
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Eduardo Miguel
Oliveira Duarte

Análise colaborativa de grandes conjuntos de
séries temporais

Collaborative analysis over massive time series
data sets

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Eduardo Miguel
Oliveira Duarte

Análise colaborativa de grandes conjuntos de
séries temporais

Collaborative analysis over massive time series
data sets

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Infor-
mática, realizada sob a orientação científica do Doutor Diogo Nuno Pereira
Gomes, Professor auxiliar do Departamento de Eletrónica, Telecomunicações
e Informática da Universidade de Aveiro.

Para o meu pai, que me inspirou a ser sempre ambicioso e dedicado
à minha paixão. Apesar de ele já não estar entre nós, a sua alegria e
influência estará sempre presente em mim e na sua família.

Para a minha mãe, que me ajudou nos meus momentos altos e
baixos e me concedeu a sua paciência e devoção infinita.

To my father, who inspired me to always be ambitious and dedi-
cated to my passion. Even though he is no longer among us, his joy
and influence in me and his family are ever-present.

To my mother, who aided me in my highest and lowest moments
and bestowed me with her infinite patience and devotion.

o júri / the jury

presidente / president Professor Doutor Joaquim Manuel Henriques de Sousa Pinto
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Professor Doutor Jorge Vaz Oliveira Sá
Professor Auxiliar, Escola de Engenharia - Universidade do Minho

Professor Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar, Universidade de Aveiro

agradecimentos /
acknowledgements

Firstly, I would like to thank my supervisor, Professor Diogo Gomes, for his
encouragement and assistance throughout the development of this project
and the writing of this dissertation. His recommendations and advise were
essential in conducting the required research, engineering the solution, and
contributing to the overall body of work hereby presented. His insights,
sincerity and goodwill undeniably had a huge and positive impact in my
personal and professional life.

I would also like to thank Bosch Termotecnologia S.A. and Pedro Ribeiro
for giving me a fantastic work opportunity, where I was able to develop my
engineering skills and get a small taste for the fascinating innovations in the
software world. I thank all the great co-workers I had the pleasure of working
with: Alexandre Chambel, Pedro Correia, Tânia Correia, Paulo Costa, António
Marques, Rafael Peixinho, José Santos and Pedro Saraiva. I will be forever
thankful for everything I have learned from them, and will dearly miss all the
lunch breaks playing cards and having fun discussions.

I would like to express a special thanks to David Campos, to whom I
am greatly indebted for having an instrumental role in my life throughout both
my Bachelor’s and my Master’s. His guidance was influential in exposing me
to the thrilling world of computer science, developing my skills in designing
powerful and intuitive applications as well as writing concise and elegant
code. His leadership, tenacity and concern for his peers is inspiring, and his
care for my work and well-being was paramount in getting me to the finish
line. A sincere thank you for taking a chance on me, for your patience and for
your understanding.

I send my profound gratitude to the group of colleagues and close friends
from Portugal, England and Denmark, who have been present in this path
from the very beginning and on a daily basis, indulging me with interesting
and hilarious conversations and supporting me through all ups and downs. I
also want to thank my brother for his genuine concern and affection for me,
as well as for all the fun times we had and will continue to have.

Finally, and most importantly, I wish to thank my mother, Isabel Nasci-
mento, for having a crucial role in educating me and encouraging me to follow
my interests and to fulfill my goals. Her unmatched and unconditional support
gave me the foundations for me to be where I am today.

The present study was developed in the scope of the Smart Green
Homes Project [POCI-01-0247 FEDER-007678], a co-promotion between
Bosch Termotecnologia S.A. and the University of Aveiro. It is financed by Por-
tugal 2020, under the Competitiveness and Internationalization Operational
Program, and by the European Regional Development Fund.

Palavras Chave séries temporais, anotações, sistemas de anotação, software colaborativo,
análise de dados, ciência da informação, modelagem de dados, gestão do
conhecimento, sistemas de gestão de bases de dados, sistemas distribuídos,
visualização de informação, AVAC

Resumo A recente expansão de metrificação diária levou à produção de quantida-
des massivas de dados, e em muitos casos, estas métricas são úteis para
a construção de conhecimento apenas quando vistas como uma sequência
de dados ordenada por tempo, o que constitui uma série temporal. Para se
encontrar padrões comportamentais significativos em séries temporais, uma
grande variedade de software de análise foi desenvolvida. Muitas das so-
luções existentes utilizam anotações para permitir a curadoria de uma base
de conhecimento que é compartilhada entre investigadores em rede. No en-
tanto, estas ferramentas carecem de mecanismos apropriados para lidar com
um elevado número de pedidos concorrentes e para armazenar conjuntos
massivos de dados e ontologias, assim como também representações apro-
priadas para dados anotados que são visualmente interpretáveis por seres
humanos e exploráveis por sistemas automatizados. O objetivo do trabalho
apresentado nesta dissertação é iterar sobre o software de análise de séries
temporais existente e construir uma plataforma para a análise colaborativa
de grandes conjuntos de séries temporais, utilizando tecnologias estado-de-
arte para pesquisar, armazenar e exibir séries temporais e anotações. Um
modelo teórico e agnóstico quanto ao domínio foi proposto para permitir a
implementação de uma arquitetura distribuída, extensível, segura e de alto
desempenho que lida com várias propostas de anotação em simultâneo e
evita quaisquer perdas de dados provenientes de contribuições sobrepostas
ou alterações não-sancionadas. Os analistas podem compartilhar projetos
de anotação com colegas, restringindo um conjunto de colaboradores a uma
janela de análise mais pequena e a um catálogo limitado de semântica de
anotação. As anotações podem exprimir significado não apenas sobre um
intervalo de tempo, mas também sobre um subconjunto das séries que coe-
xistem no mesmo intervalo. Uma nova codificação visual para anotações é
proposta, onde as anotações são desenhadas como arcos traçados apenas
sobre as curvas de séries afetadas de modo a reduzir o ruído visual. Para
além disso, a implementação de um protótipo full-stack com uma interface
reativa web foi descrita, seguindo diretamente o modelo de arquitetura e vi-
sualização proposto enquanto aplicado ao domínio AVAC. O desempenho do
protótipo com diferentes decisões arquiteturais foi avaliado, e a interface foi
testada quanto à sua usabilidade. Em geral, o trabalho descrito nesta disser-
tação contribui com uma abordagem mais versátil, intuitiva e escalável para
uma plataforma de anotação sobre séries temporais que simplifica o fluxo de
trabalho para a descoberta de conhecimento.

Keywords time series, annotations, annotation systems, collaborative software, data
analysis, information science, data modeling, knowledge management,
database management systems, distributed systems, information visualiza-
tion, HVAC

Abstract The recent expansion of metrification on a daily basis has led to the produc-
tion of massive quantities of data, and in many cases, these collected met-
rics are only useful for knowledge building when seen as a full sequence of
data ordered by time, which constitutes a time series. To find and interpret
meaningful behavioral patterns in time series, a multitude of analysis software
tools have been developed. Many of the existing solutions use annotations
to enable the curation of a knowledge base that is shared between a group
of researchers over a network. However, these tools also lack appropriate
mechanisms to handle a high number of concurrent requests and to properly
store massive data sets and ontologies, as well as suitable representations
for annotated data that are visually interpretable by humans and explorable by
automated systems. The goal of the work presented in this dissertation is to
iterate on existing time series analysis software and build a platform for the
collaborative analysis of massive time series data sets, leveraging state-of-
the-art technologies for querying, storing and displaying time series and an-
notations. A theoretical and domain-agnostic model was proposed to enable
the implementation of a distributed, extensible, secure and high-performant
architecture that handles various annotation proposals in simultaneous and
avoids any data loss from overlapping contributions or unsanctioned changes.
Analysts can share annotation projects with peers, restricting a set of collab-
orators to a smaller scope of analysis and to a limited catalog of annotation
semantics. Annotations can express meaning not only over a segment of time,
but also over a subset of the series that coexist in the same segment. A novel
visual encoding for annotations is proposed, where annotations are rendered
as arcs traced only over the affected series’ curves in order to reduce visual
clutter. Moreover, the implementation of a full-stack prototype with a reactive
web interface was described, directly following the proposed architectural and
visualization model while applied to the HVAC domain. The performance of
the prototype under different architectural approaches was benchmarked, and
the interface was tested in its usability. Overall, the work described in this dis-
sertation contributes with a more versatile, intuitive and scalable time series
annotation platform that streamlines the knowledge-discovery workflow.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Time series analysis . 2

1.2 Visualization of time series . 3

1.3 Annotations over time series . 4

1.4 Distributed systems . 6

1.5 Contributions . 8

1.6 Dissertation outline . 10

2 State of the art 11

2.1 Time series analysis systems . 11

2.2 Data model . 12

2.2.1 Time series . 12

2.2.2 Annotations . 13

2.3 Data management . 14

2.3.1 Time series . 14

2.3.2 Annotations . 19

2.3.3 Versioning . 21

2.4 Architecture . 23

2.5 Visualization . 25

2.5.1 Techniques . 25

2.5.2 Software tools and interfaces . 31

2.5.3 Technological survey . 37

i

3 Proposed Model 39

3.1 Data model . 39

3.1.1 Time series . 40

3.1.2 Ontology . 41

3.2 Data Management . 43

3.2.1 Persistence model . 43

3.2.2 Versioning . 48

3.2.3 Caching . 49

3.2.4 User tasks . 50

3.3 Architecture . 51

3.3.1 Load balancing . 53

3.3.2 REST interface . 54

3.3.3 Authentication . 57

3.3.4 Processing pipeline . 59

3.3.5 Read validation . 60

3.3.6 Write validation . 61

3.3.7 Asynchronous updates . 62

3.3.8 Optimistic Locking . 63

3.4 Visualization . 64

3.4.1 Dashboard . 64

3.4.2 Annotations . 68

3.4.3 Ontology management . 71

4 Implementation 73

4.1 Data model . 74

4.1.1 Time series . 74

4.1.2 Ontology . 77

4.2 Data management . 78

4.2.1 ID generation strategy . 78

4.2.2 Name search . 79

4.2.3 Versioning . 82

4.2.4 Caching . 82

4.3 Architecture . 83

4.3.1 REST interface . 84

4.3.2 Authentication . 85

4.3.3 Processing workflow . 85

4.3.4 Time series query . 87

4.3.5 Time series update . 89

ii

4.4 Visualization . 90

4.4.1 Data mapping . 91

4.4.2 Application state . 92

4.4.3 Dashboard and management . 93

4.4.4 Annotations . 96

5 Evaluation 99

5.1 Architecture benchmark . 99

5.2 Clicks to interaction . 104

6 Conclusion and future work 109

6.1 Conclusion . 109

6.2 Future Work . 110

6.2.1 Research directions . 113

6.3 Final thoughts . 114

References 115

iii

List of Figures

1.1 Three time series represented in a line graph visualization. 2

2.1 Benchmark results of TSDBMs for large-scale data sets 15

2.2 Comparison between various Cartesian time series visualizations 25

2.3 Radar chart . 26

2.4 Spiral visualizations . 27

2.5 Tubular visualizations . 28

2.6 VizTree interface . 29

2.7 PlotViz/WebPlotViz interface . 29

2.8 Calendar visualization . 30

2.9 Sequence synopsis visualization . 30

2.10 Financial data visualization with information extraction algorithms 31

2.11 TimeSearcher interface . 32

2.12 TSPad interface . 32

2.13 TimeFork interface . 33

2.14 Web-based viewer of EEG data set . 34

2.15 Web interface of earthquake historical events in California 34

2.16 Open-source time series analysis dashboards . 35

2.17 Annotation encoding in Grafana . 37

3.1 Relational diagram of entities . 40

3.2 Data management approach A. 44

3.3 Data management approach B. 45

3.4 Data management approach C. 46

3.5 Data management approach D. 47

3.6 Architecture abstraction layers . 52

3.7 Load balancing architecture . 54

3.8 Processing pipeline . 60

3.9 Update, delete or rollback pipeline . 63

v

3.10 Wireframes for dashboard with only one selected project 65

3.11 Wireframes for dashboard with multiple selected projects 66

3.12 Wireframes for dashboard with hidden panels . 67

3.13 Visual encoding of annotations . 69

3.14 Visual encoding of intersecting annotations . 70

3.15 Wireframes for ontology management pages . 71

4.1 Platform architecture . 84

4.2 Controller to Service to Repository association . 86

4.3 Backend connection with InfluxDB in the system architecture 90

4.4 Frontend dashboard with only one selected project . 93

4.5 Frontend dashboard with multiple selected projects . 94

4.6 Frontend dashboard with hidden panels . 94

4.7 Annotation type management page . 95

4.8 Revision list for an annotation type . 95

5.1 Read performance as the data set size increases . 102

5.2 Write performance as the data set size increases . 103

6.1 Conflicting visualization between two annotation cases . 113

vi

List of Tables

3.1 Summary of data management approaches . 48

5.1 Read benchmark . 102

5.2 Write benchmark . 103

5.3 Minimum amount of clicks in dashboard . 104

5.4 Minimum amount of clicks in the chart . 105

5.5 Minimum amount of clicks in project edit page . 106

5.6 Minimum amount of clicks in ontology management pages 106

vii

Acronyms

ACID Atomicity, Consistency, Isolation and
Durability

API Application Programming Interface
CAP Consistency, Availability and Partition

tolerance
C+A Consistency + Availability
CDBMS Column-oriented Database Management

System
CDN Content Delivery Network
CRUD Create, Read, Update and Delete
CSS Cascading Style Sheets
DDL Data Definition Language
DOM Document Object Model
DSS Decision Support System
ECG Electrocardiogram
E+C Consistency + Availability over

Low-Latency
EEG Electroencephalogram
E+L Availability + Low-Latency over

Consistency
FIFO First-In-First-Out
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HVAC Heating, Ventilation and

Air-Conditioning
IoT Internet of Things
JDBC Java Database Connectivity
JPA Java Persistence API

JPQL Java Persistence Query Language
JSON JavaScript Object Notation
JWT JSON Web Token
LDAP Lightweight Directory Access Protocol
LESS Leaner Style Sheets
LIFO Last-In-First-Out
LRU Least-Recently-Used
LSM Log-structured Merge
MVCC Multiversion concurrency control
ORM Object-relational mapping
OWL Web Ontology Language
RAM Random-access memory
RDBMS Relational Database Management

System
RDF Resource Description Framework
REST Representational State Transfer
SMTP Simple Mail Transfer Protocol
SoC Separation of Concerns
TCP Transmission Control Protocol
TSDBMS Time Series Database Management

System
UI User Interface
URL Uniform Resource Locator
UTC Coordinated Universal Time
UUID Universally Unique Identifier
UX User Experience
XML Extensible Markup Language

ix

CHAPTER 1
Introduction

As we progress further into the modern age of knowledge-oriented digital innovation, the
requirements for digital data processing and storage keep increasing at an exponential rate. The
quantity of digital data being generated and stored in systems is estimated to be approximately
4.4 zettabytes 1. While in 2016 the annual rate of data traffic was at 1.2 zettabytes per year,
it is projected that this rate will increase to 3.3 zettabytes per year by 2021 2.

One of the major growth spurts that has led to this large increase in data consumption is
the increased metrification and remote control of internet-connected devices like smartphones,
wearable gadgets, real-time sensors, Heating, Ventilation and Air-Conditioning (HVAC) boilers,
Smart Home devices and other equipment composing the Internet of Things (IoT). These
devices can generate events and metrics from a variety of spaces in the physical world, from
home assistant applications for small households to large distributed platforms administering
entire cities [1]. These systems, capable of collecting data and providing means for remote
management at a massive scale, have been deployed in a wide range of domains, like scientific
research, medical diagnosis, smart cities, among others. More recently, IoT technologies
have entered the industrial and enterprise domains so as to enable intensive metering of
manufacturing processes and other business operations [2].

While data has grown at an alarming rate, increasing in the three Vs, Volume, Variety and
Velocity [3], most business solutions collect more data than they can process to produce the
fourth and fifth Vs, Value and Veracity. To generate meaning out of large collections of data,
systems for analysis, automation, monitoring and anomaly detection have been developed and
deployed. Analysts can easily explore and refine these data sets under a myriad of criteria,
leading to the discovery of new segments of knowledge and relationships. Some analytical
tasks have also been allocated to automated processes, expediting the knowledge discovery.
For example, in the medical domain the analysis performed over streams of real-time data
has enabled the further understanding of human ailments [4].

1https://www.emc.com/leadership/digital-universe/2012iview/index.htm
2https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/vni-hyperconnectivity-wp.html

1

https://www.emc.com/leadership/digital-universe/2012iview/index.htm
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

Figure 1.1: Three time series represented in a line graph visualization.

For most of the mentioned use cases, the collected data is only useful if the various
metric events are logged and presented in an orderly manner, as some of the most important
observations are made not to a single data point but to sets of data points that constitute a
pattern over time. The overall set of sorted points essentially constitutes a time series.

1.1 Time series analysis

Time series are commonly described as a sequence of ordered numeric values that correspond
to observations of an entity over discrete, non-uniform time intervals [5]. A common notation
used to formally specify a single time series data point that represents a measure of state is
to structure it as a tuple of two elements (i.e. a 2-tuple) or a key-value pair, and expressed as
(t, v), where t corresponds to a valid time indicator of when a value v was measured. As a
key-value pair, every t is unique throughout an entire series, whereas values can be equal. In
other words, an entire time series can be expressed as in (1.1), where every t is a unique time
indicator and n is the maximum count of data points in TS.

TS = (t1, v1), (t2, v2), ..., (tn, vn) (1.1)

These data types are a natural part of data sets that contain massive amounts of events over
time, as the continuous nature of time series make it particularly suitable to represent these
events for monitoring and analysis purposes [6]. In fact, time series can be found in almost
every aspect of human life [7], like medical diagnosis based on Electroencephalograms (EEGs)
[4], [5], [8]–[12] and Electrocardiograms (ECGs) [13], financial technical analysis [14]–[16],
measurement of meteorological or natural occurrences like earthquakes [17], monitoring of
athlete’s performance and total daily energy expenditure [18], and even telemetry for satellites
and aerospace ships [19].

The act of analysis can be defined by the process of deriving and inferring meaning,
concepts and ontologies from raw data, breaking large sequences of data into smaller, more
understandable patterns. As the pertinent data in the platform grows, collaborating users
have a higher chance of growing a mutual data warehouse of useful knowledge. Furthermore,

2

expert knowledge in itself should be used recurrently to infer new segments of knowledge,
making the act of analysis more efficient [5].

A common use case for analysis of time series is to enable the development of a Decision
Support System (DSS). These systems allow analysts and other observing users to deduce
a set of actions that have to be done outside of the analysis platform for a given purpose,
like technical maintenance of devices or medical diagnosis and treatment of patients. In [20]
and [21], DSSs were deployed in intensive care units, enabling the medical staff to analyze
neurophysiological data, perform diagnosis and prognosis based on historical patterns, and
carry out subsequent treatment, which is a time-critical process with a limited window of
opportunity.

However, the previously mentioned domains typically produce high amounts of data due to
sensors that rapidly send state changes over short intervals of time. This can often lead to data
entropy and visual pollution that increase the complexity and difficulty of analytical tasks,
as well as demand higher development and financial costs. One of the main challenges with
critical DSSs, as well as general-purpose time series analysis platforms, is to handle massive
data sets at both an architectural level and at a visual level. Techniques must be developed
to read massive amounts of data and extrapolate patterns and trends at a reasonable speed,
as well as to visualize these in a intuitive manner [19].

1.2 Visualization of time series

Within the domain of Information Visualization, time series are among the most common
type of data explored in quantitative graphical perception studies. A core aspect of time
series is the fact that the most useful information is frequently observed in a sequence of data
points instead of individual ones. Hence, an integral part of the analysis process is to leverage
the human ability to visually identify trends, anomalies, correlations and patterns [22].

For this, line graphs, as shown in Figure 1.1, have been the visualization of choice for
temporal data ever since its initial proposal by William Playfair in 1786 [23]. However, in
highly heterogeneous use cases such as the analysis over massive quantities of sensor data,
there are various time series that tendentially need to be visualized simultaneously, so as
to observe how different metrics affect and depend on others [24]. This requirement quickly
exposes the issues of the common line graph, as data becomes harder to parse visually when a
high number of time series fill up too much of the available visual space or compete with each
other by tracing the same trajectories.

In a shared-space model, where multiple time series co-exist in the same chart, as the
number of simultaneous time series on display increases, the chart is only readable up to
a perceptual threshold. This issue is accentuated when all series follows a very limited
color-scheme, compounded by the limited color acuity of the human visual system, which
can lead to various time series being colored similarly and becoming easily misinterpreted.
In a split-space model, where multiple time series are displayed in separate charts, as the
number of charts increases, it becomes exponentially harder to visually compare how series
behave within the same segment of time. Plus, the amount of visual space required to display

3

every individual chart can exceeded the maximum available space within a limited window
of perception. In sum, both space distribution models have perceptual thresholds directly
correlated with the number of time series on display [25], and the relationship between the
two corresponds to a trade-off between visual clutter and usage of visual span [26].

Time series visualization can be a very challenging task, as temporal data from realistic
scenarios is often complex with high cardinality [27]. To build visual overviews of this type of
data, visualization tools have to be developed and designed to integrate appropriate graphical
schemes and features such as filtering and summarization [26]. This summarization, or
clustering, technique can be a very valuable tool that helps analysts understand massive time
series data sets by observing representative clusters and their relationships [28].

1.3 Annotations over time series

While time series in themselves are highly capable of representing a measurement over time,
exposing fluctuations, spikes and drops, their meaning and semantic is not directly conveyed.
A human observer can infer meaning from metric changes in relation to the universe the
data lives in, and a machine can be guided by a curator to interpret metrics and make those
same semantic associations, but the data itself does not communicate that semantic explicitly.
Because of this, human or machine observers are incapable of conveying these interpreted
semantics through the data alone, and require the assistance of appended metadata to create
this unit of knowledge. This concept of data annotation has been applied in a wide scope of
domains, both traditional and digitally-oriented.

Annotations are traditionally used in the process of critiquing and updating documents or
segments of data [29]. Catherine Marshall [30] expressed that “an annotation of data, be it
paper-based written material or digital data, represents an engagement with the material”.
In this case, this user-specified engagement can be represented as a note for memory aid, an
highlight, a description of a taxonomy, or a warning notice for other readers. In all these
cases, the annotation acts as a layer over the original document or data set [29], identifying a
single point or an interval of data as relevant to a specified context.

Digital annotations, operating over data presented in any given software tool, have been
initially designed to correspond directly to their paper-based counterparts [31]–[36], adapting
to existing activities and use cases in medical and technical fields. Kawase et al. [37] evaluated
the performance of digital annotation for these specific activities in a web-based prototype,
and concluded that digital annotations provide more advantages than paper-based schemes
by leveraging capabilities inherent to computer solutions. In general, studies on the subject of
digital annotations outline the following features of digital annotations over the traditional,
physical approach:

4

• editing of contents: annotations are persisted in information systems and can be
changed over time to correct factual or grammatical errors made at the point of
conception. Changes can be historically recorded as a version of that annotation, so
users can progressively iterate on new versions and at any point roll-back to a previous
point in time without losing data [12];

• search over contents: annotations, when stored as free-text, can be indexed and
searched at a later time. Users can take advantage of this feature to quickly find data
associated with a particular meaning;

• search over segments: users can highlight a segment of data to identify a pattern
and quickly find it again by describing the required pattern;

• relationship discovery: when a similar annotation acts over separate segments of
data, the digital system can quickly find this relation and expose these to the user in a
more expedited manner. Similarity search techniques can also be used to automatically
detect similar patterns across the entire document or data set.

• communication layer with other users: by expressing a notice or a highlight, other
users that participate in the observation of the data set are aided by the annotations.
Users can cooperate knowledge building by editing annotations of others with critiques
or by appending complementary information as annotations over the same segment of
data;

• communication layer with machines: by attaching metadata to segments of data
in a structured manner, an automated task can interpret this and be trained further in
how to interpret the remainder of the data [38]. This is useful for supervised learning
tasks where a human curator guides the annotation task so that a machine-learning
model can become an active participant in the construction of knowledge;

• enforcing of read-write access policies: annotations and discussions can have selec-
tive read-write permissions based on the user’s roles and authorities in the hierarchical
tree of collaborators [12], preventing users from making changes to annotations outside
of their scope of work;

• circumvention of rigid records: since annotations act as attachments that do not
affect the original data nor its structure requirements (e.g. medical databases and
financial data warehouses), then these can be used to express additional data that was
not planned by the original architects of the data schema [12]

In this manner, an annotation can be expressed as a materialization of knowledge on the
original data that is shared between partners. Each user is given the possibility to observe
and propose meaning, and other users can then discuss that meaning, classify it in terms of
degree of usefulness or confidence, and evolve it until an agreement between collaborators
is reached. Based on this, there is sufficient evidence available that shows that the usage of
annotations in collaborative analysis platforms enables a more adequate knowledge-building
and decision-making process [39], and that this is made more flexible and simplified through
digital means. Therefore, the process of effective collaborative exploration and learning of
time series data should involve annotation tasks [38].

5

1.4 Distributed systems

Analysis and annotation software solutions can be made available to a set of users in many
ways. The system could be deployed locally in a single machine, for example as a desktop
application, where multiple analysts agree to store and share knowledge within this unique
instance [40]. However, this approach is very limited: 1) only one analyst would be able
to interact with the analysis application at a time, so contributions and refinement would
happen in a sequential, one-by-one manner; 2) analysts could not monitor the data remotely
and would have to be present in the same geographical location as the machine, which is not
always feasible since requesting the physical presence of analysts has associated transportation
and financial costs [10], [12]; and 3) mechanisms for storing, archiving and backing-up data
would have to be manually assured by the users of this system, as a failure of this single
machine could imply the loss of all recorded time series data and annotations. A way to
overcome this would be to establish a protocol for recording the application’s data store and
replicating it to other machines, but without a direct message-passing bridge or network
between machines, there is no flexible way to synchronize this data store when changes are
made by different users in separate machines. Even if multiple machines were connected
through a network, a decentralized data store means that simultaneous changes can lead to
update conflicts and collisions, so mechanisms for non-destructive synchronization of data
changes to a single converged state would have to be implemented manually.

With this, a centralized system, remotely accessible inside a network, presents itself as the
most efficient candidate for handling simultaneous analysis and annotation tasks. In theory,
the software solution could now be composed of multiple internal units of data processing
and storage deployed in a single network-accessible machine. These units would then transfer
data between each other over memory, which corresponds to a direct data-channel that is
absent of network latency. At a small scale, simple hardware upgrades for single nodes is
more cost-effective and performant than distributing the system to multiple nodes. However,
with the steady increase in volume and acquisition rate of events relevant to the system’s
needs, as well as the increase of concurrent users, the hardware resource usage applied
to this node is drastically increased. After a certain threshold of hardware requirements,
the most cost-effective solution is to propagate over to multiple inter-connected machines
[41]. Therefore, distributing and load balancing an analysis system across multiple machines
becomes a fundamental requirement when dealing with storage and querying of time series
and annotation data at a massive scale [2]. Distributed computing concepts and theorems are
at the heart of every solution that require a scalable centralized agreement and communication
protocol between multiple persons connected over a network.

An important property to measure efficiency of a distributed system is Consistency (or
Linearizability), which corresponds to the average amount of time a system is maintaining
a synchronized view of a continuously-growing data set for multiple users at an acceptable
response time and for the majority of its life span [42]. While the system settles on a
synchronized state, other simultaneous queries can return stale data for a variable period of

6

time, known as the inconsistency window. In other words, a high consistency system should
be capable of handling a multitude of requests while keeping the inconsistency window as
small as possible.

Another important property is Availability, which describes the average amount of time a
system is up and accessible by clients. The amount of downtime is reduced by implementing
fault tolerance mechanisms, where the system compensates for possible failures. These
mechanisms can range from automatically retrying failed requests or data ingestion operations
without losses, to imposing redundancy and replicating data into multiple nodes so that a
failure of a node does not make the data inaccessible, to partitioning data and increasing the
number of nodes required to fail until availability is lost. Both replication and partitioning
are useful techniques for avoiding bottlenecks and slow computation, but have associated
financial costs. Moreover, replicated data has to be kept in sync across multiple machines, so
increased replication can make consistency harder to maintain [43]. A lack of consistency does
not affect availability, since even highly available systems that partition data can succeed to
deliver any results, even though these results might not be the expected records if a specific
partition fails.

The concept of latency that is most relevant to distributed system architects is one of
system latency, which can be expressed as the total amount of time t1 that a system takes to
receive, process and return reliable results to a client minus the unavoidable amount of time
t2 that a network of connected machines can take to send requests between the system and
the client. The latter delay, known as network latency, is inherent to hardware limitations
and to transport protocols, and hence, nondeterministic. The system architect can attempt
to minimize network latency by scaling the solution to multiple geographic locations or by
taking advantage of a Content Delivery Network (CDN) [44].

The Consistency, Availability and Partition tolerance (CAP) theorem [45] is an essential
theorem in distributed systems that outlines how every system can only guarantee two out of
three properties, Consistency, Availability and Partition Tolerance. An extension to the CAP
theorem, the PACELC theorem [46], suggests that when in the absence of network partitioning
there is another trade-off between low-latency and consistency. Distributed systems tend
to be designed to expedite results at a fast rate using data partitioning and replication
approaches, which means that the software architect must choose between a Consistency +
Availability over Low-Latency (E+C) architecture, which ensures that writes are propagated
appropriately and consistently throughout the entire system, or a Availability + Low-Latency
over Consistency (E+L) architecture, which quickly delivers the currently available snapshot
even if a simultaneous write has not yet been fully propagated.

For a distributed platform that targets the timely analysis and monitoring of critical data,
and depending on the nature of this data, observers might either require the most recent
metrics of data, so as to take swift action external to the platform, or a more synchronized
delivery of historical metrics. In the clinical domain, the focus is more often than not on
the monitoring of the most recent data. For example, in neurophysiological monitoring, a
delay in providing the recent measures can have critical consequences in the diagnosis and

7

treatment of patients [5]. Two separate use cases that might be a part of the desired workflow
in any given analysis system can be outlined, which correspond directly to the consistency
and low-latency trade-off suggested in the PACELC theorem:

• focus on E+C: the analyst role is to discover alarming events as close as possible
to the moment they are measured, prioritizing strong writes into the platform and
synchronizing reads to catch the latest updates more consistently;

• focus on E+L: the analyst role is to go over historical data instead of the latest updates
of any metric, prioritizing fast reads.

1.5 Contributions

The work presented in this dissertation is intended to contribute to the communities of
time series analysis, information visualization of annotations, and distributed systems. The
model (and consequent software prototype) proposed in this document iterates on the aspects
developed in existing analysis platforms by integrating various features and techniques found
in other domains such as Information Visualization and Distributed Systems. The end goal
for the proposed model is to outline a feature-complete time series analysis web platform that
handles common use cases for knowledge discovery, reviewing and sharing in an optimized
manner. In order to build such a collaborative tool, the following requirements are outlined:

• User management: multiple users must be authenticated and be allowed to use the
platform concurrently. Every user has an associated authority over a set of annotations,
acting as the direct author of these or a curator that reviews and discusses their
practicality. Every action made within the platform should always be validated and
secured;

• Annotations: users in the platform introduce and share knowledge over the observed
data in a controlled manner, as each annotation requires the review and approval of
partners. Users working on the same domain of data can discuss the degree of suitability
for each new annotation and refine it. Each step of progress for every annotation
should be recorded historically so users can track how it evolves over time and rollback
undesirable changes;

• User tasks: the platform should be autonomous in determining whenever certain
actions are required from users, especially when related to responsibilities over a set
of annotated data the users are affiliated with. When new annotations are added to a
specific domain of data and knowledge and require reviewing, a curator of that domain
should be notified and prompted to do so. If at any point during the life span of the
platform a set of time series is inaccurate in relation to what the original measurement
should be, or lost in any way due to inadvertent data corruption, the annotations that
were attached to these segments should still be persisted, and the users responsible for
these annotations should be notified to adjust the annotations to the changes in the
data universe by manually relocating these or deleting these in case their meaning is no
longer applicable;

8

• Flexible pattern detection: while the usage of similarity measures for time series
pattern detection and prediction is outside of the scope of this dissertation, this particular
feature can be empowered by the existence of annotations. If the user annotates a
specific pattern using a fixed catalog that is universal to all annotation tasks, then the
platform can be autonomous in predicting that other similar patterns of data should
also be annotated with the same group, category or semantic. Users can be notified to
verify the integrity and appropriateness of a set of automated annotations, interacting
in a human–computer collaborative approach with the platform [38].

Along with the above collaborative features, another essential contribution of this dis-
sertation is to leverage what the author considers to be, at the time of writing, the most
suitable open-source tools and techniques for querying, storing and displaying time series,
annotations, user sessions and versioned data that are standard practice in the commercial
software industry, all of this under a distributed architecture with polyglot persistence. This
includes the usage of modern frameworks for backend and frontend development and deploy-
ment, as well as user-facing visualizations that take modern User Experience (UX) and User
Interface (UI) design fundamentals into consideration. Many academic documents already
present benchmarks for existing storage technologies with time series data [2], [47]–[51], and
this dissertation will operate under the assumptions and conclusions taken from these works
in order to build optimal structures and architectures for storing massive data sets.

In state-of-the-art time series annotation applications, the chosen visual encoding for
annotations matches their data model, as these can only relate to a segment of time, but it
is a limited visual encoding when annotations are linked with a subset of the series within
that segment. A final important contribution this dissertation proposes to the time series
visualization academic community is the usage of an alternative encoding for annotations over
time series that takes the affected series into consideration, requiring a considerably smaller
amount of visual space and decreasing the complexity of perceptual tasks.

Throughout this dissertation, a massive data set is quantified as at least a dozen terabytes
or more of time series when stored digitally as uncompressed TSV files, commonly reaching
one million data points. However, this classification should be considered a moving target, so
that as more and more series are collected from multiple data sources over a long span of time,
the platform should scale accordingly. While the time series data sets that are ingested by the
implemented prototype were specific to the HVAC domain, the frontend interface, backend
and architecture modules should be capable of handling time series, users, annotations and
other metadata in a generic manner, supporting any domain other than HVAC.

