
Vol.:(0123456789)

Journal of Civil Structural Health Monitoring 
https://doi.org/10.1007/s13349-020-00432-1

123

ORIGINAL PAPER

Bearing assessment tool for longitudinal bridge performance

David Garcia‑Sanchez1,3  · Ana Fernandez‑Navamuel1,2,4 · Diego Zamora Sánchez1 · Daniel Alvear3 · 
David Pardo4,2,5

Received: 26 February 2020 / Revised: 24 July 2020 / Accepted: 18 August 2020 
© The Author(s) 2020

Abstract
This work provides an unsupervised learning approach based on a single-valued performance indicator to monitor the global 
behavior of critical components in a viaduct, such as bearings. We propose an outlier detection method for longitudinal 
displacements to assess the behavior of a singular asymmetric prestressed concrete structure with a 120 m high central pier 
acting as a fixed point. We first show that the available long-term horizontal displacement measurements recorded during 
the undamaged state exhibit strong correlations at the different locations of the bearings. Thus, we combine measurements 
from four sensors to design a robust performance indicator that is only weakly affected by temperature variations after the 
application of principal component analysis. We validate the method and show its efficiency against false positives and nega-
tives using several metrics: accuracy, precision, recall, and F1 score. Due to its unsupervised learning scope, the proposed 
technique is intended to serve as a real-time supervision tool that complements maintenance inspections. It aims to provide 
support for the prioritization and postponement of maintenance actions in bridge management.

Keywords Structural health monitoring (SHM) · Principal component analysis · Damage detection

1 Introduction

Over the last decades, monitoring systems have gained 
importance in our society [1, 2]. Their main objective is 
to provide quantitative information on the performance of 
structures under service conditions to optimize the mainte-
nance programs and avoid severe failures [3].

In the management of civil engineering structures, there 
are some elements whose correct behavior is critical in the 
planning of repair and substitution actions due to the high 
technical and economic costs. Some of these crucial com-
ponents are bearings, particularly when they employ newly 
developed technologies or are installed in bridges with 
unconventional designs. The correct performance of these 
elements becomes even more important as the management 
of infrastructures evolves towards predictive maintenance 
strategies at the network level [4]. In this context, own-
ers have the responsibility to adequately prioritize actions 
on multiple different bridges based on their real condition 
[5–9].

There is a great interest on developing improved struc-
tural health monitoring (SHM) alternatives to support tra-
ditional visual inspections [10, 11]. We can broadly classify 
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these improved SHM methods into model based and data 
based [11].

Model-based techniques have been traditionally applied 
in the field of civil engineering [12–18]. They employ com-
putational models that incorporate the physics of the sys-
tem, including geometry, material properties, and boundary 
conditions. They solve an inverse problem by building a 
physics-based model and then updating its parameters until 
the response of the model matches that which is measured in 
the real structure. Although this approach is currently under 
exhaustive research [19–25], it still presents some draw-
backs in the assessment of real systems. Such drawbacks 
include the need for high-quality data and the impossibility 
to provide real-time insight due to the computational effort 
required to solve the updating problem [26].

Data-based techniques rely exclusively on experimen-
tal data acquired during monitoring campaigns and do not 
require a physics-based model [11]. Instead, they build sta-
tistical models and extract higher value information from 
instrumentation systems with multiple sensing devices [27, 
28]. Once trained, they can work autonomously and provide 
real-time assessment [29–31]. We classify data-based algo-
rithms as supervised learning (where training data contain 
information about the damage of the structure), and unsu-
pervised learning (for which the status of the structure and 
possible damage scenarios are unknown) [32–34].

Machine learning techniques can identify damage due to 
their ability to learn complex input–output relations present 
in the systems under study [28, 35]. Some recently applied 
algorithms include artificial neural networks (ANNs) [36, 
37], support vector machines [38, 39], or k-nearest neighbor 
[40]. There are also several works that employ unsupervised 
machine learning approaches to civil engineering applica-
tions [41–45], but these are more powerful in supervised 
learning contexts, where there is full knowledge about the 
outcome of each training sample [11].

