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ASHVIN PROJECT 
ASHVIN aims at enabling the European construction industry to significantly 

improve its productivity, while reducing cost and ensuring absolutely safe work 

conditions, by providing a proposal for a European wide digital twin standard, an 

open-source digital twin platform integrating IoT and image technologies, and a 

set of tools and demonstrated procedures to apply the platform and the standard 

proven to guarantee specified productivity, cost, and safety improvements. The 

envisioned platform will provide a digital representation of the construction 

product at hand and allow to collect real-time digital data before, during, and after 

production of the product to continuously monitor changes in the environment and 

within the production process. Based on the platform, ASHVIN will develop and 

demonstrate applications that use the digital twin data. These applications will 

allow it to fully leverage the potential of the IoT based digital twin platform to reach 

the expected impacts (better scheduling forecast by 20%; better allocation of 

resources and optimization of equipment usage; reduced number of accidents; 

reduction of construction projects). The ASHVIN solutions will overcome worker 

protection and privacy issues that come with the tracking of construction 

activities, provide means to fuse video data and sensor data, integrate geo-

monitoring data, provide multi-physics simulation methods for digital representing 

the behaviour of a product (not only its shape), provide evidence based 

engineering methods to design for productivity and safety, provide 4D simulation 

and visualization methods of construction processes, and develop a lean 

planning process supported by real-time data. All innovations will be 

demonstrated on real-world construction projects across Europe. The ASHVIN 

consortium combines strong R&I players from 9 EU member states with strong 

expertise in construction and engineering management, digital twin technology, 

IoT, and data security / privacy. 
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1 INTRODUCTION 
 

Structural health monitoring (SHM) is required in the definition of Digital Twins (DT) 

regarding surveying the condition and thus managing decisions related to the built 

environment. The first leg of any system based on SHM is data collection. However, 

appropriately embedded data-collection within existing digital twin platforms is still in 

its infancy. It is necessary to implement compatible, state-of-the-art instrumentation for 

infrastructure control within centralized platforms.  

On such a basis, sensor-, image- and remote sensor-based data need to be 

meaningfully collected and embedded within DT platforms according to specific asset 

characteristics. As a result, fully automated SHM systems can be established and then 

implemented in the construction projects. It is important to point out that different ways 

of collecting data provides generality, applicability and robustness to any SHM system. 

With that aim, this deliverable has been developed, providing the overview of state-of-

the-art SHM technologies. The focus of the document is on the specific requirements 

one needs to account when it comes to data structure, data format and its 

corresponding match with numerical methods for further analysis. The description of 

these requirements together with an overview of state-of-the-art SHM systems is the 

content of the present deliverable.  

 

1.1 STRUCTURAL HEALTH MONITORING (SHM): CONCEPT AND OBJECTIVES  

 

A SHM system is defined as both “the observation” and “the analysis” of a built asset 

over time using periodically sampled response measurements to monitor changes to 

the material and geometric properties of engineering structures such as bridges and 

buildings. 

The fundamental objective of SHM is to manage the risks and to take the appropriate 

decisions associated with an asset, including information for the assessment of the 

risks and for understanding how they might develop with time. In this sense, measuring 

and monitoring are just the initial parts of the full concept of SHM: the one related to 

data-collection. SHM comprises also the post-processing and analysis of the data to  

evaluate the performance of the asset as well as to provide the prognosis of the 

performance. 

According to the main objective of SHM systems, three aspects are worth pointing out: 

1) Design validation: to check whether the built asset behaves as planned at 

design stages. In bridges, this is usually carried out just after the completion of 

the structure via  load tests. 

 

2) Assessment of the structural performance. This is carried out along the service-

life and operation of the asset. In this case, the development of SHM 

techniques is oriented to: 

a. The identification of sensitive characteristics (damage features) to small 

levels of damage 

b. the ability to distinguish the effects in the correct performance due to 

damage, from those due to changes in the ambient and operating 
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conditions (e.g. temperature, humidity, traffic in bridges, floor 

occupancy in buildings)  

c. the development of statistical models that foster a better 

comprehension of damaged vs. undamaged configurations.  

d. the development of methods concerning the definition of the optimal 

number and position of the sensors for accurately capturing the 

behaviour of the asset and its potential damage detection. 

 

3) Improving asset management. SHM can provide more information about how 

an asset or its elements are behaving, leading to a better understanding and 

interpretation of the trends of how their physical state may change in time, so 

the optimum interventions and maintenance strategies can be developed to 

avoid future malfunctions and reduce costs due to the loss of structural 

performance (preventive maintenance).  