9

1.6 Dissertation outline

The outline of the rest of this dissertation is as follows:
• Chapter 2 presents an in-depth overview of state of the art methodologies and technologies

currently applied to analysis, storage and visualization of time series and annotations;
• Chapter 3 proposes a blueprint for the development of a time series analysis and annota-

tion platform at the theoretical level, describing an ideal architecture and visualization
tool for handling both time series and ontology data;

• Chapter 4 iterates on the blueprint proposed in Chapter 3 by implementing and describing
a working prototype for a collaborative time series analysis architecture and web
application, listing the specific tools that were employed for it and the techniques that
allowed further optimized usage of state of the art technologies to handle the mentioned
requirements;

• Chapter 5 takes the implemented platform and benchmarks its features, in order to
evaluate how its architecture handles realistic scenarios and how it compares with
other potential architectures, as well as how its interface adheres to interaction design
standards;

• Chapter 6 gives an account of the observed behaviors and caveats in the prototype
during development and evaluation phases, relates the ways in which the proposed model
for time series annotation improves on existing tools, and leaves a few clues to how the
proposed platform can be iterated on in order to extend its capabilities and improve its
overall performance and quality.

10

CHAPTER 2
State of the art

2.1 Time series analysis systems

There are multiple research papers and academic documents that outline a system for
collaborative exploration of multivariate time series data. All of the studied analysis systems
are designated for a specific universe of data, the majority being for psychological data streams
derived from EEG terminals [4], [5], [8]–[12], as intensive care units are environments that
typically produce a high number of rich and heterogeneous streams of temporal metrics [8]. A
few others focus on biomedical and health-care time series data streams, processing metrics
like heart-rate, temperature, oxygen saturation, blood pressure and glucose from ECGs [13].
There is also some literature dedicated to the analysis, pattern-detection and prediction of
financial time series data [14], which presents its own set of unique challenges due to its
high-frequency yet volatile nature that embodies the characteristics of the financial market.

The Artemis platform [4] is a fully-fledged server and web application that presents patient
data collected from physiological data streams. The stream data is stored long-term for
retrospective analysis and data mining purposes. Other solutions implemented a similar web
platform with the goal of solving similar issues like analytics, data mining and decision support
for diagnosis based on physiological patient data waiting for care in the emergency department
[9], [11], [52]. The main goal of these is to reduce delays and financial costs that can arise
when offsite expert analysis is required. However, none of these papers mention the usage of
annotations for knowledge building and discovery, and the ones that do represent a smaller
subset of the state of the art for analysis systems, even though there is sufficient evidence
available in academia that shows that the usage of annotations in collaborative platforms for
data analysis bring a wide number of benefits associated with a more adequate interpretation
of data and a more responsive decision-making [39].

In [12], [53] and [5], the respective authors implement systems that, similarly to the
previously mentioned solutions, store data from real-time physiological streams and present it
in a web-based analytics application. In addition, these systems support annotations made
by analysts at remote locations and by EEGs devices that automatically annotate when

11

an impedance test is performed or a loose lead is detected. Guyet et al. [38] proposed in
2007 a human-computer collaborative approach for exploring biomedical time series, where
clinicians cooperate with an automated system in the process of knowledge exploration. In
the proposed system a human curator would indicate segments of interest in the time series
data set by annotating it, prompting the system to automatically extract similarly significant
patterns. The human curator would then manually observe these patterns and determine their
adequacy. Finally, Lee et al. [18] proposed a framework that gathers, stores and interprets
large and inhomogeneous time series data sets from wearable sport trackers, which include
accelerometers for running and inertial sensors for swimming. The data arriving from sensors
was modified at a stage prior to storage to ensure that each temporal event contains additional
searchable metadata, similar to how annotations are used in previously mentioned solutions.

2.2 Data model

This section develops on how time series and annotations are commonly represented at
theoretical and practical levels, and is split into two subsections: the first subsection describes
how time series are represented in software systems; and the second subsection specifies how
annotations, users, and other entities are modeled in existing time series annotation platforms.

2.2.1 Time series

The data model of time series in the state of the art is faithful to its formal notation (1.1),
where each data point from the series contains a unique time indicator and a numerical value.
The time indicator is traditionally represented as a date, which expresses days as the minimum
unit of time, a time, which expresses hours as the maximum unit of time and can contain time
up to a nanosecond precision, or a timestamp, which combines both date and time data types.

Timestamps use the universal representation defined either by the ISO-86011 or the UNIX
Epoch standards. The ISO-8601 is a human-readable and machine-interpretable representation
of the string type. Each string explicitly contains date and time up to a microsecond precision.
To prevent inconsistencies related to managing times from multiple regions across the globe,
where there are time differences derived from the various timezones, a common practice
in the industry is to convert every timestamp to a single consistent time zone, usually the
Coordinated Universal Time (UTC). Then, when sending a timestamp to multiple clients
over a global region, this is converted to the each of the client’s time zone. The UNIX Epoch
standard corresponds to the counting of seconds since January 1st 1970, represented as a
simple integer. While this standard is not human-readable and not appropriate for logging or
temporal queries, its compact nature and numeric signature translates into smaller storage
requirements and transfer payloads (e.g. data streams between sensors and a central server).
An epoch integer is consistent across the globe, as the counting of seconds does not vary
by time zone. An aspect that requires special attention when using this standard is that
this value should always be stored and interpreted as a 64-bit integer. Storing or reading

1https://www.iso.org/iso-8601-date-and-time-format.html

12

https://www.iso.org/iso-8601-date-and-time-format.html

it as a 32-bit integer at any point in the system means that this value will overflow after
January 19th 2038, resulting in serious consequences to the stability of the platform. Due to
the necessity for human exploration of time series data to extract meaningful information,
most solutions proposed in existing academic literature use the ISO-8601 standard as a more
suitable representation for querying.

2.2.2 Annotations

There are architectural challenges associated with “how” the annotations should be stored, and
how should the relation between annotations and time series data be represented internally.
Storing annotations in an unstructured plain-text format over an inverted index allows these
to be highly readable by humans and searchable by any keyword in a free-form manner, using
text-mining techniques for processing and for recognizing concepts from text. However, this
approach lacks the support for filtering and aggregation over a consistent structure. It is not
possible to establish a guideline on how to parse a consistent set of properties in free-text
fields, as these fields are not guaranteed to follow a predictable structure. In order to allow
automated systems to easily explore the stored data, the internal representation of annotations
should be modeled in a way that is both readable by human observers and interpretable by
machines for indexing, searching and data mining purposes.

Within the domain of time series data analysis platforms there have been multiple
approaches to standardize the annotation structure, but these tendentially end up following
proprietary custom schemas that are advantageous for the corpus and use cases that each
platform deals with, and not assuredly flexible for corpora in other contexts. This issue is
made even more complex when annotation curators are involved, as the logic of authors and
their roles, which is impractical to generalize and standardize, would have to be taken into
account by the schema.

For the clinical domain applied to psychological data, there has been similar attempts to
group annotations into distinct types [5], [12]:

• waveform classifications - a categorization over a single point or a segment of time
series data, interpreted directly from the original data;

• events - an occurrence or observation originated from a context outside of the data
Other papers proposed domain-agnostic ways of representing annotations by using semantic

web notations and ontologies [54]–[56]. The usage of Resource Description Framework (RDF)
standards for data exchange and inference processing, as well as ontology languages like
Web Ontology Language (OWL), allow annotations to provide contextual cues for the study
of correlations between different time series and for the inference of additional knowledge
based on ontologies [57]. Using a RDF schema notation means that annotations are both
human-readable and machine-interpretable, cross-domain and cross-language. A major issue
with RDF in its current state is the lack of flexible and consistent syntax and data models
that follow the RDF notation, as well as mature frameworks and tools that interpret and
query these at a massive scale and under a distributed architecture.

Annotations have, by nature, large heterogeneity of content that varies widely per domain,
making it challenging to conceive a conceptual model of annotations where searching, sharing

13

and versioning is adaptable and domain-agnostic. Thus, it is difficult to answer “how”
annotations should be modeled in a detailed manner that can be adaptable to any domain,
but it is possible to streamline the data structure of annotations to its most reduced form,
containing only the minimum number of common fields that are usable in any domain, which
then the architects of each platform can extend and adjust to the corpora of the platform in
question. The core benefits of enforcing a set of common fields over a free-text format are:

• searchability: if all annotations contain the same fields, for example, category, priority-
level, expiration and non-validity conditions, then users can execute conditional queries
over these fields with the absolute certainty that every stored annotation has these fields
populated with relevant content;

• user relation: every annotation can include which users of the analysis platform are
related to the annotation, either as original creators or collaborators, enabling a user
access-control policy that fine-grained at the annotation level [58];

• flexible versioning: the expansion of annotation content into multiple fields ease
the process of tracking changes over a set of historical snapshots. Understanding how
annotations evolve over time, and determining the differences made between two or
more snapshots, becomes a simple process of comparing contents of the same field.
If annotations were stored as free-text, determining data changes may require text
mining techniques for concept recognition and extraction, along with similarity search
algorithms that calculate the distance between the two texts. If an annotation that only
contains a category or classification were to be compared with another annotation that
only contains unstructured notes could lead to low precision and low recall, showing the
user a high number of false-positives and false-negatives.

2.3 Data management

This section serves as a survey over specific technologies for efficient acquisition, storage and
querying of time series data, annotations and collaborators, employed by existing time series
analysis tools found in both academic and technical documentation. It is split into three
subsections: the first subsection performs a survey over technologies used for storing time
series, in order to determine which technologies are the most appropriate for the established
requirements; the second subsection performs a similar technological survey, but over tools and
databases that are the most suitable for storing annotations and users; and the third subsection
describes various techniques and models for storing versions of entities, evaluating how these
models perform when implemented in Relational Database Management Systems (RDBMSs).

2.3.1 Time series

Time series in RDBMSs

The time series analysis systems mentioned in previous sections either leave storage logic
unexplained or implement it with a single relational database node. The usage of a RDBMS
can enable the optimal storage and indexing of a wide variety of data types (e.g geospatial
locations), as well as the modeling of a strong relational schema. However, the question of

14

Figure 2.1: Benchmark results in [48]: TSDBMSs performance with large-scale data sets, insertion
above and reads below.

wherever these RDBMSs were the most effective choice for storing time series when compared
with other recent technologies is left unanswered.

The benchmark in [48] was one of the first attempts at answering this, comparing the
performance of various databases with sensor data at a massive scale of approximately 10
million time series data points. The compared relational data stores were Oracle BerkeleyDB2,
IBM Informix3, MySQL4, PostgreSQL5 and SQLite6. The authors concluded that when
queries are made solely to a timestamp, Informix, which offer better support for time-indexed
data natively, had the highest performance. However, as more independent data columns
other than timestamp keys needed to be fetched, the more its performance decreased, making
the other tested solutions more ideal.

Chourasia et al. [17] implemented an analysis system that catalogs millions of earthquake
events, patches and actions in a SQLite database. This database performed well for the use
case, where data is rarely modified but read repeatedly for visualization and analysis purposes,
and where the main user-base corresponds to scientists in the geological domain that will
have to set up and handle SQLite files in their remote work locations.

While many RDBMSs such as PostgreSQL already support temporal segments, these do
not integrate temporal data rollup procedures that sort and summarize time series under
data views with decreased detail. These batch processing procedures would allow queries
to be made to the data set without knowing the range ahead of time and while avoiding
the need to scan a high amount of records. There has been a recent surge in new time

2https://www.oracle.com/database/berkeley-db/index.html
3https://www.ibm.com/analytics/informix
4https://www.mysql.com/
5https://www.postgresql.org/
6https://www.sqlite.org/index.html

15

https://www.oracle.com/database/berkeley-db/index.html
https://www.ibm.com/analytics/informix
https://www.mysql.com/
https://www.postgresql.org/
https://www.sqlite.org/index.html

series databases built with RDBMSs as a backend, implementing these rollup mechanisms
while inheriting their flexible data model, their battle-tested reliability and performance,
and their ecosystem of open-source extensions. One such database is TimescaleDB7, which
uses PostgreSQL as backend. Due to the relational model, TimescaleDB has the ability to
easily fetch the series relationships with other relevant entities (i.e. annotations) stored in
the same system through joins. There are a few studies that suggest TimescaleDB as having
favorable performance for both insertions and queries and across many different conditions
[59], even when directly compared with other database systems as previously mentioned
like InfluxDB8 [60], Cassandra9 [61] and PostgreSQL [62], [63]. However, a wide majority
of the available benchmarks are written by the authors of TimescaleDB and have not been
independently reviewed, which can lead to a biased comparison. Moreover, at the time of
writing, TimescaleDB is at version 0.12.1, so it is still at a pre-release development stage where
major changes that break backwards-compatibility can occur, making its use in a production
environment very delicate for the time being.

Time series in TSDBMSs

While a strong relational schema for time series could be a positive feature for aggregate
queries that require time series, annotations and users all-in-one, Jensen et al. [1] and Mathe et
al. [64] suggest that using a traditional RDBMS for time series management can result in less
than optimal performance at scale. Alternative storage and querying database management
systems that index timestamps as primary identifiers and that perform temporal rollups to
improve query speed, designated as TSDBMSs, should be used instead [65], [66].

Since the early 2000s there have been multiple attempts at implementing TSDBMSs, but a
majority of these has limited support for parallel query processing. Jensen et al. [1] performed
a comprehensive benchmarking over multiple proof-of-concept TSDBMSs found in academia
and industrial research, and concluded that within the smaller subset of the studied data
stores that presented acceptable read performance, none of these were sufficiently scalable or
versatile for application with multivariate data with high cardinality. Only the most recent
generation of open-source TSDBMSs have been developed with a deliberate focus on handling
massive amounts of time series, responding to modern requirements of data processing. These
data stores are predominantly implemented using the Log-structured Merge (LSM) tree data
structure [67] as a backend. The LSM tree specializes in storing key-value mappings, fitting
the formal notation of time series (1.1). Bader et al. [2] evaluated the performance of various
TSDBMSs such as InfluxDB, Druid10, ElasticSearch11, MonetDB12 and Prometheus13, as
well as RDBMSs like MySQL and PostgreSQL. The authors concluded that all of the tested
TSDBMSs were comparable to RDBMSs in terms of feature-completeness, but that both

7https://www.timescale.com/
8https://www.influxdata.com/
9http://cassandra.apache.org/

10http://druid.io/
11https://www.elastic.co/products/elasticsearch
12https://www.monetdb.org/
13https://prometheus.io/

16

https://www.timescale.com/
https://www.influxdata.com/
http://cassandra.apache.org/
http://druid.io/
https://www.elastic.co/products/elasticsearch
https://www.monetdb.org/
https://prometheus.io/

Druid and InfluxDB offered the best long-term storage functionality. However, TSDBMSs
also have a more limited data model when compared with RDBMSs. InfluxDB specifically is
only capable of indexing Strings and can only store Floats, Booleans, Integers and Strings
fields.

Finally, Mathe et al. [64] presented a distributed infrastructure based on the DIRAC
Grid framework14, containing multiple computing tasks whose performance is measured as
time series stored in ElasticSearch. Although most of the above mentioned TSDBMSs were
designed from the ground up to handle time series data, ElasticSearch was designed primarily
for text documents, but its internal structure based on the LSM tree and its optimized
indexing for timestamps makes it more than capable for storing time series as well. According
to the authors, ElasticSearch effectively fulfilled the requirements of handling huge amounts of
time series data in both real-time and batch-time. However, ElasticSearch stores time series
under a file-based architecture, which tendentially leads to a higher usage of disk space than
other solutions.

While TSDBMSs implement their own proprietary NoSQL language for complex querying,
time series data stores built on top of RDBMSs engines leverage the powerful SQL language.
Most open-source RDBMSs also contain features such as constraints, data validation, fault-
tolerance mechanisms and deep-rooted backup/restore, all of which the TSDBMSs evaluated
above cannot do. RDBMSs like PostgreSQL contain an Multiversion concurrency control
(MVCC) model that is compliant with Atomicity, Consistency, Isolation and Durability (ACID)
properties, which allows high amounts of simultaneous read/write activity while ensuring
atomicity [68]. Existing TSDBMSs had to implement similar functionality from scratch, and
are naturally less prepared to ensure highly consistent activity at scale.

Time series in CDBMSs

The most critical issue with all of the previously mentioned TSDBMSs is the lack of clustering
techniques to allow them to scale as the data set grows. Only Enterprise InfluxDB, a commer-
cial, non-open-source variant of InfluxDB, provides clustering natively. This can be mitigated
by deploying instances of these TSDBMSs across multiple machines and implementing ad-hoc
load balancing mechanisms that manually sync the data set. These mechanisms have to
be implemented in a way that maintains data integrity and avoids data corruption at all
costs, which typically take many years to develop and mature. Some of these mechanisms
already exist in the open-source community, but these are typically not actively supported
nor sufficiently mature. One example is InfluxDB Relay15, from the developers of InfluxDB,
whose official open-source repository shows that, at the time of writing, the last contribution
was made in November 2016.

An alternative solution is to leverage data stores geared for scaling like Cassandra, an
open-source, distributed NoSQL Column-oriented Database Management System (CDBMS)
that also uses an LSM tree as backend. Cassandra supports multiple active clients connected in

14http://diracgrid.org/
15https://github.com/influxdata/influxdb-relay

17

http://diracgrid.org/
https://github.com/influxdata/influxdb-relay

thread-safe sessions and implements all the consistency and availability mechanisms necessary
when building a distributed system. Under this approach, one can directly leverage the same
CDBMS data store for storing time series, users and annotations simultaneously, avoiding
the need to deploy additional databases specific for each task and facilitating the handling of
consistency. Moreover, CDBMSs like Cassandra allows users to specify their preference in the
consistency/latency trade-off on individual requests, allowing different queries to either collect
the currently available record or to wait for pending writes to finish in order to collect the
most up-to-date snapshot instead. In [51], Kalakanti et al. proposed a benchmarking toolkit
that evaluates concurrency, load management, scalability, consistency, BI query performance
and fault-tolerance for HBase16 and Cassandra. The authors observed that while both are
linearly scalable for native writes, both showcase lower performance for aggregate temporal
queries of large volumes of data.

To address the shortcomings of CDBMSs with massive time series data sets, a number
of TSDBMSs with the necessary rollup operations and optimized aggregation of time series
were implemented on top scalable CDBMSs like Cassandra and HBase, such as Blueflood17,
KairosDB18, OpenTSDB19, Chukwa20 and Databus21. Tomasz Wiktorski [49] evaluated the
performance of OpenTSDB and Chukwa, both being built on top of distributed processing
frameworks such as Hadoop22 and with support for HBase, concluding that OpenTSDB was
the most flexible solution for most use cases. In [50] it is suggested that KairosDB is able
to fulfill near-linear scalability, load balancing, clustering and reliability requirements better
than Databus and OpenTSDB. Bader et al. [2] compared the performance of Blueflood,
KairosDB and OpenTSDB with other non-scalable TSDBMSs and RDBMSs. The authors
concluded that while the TSDBMSs built on top of CDBMSs were feature-complete in terms
of scalability, they severely lacked in time series processing functions, continuous calculations
and long-term storage mechanisms.

Conclusion

Based on the studies mentioned in this section, modern LSM tree TSDBMSs databases are
still the best candidates for fully-featured and efficient querying over massive amounts of
historical data, despite the fact that these databases lack high availability mechanisms built-in.
InfluxDB shows over multiple studies to have both the smallest impact in disk storage and
the lowest latency when querying long-term historical time series, which fits the intended use
case. However, InfluxDB also comes with a few drawbacks when compared to other database
systems, such as the limited data model and the limited ability to store relations, making
it unwieldy to use for storing non-series data like annotations. This essentially prompts the

16https://hbase.apache.org/
17http://blueflood.io/
18https://kairosdb.github.io/
19http://opentsdb.net/
20http://chukwa.apache.org/
21https://github.com/deanhiller/databus
22https://hadoop.apache.org/

18

https://hbase.apache.org/
http://blueflood.io/
https://kairosdb.github.io/
http://opentsdb.net/
http://chukwa.apache.org/
https://github.com/deanhiller/databus
https://hadoop.apache.org/

need for a polyglot data management model where the full data set is split between two
independent storage tools, each with their own data models and consistency mechanisms.

2.3.2 Annotations

The final step for the technological survey of data management technologies was to study
various approaches for storing annotations and other associated entities such as users. The
existing research on how time series annotation tools manage this type of data is slightly
restrictive, as many of these tools are not built with massive data sets and heavy workloads in
mind. Nevertheless, a common trend in all of these tools is that RDBMSs were predominantly
used to store annotations due to the strong ties that annotation data had with other analogous
data, such as categories or collaborator profiles.

In [5] all active entities, including annotation services, are modeled as agents [69]. These
agents are persisted in a HyperSQL relational database, but this choice is described as
“fortuitous” only due to the inclusion of Java, Java Database Connectivity (JDBC) and
SQL definitions. The authors do not benchmark its performance in comparison with other,
more mature and battle-tested relational databases like MySQL and PostgreSQL, and with
other Object-relational mapping (ORM) frameworks, such as ones that extend on the Java
Persistence API (JPA) like Hibernate23 or EclipseLink24.

Bhagwat et al. [70] describe an implementation for a management system where annotations
are stored embedded in records that represent the target series data, instead of placing these
annotations in their own separate table. While this brings performance improvements for
series queries, since only one table has to be queried and no aggregations/joins are required,
the management of stored annotations is impractical for massive data sets, since a single
annotation covering a segment of data has to be replicated across all data points belonging
to that segment, and any changes to the annotation have to be propagated accordingly. For
example, if an annotation were to be assigned to tens of thousands of metrics, the transaction
required to create it or update it would require a cursor over every single one of the affected
metrics, which is unwieldy and not appropriate for scalable systems with massive data sets.

Lastly, Eltabakh et al. [71] and Felipe da Silva [72] iterate on the previous approach and
propose a more granular schema, where annotations are instead linked to the annotated data
points by containing identifiers of that data. Changes made to annotated time series or to
the annotations directly do not reflect on the other data type nor require propagation over
multiple records. Under this polyglot model, annotation and user logic is stored in a separate
data store, and associated with time series data by attaching to the annotated data points an
extra field with the annotation’s unique identifier.

With a polyglot framework in place, there is now a plethora of storage formats and
databases that can be used. The choice of data store, relational or otherwise, should enforce
the aspects of searchability, user access-control, and versioning that the suggested model in
2.2.2 supports. However, an important thing to take into consideration is that, as annotation

23http://hibernate.org/
24http://www.eclipse.org/eclipselink/

19

http://hibernate.org/
http://www.eclipse.org/eclipselink/

and user logic is separated from time series between independent data stores, the increased
granularity can potentially translate into a higher number of bottlenecks and points of failure.
The estimated time for queries is firmly increased as the client requests more simultaneous
data types in a single operation. A query for time series within a certain interval, as well as
annotations that comprehend those time series, could require a set of sequential and dependent
calls to the time series database, the annotation store and the user store. For example, the
query would lock and wait for results from the annotation store, and then lock again for
results from the user store to collect data about the authors of each annotation. This is highly
impractical for a system intended to support multiple concurrent queries at scale. Instead,
queries have to be taken into consideration during backend architecture planning, and the
system architect has to ensure that, in the case of queries that require data from more than
one storage unit, these can be fetched asynchronously.

Nonetheless, the granular model implies that the chosen data store for time series must
support the inclusion of additional metadata for each data point, in order to store the
annotations unique identifiers. All of the LSM tree-based data storage solutions mentioned
above do support this, but while most LSM tree data stores like InfluxDB, Cassandra,
OpenTSDB and KairosDB append key-value metadata on the same LSM tree used as backend,
Prometheus leverages a separate key-value store, LevelDB, to store simple text labels indexed
by a unique key. The latter method is more efficient, as LevelDB offers high consistency with
strong writes and compression under-the-hood.

The research focus was now to evaluate which data management system between RDBMSs
and CDBMSs was a better fit for the storage of annotation and user state. It is important
to point out that, within this use case, these entities have a strong relationship with each
other, so they benefit from being well expressed in the data management layer. While
CDBMSs provide more distributed solutions, they do so by weakening relations between two
separate entities/tables. To ensure consistency in a single update that affects multiple entities
simultaneously, as well as their relationships, requires a very ad-hoc process in CDBMSs. In
an asynchronous environment where multiple users propose changes in parallel, an update to
the state of multiple objects (and their corresponding version records) must be handled within
the same transaction or by using concurrency mechanisms such as locks and blocking queues,
so as to prohibit users from reading outdated versions and overriding changes or performing
invalid actions, such as editing an annotation after it has been deleted. To further check if the
changes are being applied by a user that has read the latest snapshot of the target annotation,
a contract can be established where users are required to send the last-modified timestamp
of the object they are altering, and if this timestamp matches with the actual last-modified
timestamp of the latest object, then the update is applied (3.3.8).

With this, RDBMSs present themselves as the strongest candidates for structuring strong
relations between annotations and users. Based on the studied benchmarks alone, PostgreSQL
and MySQL are the most preferred open-source RDBMSs based on their performance and
feature-completeness [2], [48], [62], [63], [73]. Between these two, MySQL tendentially reports
faster reads and writes. However, MySQL achieves this by prioritizing availability over

20

consistency in its design25, and is only ACID-compliant when using specific storage engines
that implement a MVCC model, such as NDB Cluster26 and InnoDB27. When compared
with MySQL with the InnoDB storage engine, PostgreSQL shows a mature MVCC model
where Data Definition Language (DDL) statements are always transactional [68]. As the
platform scales and structural changes to the tables are required, such as changing indexes or
updating large tables of records, PostgreSQL aggressive consistency and strict policies will
avoid instances of data corruption or loss at all costs 28. Whereas databases like Oracle29

and MySQL attempt to reconstruct previously committed versions to capture uncommitted
changes and avoid data loss, PostgreSQL stores all row versions in its internal data structure
until one user performs a commit, merging changes and making them readable to other users
[74]. This means both users can simultaneously insert, update or delete records without being
locked in place, and are only required to commit all changes once, which will make the changes
atomically available for subsequent readers.

2.3.3 Versioning

Another aspect to consider when choosing a database engine is the ability to handle versioning
of contents under a distributed platform. Conventional databases represent the state of
multiple entities from a single moment in time, and most of the existing commercial and
non-commercial databases deal with update operations over entities by modifying their state
and forgetting the old contents, losing all historical data. Although traditional databases were
not built from the start to support versioning directly, mechanisms for versioning data in
these databases have been studied in depth [75].

Versions within records

Snodgrass [77] proposed extensions to the SQL language in order to allow entities to have a
preserved historical state within their tables. As collaborators introduce sequential changes,
the revisions of the changed entity are stored as records in the same table as the original entity,
unified by the same identifier and distinguished by a version id or a timestamp. This approach
minimizes the need to create additional tables, but also leads to many more disadvantages,
since the appending of multiple versions into a single table will cause queries to scan over an
exponentially higher number of records that scale both vertically (as the number of separate
entities increases) and horizontally (as the number of versions for each entity increases) [78].

Fujita et al. [79] propose an approach where versions are stored within an array that is
embedded in their respective records. This reduces storage overhead, leading to more optimal
reads, but any update to an entity will require both an update to the affected columns in
the record and an insertion of the previous version to the embedded array, leading to more
complex writes.

25https://wiki.postgresql.org/wiki/Why_PostgreSQL_Instead_of_MySQL:_Comparing_Reliability_
and_Speed_in_2007

26https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
27https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
28https://www.2ndquadrant.com/en/postgresql/postgresql-vs-mysql/
29https://www.oracle.com/database/

21

https://wiki.postgresql.org/wiki/Why_PostgreSQL_Instead_of_MySQL:_Comparing_Reliability_and_Speed_in_2007
https://wiki.postgresql.org/wiki/Why_PostgreSQL_Instead_of_MySQL:_Comparing_Reliability_and_Speed_in_2007
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://www.2ndquadrant.com/en/postgresql/postgresql-vs-mysql/
https://www.oracle.com/database/

Versions in tables

In order to tackle the drawbacks of the previous approaches, the historical data can instead be
stored in full on separate versioning tables. This is one of the core aspects of event-sourcing
design [80], where all application events are stored in a append-only log and each event
includes all of the data that the updated object had during that event, regardless if it was
changed in that event or not. This can be optionally coupled with boolean flags that indicate
whenever a certain field was part of the changes made in that specific version. This approach
translates to higher-performant queries for both the current state of the data and for any
specific version, while simultaneously enabling a highly consistent system with low-latency
writes. However, without any restriction, compression mechanisms or expiration policies,
this approach produces the highest amount of redundancy of contents out of all versioning
approaches, leading to the largest disk overhead, as each unchanged field is repeated as many
times as the number of versions that go by without affecting that field.

An alternative model is one based on deltas [78], where each record in a versioning table
contains only the contents of fields that were changed in that version. The contents of
unchanged fields can be reconstructed by performing a theta join over all prior versions where
those fields were last changed. This approach translates into a considerably lower disk usage,
but it can be cumbersome to rebuild the contents of a version when dealing with massive
amounts of changes. A query for the full data record of a specific version v will not only
require the changed fields in v but also the unchanged ones, which would be empty in v. Each
unchanged field must therefore be collected from previous versions vp where those fields were
last changed prior to v. Given a situation where a certain field is set when created and never
or rarely changed, and where the entity in question has a constantly-growing quantity of
versions being produced, then the process of rebuilding the complete contents for any given
version requires an expensive cursor over all these records.

Versions in non-linear branches

While all previous models enable the exploration of snapshots over a linear chain of versions,
they do not allow users to create their own independent environments of changes that can
then be synchronized with others at a later point in time. A multi-branch model would enable
a highly consistent architecture, since each version branch is an independent state that does
not have to be synchronized with other branches at all times. Each client has essentially a
local copy of the centralized contents, so multiple edits and deletes can be performed freely.
Integrity checking and conflict-resolution are only required when merging a revision branch to
a single unifying “master” branch of common knowledge. Each client is forced to poll the
“master” contents and be up-to-date with them before they can commit their own branches,
handling merges as they see fit.

This pattern is similar to how distributed version control systems function, such as Git30

and Mercurial31. Halilaj et al. [81] proposed Git4Voc, a system in the context of collaborative
30https://git-scm.com/
31https://www.mercurial-scm.org/

22

https://git-scm.com/
https://www.mercurial-scm.org/

vocabulary development that leverages Git directly as a versioning protocol for text documents.
However, every version control system that is built primarily for plain text and source code
does not support the advanced querying capabilities that are available in RDBMSs and
CDBMSs, such as filtering, joining or aggregations of entities. Git is also known to have
several shortcomings for large data sets [82], which is a direct impediment to the system’s
ability to scale. As a way to provide branching and merging over the existing RDBMSs
within a centralized system, Bhardwaj et al. [73] propose Datahub, a management tool
that uses PostgreSQL as backend and manages separate databases to represent each client
branch. However, as a result of the substantial redundancy of databases, this approach leads
to a high disk usage that does not scale judiciously for massive data sets [83]. This makes
distributed versioning protocols incompatible with the proposed core philosophies, but its
features for sequential contribution, where collaborators cannot freely commit changes before
polling the most recent snapshot of data and merging potential collisions, would be immensely
advantageous to enable a safer collaborative framework.

Conclusion

Overall, all of the approaches listed correspond to a storage vs efficiency trade-off. Any
attempts at compression over the version data set, either by using version deltas or by
compressing the data representation itself, will negatively affect query performance, while any
attempts at improving query performance will negatively affect disk usage. Another major
issue with managing data set versioning comes from allowing many users to read and modify
entities in parallel. The versioning approaches that rely on appending version data inside
the modified records, such as the embedded array approach, or on rebuilding the full state
of objects on every query, such as the delta-based table approach, will inevitably lead to
consistency issues when multiple updates are triggered in parallel.

2.4 Architecture

The next step of research is to survey how existing platforms set up and connect their
data storage and processing components to handle intense workloads. Although some of
the previously mentioned time series analysis systems use strong data management models
that can persist large data sets, these systems fail to implement distributed techniques like
replication and partitioning to improve availability of the service.

Sow et al. [8] presented a middleware for health-care analytics, processing real-time EEGs
data streams. The results can be exported and presented to analysts using standard protocols
such as Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP). The
Artemis platform [4] allows the output of data streams to a clinical information management
system through Transmission Control Protocol (TCP). Both of these solutions build a modular
backend architecture that manages multiple independent processing adapters, using IBM
InfoSphere32. This architecture is said to scale well to the increasing number of patients
connected to the system, but no distributed computing techniques are mentioned.

32https://www.ibm.com/analytics/information-server

23

https://www.ibm.com/analytics/information-server

In [5], O’Reilly implements an analysis platform that focuses on core design concepts like
modularity, portability, Separation of Concerns (SoC) and operability. It leverages an event-
driven model where the system records all operations that other components can subscribe
to, following a publish-subscribe pattern. When the system receives new data or there are
changes to a component’s state, these events are notified to every subscribed module at a
system-wide level. For example, when an analyst creates a new annotation in a time series
segment, this event is sent to the data server and is consequently propagated to the frontend
of other clients, updating the browser application of analysts viewing that same segment in
real-time and without requiring a refresh. However, the author indicated that the persistence
logic is performed by a single backend node and there is no load-balancing of components, so
the platform could run into availability issues when concurrently used by multiple users.

O’Reilly also takes advantage of agent theory [69] as a design paradigm to structure data
flow and publish-subscribe relations throughout the platform. These agents, as plain Java
objects, are serialized and deserialized into files for the purposes of long-term persistence,
using the Java Serialization Application Programming Interface (API). Transmission of data
also uses a compact binary serialization format, albeit its specifics are not clear. However, the
Java serialization process is generally considered as a weak format for long-term usage [84], as
the rules of serialization can change when the Java class definition or the Java compiler itself
changes. Moreover, the usage of a non-standard binary data serialization format means that
this data will only be readable for as long as its parsing tools are maintained. Other highly
contributed, machine interpretable serialization standards should be used, like the human-
readable JavaScript Object Notation (JSON) [85] or Extensible Markup Language (XML)
[86] formats or the platform-neutral Protocol Buffers [87] or FlatBuffers33 binary formats. All
of these formats have been matured for fast serialization and deserialization, as well as for the
passing of compact messages between servers and network-limited mobile devices [88]. The
mass support of these standards across various software frameworks and applications, and
the open-source nature of the many parsing libraries that support these, means that these
formats have better chances of surviving in backwards-compatible ways.

The platform mentioned in [53] implements a HTTP backend server that provides a Create,
Read, Update and Delete (CRUD) interface using the Representational State Transfer (REST)
protocol [89]. Time series are stored in a relational database, and all communication between
this database and a web-based application is made through REST POST and GET calls
using an XML payload. Although the proposed platform leverages modern web technologies,
the architecture is still not properly optimized to handle massive amounts of time series, as it
has a considerable delay of approximately fifteen seconds between acquiring new data and
presenting it in the frontend. In addition, this frontend does not poll real-time data from a
continuous streaming pipeline, but by using a scheduled task instead.

Finally, in [18] the authors iterated on this by building a secure system that connects
multiple sensors from wearable devices, using the HTTP protocol for data flow between a web
frontend and a data management module while authenticated with an API token.