When working with civil engineering structures under 
service, we often employ unsupervised learning techniques 
due to the lack of damaged data [11, 43]. This situation 
leads to the implementation of novelty detection algorithms, 
which detect deviations from what it is considered the refer-
ence behavior but are unable to characterize the type and 
extent of the damage [46].

The simplest unsupervised learning approach for novelty 
detection is control charts, which monitor some features 
extracted from measurements and find departures from their 
expected values [30, 47, 48]. SHM has adopted this tech-
nique from the industrial machinery field, where a much 
more controlled environment holds [11, 30]. Unfortunately, 
in the case of bridge structures, greater manufacturing inac-
curacies occur, and also environmental and operational 
effects strongly affect measurements [29]. Statistical pattern 
recognition (SPR) methods represent a more robust novelty 

detection technique that deals with this variability [11, 28, 
41, 49–51]. SPR algorithms employ monitoring data to cre-
ate statistical models that represent the undamaged or refer-
ence condition of a system [27]. When the probability of a 
new measurement is below a predefined threshold value, it 
corresponds to an outlier [29, 30, 52].

Statistical methods become more feasible when there 
exists long-term monitoring data to obtain reference patterns 
of a system. Yet, we find very few works in the literature that 
employ long-term monitoring data from real civil engineer-
ing structures. In [53], authors investigate the applicability 
of an autoregression SPR algorithm to dynamic field data 
using information from the Z24 bridge in Switzerland. This 
bridge contains measurements under progressive damage 
scenarios acquired during its controlled demolition. In [54], 
authors use a strain regression model to calculate a health 
indicator based on the statistical process control theory 
to detect behavior changes during the 14-year monitoring 
period in the presence of opening cracks.

In [55] and [56], authors focus on temperature–displace-
ment correlation analysis and regression models to remove 
environmental effects and normalize displacements. The 
recent work [57] investigates the longitudinal behavior of 
a jointless railway bridge and defines regression models to 
remove the temperature-induced displacements and imple-
ment a robust early warning system.

In this work, we propose a data-based SHM approach 
to assess the global behavior of Beltran bridge, a singular 
asymmetric prestressed concrete viaduct in Mexico. The 
objective is to provide reliable information on the longitu-
dinal response of the bridge against horizontal loads. We 
assess the global behavior of the sliding bearings that limit 
the lateral loads transmitted to the substructure. To do so, 
we employ long-term monitoring data from four fiber optic 
sensors that measure the relative displacement at each bear-
ing location. Changes in temperature during the monitoring 
period induce a significant variability in the measurements 
[33]. However, since this phenomenon affects the structure 
globally, there exists a high correlation between displace-
ments from the different sensors [58], as demonstrated later 
in the present work.

The presence of damage at the sliding surface of the bear-
ing increases its friction coefficient and reduces the allow-
able displacement for a particular load [59–61]. Thus, a 
malfunction at any of the support devices will restrict the 
sliding of the deck over the corresponding pier. This situ-
ation will substantially affect the correlation condition that 
holds during normal operation (without damage) [58]. As a 
consequence of the malfunction, the affected pier cap will 
suffer larger displacements, leading to the appearance of 
cracks that may compromise the structural integrity of the 
bridge [59].
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In this work, we first apply principal component analysis 
(PCA) based on the presence of sensor correlation to deal 
with environmental variability instead of using complex 
thermal sensor arrays and regression models [31]. Hence, 
the temperature is not required as an additional variable. 
We calculate a single-value performance indicator from the 
results of PCA that has low environmental sensitivity [62]. 
Next, we generate a statistical model for this indicator to 
represent the undamaged condition of the structure [63]. To 
do so, we employ a kernel density function [11, 57]. We 
then calculate a threshold value over the model that sets 
the limit for outlier detection based on a confidence level. 
A malfunction of a bearing will result in a reduction of the 
existing correlation between measurements at the four loca-
tions, and, therefore, in an outlier.

