of MPI+X approaches, namely to reduce the number of
processes in order to minimize the number of interactions
with the communication layer both for data exchanges and
synchronizations. A second purpose more specific to our
tool was to reduce the overhead associated with the dy-
namic generation of the task dependency graph (TDG), as in
our implementation only one thread in each process needs
to do it. Also, we designed this feature so that it is totally
oblivious to users, except for the specification of the number
of processes and threads per process to use during the ex-
ecution, making it extremely convenient. This specification
is performed either by invoking function set_threads(n),
where n is the number of threads requested, or by setting
the environment variable DEPSPAWN_NUM_THREADS to this
value before the application begins its execution.

While the main target of our proposal are codes with
complex patterns of dependences, as they benefit the most
from the dataflow behavior provided by our library, UPC++
DepSpawn can also simplify the development and main-
tenance of very regular codes. For example, Listing 1
implements an embarrassingly parallel loop whose only
complication is the need to assign correctly the iterations
to perform by each process in order to maximize locality.
UPC++ DepSpawn can be used to parallelize this loop by
spawning in each iteration the task to execute with the
proper arguments as shown in Listing 5. Since, as we will
see in Section 4.2, UPC++ DepSpawn follows a owner-
computes rule in order to minimize data transfers, this code
gives place to the same optimal distribution of computations
per process as Listing 1 using a single loop. Notice that
Listing 5 is not only arguably cleaner than the original
code, but it also enjoys the advantage that while changes
in the distribution of av for whatever reason will require
manually readjusting Listing 1, or rewriting it in order to
base it on the function that returns the blocking factor for
array av, the UPC++ DepSpawn version will automatically
self-adapt to any new arbitrary distribution of the arrays.
But the most critical advantage is probably that while
Listing 1 only provides process-level parallelism on top of
UPC++, the UPC++ DepSpawn version exploits in addition
multithreading within each process. This way each process
can execute in parallel as many loop iterations as possible
using the threads available without further programming
cost. As mentioned above, replacing process-level paral-
lelism by thread-level parallelism is a typical strategy for the
optimization of applications executed in hybrid shared/dis-
tributed memory systems, since data sharing and synchro-
nization is cheaper between threads than between processes.
In the case of our example, the advantage would be that an
increasing ratio of the elements of bv accessed would be
directly read from the local memory of the process rather
than obtained from other process, which is slower.

It deserves to be mentioned that while the new UPC++
version in development [14] provides much richer mech-
anisms and semantics than [8], it offers neither shared
arrays nor global references, which play a key role in our
proposal. Nevertheless, as one would expect, this UPC++
version provides a shared space with support for distributed
objects that can be remotely accessed by means of global
pointers. This enables to build arbitrary distributed data
structures whose elements can be accessed from any process

1 void update(global_ref<int> a, int b) {

2 // computations that use a and b

3 // to compute tmp, e.g. int tmp = a + b;

4 a = tmp;

5 }

6

7 ...

8

9 for(int j = 0; j < 100; j++)

10 upcxx_spawn(update, av[j], bv[j]);

11 upcxx_wait_for_all();

Listing 5: Listing 1 rewritten with UPC++ DepSpawn

participating in the execution, including distributed arrays.
This way, it is perfectly possible to replicate the same idea
of globally indexable distributed arrays on [14]. As for
the global references, their elimination is due to a design
decision to foster the exploitation of non-blocking accesses,
as the access through global references in [8] implies block-
ing global pointer dereferences. Still, given the existence of
global pointers in the new proposal, it is easy to build based
on them global reference classes analogous to those of [8].
In addition the new classes could be enhanced by exposing
both blocking and non-blocking behaviors when accessing
the associated element of the shared space. Regarding the
functionalities of UPC++ used by our runtime, they are
provided by both versions of UPC++. This way, nothing
precludes the implementation of UPC++ DepSpawn on the
new proposal.

4.2 Implementation

The decision to execute in parallel the dataflow code in all
the processes enables all of them to have a view of the task
dependency graph (TDG), each process having one copy
that is shared by all its threads. Namely, the main thread
of each process executes the main code and inserts the
node associated with the task expressed by each invocation
to upcxx_spawn in the TDG . During the insertion, the
decision on which process will execute the task is taken and
the dependencies with preceding tasks are identified and
stored. Both actions are performed in a totally independent
way in each process using a priority function based on
the location of the arguments and their access mode and
the local TDG, respectively. The selection function used in
our experiments chooses to run a task in the process that
owns most of its argument data, giving double weight to
the data that will be written. This gives place to an owner-
computes rule most of the time. Regarding the dependence
discovery process, it is optimized in several ways. First, only
dependencies in which at least one of the two tasks implied
is local, i.e. is to be run locally, are considered, as the other
ones require no action from the process. Second, tasks that
are still in the TDG but are known to have finished are dis-
regarded. Third, dependencies that are covered by already
existing dependencies are ignored. Thus for example if tasks
T1, T2 and T3 would have written to some common data
in a sequential execution, our runtime neither explores nor
records the dependency of T3 on T1 because T3 depends on
T2, and T2 already depends on T1.

If no dependencies are found for a local task, it is stored
in a ready pool from which any idle thread can take it for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

execution, otherwise it is left in the pending pool. The re-
maining activities in our implementation can be performed
by any thread. This way, when a worker thread finishes the
execution of a task, it is also responsible for examining the
local TDG in order to notify the tasks that depend on the just
finished one. In the case of local tasks this implies moving
them to the ready pool if this was their last pending de-
pendency. For dependent remote tasks, the thread will have
to notify their owner process on the completion of the task.
After this, the thread recycles the storage associated with the
task and its dependencies leaving the TDG in a consistent
state. Since multiple threads can perform different kinds
of updates on the TDG in parallel, our design is thread-
safe. Also, for performance reasons our runtime is based on
atomic operations based on the C++11 standard, our TDG
being in fact almost lock-free.

It must be noted that the described design can give
place to enormous pools of tasks, and thus very large TDGs
to explore for each insertion despite the pruning strategy
described above. This will happen for example when the av-
erage runtime of the tasks is much larger than the time that
the main thread requires to perform an insertion or when
the dependencies make it impossible to exploit enough task
parallelism to keep these data structures within reason-
able bounds. These circumstances negatively impact perfor-
mance, as the time required to find the dependencies in the
TDG grows, and locality is hurt because of the increase of
the memory footprint. For this reason another optimization
in our runtime consists in stopping the generation of new
tasks when the number of live tasks in the system is very
large, only resuming it when this number falls again below
a given limit. During these periods, the main thread does
not remain idle, devoting itself to the cooperative execution
of tasks that may be available in the ready pool and the
processing of remote requests.