33https://google.github.io/flatbuffers/

24

https://google.github.io/flatbuffers/

(a) Line graph (b) Small multiples graph

(c) Horizon graph (d) Braided graph

Figure 2.2: Comparison between various Cartesian time series visualizations, as shown in [26].

2.5 Visualization

The aspects of time series visualization outlined in the Introduction chapter (1.2) compose
the main challenges in observing time series in line charts. Many alternative visualization
techniques for time series encoding were developed in an attempt to solve the listed challenges,
but in doing so they introduce their own set of issues. The main contribution from these,
however, comes from the display of time series in a manner that improves readability of a
specific pattern-type or occurrence.

Additionally, all of the researched time series analysis solutions implement unique interfaces
for visualization and querying of time series. Some of the explored works also propose novel
interface components for displaying and interacting with time series and their respective
annotations, so it was essential to study these for the purposes of this dissertation.

This section is separated into three subsections: the first subsection studies various
alternative techniques for displaying time series, comparing their performance over different
use cases; the second subsection lists visualization tools and their interface design choices,
without going into detail on what software technologies were used; and the third subsection
performs a survey over technologies used for rendering interfaces and time series data.

2.5.1 Techniques

Usage of alternative visualization schemes might not always be appropriate depending on the
context of the data, so it is important to thoroughly benchmark these in comparison with
the always-versatile line charts. The main goal of researching these visualization techniques
should be to find schemes that can be appended to line charts in order to improve the overall
visual perception over the time series data set, and not to replace them.

Javed et al. [26] evaluated the performance of various visualization techniques such as
simple line graphs (Figure 2.2a), small multiples [94] (Figure 2.2b) and horizon graphs [95]
(Figure 2.2c). The authors observed that, for a low number of simultaneous time series on
display, multiples and horizon graphs can generate more visual clutter than line graphs, making
line graphs a better option. Additionally, a new graph named braided graph (Figure 2.2d) is
introduced, which acts similarly to a line graph but attempts to improve color perception by
filling the area under each curve with the line’s color encoding. The performed evaluation
showed that task efficiency for braided graphs was only equivalent and never better than for
line graphs. However, this study was performed in a static environment where users could

25

Figure 2.3: Radar chart, as shown in [90].

not manipulate with the data through filtering and zooming, which could imply that the
evaluation results are not comprehensive nor adaptable to a real-life context.

In [91], Cleveland et al. propose the usage of the Cartesian coordinate system and line
graphs for time series representation, suggesting that the strength of these graphs is in the
ability to perceive time and values for each data point and to understand how they relate to
each other. However, in [90] Adnan et. al suggest that there is limited empirical evidence
available that establishes Cartesian and Polar coordinate systems as stronger candidates
for time series visualization. Within the Polar coordinate system, Tague [92] suggests the
representation of values over a narrow time-frame under a radar chart (Figure 2.3). Fuchs
et al. [93] compared the effectiveness of line graphs in the Cartesian system against various
radial encodings in the Polar system, concluding that while Cartesian and Polar systems
had generally comparable performance, line graphs performed better for detection of peaks,
anomalies and trends. It further suggests that Polar coordinate systems and radar encodings
were better suited for reading exact values at a single-point precision, although the most
common analysis tasks performed over time series benefit more from a pattern-wide precision.

Various studies suggest an approach for visualization of time series based on rings or
spirals [101]–[103] (Figure 2.4), where each periodic segment of time series is structured in a
ring, mapping values to their radius, color and outline width. This visualization excels over
line graphs when displaying data sets with periodic patterns, since every event will naturally
be mapped in proximity to other events in similar timeframes and be more visually evident.
While a novel approach, this visualization will more often than not occupy a large amount of
the available visual space. As the number of data points increases, while keeping the ring
diameter constant so that it fits in its assigned chart space, the less clear the color-coding and
the width of the rings will be. Due to this, this approach is primarily useful for a relatively
small segment of time with a low number of data points, in the order of seventy-five thousand
(75 000) points or lower [104].

26

(a) Maximum sizes for two chimpanzees in [101].
(b) Movies by release date in [101], sized by popu-

larity and colored by genre.

(c) Sun-light throughout multiple days in [102],
where wider ribbon widths correspond to mo-
ments of higher sunshine intensity

(d) Human health data set in [103], where more
intense colors correspond to a higher number
of new infections detected.

Figure 2.4: Various spiral visualizations, where cyclic patterns are visually identifiable by observing
crowded areas.

27

(a) DataTube [105] perspective tunnel display-
ing daily aggregate share prices on the
Wall Street stock exchange. Older data is
further away, newer data is near.

(b) DataTube2 [104] perspective tunnel,
which iterates on DataTube by adding
clustering techniques and interactive
features.

(c) Event Tube [106] visualization: above
shows a 2D display of the tube from
the outside, below shows the tube
from the inside.

Figure 2.5: Various tubular visualizations, where data that diverges from the norm is visually
distinguishable from the full context by observing intensely colored areas.

To deal with the issues present in two-dimensional ring visualizations, various authors
proposed the usage of a three-dimensional tubular or helix shape instead [104]–[107] (Figure
2.5). This encoding consists of using the depth of a tube or helix to represent the progress of
time, starting from the center and expanding in the direction of the viewer, while its surface,
diameter and color represent values. Bouali et al. [104] (Figure 2.5b) iterate on the first
DataTube visualization [105] by introducing various interactive features such as 3D navigation,
zooming and annotation over facets of the tube. This technique is an interesting take on
time series representation that can ease data mining tasks that rely on clustering analysis.
However, the implementation and usage of 3D graphical tools is more taxing on computing
resources client-side than 2D visualizations, translating into lower compatibility.

28

Figure 2.6: VizTree interface overview.

(a) Cluster view of a data set with stock velocities
between 2013 and 2014.

(b) Tree view of a data set with 100 000 points.
Lines connect clusters of data based on simi-
larity or user-defined conditions.

Figure 2.7: PlotViz/WebPlotViz interface where data can be mapped with different shapes and
colors in order to be identifiable.

Some propose the visual exploration of time series within graph or tree structures [19],
[96], [112], [113], using concepts like arcs, vertex, edges, leaves and nodes. Lin et al. [19]
propose VizTree34 (Figure 2.6), a suffix tree [97] visual encoding for large-scale time series
data. Each time series segment is converted into a symbol string and arranged into leaves. In
addition, similarity between two time series can be calculated by directly comparing their
trees with any tree-diff algorithm [98]. In [112], [113] the respective authors propose PlotViz35

(Figure 2.7), a tri-dimensional point cloud and tree visualization. Different data points can
have custom sizes, colors and special shapes in order to be visually distinguishable. Analysts
can arrange custom clusters of data points and tag them with user-defined keywords.

34https://cs.gmu.edu/~jessica/viztree.htm
35http://salsahpc.indiana.edu/plotviz/

29

https://cs.gmu.edu/~jessica/viztree.htm
http://salsahpc.indiana.edu/plotviz/

Figure 2.8: Calendar visualization with a cluster analysis of power demands of a research facility.

Figure 2.9: Sequence synopsis visualization where a cluster of sequences contains events with devia-
tions from the pattern.

Another alternative visualization scheme is the calendar-based visualization [99], [100]
(Figure 2.8), where time series are split into sequences of days, weeks or months, and organized
into a calendar view. This visualization is advantageous when needing to provide a general
overview of the data set over an entire year, but it is limited in usage for non-uniform data
sets where this overview is irrelevant, such as financial data from the stock market.

In [27] (Figure 2.9) a novel technique for sequence synopsis is proposed. This visualization
reduces visual clutter and increases clarity by using the Minimum Description Length principle
[108]. This principle corresponds to a compromise between ease of human interpretation and
the amount of detail on display. While an useful technique that can reduce the amount of
time that analysts might require to extrapolate meaning from data, in its current state it has

30

Figure 2.10: Financial data visualization with information extraction algorithms that match real-
world developments with metric variations.

scalability issues. One such issue is that data can be summarized to an extreme level, so the
larger the data set, the more will distinct patterns and important events be filtered out. Plus,
the implemented algorithm has a high requirement on computational resources.

Finally, in [109] (Figure 2.10), Wanner et al. propose a novel visualization tool that
automatically extracts user-highlighted patterns in time series data sets, displayed in a line
graph, and searches these patterns in financial reports and news articles to discover textual
information that gives context to the extracted patterns. The temporal data is joined with
the textual data that explain the phenomena in the data, so that analysts are given as much
feedback as possible. Users and automated processes can also annotate series with metadata
that semantically explains the pattern, similarly to the concept of annotations outlined in
this dissertation.

Throughout this survey of visualization techniques, a recurring aspect is that line graphs
are ubiquitous in usage due to their capacity to scale and to adapt to a domain-agnostic data
set. Even though both VizTree [19] and 3D Tube [104] showcased inventive techniques for
displaying temporal data that scale well with growing data sets, most visualizations were not
as flexible and scalable for analysis purposes.

2.5.2 Software tools and interfaces

Time series

Part of the research effort of this dissertation is to study existing visualization platforms for
massive time series data sets, and evaluate their features and interface paradigms.

31

Figure 2.11: TimeSearcher interface showing the full time series data set as line graphs and user-
defined query areas as blue rectangles. The remaining panels display the queried data
in detail and the selected items.

(a) The user manually draws the intended wave-
form and a normalized waveform approxima-
tion of it is displayed below, the latter of which
is used to match with the data set. The nor-
malized waveform can be adjusted by using
the approximation tolerance slider.

(b) The user manually draws any shape that rep-
resents the intended annotation on top of dis-
played data set, annotating a smaller subset
of series in the same sequence of time. Anno-
tation shapes can be named and shown on a
list in the right panel.

Figure 2.12: TSPad interface for search and annotation features, leveraging tablet-PCs capabilities.

In [24], [110], [111] the authors describe a visualization tool for line graphs called Time-
Searcher (Figure 2.11), that uses rectangular locators called TimeBoxes to query regions of
interest directly in the data. The user can make a drag-and-drop selection over the graphs to
intuitively and interactively trigger queries for similar patterns instead of setting the filter
criterias manually.

TSPad [40] (Figure 2.12), a standalone tablet-PCs Windows application for collaborative
time series analysis that allows users to browse series data and annotate it. Annotations
are used by the platform to aid the training of automated diagnosis algorithms and machine

32

(a) The blue area on the right side indicates
the potential area that future stocks can
be based on historical pattern.

(b) The user can drag and drop the black ar-
row, setting their prediction of stock val-
ues and influencing the future behavior of
the automated prediction module.

Figure 2.13: TimeFork interface that allows users to observe stock market data, view automated
predictions and indicate their own predictions.

learning models. Analysts create annotations under a restrictive access policy, where some
analysts have limited read and write permissions over annotations of others. A view window
displays a smaller subset of the overall time series data, and users can navigate through past
or future events by clicking on left and right arrow buttons respectively. Users can increase or
decrease the amplitude of the series waveforms to increase the clarity of data fluctuations.
Moreover, TSPad supports waveform search through free-form shape sketching or through
the selection of similar waveforms in the visualization (Figure 2.12a). When performing
queries, the user can set a similarity threshold that searches for series with an adjustable
degree of deviation from the one drawn or selected. Sketchable search is a novel idea, but it is
impractical for non-tablet devices, and can generate a considerable amount of False Positives
and False Negatives.

TimeFork [15] (Figure 2.13) is a web application that, like TSPad, establishes a human-
machine interaction through the usage of tablet features. Users can observe the machine-
generated window of predictions and attempt to predict future stock patterns by sketching
where the future patterns, continuously training a machine-learning model.

WebPlotViz [16] implements the PlotViz visualization within a standalone web application.
Users can interact with both the cluster view (Figure 2.7a) and the tree view (Figure 2.7b) by
zooming, rotating and panning. This application also implements similarity search through
selection of time series vectors or clusters, so users can rapidly find similar clusters. Finally, it
provides versioning support for plot points, so users can manage multiple perspectives of the
same data set and save changes as separate versions that do not overwrite others.

In [12] (Figure 2.14), Healy et al implemented a platform that displays real-time physio-
logical streams and enables the usage of annotations for knowledge sharing and discussion
between collaborators. This application also performs authentication and management of
users for the purposes of establishing a learning platform, where junior analysts can lookup
annotations from senior analysts and, in turn, senior analysts can monitor and rate the work
of junior staff. Users can query, annotate and comment any annotation in a public or private
manner, as well as rate annotations using the Likert scale as a confidence measure. Users also
have a profile page, where all their annotations are listed.

33

Figure 2.14: Web-based viewer of EEG data set with waveform classification annotations, associating
the data set directly with a category or semantic, and text annotations, relating events
outside of the data.

Figure 2.15: Web interface of earthquake historical events in California. The map view shows a
selected earthquake as a red hexagon, previous earthquakes as gray diamonds, and
events after the selected one as purple diamonds, all of these connected by a line that
follows their chronological order. The line graph shows the magnitude and area of
previous and later earthquake events in relation to the selected one.

Lastly, in [17] (Figure 2.15), Chourasia et al. presented a web application for earthquake
event analysis where domain researchers and students can remotely explore the multi-variate
time series present in this system. The implemented interface allows querying by timestamp
for an exact year/day/hour/second in three ways: 1) as an input field where users can type
manually into; 2) via a slider, for easy scrubbing; or 3) via increment and decrement buttons.
The slider can be configured to different time scales (1 second, 1 hour, 1 day, 1 year, 10 years,
etc...), so the user can seek the required timestamp at larger scales and then progressively
reduce this scale to pinpoint the necessary timestamp with a higher degree of precision.

34

(a) Timelion / Kibana

(b) Grafana

Figure 2.16: Open-source time series analysis dashboards displaying multiple time series charts in
simultaneous. Time series that are part of the same query are shown in the same panel
(shared-space), while time series from different queries are shown in separate panels
(split-space). Panels are adjustable in size and position.

In the commercial and open-source space, there are multiple dashboard tools for visual-
ization of time series metrics, like Timelion36 (part of the Kibana37 toolkit), Grafana38 and
Freeboard39. These tools are fully-fledged and adaptable to all kinds of input data, as well
as to custom authentication schemes and user directories from Lightweight Directory Access
Protocols (LDAPs), and provide extensive support for time series visualization using line
graphs. These tools are advantageous for research teams when needing to quickly deploy a

36https://www.elastic.co/blog/timelion-timeline
37https://www.elastic.co/products/kibana
38https://grafana.com/
39https://freeboard.io/

35

https://www.elastic.co/blog/timelion-timeline
https://www.elastic.co/products/kibana
https://grafana.com/
https://freeboard.io/

web visualization for a proprietary data set, but these tools are incapable of creating flexible
plots that integrate application-specific implementations [64]. Aspects like custom annotation
logic with relationship validation and versioning stages, which are a part of the previously
mentioned requirements (1.5), are not supported natively by these dashboards utilities.

Annotations

One of the aspects that was thoroughly explored during research is how annotations are
commonly implemented in terms of interaction and representation in the visual space.

In [90], the authors benchmarked the effectiveness of tooltips and colored highlights over
time series. Tooltips are typically used to append textual metadata to a point or region
of interest, while highlights are used as a tool to attract the attention of collaborators to
a region of interest, suggesting that the region has a connotation that does not need to be
explicitly described [114]. Both techniques were implemented using mouseover and drag-and-
drop interactions, and the authors concluded that both considerably enhance UX without
compromising accuracy or clarity of data. The benchmark results show that tooltips have
better task performance than highlights, which the authors attribute to the fact that users
have an inherent preference towards textual instructions rather than implicit indicators of
semantic through color encodings.

In TSPad [40], as a tablet-PC application, annotations can be created by sketching a shape
around the intended area, as shown in Figure 2.12b. While this free-form shape annotation is
an interesting approach in the visual angle, it increases complexity of storage and presentation
without providing much benefit over tooltips or highlights. In addition, such shapes result
in unstructured or binary data that automated systems can only interpret through the use
of graphical parsing algorithms. TSPad also displays a list of annotations contained in the
displayed data, so users can quickly jump to an annotation in the data by clicking it on the
list. However, annotations only contain a free-text field, and no structured fields nor a parent
category that matches a common taxonomy. The usage of text-only annotations comes with a
few disadvantages, which were already discussed in this dissertation (2.2.2).

In the platform proposed in [12], annotations can match either the tooltip or highlight
paradigms, and contain both a free-text field and fields such as category or type, public/private
visibility, and affected data points. The visibility field enforces a read-write access permission
policy that cannot be defined granularly on a user-by-user basis. Annotations that have not
been seen by other users are rendered in a different color to draw attention. However, hovering
the mouse over any annotation will automatically expand it, which can provide a bad UX
when observing a time series window with multiple annotations.

All of the above-mentioned open-source dashboard tools for time series visualization
support annotations following the highlight paradigm (Figure 2.17). Point annotations are
drawn as vertical lines and region annotations are drawn as rectangles that occupy the full
vertical area of the chart. Some of these tools only interpret clicks and drags to create
annotations when a keyboard key is held, so users do not create annotations accidentally
while navigating the time series data.

36

Figure 2.17: Annotation encoding in Grafana. To create an annotation, the user can click or drag
the mouse while holding the Ctrl button, drawing a vertical line or a rectangle over the
intended area.

2.5.3 Technological survey

In [115], the author presents a visualization of energy statistics using web-based frameworks
like Google Charts40 and the currently-abandoned IBM Many Eyes. WebPlotViz [16] is a web-
based tri-dimensional visualization application built with WebGL41 and three.js42.However,
WebGL frequently has high memory requirements when displaying high amounts of rendered
data points, taxing on the machine resources of the end-user.

In [17], the presented web application for earthquake event analysis uses open-source
JavaScript libraries to display charts and the Google Maps API43 to render earthquake events
in a map view. The observed interval of time series can be changed with a slider, which is
implemented with noUiSlider44.

Although the studied visualization tools use a variety of JavaScript toolkits for plotting and
rendering charts, it is not immediately clear which of the available toolkits is more flexible and
performant. In [117], the authors tested multiple visualization toolkits commonly used in both
academic and commercial environments, such as Google Charts, JIT45 and Protovis46. The
authors concluded that Protovis was the most versatile tool out of the tested ones. However,
by the time this research was published in 2012, Protovis had already been discontinued by
their maintainers one year prior. The performed tests did not include other visualization
libraries that were widely-used at the time such as D347 (from one of the authors of Protovis).

40https://developers.google.com/chart/
41https://www.khronos.org/webgl/
42https://threejs.org/
43https://cloud.google.com/maps-platform/
44https://refreshless.com/nouislider/
45https://philogb.github.io/jit/
46http://mbostock.github.io/protovis/
47https://d3js.org/

37

https://developers.google.com/chart/
https://www.khronos.org/webgl/
https://threejs.org/
https://cloud.google.com/maps-platform/
https://refreshless.com/nouislider/
https://philogb.github.io/jit/
http://mbostock.github.io/protovis/
https://d3js.org/

Both [53] and [5] implement a web application using Adobe Flash48 plugin technology
to display real-time physiological streams from EEGs. The performance of Flash was only
compared with other third-party plugins like Java applets and Microsoft Silverlight49, and
ultimately Flash was preferred due to its popular use. Modern frontend technologies that
leverage HTML550 and open-source JavaScript visualization libraries enable the application to
be cross-browser compatible in both desktop and mobile devices without requiring pre-installed
third-party plugins, but these were not discussed. HTML5 was mentioned, but ultimately
discarded as an option due to it not being a well-established standard by the W3C51 at the
time the authors were developing their applications. Nevertheless, building applications using
proprietary technology like Flash is widely unadvised due to vendor lock-in, where the owners
of the technology cannot feasibly ensure future-proofness and continued maintenance. In fact,
Adobe has announced that Flash will be discontinued in 2020 [116].

48https://www.adobe.com/products/flashplayer.html
49https://www.microsoft.com/silverlight/
50https://www.w3.org/html/
51https://www.w3.org/

38

https://www.adobe.com/products/flashplayer.html
https://www.microsoft.com/silverlight/
https://www.w3.org/html/
https://www.w3.org/

CHAPTER 3
Proposed Model

This chapter presents an in-depth blueprint for the implementation of a distributed platform
for time series analysis and annotation. The model presented here describes how data should
be represented throughout the application and which techniques should be used in order to
optimally store and query the data, without being restricted to a domain or to a specific
software tool. In this manner, this model can be used as a specification for implementing a
collaborative analysis solution for massive time series data sets while providing enough margin
for other potential prototypes to be developed while using different tools and frameworks
from the ones picked for the prototype described in the next chapter (4).

As part of the previously outlined work requirements (1.5), the intended platform should
iterate on existing software models for time series annotation by integrating standard practices
in the software industry and bleeding edge methods from the Information Visualization,
Information Security and Distributed Systems domains. Based on the research findings in the
previous chapter, there already is a good starting point for choosing the most appropriate
visualization and storage tools to fulfill these requirements. In this chapter, the first section
leverages this groundwork to describe how annotations, time series and other entities should
be modeled throughout the entire application stack. The second section lists what protocols
or systems should be used for storage of each entity. The third section describes the various
components that should compose the architecture of the platform, and how these components
synergize and communicate with each other. Finally, the fourth section illustrates the interface
and design paradigm of the platform using technology-agnostic wireframes.

3.1 Data model

To fully express and organize a collaborative knowledge base of series and annotations, a set
of entities is commonly used to describe the data set and all the different stateful objects that
the system requires. In order to better understand the proposed architecture and workflow,
these entities will be described first in this section.

39

Figure 3.1: Relational diagram of entities

Throughout this dissertation, the term ontology is used to describe the data that composes
the knowledge base or data-bank in the system, which corresponds to all of the data that is
generated from user input (i.e. annotations, annotation types, user profiles, authentication
sessions and revisions) combined with all of the metadata that is derived from a series data
set (i.e. measurements and source devices), excluding the series points and values themselves.
These entities should be homogeneously represented across every component of the application.
For example, the data structure of annotations in the client’s dashboard, including all of
its fields, should be consistent with how annotations are stored internally. In this way,
collaborators, system maintainers and automated services (such as machine learning models)
can interact with the system in a uniform manner while selecting the most optimal interface
for their use case, be it a web interface, a CRUD API through HTTP clients, a WebSocket
API1 through TCP sockets, or a database client interface that is directly connected to the
existing data stores.

Figure 3.1 shows how ontology entities relate to one another. This same anatomy can
be directly transposed into a relational database of choice by adapting the entities to tables.
While projects, annotations and annotation types have a set of users related to them, in the
form of authors and collaborators, data sources and measurements do not. This is because
sources and measurements are generated at the system level and based on the input time
series data. Additionally, while this diagram separates Author from Collaborator, when stored
in a RDBMS these two entities can be unified under the same User table.

3.1.1 Time series

Much like how time series are commonly modeled in the studied State of the Art solutions
(2.2.1), time series in this model should be represented as a XY coordinate point that maps
a timestamp in the X axis, using the ISO-8601 standard in the UTC time zone, to a value
in the Y axis. This value can be: a number (or a continuous type) for series that contain a

1https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

40

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

numeric value, usually as a double-precision floating point; a state (or a boolean type) for
series that represent how the measurement varies between active and inactive conditions over
time; and a string, for series that contain an unstructured free-text value.

The input series data set is assumed to contain points from different series and from
separate sources. The term measurement is used to describe a specific series and all of the
metadata that distinguish it from other series, such as a name, a color, and an indication of
its data type (i.e. number, state or string). Furthermore, the term data source, or aggregator,
is used to describe a series or measurement origin device. Each source can measure multiple
measurements, and each measurement can exist in multiple data sources. As a result, every
series data point is better identified by the source-measurement pair it was collected from.
If the input data set does not contain any information regarding point of supply or does
not distinguish separate measures, then the platform can be configured to accommodate the
entire data set within a single data source or a single measurement respectively. Measurement
and source names are used throughout the entire platform as a public identification of these,
but not as a primary key for system-level identification. Users should have the ability to
customize these public names, as well as measurement colors, in order to make measurements
and sources easily discoverable by all users of the application regardless of the names provided
by the input data set.

3.1.2 Ontology

As previously stated in subsection 2.2.2, an optimal annotation model should be designed
in order to be readable by both human curators and machines, where analysts can visually
interpret and edit annotations while automated tasks can parse them for the purposes of
search, pattern detection and data mining. The annotation data structure should have the
minimum amount of domain-agnostic, indexable fields that makes it applicable in any platform
and with any data set.

Therefore, the proposed annotation model can be expressed as in (3.1), where t is a
timestamp in the ISO-8601 format and in the UTC standard that is not lower than the
minimum timestamp nor higher than the maximum timestamp available in the series data
set; t1 is a starting point where this annotation becomes functional in its association with
the series data set; t2 is an ending point where this annotation is no longer in effect; p is the
parent project or scope of this annotation; c is a parent category or type of this annotation;
u is the author of the annotation; txt is a free-text field that contains all of the data that
cannot be structured, like a set of additional notes to share with collaborators; s is the series,
identified by their unique source-measurement pair, that this annotation is associated with;
and n is the maximum count of annotated series. All of these fields, with the exception of txt
and the s series-set, are mandatory so as to ensure a ubiquitous and universal representation
of annotations.

A = (t1, t2, p, c, u, txt, s1, s2, ..., sn) (3.1)

41

The starting and ending points can be set to the same timestamp, fundamentally repre-
senting a point annotation instead of a region. Consequently, the annotation notation can
then be shortened to be expressed as in (3.2), where t represents the single point in time
where this annotation is contextually active.

A = (t, p, c, u, txt, [s1, s2, ..., sn]) (3.2)

The category or type field should correspond to an annotation type entity that is taken
from a global repository of types. Because any annotation has to be associated with a unifying
catalog of semantic, analysts can easily find similar knowledge in different series and segments.
Collaborators can quickly create annotations and associate types without being forced to write
an unstructured commentary, so usability is considerably improved. Moreover, annotation
types can have additional metadata beyond a public identifier or name. A color code can
be included in order to make annotations more visually distinguishable when shown along
with time series. Furthermore, a set of constraints can be defined in order to restrict which
annotations can be set with the type in question. These constraints can limit the annotated
measurements and segment of time (i.e. either a point, a region, or both).

One of the key differentiators of the proposed solution is the ability to specify a set of
annotated series, limiting the scope of the annotation within the specified segment of time to
only a subset of the series that are available in that segment. This series-set can also be left
empty, denoting a global annotation that represents a universal event in a specific segment
that is not associated with any series, becoming identical to the annotation model of existing
solutions. In this manner, annotations are versatile in the way they connect with series and
more adaptable to realistic situations of note-taking and commentary.

It is still necessary to introduce a separation between different annotations at the contextual
level in order to avoid information entropy and visual clutter, especially when these exist
in the same segment and affect the same series. For this, the proposed model enforces that
all annotation activities are contained within projects. A project establishes a scope of
analysis and a specific annotation goal over a subset of the available series, limits the type of
annotations that can be used, and lists the specific users that can contribute. In other words,
any user can create an annotation project by setting up a query over series data, a repository
of allowed annotation types, and a set of collaborating users. A project can optionally include
a free-text field that instructs collaborators on a set of guidelines.

Finally, a user entity contains personal data that identifies a person, such as a unique
username, a first and last name, and a profile picture. Ideally, this entity should match a
collaborator that is already identified in other information systems within the organization, so
all of these fields should be automatically imported to the platform. If these systems do not
exist, the platform should directly request this data from the user during the sign-up process,
along with a mandatory password field (3.3.3). In addition to this, each user can only update
their corresponding profile data.

42

3.2 Data Management

Based on the listed research (2.3.2) and on the proposed data model for annotations (3.1.2), the
choice of a relational data store would be beneficial in this platform, since annotations contain
strong relationships with user data, parent projects, parent annotation types, and annotated
series. Other database systems like CDBMSs would facilitate the deployment of a partitioned
and replicated database, where the workload for queries and writes could be distributed and
processed in parallel, but this would constitute a trade-off in strong consistency-handling and
relationship fetching, which is a common scenario in the proposed application. With this,
a RDBMS should be used to model the complete ontology. As for the time series data set,
the researched benchmarks suggest that modern TSDBMS that use an LSM tree as backend
deliver the highest performance while also providing built-in mechanisms that lower the impact
of the data set on disk, promoting higher scalability (2.3.1). Thus, a TSDBMS should be
used to contain all series data points.

There are multiple approaches in how series and annotations can be stored and linked
with each other, but the most performant approach will likely rely on a polyglot persistence
model that leverages the most optimal data storage tool for each data type (2.3.1). At the
architectural level, a granular framework for data storage [71], [72] means that the overall
traffic load and persistence requirements are distributed over multiple independent units of
data storage. Therefore, granular models are naturally more scalable and provide higher
availability of data. Data granularity can be employed by separating data based on their type
or on any arbitrary rule set, or by partitioning a database using mechanisms provided by the
database technology.

3.2.1 Persistence model

For the purposes of finding the most performant architecture for querying and storing massive
amounts of series data and associated annotations, a few studies were made on how different
persistence models fit with the data model described in the previous section (3.1). First, the
minimum required queries were outlined. These queries represent a set of common searches
that users will realistically perform in the system for the purposes of analysis, and that
the system should be able to perform with as minimum workload as possible and without
bottlenecks. They are as follows:

• Q1 - get series S and annotations A over a range of time R;
• Q2 - get series S that are annotated with annotations A;
• Q3 - get series S that are annotated with annotation type T ;
• Q4 - get annotations A that belong to the project P ;
• Q5 - get series S that are annotated in the project P .
With this, the first approach was to follow a granular model where annotations and series

are stored separately from each other. Series are stored in a TSDBMS while the ontology (i.e.
annotations, annotation types and projects) is stored in a separate RDBMS. This approach
is represented graphically in Figure 3.2.

43

Figure 3.2: Data management approach A.

For Q1, the user must request the TSDBMS for S within R, and then request the RDBMS
for A within the same R. Because both queries are independent and do not require the results
of one another, these can be performed asynchronously, distributing the overall workload
between two databases without affecting each other’s performance in any way.

For Q2, the user would have to know the source-measurement pairs that were annotated
by A beforehand, either by having the exact list of annotations and their annotated pairs
or by fetching these from the RDBMS and waiting for results. Once the user has the exact
measurements and the range of time of A, there is sufficient information to request for S in
the TSDBMS. This can lead to a bottleneck where the queries are performed in a consecutive
manner, and a failure or timeout in the ontology database would mean that there is not
enough data to use as conditions for a query to the time series database.

For Q3, the user must request the RDBMS for A whose parent type is T , either by having
the exact list of primary keys for each type or by querying for types with a set of predicates.
If the user has no prior knowledge of T , when querying these in the RDBMS the user can
perform a join-fetch for the annotations table, reducing the need to perform two individual
and consecutive sub-queries to the same database. After that, the user then proceeds as
described for Q2, inheriting the same bottleneck.

For Q4, much like in Q3, the user can perform a query to RDBMS for A while joining the
projects table in order to find annotations of the project P without leading to any bottlenecks.

Finally, Q5 is essentially a combination of Q4 with Q1, where the user queries the RDBMS
for annotations joined with the projects table in order to find the measurements annotated
by A, and use those along with the timestamps of A to fetch the matching series S in the
TSDBMS, leading to the same bottleneck as in Q2 and Q3.

This first approach has the advantage of keeping the data separated logically, so that
versioning these is a more streamlined process. However, as it can be observed from these
results, the majority of the queries will require multiple data-types in simultaneous, and this
approach struggles from not having direct associations between time series and annotations
in its architecture. Additionally, the various locks for results will eventually translate into a
longer delay for the end user, which will only increase as the overall data set grows.

44

Figure 3.3: Data management approach B.

The second approach was to iterate on the previous approach in order to solve the listed
caveats by inserting annotation identifiers, as well as their respective annotation type and
project identifiers, as part of the metadata for each of the annotated time series points. Each
metric is labeled with a list of tuples {annotation ID, annotation type ID, project ID}, as
shown in Figure 3.3. Because the data linking is custom-made and not natively provided by
the database tools, there must also exist a central unit that acts as a message broker between
the requesting user and the available databases. This central backend or broker unit enforces
the data access logic between all storage units by dictating the queries that can be sent and
imposing where data is written, abstracting the real location of the data away from the user.

Under this new approach, the query Q1 is identical to the one in the previous approach,
which is already optimal. For Q2, provided that the user knows the exact list of annotations
A and, more specifically, their respective IDs, then the user can now query these IDs directly
in the TSDBMS. Similarly, for Q3 and Q5, provided that the user has a list of IDs for
annotation types T or projects P respectively, the user can also query these directly in the
the TSDBMS. Q4 however remains unchanged in this approach. In other words, this second
approach completely mitigates the need to wait for results from a RDBMS in order to query
the TSDBMS, avoiding the previously mentioned bottlenecks. By taking advantage of the
TSDBMS querying by both timestamp and labels, queries Q2, Q3 and Q5 can change from
needing up to three sub-queries to just one.

However, and as mentioned before, this approach requires for a central backend to manually
implement all writing logic that affects both series and ontological data, such as inserting
or updating an annotation in the RDBMS and propagating these changes to the TSDBMS.
Between the moment where the ontology is updated and the series are updated, the entire
system sits in an inconsistency window and is eventually-consistent, which means that at some
point in the future the system will converge on a synchronized state if no more updates are
sent. For example, the user could perform Q1 while an update to A was in progress, and even
though the annotations sub-query to the RDBMS could return an up-to-date A, the series
sub-query to the TSDBMS could ignore series that were recently annotated by A but whose
IDs were not yet propagated as a label, resulting in false-negatives. Even if this duration is
infinitesimally small, it is not feasible to ensure a perfectly atomic, consistent behavior when

45

Figure 3.4: Data management approach C.

dealing with two independent database management systems. Moreover, in an environment
where a large amount of write requests should be handled simultaneously, the central backend
has to ensure that these requests will not overwrite each other nor cause conflicting writes
that affect the consistency of the two databases. The proposed solution for this is to rely on
constraint validation, ACID transactions, and an optimistic locking mechanism (3.3.8).

To avoid this added complexity and the requirement of manually managing the consistency
of the system between two different data structures, all annotation data could be moved
directly to the TSDBMS, avoiding the need for a separate RDBMS as shown in Figure 3.4.
All necessary data is stored in the time series database, so that each series contains the full
data set of annotations, types and projects, instead of just including their IDs. Because
every series point can have multiple annotations, each point is labeled with an array of tuples
{annotation, annotation type, project}. Since global annotations are not associated with any
metric, these could be stored as part of an independent time series with a unique key none
that distinguishes it from authentic series. All of the advantages of the RDBMS for modeling
relations between annotations and other active entities in the system are lost, but the system
is consistent for as long as the TSDBMS alone is consistent.