In this deliverable, the term SHM is understood from a wide point of view covering both, 

the gathering  of the structural response of the built asset (e.g. strains, strength, 

vibration), and the performance aspects of the asset (e.g. air quality, temperature 

comfort, energy consumption, structural safety) 

 

1.2 DIGITAL TWIN: CONCEPT, OBJECTIVES ANDMETHODS  
 

According to the National Infrastructure Commission in the UK, NIC (2017): “The digital 

twin is effectively a data representation of the infrastructure that takes real-time and 

other data into the management processes of that real-infrastructural component.” The 

Gemini Principles (CDBB 2018) define a digital twin as “a realistic digital representation 

of assets, processes or systems in the built or natural environment”. In this sense, a 

digital twin is not just a digital replica of a real/physical thing (for instance a digital photo 

or a BIM model), but “what distinguishes a digital twin from any other digital model or 

replica is its adequate real-time connection to its physical counterpart“. By “connection”, 

it is understood that there is an active relationship and association between the 

physical and digital parts. Therein lies the complexity of this concept. In addition,  the 

links between DT and SHM systems appear since , measurement, analysis and 

decisions on the asset are expected both in the physical and digital parts. 

A set of definitions for better understanding of DT in the built environment has been 

collected and identified recently (Dávila and Oyedele 2021). The Digital Twin paradigm 

originally defines an information construct that comprises the physical asset, its digital 

identical representation (a digital asset), and a data connection between them. Since 

physical-digital representations concerning the built environment are also developed, 

conceptual models including Cyber-Physical Systems and BIM are discussed by 

Dávila and Oyedele (2021).  In any case, the further step in the existing frameworks 

(as BIM) to become a  DT is the connection between the physical and the digital assets 

in nearly real time.  

Digging further on these connections, it is recognised that linking physical and digital 

assets is possible through the deployment of a series of data-collection techniques in 

the physical asset that provide the feed to the digital twin in multiform ways. Again, 

similarities between SHM and DT arise. Together with verification and predictive 

numerical capabilities, the aim is to capture the present condition and predict the future 
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performance of the physical asset, which will eventually provide enough data for an 

data-informed decision-making process. As sensing technologies (sensor-, image- or 

remote sensing based) become ubiquitous, smaller, more accurate, and more 

affordable, the ability to gather, process, and communicate the information increases. 

The human-centred interface between the two realms becomes an unprecedented way 

of intertwining both sensing and calculation capabilities.  

In the case of a structure, the physical asset goes through several phases during its 

life-cycle. The design stage, the construction stage, and finally the operational phase, 

in which the maintenance and management becomes more relevant, represent three 

separate stages in all built assets. In the operational phase, or in the context of 

structural management, a DT may comprise several parts: 

1) Structural inspection and data collection. Sensors, images and remote 

sensing techniques represent a variety of alternatives for data-collection. 

 

2) IoT services. Adequate transmission, storage and data-structures represent a 

fundamental technology. 

  

3) Data visualization in real time. A continuous understanding of the behaviour 

and characteristics of the asset. Visual monitoring and inspection in custom 

tailored human-computer interfaces.  

     

4) Simulation and analysis. From reduced to full-order, models that allow a 

continuous verification of standard structural characteristics.   

 

5) Data matching. Following standards from the industry, both simulated and 

collected data structures require interoperable formats.   

 

6) Structural integrity quantification. Advanced automated data analysis, both 

data-driven or model-based, represent state-of-the art techniques that can be 

embedded in the virtual representation of the asset.  

 

7) Performance prediction. Through complex analysis, advanced structural 

simulation models combined with deterioration models to predict future 

performance and anticipate damage location and extent.  

 

In the case of operation and maintenance (O&M) management, research aiming at 

improving efficiency of the process based on some of the abovementioned parts is 

available. However, the majority of current works focus on specific implementations or 

disaggregated data resources. Some authors provide software architecture, some 

other improved real-time emergency response. A comprehensive overview and system 

architecture as required for a DT is available (Lu et al. 2020a, Dávila and Oyedele 

2021) 

Another example of framework for DT of building and civil infrastructures is proposed 

in Zandi et al. (2019). Challenges and opportunities related to the potential use of 

drones for inspection and monitoring, data-driven models for performance assessment 

and physics-based models for performance prediction, all together and inter-

connected may derive on a living simulation platform (or DT) which updates itself after 
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each inspection run. It is worth pointing out that these disaggregated elements coincide 

with the 7 parts of the DT SHM suggested system.   