The inter-process communications and synchronizations
are naturally performed on top of UPC++, which relies
on GASNet [19] for these purposes. Our library has been
designed as a separate layer that operates on top of UPC++.
This way, no modifications have been performed on the
UPC++ runtime, which allows installing UPC++ DepSpawn
on a standard UPC++ installation, only requiring that GAS-
Net and UPC++ have been compiled in thread-safe mode.
The accesses to remote data can be performed either by the
runtime or by the user. The reason is that, as explained in
Section 4.1, the global_ref objects that represent access
by reference to remote data do not access the data by
themselves, but only provide a pointer to it. As a result, our
runtime respects the dependencies on the data associated
with these objects in order to determine when it is safe to ex-
ecute a task, but it does not perform the transfers associated
with them. Rather, such transfers happen inside the tasks
under the control of the user. Nevertheless, when the formal
parameter of a task associated with a remote data is not a
global_ref but an object of a regular C++ type that must
hold the remote data, our runtime requests the data transfer
in order to fill in the argument before invoking the task. This
happens for example in Listing 5, where the parameter b of
the task update is a regular C++ type (int), while the asso-
ciated argument is the global_ref<int> returned by the
bv[j] used in its invocation. When our runtime launches

to execution the task because its dependencies have been
fulfilled, the arguments provided must be copied or trans-
formed into the parameters used by the funcion. Thus at that
point the global_ref<int> returned by av[j] is directly
copied in the formal parameter a, which has the same
type, while the conversion operator of global_ref<int>
allows transforming the global_ref<int> returned by
bv[j] into the int b. The conversion operator takes care
of bringing the data from its location and turning it into an
int, just as it happens with the uses of the global reference
a within the function update. If, on the contrary, the type
of the formal parameter b had been global_ref<const

int>, where the const modifier informs our library on the
intention to only use but not modify the related argument,
no transfer would have been performed at the moment
of invoking the function. Rather, the global_ref<int>

returned by bv[j] would have been transformed by means
of a conversion operator into a global_ref<const int>

that would be copied in the parameter b. Then, the actual
transfer would happen inside function update when b were
used with the intention of accessing the associated integer.

While the described design couples modularity with
flexibility, it still lacks two critical optimizations. The first
one pertains to the situation when several tasks that run
in the same process access remote data items, resulting in
replicated data transfers. For example, function tsrm in
line 12 of Listing 4 requires tile (i, i) as input to update each
one of the tiles (r, i), all of which can be updated in parallel
within the loop in line 11. In a typical problem where
there are many more tiles than processes and those tiles
are cyclically or block-cyclically distributed, each process
will have to update several tiles in this loop, and each one
of those updates will require a copy of tile (i, i). A naı̈ve
implementation would result in a transfer of this tile from
its owner process to the other ones for the execution of
each tsrm task. Our runtime, however, includes a cache, so
that there is a single transfer for each process, all the tasks
except the first one reusing the cached value. Since tasks are
basically assigned under an owner-computes rule, the cur-
rent implementation targets data read from other processes,
and it can operate either automatically or manually. Under
automatic operation, the arguments that UPC++ DepSpawn
identifies as read-only inputs of a task to be run locally
automatically transit through the cache. The cache always
returns a local address either because (a) the data is already
associated with the process, (b) a local copy is found in the
cache or (c) a remote request is performed to fill in a copy in
the cache and then its address is returned to the runtime.
Under manual operation the user can explicitly identify
which accesses go to the cache by using the provided
type cached_global_ref<T> instead of global_ref<T>.
Regarding coherency, since UPC++ DepSpawn knows all
the operations performed by every task on each piece of
data, it can automatically keep the cache of each process
consistent without any user intervention. The replacement
policy of our cache is LRU, while its size can be modified
by the user, not only before the execution of the code, but
at any point in the program. Notice that this optimization
is another reason why even UPC++ codes without complex
dependency patterns can benefit from being rewritten using
UPC++ DepSpawn. The motive is that if their remote ac-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

TABLE 1: Experimental environment.

Feature Value

#Nodes 32
CPUs/Node 2 x Intel Xeon E5-2680 v3
CPU Family Haswell
CPU Frequency 2.5 GHz
#cores/CPU 12
Total #cores 32× 2× 12 = 768

Memory/node 128GB DDR4
Network Infiniband FDR@56Gbps
Compiler g++ 6.3
GASNet 1.28.0
Intel R© TBB 2017.0

cesses exhibit some locality, caching them will be critical for
achieving good performance, which is effortlessly provided
by our library.

The second optimization relates to the process of discov-
ery of dependencies in the TDG. Since UPC++ DepSpawn
supports the discovery of dependencies between tasks due
to the usage of arbitrary overlapping memory regions, it
needs to compare every argument of each new task with
those of the live tasks in the TDG. Even when this pro-
cess is optimized, for example by using sorted lists of the
arguments, which reduces the number of comparisons for a
couple of tasks i = 1, 2 with Ti arguments each from T1×T2

to T1 + T2 − 1, this can still imply an important overhead
when the number of tasks to check is large. Nevertheless,
many algorithms only present dependencies that do not
require checking overlaps but only exacts matches. That is,
in these codes the memory regions of the task arguments
either completely match or are totally disjoint. This allows
a potentially faster dependency discovery algorithm based
on a hash table on the addresses of the task arguments that
avoids the comparison with the arguments of all the live
tasks. Since the runtime cannot know in advance whether
the code to run fulfills this property, this behavior, which
we call the exact match mode, is only enabled under the
request of the user. In fact, this and most parameters for
the execution of UPC++ DepSpawn, such as the cache size
mentioned before, can be provided to the runtime either by
means of environment variables or configuration functions
provided by our library that can be invoked at any point
in the code. A minority of the configuration options are
enabled by providing definitions during the compilation of
the source code, typically by means of the flag -D. This
is the case of options whose runtime management would
increase unnecessarily the overheads of the library and/or
whose implementation depends on data type manipula-
tions, which are performed during compilation. The most
relevant example of this second set of options is the usage
of automatic caching.

5 EVALUATION

The experiments were performed in the Linux cluster de-
scribed in Table 1, which consists of 32 nodes with 24 cores
each, totaling 768 cores. The optimization level O3 was used
in all the compilations. Also, since GASNet, the communica-
tion library on which UPC++ DepSpawn operates, provides
a conduit that runs over Infiniband networks like the one in
our cluster using the Open Fabrics Verbs API, our tests were

10 15 20 25 30 35 40 45 50 55 60 65 70

matrix size

0

10

20

30

40

50

60

O
v
e

rh
e

a
d

 w
.r

.t
 s

e
q

u
e

n
ti
a

l
e

x
e

c
u

ti
o

n
 (

%
)

TBB

UPC++ DepSpawn std

UPC++ DepSpawn exact match

Fig. 2: Overhead with respect to a sequential execution

performed using this conduit. The evaluation is split in two
parts. First, the overheads of our proposal are evaluated in
Section 5.1. Then, a comparison with other implementation
strategies is performed in Section 5.2.