For Q1, it is sufficient to simply query for S within the range R in the TSDBMS, since
S already contain A on each series point. Contrastingly, for Q4 the query has to essentially
filter every series point that contains the project P and return the corresponding annotations
in each point. This makes queries very unwieldy and harder to manage, since the query has
to scan through all series points and all of the tuples in each, leading to a considerably lower
read performance. All other queries remain essentially the same as in the previous approach,
with the exception that the user no longer has to have prior knowledge of the IDs of A and
can instead query any annotation data directly in the TSDBMS using any predicates other
than ID equality.

The latter approach leads to a high consistency and high availability model that is optimal
in four out of the five queries listed. However, every other query that requires annotations,
types or projects directly, irrespective of their association with the series data, would lead to a
considerably lower performance than previous approaches. Because the ontological data is not
separated logically from the actual series, and because the actual metadata of annotations,
types and projects is fully present in every single annotated metric, then any update would
have to be propagated through all of these points, potentially having to cover hundreds of
thousands of points per update. As the platform scales and the knowledge corpus grows,
this operation becomes exponentially more resource-heavy and time-consuming. In addition,
attempting to apply versioning of data that is spread across several points would be a very

46

Figure 3.5: Data management approach D.

cumbersome, ad-hoc process. Due to these major caveats, the second approach remains the
preferable model.

As a final approach, instead of moving the ontology to the TSDBMS, the time series data
could be moved to the RDBMS as shown in Figure 3.5, emulating the architecture of existing
time series annotation software. Like the previous approach, this removes granularity and
avoids the need to manage consistency between two data stores. The advantages of TSDBMS,
such as better capabilities for querying and aggregating time series, are lost in the process,
but in exchange the strong relational model can be used to link annotations, annotation types
and projects directly with series. Every time series is stored in a unique series table, set
up with a bi-directional many-to-many relationship with associated annotations. Queries
that fetch annotations, such as Q1 and Q4, and that fetch series, such as Q2, Q3 and Q5,
can poll from this relationship the necessary attributes that are available in second-level or
even third-level relationships, such as parent projects or annotated measurements. Moreover,
system consistency is easier to handle in ACID-compliant RDBMSs than in most of the
existing TSDBMSs, as mentioned in the State of the Art chapter (2.3.1).

At a theoretical level, the latter approach could be the preferred schema for storing data
while ensuring that all of the requirements for high consistency and fault-tolerance are fulfilled.
However, it is not possible to theoretically compare this approach with the second approach
and to immediately identify a clear winner in terms of performance, since many practical
factors in the implementation of the selected TSDBMS and RDBMS, as well as varying data
set sizes and requests per second, can influence the performance of each approach. In this
dissertation the second approach, using PostgreSQL for annotation data and InfluxDB for
time series, is tested in comparison with this fourth approach, using solely PostgreSQL for the
entire data set. The results of this benchmark (5.1) showed that, for the selected technologies,
the second approach is the most performant for storing and querying massive time series
data sets by a wide margin, compromising a purely-consistent system in order to have higher
scalability. However, there is some optimism and receptiveness toward the fact that RDBMS
technologies will be further developed and, in time, may be able to compete with TSDBMSs
in both read and write performance for massive time series data sets. If RDBMSs reach this
point, one could consider that an optimal, consistent platform for time series analysis and
annotation should be modeled after the fourth approach instead. In fact, even if the overall
performance of RDBMSs is only slightly lower than the one found in TSDBMSs, this can
be interpreted as a negligible difference in query speed and an acceptable drawback to gain
atomic transactions and relational fetching over the entire data set.

47

Table 3.1: Summary of data management approaches, each row indicating if the respective approach
is optimal for each query without leading to bottlenecks. Some queries are only optimal
when forked, fetching the required data asynchronously and joining it afterwards.

Consistency Writes Q1 Q2 Q3 Q4 Q5
A High X X(forked) x x X x
B Eventual X X(forked) X X X X(forked)
C Low x X X X X X
D High X X X X X X

3.2.2 Versioning

In order to allow collaborators to revert unsanctioned changes, all entities related to the
annotation workflow, such as annotation, annotation types and projects, should be versioned.
Versioning of entities corresponds to the act of storing a reference to previous contents so
they can be fetched and used to overwrite other changes that came after it. These references
should be automatically created atomically within database transactions every time an object
is created or updated, in order to maintain system consistency. A rollback of a revision can be
implemented as a query over the target revision, collecting all of the contents that the entity
had during that revision, and an update over the same entity using the retrieved contents.
This will effectively rollback the entity to previous contents while generating a new revision.
Measurements and data sources should also be versioned in a similar manner, since their
public names can be changed by anyone in the platform. User data is not versioned due to
the personal nature of this data and due to it not being part of the collaborative process of
building a knowledge-base, as each user can only update their own profile information (3.1.2).

Versioning in the proposed platform is based on the full-table versioning model as described
in 2.3.3. In this approach, each entity revision is a read-only immutable record that contains
all of the data that the entity had during an update event, regardless if the corresponding field
was changed in that specific revision or not. These records are stored in a revision table that
is separate from the main table of current state, emulating an append-only log of versions.
The revision table also contains boolean flags for each of the entity fields, indicating if the
corresponding field was indeed changed in that specific version. While this translates to a
high disk usage that will grow exponentially as more and more objects are created or updated,
it will also translate into a higher performance in both revision querying and insertion, both
of which happen during any entity updates and rollbacks.

Deletions are treated differently from the other CRUD operations: whereas creating or
updating an entity results in the insertion or update of a record with the current state, as well
as the insertion of a revision with the previous state, deleting an entity will not effectively
delete the corresponding record nor create a revision representing the deleted entity, but
rather flag the specific entity as inactive. In this way, entity relations are not immediately
made obsolete and lost, but rather kept and associated with an inactive object. Every query
made to the ontology database includes a predicate that filters out entities that are inactive,
so even though the inactive objects and their relations are preserved, these are never sent to

48

the client until re-activated. Recovering a deleted entity can be done by simply changing the
inactive flag to false.

3.2.3 Caching

Along with the long-term persistence, it is also important to persist commonly used entities
in short-term memory storage for faster access. This is especially critical for reducing latency
between requests that perform multiple sub-queries of related entities, usually for validation
purposes (3.3.6). For this, an in-memory key-value store such as Redis2, Memcached3 or
Apache Ignite4 should be employed. The benefit of leveraging these tools for short-term
storage of data over a common RDBMS or any database system comes from the fact that
these tools implement mechanisms to keep data based on a duration or expiration date and the
amount of available memory in the machine. Caches also implement eviction policies based
on First-In-First-Out (FIFO), Last-In-First-Out (LIFO) and Least-Recently-Used (LRU)
principles, and others. These policies are followed strictly over time, but cached data may be
evicted due to other conditions based on the available resources of the host machine or on the
individual cost that one piece of data may have over others stored in the same cache.

Caching should be carefully exercised so as to not break the consistency of the system,
and mainly applied to entities that have a low rate of updates. The cache should be setup
with a LRU eviction policy, which means that as the memory space becomes more limited,
the least frequently requested entities will be automatically evicted. This automated task
contributes to a healthier level of self-preservation and orchestration in the global architecture.
However, when a cached entity is updated in the database, the system should not update it
in the cache but rather evict it, since this allows the cache data store to have a more realistic
perspective of which entities are the most required instead of just the most changed.

A potential behavior that can break data consistency, however, is if the caching mechanism
is called at a stage where an entity is about to be changed, erroneously caching an outdated
snapshot. This can easily happen if a snapshot is evicted before or while changes are being
propagated to the persistence units, but then a query called in parallel returns this same
snapshot before the changes are fully committed, which will then prompt the system to cache
this outdated result without knowing that an eviction is required. To ensure high consistency,
evictions should only be called within write transactions or query-hooks, so as to be forcibly
called during or immediately after the changes are effective and never before.

Under the proposed data model, there are a few entities that have a low chance of being
updated. One of these entities is the source-measurement pair, which corresponds directly
to a join-table of sources to measurements and serves as an identifier of a series in the time
series database. Another such entity is the user profile, which can only be changed by the
person corresponding to that profile. These entities, and other entities that follow a similar
pattern in the platform, can be cached with minimal concern that the system will become
inconsistent. In addition, these entities should have more memory space allocated for caching,

2https://redis.io/
3https://memcached.org/
4https://ignite.apache.org/

49

https://redis.io/
https://memcached.org/
https://ignite.apache.org/

as other cached objects that have a higher chance of being modified and requiring eviction
will have lower usefulness.

Along with specific entities, the queries that are performed over global catalogs, such as
annotation types, source devices and measurements, do not change based on the user that is
calling them, and do not have a high cardinality of query predicates. Therefore, it is acceptable
to cache query results for these entities, corresponding them to a key that represents the sum
of all query parameters. As per the caching philosophies expressed above, infrequent queries
with regularly updated results should avoid being cached as much as possible.

Time series in analysis systems are usually immutable, receiving new data points over time
but never changing these once inserted. Because of this, it would be reasonable to believe that
caching the results of series queries is safe and will not break the consistency of the system.
A time series point can be properly reduced to a unique key by combining its timestamp with
its source-measurement combination. This key can work well in series queries for a single
point in time and for a single source-measurement pair, but these are not at all frequent in
the common workflow. Since the key-value data store that serves as backend to the cache can
only perform lookups using a single key and not comparisons or approximations of keys, it is
not possible to use these keys in a complex time series query. Furthermore, caching series
points individually can lead to a high level of cache pollution without much added benefit.
Thus, series points are not cached.

An alternative strategy could be to cache series query results directly while using the
query parameters as the identifying key. However, when annotations are inserted or updated,
the only way to assess which query results were affected is by iterating a list of keys in
cache, obtaining the query parameters from each key, and determining manually if the query
parameters match with the annotation’s segment and annotated pairs, evicting them if so.
This leads to some glaring drawbacks: i) a complete list of keys in the cache has to be managed
and stored in memory separately from the query cache; ii) the wide variety of series queries
that can be made to the platform is extensive, hence this caching strategy will lead to a high
number of key-value members occupying the existing memory constraints. As such, series
queries are also not acceptable for caching.

3.2.4 User tasks

When time series points are deleted, associated annotations should still be persisted so that
the user can associate them to new metrics or permanently delete them at a later point in
time. If the metrics associated with an annotation are deleted, or if the parent annotation
type has been deleted, then this annotation should be flagged as invalidated, similarly to
how deleted entities are expressed by flagging them as inactive (3.2.2). Annotations are kept
invalidated until a collaborator can review it and update it in order to fit the new context.
This responsibility is notified in the form of a user task to the target user, which corresponds
to a collaborator in the project that is parent to the invalidated annotation in question.

A user task object is generated by a separate process of the processing layer, designated
as user task scheduler. This scheduler is not triggered by a user request, but rather by

50

a scheduler thread that checks for invalidated annotations on an hourly basis. When an
invalidated annotation is found, a task that requests a set of target users to review it is stored
in an in-memory cache database. With this, users must update the annotation so that the
invalidated status is turned off, and the user task will be cleared.

3.3 Architecture

As it was previously suggested, an ideal platform for collaboration between peers is one where
the knowledge base is located in a centralized system that is remotely accessible inside a
network (1.4). This centralized system should employ a distributed architecture in order to
handle high amounts of simultaneous access and updates, along with a visualization that
displays the up-to-date state of all entities and is locally deployed at the client level.

The end goal of the proposed architecture is to implement both a frontend dashboard
and a backend system that support the intuitive and interactive visualization of series data
and annotations while maintaining high-performance over multiple operations in parallel.
Under the CAP theorem, this architecture should follow the Consistency + Availability (C+A)
model, prioritizing Consistency and Availability over resilience to network failures. Most if
not all of the architectural decisions are agnostic to the data analyst’s workflow, save for a
few that prioritize analysis tasks instead of monitoring tasks. Within this analytical scope,
the analyst’s main use case is to go over historical data and gain insight over visible patterns
by proposing and refining annotations, so under the PACELC theorem, an E+L architecture
is chosen for time series, preferring low latency of queries over read-write consistency, while a
E+C architecture is chosen for annotations, so that annotation queries and update proposals
from collaborators should always iterate and overwrite the most recent data changes.

For this, every aspect of this solution’s architecture is grouped within four different layers of
abstraction: a visualization layer, a communication layer, a processing layer, and a persistence
layer. Figure 3.6 shows an overview of the platform, where all of the separate components that
implement the platform’s operations are placed in a layer of abstraction based on their overall
responsibility and relationship with the other components. From the perspective of a request
performed by a user in the frontend application, the stack should be read in top-to-bottom
order, where the user request will translate into a query, an insertion, an update or a deletion
that is sent all the way down to the responsible databases in the persistence layer at the
bottom. From the perspective of a response that must be sent back to the user, the stack
should be read in bottom-to-top order, where the database processes a result for the requested
read or write operation and sends it all the way up to the user in the visualization layer.

In the top-to-bottom order, the visualization layer is composed of a reactive web application
that is designed with dynamic data in mind (3.4), and contains a set of units that allow
collaborating users to login, manage their associated projects, query and annotate over series,
manage the repository of annotation types, and change the public names and colors of
measurements and data sources. Every request made in the dashboard or management UI
is sent through HTTP to the communication layer below it. The most common end user
will interact with the system primarily through the visualization layer, but users may also

51

Figure 3.6: Architecture abstraction layers

52

send requests directly to the communication layer by using its REST API (3.3.2). Regardless
of how the messages are encoded and how the API is implemented, this API is a vital key
in enabling additional layers to be applied to the architecture stack, as the platform scales
and evolves over time to accommodate further features. For example, a potential input layer
could be used to parse new annotation types from an external dictionary, which would then
be inserted in the platform by sending these through the communication layer, by-passing the
visualization layer. Moreover, a machine learning model could export the annotations and
series stored in this platform by querying these through the communication layer. While the
deployment of automated import/export systems are not part of the scope for this dissertation,
it is still important to build the architecture in a way that enables it. The communication
layer is essentially a link between the end user and the processing layer, as the first component
in the communication layer is the single point of entry for every request made to the platform.
Without a careful architecture, a failure of this entry point and succeeding layers will render
the system as unavailable (3.3.1). The processing layer is best viewed as a set of processing
pipelines (3.3.4), where data at the input must be authenticated, read, validated, resolved as
a valid query statement, and then converted into a response that is sent back to the end user.
Finally, the persistence layer, which was already described in detail in the previous section
(3.2), is responsible for storing, versioning and caching the overall ontology, as well as storing
the entire series data set.

3.3.1 Load balancing

When running systems with high amounts of requests, there are essentially two main challenges
to deal with in the operational perspective: orchestration to deal with traffic increase over
time, and failure handling to guarantee as high of an uptime as possible. A distributed systems
technique that is applied to the proposed architecture in order to ensure high availability
and uptime is replication of the processing logic. Essentially, the processing layer, below the
communication layer and above the persistence layer, is deployed over multiple servers/nodes.

To distribute the load, one could follow an approach that uses a single load balancer. In
this approach, every request is intercepted by a load balancer, which will then redirect the
request to one of the processing servers. The balancing policy is set with a Least Connections
balancing policy, where requests are sent to the machine with the least amount of strain at
the time. However, this approach means that if at any moment all of the deployed servers are
struggling to handle requests and under strain, the load balancer will still continue to redirect
more requests as it does not have the ability of keeping requests queued in place until the
backend servers are freed up.

Instead, the proposed approach should leverage both a load balancer and a distributed
message queue to keep the subsequent requests in a FIFO queue, as shown in Figure 3.7.
Essentially, the load balancer is set with the same balancing policy, but will instead redirect
all requests to a distributed event queue with the lowest number of queued requests. Event
queues are replicated as well, not only so they can scale along with the increase of simultaneous
requests, but also to provide a failover measure. All processing nodes subscribe to one or

53

Figure 3.7: Load balancing architecture

more of the event queues, and when any queue is populated with requests and a node is free
to process it, this node will poll the first event from that queue. This way, when all servers
are under strain, the event queue will block the requests until a server is available to open
a processing pipeline for it. This approach comes the added drawback of introducing an
additional component and point of failure in the communication layer. If a failure occurs on
all event queues, the system will not be able to recognize it and receive requests.

There are many open-source implementations of message queues that are mature and highly
contributed to, such as RabbitMQ5 and Apache Kafka6, both of which contain automatic
scaling mechanisms. These queues already handle failover quite well: if a request is sent at a
moment in time where a server fails, the server will naturally not be able to poll that request
from the event queue, so the request will continue to be in the queue until another server
polls it. Moreover, if one of the servers crashes or fails while handling the request, the event
queue can detect connection losses and put the polled request back in the queue, so that
other servers may poll it. In order to not increase the overall delay in response handling when
a server fails, this request is placed back at the head of the queue (instead of at the tail),
making it the immediate next request to be polled by a failover server.

3.3.2 REST interface

The supported operations directly correspond to the basic functions of CRUD, and these are all
made available through a REST API. Every request that arrives at the communication layer
follows the HTTP protocol, and the corresponding responses are modeled as an HTTP response.
The REST API is deliberately designed in order to ensure uniform usage and interoperability
for all requests while following well-established conventions and recommendations for good API
design. Every response is delivered with the appropriate status code, headers and media-types,
and every request is modeled using the most appropriate method: GET for read-only queries,
POST for insertions, PUT for revision rollbacks, PATCH for updates, and DELETE for

5http://www.rabbitmq.com
6https://kafka.apache.org/

54

http://www.rabbitmq.com
https://kafka.apache.org/

deactivations. The data required for insertions and updates is sent in the request body, and is
written in a structured markup format, like XML or JSON.

All GET queries receive their predicates as Uniform Resource Locator (URL) query
parameters, allowing any user to easily specify a search criteria using the URL alone. However,
because series queries require a more complex query object that cannot be easily modeled
into an URL (3.3.5), the request body is used instead. Since the REST standard does not
recommend the inclusion of meaningful request bodies for GET requests, which has led to a
wide variety of software, like proxies, caches and other tools being built with that assumption,
series queries are structured as a POST request.

GET queries are always idempotent and non-state-modifying. All non-annotation queries
are paginated, returning smaller windows of data on every request that are faster to output.
This is because the common use case does not typically require a listing of the entire catalog
of entities in the ontology at the same time. Annotations queries, however, should still be
returned non-paginated, as chunking the results can affect how annotations are represented in
a chart. Instead, the window of queried annotation should only be narrowed by filtering these
by their parent project and by their segment of time.

Users can specify how their results should be paginated through the URL query parameters
size and page, where size limits the amount of results that will be queried for that request
and page sets the result page number. The page number ranges from 0 to the total number of
pages that a paginated query will output based on the specified size and on the total count of
resulting entities. In other words, the total number of pages that will be generated matches
the total count of entities divided by the specified size.

Relational fetching clauses can also be set for some GET requests, depending on the
amount of second-hand data in the relationship graph of the queried entity that the user
will also require. For example, if the user requires a list of annotation types and the allowed
measurements for each, a boolean flag fetchMeasurements can be turned on for the annotation
type query, returning the intended result without needing to perform extra measurement
queries for each annotation type. Fetching related entities can be a costly process, and other
searches should not have to unnecessarily load additional entities that they do not require, so
this is made optional and turned off by default.

An essential design decision in this API is that the PATCH HTTP method is used for
update requests. PATCH has a clear advantage over PUT, as it allows the user to specify only
the attributes that require changes in the request body. There is no need to supply a complete
snapshot of an entity, which the user would only have by fetching the entity beforehand.

Along with requests, the responses should also be interoperable and homogeneous, regard-
less of the entities that are being affected. All responses contain a payload, also serialized in a
structured markup format, with two baseline fields: a result and a result type. These fields
should provide enough information at the root of the response body for the user to be able to
algorithmically parse it, even without knowing the initial context or request that prompted
this response. The result field corresponds to the serialized output from a database query or
statement, and the result type corresponds to a string that can either be “object” or “list”. If

55

the result type is “object”, then the user can expect that the result field will contain a single
entity, and if it is “list”, then the user can expect that the result field will contain multiple
entities. A list response body will also include a set of numeric and boolean fields:

• count - the number of results that the current pagination window returns, being only
equal or inferior to the specified size parameter on the request;

• page - the current page number;
• total count - the total number of entities that match the query criteria, or conversely,

the sum of all count fields in all available pages;
• total pages, the total number of pages that the current pagination constraints will output;
• has previous - if there are pages before the current one;
• has next - if there are pages after the current one;
• first - if the current page is the first one in a stream of pages, or in other words, if

page = 0;
• last - if the current page is the last one in a stream of pages, or in other words, if

page + 1 ≥ total pages.
Additionally, every serialized entity object should contain a baseline properties that

indicates the name of the entity itself, which is called object name. This way, an automated
system that has access to the response body, but not the surrounding context or request that
triggered it, can use the result type field to easily interpret that the result is a single entity or a
list of entities, and use the object name field to identify the entity or entities contained in the
result field. The latter will allow the automated parsing task to know what remaining fields
are available based on the entities inherent properties, as specified in the data model section
(3.1). For example, if the object name corresponds to “project”, the system can immediately
assume, without risk of read failures, that this entity will also have a name field, a guidelines
field, and so on.

If a request leads to an erroneous response, then the HTTP response will be generated
with the most appropriate status code for the error. For example, a request with invalid query
parameters will return 400, which corresponds to the error BAD REQUEST, and a request
with an invalid credential will return 401, which corresponds to the error UNAUTHORIZED.
However, this schema for reporting errors is limited, as it does not inform the user what
exactly about the request prompted the error itself. For example, under the BAD REQUEST
status code, the error can correspond to an URL parameter being unexpectedly null or empty,
to an invalid value in the request payload, or to invalid pagination parameters.

For this, the response body also includes two additional baseline fields: an error and an
error type. The error field contains a string message that specifies what was the aspect of the
request that led to an error. The error type field contains a unique key that identifies the
different types of errors that can occur in the platform. Users can use the error type field to
distinguish errors with more precision than what would be possible with the HTTP standard
for status codes alone. Plus, the frontend application can also recognize the error and write
appropriate custom error messages that are localized to the end user’s preferred language.

56

The available error type values are as follows:
• null param - a specified URL parameter cannot be null nor empty;
• invalid param - a specified URL parameter is not valid, and a set of allowed values is

suggested in the error field;
• at least one of param - one of a group of URL parameters must be set, and these

parameters are listed in the error field;
• invalid field - a specified field in the request payload is not valid;
• invalid pagination - the specified size and page URL parameters are not valid;
• invalid date range - a date and range of time, composed of a starting timestamp and

an ending timestamp, is not valid;
• unique field already exists - a specified field in the request payload corresponds to a

unique attribute of the entity and it already exists;
• object not found - the requested entity with the specified ID was not found. If the

requested object exists but is personal to a specific user (i.e. projects and annotations
they collaborate in), then any attempt by another user to access it will cause this error
to be returned, instead of an “unauthorized” variant. This is a security measure that
serves to conceal the existence of said confidential data to unauthorized users;

• conflict - an object was changed while performing the operation. This error results
from a mechanism of optimistic locking, described in section 3.3.4;

• wrong credentials - wrong username or password. This error occurs only in login
requests;

• expired jwt - the authentication session is expired, and the user has to re-login (3.3.3);
• blocked request - too many failed authentication attempts, which resulted in the IP

address being blocked for one hour (3.3.3);
• server error - catch-all error type for unexpected errors that occurred internally. The

maintainer of the platform should be able to assess the system through logs or health
checks in order to fix this error.

3.3.3 Authentication

All operations in the platform, other than login requests, are protected and require user
authentication. The authentication scheme proposed in this module varies based on whenever
the user is imported from a directory information service that already contains an authentica-
tion process, such as an LDAP directory, or if it is created from scratch in this platform. If
the platform uses the former, then the user record in the platform should not store a password
field but rather use the authentication mechanisms available, sending a login request with a
username-password pair directly into this service. If instead the platform uses the latter, the
user should be prompted to set a password, which is then hashed with a function such as SHA
[118] or BCrypt [119] and stored in the respective user record. This hash algorithm has to be
strong in generating highly diverse hashes and deterministic so that the same hash is generated
when the same input is provided. This protocol provides a security layer for passwords when
stored in the database, as any maintainer or malicious user that gains access to the database
records will not be able to determine the original password nor use the hashed password

57

directly in an authentication request, since this hashed password would be interpreted as a
raw password by the system and re-hashed, resulting in a new hashed string that would not
match with the one stored in the database.

If a malicious user were to constantly send authentication requests with commonly used
passwords or common sequences of letters and digits, it is possible that this user could
eventually find a valid username-password combination. This attack would be slow and
unwieldy to perform manually, but an automated task could be designed in order to send
these requests in rapid succession, or even asynchronously. To avoid these dictionary attacks,
every request is identified with an IP address and, after ten requests that attempt to use an
invalid token or that provide wrong credentials, this IP address is stored as a blocked address
in a cache data store configured with a one-hour expiration policy.

Once an initial authentication request has been successful, the platform should be able to
provide the user with a token that grants access to all operations without needing to provide
their credentials in subsequent requests. This is essentially the concept of an authentication
session, where users are flagged in the system as logged in after a successful authentication,
and are provided with a unique token that will identify them in subsequent requests.

This protocol of authentication sessions can be implemented in various ways. One approach
would be to store the valid and non-expired session tokens in a database or cache from the
backend side while sending a copy of it to the user on a successful login. When a request
is made to the backend system, a query to the database or cache storage is made in order
to compare the existing session token with the one provided on the request. However, this
approach would lead to an extra impact on the database or cache storage, since each and
every request mandatorily requires an additional query to these. In a distributed environment,
where replicated backend systems receive multiple, simultaneous requests and treat them
asynchronously, this can quickly lead to a severe workload on the databases, affecting the
performance of other queries and statements in parallel and potentially timing them out due
to exhaustion of the connection pool.

A better approach that avoids hitting the database or cache storage to validate the
authentication session, and the one adopted by this model, is to generate tokens using
a message authentication code derived from a cryptographic hash function and a secret
cryptographic key. Much like the hash function that is used for passwords of non-imported
users, the hash function that is used here should be deterministic, so that using the same input
message and the same secret key will result in the exact same hash. However, unlike the hash
function used for passwords, this message code algorithm should generate a hash that can
be easily reversed back to the original input when matching it with the same secret key that
was used to encrypt it. Moreover, performing direct changes over the hash directly without
having access to the secret key should result in an invalid authentication code. There are
many keyed-hash message authentication code algorithms that can be used for this approach,
such as HMAC [120], RSASSA-PKCS [121], RSASSA-PSS [122], and ECDSA [123]. All of
these protocols rely on a strong hash function, such as SHA-256, SHA-384 or SHA-512 [118],
so the strength of the final hash depends solely on the size of the secret key.

58

A message authentication code algorithm can be used to generate a session token from a
structured object that contains a set of unique and personal data, such as the user primary
key, the login request date, and other metadata that identifies users and their authorities.
This is essentially the concept of JSON Web Tokens (JWTs), where the set of data that is
hashed corresponds to a key-value map serialized in JSON. The resulting hash is sent to the
user, with the expectation that the user cannot reverse the hash since it does not have access
to the secret key. Users will then append this hash to the Authorization header of requests
as an identification of their session, which the backend can properly verify by attempting to
decrypt it and read its metadata. If the computed result is not a valid object, then the token
is considered invalid and the request is canceled.

Finally, because a user request to the platform can be tampered by a man-in-the-middle
attack, providing an attacker access to the platform for as long as the session token is valid
in the system, then without an expiration policy or any kind of orchestration mechanism
at the service level, the session would have to be invalidated manually by the maintainer of
the platform. This also fundamentally requires the maintainer to know that the session is
compromised, which might not be assured. To solve this, the session token should be set up
with an expiration policy, so that both authorized users and malicious users are forced to
request another session after a set amount of time, which only authorized users that know their
credentials can do. The selected approach of using message authentication code algorithms
to encrypt structured objects enables an expiration policy to be easily enforced, by simply
including an expiration date as part of the message input that gets hashed into a session
token. When a token is received in subsequent requests and decrypted in the backend, the
expiration date is obtained and compared with the current date, so that if this expiration
date is before or equal to the current date, then the token is considered expired. Users may
hold on to a token for a long time during a continuous work session, so it is important that
this token’s expiration date is constantly refreshed so that the user is not repeatedly asked
for their credentials. For this, every response provides a new session token with an updated
expiration date, which the user then saves locally (replacing the previously used token) and
sends with the next request.

3.3.4 Processing pipeline

Between the communication layer and the persistence layer sits a backend server (3.2.1),
responsible for implementing the available CRUD operations for all active entities. When
an HTTP request arrives in this backend, a worker thread is opened to validate the request,
convert it to a set of instructions that is sent towards the persistence layer, receive its results,
and convert these results to ones that are readable to the user while concealing extraneous
data. Thus, this worker thread corresponds to a stateless message broker or processing pipeline
that transforms an input request into a relevant output.

59

Figure 3.8: Processing pipeline for queries and insertions

Figure 3.8 shows how a common processing pipeline is implemented for any of the CRUD
operations. First, the request is authenticated, as described in the previous section (3.3.3).
Then, in case of read-only queries, the URL parameters are parsed, and in the case of other
operations, the request body is deserialized. Since the request body sent through the REST
API is encoded in a markup format like XML or JSON, as mentioned in section 3.3.2, this
data can to be deserialized to binary in order to be usable in the backend system. The
deserialization process itself ensures that the request follows the specification, effectively
validating the payload in terms of data types. When deserialized, the URL parameters and
request body fields are further validated to ensure that the request follows the data model
specification and integrity (3.1). Once all validation checks pass, the query or write request is
sent to the database, locking the thread for results. Once the database delivers a successful
response, the resulting entities are serialized in a markup format and the HTTP response is
sent to the user, putting these serialized results in the response body.

3.3.5 Read validation

Users should have the ability to freely query over the complete data set using as many filters
as necessary. However, a query statement is dependent on the way the data is organized
and named, so the user would be required to have prior knowledge of this data model.
Additionally, queries should be properly validated so the user can create queries within
a consistent structure that uniquely apply to this platform’s ontology logic, and without
the risk of generating erroneous results or of allowing unbounded parameters that contain
update or delete statements, constituting an injection attack. Finally, it is important for the
query to be technology-agnostic and structured instead of an unstructured free-text query
statement written in the language of the selected database. With a structured object or a set
of parameters, both the backend and the frontend application can traverse a valid query in
an expected way, so parsers and visual representations (i.e. a query criteria builder) can be
implemented. If the full data set is changed or migrated to different databases, the system
itself can read and translate these queries as necessary.

The proposed model introduces a central backend that acts as a mediator between what
the user sends and what the database returns (3.2.1), so the processing pipelines in this
backend can be leveraged to properly validate and enforce a set of structured URL query
parameters or a structured query object. These act as an abstraction layer for queries, and
should be built in a way that conceals extraneous data but do not limit the query capabilities
of RDBMSs and TSDBMSs. For ontology queries that are sent to a RDBMS, the already
described URL query parameters in the REST API (3.3.2), as well as the deserialization stage
of processing pipelines, are enough to uphold database-agnostic, structured searches that fit

60

the data model. However, time series queries sent to a TSDBMSs should have the ability to
nest and combine filters in a flexible manner. Multiple filters can be aggregated through AND,
OR or NOT operators, and can be applied to all of the fields that exist in series points, such
as timestamps, numeric, state or string values, measurements, data sources, and annotations
(3.1.1). For each field, the available operands and operators can vary: while numeric values
can be compared with user-specified values using a comparison operator that supports < (less
than) or > (greater than), other fields can only support equality operators. The selected
field also restricts the viable user-specified values: numeric-value fields can only be compared
with numeric values, state-value fields with boolean values, and string-value fields with string
values. Finally, time series can be labeled with annotation IDs and their respective type IDs
and project IDs (3.2.1), so queries should naturally support filtering by these fields as well.

For this, the proposed platform uses a structured, serializable time series query object that
mirrors the mentioned nesting capabilities while introducing type safety and guiding users in
how time series are modeled. The user can send a POST request with the intended query
contained in the request body, serialized in JSON or XML. Then, as part of a processing
pipeline’s validation stage, the query object is parsed, its data-types are checked, and its fields
are validated according to the rule-set above. By having a human-readable and machine-
interpretable structure, the backend can directly translate a valid query object into an
optimized query statement in the language of the selected TSDBMS.

Ideally, this series query object should allow users to directly specify the pairs of source-
measurement combinations, regardless of how measurements and sources are actually modeled
in the TSDBMS. The query object should also contain a set of filters that are applied globally
to all source-measurement pairs, as well as a set of filters for each individual pair. Moreover,
to allow users to specify sub-queries with any number of nested filters, the filters themselves
should contain a pointer to child filters, which can be recursively traversed. Moreover, the
available field names should be: numeric value, applicable to continuous series; state-value,
applicable to boolean series; string-value, applicable to string series; annotation, which should
indicate an annotation ID, and will limit the query for series that are annotated with the
corresponding annotation; annotation type, which should indicate an annotation type ID; and
project, which should indicate a project ID. Along with this, the operators should also be
limited to the chosen field name, so that only expressions with the numeric value field name
should be allowed to use a numerical comparison operator.

3.3.6 Write validation

In the case of insertions or updates, the validation step usually involves the verification of a
set of field constraints (i.e. character limits, data types, string formats) and the querying of
relationships to guarantee that the user-specified data is valid based on the pre-established
relationship constraints, a few of which were already described in section 3.1. For example,
an annotation type can be updated to prohibit child annotations from annotating certain
measurements, at which point the validation stage will have to query the child annotations in
order to confirm that none of them are annotating the newly forbidden measurements.

61

For an annotation A, a parent annotation type T , a parent project P , a measurement M ,
and a source-measurement pair SM that combines any source with M , the complete list of
relationship constraints that must be validated are as follows:

• P allows T , both being parents of A;
• A is annotating SM , which P allows;
• A is annotating SM , hence is annotating M , which T allows;
• A is annotating a segment of time (point or region) that T allows.
When attempting to remove certain relationships, all of the constraints above already

regulate the removal attempts in order to ensure that these constraints are always true. In
the same order as the constraints listed above, their respective corollaries are:

• P cannot revoke SM if at least one of A is still annotating SM ;
• T cannot revoke M if at least one of A is still annotating SM , hence annotating M ;
• T cannot revoke a segment type (point or region) if at least one of A is set with it;
• P cannot revoke T if at least one of A is still of type T .

