1,452 research outputs found

    Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges

    Get PDF
    Railway importance in the transportation industry is increasing continuously, due to the growing demand of both passenger travel and transportation of goods. However, more than 35% of the 300,000 railway bridges across Europe are over 100-years old, and their reliability directly impacts the reliability of the railway network. This increased demand may lead to higher risk associated with their unexpected failures, resulting safety hazards to passengers and increased whole life cycle cost of the asset. Consequently, one of the most important aspects of evaluation of the reliability of the overall railway transport system is bridge structural health monitoring, which can monitor the health state of the bridge by allowing an early detection of failures. Therefore, a fast, safe and cost-effective recovery of the optimal health state of the bridge, where the levels of element degradation or failure are maintained efficiently, can be achieved. In this article, after an introduction to the desired features of structural health monitoring, a review of the most commonly adopted bridge fault detection methods is presented. Mainly, the analysis focuses on model-based finite element updating strategies, non-model-based (data-driven) fault detection methods, such as artificial neural network, and Bayesian belief network–based structural health monitoring methods. A comparative study, which aims to discuss and compare the performance of the reviewed types of structural health monitoring methods, is then presented by analysing a short-span steel structure of a railway bridge. Opportunities and future challenges of the fault detection methods of railway bridges are highlighted

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Bridge damage detection based on vibration data: past and new developments

    Get PDF
    Overtime, bridge condition declines due to a number of degradation processes such as creep, corrosion, and cyclic loading, among others. Traditionally, vibration-based damage detection techniques in bridges have focused on monitoring changes to modal parameters. These techniques can often suffer to their sensitivity to changes in environmental and operational conditions, mistaking them as structural damage. Recent research has seen the emergence of more advanced computational techniques that not only allow the assessment of noisier and more complex data but also allow research to veer away from monitoring changes in modal parameters alone. This paper presents a review of the current state-of-the-art developments in vibration-based damage detection in small to medium span bridges with particular focus on the utilization of advanced computational methods that avoid traditional damage detection pitfalls. A case study based on the S101 bridge is also presented to test the damage sensitivity to a chosen methodology.Peer ReviewedPostprint (published version

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Bearing assessment tool for longitudinal bridge performance

    Get PDF
    This work provides an unsupervised learning approach based on a single-valued performance indicator to monitor the global behavior of critical components in a viaduct, such as bearings. We propose an outlier detection method for longitudinal displacements to assess the behavior of a singular asymmetric prestressed concrete structure with a 120 m high central pier acting as a fixed point. We first show that the available long-term horizontal displacement measurements recorded during the undamaged state exhibit strong correlations at the different locations of the bearings. Thus, we combine measurements from four sensors to design a robust performance indicator that is only weakly affected by temperature variations after the application of principal component analysis. We validate the method and show its efficiency against false positives and negatives using several metrics: accuracy, precision, recall, and F1 score. Due to its unsupervised learning scope, the proposed technique is intended to serve as a real-time supervision tool that complements maintenance inspections. It aims to provide support for the prioritization and postponement of maintenance actions in bridge management.Authors would like to acknowledge the discussions with Marcos Pantaleón from APIA XXI, Ambher Monitoring Systems and Banobras S.N.C. This work has received funding from the European’s Union Horizon 2020 research and innovation program under the grant agreement No 690660 (RAGTIME Project) and No 769373 (FORESEE Project). This paper refects only the author’s views. The European Commission and INEA are not responsible for any use that may be made of the information contained therein. David Pardo has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS), the European POCTEFA 2014-2020 Project PIXIL (EFA362/19) by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program, the Project of the Spanish Ministry of Science and Innovation with reference PID2019-108111RBI00 (FEDER/AEI), the BCAM “Severo Ochoa” accreditation of excellence (SEV-2017-0718), and the Basque Government through the BERC 2018-2021 program, the two Elkartek projects 3KIA (KK2020/00049) and MATHEO (KK-2019-00085), the grant "Artifcial Intelligence in BCAM number EXP. 2019/00432", and the Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education

    Field investigation of novel self-sensing asphalt pavement for weigh-in-motion sensing

    Get PDF
    The integration of weigh-in-motion (WIM) sensors within highways or bridge structural health monitoring systems is becoming increasingly popular to ensure structural integrity and users safety. Compared to standard technologies, smart self-sensing materials and systems present a simpler sensing setup, a longer service life, and increased durability against environmental effects. Field deployment of such technologies requires characterization and design optimization for realistic scales. This paper presents a field investigation of the vehicle load-sensing capabilities of a newly developed low-cost, eco-friendly and high durability smart composite paving material. The novel contributions of the work include the design and installation of a full-scale sensing pavement section and of the sensing hardware and software using tailored low-cost electronics and a learning algorithm for vehicle load estimation. The outcomes of the research demonstrate the effectiveness of the proposed system for traffic monitoring of infrastructures and WIM sensing by estimating the gross weight of passing trucks within a 20% error during an autonomous sensing period of two months
    corecore