5.1 Runtime overheads

We have first measured the overhead of our runtime by
means of an experiment consisting on executing a varying
number of independent simple tasks of different granular-
ities on a single core. The tasks were multiplications of
double precision square matrices of different sizes written
as three nested loops. We took as baseline a sequential
implementation and measured the overhead of spawning
each matrix product as a task using the TBB library, and
using UPC++ DepSpawn with and without exact match
mode. Figure 2 shows the overheads obtained with respect
to the sequential implementation. For each matrix size we
made experiments launching 2i, 7 ≤ i ≤ 14 parallel, i.e.,
without dependencies, tasks. The overheads measured were
very stable for all the number of tasks and thus the figure
shows the average value observed. We can see that the TBB
runtime on which our threading relies is very lightweight,
and while the overhead of UPC++ DepSpawn reaches 34%
for the smallest task, which is very reasonable given its small
size, it falls below 8% for the 20 × 20 matrix product and
it is already below 0.7% for the 45 × 45 matrix product. It
may look surprising that the exact match mode optimization
was counterproductive in this test. The reason is that this
optimization requires additional memory structures with
respect to the standard mode, thus requiring more memory
management and synchronizations. In fact the hash table
used by this optimization is the only element of our runtime
that uses a lock in our current implementation. The result is
also a testament to the high degree of optimization of the
standard mode. In fact, as one would expect, the kernel of
UPC++ DepSpawn in standard mode is very much based
on the runtime of DepSpawn, which showed to be on par
with state of the art tools such as OpenMP in [10].

Our second experiment evaluates the worst-case impact
of the runtime in a parallel execution. This overhead is
associated to the execution of a thread in each node that
dynamically analyzes the dependences between all the tasks
spawned and schedules them accordingly. It must be noted
that UPC++ DepSpawn is mostly of interest for applications

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

with complex patterns of dependences, where it is difficult
to code by hand in regular ways the synchronizations and
communications required. Therefore in these algorithms,
although not only in them, one can expect that there will be
very often at least one core available per node that would
be otherwise idle because of communication or synchro-
nization requirements. This core, or even just one of its
hardware threads, can be thus devoted to executing our
runtime without generating observable overhead. This is
particularly true as the number of cores per cluster node
continues to grow.

In order to measure the worst possible impact of this
overhead, our experiment considers an embarrassingly par-
allel execution that requires all the cores available and in
which no communications are needed, so that the overhead
cannot be hidden. This is modeled by a doall parallel loop
with as many iterations as cores involved, so that each
iteration is an independent task to be run in a different core
that only accesses data present in the node it is assigned
to. Other measures taken to maximize the relative overhead
of the runtime were to consider small uniform tasks and
to implement them as repetitive operations on processor
registers, so that there is almost no memory access cost
involved either. Since the purpose of this test is to mea-
sure the cost due to the iteration of the runtime on the
tasks and not just the standard overhead of the runtime
associated to the packaging of the tasks, which is already
evaluated in the previous experiment, the tasks used have
at least 214 flops, where we measured this overhead to be
≤ 2.5% of the sequential equivalent execution time. The
experiment consisted in measuring, for each number n of
nodes in our cluster, which has 24 cores per node, the
slowdown of spanning 24×n different tasks in a loop using
UPC++ DepSpawn, so that there were 24 tasks assigned for
execution to each node (i.e. one per core), with respect to
performing an equivalent manual parallel execution. The
manual implementation spawns at once 24 tasks of the same
cost in each node using tbb::parallel_for from Intel
TBB, and synchronizes the nodes with a barrier to ensure
they all finished. Figure 3 shows the result for four task
sizes using the label naive. The slowdown tends to grow
with the number of nodes because while the baseline always
performs the same amount of work per node, 24 parallel
tasks, our runtime must analyze in sequence the whole
task graph in each node, and in this experiment its size
grows linearly with the number of nodes. This limits the
scalability in this setup in which it is not possible to hide
this overhead. This way, for the largest number of nodes,
the slowdown for the smallest task size, which basically
equates the matrix product of tiles of size 20× 20, is 48.6%.
This number improves as the task size increases up to 8.1%
for the tasks of 220 flops. Notice that this is the number of
flops of a matrix product of tiles of size 80 × 80, which is
still much smaller than the typical optimal tile sizes found
in our tests in Section 5.2, as they were usually of size at
least 200× 200.

We must note that in the scenario described, program-
mers experienced in parallelism would try to optimize
these codes by breaking the parallelism in two levels. This
involves spawning at the top level a smaller number of
tasks –in the extreme case, a single task per node– so

1 2 4 8 16 32

Nodes

0

0.2

0.4

0.6

0.8

1

S
lo

w
d
o
w

n
 U

P
C

+
+

 D
e
p
S

p
a
w

n
 /
 T

B
B

cost 2
14

 naive

cost 2
16

 naive

cost 2
18

 naive

cost 2
20

 naive

cost 2
14

 opt

cost 2
16

 opt

cost 2
18

 opt

cost 2
20

 opt

Fig. 3: Slowdown with respect to a hand written embarrass-
ingly parallel execution of tasks of different granularities

that each one take cares of the processing of a propor-
tional number of original tasks, and using for example
tbb::parallel_for to perform such processing in paral-
lel within each top level task. This strategy, which we have
measured to be beneficial both for the UPC++ DepSpawn
and the TBB baseline versions, considerably reduces the
overhead of our runtime even when also considering the
new optimized baseline. With this strategy, whose results
are labeled as opt in Figure 3, the maximum performance
lost when using all the nodes is 23.2% for the tasks of
214 flops and the minimum one 5.5% for the tasks of 220

flops. These results highlight that, since the analysis and
scheduling overhead grows with the number of tasks to
manage, two related very simple and effective approaches
to reduce the runtime overhead are the increase of the task
granularity and the usage of several levels of parallelism.
This is generally feasible because the usage of large numbers
of processing resources is usually related to the exploitation
of data parallelism, in which the repetitive application of an
identical operation of independent data elements makes it
easy to adjust the granularity of the tasks. The exploration
of further optimizations to reduce this overhead is part of
our future work. A critical strategy to explore consists in
pruning the task graph analyzed in each node so that only
the local tasks, their dependences and their dependent tasks
are considered, as this is all that is actually needed in each
node.

5.2 Comparison with other approaches

The remaining experiments rely on benchmarks from [20],
which elaborates on the famous Berkeley dwarfs [21]
that characterize different classes of emerging applications.
Namely, Gajinov et al. propose a benchmark to cover each
class of dwarf and analyze its programmability under sev-
eral paradigms. Their study concludes that the dwarves that
are best suited for dataflow computing are dense algebra,
sparse algebra, and structured grid problems. Then, there
are another five dwarves in which dataflow is one of the
best models for expressing it, but other model(s) can be
also appropriate. In view of this, our evaluation is based
on the right-looking Cholesky decomposition of a lower
triangular matrix used as example in Listings 2 and 4, and
a LU dense decomposition, which represent dense linear

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

for (int k = 0; k < N; k++) {

lu0(A[k][k]);

for (int j = k+1; j < N; j++)

if (A[k][j] != null)

fwd(A[k][k], A[k][j]);

for (int i = k+1; i < N; i++) {

if (A[i][k] != null) {

bdiv(A[k][k], A[i][k]);

for (int j = k+1; j < N; j++) {

if (A[k][j] != null) {

if (A[i][j] == null)

A[i][j] = bmod(A[i][k], A[k][j]);

else

bmod(A[i][k], A[k][j], A[i][j]);

}

}

}

}

}

Listing 6: Sparse LU algorithm

while(!convergence_reached()) {

for(int i = 1; i < N - 1; i++) {

for(int j = 1; j < N - 1; j++) {

m[i][j] = f(m[i][j], m[i-1][j], m[i+1][j],

m[i][j-1], m[i][j+1]);

}

}

}

Listing 7: Gauss-Seidel stencil

algebra problems; a sparse LU factorization, which repre-
sents the sparse algebra problems; a Gauss-Seidel stencil
computation, which represents the structured grid dwarf;
and the Viterbi algorithm for the Hidden Markov model,
which represents the graphical models dwarf, one of the
five hybrid dwarves identified in [20].