Finally, to prove the efficiency of the algorithm, we sub-
mit it to a validation phase using the test dataset. To account 
for the presence of damage at one of the bearings, we apply 
a reduction of the corresponding relative displacement (50% 
loss of its sliding capability).

The proposed method offers a SHM tool for early warning 
on the real condition of bridges, which can assist manag-
ers in the scheduling of maintenance actions at the network 
level. The methodology also helps to complement visual 
inspections for individual elements with more quantitative 
insight regarding the global behavior of the structure. We 
envision the present work as a complementary tool that 
should work together with other SHM assessment practices, 
including deterministic approaches to locate and quantify 
the damage.

2  Methodology

2.1  Data acquisition and pre‑processing

Monitoring large civil engineering structures mainly con-
sists of acquiring long-term measurements of the structural 
response under ambient excitation that results mainly from 
environmental and operational loads (e.g. temperature, wind, 
traffic).

When implementing data-driven algorithms, we split the 
available information into a training and a testing subset. 
We use the training subset for optimization and the testing 
one is kept for validation. We denote the training dataset by 
X̂ ∈ Rm×d . It is a multivariate dataset that contains m meas-
urement samples from d sensors in the undamaged state of 
the structure. Thus, each sensor has an associated measure-
ment vector x̂ ∈ Rm.

2.2  Principal component analysis

Principal component analysis is a data analysis technique 
that re-expresses the original data in a new basis where the 
information is arranged in terms of maximal variance and 
minimal redundancy [64, 65]. In the field of SHM and nov-
elty detection, it is important to characterize those changes 
occurring under normal operation, as they may compromise 
the efficiency of the assessment method [43, 51]. Further 
details of this procedure are available in [66–68], where 
authors present various applications for SHM. In here, we 
briefly describe the main steps involved in the procedure, 
namely (i) to rescale data, (ii) to calculate the covariance 
matrix, (iii) to extract principal components and (iv) to com-
pute a single-value performance indicator.

2.3  Data rescaling

Rescaling variables is a key step [66]. This step becomes 
critical when sensors of different types are involved [66]. 
Herein, we define a rescaling function Ri for each sensor 
with i = 1, 2,… , d

where �i and �i are the mean and standard deviation of 
measurement vector of the i th sensor, respectively. For each 
sensor dataset x̂i , we obtain the rescaled measurement vec-
tor xi = Ri

(
x̂i
)
 . We denote to the rescaled training dataset 

by X ∈ Rm×d.

2.4  Covariance matrix calculation

The covariance matrix measures the presence of relation-
ships in the data and demonstrates the existence of correla-
tions [64]. For any pair of measurement vectors correspond-
ing to two different sensors 

(
xi, xj

)
∈ Rm , the covariance is:

where �i and �j are the mean values of the i th and j th 
variables, respectively. The covariance matrix C is symmet-
ric and contains the covariance values of the d variables.

2.5  Extraction of principal components

Principal components represent the directions of the data 
space that contain most of the original information in terms 
of variability [68]. We calculate them as the eigenvectors of 
the covariance matrix, and its weight in the analysis depends 
on the amount of the original variability they contain, which 
is directly related to the magnitude of the corresponding 

(1)Ri

(
x̂i
)
=

x̂i − 𝜇i

𝜎i
,

(2)C
�
xi, xj

�
=

∑m

k=1

�
xi,k − �i

�
⋅

�
xj,k − �j

�
m − 1

,
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eigenvalue [65, 66, 68]. Since principal components indicate 
the directions of maximum variability in the measurements, 
we can isolate environmental effects by creating two differ-
ent subspaces [69].

The first subspace contains most of the variability, and 
it is represented by the most important eigenvectors (i.e., 
those with larger eigenvalues) [70]. The second subspace is 
formed by the remaining principal components, which are 
associated to the lowest eigenvalues [70]. Since the second 
subspace has very little variability, this allows for the calcu-
lation of a robust performance indicator.

Hence, we must decide the number of components that 
are sufficient to account for the environmental variability 
and form the first subspace. We can justify this decision 
on the cumulative percentage of variance CPV [68], which 
measures the amount of variance captured by the first k com-
ponents, such that

where �j represents the j th eigenvalue. An acceptable 
level of variance for the first subspace is typically around 
90–95% [64, 71].