The virtualization of buildings and bridges in the last 15 years in the form of Building 

or Bridge Information Models is clearly identified as the starting point for the DT. The 

industry has erected a frame with semantically rich 3D reference standards and models 

that nowadays are enriched with time and sensor data from the DT perspective.  

It is also worth pointing out that in many cases O&M of existing structures include 

assets that have never been digitised accordingly. Digital initial information for the 

asset is partial or even non-existent (lack of design drawings, construction quality 

control not available, …). Effort is thus required to establish the Digital Birth of the 

asset. Therefore, developing a digital asset from scratch for maintenance purposes 

suggest a “beyond BIM” representation in which connections between the physical and 

the digital realms are established whenever required.  

In summary, DT are tools that can improve the understanding of performance of 

existing assets, to verify the as-built situation, run ‘what if’ simulations and scenarios, 

or provide a digital snapshot at any time. DT represent a comprehensive future regular 

SHM system. In the verge of data-driven, Artificial Intelligence (AI)-based decision-

making techniques, constructing comprehensive DT will help taking data-based 

decisions for unexpected interventions and ultimately streamline costs throughout the 

asset’s operational life. 

 

1.3 CONFLUENCE BETWEEN SHM AND DT 

 

Attending to the previous definitions, objectives and contents of SHM and DT, it 

becomes evident that a close relationship and interaction between them is 

recommendable when facing the service life management of a built asset, building or 

bridge. The question here is as follows: is this interaction feasible and achievable? 

Whether the answer is positive or not, the requirements and conditions for an efficient 

interaction deriving in the optimal data-supported decision-making process is analysed 

thoroughly the development of this deliverable. 

 

1.4 0BJECTIVES OF THE DELIVERABLE 

The main objective of this deliverable is to give an overview of the DT needs for 

structural health monitoring and control on buildings (initial imperfections, deflections 

at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, 

stresses) based on state-of-the-art image-based, remote sensing-based and sensor-

based techniques. The needs are mainly related to the structural performance, 

although other parameters are also considered in buildings such as temperature, 

energy consumption and others. This is in accordance with the two approaches mainly 

performed in the construction sector as presented in figure 1.1 (excerpted from Dávila 

and Oyedele 2021).  

One approach of this is the SHM, focusing on monitoring the behavior (globally) or 

identifying the structural faults and malfunctions (globally or locally ) in infrastructure 

assets. The second approach is on the building services monitoring devoted to 
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identifying faults in ventilation, heating, power, lighting, and water supply systems 

among others.  

 

Figure 1.1: DT monitoring process model that can be used in the construction sector for SHM and building services 
monitoring (Davila and Oyedele 2021) 

 

Therefore, state-of-the-art data-collection techniques (image-, remote-sensing and 

sensor-based) suitable for the development of DTs are presented in chapter 2. Based 

on the analysis of these techniques, requirements related to data format, data 

transmission, and data visualization are identified in chapter 3. In addition, the 

deliverable is also reporting on the state of the art in SHM systems and their 

requirements when facing a DT environment (chapter 4). Chapter 5 summarizes some 

of the implementations and SHM requirements identified in some of the ASHVIN 

demosites related to asset management and maintenance. The conclusions are 

collected in Chapter 6. 
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2 DATA COLLECTION 

 

2.1 IMAGE-BASED METHODS  

 

2.1.1 Introduction 

 

One of the most straightforward techniques in the regular inspection process is the 

visual inspection, based on the recording of damages using a digital camera. This is 

usually used as a proof and a background for decisions made by the inspector during 

the condition assessment of the structure. Since it is very simple and nowadays very 

common to take several hundreds of pictures in a single inspection of an asset, one 

could claim that an enormous database on different damages exists. If these pictures 

are systematically organised, labelled and grouped according to different types and 

scope of damages, this would potentially present a very good starting point for the 

application of artificial intelligence approaches. Furthermore, in the last decade, 

numerous research and practice efforts have been made to implement UAV 

technology to monitor and inspect infrastructure (Chan et al. 2015, Seo et al., 2018, 

Znidaric et al. 2020, Bukhsh et al. 2022). By applying drones in visual inspections the 

amount of images is increasing even further. Therefore a drone-enabled inspection 

coupled with vision-based technology has the potential to serve as a more economical 

and safe alternative to conventional inspection and monitoring practices..  

In this chapter main aspects of using digital images and videos for inspection, structural 

health monitoring and development of BIM models are explained. 

2.1.2 IMAGES 

 

Common basic processes in the application of digital images are image acquisition, 

image processing and image analysis.  

• Acquisition is a process of recording an image, usually performed with high-

resolution cameras (hand-held or with UAVs). In most cases the optimization 

and enhancement procedures related to the brightness, saturation, white 

balance, exposition, contrast etc. are performed automatically within camera.  