Let us notice that the sparse LU factorization, depicted in
Listing 6, is both irregular and dynamic, as new tiles can be
created during the execution of the program following an
irregular pattern. The listing also indirectly illustrates the
dense LU benchmark, since the dense counterpart is the
same algorithm, just removing the conditional statements
and considering only the branch where the tile is not empty.

The structured grid dwarves perform computations on
regular multidimensional grids in a sequence of steps until
either convergence is reached or a certain time interval
is completed. This is indeed the case of the Gauss-Seidel
method considered, shown in Listing 7, which is applied
repetitively on a matrix until a convergence condition is
met. As explained in [20], the parallelization of this method
takes the form of a wavefront, which can be implemented at
element or tile level, and using either barriers, with one per
diagonal, or a dataflow approach. The dataflow solution,
besides avoiding the barriers, usually does not synchronize
at the end of each application of the method, but each n

applications in order to further exploit parallelism. This is
safe for small values of n ([20] suggests values around ten
or twenty) because typically a few thousand applications or
more are needed to converge to a satisfactory level,.

As for the Viterbi algorithm, depicted in Listing 8, it
considers a number of states and a series of observations
that appear in sequence. For each observation t it computes
the most likely preceding state, which depends on the
probability for every state i in the preceding observation,

for (int i = 0; i < NStates; i++) { //initialization

initialize(delta[0][i]);

psi[0][i] = 0;

}

for (int t = 1; t < num_observations; t++) { //main loop

for (int j = 0; j < NStates; j++) {

for (int i = 0; i < NStates; i++) {

find_max_prob(delta[t-1][i], delta[t][j], psi[t][j]);

}

adjust(delta[t][j], psi[t][j]); //very lightweight

}

}

Listing 8: Viterbi algorithm for the Hidden Markov model

stored in delta[t-1][i]. The probability of each state j

for a given observation t, stored in delta[t][j], together
with the pointer to the most likely preceding state for that
state, stored in psi[t][j], can be computed in parallel
once those of the previous observation are available. The
computations are performed in function find_max_prob.
This routine updates with a new probability and its associ-
ated pointer delta[t][j] and psi[t][j], respectively, if
the probability derived from the currently analyzed state in
delta[t-1][i] happens to be larger than the probability
previously stored in delta[t][j]. This way, the natural
parallelization strategy is to perform in parallel loop j

in Listing 8 and synchronize the threads/processes before
the beginning of each iteration of loop t. In a distributed
memory environment this would also be the best moment
to broadcast the portions of the row delta[t-1] computed
by each process to the other ones.

All the algorithms were written in a tiled style, and the
basic blocks of the algebraic algorithms rely on BLAS oper-
ations which were provided by the highly optimized Open-
BLAS library version 0.2.20 and work on double-precision
matrices. Also, all the experiments use one process with 24
threads per node, one per hardware core available. As a
result, since UPC++ DepSpawn was in charge of exploiting
the thread parallelism, OpenBLAS was configured to run its
routines in single-threaded mode.

Two critical decisions when implementing these algo-
rithms on distributed or hybrid memory systems are the
distribution of the tiles among the nodes and the selection of
the tile size. The importance of the first decision is illustrated
by Fig. 4, which shows the performance obtained by the
dense linear algebra algorithms implemented with UPC++
DepSpawn and executed on the 32 nodes of our cluster on
a 40000 × 40000 matrix with tiles of 250 × 250 elements
for different tile distributions. Namely, the legend a × b

corresponds to a 2D block-cyclic distribution in which the 32
nodes are organized as a a× b mesh. The figure also shows
for each distribution the performance obtained when the ex-
act match mode is used (right bar in each pair) and when it
is not (left bar). The large variation of performance observed
for the different tile distributions is due to a combination of
factors. One of them is the more balanced work distribution
that some definitions of the processor mesh can achieve
with respect to others. Another important consideration is
the access pattern to remote tiles that each tile distribution
gives place to. Just as in hardware processor caches, each
combination of data placement and access pattern can give
place to widely varying cache hit rates, and given the large

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Cholesky LU
0

2000

4000

6000

8000

10000

12000

32x1 no EM

32x1 EM

16x2 no EM

16x2 EM

8x4 no EM

8x4 EM

4x8 no EM

4x8 EM

2x16 no EM

2x16 EM

1x32 no EM

1x32 EM

Fig. 4: Performance of Cholesky and LU as a function of the
distribution of the tiles and the usage of the exact match
mode working on 40000× 40000 matrices with 32 nodes

cost of the remote accesses compared to the cache hits, this
results in strong performance variations. Another factor is
the ratio of dependent computations that are located in the
local node or in a remote node for each distribution. The
reason is that the first situation only requires light thread-
level synchronizations, while, even if the caches manage to
avoid most data transfers, the second situation requires at
least inter-node synchronization messages.

As we can see, the most squared distributions provide
the best performance for these algorithms. The reason is the
predominance, in the case of Cholesky, and exclusiveness,
in the case of LU, of communication patterns in which each
tile needs to be communicated to nodes that are in the same
row or in the same column of the bidimensional mesh as
the owning node. As a result, if for example we consider 32
nodes, in the 1 × 32 and 32 × 1 distributions the algorithm
will often have to communicate tiles to the other 31 nodes,
while in 4 × 8 and 8 × 4 distributions such communication
will only be needed for the (4 − 1) + (8 − 1) = 10 nodes
that are either in the same row or in the same column. Since
LU only has patterns of this kind, the effect is stronger in it.
Cholesky presents more varied patterns, the most common
one being communications across rows. As a result the
extreme distribution 32 × 1 while not optimal, provides a
reasonable performance because it places all the tiles in the
same row of the matrix in the same node, while conversely
1 × 32, which partitions block-cyclically the rows, i.e. in
chunks of columns, is by far the worst one.

We have also used this figure to illustrate that, although
the exact match mode resulted in some overhead in the
experiment depicted in Fig. 2, it can be critical for good
performance in many situations. In fact in this experi-
ment we can see that it is responsible for 31% and 32%
of the performance obtained by the best tile distribution
for the Cholesky factorization and the LU decomposition,
respectively. In our tests its usage had almost no negative
impact on performance, meaning the runtime variations
were within 1% in the executions using only one or two
nodes. Nevertheless, as the amount of work available per
core decreased, its role became more important.