3.3.7 Asynchronous updates

The validation stage allows the pipeline to know if the changes fulfill all of the constraints,
and hence its persistence will be almost guaranteed. It is, however, impossible to assume a
100% uptime of the database due to unexpected errors that may occur, so conversely, it is
impossible to guarantee that a valid write request will be persisted. Nevertheless, because a
write transaction to a database can take a long time to complete, depending on the amount
of data and relationships that are being committed, the user is suspended from further action
until the write request has been completed. While the frontend can be developed so that
a write request is sent in the background, so that the user can perform other operations in
parallel, the user will still have to wait for a successful response if their next task is dependent
on the results of this request. As a solution, the proposed model should allow all state updates
to be committed to the database in an asynchronous manner.

Figure 3.9 shows a variant of the pipeline in Figure 3.8, where any write action that
corresponds to an update, a deletion or a version rollback, is committed to the database in
an asynchronous manner. After a transaction has been started asynchronously, the pipeline
creates a simulated entity that corresponds to a snapshot of how the entity will be represented
in subsequent queries after the changes have been committed, including all of the changed
fields. Then, this simulated result is sent to the user in the response body. This technique is
not applied to insertions because the backend cannot properly simulate a new entity with
the appropriately-generated primary key and relationship graph before it has been created,
thus, every insertion is consistently synchronized with the end user. All other write operations
are eventually-consistent at the local level, so for the requesting user alone, this approach
will simulate an E+L architecture under the PACELC theorem, rather than the proposed
E+C architecture. In other words, between the user receiving the simulated result and the
asynchronous thread completing its writing task, the user is temporarily sitting in a local
inconsistency window. Although the user observes the snapshot of how the object will look
like in the short-term future, assuming the writing task is successful and expeditious, this

62

Figure 3.9: Update, delete or rollback pipeline

does not break overall system consistency for other users, as these are not supplied with the
simulated snapshot and the actual changes are committed to the RDBMS atomically.

Furthermore, all write transactions of entities that are labeled in the series data set are also
propagated asynchronously to the TSDBMS. A hook is appended to the update asynchronous
thread, so that when and only if this background operation is successful, a new asynchronous
thread commits these results to the TSDBMS. The changes are not committed in parallel
with the ontology database but rather in succession, since, as previously mentioned, the
system cannot guarantee a 100% probability of success for the ontology database to commit
changes. In other words, if the ontology database were to fail to commit the changes due
to an unexpected error, then there would be no way to cancel the parallel propagation of
these changes to the TSDBMS. It is important that the ontology database succeeds before
the changes are labeled in the TSDBMS, so as to ensure that both data stores are converged
on the same data without breaking data integrity.

As a caveat, once a simulated snapshot is sent to the requesting user, no further messages
like errors or logs can be sent because the HTTP connection with the user is already closed.
In other words, an asynchronous attempt to persist a set of proposed changes should only
happen when these changes synchronously pass all of the field and relationship constraints.
The previously mentioned validation stage will ensure that the requested changes contain
valid data, and as such will very likely be committed to the database successfully, but this
cannot be guaranteed in the face of concurrent updates, database crashes or network failures.

3.3.8 Optimistic Locking

A user that interacts with the platform in a continuous session, regardless of the interface
used, will naturally observe the existing entities of the knowledge base and perform changes
over these based on their contents at the time. Conversely, when two or more users are
simultaneously working on the platform and over the same entities, one user will inevitably
run into a situation where the last queried snapshot of an entity has already been internally
updated by another user, and hence corresponds to an outdated snapshot. Without any form
of detecting stale data and a locking mechanism, the database can allow the user to submit
changes based on an outdated snapshot, leading to data loss. Ideally, when attempting to
propose changes, users should be notified that the ontology has been updated and that their
notes and observations may no longer apply. With this, the user then can locally save their

63

changes, reload the results, and merge their local changes with the recently published changes
the way they see fit. This is similar to a behavior found in distributed version control systems,
where each user has to synchronize their view of the data with a “master” branch before they
can commit changes to it 2.3.3.

To enforce this sequential order of updates, a mechanism of optimistic locking is imple-
mented, blocking any updates made to an entity that may have been sent based on obsolete
data and forcing the user to manually re-fetch the entity. The user is required to always
provide the last-modified date of the currently viewed entity for every update request, and
when this request reaches the update pipeline, a checksum is generated between this date and
the last-modified date stored in the database. If the checksum reveals a difference between
the two dates, then the update attempt is blocked and the user is properly notified. This
mechanism is enforced not only at the processing pipeline level, prior to the validation stage,
but also at the persistence level, so that the last-modified date comparison is performed in a
atomic transaction. By forcing this integrity checking in transactions, in any given case where
two or more updates to the same object are triggered in parallel, only the first update to be
received will survive while the second will be canceled and appropriately notified to its author.

While this model enables a strict policy for concurrent updates, it can lead to a few
issues when combined with the asynchronous update feature previously described. While the
first optimistic locking check is executed in a synchronous manner, if the second check at
the transactional, asynchronous level were to fail, then the resulting error message cannot
be provided to the user that already received a simulated response and closed their HTTP
channel. When users refresh the page expecting their updates to be applied, instead they
might find changes proposed by a simultaneous user without having been properly notified of
this, losing their own changes haphazardly.

3.4 Visualization

3.4.1 Dashboard

Most of the studied state of the art software solutions for time series visualization, with the
exception of TSPad [40] and TimeFork [15], were implemented as web applications (2.5.3).
The most recent developments made to the web browser and JavaScript technologies, the
near-universal availability of web browsers in the majority of computers and mobile devices,
and the ubiquity in the way users are accustomed to interact with these, make the web platform
a more attractive choice for the development of data science software [16]. Therefore, the
proposed frontend interface should be implemented within a web application, using bleeding
edge web technologies and frameworks. Many application interfaces also provide a workspace
dashboard, where collaborators can quickly change the query criteria while keeping the series
and annotations always in view. Dashboard interfaces like the one proposed by Healy et
al. [12] or like Timelion and Grafana, allow the user to visually structure, separate and
display the time series data, as well as functionality for user management and authentication.
Additionally, when multi-series or multi-source visualization is supported, the researched

64

Figure 3.10: Wireframes for the dashboard interface displaying a list of projects and details for a
project that queries multiple sources. Only one of the sources is selected.

interfaces display these in either a shared-space model or a split-space model, usually not
enabling a combination of the two. Both the split-space model and the shared-space separately
have UX trade-offs (1.2) that can make the complete picture harder to parse visually.

Overall, the desired frontend application in this platform should present an interface with
a flexible and customizable working area for each user, listing the projects that each user is
authorized to collaborate in, the measurements, sources and annotation types supported by
the project, and the respective project chart that displays the time series corresponding to
the project’s scope. For this, the interface leverages the UI paradigm of a dashboard with
panels and windows, as seen in Figure 3.10. On the left, the dashboard displays a panel with
a list of projects that the authenticated user is an author of or a collaborator in. This list
is searchable by its name, its supported annotation types, and the queried segment of time,
sources and measurements. After the user selects a project by clicking it, a second panel will
show detailed information that corresponds to the selected project. This includes its name,
guidelines, the queried source devices, the queried measurements grouped by source, and the
visible annotation types. The latter corresponds to a list of annotation types that are being
actively used by annotations that are displayed in the series chart. Both the source list and
the annotation type list are searchable by name and their supported measurements. When
filtering the list of queried sources by measurement, the application will first look up for
source-measurement pairs that are queried by the selected project and then find the pairs that

65

Figure 3.11: Wireframes for the dashboard interface displaying a list of projects and details for three
project that query multiple sources. Two out of the three total sources are selected.

contain that measurement. When filtering the list of viewed annotation type by measurement,
the application will look for annotation types that are being actively used in the project and
that support the specified measurement.

Every visualization chart is grouped by the queried input sources because the most common
use cases of the application will have the collaborator quickly jumping between different data
sources within the same project. A project is essentially an aggregator of metrics contained
within the same interval of time, and users tendentially setup projects so that they can analyze
how the exact same set of measurements behaves in different devices. A data scientist that
analyzes the project will commonly look at each of the source’s chart, clicking each of the
sources in the list, and find visual distinctions between the data in order to annotate it.
Moreover, if a project contains only a single source, this is automatically selected.

After a data source is selected, a window with a chart is spawned on the side. This chart
displays all of the series points that are contained in the project’s interval of time and in the
selected source, and are color-coded based on their respective measurement’s color. Alongside
it, the chart also renders all of the annotations in the project that are covering the displayed
series. This also includes all of the global annotations, which are always shown in that project
regardless of the selected source, since these are global to the entire project. The user can
click-and-drag in order to zoom in on the chart, refining the queried interval of time and
horizontally expanding the visible series.

66

Figure 3.12: Wireframes for the dashboard interface displaying the same selection as Figure 3.11,
but the side panels are hidden and two of the charts are resized.

If the user selects multiple projects through Ctrl-clicks or Shift-clicks, the details panel
will show the combined information of all projects, merging the lists of sources and annotation
types (Figure 3.11). It will also spawn multiple chart windows, each one representing one of
the selected projects. If the user selects multiple sources, the charts for projects that query
said sources will display the respective series. With this, both the shared-space model and
the split-space model (1.2) are used in simultaneous. The shared-space view is applied for
multi-series queries within a single project, so that the entire scope of a project, including
all of the selected sources, is shown in a single chart. The split-space view is applied for
multi-project views, where each project will be shown in its own individual chart window.
This is because separate projects can query different ranges of time, but a single project will
query the same range of time over all queried sources.

Like any UI component that mirrors the design pattern of windows, a chart window can
be re-arranged with the others, resized as the user sees fit, or closed, the latter of which will
de-select the project. Additionally, both the project list panel and the project details panel
can be hidden in order to extend the horizontal workspace available for charts (Figure 3.12).

Finally, the dashboard allows the user to perform all of the CRUD operations over projects,
such as creating, updating and deleting. When a project is selected, the user can find buttons
for editing projects in both the details panel and on the corresponding chart window. On
the chart window there are also buttons that will open a project details revisions page and

67

a deleted annotations page. The former will list a table with all of the historical updates
that were made to the project’s name, guidelines, queried dates, queried source-measurements
pairs, and allowed annotation types, identified with a revision ID and a date of when this
revision was made. Any collaborator can rollback a project to one of the previous versions,
provided that the existing annotations are not covering a segment of time, measurement or
source that would be discarded with the rollback (3.3.6).

3.4.2 Annotations

In the state of the art section, it was observed that the highlight design pattern was commonly
used to represent annotations (2.5.2). For example, in the dashboard open-source platforms
Timelion and Grafana, users can draw annotations as vertical lines (in the case of point
annotations) or rectangles (in the case of region annotations) that occupy the full vertical
area of the chart. This visual encoding is sufficient for the annotations in these platforms,
which are designed to express a global semantic over a segment of time. While this encoding
is more than ideal to express global annotations in the proposed platform, the data model
for annotations also indicates that an annotation can be attached to one or more of the time
series available in the same segment of time, expressing knowledge to only a subset of the
data on display (3.1.2). If the previous encoding were to be used, then an annotation would
overlay all visible series in its segment, creating a dissonance between the annotation’s internal
association with series and their visual shape.

Instead, the proposed frontend application should draw annotations as arcs that follow
the series curve when inside the specified segment of time, as shown in Figure 3.13. These
arcs over curves are designated throughout this dissertation as snakes. Snakes will only paint
over the curves of series that are associated with the annotation, while leaving other series
in the same segment uncovered. Similarly to the solution proposed in [90], the color-scheme
is based on the designated color of the annotation’s parent type, so that an analyst may
visually interpret the connotation or severity level of the annotation. If the annotation covers
more than one series in the same segment, then a snake will be painted over the curves of
the affected series and an overlay with a lighter shade of the type’s color will be painted
in a way that vertically connects these annotations. This overlay does not cover the entire
vertical space, allowing series whose curve is traced above or below the covered series to not
be painted over. If non-annotated series have curves that pass in the middle of two connected
snakes, these series will be painted over by the overlay but will still be visually distinguishable
from the annotated series, as these will not have a snake painted over them.

When the mouse pointer hovers a snake or overlay, the respective shapes that constitute
the hovered annotation are highlighted with a lighter shade of their color. All overlay shapes
are painted under all snake shapes, so when hovering a snake inside an overlay, the snake
always takes precedence of interaction so it can be selected.

To create a new annotation in a specific segment of time, the user should be able to
click-and-drag on the chart with the Shift key held, and the application should automatically
discover which series exist in this segment of time and suggest them as series to annotate.

68

Figure 3.13: Visual encoding of annotations. From top to bottom and left to right: i) annotation
encoding in state-of-the-art platforms; ii) proposed annotation encoding, covering only
the affected series; ii) proposed annotation encoding, covering two affected series and
linked by an overlay, indicating that the blue series is not annotated.

When Shift-dragging, or when a click event is intercepted inside an existing annotation, a
popover is displayed at the annotation’s location containing all of its metadata in editable
components. Popovers are similar in interaction design to tooltips, except that these do
not automatically close when the mouse is no longer hovering the respective annotation.
Additionally, and unlike the solution proposed in [90], this popover is opened with clicks
instead of mouseovers, avoiding the existence of a constantly opening obstruction that would
constitute an undesirable UX when navigating the chart. With this, users can freely create
and edit annotations without leaving the dashboard.

When two annotations intersect over one another, by overlapping on the same segment
of time, two output encodings may occur, as illustrated in Figure 3.14. If the annotations
are covering different series, the encoding as previously described will be sufficient to visually
differentiate the two annotations, since one of the annotations will only have a linking overlay
between the painted snakes and the other annotation will paint a different snake over its
respective series. In this scenario, if the overlay between two snakes is hovered, the overlay
and corresponding snakes will be highlighted while any snake that does not correspond to the
hovered annotation will not. However, if the annotations are covering the same series, one of
the snakes will assume a wider radius in order to nest the other, keeping both in view and
clickable. The nesting rules are based on the annotation’s segment of time and on the number
of annotated series. Nesting is disregarded for global annotations, which cover a wider vertical
area and are painted below all other annotations.

69

Figure 3.14: Visual encoding of annotations that intersect in the same segment of time. From top
to bottom and left to right: i) intersection encoding in state-of-the-art platforms; ii)
proposed intersection encoding, where one annotation is covering the yellow and red
series while another one is covering the blue series; iii) proposed intersection encoding,
where both annotations cover the same time series.

Having any two annotations A1 and A2:
• if A1 is a point and A2 is a region, point annotations always take precedence over any

other shape, so A1 is painted on top and A2 is enlarged to accommodate A1 inside it;
• if both A1 and A2 are a point, the one that has less annotated measurements is enlarged

and painted under the other, as their connecting overlay will naturally provide a wider
area of visualization and selection. If both annotations contain the same series, the
nesting precedence is picked arbitrarily;

• if both A1 and A2 are regions, and if A1 starts and/or ends inside A2, then A2 is enlarged
and painted under A1. Looking at all annotations sorted by time, the inner annotation
is the one that started its region first and ended on the other. If both annotations
start their region at the exact same time, the inner annotation is the one that ends
first. If both annotations have the exact same region, the nesting precedence is picked
arbitrarily.

By using this encoding, annotations are granularly represented and correctly associated
with the affected series, constituting a major improvement in graphical perception over the
simpler rectangular overlays.

70

Figure 3.15: Wireframes for the annotation type management page. All other ontology management
pages should look identical. Some features, such as creating and deleting, are not
available for measurements and sources, as these are handled by the system and
dependent on the input time series data set.

3.4.3 Ontology management

While users can perform CRUD operations for projects and annotations in the dashboard
itself, the visualization layer should also allow users to manage other active entities that
compose the ontology: measurements, sources and annotation types. All management pages
are implemented as a multi-selection, paginated table, displaying all of the available metadata
in columns. The user can select entities from the table, by toggling their checkbox on the
left, and click the buttons above in order to edit, rollback, or delete them. Multiple entities
can also be selected in order to perform batch edits or batch deletions. The annotation edit
popup allows collaborators to change metadata like names, colors and constraints. In the case
of annotation types, users can add new allowed measurements or remove existing ones. If the
user attempts to remove a measurement while a child annotation is still annotating it, then
the validation stage of the backend will properly validate this and report this action as invalid
to the user (3.3.6).

Annotation types can only be deleted if they are unused, and the versioning feature
allows any user to quickly recover these in case they were deleted erroneously (3.2.2). Any
collaborator should be able to rollback changes made to annotation types, measurements and
sources by using the “Revert changes” feature, or to recover an annotation type that was
deleted, by using the “Show deleted” feature.

71

CHAPTER 4
Implementation

This chapter outlines the implementation of a full-stack prototype that follows the proposed
architecture, data model, visualization techniques, and UI specified in the previous chapter.
All of the previously described architecture abstraction layers and their respective components
(3.3) are implemented using open-source tools and state of the art methodologies for building
high-performant, scalable backends and reactive web applications. While the previous chapter
described an architectural model in a domain and data-agnostic manner, this chapter describes
how this model was implemented and tested while using an HVAC data set, collected from
1000 boilers over the course of 1.3 years. This data set is ingested into the platform only
once, during the first deployment, and was ideal for testing how the prototype performed
when handling reads and updates over massive quantities of time series. Along with this
data set, in order to properly benchmark the prototype throughout the development phase,
automated tasks were implemented to generate thousands of annotation types and over a
million annotations within mock projects.

Based on the state of the art on data management techniques and existing database
systems (2.3), and in order to optimize querying of both ontological data and time series,
these are split into their own specialized databases (3.2.1). An essential requirement to uphold
a custom granularity rule set, which delineates how data is linked together and how it can be
accessed by authenticated users, is to implement a central backend system that enforces that
rule set, validating user requests and converting these into appropriate statements towards
the relevant databases. For this, a monolithic backend materializes all of the components that
are part of the processing layer, such as the authentication process (3.3.3) and the processing
pipeline (3.3.4), as well as the REST endpoint that is part of the communication layer (3.3.2).
This backend is implemented in Java 81 and using the Spring Framework2. More specifically,
it uses various modules from the Spring Boot 2.03 stack.

1https://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
2https://spring.io/
3https://spring.io/projects/spring-boot

73

https://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://spring.io/
https://spring.io/projects/spring-boot

When performing a survey over existing benchmarks on time series storage technologies
(2.3.1), InfluxDB presented itself as the most appropriate TSDBMS option for storing the time
series data set. The combination of InfluxDB’s reported high read performance and on-disk
compression capabilities allows an ever-increasing massive time series data set to be stored
without being concern over disproportionate decreases in query speed or over exponential
scaling of disk space. InfluxDB leverages a SQL-like syntax for queries, named InfluxQL,
which allows for complex querying capabilities similar to SQL. InfluxQL’s primary differences
with common SQL are: the ability to set time expressions that are relative to the current
time or to a specific date, enabling queries over ranges of time such as “the last hour”; the
ability to perform aggregated calculations of numeric values for continuous series; the ability
to test regular expressions over string fields; and the lack of table aggregations through the
join operator, requiring queries to contain sub-queries that select the required tables instead.
All of these features and limitations are taken into consideration when designing the prototype
queries (4.1.1).

When surveying how the many open-source RDBMS options performed in existing solutions
(2.3.2), PostgreSQL consistently showed excellent results, which motivated its usage as the
ontology database system. The high level of maturity and feature-completeness it provides,
the fault-tolerance mechanisms, and the high query speeds only further encouraged this
choice. Furthermore, additional functionality like indexing of text vectors, which enables a
performant textual search without requiring a full-text search inverted-index database like
Elasticsearch or Solr4 (4.2.2), has further pushed PostgreSQL to the top of potential choices,
since multiple aspects of the platform require name searches. Finally, because the established
priority in the architecture design for the ontology data set in on consistent reads and writes,
so that collaborators are guaranteed to always iterate over the most recent set of data and
not overwrite data in an unsanctioned manner, then PostgreSQL remains the preferred choice
due to its strong MVCC model.

4.1 Data model

4.1.1 Time series

Source and Measurement linking

The common workflow for time series querying always starts at the ontology level: when a
user has to determine which measurements or data sources are needed to work with, the first
step is always to discover these in the ontology (by name or through a list), and the second
step is to use the fetched information to query the respective series. Likewise, the proposed
strategy for storing and managing the series data set follows a similar pattern: i) sources and
measurements are extracted from the original data set and added to PostgreSQL, generating
primary keys for each (4.2.1); ii) every series point is then inserted into InfluxDB, identifying
measurements and sources with the generated primary keys.

4http://lucene.apache.org/solr/

74

http://lucene.apache.org/solr/

SELECT * FROM single_table_with_all_series
WHERE (source = :sourceId1 AND measurement = :measurementId1)
OR (source = :sourceId2 AND measurement = :measurementId2)

Code 1: Query for single table model in InfluxDB

SELECT * FROM (
(select * from :sourceId1_:measurementId1) AND
(select * from :sourceId2_:measurementId2)

)

Code 2: Query for table-per-combination model in InfluxDB

SELECT * FROM (
(select * from :sourceId1 WHERE measurement = :measurementId1) AND
(select * from :sourceId2 WHERE measurement = :measurementId2)

)

Code 3: Query for table-per-source model in InfluxDB

One of four data model approaches could be employed:
• i) write all series data into a single table, and identify all series by their source and

measurement (using tags for both);
• ii) create tables for each of the available source-measurement combinations, and separate

series as such;
• iii) create tables by source, using a tag to distinguish each series point’s measurement;
• or iv) create tables by measurement, using a tag to distinguish each series point’s source.
For all of the given approaches, query statements must be modeled accordingly. In

approach i (code snippet 1), queries would have to be written so that only one single table
is selected, but a where condition would have to be added for each of the requested source-
measurement combinations. In approach ii (code snippet 2), because each individual table is
an unique combination, then the query requires multiple sub-queries and no where conditions.
In approach iii (code snippet 3), each table is a source, so the where conditions are reserved
for measurement equality. However, these where conditions must be placed at the sub-query
level, and not the global query that joins the two sub-queries. In approach iv (code snippet 4),
the query is similar to the one in approach iii, but sources and measurements are swapped.

An important factor in deciding the best approach is the fact that, by design, lower data
cardinality leads to better performant queries in InfluxDB. Cardinality, in InfluxDB terms, is
the total number of unique tables, points, tag sets and field keys returned for any given query,
so that the higher the number of unique tables and indexed tags, the more tables it will have
to join together and the more rows of each table it will have to scan. Moreover, InfluxDB

SELECT * FROM (
(select * from :measurementId1 WHERE source = :sourceId1) AND
(select * from :measurementId2 WHERE source = :sourceId2)

)

Code 4: Query for table-per-measurement model in InfluxDB

75

developers also recommend that each table belongs to a single measure, and to not encode
more information in one table name or tag 5. This is suggested so that all of the rows in a
given table contain the same data-types and common behavior that can easily be indexed and
aggregated for rollups.

At first there was some apprehension about the measurements being so spread-out, so
that most of the common queries that filter multiple measurements would need multiple
sub-queries. After benchmarking the various data model approaches, the reduced cardinality
actually leads to a major improvement in querying speed, which is due to how InfluxDB
internally stores measurements in an aggregated manner that makes sub-queries for points
with the same data-type faster than a more singular schema of the single-table approach
or the spread-out schema of the table-per-combination approach. With this, the approach
that grants the highest performance is approach iv. Because series are indexed by timestamp
and tags, there is no fear of the series points being indexed in a way that would overlap and
discard each other.

Annotation linking

Annotation linking should follow a similar pattern to the above, where annotation IDs
generated in PostgreSQL are stored as a part of each series point. The difference in this
model is that annotations are not part of a set of attributes that uniquely identify a series,
but rather of a set of non-indexed attributes. In InfluxDB terms, annotations are stored as a
string field rather than a tag. However, multiple annotations should exist in each series point,
and the limited data model of InfluxDB does not support the storage of lists or the modeling
of relations with data stored separately in another table. To work around this limitation,
multiple annotation IDs A1, A2 and A3 are joined in a single annotation field separated by
semicolons “;”, being stored as “A1;A2;A3”. When querying for A2 through its ID, InfluxQL’s
regex-like pattern-matching over strings is used by setting a where condition that searches for
A2 with the expression “/.*A2*/”, as shown in code snippet 6.

Similarly, additional metadata that was listed in the proposed persistence model (3.2.1),
such as the parent annotation type and project of each of the linked annotations, should
also be linked in the series points, in order to reduce the dependency on PostgreSQL when
performing common series queries. An initial approach would be to contain a set of type IDs
and project IDs in new fields annotation type or project respectively, similarly to how it is
done with annotations. When needing to remove annotation links, their parent annotation
type and project links must also be removed. However, if two annotations contain a common
annotation type or project, there is no way of knowing if these links must be kept or removed

5https://docs.influxdata.com/influxdb/v1.6/concepts/schema_and_data_layout/

SELECT * FROM :measurementId
WHERE source = :sourceId
AND annotation =~ /.*:annotationId.*/

Code 5: Query for annotated series in InfluxDB

76

https://docs.influxdata.com/influxdb/v1.6/concepts/schema_and_data_layout/

without checking in PostgreSQL the parental relationships of each individual annotation that
is also linked, which can be a very heavy task that does not scale well for massive data sets.

Instead, all of the linking fields annotation, annotation type and project must be persisted
in synchronized lists with the same number of total elements, where annotation only contains
unique IDs while the latter two will contain repeated IDs. The three entities are matched
together by their position in the three lists, so that the Nth annotation that is in the annotation
list has the Nth annotation type in the annotation type list and the Nth parent project in
the project list. This way, when removing an annotation link, the annotation type and project
links in the same position will be removed as well. While this solves the issue above and
enables the correct modeling of annotation type and project linking, it presents a caveat where
new linked annotation will increase the total disk usage exponentially, as they occupy three
times the size they normally would.

4.1.2 Ontology

The backend system fulfills the proposed data model specification (3.1) by modeling the
entire ontology as Hibernate entities, using both the Hibernate and JPA APIs to describe
tables, indexes, columns and relations (one-to-one, one-to-many, many-to-one and many-to-
many). When the backend is deployed, these Hibernate entities will be properly created in
the PostgreSQL instance using equivalent column types. The usage of ORM to model the
database schema entirely within the backend codebase, using Java types and Java annotations,
introduces type safety, improves readability, and brings a set of other features that grant
easier maintenance over long development cycles, such as IDE support and debugging through
the Java compiler. By directly using Hibernate objects when serializing a JSON response,
validation and uniformity is easier to handle:

• objects that are used to model the entities are also the objects used to represent
the entities in the REST API responses, so every request will have responses with
deterministic field names and types;

• when refactoring an Hibernate entity model directly, the changes in this refactor will be
reflected both in PostgreSQL and in the responses sent to the client.

One potential issue that can derive from the usage of an ORMs is the N+1 query problem6,
where relationships that are read by the backend will trigger a fetching of these relationships
on-demand, splitting initial object fetching and relationship fetching over multiple queries.
This issue is solved by forcing all relationships to be lazy, throwing exceptions if a non-queried
relationship is accessed, and by introducing “join fetch” clauses in queries for objects whose
relationships will be required by the backend or client.

In order to establish a homogeneous data model over all entities, every ontological entity
in the system contains a set of baseline fields: a string ID, which corresponds to the entity’s
unique primary key; an inactive flag that is disabled by default, so that the entity is considered
active; an updated at timestamp, which is automatically updated by the system on every
update transaction; a created at timestamp, which is unmodifiable and automatically set by

6https://stackoverflow.com/questions/97197/what-is-the-n1-select-query-issue

77

https://stackoverflow.com/questions/97197/what-is-the-n1-select-query-issue

the system when the entity is first stored in the database; and an author, which corresponds
to a many-to-one relation with a user entity. The latter three fields are stored internally for
every model, but only exposed to the end user for models that are created and maintained
by the users rather than by the system or by only one user. In other words, the updated at,
created at and author fields are always hidden for measurement, source and user entities.

As previously stated, sources and measurements are directly derived from the time series
data set that is read on the first deployment of the system. Both follow the proposed data
model directly (3.1.1), where they are composed of a public name, that can be changed by
the end user without restrictions, and in the case of measurements, a used-configurable color
and a data type of the measurement’s series. Beyond that, both models are also composed
of a private external name, which is a unique name that this source or measurement has on
the input data set. This allows stored sources or measurements to be matched with their
counterparts on the input data set, so that a potential new data set of series with the same
sources and measurements can be appended to these already existing entities. However, these
external keys are not used as primary keys, because it is not guaranteed that this identifier is
always consistent in future input data sets. The external keys for sources and measurements
can be changed over time in the input data set, and in such a case, this external name,
while unmodifiable by the end user, can be modified through direct-access to the database by
maintainers. Primary keys are instead generated by the platform itself (4.2.1).

4.2 Data management

4.2.1 ID generation strategy

In a distributed environment where the backend system is deployed and replicated across
multiple machines, it would be onerous to use an additive identity such as an incrementing
integer as a primary key, as this would require all instances of the backend to query the
database or a central authority that holds the current increment on every insertion, in order
to find the next incremented integer to be used on the new entity. Other than lower write
speeds due to the added overhead of finding the next increment, when multiple instances
receive simultaneous insertion requests, all instances could attempt to access the database or
central authority simultaneously and potentially have collisions.

With this, it was necessary to find an ID strategy that would allow each backend instance
to generate a unique ID independently, even if simultaneously. Unique objects at a single
instance level, like a timestamp or a MAC address, are not enough for a multi-instance
environment. Timestamps, even at nanosecond precision, have a non-negligible chance to
collide if generated at the exact same time. MAC addresses, while normally being unique
identifiers for machines in the same network, are spoofable, as they can be changed manually,
and can collide with other threads in the same machine. However, a combination of all of these
identifiers, along with an identifier of the current machine and thread namespace as a message
digest, hashed by a hash-function like SHA[118] could reduce the probability of collisions to a

78

negligible level. This is essentially the concept of an Universally Unique Identifier (UUID),
which is the chosen ID generation strategy.

One issue that was detected while using UUIDs however, was the fact that its representation
has a total of 36 characters, which include 32 alphanumeric characters and four hyphens.
Multiple REST requests use multiple sets of UUIDs as part of the request URL or as part of
their payload, extending their length and negatively affecting human readability. Multiple
options were researched to reduce an UUID to a minimum amount of characters as possible
without losing uniqueness, and the wide majority of options available used a transformative
function like hashing or Base64 encoding. Hash functions were inappropriate for this use
case, as they generated even lengthier representations, but by encoding the most significant
and least significant bits of an UUIDs into a Base64 representation, it was possible to
reduce the an UUID to a 22 character URL-safe encoding while retaining a low level of
collisions. For example, the UUID “44bd2503-2180-4a54-82aa-13365a96c754” would become
“RL0lAyGASlSCqhM2WpbHVA”, which is significantly smaller and more readable.

4.2.2 Name search

One of the main requirements of the proposed model is that the ontological entities that
are identified by a name, such as annotation types, sources or measurements, should be
text-searchable. This is used throughout the implemented frontend application in various
stages (e.g. searching for entities in their respective ontology management pages, setting a
parent type for an annotation, filtering projects, filtering sources of the selected project, etc...).
An initial approach to support this would be to use regular expression pattern-matching,
which in PostgreSQL is done by using the LIKE operator. A LIKE predicate can be expressed
with a user-specified keyword prefixed and suffixed with a % symbol, as shown in code snippet
6, instructing the database system to look for names that start and end with the queried
keyword.

However, this approach will quickly result in major performance drops for name searches,
since name patterns cannot be indexed in an universal format that allows further pattern
queries to find matches in a more optimized manner. Every LIKE predicate requires a separate
character-based lookup for pattern matches over all rows of data. It also lacks adaptability,
where if the user inputs a lexical variant of a word that exists in the data, the query will
still return a false-negative. With this, two separate approaches can be outlined: deploy a
separate data store for text indexing and searching based on an inverted-index structure, like
Elasticsearch or Solr, or take advantage of PostgreSQL-specific capabilities for full-text, using
built-in full-text functions like ts_vector and ts_query.

When deploying a separate data unit for text searches, the data granularity increases
further, and a more granular persistence model will enable higher availability of data. Query
speed for text searches is significantly improved, as the system gains the advantages of a data

SELECT * FROM project AS p WHERE p.name LIKE %:name%

Code 6: Query for regular expression name search in PostgreSQL

79

SELECT * FROM project AS p WHERE to_tsvector(p.name) @@ to_tsquery(:name)

Code 7: Query for full-text name search in PostgreSQL

store that indexes ontology identifiers and names ahead of time. However, the same concerns
related to the system’s consistency listed during the discussion of persistence models in 3.2.1
are also applicable here. All names and searchable contents are required to be replicated
into an additional unit of storage, and additional changes made to the ontology data store
will have to be manually propagated to this data store. Because a propagated update over
the ontology storage and the text-search storage cannot be built in a linearizable manner,
ensuring that the proposed changes are reflected in the most updated index of the text-search
unit, then every update will open an inconsistency window where the system is consistent
for queries to PostgreSQL but eventually-consistent for name search queries. This search
index essentially enables a better user experience, but is out-of-sync and inconsistent for a
nondeterministic amount of time.

Additionally, most name searches should be capable of returning results that match not
only the text-search predicate but also other predicates related to the entities’ metadata
and their relations. When querying the system, the user expects the resulting entities to
contain the same fields that other non-name-search queries would, including created at and
updated at dates, project descriptions, annotation timestamps, and others. This requires one
of two methods to be implemented: i) the inverted-index data store is modeled in a similar
way to PostgreSQL, containing not just names but also all other fields; ii) a query is forked
between PostgreSQL and the inverted-index data store. With the first method, because the
search index already contains all ontological data, every query can be directed towards the
search index. However, the benefit of querying over a relational model is lost, losing with it
the ability to fetch entities based on their associations with other entities. With the second
method, a bottleneck is introduced for every query, since these will have to lock and wait
for both data stores to deliver their results before they can merge the matches of both and
return these to the client. This fork-join protocol for queries will also make paginated queries
impossible to implement, since the merging of both matches will filter some results out and
pages will not always contain a complete page of results.

In sum, the use of an additional data structure for name searches would be potentially
viable if name queries were not required to have filters for additional, non-text fields. The need
for deploying and additional data storage unit in the architecture would lead to a decrease in
consistency, not to mention the added maintenance, migration, schema changes and failover
concerns. Due to these requirements and the preference towards an E+C architecture for the
ontology, this approach was excluded as an option.

The second approach was to use PostgreSQL built-in functions for full-text search, which
allows the user to specify full-text searching as one of many other potential criterias over the
same data storage unit. The built-in function ts_vector generates a list of vectors (or tokens)
that are normalized to the smallest lexical unit, composing the information retrieval tasks

80

of tokenization and stemming. These vectors are built on demand during a query, and then
tested with the specified keyword through the use of another built-in function ts_query. The
latter, similarly to ts_vector, tokenizes and stems the specified keyword, and then matches it
with the vectors of stored names. The query is then structured as in the code snippet 7.