• Digital image processing is the preparation of digital images for image analysis. 

It is worth remembering that each pixel of the image has associated values 

(measured in numbers). Some of these properties such as pixel colour may be 

altered during this processing. 

• Image analysis is basically the numerical analysis of the processed values. 

Numerical information that characterises each pixel is evaluated. Manifold 

applications and selection of high-level understanding can be developed using 

those values.  

These information are used then for inspection and/or monitoring of structures, for 

example for damage detection and classification, displacement measurement, load 

estimation, etc.   

Main types of digital images are as follows:  
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1. Binary (1-Bit) images – each pixel is only black and white with only two values 

for each pixel which makes them easy for storage. 

2. Greyscale (8-Bit) images – each pixel is a shade of grey from 0 (black) to 255 

(white). 

3. True colour or RGB (24-Bit) - each pixel has a particular colour; that colour 

being described by the amount of red, green and blue (RGB) in a 0-255 scale. 

The resolution is the spatial scale of the image measured in pixels per unit area. For 

example, an image of 3300x2550 pixels with a resolution of 300 pixels per inch (ppi) 

would be a real world image size of 11" x 8.5". Resolution can be specified as (Solomon 

et al. 2011): 

• Spatial resolution – number of recorded pixels by defining column (C) by row 

(R) dimensions and is referred to as the pixel or digital resolution of the image 

(CxR, 640x480, 800x600, 1024x768 etc.). 

• Temporal resolution – used for videos and it presents number of images 

captured in a given time period. Unit frames per second (fps) is used to specify 

this type of resolution. The time resolution used for movies is usually 24 to 48 

frames per second (fps), whereas high-speed cameras may resolve 50 to 300 

fps, or even more. 

• Bit resolution - number of possible intensity/colour values that a pixel may have 

(binary image has two colours (black or white), a grey-scale 256 different grey 

levels ranging from black to white while for a colour image it depends on the 

colour range.  

There are several digital formats for storing raster images (set grid of dots/pixels), but 

the most common are JPEG, GIF, PNG, TIFF and RAW (Table 2.1). 

• JPEG/JPG – is a format developed by Joint Photographic Experts Group (its 

name comes from the group). It is one of the most widely used formats. Due to 

compression, blurriness appears around edges of objects in the photo. Once 

compressed in JPEG format an image cannot be uncompressed (you cannot 

regain the original quality). JPEG is best used for online photos, print photos 

and quick preview image and not applicable for layered, editable images. It is 

often referred to as “lossy”, or in which information is lost.  

• GIF – is a lossless raster format that stands for Graphics Interchange Format. 

GIF is typically used for animated graphics, email images and social media 

memes. GIFs files can be downsized by reducing the amount of colours and 

image information through exporting into a number of highly customizable 

settings. GIFs are not to be used when a photographic-quality image is needed, 

when printing is needed or when a layered, editable image is needed. 

• PNG - Portable Network Graphics is a lossless raster format and is one of the 

most common image formats used online. This format has built-in transparency, 

but can also display higher colour depths then a GIF. Since PNGs are 

optimized for the screen they are not preferred for printing or working with 

photos.   

• TIFF - Tagged Image File Format is a lossless raster with extremely high quality. 

The format is primarily used in photography and are typically very large (in 

terms of computer file size). 

• RAW - an in-camera lossless format containing unprocessed data captured by 

a digital camera or scanner’s sensor. There are numerous raw formats, such 

https://en.wikipedia.org/wiki/Frames_per_second
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as CRW (Canon), NEF (Nikon), and DNG (Adobe). Typically, images are 

processed and then converted and compressed into another format (e.g. JPEG 

or TIFF). 

Table 2.1 Common image formats and their associated properties (Solomon et al 2011.) 

Acronym Name Properties 

GIF Graphics interchange format Limited to only 256 colours (8 bit), lossless 
compression 

JPEG Joint Photographic Experts Group In most common use today, lossy compression, 
lossless variants exist 

BMP Bit map picture Basic image format, limited (generally) lossless 
compression, lossy variants exist 

PNG Portable network graphics New lossless compression format, designed to 
replace GIF 

TIF/TIFF Tagged image (file) format Highly flexible, detailed and adaptable format, 
compressed/uncompressed variants exist. 

RAW Unprocessed data in-camera lossless format 

 

Image processing and analysis is any form of signal processing for which the input is 

an image, such as a photograph or video frame. The output of image processing may 

be either an image or a set of characteristics or parameters related to an image. For 

example from geo-located images collected with the UAV and by using 

photogrammetric principles and algorithms, 3D point cloud model can be created, as 

explained in Section 2.3.   