The impact of the tile size, or equivalently the granular-
ity of the tasks and the data transfers, is evaluated in Fig. 5,

100 200 300 400 500

Tile size

1000

2000

3000

4000

5000

6000

G
F

lo
p

s

Cholesky

LU

Fig. 5: Performance of Cholesky and LU as a function of the
tile size

which shows the performance of these two benchmarks
for different tile sizes when applied to a 60000 × 60000
matrix on eight nodes of the cluster. For each tile size
we tried all the possible tile distributions using a constant
UPC++ DepSpawn cache of 256 MBytes, and the best result
has been used in the figure. We can see that the small
100× 100 tile is by far the worst one for all the benchmarks.
This makes sense as the smaller the tile size, the larger
the number of communications, and although the message
size is also smaller, there is a fixed cost per message that
cannot be avoided as well as a larger number of tasks and
dependencies to manage. As for the best tile size, it is at
400× 400 for LU, while Cholesky begins to decline for tiles
larger than 300× 300. The best tile size can vary depending
on the algorithm, the size of the problem to solve, the tile
distribution and the number of nodes used.

Figures 6 to 10 show the performance of our imple-
mentation and related baselines for the five benchmarks as
the number of nodes used grows considering two problem
sizes. In most benchmarks the problem size corresponds
to the size N of a N × N square matrix. In the case of
Viterbi, the number corresponds to the number of states per
row, as the parallelism is proportional to it, 20 observations
being considered for both problem sizes. The difficulty in
computing the exact flops used in the case of the sparse
LU decomposition led us to label the performance based on
the speedup with respect to a sequential execution rather
than using GFlops. In each node we always use the 24
cores available, thus all the experiments scale from 24 to
768 cores. Also, each point corresponds to the execution
with the best combination of configuration factors (mainly
tile size and matrix distribution) found for the associated
implementation.

In the case of Cholesky and LU, the graphs compare the
performance of UPC++ DepSpawn with ScaLAPACK [22]
and DPLASMA [23]. ScaLAPACK is the state-of-the-art
reference implementation of these routines in distributed
memory systems, while DPLASMA is the leading available
implementation and it is based on the task-based dataflow-
driven PaRSEC runtime [24]. As discussed in Section 6,
this runtime is based on an explicit specification by the
user of all the dependences found in the application, from
which the framework generates a code that once merged
with the computational kernels provided by the user, im-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

1 2 4 8 16 32

Nodes

0

5000

10000

15000

G
F

lo
p

s

UPC++ Depspawn 40000

DPLASMA 40000

ScaLAPACK 40000

UPC++ Depspawn 70000

DPLASMA 70000

ScaLAPACK 70000

Fig. 6: Performance of the dense Cholesky descomposition
benchmark

plements the application in a dataflow fashion. ScaLAPACK
and DPLASMA operate on top of MPI, the implementation
used in our experiments being OpenMPI, and they use
the same OpenBLAS library as UPC++ DepSpawn for the
BLAS operations. In addition, DPLASMA, similar to UPC++
DepSpawn, can exploit multithreading within a node, and
it relies on hwloc [25] to discover the NUMA architecture
available at runtime and optimize placement and task steal-
ing.

Figures 6 and 7 have in common the reduced perfor-
mance of ScaLAPACK with respect to the other two im-
plementations. There are two reasons for this. First, since
ScaLAPACK only relies on MPI, the communications and
synchronizations between the processes that run within
each node involve more overhead than the multi-threaded
solution within shared-memory environments supported by
the other approaches. Second, ScaLAPACK is the only one
that lacks the fine-grained per-task synchronization enabled
by the dataflow philosophy.

Regarding the dataflow implementations, while
DPLASMA always offers the best performance for
Cholesky, in LU the roles are reversed and UPC++
DepSpawn consistently leads in performance. For example,
while DPLASMA is 29% faster than our implementation
when applying Cholesky on the largest matrix tested on
32 nodes, in the same LU test UPC++ DepSpawn is 28.4%
faster than DPLASMA. Here we must take into account
that the off-line static approach taken by DPLASMA greatly
reduces the overhead of the runtime compared to UPC++
DepSpawn, which detects dynamically the dependences.
Another factor to consider is that the availability at once
of all the code dependencies allows DPLASMA to apply
optimizations not available in dynamic runtimes like ours,
a clear example being the use of collectives for distributing
data. This, together with the tighter control of locality
enabled by hwloc and the traditional better performance
of MPI over PGAS [26] provide DPLASMA the largest
performance potential. However, the static compiler-like
approach taken by DPLASMA also means that, just as
regular compilers do, depending on its internal algorithms
and heuristics it may make better optimization decisions
for some algorithms than for others. This way, while
DPLASMA LU satisfactorily outperforms ScaLAPACK, the
result of UPC++ DepSpawn shows that it can be further

1 2 4 8 16 32

Nodes

0

0.5

1

1.5

2

G
F

lo
p
s

10
4

UPC++ Depspawn 40000

DPLASMA 40000

ScaLAPACK 40000

UPC++ Depspawn 70000

DPLASMA 70000

ScaLAPACK 70000

Fig. 7: Performance of the dense LU descomposition bench-
mark

optimized. The other advantages of UPC++ DepSpawn
with respect to static explicit approaches are on the side of
usability and generality for two reasons. First, the manual
specification of the dependences between tasks typically
requires more effort and is more error-prone than just
specifying the inputs and outputs of each task. Second,
dynamic approaches like ours allow parallelizing irregular
codes that cannot be considered by static approaches, this
being the case of the sparse LU decomposition considered
in this paper.

In the case of the three remaining algorithms the baseline
used has been developed by hand combining UPC++ for
cluster-level data distribution and parallelism with TBB for
node-level parallelism based on threads. Our manual sparse
LU implementation follows the same natural strategy as the
baseline in [27], which separates with barriers three states
in each iteration of the main loop (lu0, then fwd in parallel
with bdiv, and finally bmod), with one added optimization.
Namely, we replaced the global barrier between the bmod

stage of each iteration and the lu0 task of the next iteration
by a thread barrier only in the node that contains the tile
to be processed by lu0, as the task can only depend on a
bmod operation performed in the same node. The scalability
seen in Figure 8 is unsurprisingly much lower than in the
dense case in Figure 7, as the amount of computation is
much smaller, since for both problem sizes we used sparse
matrices in which only 4% of the tiles had data. The fact that
our baseline exploits thread-level parallelism within each
node allows it to offer performance much more comparable
to UPC++ DepSpawn than ScaLAPACK for the dense case.