In this query, a lookup for projects with the keyword “heating boil” will not just look for
exact matches of the word “heating” or “boil”, but also for other words that can be reduced
to the lexical units “heat” and “boil”, matching project names such as “performance of heat
recovery” or “boiler values”. The current implementation bases tokenization and stemming
tasks on the provided English dictionary, building on the assumption that all stored textual
contents use English words. However, PostgreSQL already supports multiple dictionaries,
requiring only for the language to be specified in the ts_query function. A potential iteration
over this approach that would support a multi-lingual community would be for the intended
language to be provided directly by the client.

However, this built-in normalization process is not enough to handle corner cases with
text such as casing differences, repeated spaces, special characters and diacritics. For this,
an additional column is created for each of the full-text fields that are made searchable in
the system, storing in these a normalized variant of the original contents. When an entity
is created or its name is updated, the new name is put through a text cleaner pipeline that
processes the new contents char by char in a single-pass. The original name is stored in
the name column while the normalized variant is stored in the name_indexed column. All
ts_query are then applied to the name_indexed column, so that the name column is ignored
for querying purposes but still returned to the user as-is.

The above-mentioned cleaner pipeline reviews each character of the input text and decides
if it should either replace it or remove it. A cleaner module, identified by its separate rule-sets,
can be coupled together with other modules based on the deployment configuration file.
Regardless of how many cleaning modules are included in a single pipeline, the textual content
is always reviewed on a single pass, running at O(n). A set of text cleaning modules was
implemented, although more can be implemented and added to the system through the use of
the plugin pattern7 and Java Reflection API8. The implemented cleaners deal with cases such
as conversion to a single case (all lower), removal of repeated spaces, conversion of words with
diacritics to their normalized variant, and removal of non-informative special characters. For
the latter module, as a rule it will only clear paragraphs, tabs, and characters that do not
provide much information on their own, such as quotation-marks and bullet-points, but keep
characters that provide mathematical information, such as π, Σ, α, β and δ.

Because name vectors are built on a query-basis, this approach solves the consistency
issues addressed in the previous approach while enabling relational and paginated fetching,
and the system is always synchronized and consistent with updates made to the ontology data
store. Moreover, it results in higher query performance over the regular expression approach,
as well as improved adaptability to user-specified text, since the searches are matched with

7https://martinfowler.com/eaaCatalog/plugin.html
8https://docs.oracle.com/javase/tutorial/reflect/

81

https://martinfowler.com/eaaCatalog/plugin.html
https://docs.oracle.com/javase/tutorial/reflect/

data in regards to their lexical variants and individual words as opposed to exact matches.

4.2.3 Versioning

As specified in 3.2.2, the versioning approach should be one where full records of historical
data are recorded in separate tables, along with boolean flags that identify which records have
been changed in each version. For this, versioning is implemented by using Hibernate Envers9,
which allows the versioning schema to be modeled within the same Hibernate entities in 4.1.2,
using the @Audited annotation. Once the backend is deployed, committing the complete
data model into PostgreSQL, a set of tables with the “_log” suffix are automatically created,
containing all of the audited fields using a consistent naming convention. As a rule, while text
columns that correspond to searchable names are audited, the indexed text columns described
in 4.2.2 are not, since the contents of the indexed column can be rebuilt from the original text
by re-running the same normalization and text cleaning processes. Columns like id, created at
and author are also not versioned because they correspond to immutable properties.

4.2.4 Caching

Following the specification in 3.2.3, the prototype requires a cache unit to be deployed in its
architecture for short-term in-memory persistence of commonly used but infrequently changed
data. For this, it leverages a single node instance of Redis to deal with all caching needs.
Redis already implements all of the proposed requirements, such as a LRU eviction policy, a
wide variety of supported data-types, and other features that allow the solution to scale over
time such as clustering. The connection with Redis follows a similar pattern to the Spring
JPA connection through repository components, using the Spring caching API 10 and Spring
Data Redis11 library. The latter library already provides functionality to connect to a Redis
instance and to serialize ORM entities from and to cached objects.

With this, the backend codebase attaches caching mechanisms directly to Spring repositories
by using the @Cacheable annotation on query methods that should be cached when called.
A cacheable query is identified by a cache name, as each set of separate key-value bindings
that use different key and value types should be grouped as separate caches, all stored in and
managed by the same Redis instance. The @Cacheable annotation will effectively store the
results of the associated query while using the input parameters, listed as function arguments,
as keys that identify the cached object. This means that @Cacheable should only be placed
on queries with a small number of arguments, since the higher the amount of arguments are
used as keys, the higher the combination of arguments with different values will be. As the
number of keys grows exponentially, the higher the number of key-value mappings will be
occupying the available memory, causing cache pollution and degrading overall performance.

Because pair objects are widely used during validation and update operations, and are
never changed over the course of the system’s life cycle, these are cached with a high amount

9https://hibernate.org/orm/envers/
10https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.

html
11https://spring.io/projects/spring-data-redis

82

https://hibernate.org/orm/envers/
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html
https://spring.io/projects/spring-data-redis

of allocated memory. Lookups by ID, whose identifying key is a single “id” argument, are also
cached, as these correspond to high-reuse queries. All six active entities of the system have
their own cache for lookups by ID. Finally, and as described in the proposed model (3.2.4),
user tasks, which instruct users to re-add annotations that were invalidated, are also stored in
cache. The expiry policy is disabled specifically and only for user tasks, as these correspond
to short-term notifications that, were they constantly evicted, the user task scheduler would
just repeatedly re-add them back to the cache, nullifying the usefulness of an expiration policy
in the first place.

4.3 Architecture

The backend is deployed in an embedded Jetty12 servlet with a set of always-on services, and
is fully archived into a jar file. Running this jar file will deploy an embedded Jetty server in
the local system where the file is placed, launching all of the required Spring components that
connect to the RDBMS and cache data store according to a configuration file.

Each processing server is deployed on a servlet container with its own thread pool, so it
can already handle a massive number of simultaneous requests independently, only limited by
the resources of the machine where the backend is deployed to. In this way, each backend
is essentially a dedicated cluster of processing pipelines. However, the replication of this
server introduces additional parallelism and scalability that is only limited by the number of
replicated servers and their individual resources. As the platform scales and servers become
strained with simultaneous workloads, more backend servers can be deployed on demand.

The entire architecture, as illustrated in Figure 4.1, is deployed entirely using Docker
Swarm13. Docker Swarm is a container manager within the Docker14 platform where each unit
of the architecture can be distributed between nodes or containers. All units, including message
queues, databases and backend servers, are deployed as individual containers, configured
through a set of Dockerfiles that are launched as part of the same swarm. Docker Swarm
enables the infrastructure to scale, growing or decreasing the number of containers based
on workloads and providing redundancy or failover in the case of unexpected errors. This
is particularly helpful in facilitating backend replication, as both the number of distributed
queues in RabbitMQ and the number of backend servers can automatically grow as the
platform scales and more activity is detected. Moreover, the required units for load balancing
are already provided by Docker Swarm built-in, only needing to be setup to redirect load
between the existing distributed queues.

12https://www.eclipse.org/jetty/
13https://docs.docker.com/engine/swarm/
14https://www.docker.com/

83

https://www.eclipse.org/jetty/
https://docs.docker.com/engine/swarm/
https://www.docker.com/

Figure 4.1: Platform architecture

4.3.1 REST interface

To implement the REST interface as blueprinted in 3.3.2, a collection of Spring components
called controllers is used. Serialization and deserialization of request and response payloads
is handled by the Jackson15 library of utilities. Each implemented method/function in
a controller corresponds to a separate REST entry point of requests. GET methods are
mapped with a @GetMapping annotation, POST methods with @PostMapping, PUT methods
with @PutMapping, PATCH methods with @PatchMapping and DELETE methods with
@DeleteMapping. Multiple controllers are implemented, where each controller corresponds to
one of the active entities of the application.

All REST calls are uniform between all entities, so that, for example, requests for annota-
tions and annotation types should have the same GET, POST, PUT, PATCH and DELETE
methods, varying only in query parameters. These REST calls are separated by the starting
relative URL that matches the name of each entity, with the exception of annotation calls
which are prefixed by a parent project ID. In other words, the REST API implements all
the listed methods in the following base relative URLs: “/annotation types”, “/sources”,
“/measurements”, “/users”, “/projects” and “/projects/{projectId}/annotations”. Both POST
for insertions and GET for queries use these base URLs with no additional changes. The GET
method for list-queries always returns paginated results, of which the query parameters size
and page can be used to change the pagination window. GET, PUT, PATCH and DELETE
methods for single objects use the previously mentioned relative URLs with an ID as a suffix
(e.g. “/annotation types/zWfsakd2Dc12Da”). The PUT method to revert deleted objects
follows the same URL pattern, flagging the specified ID to active (as described in 3.2.2).
Moreover, to enable bulk editing and bulk deletion, there are bulk variants for the PATCH
and DELETE methods whose URL is the same as the base relative URLs, but requires the
query parameter “id” to be set mandatorily. Multiple “id” parameters can be set, reading all
of these as a list of IDs that must be edited or deleted. Finally, revision lists are implemented

15https://github.com/FasterXML/jackson

84

https://github.com/FasterXML/jackson

with a GET call using the previous pattern with the “/revisions” suffix (e.g. “/annotation
types/zWfsakd2Dc12Da/revisions”), and rollbacks are implemented with a PUT call where
this pattern is appended with the specific revision ID that the object needs to be rolled-back
to (e.g. “/annotation types/zWfsakd2Dc12Da/revisions/5”).

Only source and measurement controllers do not implement methods for insertion and
deletion operations, as these are handled at the system level (3.1.1). Along with the above
calls, there is a POST call that is used to query time series from InfluxDB, receiving in its
request payload a structured query object (3.3.5).

4.3.2 Authentication

For all of the REST calls mentioned, these are intercepted by a once-per-request filter before
being allowed to pass to their respective functions. This filter, as a component that is part
of the Spring security API16, implements the JWT authentication as specified in 3.3.3 using
the JJWT library17 to create, parse, and manage JWTs. Tokens must be included in every
request as part of the Authorization header, and every valid response from an authenticated
user will come with a refreshed token in the response’s Authorization header, which the user
and/or frontend application can read and keep as the newest token with a new expiration
date. If a token is considered invalid, either because it cannot be resolved to a valid key-value
map of claims or because the token itself has expired, then the filter will send an immediate
error response as defined in 3.3.2, effectively canceling the request. There is only one call
that is not intercepted by this security filter, and it is a POST method in the relative URL
“/auth”. This call is explicitly used for logging in with a username and password, so that users
can authenticate themselves and receive a valid token to use in other requests.

4.3.3 Processing workflow

The codebase of the backend itself does not detail how it should connect to PostgreSQL nor
how the queries should be written using SQL keywords. Instead, through the use of Spring
JPA library18 and Hibernate, the backend connects to PostgreSQL in an agnostic manner.
Essentially, Spring provides a set of database-agnostic Spring components called repositories
that allow the specification of queries using Java functions. Each function represents a query,
and the function arguments are parameters passed on to the query in a secure manner,
bounding the user-specified arguments and avoiding SQL-injection attacks. As the backend is
deployed, Spring will read these classes and translate the required queries into PostgreSQL-
specific queries. While these repositories allow queries to be specified using only the function
name, a @Query annotation can be used to manually write the necessary query using Java
Persistence Query Language (JPQL), a JPA SQL-like language. This abstracted connection
corresponds to a hotswap-like architecture that adapts to any configured relational database,
and can be swapped at any point. Data can be migrated to a different data store on-demand,
and no changes to the backend codebase are required to accommodate this migration.

16https://spring.io/projects/spring-security
17https://github.com/jwtk/jjwt
18http://spring.io/projects/spring-data-jpa

85

https://spring.io/projects/spring-security
https://github.com/jwtk/jjwt
http://spring.io/projects/spring-data-jpa

Figure 4.2: Controller to Service to Repository association

Beyond repositories, the custom logic that converts a request by the client, intercepted
by a REST controller, into a well-formed request to a repository method, which in turn
represents a query to the database, is implemented in a third and final Spring component
called service. Whereas the JWT filter and REST controllers match the Authentication,
Payload deserialization and Result serialization phases of the processing pipeline (3.3.4), the
remaining aspects of the pipeline are implemented in services. Even though the backend
could be entirely arranged as a single service that deals with all available request calls and
repositories directly, this would translate into a monolithic component that is harder to
maintain. By following best practices in Spring backend development and applying the design
principle of SoC, the backend is structured with one service and one repository for each of the
active entities, as shown in Figure 4.2. Note, however, that each service may need to access
multiple repositories beyond the one that is assigned to its entity. In general, each service will
make one or more queries to the database in other to fetch relevant data and validate the
custom set of constraints (3.3.6), and will only return a single object or a list of objects with
the respective entities that the service handles.

With this, the common roadmap for any query, insertion, update or deletion operation is
as follows:

• i) the user sends a request with a set of URL query parameters and/or with a request
payload, which is intercepted by one of the implemented REST controllers;

• ii) the request URL parameters and payload (if available) is deserialized into Java-
equivalent data types, such as Java primitives for numbers and boolean flags, the Java
String class, or the data structures available in the Java Collection Framework19;

• iii) the set of Java objects derived from a request are sent into the respective service
component;

• iv) the service validates the request by querying relationship validation checks in auxiliary
repositories, and if these pass, it redirects the request to its respective repository;

• v) the result is returned to the controller and sent back to the user, serialized in JSON.
19https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

86

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

In the case of asynchronous updates (3.3.7), the CompletableFuture20 API is used to create
an asynchronous thread. Essentially, the repository method of save, for inserting data into the
database, is called inside a CompletableFuture thread. All instantiated CompletableFuture use
the same executor, which already handles concurrent instances and queues them by design
when the server is under heavy load.

Whenever a cached object requires eviction after an update, the Spring API for managing
caches can be used to evict the necessary object by specifying its key, triggering an eviction in
Redis. These API calls are added as a hook to the above mentioned CompleteableFuture. The
CompleteableFuture API contains a whenComplete method that allows other functions to be
executed asynchronously after the original asynchronous process. With this, all Completeable-
Future generated to update entities also contain a whenComplete function that will verify if
the entity was successfully updated or rolled-back, and if so, will evict the respective lookup
by ID caches. This way it is assured that the cache will evict obsolete objects after a commit
to PostgreSQL, and not before, guaranteeing that any new queries will fetch these new results
from PostgreSQL directly. An eviction is preferred to a replacement of the value in the cache,
as the user will often update an object but not require it immediately after. Bulk-updates or
bulk-rollbacks will proceed similarly, with the addition that all updated entities are iterated
and evicted one by one, as Spring caching API does not provide a way to evict multiple
objects by specifying a list of keys.

When an annotation is updated in order to cover a different set of series data points, an
additional asynchronous function is hooked to the CompleteableFuture that was used to commit
this update to PostgreSQL, using the whenComplete method. This function propagates an
update to affected series points in InfluxDB if the annotation update succeeds, querying the
series that were previously annotated and removing the respective annotation ID label, as well
as the corresponding annotation type ID label and project ID label. Afterwards, the newly
annotated series are queried, and the annotation is labeled appropriately in these. Finally,
both old series points and new series points are committed to InfluxDB simultaneously.

4.3.4 Time series query

While Spring already provides database client implementations for various databases, such
as MySQL, PostgreSQL, Redis, Elasticsearch and Cassandra, among many others, there are
no database clients for InfluxDB. This means that there is no built-in way to connect the
InfluxDB database to a Spring repository for series, so instead, the connection and query logic
must be implemented in the prototype using the InfluxDB Java driver21. In order to maintain
uniformity with the way ontology processing is modeled, this custom logic is implemented in
a SeriesService class (as shown in Figure 4.2).

Once the series controller receives a series query object, this object is sent to a series service
component where it will be properly validated. The structured series query object is a simple
JSON object that follows the blueprint in 3.3.5, as shown in code snippet 8. Once validated, the

20https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
21https://github.com/influxdata/influxdb-java

87

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://github.com/influxdata/influxdb-java

{
"start": "2018-03-11T10:00:00Z",
"end": "2018-03-13T14:00:00Z",
"params": [

{
"source": "AUW41vuHRTWRzM16Cr2CTQ",
"measurement": "pQ57aanNQAq5POHukLikiA",
"filter": [

{
"rule": {

"field": "numericValue",
"op": "GREATER_THAN",
"value": "4"

}
},
{

"cond": "AND",
"rule": {

"field": "numericValue",
"op": "LESS_THAN_OR_EQUAL",
"value": "10"

}
}

]
},
{

"source": "2ZpjC7OgS3uSj12BFF6Fmw",
"measurement": "yHSBj2OLQiyv-xs8AeJo4Q",
"filter": [

{
"rule": {

"field": "stateValue",
"op": "EQUAL",
"value": "true"

}
}

]
}

],
"filter": []

}

Code 8: Structured time series query object, which lists the exact segment and source-measurement
pairs that will be queried, along with a few optional filters that apply only to their respective
series.

88

query object is parsed and transformed into a query syntax similar to the one seen in the code
snippet 4, converting a structured object into a valid InfluxQL query. This structured object
mandatorily requires a start timestamp, an end timestamp, and a list of source-measurement
pairs that will be queried. There needs to be at least one source-measurement pair, and any
filter (global or pair-specific) is completely optional. Most of the user-specified parameters
are sent to InfluxDB using the bound parameter API22 in order to avoid injection attacks.
However, the Java implementation of the bound parameter API is limited, as it only accepts
field names and string values, but not measurement names or other serialized operators. This
means that the remaining user-specified parameters (measurementId, rule operators and start
and end dates) are required to be validated manually.

The InfluxDB Java driver already maps the results derived from InfluxDB into typed
Java objects, but the response object structure does not fit the prototype needs for expedited
time series query and display. The charting library used in the frontend, Dygraphs23, uses an
light-weight array format to read and parse time series, where all series points are structured
as arrays of arrays in a similar way to a matrix representation. For a sorted list of series
with source-measurement pairs G1-P1, G2-P2 and G3-P3, this format would correspond to a
list of arrays where each array contains a timestamp in the Epoch format as the first item
and the values displayed for each timestamp in the remainder of the array. In other words,
each array corresponds to a timestamp that has values for one or more of the series, where
the second position of the array always contains values of G1-P1, the third position always
contains values of G2-P2, and the fourth position always contains values of G3-P3. If any of
the series do not have values for a specific timestamp, their respective position in the array
will contain a null value. This format supports values with either numeric and boolean values.
Because this format is one that grants Dygraphs a high speed of parsing and displaying the
time series, the series service transforms the custom-made serialized objects of InfluxDB Java
driver into this matrix-like format. In this manner, the frontend immediately receives the
complete matrix of points and feeds it into its chart directly.

4.3.5 Time series update

An important aspect of the architecture is that while a database like PostgreSQL has a
strong MVCC model that allows concurrent reads and writes, InfluxDB does not have those
mechanisms built-in. Assuming that two concurrent updates are sent, each one adding links
for different annotations but in the same exact series points, InfluxDB has no way of checking
if the two updates are applying over the same records, potentially overwriting each other,
nor does it have a mechanism to automatically merge both changes together so that both
updates survive. Instead, when multiple simultaneous changes on the same exact series are
propagated to InfluxDB in parallel, the only changes that would be effectively committed to
the database are the ones being written last.

As described in a prior subsection (4.3.3), updates to InfluxDB are always hooked to
22https://docs.influxdata.com/influxdb/v1.7/tools/api/#bind-parameters
23http://dygraphs.com/

89

https://docs.influxdata.com/influxdb/v1.7/tools/api/#bind-parameters
http://dygraphs.com/

Figure 4.3: Backend connection with InfluxDB in the system architecture

successful updates applied to the ontology in PostgreSQL, which already contains optimistic
locking and atomicity. If the optimistic locking of PostgreSQL fails, then the series changes
are not even proposed to InfluxDB. Nevertheless, this alone does not prevent two simultaneous
updates that affect the same series to be propagated to InfluxDB in parallel.

To fix this, the architecture was devised so that all InfluxDB write requests are placed
inside a single RabbitMQ queue. This FIFO queue provides a sequential channel of write
proposals, where each write proposal in the queue will make a new query over the series that
require an update and make changes to these. For overlapping writes, each proposal will
query the data that was written in the previously polled proposal. This way, all writers are
executed sequentially and will never overwrite over each other, but the overall amount of
time required for the entire data set to converge is longer. This is an acceptable drawback
to ensure that the system is eventually-consistent without any data loss, especially since the
architectural focus for time series data is to follow an E+L model.

4.4 Visualization

The frontend application is implemented as a dynamic website in ReactJS24, using Type-
Script25 as the primary programming language and compiler. The application is highly
modular, separating logic between multiple interface modules that can be re-rendered over
time depending on the data contained in them. Some modules were written using JavaScript
with the ECMAScript 6 (ES6 for short) specification, for cases where a less strict compiler was
required. The development stack is configured in Webpack26, which compiles all of the code
and packs it into a set of compressed Hypertext Markup Language (HTML), Cascading Style
Sheets (CSS) and JavaScript files that are then interpreted by the browser of the end-user.
The entire frontend codebase is validated using a Babel27 compiler, ESLint28 linting and
Stylelint29, ensuring good code quality that is highly maintainable and that follows standard
practices and style guides in the software industry. Along with these, Prettier30 automatically
formats the code when committed to a distributed version control system like Git, maintaining

24https://reactjs.org/
25https://www.typescriptlang.org/
26https://webpack.js.org/
27https://babeljs.io/
28https://eslint.org/
29https://stylelint.io/
30https://prettier.io/

90

https://reactjs.org/
https://www.typescriptlang.org/
https://webpack.js.org/
https://babeljs.io/
https://eslint.org/
https://stylelint.io/
https://prettier.io/

a consistent code style between developers of the application. Finally, Moment.js31 is used for
all chronology operations and modeling requirements.

To implement UI elements, the Ant Design framework32 is used, as it already contains a
wide variety of ReactJS and TypeScript compliant components for layouts, navigation, data
display, forms, popups and popovers. For styling the UI elements and defining layouts, the
Leaner Style Sheets (LESS)33 stylesheet pre-processor is used. LESS stylesheets are written in
a language that iterates on CSS by providing support for mixins and utility functions, nested
rules that contribute to a cleaner code, and variables, among other features. Additionally,
PostCSS34 is used to leverage CSS modules35 throughout the implemented code, allowing the
ReactJS codebase to reference specific LESS style classes.

4.4.1 Data mapping

The usage of TypeScript was vital to ensure a type safe coding experience when dealing
with the tightly modeled entities and requests. All of the entities that were modeled in
Hibernate while in the backend (4.1.2) are modeled in TypeScript while in the frontend, and
every response payload from the backend is deserialized into these entities, which means that
communication attempts that deviate from the established REST API schema (3.3.2) will not
be valid, and therefore discarded. Every field in each of the Hibernate entities, which has a
Java data type, is converted into a TypeScript equivalent: a Java String becomes a string; a
Java Boolean becomes a boolean; a Java Long, Double or Integer becomes a number ; and every
Java ZonedDateTime or Instant becomes a Moment from Moment.js. Moreover, because the
response payload structure is deterministic and parsable, these are also modeled in TypeScript
with their equivalent types. For example, because a response to a listed query of annotations
will always return a list body of annotations, the developer can validate that the response is
in fact a list by checking if the resultType field is “list”, and if so, the fields totalCount and
totalPages should be available. If the response contains a non-null errorType, then the result
is assuredly null and the developer should treat this response as an error, displaying the error
field or any other custom message that fits the error type to the user.

This forced structuring and compatibility of response payloads is especially useful in a
reactive environment such as ReactJS, where these responses can be stored in a single data
structure and updated over time by subsequent requests, and other modules and pages can
then subscribe to this object if they require it, receiving re-rendering dispatches when this
object is available and/or changed.

31https://momentjs.com/
32https://ant.design
33http://lesscss.org/
34https://postcss.org/
35https://github.com/css-modules/css-modules

91

https://momentjs.com/
https://ant.design
http://lesscss.org/
https://postcss.org/
https://github.com/css-modules/css-modules

4.4.2 Application state

Redux36 is used to handle application state and reactive propagation of data throughout all
application modules, while axios37 is used as an HTTP client that communicates with the
backend’s REST API. Both of these enable a reactive environment where requests are triggered
asynchronously without requiring the UI thread to be blocked from further actions by the user,
and the ReactJS interface itself then “reacts” by re-rendering only the specific components
that display the fetched data. Any further re-querying of said data will automatically trigger a
re-rendering of these components alone, and any local changes made to objects in one section
will immediately be dispatched into other sections that re-use it.

When a query is sent to the backend, this will dispatch a Promise38 that waits for results
asynchronously. As results are expedited from the backend to the frontend, a Redux reducer
will intercept this response and reference it in a data structure. For example, the response
could be an object body from a lookup-by-id query, which is then referenced in a byId field,
and throughout the application, any module that is visible to the user and that subscribes to
this byId field will be re-rendered, displaying the new data in the interface.

The design pattern of SoC that was applied to model the ontology in the backend 4.3.3
is used in the frontend as well, not only for modeling entities but also for modeling Redux
reducers. There are six reducers, each corresponding to one of the six entities of the ontology.
A base reducer contains a set of baseline data structures that store the results from all of
the implemented REST requests, such as list-bodies or object-bodies. In this manner, all
reducers have predictable, type safe behavior that matches the homogeneous REST interface
(4.3.1). A seventh reducer is implemented specifically for the query of series, which matches
the available series query POST call in the implemented series controller (4.3.4).

Because the application will sometimes have to display the same entity across different
locations (e.g. the types of each annotation in the chart are also shown in the project
details side-panel and in the annotation types management table), unnecessary requests for
objects that were already fetched in the platform can be prevented. After fetching an entity,
subsequent needs for that same entity will simply use the already fetched one until a page
reload, instead of fetching a new one. After a long work session where a user queried a set of
entities at the start and never refreshed them, the mechanism of optimistic locking (3.3.8) in
the backend will ensure that the user cannot commit changes based on stale data.

The implemented reducers obey the authentication protocol described in 3.3.3, as every
HTTP call made to the backend contains the user’s authentication token in the Authorization
header. When a response is received from the backend, the refreshed token in the response’s
Authorization header is stored in the application, replacing the previously stored token. The
token is stored in a LocalStorage39, which is supported by all modern browsers, in order to
survive page reloads.

36https://redux.js.org/
37https://github.com/axios/axios
38https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
39https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

92

https://redux.js.org/
https://github.com/axios/axios
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Figure 4.4: Dashboard displaying a list of projects and details for a project that queries multiple
sources. Only one of the sources is selected.

4.4.3 Dashboard and management

Following the blueprint proposed in section 3.4.1 while using Ant Design components, the
implemented dashboard contains multiple modules with various entities in simultaneous
display, as shown in Figure 4.4. The reactive environment enabled by ReactJS and Redux is
advantageous in this section, as any changes made to an entity anywhere in the nested panel
structure of the dashboard will be propagated and reflected in other parts of the dashboard.
The state of selected projects and selected sources is recorded in the browser’s address bar
through the URL, surviving page reloads. The URL is constantly changed as the user selects
different projects or sources, and can be shared with other collaborators of the same projects
in order to open the exact same view of the dashboard in their own browsers.

As proposed in the visualization model, the prototype also supports multi-selection of
projects and sources (Figure 4.5), displaying projects in a split-space view within independent
chart windows and sources of the same project in a shared-space view within the same chart.
Additionally, it allows chart windows to be resized and panels to be hidden individually,
expanding the horizontal space available for chart windows.

The ontology management pages follow their wireframes closely (Figure 3.15). As with the
dashboard, performing a search using the given form components will change the URL in the
address bar, allowing users to share a view of the management page with a pre-established
search criteria. When pressing the “Rollback changes” button, the revision list is displayed in
a popup dialog. Figure 4.8 shows the revision list for an annotation type, where the user can
rollback all changes up to any version by pressing the respective “Rollback” button.

93

Figure 4.5: Dashboard displaying a list of projects and details for three projects that query multiple
sources. Two out of the three total sources are selected. The source identified as “source
eb1d5b1” contains the measurements from two separate projects, and this information is
merged and displayed on the source list.

Figure 4.6: Dashboard displaying the same selection as Figure 4.5, but the panels are hidden and
two of the charts are resized.

94

Figure 4.7: Annotation type management page

Figure 4.8: Revision list for an annotation type, sorted by newest-to-oldest, identified by the times-
tamp when the changes were made and by the user that triggered the changes. Grayed
out fields, or empty in the case of relationship fields, correspond to fields that were not
changed in that specific version, but rather on a previous one.

95

4.4.4 Annotations

The Dygraphs library is used to create the time series charts, performing well when rendering
line graphs of massive quantities of series points and natively handling interactions from
the user, such as zooming and panning over the graph. Dygraphs renders all series, X
and Y axis, and labels on top of an HTML 2D Canvas40. The Canvas API, as well as the
CanvasRenderingContext2D API41 provide enough functionality in order to paint any shape
as desired. Dygraphs does not provide direct access to the underlying canvas in its API, but
it supports the attaching of plotters, which are light-weight functions that are rendered on
every single interaction with the chart, including mouseover, clicks, zooms and pans. Plotters
provide open access to a second canvas object that is positioned on top of the series graph
canvas. The frontend prototype uses this plotter and Canvas APIs extensively in order process
the required snakes of annotations that follow the series curves, as proposed in 3.4.2.

First, two variables are defined at an initial stage of rendering. These variables are the
annotation width (in pixels), which corresponds to the initial radius that snakes will have, and
the width increment (in pixels), which corresponds to the number of pixels that are incremented
on top of the initial annotation radius in order to nest other overlapping snakes. Then, for
each of the required annotations, the exact points in the Document Object Model (DOM)42

that match the start and end of the annotation’s time range must be discovered. This is done
by iterating over every single point in the series data and matching it with the annotation
timestamps. In the case of a point annotation, it is only necessary to find a single data point
in the series that matches with the annotation timestamp.

However, when starting, ending or point timestamps are placed at a moment in time where
there are no authentic data points, but rather a line that connects a past data point with a
future one, then this point must be discovered through interpolation. The previous and next
data points are found through timestamp comparison, by finding the nearest two points in
which the annotation’s start, end or point timestamp is between, and their respective values
are then obtained. All of the series authentic data points are provided in the plotter API with
their respective values. By using the previous real point 0 and the next real point 1, with
timestamps t0 and t1 and values v0 and v1, the function in (4.1) can be used to obtain an
interpolated Y value of an annotation that starts, ends or is a point in X.

Y = v0 + (X − t0) / (t1 − t0) · (v1 − v0) (4.1)

With this, the exact DOM location where a point annotation sits within the series, or where
a region annotation has its starting or ending position, can be used to trace the corresponding
snake. The remaining anchor points for a region snake, which are used to render a snake that
follows the series curve between its starting and ending locations, corresponds directly to all
of the real series points in-between. A line shape can be drawn between all these points with
the initial annotation width, effectively drawing a snake over a series curve.

40https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
41https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
42https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

96

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

There are a few optimizations applied over the described algorithm. For example, if the
currently-viewed interval of time contains only a segment of the full annotation, because its
starting and/or ending points are outside of the zoomed range, then a line shape can be drawn
over all visible points without needing for further calculations. Additionally, if the current
zoom hides just the starting point or just the ending point of the annotation, the first or the
last visible series point can respectively act as stand-ins for these. Moreover, drawing global
annotations does not require this algorithm, as a simple rectangle that occupies the entire
vertical space can be drawn from the starting timestamp to the ending one.

Once all annotation snakes have known locations in the DOM, their rendering priority is
sorted using the rules established in the proposed visualization model (3.4.2). All annotations
are stored in a temporary array data structure, and the rendering priority is implemented in
the form of a comparator pattern that sorts this array. When an annotation is added to the
array, the comparator is executed in order to find the sorted position for this annotation. This
comparator also fulfills the nesting rules, incrementing snakes sizes: if two point annotations
intersect one another, the point annotation that is rendered below the other is incremented,
enlarging it to accommodate the annotation above it; and if two region annotations intersect
one another, then the one that starts and/or ends inside the other will be painted above, so
that the annotation below is enlarged. This comparator ensures that the width is incremented
multiplicatively, as the width increment property is added with the annotation’s current radius
multiple times based on the number of nested annotations.

Afterwards, it is necessary to render shapes that connect the same annotation displayed
on separate series/measurements. In the case of point annotations, a line shape is drawn
between all of the point snakes, resulting in a vertical line. In the case of region annotations,
the top-left, top-right, bottom-left and bottom-right corners for all annotated points across
all visible series are identified, composing a baseline for a rectangular area that covers all the
region snakes.

The final step is to implement a rendering plotter that creates a lighter tint over mouse-
hovered snakes. The mouseover interaction in the chart is captured and directly sent to this
plotter, which will in turn detect if the mouse coordinates would be affecting a rendered snake
or not. This is done by going over all of the painted points (both authentic and interpolated
ones) and determining if the mouse coordinates intersect the area determined by the snake
coordinates and their established radius, based on the rendering comparator that incremented
them. If so, then the entire corresponding snakes and overlays are re-rendered in the plotter
with a lighter shade of color. However, this would mean that the highlight could be rendered on
top of non-selected nested shapes as well. To prevent this, every shape from other annotations
that are painted in the same area as the highlighted annotation are repainted with a global
composite operation of “destination-out”. In other words, every shape that comes before
the last highlighted shape in the temporary array of annotations, which is already sorted by
rendering priority, is re-painted with “destination-out” composite, which effectively clears the
highlight from those areas in the canvas.

97

CHAPTER 5
Evaluation

5.1 Architecture benchmark

In the State of the Art chapter, multiple approaches for storing massive time series data
sets were studied (2.3.1), which ranged from using RDBMSs, TSDBMSs and CDBMSs, and
existing benchmarks were leveraged to evaluate how each storage tool performed in this task.
These studies suggested that InfluxDB was the ideal long-term storage tool for time series,
which motivated its usage in the presented platform. However, as was previously suggested
(3.2.1), in a distributed system that focuses on consistency the software architect should take
into consideration that, as the granularity of data increases, the harder it is to attain high
consistency. Moreover, InfluxDB has no built-in mechanisms to prevent overlapping writes
and data loss, prompting the need to build them manually in the architecture stack (4.3.5).

Throughout the development of the prototype, the necessary queries proved to be quite
performant for the planned use cases while using a massive HVAC data set, and the limited
data model of InfluxDB was sufficient for storing series and their numeric, state or string
values, as well as to index series that are identified by their data source and their measurement.
However, this limited data model handicapped the ability to efficiently structure links for
annotations, annotation types and projects. While this did not correspond to a major drawback
with the tested data set, it could still lead a notable shortcoming of the platform when needing
to scale this data set or to evolve the data model, in order to include more data types and
relations with the ontology.