2.1.3 COMPUTER-VISION-BASED STRUCTURAL HEALTH MONITORING 

 

Computer vision is an interdisciplinary scientific field that deals with how computers 

can gain high-level understanding from digital images or videos. Figure 2.1 shows an 

overview of use of computer vision based SHM at local and global level (Dong and 

Catbas 2020). 

 

Figure 2.1: Overview of a computer vision-based SHM framework and general topics in computer vision (Dong and 
Catbas 2020) 
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Figure 2.2: Vision-based SHM of bridges (Obiechefu and Kromanis, 2021) 

The use of computer vision to measure structural displacement is discussed 

extensively in literature since displacement is a critical indicator of a structural 

performance (Ye et al. 2016, Feng et al. 2015). The main steps of the vision based  

SHM are presented in Figure 2.2. 

Professional cameras with adequate lenses, camcorders, action cameras and 

smartphones are all suitable for accurate measurement collection (Kromanis et al. 

2019). Structural response is extracted from image frames of a bridge under loading 

using either proprietary software (e.g., Video GaugeTM (Imetrum 2020)), open source 

software (e.g., QUBDisp (Lydon et al. 2019) and DeforMonit (Kromanis and Al-

Habaibeh 2017)) or other image processing algorithms that detect and track targets in 

image frames. The cameras are placed in such a way that the anticipated structural 

responses under certain loading scenario can be measured. Generally there are two 

types of physical targets (or markers): artificial and natural targets. Natural targets are 

points on the structure which stand out from their surroundings and can easily be 

tracked. When no natural tracking points are present, one can place artificial targets 

on the structure. The advantage of using artificial targets is that the exact size and 

location can be determined by the user. The downside of artificial target is that the 

structure must be accessible to place the targets on the structure, e.g. bridge. By using 

natural targets this disadvantage can be overcome, since no access is needed. 

However, the target size needs to be known beforehand to be able to determine the 

actual displacement of the target. 

 

Figure 2.7: Examples of Artificial Markers 

Physical markers used for target localization can be replaced with virtual markers 

(feature points) that are extracted from video frames by robust feature detection 

algorithms. These virtual markers represent textures or other unique surface 

characteristics of the structure. The virtual markers can be selected and plugged into 

the framework according to the best application for each scenario, which makes the 

whole framework more adaptive (Dong et al. 2019). Static and dynamic displacements 
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can be obtained with high accuracy even by using smartphones and not expensive 

professional cameras (Kromanis et al. 2019). Also, the technique can be applied 

without the need to provide virtual markers what makes the methodology even more 

adaptive (Zhu et al. 2022). 

Feature-based video image processing can be used for various measurements such 

as dynamic response of cables in cable-stayed bridges. Deterioration of cables could 

adversely affect the performance of the entire bridge structure. In vibration-based 

methods, the tensile forces in cables are estimated from the measurements of cable 

dynamic behaviour. Cable tension estimation using vision-based techniques has been 

investigated in structural health monitoring (SHM) of cable-supported bridges in 

numerous experimental studies (Chu et al. 2021). 

A combination of cost effective cameras and available image processing algorithms 

for the derivation of structural response could become an affordable SHM system, 

which can complement regular visual inspections of structures. 

2.1.4 Digital image processing and analysis for DT applications 

Collected digital images are usually processed in the following steps and can provide 

different type of information about the analysed structure: 

• Object recognition step – recognizing the object types of structure components 

(Barrile et al. 2019), 

• Material recognition step – recognizing the material type of structure 

components (Lu 2020), 

• Damage detection and classification – recognizing type and extent of damages 

– current condition assessment → towards digital twin (Bukhsh et al. 2021). 

Image based 3D construction techniques for the retrieval of 3D structures information 

are broadly classified into two groups (Adhikari 2013): 

• 3D point clouds captured directly by terrestrial laser scanners - heavy and not 

portable (Foltz  2000) as reported in section 2.3 

• digital images or videos taken by digital cameras or camcorders - easy to use 

and portable, but the 3D information has to be estimated indirectly from multiple 

images or video frames shot under different directions 

Image based results for structure components and defects are 2D projections and 

need to be translated into 3D models. This can be done from a single image taken 

from the correct corner, but high level information is rather collected through multiple 

images.  