The Gauss-Seidel evaluation corresponds to ten itera-
tions of the application of the method on two matrices of
the sizes indicated in Figure 9. Two manual baselines were
developed for the Gauss-Seidel method. We started with one
based on a barrier per diagonal as suggested in [20], but its
performance was unsatisfactory. We therefore implemented
an asynchronous alternative by associating a counter to each
tile and sending one message to the south and another one
to the east whenever a tile is computed in order to increase
the counter of the neighbor tiles. When such counter reaches
the value one (along the first column and the first row)
or two (for all the other tiles), the associated tile can be
safely processed using the data required from its west and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

1 2 4 8 16 32

Nodes

10

20

30

40

50

60

70

80

S
p
e
e
d
u
p

UPC++ Depspawn 40000

UPC++ manual 40000

UPC++ Depspawn 70000

UPC++ manual 70000

Fig. 8: Performance of the sparse LU descomposition bench-
mark

1 2 4 8 16 32

Nodes

0

0.5

1

1.5

2

2.5

3

G
F

lo
p
s

10
10

UPC++ Depspawn 32000

UPC++ async 32000

UPC++ barrier 32000

UPC++ Depspawn 64000

UPC++ async 64000

UPC++ barrier 64000

Fig. 9: Performance of the Gauss-Seidel benchmark

north neighbor tiles, when they exist. Upon the processing
of the southeast-most tile of the matrix all the ranks are
notified, the counters are reset, and a new iteration can be-
gin. Given the large improvement observed in this version,
this strategy was enabled for the internal processing of each
tile in all the versions. This way our three versions support
partitioning the matrix tiles into a second level mesh of sub-
tiles in which several threads can participate in a wavefront
from the northwest to the southeast relying on the same
strategy based on counters, in this case implemented by
atomic variables. It also deserves to be mentioned that
since Gauss-Seidel always requires communication of the
neighboring data of tiles from north to south and from west
to east, using a block-cyclic distribution of the tiles results
in bad performance. Thus this is the only algorithm tried
in which once the matrix is partitioned into tiles, the tiles
are assigned in consecutive bidimensional blocks of them to
the nodes, which provides much better performance. The
performance shown in Figure 9 corresponds to the best
combination of tile size, subtile size and data distribution
found for each version. We can see that the noticeably larger
complexity of the manual asynchronous version is worth
the effort with respect to the baseline based on barrier, but
the much simpler UPC++ DepSpawn version outperforms
it thanks to the ability to overlap the processing of different
iterations of the main loop.

Finally, Viterbi is the algorithm with the most regular
and simplest pattern considered. The manual baseline fol-

1 2 4 8 16 32

Nodes

0

0.5

1

1.5

2

2.5

G
F

lo
p
s

10
11

UPC++ Depspawn 32000

UPC++ manual 32000

UPC++ Depspawn 64000

UPC++ manual 64000

Fig. 10: Performance of the Viterbi benchmark

lows the natural strategy of broadcasting the state proba-
bilities computed for an observation in each node to all the
other nodes right before the computation of the probabilities
associated to the next observation. These probabilities are
then computed in a parallel loop in which each node takes
care of the probabilities located in tiles in its local memory.
After our experience with Gauss-Seidel we also allowed
both the manual and the UPC++ DepSpawn version to
divide in parallel subtasks the computation of each tile. This
had a positive effect on both versions not only because of
the further distribution of the computation and paralleliza-
tion overhead among the cores, but also because this gave
implicitly place to a tiling on the data structures used in
the computation that enhanced locality. Figure 10 shows the
performance for the best tile size and number of subtasks for
each version. Despite the manual parallelization fitting very
well the application, UPC++ DepSpawn offers on average
∼5.8% more GFlops. The main reason is that even if the size
of the parallel tasks is identical, their runtime is not because
of the memory accesses within the find_max_prob func-
tion, which is intensive in memory. Namely, the access costs
vary depending on the state of the caches and the location
of the executing thread with respect to the processed data
in our NUMA nodes with 2 sockets. An additional related
reason is that often the task subdivision that gives place to
the best execution time does not generate a number of tasks
that is a multiple of the 24 cores available per node, which
gives place to some load unbalance. Altogether, this gives
place to idle cycles for some threads in the local barrier of
the manual implementation that do not exist in the UPC++
DepSpawn version thanks to its much larger scheduling
flexibility.

6 RELATED WORK

There have been several proposals to enable the effective de-
velopment of task parallel algorithms with complex patterns
of dependencies on distributed memory systems. Some of
them have been ad-hoc implementations addressing a single
problem, such as the Cholesky [28] or the LU factoriza-
tions [29], the latter one being implemented on top of the
UPC language.

As for the generic approaches, they can be classified in
two large groups depending on whether the dependencies

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

are explicitly or implicitly provided. A representative ex-
ample of the first group is the Parameterized Task Graph
(PTG) model [30], which is the basis for the PaRSEC frame-
work [24]. In this model the user expresses the dependencies
between tasks using a domain specific language from which
a code that supports the dataflow parallel execution of
the algorithm expressed is statically generated. On the one
hand, the availability of the task graph in advance enables
this approach to apply more ambitious optimizations than
the dynamic approaches. On the other hand, the obvious
shortcomings are the impossibility of expressing applica-
tions whose dependencies are irregular or can only be
known at runtime, and the difficulty that the discovery and
correct conveyance of the dependencies may entail for the
user.

Other explicit approaches discover the dependencies
during the execution with the help of program objects that
the programmer uses to express such dependencies. This
is the case of the UPC++ events discussed in Section 4.
They are inspired by and share the same limitations as
those of Phalanx [31], a programming model for distributed
heterogeneous machines whose synchronization relies on
them when barriers do not suffice. Single assignment vari-
ables [32], [33] and futures, these latter ones having been
also discussed in Section 4, offer some degree of implic-
itness but they are only a natural option for read-after-
write data dependencies, and even for the codes where
these are the only dependencies to consider, their effective
use to express optimized dataflow computations requires
additional mechanisms. The reason is that in a dataflow
model tasks should start their execution only when their
data are ready, while these approaches require the depen-
dent tasks to either poll or block on them until they are
ready, i.e., until the dependencies they are associated with
are fulfilled. The additional mechanisms needed must thus
be able to associate each task with the set of dependence-
carrying items it depends on, and to ensure that the task
will only be launched for execution when all those futures
or synchronization variables are ready. This is the case of the
the dataflow objects provided by HPX [18], which supports
task based programming on distributed systems on top of
C++, or the combination of distributed data-driven futures
and await clauses for asynchronous tasks in [17], which
provide a similar functionality in Habanero-C MPI. Chapel’s
synchronization variables [32] present similar restrictions
with the difference that they can be written multiple times
at the cost that each write can only be read by a single syn-
chronization access. Finally, [14] also provides mechanisms
to chain the multiple futures on which a computation may
depend and only launch it as a callback when they are ready,
also avoiding blocking or polling.