Let P ∈ Rd×d be a square matrix containing the principal 
components of the training dataset X . We divide P into two 
submatrices, Ps1 ∈ Rd×k and Ps2 ∈ Rd×(d−k) , associated with 
the first and second subspaces, respectively.

2.6  Single‑value performance indicator

In this step, we calculate the distance of the original data 
in the training set to the two previously defined subspaces, 
Ps1 and Ps2 . The Hotelling’s or T2statistic measures the dis-
tance from the first subspace Ps1 [65, 72]. For each measure-
ment example x(j) =

(
x1, x2,… , xd

)
 in the training set with 

j = 1, 2,… ,m , we compute the performance indicator as

where matrix Λ ∈ Rk×k is a diagonal matrix containing 
the first k eigenvalues. Complementarily, Q statistic, also 
referred to as squared prediction error, quantifies the dis-
tance from the second subspace [42]:

Here Λ2 ∈ R(d−k)×(d−k) is the diagonal matrix that contains 
the less meaningful eigenvalues. During normal operation, 
the Q statistic takes small values due to its low variabil-
ity content. This enables to find a statistical representative 
model for the outlier detection algorithm.

(3)CPV(k) =

∑k

j=1
�j∑p

j=1
�j

⋅ 100,

(4)T2(j) = x(j) ⋅
(
Ps1 ⋅ Λ

−1
⋅ PT

s1

)
⋅ x(j)T ,

(5)Q(j) = x(j) ⋅
(
Ps2 ⋅ Λ

−1

2
⋅ PT

s2

)
⋅ x(j)T

2.7  Baseline model generation

The baseline model stems from the statistical characteriza-
tion of the Q statistic sample in the undamaged state. For that 
purpose, we employ Kernel density estimation [73, 74]. This 
technique provides a continuous function that accurately fits 
the distribution of the reference performance indicator sam-
ple and constitutes the baseline pattern for damage detection 
[57, 75].

2.8  Threshold value calculation

The assessment methodology for outlier detection developed 
in this work belongs to the unsupervised learning domain. 
This is the most common situation in SHM strategies to in-
service structures since data from possible damage states are 
rarely available [11, 56, 76]. The main goal of this approach 
is to detect deviations from what is considered to be the 
reference state, which is statistically defined as the baseline 
model.

In the baseline model, we select an uncertainty level over 
which we assume the structure may have some unknown 
damage. In our case, we select a 5% uncertainty level (95% 
confidence level) to achieve a strong enough SHM assess-
ment tool [11]. The limit value is directly obtained by calcu-
lating the 95 percentile of the corresponding kernel density 
function [73, 77, 78].

2.9  Validation

Once we have constructed the baseline model and set the 
threshold value to detect outliers, we validate the algorithm 
using the test dataset. Let Xtest ∈ Rn×d be the test matrix 
that contains n new examples unseen by the algorithm. We 
evaluate the performance of the algorithm based on the main 
machine learning metrics, i.e. accuracy, precision, recall, 
and F1 score [79].

3  Case study

In this work, we employ a data-driven SHM approach for 
bearing behavior assessment. This technique provides a 
“single-value” tool for decision-making and bearing dam-
age assessment in structural management.

3.1  Bridge description

This study considers the Beltran bridge, located in kilom-
eter point (KP) 119.5 of the Guadalajara–Colima highway 
in Mexico. Its design incorporates one pier of considerable 
height and only two expansion joints in the deck, located 
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over the abutments. This structural profile is typically 
employed to cross abrupt areas, such as valleys [80]. A rep-
resentative view is shown in Fig. 1.

Its continuous superstructure is 297.49 m long and it is 
distributed in four spans (73.60 + 12.40 + 134.90 + 76.59 m
). The prestressed concrete deck is a single box girder with 
variable depth from 4.40 m in the mid-section of the main 
span to 7.50 m in support sections. The top and bottom slabs 
are 0.50 m and 0.75 m thick, respectively. Figure 2 shows 
the section specifications.