Figure 2.8 shows a BIM model of a bridge created based on photogrammetric data, 

technique that can be applied for developing 3D models of different types of assets.  
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a) b)  

c)  

Figure 2.8: a) Photogrammetry-based 3D point cloud, b) As-designed BIM, and c) initially segmented as-is bridge 
point cloud. (Isailovic et al. 2020) 

 

Methods for crack detection can be categorized into two main groups: patch-based 

crack detection and pixel-based crack detection. Crack detection methods can be used 

for detection of spalling and delamination in concrete structures, crack detection in 

pavement and steel structures, crack propagation monitoring etc. 

In the patch-based method the basic procedure is to recognize whether cracks exist in 

a patch. The patch can be a sliding window crossing the whole images to do an 

exhaustive search with predefined stride or can be the sub-region which is segmented 

from the original image. Within the patch, pattern recognition, template matching, or 

classifier can be implemented to recognize whether there are cracks. In this process, 

machine learning, deep learning, or matching/recognition with manual features can be 

applied. In the pixel-based method, (see Figure 2.9), the whole image is processed 

directly, and cracks are segmented from the background. At the end, a detailed crack 

shape and distribution map is obtained (Dong and Catbas 2020). 

In the case of image processing for crack detection in structural members, the main 

requirement is that clustering algorithms for pattern recognition (crack pattern and 

width) based on image processing should be fast enough for real-time crack detection. 

Different methods for crack detection using image processing techniques and Deep 

Learning Algorithms are summarized in Vijayan and  Geethalakshmi (2018). From their 

analysis, it can be concluded that some methods are fast, but lack proper accuracy, 

whereas some other methods have high accuracy but restricted by complex 

computations, which leads to low speed. For real time processing, high speed and high 

accuracy are essential at the same time. They also conclude that each method is 

suitable for detection of some specific defects. Therefore, there is no general technique 

that has yet been proposed for detecting all different types of surface defects. 
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Figure 2.9: Patch-based (first column) and pixel-based crack detection (second to fourth column) (Ni et 

al. 2019) 

 

In order to improve and automatize further visual inspections, ASHVIN aims to develop 

an automatic damage identification system using AI models, as it will be reported in 

D3.1. This will be then combined with risk based asset management models and used 

for the optimization of maintenance planning, which is part of tasks 5.2 and 5.3 

 

2.2 SENSOR-BASED METHODS 

 

2.2.1 INTRODUCTION 

 

A digital twin normally for efficient monitoring and maintenance does not have to fully 

replicate the physical model in all aspects, but just the most important and 

characteristic parameters driving the in-service performance of the built asset, which 

can be defined as KPI (Key Performance Indicators, see deliverable 5.3 related to the 

subject). Not all the outputs of the physical model are of interest and therefore do not 

have to be replicated in the digital twin, but only the outputs that are relevant to check 

possible malfunctions of the system or that are necessary for the simulation/prediction 

of future performance. It is more likely that digital twins are not identical twins and the 

notion of an exact mirror is an idealization that will never be achieved. In this sense, 

the sensoring system should provide to the digital replica the necessary input data to 

accurately derive the KPI´s of interest. Therefore, the most adequate sensors will 

depend on the built asset under consideration and the required performance 

monitoring based on the evolution of the KPI´s of interest considered for the specific 

asset. Also, different phases can be considered in the life-cycle of the building: design, 

construction and operation. As different performances are expected in each phase, 

also different KPI´s will be considered in each of them (see deliverables 2.1, 4.1 and 

5.3 ) and, therefore, different requirements for the sensors will be set depending on 
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the design, construction and operation phases. However, the following general 

requirements can be identified as general and of practical application for 

sensors in all phases of the building process in a DT environment: 

1. Connectivity to the digital twin (wireless, cable) 

2. Proximity (measurement range) 

3. Self-powered (energy requirements, harvesting) 

4. Easy of deployment (bonded, embedded) 

5. Distributed (nervous system) 

6. Digitability: the ability to become digital.  

7. Transmission speed: This will depend on the allowable lag between any 

input/output generated in the physical system and any measure of response to 

solve the problem to be provided by the DT. 

A complete description of sensors for SHM in applications in the built environment is 

available in CIRIA (2020) and COST (2019). A review on the more advanced sensors 

for application in civil engineering and buildings is available in Das et al. (2018) 

When looking into the operational and maintenance (O&M) phase of the building, in a 

review paper on the main sensor data used in bridge O&M around the world (Wu et al. 