The implicit approaches typically only require from the
user the annotation of the inputs and the outputs of each
task in an apparently sequential code, and sometimes also
the registration of the data to use. These proposals identify
the dependencies that must be fulfilled to guarantee sequen-
tial consistency by considering the data accessed by each
task during the sequential order of execution of the tasks
with the help of a runtime attached to the application, so
that this identification happens during the execution. This
implies that all the tasks in the application and their depen-

dences must be analyzed in sequence in order to establish
where and when to run each one of them, which can turn
into a bottleneck that limits the scalability. In centralized
approaches a single process is responsible for this analysis
and the management of the TDG, while the other partic-
ipants act as servers that run the tasks assigned to them.
This is the case of ClusterSs [27], which annotates Java code
to indicate the usage (input, output or both) of each task pa-
rameter or OmpSs [34], which relies on compiler directives
similar to OpenMP to provide this and other informations
on C/C++ codes. The potential scalability limitations of
this approach are ameliorated in [34] by supporting the
submission of tasks that can can be further decomposed and
parallelized within a node. In decentralized proposals like
ours every process performs independently this analysis in
order to avoid the potential bottleneck associated to the
master and the communications with it. Another decentral-
ized library-based framework in this family is StarPU [35],
which relies on handles to pre-registered data to express
its dependencies and data distribution. StarPU uses MPI
for the distributed executions, which take place on separate
processes [36]. This differs from the transparent support of
multithreading within each process in our approach, which
reduces the communication and TDG handling overheads.

A proposal that supports task-based dataflow execution
on distributed systems on top of a novel programming
paradigm is Legion [37], which identifies logical regions that
can be accessed by different tasks and which are decoupled
from the different physical regions to which they may be
mapped. The large flexibility of the model and its new
concepts requires a non-trivial programming on top of a
C++ library API, which led to the development of a new
language and compiler [38] that substantially simplify the
exploitation of Legion. Another language-based proposal
that provides dataflow parallelism on distributed systems
is Swift/T [39], which relies on MPI to glue user codes
written in traditional languages. A distinctive property of
Swift/T is its purely functional nature, which contrary to
most proposals, including ours, does not allow tasks to
modify their arguments.

Finally, HabaneroUPC++ [40] has in common with our
proposal that it extends UPC++ in order to provide a
compiler-free library that enhances the usability of this
PGAS environment, in this case by supporting rich features
for dynamic task parallelism within each process. Namely,
it relies on UPC++ for PGAS communication and RPC,
and Habanero-C++ for supporting intra-place work-stealing
integrated with function shipping.

7 CONCLUSIONS

In this paper we have presented UPC++ DepSpawn, a
library that enables task-based dataflow programming on
distributed memory systems on top of UPC++, which pro-
vides an asynchronous PGAS environment in the widely
used C++ language. A key characteristic of this proposal
is the simplicity of its syntax and semantics, which gives
place to programs that look very much like their sequential
counterparts, and are thus easy to develop, understand
and maintain. In fact the differences basically lie in the
usage of the function upcxx_spawn to spawn the parallel

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

tasks and function upcxx_wait_for_all to wait for the
completion of the dataflow algorithm, coupled with data
types provided by UPC++ to represent the distributed data
structures and the references to them. Given the inspira-
tion of this library by DepSpawn, a library that offers this
programming paradigm in shared memory systems, as well
as the increasing number of cores per node, it was also
natural that UPC++ DepSpawn offered the same transparent
dataflow task-parallelism within each process.

Our implementation contains a large number of opti-
mizations that allow it to outperform by different margins
both traditional ScaLAPACK implementations for this kind
of systems as well as versions manually developed on top
of UPC++ and TBBs, even in algorithms that present large
regularity. A comparison with the state of the art DPLASMA
library, which combines MPI with threads in a dataflow
execution, also shows the interest of our proposal, as each
framework clearly leads in performance in different tests.
In addition our proposal provides other advantages such as
larger usability and support for irregular computations.

As future work we plan to implement more optimiza-
tions in UPC++ DepSpawn and study the feasibility of
introducing extensions that facilitate the development of a
wider range of applications on top of it. A port to a new
proposed version of UPC++, once it is stable, is also a pos-
sible work. We also plan to release the code under an open-
source license together with installation and configuration
instructions.

ACKNOWLEDGEMENTS

This research was supported by the Ministerio de Economı́a,
Industria y Competitividad of Spain and FEDER funds of
the EU (TIN2016-75845-P), and by the Xunta de Galicia
co-founded by the European Regional Development Fund
(ERDF) under the Consolidation Programme of Competitive
Reference Groups (ED431C 2017/04) as well as under the
Centro Singular de Investigación de Galicia accreditation
2016-2019 (ED431G/01). We also acknowledge the Centro de
Supercomputación de Galicia (CESGA) for the use of their
computers.

REFERENCES

[1] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell,
S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu,
A. Kamil, R. Nishtala, J. Su, M. Welcome, and T. Wen, “Produc-
tivity and performance using partitioned global address space
languages,” in Proc. 2007 Intl. Workshop on Parallel Symbolic Com-
putation, ser. PASCO ’07, 2007, pp. 24–32.

[2] R. W. Numrich and J. Reid, “Co-array Fortran for Parallel Pro-
gramming,” SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, 1998.

[3] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “UPC language
specifications, v1.2,” Lawrence Berkeley National Lab, Tech. Rep.
LBNL-59208, 2005.

[4] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in 20th Annual ACM
SIGPLAN Conf. on Object-oriented Programming, Systems, Languages,
and Applications, ser. OOPSLA ’05, 2005, pp. 519–538.

[5] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programma-
bility and the Chapel language,” Int. J. High Perform. Comput. Appl.,
vol. 21, no. 3, pp. 291–312, Aug. 2007.

[6] K. A. Yelick, S. L. Graham, P. N. Hilfinger, D. Bonachea, J. Su,
A. Kamil, K. Datta, P. Colella, and T. Wen, “Titanium,” in Encyclo-
pedia of Parallel Computing, 2011, pp. 2049–2055.

[7] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,
and E. Aprà, “Advances, applications and performance of the
global arrays shared memory programming toolkit,” Intl. J. of
High Performance Computing Applications, vol. 20, no. 2, pp. 203–
231, 2006.

[8] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick,
“UPC++: A PGAS extension for C++,” in IEEE 28th Intl. Parallel
and Distributed Processing Symp. (IPDPS 2014), May 2014, pp. 1105–
1114.

[9] A. Koniges, B. Cook, J. Deslippe, T. Kurth, and H. Shan,
“MPI usage at NERSC: Present and future,” in 23rd
European MPI Users’ Group Meeting, ser. EuroMPI 2016, 2016,
pp. 217–217. [Online]. Available: https://www.nersc.gov/assets/
Uploads/MPI-USAGE-at-NERSC-poster.pdf

[10] B. B. Fraguela, “A comparison of task parallel frameworks based
on implicit dependencies in multi-core environments,” in 50th
Hawaii Intl. Conf. on System Sciences, ser. HICSS’50, 2017, pp. 6202–
6211.

[11] C. H. González and B. B. Fraguela, “A framework for argument-
based task synchronization with automatic detection of dependen-
cies,” Parallel Computing, vol. 39, no. 9, pp. 475–489, 2013.

[12] A. Kamil, Y. Zheng, and K. Yelick, “A local-view array library
for partitioned global address space C++ programs,” in ACM
SIGPLAN Intl. Workshop on Libraries, Languages, and Compilers for
Array Programming, ser. ARRAY’14, 2014, pp. 26:26–26:31.