Pier 4 is rigidly connected to the deck and it represents 
the theoretical fixed point in the structure for longitudinal 
loads. This pier is 120.45 m height. Its width varies linearly 
(1:60) from 6.00 m at the foundation to 4.00 m at the cap. 
The thickness of the walls is 0.80 m.

Piers 2 and 3 are made of concrete and they have box sec-
tions of 0.40 m thickness. They have a height of 24.25 m. 
The deck-pier contact is established with pot bearings allow-
ing for sliding in the longitudinal direction. This kind of 
sliding bearing carries vertical loads by compression on an 
elastomeric element confined within the machined pot plate 
that works under a triaxial pressure. It offers low resistance 
to deformation but high vertical stiffness [61, 81]. These 
elements limit the horizontal force transmitted to the piers 
by allowing certain translation to accommodate longitudinal 
displacements [61].

The structural scheme of the bridge must withstand 
horizontal loads that are likely to occur during the bridge 
lifetime as a result of temperature variations, wind, small 
seismic-induced motions, or strong braking forces from 
vehicles, among others [82]. Sliding bearings limit the 

horizontal force that reaches the pier and causes displace-
ments at the pier cap [82]. We can model these devices as a 
friction element whose behavior is governed by a parameter 
� that represents its sliding capabilities. A degradation on 
the sliding surface of the bearing will reduce the required 
relative displacement between the deck and the piers [57, 
60, 82].

Figure 3 illustrates the pier-deck structural system, where 
ua, up and ub stand for the longitudinal displacement of the 
deck, the pier, and the bearing, respectively. Md and Mp rep-
resent the mass of the deck and the pier, � is the friction 

Fig. 1  Structural profile of the 
singular Beltran bridge. Detail 
of the fixed point

Fig. 2  Bridge section details
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coefficient of the bearing and Kp is the longitudinal stiffness 
of the pier. We express the displacement at the pier cap as

Based on this model, pot bearings can operate in two 
different regions, as shown in Fig. 4 [59, 61, 83]. When 
the external loads are below the friction force, there is no 
displacement of the bearing (static friction) [84]. On the 
other hand, when exceeding the limit friction force, the 
energy transmitted to the pier is limited due to a displace-
ment of the bearing [61].

(6)up = ua − ub.

For an undamaged bearing, the friction coefficient is 
very low ( ��[0.02 − 0.05] ), and except for very small 
loads, it will work in the sliding region [59]. In this situa-
tion, the transmitted load is the critical friction force that 
will be small enough to ensure the correct longitudinal 
behavior [61, 84]. The presence of damage at the sliding 
surfaces of the bearing causes a reduction of its allowable 
displacement for a certain load [59–61]. We can math-
ematically model this situation as an increase in the fric-
tion coefficient [59].

Figure 4 compares the behavior diagram of an undam-
aged and a damaged bearing, where �u and �d represent the 
friction coefficient in the undamaged and the damaged state, 
respectively [59, 85].

For the same external load, a damaged bearing will 
transmit higher loads to the pier cap and cause cracks that 
may compromise the structural integrity. Hence, assessing 
the performance of these devices in the long term is key to 
ensure a correct structural response against horizontal loads.

3.2  The monitoring system

Given the structural particularities of Beltran bridge, a long-
term monitoring system was installed in 2012. The bridge 
was equipped exclusively with fiber optic sensors [86–88]. 
In this work, we had access to the four fiber optic displace-
ment sensors that record the longitudinal displacements 
of the deck over the substructure of the bridge. Figure 5 
describes their location. These measurements correspond 
to the relative displacement of the sliding bearings, ub.

Pier 4 represents the fixed point of the structure for lon-
gitudinal forces. Although no relative displacement exists 
there, it is subjected to absolute displacements. Displace-
ment sensors are located at the top of piers 1, 2, 3 and 5, 
where pot bearings connect the piers with the deck to allow 
for sliding in the longitudinal direction. Bearings are criti-
cal elements to ensure the structural integrity of this bridge.