One major caveat that was found while using InfluxDB was that the database would
timeout write requests when attempting to store batches with more than approximately three
hundred thousand (300 000) time series points. This problem is not new, and has been
documented for as long as 20151. Both the amount of points and the number of fields in
each will affect the ingestion rate, which can be calculated by multiplying both. For example,
when attempting to write a batch of three hundred thousand points with five fields each, it
would correspond to an ingestion rate of 1.5 million writes-per-second, and when attempting

1https://github.com/influxdata/influxdb/issues/3349#issuecomment-122071094

99

https://github.com/influxdata/influxdb/issues/3349#issuecomment-122071094

to write a batch of five hundred thousand (500 000) points with the same number of fields,
it would lead to an ingestion rate of 2.5 million writes-per-second. For the machine that
was used during testing and quality assurance (2.50GHz Quad-Core, 16GB Random-access
memory (RAM)), the maximum ingestion rate that was recorded without timed-out requests
was 1.8 million writes-per-second. Essentially, InfluxDB does not have a partitioned save
feature built-in, so it cannot control the amount of series that are ingested per second in order
to not exceed the CPU and memory constraints of the host machine, leading the engine to
crash and the connection to timeout. In order to solve this issue, the prototype was forced to
have a partitioned save algorithm that writes all metrics in smaller batches of three hundred
thousand metrics or less at a time.

The existing benchmarks for time series storage in RDBMSs (2.3.1) is slightly inconclusive
due to the lack of mature and battle-tested databases built around RDBMSs with time series
in mind. During the planning phase prior to development, the choice of using a RDBMS for
the ontology and a separate TSDBMS for time series, as illustrated in Figure 3.3, over using
only a RDBMS for the entire data set, as illustrated in Figure 3.5, was still an uncertain
one. With this, it is important to examine how would the implemented system behave and
perform if both the ontology of annotations and the time series data set were stored in the
same RDBMS. A set of benchmarking tests were implemented to evaluate how much of a
performance improvement or drop off would be measured from storing the entire time series
data set in PostgreSQL when compared to InfluxDB. The goal of these tests is to potentially
recognize a threshold in which a performance drop could still be an acceptable trade-off
for the potential improvements in reads, by polling series and annotations simultaneously
through joins, and in writes, where one single atomic transaction would propagate changes to
annotations and series at the same time.

For this, a series entity was modeled in JPA within the codebase, following the same
pattern as other entities (4.1.2). Unlike InfluxDB points, which use labels to express related
annotations, the new series entities model their association with annotations as a many-to-
many relationship, and their association with measurements and data sources in a many-to-one
relationship. There is no need to include a direct association between series and annotation
types or projects because the series entity directly references a set of annotation entities, thus,
series queries can be written to fetch these annotations and their hierarchy. Furthermore,
the series query object (4.3.4) was extended in order enable its conversion into a query in
the JPQL syntax. Similarly, the implementation of the series service component (4.3.3) was
extended to process and send these queries to PostgreSQL through the use of the Entity
Manager API2. In other words, a set of components was developed to extend on existing
behavior rather than replace it, essentially providing a drop-in plugin. The two required
architecture models illustrated in figures 3.3 and 3.5 are implemented in the same codebase,
but through the use of Spring profiles, the RDBMS-only architecture model and code is only
activated if a “ts-psql” profile flag is enabled on deployment. The result is a single backend
jar file that can be launched in the same machine while toggling this flag on or off in order to

2https://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html

100

https://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html

test both architectures and data management models.
All tests were executed with the same set of rules, such as using the same machine and

deployment conditions to run the backend server and required databases, and using the exact
same queries in order to obtain a deterministic response. Three different queries with varying
levels of complexity were tested to observe how the system behaves for data sets with ten
thousand (10 000), a hundred thousand (100 000), and a million points (1 000 000). The
queried segment of time was kept the same for all three queries, which were as follows:

• Q1 - get three source-measurement pairs, where the first and second pairs are from the
same measurement and the second and third pairs are from the same source;

• Q2 - get the same three pairs as Q1, but two of the pairs contains numeric values, one
being filtered for values greater than 4 while the other being filtered for values less than
or equal to 2, and the third pair contains state values and is filtered for only values set
to true;

• Q3 - get the same three pairs as Q1, but all series are filtered by annotation and
annotation type.

Each of the queries was executed between ten to twenty times for each architecture while
using a single backend node with a 2.50GHz Quad-Core processor and 16GB RAM memory.
For read performance, the observed metrics were query speed (the elapsed time measured in
milliseconds that a query takes to respond from the moment the request is sent) and CPU
usage. Write performance was also evaluated by observing insertion speed (the elapsed time
measured in milliseconds that a batch of points takes to write in the database), disk overhead
and RAM memory consumption. The recorded RAM memory values correspond to an average
measure that was constant throughout the entire writing operation. It is important to note
that, for insertion tests, because all data is new and no existing data is being updated, the
previously mentioned writing-queue (4.3.5) is disabled. Load balancing and request queuing
mechanisms were also bypassed during both read and write tests.

101

(a) Estimated time (in milliseconds) (b) CPU (in %)

Figure 5.1: Read performance as the data set size increases. Purple lines are InfluxDB, blue lines
are PostgreSQL.

Table 5.1: Read benchmark: average query time and CPU usage observed for the 3 tested queries in
the 3 data sets

10 000 points Q1 Q2 Q3
InfluxDB Speed 18.8 ms 22.4 ms 21.8 ms

CPU 0.352% 0.354% 0.284%
PostgreSQL Speed 21.8 ms 28.2 ms 37.6 ms

CPU 0.656% 0.778% 1.046%

100 000 points
InfluxDB Speed 34.8 ms 24.8 ms 22.4 ms

CPU 0.824% 0.5% 0.724%
PostgreSQL Speed 59.2 ms 56 ms 84.6 ms

CPU 4.17% 4.362% 5.714%

1 000 000 points
InfluxDB Speed 103.4 ms 56.2 ms 96.6 ms

CPU 4.892% 2.53% 5.88%
PostgreSQL Speed 653 ms 484.6 ms 659 ms

CPU 83.934% 74.622% 103.884%

The benchmark results in Table 5.1 show that, for the smallest data set of ten thousand
points, CPU usage and elapsed query speed do not differ severely between the two databases.
For a relatively small data set with less than a hundred thousand data points, PostgreSQL
reveals as the most attractive choice as it can keep up with InfluxDB in terms of performance
while providing a strong relational schema and atomic transactions that support a consistent
system instead of an eventually-consistent one. However, for any data set with more than
a hundred thousand data points, the performance differences are noticeable, and InfluxDB
outperforms PostgreSQL with higher query speed and lower CPU usage. For data sets that have
one million series points or more, these differences are even more evident. The disproportionate

102

(a) Estimated time (in seconds) (b) Disk usage (in MB) (c) RAM usage (in MB)

Figure 5.2: Write performance as the data set size increases. Purple lines are InfluxDB, blue lines
are PostgreSQL.

Table 5.2: Write benchmark: average insertion time, disk usage and RAM memory usage observed
for the 3 data sets

10 000 points Speed Disk usage RAM usage
InfluxDB 875.9 ms 93.36 MB 283.5 MB
PostgreSQL 2.945 s 1.064 GB 25.33 MB

100 000 points Speed Disk usage RAM usage
InfluxDB 3.480 s 97.46 MB 412 MB
PostgreSQL 23.26 s 1.288 GB 24.61 MB

1 000 000 points Speed Disk usage RAM usage
InfluxDB 21.40 s 108.3 MB 320.9 MB
PostgreSQL 5.139 min 1.624 GB 25.93 MB

increase of both request time and CPU requirement observed in the PostgreSQL database
leads to the conclusion that PostgreSQL is not as scalable as InfluxDB for massive time series
data sets.

The benchmark results in Table 5.2 show that, despite the reported issue where InfluxDB
may crash and timeout when attempting to ingest a massive batch of series, it still showcased
a higher insertion throughput than PostgreSQL. PostgreSQL took considerably longer to
insert the full data set, but it inserted it in an atomic manner with the MVCC model, where
the data set was only readable in the database once all of the series points were fully inserted.
InfluxDB also offers significantly better on-disk compression than PostgreSQL, which is ideal
for long-term storage of high amounts of historical data. As the data set grows exponentially,
InfluxDB applies mechanisms that keep the full data set continually compressed. It is suspected
that a big part of what makes InfluxDB so performant for reads even when strong compression
mechanisms are applied, is that it leverages RAM memory to store a high amount of cached
series and rollup windows. This is especially evident in the benchmark results, where the
RAM usage of InfluxDB is always considerably higher than the one recorded for PostgreSQL.

In sum, PostgreSQL was shown to be cost-effective for small data sets, but not a viable
option for massive ones. Additionally, the detected drop in performance for massive data

103

sets is too high, to the point the added value of the relational and highly consistent model
is not enough to balance it out. In an environment where the platform should be capable
of storing and handling massive amounts of time series, InfluxDB stands out as the better
solution. However, InfluxDB is not without its list of issues, many of which have already
been mentioned. The InfluxDB data model is limited, and if the data cardinality were to also
increase over time, InfluxDB performance would drop dramatically due to its reliance on the
time-structured LSM merge tree, whereas PostgreSQL would potentially only see a moderate
drop off [60]. By having implemented a careful architecture that takes this into consideration,
and that keeps the cardinality of measurements to a minimum, it is possible to continue using
InfluxDB for time series data in a scalable system.

5.2 Clicks to interaction

On the visualization side, it was important to test the minimum necessary amount of clicks
that a user needs to perform in order to fulfill any specific task. A realistic workflow will
typically correspond to a multi-task scenario, so each work session will require the summation
of all of the minimum required clicks that were observed for each task. First, the most basic
and unique tasks that correspond to this workflow were outlined, separated by starting point
in the interface. Ideally, the interface should be capable of streamlining most interactions by
following standard UI and UX design practices such as the three-click rule, and require the
least amount of clicks as possible. More than three clicks are naturally permitted for as long
as most of the clicks correspond to intuitive and passive actions.

From the dashboard and without any selected projects, the user can:
• A - go to any management page;
• B - display the chart of a project with a single source;
• C - display the chart of a project with multiple sources;
• D - search for a project by name;
• E - search for a project by annotation type, source or measurement;
• F - select a project and search for a source by name;
• G - select a project and search for a source by measurement;
• H - select a project and search for an annotation type by name;
• I - select a project and search for an annotation type by measurement;
• J - select a project and hide an annotation type from view;
• K - multi-select two projects;
• L - select a project with multiple sources and multi-select two sources;
• M - select a project and go to the Edit Project page.

Table 5.3: Minimum amount of clicks for each task in the dashboard

task A B C D E F G H I J K L M
clicks 1 1 2 2 4 3 5 3 5 1 2 3 1

104

Table 5.4: Minimum amount of clicks for each task in a project chart

task A B C D E F G H I
clicks 1 4 3 2 3 1 1 1 1

Table 5.3 shows the minimum amount of clicks that were estimated in order to perform
a set of tasks in the dashboard. Due to the nested nature of the UI in this dashboard, the
deeper is the end goal in terms of UI panels, the higher the number of clicks is. All tasks in
the dashboard require an average of 2.5 clicks. However, because in a realistic environment
the user will have one or more projects already selected, other tasks that involve using deeper
panels in the nested UI, such as C, F, G, H, I, J and L, will lead a shorter number of clicks to
reach their goal. In addition, because the frontend already detects if the project has only one
source and automatically select it, the user will only need one click to select the project and
open the chart in task A.

From any project chart:
• A - select an annotation;
• B - add an annotation;
• C - edit an annotation;
• D - review annotation changes;
• E - delete an annotation;
• F - go to the Edit Project page;
• G - review project changes;
• H - view deleted annotations;
• I - close the chart.
Table 5.4 shows the minimum amount of clicks that were estimated in order to perform

a set of tasks in the chart component. Because annotations are clearly visible throughout
the entire chart, and are only hidden when the user zooms in, all tasks that require selecting
any annotation first, such as tasks A, C, D and E, will have a very low number of clicks. In
average, tasks in the chart require 1.8 clicks. In a realistic scenario where a chart is populated
with hundreds of annotations, any annotation with a very small range of time will require the
user to zoom in so as to make these annotations easier to select, but each zoom-in requires
only an additional click-and-drag. In task B, creating an annotation for any measurement and
any segment of time requires a simple Shift-drag, two clicks to select an annotation type (the
remaining mandatory field that is not yet filled), and then a final click on the Save button. In
task E, deleting not only requires to select an annotation and click the Delete button, but
also to accept the deletion during a confirmation dialog, contributing with an additional click
while providing a safety measure.

105

Table 5.5: Minimum amount of clicks for each interaction in the project edit page

task A B C D E F
clicks 2 2 3 3 3 2

Table 5.6: Minimum amount of clicks for each interaction in the ontology management pages and in
the edit popups

task A B C D E F G H I J K L M
clicks 1 2 2 2 4 1 2 2 2 4 2 2 2

From the Edit Project page:
• A - change name and save;
• B - change guidelines and save;
• C - change series query and save;
• D - change annotation types and save;
• E - change collaborators and save;
• F - delete the project.
Table 5.5 shows how many clicks are required to change any attribute of a project, granted

that all of these contain one extra click to press the Save button. Tasks in the Edit Project
page have an average of 2.5 clicks. Because the extra click on the Save button is already
included, and because multiple changes can be combined in the same edit process, then the
number of clicks for two combined tasks will remain at a minimum of 2.5 clicks.

Finally, the clicks for all remaining tasks in the ontology management pages were analyzed,
including their respective edit popups.

From any ontology management page (Annotation Types, Measurements or Sources):
• A - go to the project dashboard or to any management page;
• B - select an entity and open the edit popup;
• C - select an entity and open the revisions popup.
In the Annotation Types management page:

• D - add an annotation type;
• E - add an annotation type with at least one allowed measurement;
• F - open the deleted annotation types popup;
• G - select an annotation type and delete it.
In the Annotation Types edit popup:

• H - change an annotation type’s name;
• I - change an annotation type’s color;
• J - change an annotation type’s allowed measurement.
In the Measurements edit popup:

• K - change a measurement’s name;
• L - change a measurement’s color.
Finally, in the Sources edit popup:

• M - change a source device’s name.

106

As shown in Table 5.6, the overall number of clicks is quite low. The tasks that require
most clicks, E and J, both involve opening the annotation type edit popup, swap to the
Measurements tab, and add or change the allowed measurements there.

Looking at the overall clicks per task, the maximum amount of clicks that one single task
might require is five, or three if selections have already been made in the dashboard. This
means that most tasks are already well optimized for a very low number of interactions at
their basic level. One of the major advantages of the dashboard interface design is the ability
to nest and restrict scope, allowing different series in different segments, contained in separate
projects and data sources, to be compared side-by-side. Because project and data source
panels are always in view, the number of clicks to quickly swap between projects or source
devices is considerably reduced from what would occur in a list-to-page design model.

There are a few drawbacks to the way the ontology updates are detached from the
dashboard, existing instead in their own management pages. Users cannot create annotation
types as they see fit within the chart, but instead have to go to the annotation type management
page (1 click), add a new type there (minimum 3), and go back to the dashboard by using
the back button in the browser (1), disrupting their focus and workflow. Moreover, when a
project chart is visible in the dashboard, the user can quickly open the measurement edit
popup by clicking it on their respective badge or label below the chart, but this does not
occur to other ontological entities that are rendered in this page, such as the annotation types
and the data sources. To change an annotation type’s color for example, the user would have
to go to the annotation type management page (1 click), find and select the specific type they
need to change (nondeterministic number of clicks, since the user can attempt to find it page
by page or by searching for it, but the minimum is 1 click), press the Edit button (1), make
the necessary changes and Save (minimum 2), and go back to the dashboard (1).

107

CHAPTER 6
Conclusion and future work

6.1 Conclusion

The solution presented in this dissertation contains multiple architecture and design decisions
built around the same focal points:

• versatility of usage for both frontend and backend, adaptable to any data irrespective of
the domain;

• improved analysis tools that leverage both the shared-space model and the split-space
model, in order to reduce the number of trade-offs that come from picking only one of
the two;

• strong graphic representation for annotations where analysts can attach meaning to
isolated segments of data where many unaffected metrics can co-exist;

• safe and reliable collaboration where all changes are highly consistent, validated, and
properly documented;

• scalability for both massive data sets and heavy traffic.
Despite the prototype being focused on HVAC data, the mapping of data is domain-

agnostic. The prototype can still be used with any other data set, regardless if the metrics
are logically distinguished in the same way the HVAC data set is. All aspects of the platform
adapt to the data set without complications. The presented data model and visualization
allows researchers to reduce the full scope of the observed data in many different ways: by
using projects that enforce a common analysis and annotation task between collaborators; by
using the automatic grouping and quick switching of data by their input source device; by
limiting annotation semantics to a set of measurements where this semantic is compatible;
or by narrowing annotations to a subset of the visible series in the same segment of time.
Moreover, the frontend application allows multiple projects and windows of data to be selected
and displayed in parallel, so that analysts can compare different groups of series and potentially
find commonalities that can be annotated and notified to collaborators. All of these tools
emphasize the simplification of analysis and knowledge building tasks by human collaborators,
improving productivity and saving them time.

109

It is the belief of the author that the proposed annotation encoding using snakes is a major
improvement in readability. Annotations can be attached to smaller areas of the vertical space,
outlining specific series and behaviors such as spikes or curves, and keeping the remaining
vertical space clear, so that other series in the same shared-space chart can co-exist without
visual clutter. While other tools have provided similar functionality through the manual and
free-form drawing of shapes [16], [112], [113], these only provide added accessibility when
annotating in tablet devices while generating unstructured annotation images that cannot be
easily parsed by automated systems. With the proposed encoding, annotations have similar
accessibility, but follow a structured schema that enables additional parsing and processing
modules to properly interpret them.

Furthermore, the proposed model rises above existing time series analysis tools by leveraging
distributed systems techniques and standard practices in the software industry to optimize the
querying and storage of massive amounts of time series and annotations without compromising
consistency, flexibility, or safety. The current prototype is quite capable of ensuring a high
level of linearizability for high amounts of simultaneous visualization and annotation requests,
providing eventual-consistency only for time series queries that are filtered by associations
with annotations, annotation types or projects.

6.2 Future Work

User permission granularity

The proposed solution was designed primarily for application in a corporate environment where
all authenticated peers are part of the organization and benefit from an open platform where
every aspect of the ontology is customizable. The only read-write access policy implemented
in the solution, thanks to the processing pipeline validation stage, is one where users can only
perform actions over projects (and respective annotations) that they are a part of. Only a
few other constraints to user actions are applied, such as authors of a project not being able
to be removed as collaborators of it by anyone. Since authors are considered the single owner
of the project, projects are only removable by the author. Otherwise, all collaborators in a
project are free to change any aspect of the project, which include adding or removing other
collaborators that are not the author, removing annotations from peers, and even changing
the series query of the project. Any user in the application can also change any annotation
type, measurement or source metadata in a “free-for-all” manner.

This also means that if an attacker is authenticated into the platform, they can perform
malicious and unsanctioned changes over every aspect of the ontology that they are given
access to. These unsanctioned changes can be recovered through the versioning feature, as
any collaborator can revert any changes made over time for as long as the current annotations
still adhere to their older constraints. However, this is not an optimal solution, as it can be a
cumbersome process to rollback multiple changes that were made by a malicious user. Rather,
the appropriate solution would be to apply more restriction to users based on their roles in
the organization. In regards to project access, a user could be granted the roles of normal,

110

manager and owner, which correspondingly would grant them more possible actions. For
example, all roles would be able to create and edit annotations, but only owners and managers
of a project would be allowed to delete annotations or change the project details. As for the
ontology management pages, these could be visible only to an administrator of the system.

Despite the lack of privacy settings and user roles, this tool can still be deployed in
a private network where all authenticated users are guaranteed to be a part of the same
organization, as it was originally intended by the work proposal. By importing user identities
and authentication protocols from the organization’s LDAP, the platform is only open to
users that exist in that directory. If a collaborator leaves the organization and the LDAP
directory is updated to disable the respective user profile, this change will be propagated to
the proposed platform, as the user will no longer be able to login.

Database sharding

In distributed systems that handle high amounts of requests, even if the backend server is
replicated to reduce computational strain of each server, a single database node constitutes a
point of failure that, if affected by downtime, will cause the entire system to be down. The
developed solution replicates the components available in the processing layer, namely the
processing pipelines, but does not propose any replication of the persistence layer. Both
the availability of time series data and ontological data can be affected if their respective
databases are unavailable, albeit separately. However, database sharding is a complicated
process that is hard to get right in implementation, and many of the databases that provide
it required many years of development time to solve it without data integrity issues. Some
RDBMSs such as PostgreSQL, and most CDBMSs such as Cassandra and HBase, contain the
necessary partitioning and replication techniques to scale and protect against system crashes
or errors, as well as the orchestration necessary to detect faulty database shards and apply
the necessary steps to preserve the data and maintain availability.

These conscious design choices come at a cost by prioritizing availability of data over
consistent writes, since any writing request has to be propagated between shards. Furthermore,
InfluxDB does not implement any replication or sharding in its open-source variant, requiring
these to be implemented manually, which is not ideal due to the complexity of the task. Due
to both of these reasons, the databases were deployed as a single node, and the system relies
solely on the replication of the backend server to increase the availability of the data.

Light-weight transmission of massive query results

One aspect that the platform lacks when handling massive quantities of time series or
annotations is when serializing and transmitting these massive quantities to a user frontend.
Based on a few tests where all units of the architecture are deployed in a machine with a
quad-core processor and 16GB of RAM memory, mitigating network delays, when attempting
to send a massive set of time series points in the order of tens of millions, the platform was
able to query InfluxDB and deliver the serialized response with over one mega-byte of series
in under an average of 768.6 milliseconds. When attempting to render these series in the
frontend chart, an average of 3057 milliseconds were required, leading up to a total of 3825.6

111

milliseconds. In other words, these local tests, which are based on machine that is not under
strain from heavy traffic, showed an almost 4 second delay between triggering a query and
displaying a high amount of series on the chart. The amount of time required for each user
to visualize their series in parallel will only increase exponentially, providing a poor user
experience. In an attempt to solve this, multiple techniques to lower the size of the payload
could be implemented. Direct payload compression would reduce the full size of the HTTP
packet that has to be sent to the user, but it would also increase the amount of time required
to display each chart, as an additional workload would be required for the server to compress
the query results and for the frontend to decompress them.

An appealing approach would be to leverage a WebSocket in order to transmit the entire
data set partitioned into smaller chunks. When a user queries a server, a WebSocket channel
is opened specifically for the results of that query. Then, the channel details can be sent
to the user directly in the HTTP response, which the user’s frontend application uses to
establish a real-time streamed communication with the server. Then, the queried results
could be manually partitioned and sent in smaller chunks to this WebSocket channel, being
intercepted by the frontend application and applied directly to the chart. In this way, the
chart can progressively render more and more of the full queried results as more and more
chunks are received. The user experience would be massively improved, since all series would
immediately start to be rendered on the chart from the first moment the WebSocket connection
is established.

One pitfall of the approach above is that the workload to partition the full query results
would increase the amount of wait time before the server can start sending chunked data sets
through the WebSocket channel. Luckily, InfluxDB already provides support for chunked
responses directly from the database1, which can be sent asynchronously to the server.
Therefore, the server can simply establish a connection between the asynchronous chunks that
are received from InfluxDB and the WebSocket channel directed at the target user, feeding
the resulting chunks directly. The server could attempt to parse and serialize each chunk
in order to return it in the required matrix format for Dygraphs, which would require an
additional translation task. However, an important design decision here is how granular the
chunks should be. If these are too coarse, the translation and serialization tasks for each of
the chunks would compose a high impact on performance. If these are too fine, then each of
the chunks does not have enough information to be useful to the querying user.

The above approach can be applied similarly to annotations located in the PostgreSQL,
leveraging the streamed queries functionality that the PostgreSQL extension PipelineDB2

already implements.

1https://docs.influxdata.com/influxdb/v1.6/guides/querying_data/#chunking
2https://www.pipelinedb.com/

112

https://docs.influxdata.com/influxdb/v1.6/guides/querying_data/#chunking
https://www.pipelinedb.com/

Figure 6.1: From left to right: i) one annotation is covering the three series; ii) one region annotation
is covering the purple (top) and green (bottom) series, and another annotation with the
exact same region and type is covering the brown (middle) series; iii) same scenario as
in ii), but the type of the second annotation is changed in order for this scenario to be
more evident.

Better visual encoding for snake connecting overlays

In the current implementation of the annotation encoding, two point or region annotations
can be set so that both occupy the same segment of time and contain the same parent
annotation type, where one is affecting two series in the top and bottom extremes of the
chart while another is affecting a series in the middle of the chart. This will cause their visual
representation to look exactly like it would if there was only one annotation covering the three
series, as evidenced in Figure 6.1.

In a realistic scenario, an analyst would normally not benefit from making these two
annotations separately and instead merge them into a single annotation. Additionally, when
mouse-hovering the outer annotation, the highlight will correctly paint the snakes and overlay,
and not the snakes that correspond to other annotations.

6.2.1 Research directions

The proposed model as-is establishes a open, modular architecture that enables complex task
workflows to be set up while using the platform’s knowledge base and annotation capabilities.
Additional modules could be introduced in order to extract the existing annotations and
deliver these into automated lexical and sentiment analysis tools such as information extraction
systems, machine-learning models and deep neural networks. At its most basic level, the
annotations and their relation with the affected series can be used to build a separate ontology
or knowledge base. A machine learning model can be trained with annotation data and the
corresponding series curves in order to recognize those patterns in other locations of the data
set. Over time, this supervised learning process would allow a machine learning model to
automatically feed new annotations based on the existing ones, allowing human collaborators
to identify novel areas of the data set that are potentially useful. The data ingestion itself
can already be done through the existing CRUD operations available in the REST API.

113

As with these output modules, real-time data input modules could be coupled with the
platform, using data streaming technologies such as Esper3, WSO2 CEP4, Apache Spark
Streaming5, Apache Flink6 or Apache Ignite Streaming7. This introduces the ability to
stream real time critical data that requires a timely analysis, for example, in the domains
of neurophysiology monitoring. While the current prototype fetches and indexes the full
time series data on first deployment, nothing about its architecture prevents further time
series from being ingested over time. These input modules can be designed to append newer
sets of time series for either existing data sources and measurements, or even creating new
ones. Additionally, input modules can be created in order to parse and feed a repository of
annotation types that the analysts already own and are accustomed to, or to feed a repository
of annotations that analysts already created in other systems.

6.3 Final thoughts

Overall, there is still much more that can be done to enable a fully-fledged universal platform
for collaborative analysis of data sets. The proposed solution introduces a few additions
and features over the existing state of the art for time series analysis software, and leaves
many more guidelines and directions to be able to extend the model into a more mature
software tool with increased usefulness in other domains, such as finance technical analysis,
EEGs and ECGs reporting and medical diagnosis, or IoT services that support massive
smart cities. The know-how presented in this dissertation serves as a foundation to build
stronger collaborative frameworks and to ease the process of knowledge discovery. The world
of analysis and collaborative software still has many advancements to go through, and with
the development of techniques that allows us to more quickly and accurately derive meaning
from raw data, ultimately we can discover new things that will further expand the already
extensive monad that is human knowledge.

3http://www.espertech.com/products/esper.php
4http://wso2.com/products/complex-event-processor/
5http://spark.apache.org/streaming/
6https://flink.apache.org
7https://ignite.apache.org/features/streaming.html

114

http://www.espertech.com/products/esper.php
http://wso2.com/products/complex-event-processor/
http://spark.apache.org/streaming/
https://flink.apache.org
https://ignite.apache.org/features/streaming.html

References

[1] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time series management systems: A survey”, IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no. 11, pp. 2581–2600, 2017, issn: 1041-4347.
doi: 10.1109/TKDE.2017.2740932.

[2] A. Bader, O. Kopp, and M. Falkenthal, “Survey and comparison of open source time series databases”,
in Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband, B. Mitschang,
D. Nicklas, F. Leymann, H. Schöning, M. Herschel, J. Teubner, T. Härder, O. Kopp, and M. Wieland,
Eds., Bonn: Gesellschaft für Informatik e.V., 2017, pp. 249–268.

[3] D. Laney, 3d data management: Controlling data volume, variety and velocity, 2001.

[4] M. Blount, M. Ebling, J Eklund, A. James, C. Mcgregor, N. Percival, K. Smith, and D. Sow, “Real-
time analysis for intensive care: Development and deployment of the artemis analytic system”, IEEE
Engineering in Medicine and Biology Magazine, vol. 29, no. 2, pp. 110–118, 2010, issn: 0739-5175. doi:
10.1109/MEMB.2010.936454.

[5] R. D. O’Reilly, “A distributed architecture for the monitoring and analysis of time series data”, 2015.

[6] T. chung Fu, “A review on time series data mining”, Engineering Applications of Artificial Intel-
ligence, vol. 24, no. 1, pp. 164 –181, 2011, issn: 0952-1976. doi: https://doi.org/10.1016/j.
engappai.2010.09.007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0952197610001727.

[7] J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom, “Visually mining and monitoring
massive time series”, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’04, Seattle, WA, USA: ACM, 2004, pp. 460–469, isbn: 1-58113-
888-1. doi: 10.1145/1014052.1014104. [Online]. Available: http://doi.acm.org/10.1145/1014052.
1014104.

[8] D. Sow, A. Biem, M. Blount, M. Ebling, and O. Verscheure, “Body sensor data processing using stream
computing”, in Proceedings of the International Conference on Multimedia Information Retrieval,
ser. MIR ’10, Philadelphia, Pennsylvania, USA: ACM, 2010, pp. 449–458, isbn: 978-1-60558-815-5. doi:
10.1145/1743384.1743465. [Online]. Available: http://doi.acm.org/10.1145/1743384.1743465.

[9] H. Han, H. C. Ryoo, and H. Patrick, “An infrastructure of stream data mining, fusion and management
for monitored patients”, in 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06),
2006, pp. 461–468. doi: 10.1109/CBMS.2006.39.

[10] V. Nenov and J. Klopp, “Remote analysis of physiological data from neurosurgical icu patients”, Journal
of the American Medical Informatics Association, vol. 3, no. 5, pp. 318–327, 1996. doi: 10.1136/jamia.
1996.97035023. eprint: /oup/backfile/content_public/journal/jamia/3/5/10.1136/jamia.1996.
97035023/2/3-5-318.pdf. [Online]. Available: +http://dx.doi.org/10.1136/jamia.1996.97035023.

[11] C. Mcgregor, D. Sow, A. James, B., M. Ebling, E., J., and K. Smith, “Collaborative research on an
intensive care decision support system utilizing physiological data streams”, Jan. 2009.

[12] P. D. Healy, R. D. O’Reilly, G. B. Boylan, and J. P. Morrison, “Interactive annotations to support
collaborative analysis of streaming physiological data”, in 2011 24th International Symposium on
Computer-Based Medical Systems (CBMS), 2011, pp. 1–5. doi: 10.1109/CBMS.2011.5999131.

[13] A. Bar-Or, J. Healey, L. Kontothanassis, and J. M. V. Thong, “Biostream: A system architecture
for real-time processing of physiological signals”, in The 26th Annual International Conference of the

115

https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.1109/MEMB.2010.936454
https://doi.org/https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/https://doi.org/10.1016/j.engappai.2010.09.007
http://www.sciencedirect.com/science/article/pii/S0952197610001727
http://www.sciencedirect.com/science/article/pii/S0952197610001727
https://doi.org/10.1145/1014052.1014104
http://doi.acm.org/10.1145/1014052.1014104
http://doi.acm.org/10.1145/1014052.1014104
https://doi.org/10.1145/1743384.1743465
http://doi.acm.org/10.1145/1743384.1743465
https://doi.org/10.1109/CBMS.2006.39
https://doi.org/10.1136/jamia.1996.97035023
https://doi.org/10.1136/jamia.1996.97035023
/oup/backfile/content_public/journal/jamia/3/5/10.1136/jamia.1996.97035023/2/3-5-318.pdf
/oup/backfile/content_public/journal/jamia/3/5/10.1136/jamia.1996.97035023/2/3-5-318.pdf
+ http://dx.doi.org/10.1136/jamia.1996.97035023
https://doi.org/10.1109/CBMS.2011.5999131

IEEE Engineering in Medicine and Biology Society, vol. 2, 2004, pp. 3101–3104. doi: 10.1109/IEMBS.
2004.1403876.

[14] E. Hadavandi, H. Shavandi, and A. Ghanbari, “Integration of genetic fuzzy systems and artificial
neural networks for stock price forecasting”, Knowledge-Based Systems, vol. 23, no. 8, pp. 800 –808,
2010, issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2010.05.004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705110000857.

[15] S. K. Badam, J. Zhao, S. Sen, N. Elmqvist, and D. Ebert, “Timefork: Interactive prediction of
time series”, in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’16, San Jose, California, USA: ACM, 2016, pp. 5409–5420, isbn: 978-1-4503-3362-7. doi:
10.1145/2858036.2858150. [Online]. Available: http://doi.acm.org/10.1145/2858036.2858150.

[16] S. Kamburugamuve, P. Wickramasinghe, S. Ekanayake, C. Wimalasena, M. Pathirage, and G. C. Fox,
“Tsmap3d: Browser visualization of high dimensional time series data”, 2016 IEEE International
Conference on Big Data (Big Data), pp. 3583–3592, 2016.

[17] A. Chourasia, K. B. Richards-Dinger, J. H. Dieterich, and Y. Cui, “Visual exploration and analysis
of time series earthquake data”, in Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact, ser. PEARC17, New Orleans, LA, USA:
ACM, 2017, 48:1–48:6, isbn: 978-1-4503-5272-7. doi: 10.1145/3093338.3093366. [Online]. Available:
http://doi.acm.org/10.1145/3093338.3093366.

[18] J. Lee, D. Rowlands, N. Jackson, R. Leadbetter, T. Wada, and D. James, “An architectural based
framework for the distributed collection, analysis and query from inhomogeneous time series data sets
and wearables for biofeedback applications”, Algorithms, vol. 10, no. 4, p. 23, 2017, issn: 1999-4893.
doi: 10.3390/a10010023. [Online]. Available: http://dx.doi.org/10.3390/a10010023.

[19] J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom, “Viztree: A tool for visually mining
and monitoring massive time series databases”, in In Proceedings of International Conference on Very
Large Data Bases, 2004, pp. 1269–1272.

[20] F. D. Turck, J. Decruyenaere, P. Thysebaert, S. V. Hoecke, B. Volckaert, C. Danneels, K. Colpaert,
and G. D. Moor, “Design of a flexible platform for execution of medical decision support agents
in the intensive care unit”, Computers in Biology and Medicine, vol. 37, no. 1, pp. 97 –112, 2007,
issn: 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2005.10.004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010482505001216.