[13] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunning-
ham, D. Grove, S. Kodali, I. Peshansky, and O. Tardieu, “The
asynchronous partitioned global address space model,” in First
Workshop on Advances in Message Passing, ser. AMP’10, June 2010.

[14] J. Bachan, D. Bonachea, P. H. Hargrove, S. Hofmeyr, M. Jacquelin,
A. Kamil, B. van Straalen, and S. B. Baden, “The UPC++ PGAS
library for exascale computing,” in 2nd Annual PGAS Applications
Workshop, ser. PAW17, 2017, pp. 7:1–7:4.

[15] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism, 1st ed. O’Reilly, July 2007.

[16] S. Tasirlar and V. Sarkar, “Data-driven tasks and their implemen-
tation,” in 2011 Intl. Conf. on Parallel Processing, ser. ICPP’11, Sept
2011, pp. 652–661.

[17] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cavé, M. Chabbi,
M. Grossman, V. Sarkar, and Y. Yan, “Integrating asynchronous
task parallelism with MPI,” in 2013 IEEE 27th Intl. Symp. on Parallel
and Distributed Processing, ser. IPDPS 2013, May 2013, pp. 712–725.

[18] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“HPX: A task based programming model in a global address
space,” in 8th Intl. Conf. on Partitioned Global Address Space Pro-
gramming Models, ser. PGAS ’14, 2014, pp. 6:1–6:11.

[19] D. Bonachea, “Gasnet specification,” University of California at
Berkeley, Berkeley, CA, USA, Tech. Rep. CSD-02-1207, oct 2002.

[20] V. Gajinov, S. Stipić, I. Erić, O. S. Unsal, E. Ayguadé, and A. Cristal,
“Dash: A benchmark suite for hybrid dataflow and shared mem-
ory programming models,” Parallel Computing, vol. 45, pp. 18 – 48,
2015, computing Frontiers 2014: Best Papers.

[21] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Ku-
biatowicz, N. Morgan, D. Patterson, K. Sen, D. Wawrzynek,
J.and Wessel, and K. Yelick, “A view of the parallel computing
landscape,” Commun. ACM, vol. 52, no. 10, pp. 56–67, Oct. 2009.

[22] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. Whaley, “ScaLAPACK: A linear
algebra library for message-passing computers,” in 8th SIAM
Conference on Parallel Processing for Scientific Computing, 1997.

[23] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Her-
ault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek,
A. YarKhan, and J. Dongarra, “Flexible development of dense
linear algebra algorithms on massively parallel architectures with
DPLASMA,” in 2011 IEEE Intl. Symp. on Parallel and Distributed
Processing Workshops and Phd Forum, May 2011, pp. 1432–1441.

[24] A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra, “PaRSEC in
practice: Optimizing a legacy chemistry application through dis-
tributed task-based execution,” in 2015 IEEE Intl. Conf. on Cluster
Computing, Sept 2015, pp. 304–313.

[25] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A generic frame-
work for managing hardware affinities in HPC applications,” in
2010 18th Euromicro Conf. on Parallel, Distributed and Network-based
Processing, Feb 2010, pp. 180–186.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

[26] D. A. Mallón, G. L. Taboada, C. Teijeiro, J. Touriño, B. B. Fraguela,
A. Gómez-Tato, R. Doallo, and J. C. Mouriño, “Performance eval-
uation of MPI, UPC and OpenMP on multicore architectures,”
in Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 16th European PVM/MPI Users’ Group Meeting. Berlin,
Germany: Springer-Verlag, 2009, pp. 174–184.

[27] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, and
J. Labarta, “A high-productivity task-based programming model
for clusters,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 18, pp. 2421–2448, 2012.

[28] F. G. Gustavson, L. Karlsson, and B. Kågström, “Distributed sbp
cholesky factorization algorithms with near-optimal scheduling,”
ACM Trans. Math. Softw., vol. 36, no. 2, pp. 11:1–11:25, Apr. 2009.

[29] P. Husbands and K. Yelick, “Multi-threading and one-sided com-
munication in parallel LU factorization,” in 2007 ACM/IEEE Conf.
on Supercomputing, ser. SC’07, 2007, pp. 31:1–31:10.

[30] M. Cosnard and M. Loi, “Automatic task graph generation tech-
niques,” in 28th Annual Hawaii International Conference on System
Sciences, ser. HICSS’28, vol. 2, Jan 1995, pp. 113–122 vol.2.

[31] M. Garland, M. Kudlur, and Y. Zheng, “Designing a unified pro-
gramming model for heterogeneous machines,” in 2012 Intl. Conf.
on High Performance Computing, Networking, Storage and Analysis,
ser. SC’12, Nov 2012, pp. 67:1–67:11.

[32] Cray Inc, “Chapel language specification version 0.984,” Oct 2017.
[33] J. Breitbart, “A dataflow-like programming model for future hy-

brid clusters,” Intl. J. of Networking and Computing, vol. 3, no. 1, pp.
15–36, 2013.

[34] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta,
“Implementing OmpSs support for regions of data in architectures
with multiple address spaces,” in 27th Intl. Conf. on Supercomput-
ing, ser. ICS ’13, 2013, pp. 359–368.

[35] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU: a
unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experi-
ence, vol. 23, no. 2, pp. 187–198, 2011.

[36] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost,
M. Sergent, and S. Thibault, “Harnessing clusters of hybrid nodes
with a sequential task-based programming model,” in Intl. Work-
shop on Parallel Matrix Algorithms and Applications (PMAA 2014),
Jul 2014.

[37] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing locality and independence with logical regions,” in
Intl. Conf. on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’12, 2012, pp. 66:1–66:11.

[38] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent:
A high-productivity programming language for HPC with logical
regions,” in Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’15, 2015, pp. 81:1–81:12.

[39] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk,
and I. T. Foster, “Swift/T: Large-scale application composition via
distributed-memory dataflow processing,” in 13th IEEE/ACM Intl.
Symp. on Cluster, Cloud, and Grid Computing, May 2013, pp. 95–102.

[40] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar, “Ha-
baneroUPC++: a compiler-free PGAS library,” in 8th Intl. Conf. on
Partitioned Global Address Space Programming Models, ser. PGAS ’14,
2014, pp. 5:1–5:10.

Basilio B. Fraguela received the M.S. and the
Ph.D. degrees in computer science from the Uni-
versidade da Coruña, Spain, in 1994 and 1999,
respectively. He is an associate professor in the
Departamento de Enxeñarı́a de Computadores
of the Universidade da Coruña since 2001. His
primary research interests are in the fields of
programmability, high performance computing,
heterogeneous systems and code optimization.
His homepage is http://gac.udc.es/∼basilio.

Diego Andrade received the M.S. and Ph.D.
degrees in computer science from the Universi-
dade da Coruña, A Coruña, Spain, in 2002 and
2007, respectively. He is a Lecturer at the Depar-
tamento de Enxeñarı́a de Computadores, Uni-
versidade da Coruña, since 2006. His research
interests focuses in the fields of performance
evaluation and prediction, analytical modeling,
and compiler transformations.