Fig. 3  Simplified approximation 
of the structural system deck-
bearing pier

Fig. 4  Operating schemes for an undamaged and a damaged pot bear-
ing
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3.3  Data acquisition

The monitoring system was activated in August 2012 and 
worked continuously until July 2013. Due to some tempo-
rary outages, the total recording period lasted approximately 
9 months.

The data acquisition process was carried out at a sam-
pling frequency of 200 Hz. The transmission of the data 
was done monthly and contained the mean values of the 
displacements measured every ten minutes for each sensor. 
This subsampling suffices to analyze the long-term varia-
tions of longitudinal displacements at the bearing locations 
( ub ) and reduces the storage space to 40.5 MB for the whole 
dataset. After training statistical the model, it is possible 
to transmit the data daily for real-time damage assessment. 
With the previous specifications, we obtained a total of 
38,592 measurements for each displacement sensor during 
the monitoring period. After removing zero values, the final 
number of measurements per sensor is 37,692. Finally, we 
split the data into training and test subspaces. We select the 
first 80% of samples to train the algorithm, resulting in a 
training dataset X ∈ R30154×4 . We employ the final 20% to 
evaluate the performance of the algorithm against unseen 
data during the validation phase.

3.4  Data pre‑processing

Temperature changes affect the structure globally. Accord-
ingly, there must exist a correlation between measurements 
at different locations1 [55, 58, 62]. Following [62], the use of 
linear PCA is justified since there exists a linear correlation 

between variables, i.e. relative displacements at the four 
bearing locations. In [62], where the analysis variables are 
dynamic features of the structure, it was also proven that 
linear PCA works even in slightly nonlinear cases. Figure 6 
shows the presence of these correlations through the scat-
terplot of each pair of variables together with the value of 
the Pearson’s coefficient of correlation, verifying that the 
monitoring period corresponds to the undamaged or refer-
ence condition of the support devices. Figure 6 also includes 
the histogram for the training dataset of each sensor ( THL1 
to THL4).

3.5  Data processing

In long-term monitoring, environmental changes (i.e. tem-
perature) strongly affect longitudinal displacements during 
normal operation. For this reason, these measurements are 
inadequate for outlier detection since they exhibit a large 
variability even under normal operation. Given the existing 
correlation between sensor measurements at the different 
locations (as shown in Fig. 6), we look for a damage indi-
cator that is robust to these phenomena. We use principal 
component analysis (PCA) to find and isolate any variance 
induced by temperature in the training dataset. We empha-
size that temperature is unmeasured, and the force–displace-
ment response of isolate bearings is untreated. Instead, we 
focus on the existing correlations in the displacement meas-
urements of the bearings at different locations.

We firstly rescale the training dataset by applying the 
corresponding function Ri to each sensor dataset with 
i = (1, 2, 3, 4).

The covariance matrix C for the four standardized dis-
placement sensors is

Fig. 5  Locations of the dis-
placement sensors

1 We also observed a correlation between approximated ambient 
temperatures in the area and the recorded measurements at different 
locations; however, we lack exact temperature data on the bridge.



 Journal of Civil Structural Health Monitoring

123

According to the theory of PCA, we obtain the principal 
components as the eigenvectors of matrix C . Table 1 shows 
the four principal components.

The analysis requires an exhaustive evaluation of the prin-
cipal components to understand how powerful PCA is to 
manage multivariate data [67, 68]. Table 2 summarizes the 
most relevant information.

An acceptable level of variance for the first subspace is 
typically around 90–95% of the total variance [64, 71]. In this 
case, we only need two components to reach almost 91% of 
the total variance, so we define the first subspace with half 
of the total components and leave the other two components 
for the second subspace. Since principal components indicate 
the directions of maximum variability in the measurements, 
the first subspace contains most of the variation present in the 

(7)C =

⎛⎜⎜⎜⎝

1.00

0.77

−0.78

0.77

0.77

1.00

−0.8

0.51

−0.78

−0.80

1.000

−0.61

0.77

0.51

−0.61

1.000

⎞⎟⎟⎟⎠
.