2022), it was identified that data collected by sensors for building management are 

divided into three main groups: 

1. structural data: acceleration, and vibration (accelerometers, LVDT, GPS, 

GNSS) and strain and stress (strain gauges, vibrating wire, fibre-optic sensors 

(FBG and DOFS), pressure transducers and load cells) are the most common 

types because they are the basis for most structure analyses. Displacement 

and deflection mainly include vertical and horizontal displacement (LVDT, 

GPS) and rotation (inclinometers, tilt-meters, electro-level beams or gravity 

sensors) 

2. environment data: temperature and wind data are widely collected due to their 

close influence with structures (thermocouples, anemometers, weather 

stations). 

3. traffic data: the focus is on collecting traffic loads, especially the load of heavy 

trucks that can cause damages on the structure (FBG, weigh-in-motion 

systems) 

Taheri (2019) presents a review of the recent achievements in the field of sensors 

developed for monitoring the health of concrete infrastructures. The focus is on 

sensors developed for monitoring parameters including concrete temperature, 

humidity, pH, corrosion rate, and stress/strain. In fact, with these 5 parameters, most 

of the damages present in concrete elements can be monitored. This is because 

corrosion of the reinforcement and cracking are the main damages in structural 

concrete that highly affect their safety, durability and sustainability.  The sensors based 

on fiber optic, Bragg grating, piezoelectric, electrochemical, wireless, and self-sensing 

technologies have shown a high potential in detecting these damages (Figure 2.10). 

The main advantages and future challenges for further developing of these 

technologies is also presented in the  paper by Taheri (2019). 
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Figure 2.10. Advanced sensor technologies currently used in concrete SHM (Taheri 2019) 

 

 

2.2.2 SENSORS FOR DT APPLICATIONS 

 

All sensors have advantages and drawbacks when used in some specific monitoring 

scenarios. Therefore, a multi-sensor system can compensate for this issue. In this 

sense, it is of interest a data fusion process, combining inputs from various sensors.  

From the high number of sensors available (CIRIA 2020, COST 2019), only those more 

suited for their use on a DT framework are presented in the following. The research 

into the development of new advanced sensors is oriented to simultaneously reduce 

the power consumption and weight of the system, to resolve deployment problems, 

and to improve operation facilities and the subsequent data analysis and post-

processing. All these fields of research will derive, at the end, in better suited sensors 

to be used in a DT environment. 

 

2.2.2.1 Piezolectric sensors 

Piezoelectric materials are built from ceramic and polymers, and they present the direct 

and inverse piezoelectric effect. This is the reason these materials are often used to 

make vibration-based sensors and actuators and used as the basis for accelerometers 

and for acoustic emission sensors to detect corrosion and fatigue in concrete and 

metallic structures. 
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2.2.2.2 MEMS (Micro Electro-Mechanical Systems) 

Micro-Electro-Mechanical Systems, or MEMS, is a technology that in its most general 

form can be defined as miniaturized mechanical and electro-mechanical elements that 

are made using the techniques of microfabrication. The critical physical dimensions of 

MEMS devices can vary from below one micron on the lower end of the dimensional 

spectrum, all the way to several millimeters. 

MEMS can incorporate both micro-sensors and micro-actuators. An extremely large 

number of microsensors for almost every possible sensing modality including 

temperature, pressure, inertial forces, chemical species, magnetic fields, radiation, are 

becoming available. In particular, acceleration is easily monitored using MEMS. Based 

on the use of accelerometers, also tilt measurements can be carried out (Ha et al. 

2013). More recently, the MEMS research and development community has 

demonstrated a number of microactuators such as: microvalves for control of gas and 

liquid flows; optical switches and mirrors to redirect or modulate light beams; 

independently controlled micromirror arrays for displays, microresonators for a number 

of different applications, micropumps to develop positive fluid pressures, microflaps to 

modulate airstreams on airfoils, as well as many others. With MEMS, it is now possible 

to create microsensors for the detection of mechanical quantities like pressure, 

vibration, acceleration, etc. that include signal conditioning and data samplers that can 

easily communicate with data acquisition and storage systems. In this scenario, for 

their cheap cost and their always increasing performances, MEMS based transducers 

are very interesting as they can significantly extend the range of applications of 

embedded sensors when compared to conventional ones. 

An important advantage of MEMS is their ability to easily connect to a wireless sensor 

network (see chapter 4.1.1). MEMS consist of the integration of different types of 

sensors and are used to measure acceleration, angular velocity (gyroscopes), 

displacement, and deformation. Villacorta et al. (2021) presented the design, 

development and testing of a low-cost SHM system based on MEMS tri-axial 

accelerometers. The sensing element in MEMS accelerometers is comprised of a 

micro-machined proof mass that is suspended between two parallel plates. As the 

proof mass moves when acceleration is applied, one air gap decreases and the other 

gap increases creating a change in capacitance proportional to acceleration. In their 

work they compare the accuracy of MEMS accelerometers with traditional piezoelectric 

accelerometers showing the good performance of MEMS devices at a cost 10 times 

lower. 