[21] H. González-Vélez, M. Mier, M. Julià-Sapé, T. N. Arvanitis, J. M. García-Gómez, M. Robles, P. H.
Lewis, S. Dasmahapatra, D. Dupplaw, A. Peet, C. Arús, B. Celda, S. Van Huffel, and M. Lluch-Ariet,
“Healthagents: Distributed multi-agent brain tumor diagnosis and prognosis”, Applied Intelligence,
vol. 30, no. 3, pp. 191–202, 2009, issn: 1573-7497. doi: 10.1007/s10489- 007- 0085- 8. [Online].
Available: https://doi.org/10.1007/s10489-007-0085-8.

[22] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, “Challenges in visual data analysis”, in
Tenth International Conference on Information Visualisation (IV’06), 2006, pp. 9–16. doi: 10.1109/
IV.2006.31.

[23] W. Playfair, The commercial and political atlas: Representing by means of stained copper-plate charts
the progress of the commerce revenues expenditure and debts of england during the whole of the
eighteenth century, 1786.

[24] H. Hochheiser and B. Shneiderman, “Dynamic query tools for time series data sets: Timebox widgets
for interactive exploration”, Information Visualization, vol. 3, no. 1, pp. 1–18, 2004, issn: 1473-8716.
doi: 10.1145/993176.993177. [Online]. Available: http://dx.doi.org/10.1145/993176.993177.

[25] G. Ellis and A. Dix, “A taxonomy of clutter reduction for information visualisation”, IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1216–1223, 2007, issn: 1077-2626. doi:
10.1109/TVCG.2007.70535.

[26] W. Javed, B. McDonnel, and N. Elmqvist, “Graphical perception of multiple time series”, IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 927–934, 2010, issn: 1077-
2626. doi: 10.1109/TVCG.2010.162.

116

https://doi.org/10.1109/IEMBS.2004.1403876
https://doi.org/10.1109/IEMBS.2004.1403876
https://doi.org/https://doi.org/10.1016/j.knosys.2010.05.004
http://www.sciencedirect.com/science/article/pii/S0950705110000857
https://doi.org/10.1145/2858036.2858150
http://doi.acm.org/10.1145/2858036.2858150
https://doi.org/10.1145/3093338.3093366
http://doi.acm.org/10.1145/3093338.3093366
https://doi.org/10.3390/a10010023
http://dx.doi.org/10.3390/a10010023
https://doi.org/https://doi.org/10.1016/j.compbiomed.2005.10.004
http://www.sciencedirect.com/science/article/pii/S0010482505001216
https://doi.org/10.1007/s10489-007-0085-8
https://doi.org/10.1007/s10489-007-0085-8
https://doi.org/10.1109/IV.2006.31
https://doi.org/10.1109/IV.2006.31
https://doi.org/10.1145/993176.993177
http://dx.doi.org/10.1145/993176.993177
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2010.162

[27] Y. Chen, P. Xu, and L. Ren, “Sequence synopsis: Optimize visual summary of temporal event data”,
IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 45–55, 2018, issn:
1077-2626. doi: 10.1109/TVCG.2017.2745083.

[28] J. Bernard, T. Ruppert, M. Scherer, T. Schreck, and J. Kohlhammer, “Guided discovery of interesting
relationships between time series clusters and metadata properties”, in Proceedings of the 12th Inter-
national Conference on Knowledge Management and Knowledge Technologies, ser. i-KNOW ’12, Graz,
Austria: ACM, 2012, 22:1–22:8, isbn: 978-1-4503-1242-4. doi: 10.1145/2362456.2362485. [Online].
Available: http://doi.acm.org/10.1145/2362456.2362485.

[29] Y. Keraron, A. Bernard, and B. Bachimont, “Annotations to improve the using and the updating of
digital technical publications”, vol. 20, pp. 157–170, Sep. 2009.

[30] C. Marshall, “Annotation: From paper books to the digital library”, in Proceedings of the Second
ACM International Conference on Digital Libraries, ser. DL ’97, Philadelphia, Pennsylvania, USA:
ACM, 1997, pp. 131–140, isbn: 0-89791-868-1. doi: 10.1145/263690.263806. [Online]. Available:
http://doi.acm.org/10.1145/263690.263806.

[31] ——, “Toward an ecology of hypertext annotation”, in Proceedings of the Ninth ACM Conference
on Hypertext and Hypermedia: Links, Objects, Time and Space—structure in Hypermedia Systems:
Links, Objects, Time and Space—structure in Hypermedia Systems, ser. HYPERTEXT ’98, Pittsburgh,
Pennsylvania, USA: ACM, 1998, pp. 40–49, isbn: 0-89791-972-6. doi: 10.1145/276627.276632. [Online].
Available: http://doi.acm.org/10.1145/276627.276632.

[32] I. A. OVSIANNIKOV, M. A. ARBIB, and T. H. MCNEILL, “Annotation technology”, International
Journal of Human-Computer Studies, vol. 50, no. 4, pp. 329 –362, 1999, issn: 1071-5819. doi: https:
//doi.org/10.1006/ijhc.1999.0247. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1071581999902471.

[33] M. Zacklad, “Documentarisation processes in documents for action (dofa): The status of annotations
and associated cooperation technologies”, Computer Supported Cooperative Work (CSCW), vol. 15,
no. 2, pp. 205–228, 2006, issn: 1573-7551. doi: 10.1007/s10606-006-9019-y. [Online]. Available:
https://doi.org/10.1007/s10606-006-9019-y.

[34] S. Bringay, C. Barry, and J. Charlet, “Annotations for the collaboration of the health professionals”,
in AMIA Annual Symposium Proceedings, American Medical Informatics Association, vol. 2006, 2006,
p. 91.

[35] Y. Keraron, A. Bernard, and B. Bachimont, “Annotations to improve the using and the updating of
digital technical publications”, vol. 20, pp. 157–170, Sep. 2009.

[36] N. Bricon-Souf, S. Bringay, S. Hamek, F. Anceaux, C. Barry, and J. Charlet, “Informal notes to
support the asynchronous collaborative activities”, International Journal of Medical Informatics,
vol. 76, S342 –S348, 2007, Ubiquity: Technologies for Better Health in Aging Societies - MIE 2006,
issn: 1386-5056. doi: https://doi.org/10.1016/j.ijmedinf.2007.02.006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1386505607000469.

[37] R. Kawase, E. Herder, and W. Nejdl, “A comparison of paper-based and online annotations in the
workplace”, in Learning in the Synergy of Multiple Disciplines, U. Cress, V. Dimitrova, and M. Specht,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 240–253, isbn: 978-3-642-04636-0.

[38] T. Guyet, C. Garbay, and M. Dojat, “Knowledge construction from time series data using a collaborative
exploration system”, Journal of Biomedical Informatics, vol. 40, no. 6, pp. 672 –687, 2007, Intelligent
Data Analysis in Biomedicine, issn: 1532-0464. doi: https://doi.org/10.1016/j.jbi.2007.09.006.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1532046407001050.

[39] D. A. Kalogeropoulos, E. R. Carson, and P. O. Collinson, “Towards knowledge-based systems in
clinical practice: Development of an integrated clinical information and knowledge management
support system”, Computer Methods and Programs in Biomedicine, vol. 72, no. 1, pp. 65 –80, 2003,
issn: 0169-2607. doi: https://doi.org/10.1016/S0169- 2607(02)00118- 9. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169260702001189.

[40] W. B. S. Pressly Jr., “Tspad: A tablet-pc based application for annotation and collaboration on time
series data”, in Proceedings of the 46th Annual Southeast Regional Conference on XX, ser. ACM-SE 46,

117

https://doi.org/10.1109/TVCG.2017.2745083
https://doi.org/10.1145/2362456.2362485
http://doi.acm.org/10.1145/2362456.2362485
https://doi.org/10.1145/263690.263806
http://doi.acm.org/10.1145/263690.263806
https://doi.org/10.1145/276627.276632
http://doi.acm.org/10.1145/276627.276632
https://doi.org/https://doi.org/10.1006/ijhc.1999.0247
https://doi.org/https://doi.org/10.1006/ijhc.1999.0247
http://www.sciencedirect.com/science/article/pii/S1071581999902471
http://www.sciencedirect.com/science/article/pii/S1071581999902471
https://doi.org/10.1007/s10606-006-9019-y
https://doi.org/10.1007/s10606-006-9019-y
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2007.02.006
http://www.sciencedirect.com/science/article/pii/S1386505607000469
https://doi.org/https://doi.org/10.1016/j.jbi.2007.09.006
http://www.sciencedirect.com/science/article/pii/S1532046407001050
https://doi.org/https://doi.org/10.1016/S0169-2607(02)00118-9
http://www.sciencedirect.com/science/article/pii/S0169260702001189

Auburn, Alabama: ACM, 2008, pp. 527–528, isbn: 978-1-60558-105-7. doi: 10.1145/1593105.1593249.
[Online]. Available: http://doi.acm.org/10.1145/1593105.1593249.

[41] J. Y. Halpern and Y. Moses, “Knowledge and common knowledge in a distributed environment”, J.
ACM, vol. 37, no. 3, pp. 549–587, Jul. 1990, issn: 0004-5411. doi: 10.1145/79147.79161. [Online].
Available: http://doi.acm.org/10.1145/79147.79161.

[42] J. Waldo, J. Waldo, G. Wyant, G. Wyant, A. Wollrath, A. Wollrath, S. Kendall, and S. Kendall, “A
note on distributed computing”, IEEE Micro, Tech. Rep., 1994.

[43] R. van Renesse and F. B. Schneider, “Chain replication for supporting high throughput and availability”,
in Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, ser. OSDI’04, San Francisco, CA: USENIX Association, 2004, pp. 7–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251261.

[44] F. T. Leighton and D. M. Lewin, Content delivery network using edge-of-network servers for providing
content delivery to a set of participating content providers, US Patent 6,553,413, 2003.

[45] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services”, SIGACT News, vol. 33, no. 2, pp. 51–59, Jun. 2002, issn: 0163-5700. doi:
10.1145/564585.564601. [Online]. Available: http://doi.acm.org/10.1145/564585.564601.

[46] D. Abadi, “Consistency tradeoffs in modern distributed database system design: Cap is only part of
the story”, Computer, vol. 45, no. 2, pp. 37–42, 2012.

[47] I. Shafer, R. R. Sambasivan, A. Rowe, and G. R. Ganger, “Specialized storage for big numeric
time series”, in Presented as part of the 5th USENIX Workshop on Hot Topics in Storage and File
Systems, San Jose, CA: USENIX, 2013. [Online]. Available: https://www.usenix.org/conference/
hotstorage13/workshop-program/presentation/Shafer.

[48] C. Pungilă, T.-F. Fortiş, and O. Aritoni, “Benchmarking database systems for the requirements of sensor
readings”, IETE Technical Review, vol. 26, no. 5, pp. 342–349, 2009. doi: 10.4103/0256-4602.55279.
eprint: http://www.tandfonline.com/doi/pdf/10.4103/0256- 4602.55279. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.4103/0256-4602.55279.

[49] T. W. Wlodarczyk, “Overview of time series storage and processing in a cloud environment”, in
4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, 2012,
pp. 625–628. doi: 10.1109/CloudCom.2012.6427510.

[50] T. Goldschmidt, A. Jansen, H. Koziolek, J. Doppelhamer, and H. P. Breivold, “Scalability and
robustness of time-series databases for cloud-native monitoring of industrial processes”, in 2014 IEEE
7th International Conference on Cloud Computing, 2014, pp. 602–609. doi: 10.1109/CLOUD.2014.86.

[51] A. K. Kalakanti, V. Sudhakaran, V. Raveendran, and N. Menon, “A comprehensive evaluation of
nosql datastores in the context of historians and sensor data analysis”, in 2015 IEEE International
Conference on Big Data (Big Data), 2015, pp. 1797–1806. doi: 10.1109/BigData.2015.7363952.

[52] D. W. Curtis, E. J. Pino, J. M. Bailey, E. I. Shih, J. Waterman, S. A. Vinterbo, T. O. Stair, J. V.
Guttag, R. A. Greenes, and L. Ohno-Machado, “Smart—an integrated wireless system for monitoring
unattended patients”, Journal of the American Medical Informatics Association, vol. 15, no. 1, pp. 44–53,
2008. doi: 10.1197/jamia.M2016. eprint: /oup/backfile/content_public/journal/jamia/15/1/10.
1197/jamia.m2016/2/15-1-44.pdf. [Online]. Available: +http://dx.doi.org/10.1197/jamia.M2016.

[53] P. D. Healy, R. D. O’Reilly, G. B. Boylan, and J. P. Morrison, “Web-based remote monitoring of live
eeg”, in The 12th IEEE International Conference on e-Health Networking, Applications and Services,
2010, pp. 169–174. doi: 10.1109/HEALTH.2010.5556574.

[54] A.-E. Rizzoli, G. Schimak, M. Donatelli, and J. Hřebíček, “Tatoo: Tagging environmental resources on
the web by semantic annotations”, 2010.

[55] T. Pariente, J. M. Fuentes, M. A. Sanguino, S. Yurtsever, G. Avellino, A. E. Rizzoli, and S. Nešić,
“A model for semantic annotation of environmental resources: The tatoo semantic framework”, in
International Symposium on Environmental Software Systems, Springer, 2011, pp. 419–427.

118

https://doi.org/10.1145/1593105.1593249
http://doi.acm.org/10.1145/1593105.1593249
https://doi.org/10.1145/79147.79161
http://doi.acm.org/10.1145/79147.79161
http://dl.acm.org/citation.cfm?id=1251254.1251261
https://doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/Shafer
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/Shafer
https://doi.org/10.4103/0256-4602.55279
http://www.tandfonline.com/doi/pdf/10.4103/0256-4602.55279
http://www.tandfonline.com/doi/abs/10.4103/0256-4602.55279
https://doi.org/10.1109/CloudCom.2012.6427510
https://doi.org/10.1109/CLOUD.2014.86
https://doi.org/10.1109/BigData.2015.7363952
https://doi.org/10.1197/jamia.M2016
/oup/backfile/content_public/journal/jamia/15/1/10.1197/jamia.m2016/2/15-1-44.pdf
/oup/backfile/content_public/journal/jamia/15/1/10.1197/jamia.m2016/2/15-1-44.pdf
+ http://dx.doi.org/10.1197/jamia.M2016
https://doi.org/10.1109/HEALTH.2010.5556574

[56] L. O. Batista and C. B. Medeiros, “Supporting the study of correlations between time series via
semantic annotations”, 2014.

[57] ——, “Searching time series via semantic annotations”, 2013.

[58] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based access control model”, in 2012 Tenth Annual
International Conference on Privacy, Security and Trust, 2012, pp. 137–144. doi: 10.1109/PST.2012.
6297930.

[59] T. Pifferi. (2018). How to efficiently store and query time-series data, [Online]. Available: https:
//medium.com/\@neslinesli93/efficiently-store-time-series-data-90313ff0ec20.

[60] M. Freedman. (2018). Timescaledb vs. influxdb: Purpose built differently for time-series data, [Online].
Available: https://blog.timescale.com/timescaledb-vs-influxdb-36489299877.

[61] L. Hampton. (2018). Eye or the tiger: Benchmarking cassandra vs. timescaledb for time-series data,
[Online]. Available: https://blog.timescale.com/timescaledb-vs-cassandra-7c2cc50a89ce.

[62] R. Kiefer. (2017). Timescaledb vs. postgres for time-series: 20x higher inserts, 2000x faster deletes,
1.2x-14,000x faster queries, [Online]. Available: https://blog.timescale.com/timescaledb- vs-
postgresql-6a696248104e.

[63] E. Nordström. (2017). Problems with postgresql 10 for time-series data, [Online]. Available: https:
//blog.timescale.com/time-series-data-postgresql-10-vs-timescaledb-816ee808bac5.

[64] Z Mathe, C Haen, and F Stagni, “Monitoring performance of a highly distributed and complex
computing infrastructure in lhcb”, in Journal of Physics: Conference Series, IOP Publishing, vol. 898,
2017, p. 092 028.

[65] P. Seshadri, M. Livny, and R. Ramakrishnan, “The design and implementation of a sequence database
system”, in Proceedings of the 22th International Conference on Very Large Data Bases, ser. VLDB ’96,
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1996, pp. 99–110, isbn: 1-55860-382-4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645922.673634.

[66] A. Lerner and D. Shasha, “Aquery: Query language for ordered data, optimization techniques, and
experiments”, in Proceedings of the 29th International Conference on Very Large Data Bases - Volume
29, ser. VLDB ’03, Berlin, Germany: VLDB Endowment, 2003, pp. 345–356, isbn: 0-12-722442-4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1315451.1315482.

[67] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured merge-tree (lsm-tree)”, Acta
Informatica, vol. 33, no. 4, pp. 351–385, 1996.

[68] B. Momjian. (2018). Mvcc unmasked, [Online]. Available: https://momjian.us/main/writings/
pgsql/mvcc.pdf.

[69] P. Keil, “Principal agent theory and its application to analyze outsourcing of software development”,
in Proceedings of the Seventh International Workshop on Economics-driven Software Engineering
Research, ser. EDSER ’05, St. Louis, Missouri: ACM, 2005, pp. 1–5, isbn: 1-59593-118-X. doi: 10.
1145/1082983.1083094. [Online]. Available: http://doi.acm.org/10.1145/1082983.1083094.

[70] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “An annotation management system for
relational databases”, in Proceedings of the Thirtieth International Conference on Very Large Data
Bases - Volume 30, ser. VLDB ’04, Toronto, Canada: VLDB Endowment, 2004, pp. 900–911, isbn:
0-12-088469-0. [Online]. Available: http://dl.acm.org/citation.cfm?id=1316689.1316767.

[71] M. Y. Eltabakh, W. G. Aref, A. K. Elmagarmid, M. Ouzzani, and Y. N. Silva, “Supporting annotations
on relations”, in Proceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology, ser. EDBT ’09, Saint Petersburg, Russia: ACM, 2009, pp. 379–390,
isbn: 978-1-60558-422-5. doi: 10.1145/1516360.1516405. [Online]. Available: http://doi.acm.org/
10.1145/1516360.1516405.

[72] F. H. da Silva, “Serial annotator: Managing annotations of time series.”, 2014.

[73] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore, S. Madden, and A. G.
Parameswaran, “Datahub: Collaborative data science & dataset version management at scale”, arXiv
preprint arXiv:1409.0798, 2014.

119

https://doi.org/10.1109/PST.2012.6297930
https://doi.org/10.1109/PST.2012.6297930
https://medium.com/\@neslinesli93/efficiently-store-time-series-data-90313ff0ec20
https://medium.com/\@neslinesli93/efficiently-store-time-series-data-90313ff0ec20
https://blog.timescale.com/timescaledb-vs-influxdb-36489299877
https://blog.timescale.com/timescaledb-vs-cassandra-7c2cc50a89ce
https://blog.timescale.com/timescaledb-vs-postgresql-6a696248104e
https://blog.timescale.com/timescaledb-vs-postgresql-6a696248104e
https://blog.timescale.com/time-series-data-postgresql-10-vs-timescaledb-816ee808bac5
https://blog.timescale.com/time-series-data-postgresql-10-vs-timescaledb-816ee808bac5
http://dl.acm.org/citation.cfm?id=645922.673634
http://dl.acm.org/citation.cfm?id=1315451.1315482
https://momjian.us/main/writings/pgsql/mvcc.pdf
https://momjian.us/main/writings/pgsql/mvcc.pdf
https://doi.org/10.1145/1082983.1083094
https://doi.org/10.1145/1082983.1083094
http://doi.acm.org/10.1145/1082983.1083094
http://dl.acm.org/citation.cfm?id=1316689.1316767
https://doi.org/10.1145/1516360.1516405
http://doi.acm.org/10.1145/1516360.1516405
http://doi.acm.org/10.1145/1516360.1516405

[74] V. Mihalcea. (2017). How does mvcc (multi-version concurrency control) work, [Online]. Available:
https://vladmihalcea.com/how-does-mvcc-multi-version-concurrency-control-work/.

[75] G. Ozsoyoglu and R. T. Snodgrass, “Temporal and real-time databases: A survey”, IEEE Transactions
on Knowledge and Data Engineering, vol. 7, no. 4, pp. 513–532, 1995, issn: 1041-4347. doi: 10.1109/
69.404027.

[76] E. Sciore, “Using annotations to support multiple kinds of versioning in an object-oriented database
system”, ACM Trans. Database Syst., vol. 16, no. 3, pp. 417–438, Sep. 1991, issn: 0362-5915. doi:
10.1145/111197.111205. [Online]. Available: http://doi.acm.org/10.1145/111197.111205.

[77] R. T. Snodgrass, “Temporal databases”, in Theories and methods of spatio-temporal reasoning in
geographic space, Springer, 1992, pp. 22–64.

[78] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and A. G. Parameswaran, “Principles of
dataset versioning: Exploring the recreation/storage tradeoff”, CoRR, vol. abs/1505.05211, 2015. arXiv:
1505.05211. [Online]. Available: http://arxiv.org/abs/1505.05211.

[79] H. Fujita, K. Iskra, P. Balaji, and A. A. Chien, “Versioning architectures for local and global memory”,
in 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), 2015,
pp. 515–524. doi: 10.1109/ICPADS.2015.71.

[80] M. Fowler, “Event sourcing”, Online, Dec, p. 18, 2005.

[81] L. Halilaj, I. Grangel-González, G. Coskun, and S. Auer, “Git4voc: Git-based versioning for collaborative
vocabulary development”, in 2016 IEEE Tenth International Conference on Semantic Computing
(ICSC), 2016, pp. 285–292. doi: 10.1109/ICSC.2016.44.

[82] P. Lundgren. (2013). On git’s shortcomings, [Online]. Available: http://www.peterlundgren.com/
blog/on-gits-shortcomings/.

[83] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. G. Parameswaran, “Orpheusdb: Bolt-on versioning
for relational databases”, PVLDB, vol. 10, no. 10, pp. 1130–1141, 2017. [Online]. Available: http:
//www.vldb.org/pvldb/vol10/p1130-huang.pdf.

[84] R. Diana. (2011). Is object serialization evil?, [Online]. Available: http://regulargeek.com/2011/07/
06/is-object-serialization-evil/.

[85] D. Crockford, “The application/json media type for javascript object notation (json)”, 2006.

[86] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible markup language
(xml).”, World Wide Web Journal, vol. 2, no. 4, pp. 27–66, 1997.

[87] K. Varda, “Protocol buffers: Google’s data interchange format”, Google Open Source Blog, Available at
least as early as Jul, vol. 72, 2008.

[88] A. Sumaray and S. K. Makki, “A comparison of data serialization formats for optimal efficiency
on a mobile platform”, in Proceedings of the 6th international conference on ubiquitous information
management and communication, ACM, 2012, p. 48.

[89] R. Fielding, “Representational state transfer”, Architectural Styles and the Design of Netowork-based
Software Architecture, pp. 76–85, 2000.

[90] M. Adnan, M. Just, and L. Baillie, “Investigating time series visualisations to improve the user
experience”, in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’16, San Jose, California, USA: ACM, 2016, pp. 5444–5455, isbn: 978-1-4503-3362-7. doi:
10.1145/2858036.2858300. [Online]. Available: http://doi.acm.org/10.1145/2858036.2858300.

[91] W. S. Cleveland and R. McGill, “Graphical perception: Theory, experimentation, and application to the
development of graphical methods”, Journal of the American Statistical Association, vol. 79, no. 387,
pp. 531–554, 1984. doi: 10.1080/01621459.1984.10478080. eprint: http://www.tandfonline.com/
doi/pdf/10.1080/01621459.1984.10478080. [Online]. Available: http://www.tandfonline.com/
doi/abs/10.1080/01621459.1984.10478080.

[92] N. R. Tague, The quality toolbox. Asq Press, 2005.

120

https://vladmihalcea.com/how-does-mvcc-multi-version-concurrency-control-work/
https://doi.org/10.1109/69.404027
https://doi.org/10.1109/69.404027
https://doi.org/10.1145/111197.111205
http://doi.acm.org/10.1145/111197.111205
http://arxiv.org/abs/1505.05211
http://arxiv.org/abs/1505.05211
https://doi.org/10.1109/ICPADS.2015.71
https://doi.org/10.1109/ICSC.2016.44
http://www.peterlundgren.com/blog/on-gits-shortcomings/
http://www.peterlundgren.com/blog/on-gits-shortcomings/
http://www.vldb.org/pvldb/vol10/p1130-huang.pdf
http://www.vldb.org/pvldb/vol10/p1130-huang.pdf
http://regulargeek.com/2011/07/06/is-object-serialization-evil/
http://regulargeek.com/2011/07/06/is-object-serialization-evil/
https://doi.org/10.1145/2858036.2858300
http://doi.acm.org/10.1145/2858036.2858300
https://doi.org/10.1080/01621459.1984.10478080
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1984.10478080
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1984.10478080
http://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10478080
http://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10478080

[93] J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg, “Evaluation of alternative glyph
designs for time series data in a small multiple setting”, in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’13, Paris, France: ACM, 2013, pp. 3237–3246,
isbn: 978-1-4503-1899-0. doi: 10.1145/2470654.2466443. [Online]. Available: http://doi.acm.org/
10.1145/2470654.2466443.

[94] E. Tufte, The visual display of quantitative information, 1983.

[95] T. Saito, H. N. Miyamura, M. Yamamoto, H. Saito, Y. Hoshiya, and T. Kaseda, “Two-tone pseudo
coloring: Compact visualization for one-dimensional data”, in IEEE Symposium on Information
Visualization, 2005. INFOVIS 2005., 2005, pp. 173–180. doi: 10.1109/INFVIS.2005.1532144.

[96] M. Wattenberg, “Arc diagrams: Visualizing structure in strings”, in IEEE Symposium on Information
Visualization, 2002. INFOVIS 2002., 2002, pp. 110–116. doi: 10.1109/INFVIS.2002.1173155.

[97] E. M. McCreight, “A space-economical suffix tree construction algorithm”, Journal of the ACM
(JACM), vol. 23, no. 2, pp. 262–272, 1976.

[98] P. Bille, “A survey on tree edit distance and related problems”, Theoretical Computer Science, vol. 337,
no. 1, pp. 217 –239, 2005, issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.2004.12.030.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304397505000174.

[99] J. J. V. Wijk and E. R. V. Selow, “Cluster and calendar based visualization of time series data”, in
Information Visualization, 1999. (Info Vis ’99) Proceedings. 1999 IEEE Symposium on, 1999, pp. 4–9,
140. doi: 10.1109/INFVIS.1999.801851.

[100] C. Daassi, M. Dumas, M.-C. Fauvet, L. Nigay, and P.-C. Scholl, Visual exploration of temporal object
databases, 2000.

[101] J. V. Carlis and J. A. Konstan, “Interactive visualization of serial periodic data”, in Proceedings of
the 11th Annual ACM Symposium on User Interface Software and Technology, ser. UIST ’98, San
Francisco, California, USA: ACM, 1998, pp. 29–38, isbn: 1-58113-034-1. doi: 10.1145/288392.288399.
[Online]. Available: http://doi.acm.org/10.1145/288392.288399.

[102] M. Weber, M. Alexa, and W. Müller, “Visualizing time-series on spirals”, in Proceedings of the
IEEE Symposium on Information Visualization 2001 (INFOVIS’01), ser. INFOVIS ’01, Washington,
DC, USA: IEEE Computer Society, 2001, pp. 7–, isbn: 0-7695-1342-5. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=580582.857719.

[103] C. Tominski and H. Schumann, “Enhanced interactive spiral display”, 2008.

[104] F. Bouali, S. Devaux, and G. Venturini, “Visual mining of time series using a tubular visualization”, The
Visual Computer, vol. 32, no. 1, pp. 15–30, 2016, issn: 1432-2315. doi: 10.1007/s00371-014-1052-0.
[Online]. Available: https://doi.org/10.1007/s00371-014-1052-0.

[105] K. Mitchell and J. Kennedy, “The perspective tunnel: An inside view on smoothly integrating detail
and context”, in Visualization in scientific computing ’97: proceedings of the Eurographics Workshop,
ser. Springer Computing Science, Springer, 1997.

[106] M. Suntinger, H. Obweger, J. Schiefer, and M. E. Gröller, “Event tunnel: Exploring event-driven
business processes”, IEEE Comput. Graph. Appl., vol. 28, no. 5, pp. 46–55, 2008, issn: 0272-1716. doi:
10.1109/MCG.2008.97. [Online]. Available: http://dx.doi.org/10.1109/MCG.2008.97.

[107] M. Ankerst, “Visual data mining with pixel-oriented visualization techniques”, in Proceedings of the
ACM SIGKDD Workshop on Visual Data Mining, 2001.

[108] P. Grunwald, “A tutorial introduction to the minimum description length principle”, arXiv preprint
math/0406077, 2004.

[109] F. Wanner, W. Jentner, T. Schreck, A. Stoffel, L. Sharalieva, and D. A. Keim, “Integrated visual
analysis of patterns in time series and text data - workflow and application to financial data analysis”,
Information Visualization, vol. 15, no. 1, pp. 75–90, 2016. doi: 10.1177/1473871615576925. eprint:
https://doi.org/10.1177/1473871615576925. [Online]. Available: https://doi.org/10.1177/
1473871615576925.

121

https://doi.org/10.1145/2470654.2466443
http://doi.acm.org/10.1145/2470654.2466443
http://doi.acm.org/10.1145/2470654.2466443
https://doi.org/10.1109/INFVIS.2005.1532144
https://doi.org/10.1109/INFVIS.2002.1173155
https://doi.org/https://doi.org/10.1016/j.tcs.2004.12.030
http://www.sciencedirect.com/science/article/pii/S0304397505000174
https://doi.org/10.1109/INFVIS.1999.801851
https://doi.org/10.1145/288392.288399
http://doi.acm.org/10.1145/288392.288399
http://dl.acm.org/citation.cfm?id=580582.857719
http://dl.acm.org/citation.cfm?id=580582.857719
https://doi.org/10.1007/s00371-014-1052-0
https://doi.org/10.1007/s00371-014-1052-0
https://doi.org/10.1109/MCG.2008.97
http://dx.doi.org/10.1109/MCG.2008.97
https://doi.org/10.1177/1473871615576925
https://doi.org/10.1177/1473871615576925
https://doi.org/10.1177/1473871615576925
https://doi.org/10.1177/1473871615576925

[110] E. Keogh, H. Hochheiser, and B. Shneiderman, “An augmented visual query mechanism for finding
patterns in time series data”, Springer-Verlag, 2002, pp. 240–250.

[111] H. Hochheiser and B. Shneiderman, “Interactive exploration of time series data”, in Discovery Science,
K. P. Jantke and A. Shinohara, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 441–446,
isbn: 978-3-540-45650-6.

[112] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, “Dimension reduction and visualization of large high-
dimensional data via interpolation”, in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10, Chicago, Illinois: ACM, 2010, pp. 203–214,
isbn: 978-1-60558-942-8. doi: 10.1145/1851476.1851501. [Online]. Available: http://doi.acm.org/
10.1145/1851476.1851501.

[113] J. Y. Choi, S. H. Bae, X. Qiu, and G. Fox, “High performance dimension reduction and visualization for
large high-dimensional data analysis”, in 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, 2010, pp. 331–340. doi: 10.1109/CCGRID.2010.104.

[114] J. Liang and M. L. Huang, “Highlighting in information visualization: A survey”, in 2010 14th
International Conference Information Visualisation, 2010, pp. 79–85. doi: 10.1109/IV.2010.21.

[115] J P. Vermylen, “Visualizing energy data using web-based applications”, Dec. 2008.

[116] D. Winokur. (2011). Flash to focus on pc browsing and mobile apps; adobe to more aggressively
contribute to html5, [Online]. Available: https://blogs.adobe.com/conversations/2011/11/flash-
focus.html.

[117] J. R. Harger and P. J. Crossno, “Comparison of open-source visual analytics toolkits”, vol. 8294, 2012,
pp. 8294 –8294 –10. doi: 10.1117/12.911901. [Online]. Available: http://dx.doi.org/10.1117/12.
911901.

[118] U. NIST, Descriptions of sha-256, sha-384 and sha-512, 2001.

[119] N. Provos and D. Mazieres, “A future-adaptable password scheme.”, 1999.

[120] D Eastlake and T Hansen, “Rfc 6234: Us secure hash algorithms (sha and sha-based hmac and hkdf)”,
IETF Std, 2011.

[121] J Jonsson and B Kaliski, “Public-key cryptography standards (pkcs)# 1: Rsa cryptography, specifica-
tions version 2.1., 2003”, RFC3447, vol. 5, p. 14, 2004.

[122] J. Schaad, “Use of the rsassa-pss signature algorithm in cryptographic message syntax (cms)”, Tech.
Rep., 2005.

[123] P. Hoffman, “Elliptic curve digital signature algorithm (dsa) for dnssec”, 2012.

122

https://doi.org/10.1145/1851476.1851501
http://doi.acm.org/10.1145/1851476.1851501
http://doi.acm.org/10.1145/1851476.1851501
https://doi.org/10.1109/CCGRID.2010.104
https://doi.org/10.1109/IV.2010.21
https://blogs.adobe.com/conversations/2011/11/flash-focus.html
https://blogs.adobe.com/conversations/2011/11/flash-focus.html
https://doi.org/10.1117/12.911901
http://dx.doi.org/10.1117/12.911901
http://dx.doi.org/10.1117/12.911901

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Time series analysis
	Visualization of time series
	Annotations over time series
	Distributed systems
	Contributions
	Dissertation outline

	State of the art
	Time series analysis systems
	Data model
	Time series
	Annotations

	Data management
	Time series
	Annotations
	Versioning

	Architecture
	Visualization
	Techniques
	Software tools and interfaces
	Technological survey

	Proposed Model
	Data model
	Time series
	Ontology

	Data Management
	Persistence model
	Versioning
	Caching
	User tasks

	Architecture
	Load balancing
	REST interface
	Authentication
	Processing pipeline
	Read validation
	Write validation
	Asynchronous updates
	Optimistic Locking

	Visualization
	Dashboard
	Annotations
	Ontology management

	Implementation
	Data model
	Time series
	Ontology

	Data management
	ID generation strategy
	Name search
	Versioning
	Caching

	Architecture
	REST interface
	Authentication
	Processing workflow
	Time series query
	Time series update

	Visualization
	Data mapping
	Application state
	Dashboard and management
	Annotations

	Evaluation
	Architecture benchmark
	Clicks to interaction

	Conclusion and future work
	Conclusion
	Future Work
	Research directions

	Final thoughts

	References