Fig. 6  Correlation summary of the four displacement sensors

Table 1  Eigenvector decomposition

PC1 PC2 PC3 PC4

1 − 0.5329 − 0.1336 0.3541 0.7569
2 − 0.4976 0.5181 0.4938 − 0.4900
3 0.5108 − 0.3286 0.7915 − 0.0686
4 − 0.4555 − 0.7783 − 0.0662 − 0.4271

Table 2  Statistical evaluation of components

Parameter PC1 PC2 PC3 PC4

Eigenvalue 3.1082 0.5418 0.2075 0.1425
Standard deviation 1.7630 0.7631 0.4555 0.3775
Variance proportion 0.7771 0.1354 0.0519 0.0356
Cumulated variance 0.7771 0.9125 0.96437 1.0000
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data, and the second subspace contains the remaining noise. 
Here, the main source of variability comes from environmental 
effects, i.e., temperature variations. Thus, the first subspace 
contains environmental variability. The matrices representing 
both subspaces are, respectively.

Next, we calculate both statistics for the training set and 
obtain the corresponding samples T2

∈ Rm and Q ∈ Rm that 
are representative of the undamaged condition of the struc-
ture. The temporary representation (see Fig. 7) of both 
statistics for the training set provides an insightful inter-
pretation on the distribution of the existing variability. On 
the one hand, T2 statistic contains most of the variability, 
in this case induced by seasonal temperature changes. On 
the other hand, Q statistic shows a much lower fluctuation, 
indicating that its value is poorly affected by the inherent 
environmental trends.

Table 3 gathers the statistical properties of both indi-
cators, including the mean value and the standard devia-
tion. This information supports the decision of employing 

(8)Ps1 =

⎛⎜⎜⎜⎝

−0.5329

−0.4976

−0.1336

0.5181

0.5108

−0.4555

−0.3286

−0.7783

⎞⎟⎟⎟⎠
,

(9)Ps2 =

⎛⎜⎜⎜⎝

0.3541

0.4938

0.7569

−0.4900

0.7915

−0.0662

−0.0686

−0.4271

⎞⎟⎟⎟⎠
.

Q statistic as the damage sensitive feature for outlier 
detection.

We first generate the statistical baseline model for the 
Q statistic vector calculated for the training dataset using 
the kernel density estimation approach. Onto this base-
line model, we select an uncertainty level over which we 
will assume the bridge may have some unknown damage. 
We consider that those indicators exceeding the threshold 
value are more likely to belong to the unknown damage 
state. In our case, we select a 5% uncertainty level (95% 
confidence level) to achieve a strong enough SHM assess-
ment tool towards false negatives (undetected damage), 
as they are of great importance in the civil engineering 
field [74].

The limit value is directly obtained by calculating the 95 
percentile over the corresponding kernel model [73, 77, 78], 
being Qlimit = 0.9845.

Figure 8 shows graphically the limit between the two 
possible states. The green-shadowed region, which includes 
95% of the sample data, represents the undamaged state, 
while the red-shadowed region stands for the unknown state 
of the structure. Hence, we identify the abnormal behavior 

Fig. 7  Representation of T2 and 
Q statistics for the training set

Table 3  Statistical properties 
of the training dataset for both 
statistics

T2 index Q index

Mean 1.9999 0.3500
Standard 

devia-
tion

1.3580 0.3322
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or damaged state as any departure from the previously cal-
culated threshold value in the Q statistic indicator with 95% 
certainty.

4  Validation results

In this section, we use the test dataset, which con-
tains the final 20% of the available measurements, i.e. 
Xtest ∈ R7538×4 . Since the whole monitoring period belongs 
to the undamaged condition of the structure, this data-
set only tests the algorithm against false positives. We 
additionally account for the presence of damage at one 
of the bearings, assuming that it results in a reduction of 
the measured displacement, indicating a loss of its slid-
ing properties. We apply this reduction to the measure-
ments of the sensor associated to the bearing at pier 2. We 
assume the following relations between displacements in 
the undamaged state:

where � expresses the distribution of the absolute dis-
placement ( ua,u ) between the pier and the bearing. In the 
undamaged state, we set a value of � = 0.9 since the bear-
ing absorbs most of the absolute displacement. Then, we 
represent the damaged scenario through a reduction in � , as:

(11)ub,u = � ⋅ ua,u,

(12)up,u = (1 − �) ⋅ ua,u,

(13)�� = � − x,

where �′ measures the new fraction of absolute displace-
ment that goes to the bearing in the damaged condition and 
x indicates the corresponding reduction with respect to the 
undamaged state. These bearings must always allow sliding 
at operational loads. Despite bridges are generally calculated 
assuming a total blockage of the supports, this is a critical 
situation. In here, we apply a reduction factor of x = 0.45 , 
meaning a 50% loss of the sliding capabilities of a bearing. 
This scenario is sufficiently far from the limit situation but 
reasonably indicates the need of an intervention. We reach 
the following relation between damaged and undamaged 
bearing displacements:

Fig. 8  Classification threshold 
over the reference model with a 
5% uncertainty

Fig. 9  Performance indicator in the test dataset
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Hence, the final test dataset contains two parts: the origi-
nal test dataset and the damaged test dataset, resulting in 
a total of 2 ⋅ n = 15076 testing examples. Figure 9 shows 
the results delivered by the algorithm after calculating the 
Q indicators, where the first half of the test corresponds to 
undamaged bearings and the last half represents the dam-
aged bearing situation. In addition, Table 4 gathers the main 
metrics that evaluate the algorithm performance.

These results prove the ability of the algorithm to detect 
novel measurements and also its low sensitivity to environ-
mental variability. When new long-term monitoring meas-
urements are registered, we can recalibrate the algorithm. 
However, to prove the ability of the algorithm to detect dam-
age would require the occurrence of the damage while the 
monitoring system is activated.

5  Conclusions

This work addresses the problem of structural performance 
assessment with a data-based approach as opposed to more 
traditional model-based methods. The main advantage of 
this data-driven scope lies in its expected flexibility to fit any 
type of system or structure where correlations are detected in 
the response measurements from various sensors.

Due to the characteristics of this bridge, any repair or sub-
stitution work is complicated and requires expensive inter-
ventions according to its complexity. Therefore, any action 
should be justified towards an efficient budget allocation.

With the use of the proposed method, we evaluate quan-
titatively the behavior of the structure, where we can detect 
anomalies by comparing a single damage indicator with a 
threshold value, isolating the effects from changing envi-
ronmental conditions and providing a robust performance 
statistic.

The damage indicator Q shows to be a powerful measure 
of the correlation found between displacements at different 
locations. It gathers the information from all of the consid-
ered displacement sensors and provides a global vision for 
decision-making in the management of the bridge. In addi-
tion, this statistic is isolated from the variability induced by 

(14)ub,d =
(� − x)

�
⋅ ub,u = 0.50 ⋅ ub,u,

environmental and operational phenomena during normal 
service, giving robustness to the methodology.

With the temporary representation of the new dam-
age indicators registered during a monitoring period in an 
unknown state, we detect departures from the normal condi-
tion and identify trends in the evolution of the statistic. In 
addition, once an alert is raised, the location of the damaged 
bearing can be identified just by looking at the current dis-
placement data and finding the abnormal sensor measure-
ment that is causing the loss of correlation at that moment.

The tool configuration is useful for the scheduling of 
periodic inspections as a supplement to traditional bridge 
inspections, providing a more objective approach to com-
plete the information and help managers in decision-making.

In conclusion, this study demonstrates the utility of 
exploiting and managing the available historical data stem-
ming from periodical monitoring processes to control and 
predict the evolution of the behavior of certain critical ele-
ments in structures, helping managers to prioritize mainte-
nance actions and take decisions at the network level.

Future work includes the application of this method to dif-
ferent bridges to further prove the validity of the approach. 
We also envision to replace the PCA method by a residual 
deep neural network that exploits also nonlinear correlations 
between the different sensors.
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