 

2.2.2.3 Fiber optics 

Modern monitoring technologies aim at tackling the limitations of standard sensors, 

thus boosting the sensors’ precision, automation, and data management speed. In 

particular, optical fiber sensors (OFS) are dielectric devices used to confine and guide 

light consisting of several layers: fiber core, cladding and coating (Figure 2.11) For 

protecting the fragile glass fiber against incidental mechanical damage and to enable 

appropriate manipulation a protective primary coating is applied directly in the 

production process (usually with an external diameter of 250 μm). Depending on the 

final application of the optical fiber, different numbers and types of additional protective 
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jackets are used to ensure the mechanical and chemical resistance of the fiber when 

deployed in harsh environments. 

 

 

Figure 2.11: 3D illustration of a optical fiber cross-section 

 

The majority of optical fibers used in sensing applications have silica (SiO2) glass 

cores and claddings. The refractive index of the cladding is lower than that of the core 

to satisfy the condition of Snell’s law for total internal reflection and thus confine the 

propagation of the light along the fiber core only. The constituting material of the 

cladding, usually made of polymeric material or nylon, can vary in diametrical size, 

shape and manufacturing process. 

The technology behind the OFS-powered strain sensing has recently upped its 

performance in terms of accuracy, spatial resolution, resistance and in number of 

possible applications, consequently increasing their potential use in several fields, 

particulalry in civil engineering (Barrias and Casas 2016, Bado and Casas 2021). 

The increased popularity for SHM applications can be attributed to the following OFS 

features: 

• Small diameter and minimal stiffness allow for very high degrees of 

deployment configuration complexity, no matter if these imply 

circumferential surfaces, sharp corners, surface irregularities and more. 

It is even possible to embed them inside structural elements with a 

minimal level of intrusiveness. 

• Ease of deployment by simply applying an adhesive over it. 

• Their monitoring length is very flexible and can vary from halves of 

millimeter to tens of kilometers 

• Immunity to Electro-Magnetic Interference (EMI) 

• They are designed with a long lifetime cycle in mind, as its main 

component, silica, is highly resistant to corrosion and can withstand high 

tensile loading 

• Silica core OFS are highly resistant to temperature and can measure 

temperatures from -200°C to 800°C. 
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2.2.2.3.1 Discrete sensors 

Standard FBG 

Up to now, the great majority of photonic sensing technology employed in SHM is 

consists of discrete sensors such as Fiber Bragg Gratings (FBG). These are quasi-

distributed optical fiber sensors in which a characteristic wavelength is used to 

simultaneously provide its address in the sensor network, and the measurement 

(temperature and strains).  

It can be easily argued that the most crucial limitation of discrete sensors lies in their 

non-distributed nature. This shortcoming is quite critical in the context of SHM as it 

prevents the possibility of precisely pointing out the location where a potential damage 

first occurs and prevents the linking of local damage mechanisms to the global 

condition of the structure. This is also the problem of OFS of the discrete type. A first 

solution to this problem is the multiplexing, which consists of the application of several 

FBG within the same Optical fiber. This allows to monitor a profile consisting of  several 

points of measurement. However, even with the multiplexing, the achieved spatial 

resolution is not high. Therefore, the final solution is using OFS measuring system in 

a distributed way as described later on. 

 

FBG-based ultrasonic sensors 

In normal operation, FBG can detect temperature and strain. However, they also can 

detect ultrasonic signals if the sensor head and the corresponding demodulation 

system are properly designed. A FBG is barely sensitive to the ultrasonic wave when 

the ultrasonic wavelength is smaller than the grating length. Thus, the FBG sensor 

should be sufficiently short to fully receive all frequency information in a Lamb wave. 

As a result, there is a conflict between the sensitivity and the bandwidth when a 

conventional FBG sensor is used for ultrasonic detection. To solve this issue and 

increase the sensitivity of the FBG to ultrasonic signals a special FBG was developed. 

A Phase-Shifted FBG (PSFBG), which is a special type of FBG, has unique 

characteristics in ultrasonic detection. Its manufacturing process is similar to that of 

normal FBG, except that a π phase-shift is inserted in the middle of the grating area. 

The spectrum of a PSFBG has the same grating length, grating period, and refractive 

index as the uniform FBG. However, the slope in the valley of the PSFBG spectrum is 

steep and the full width at half maximum (FWHM) of the valley is narrow. These 

characteristics are beneficial not only for static measurements but also for ultrasonic 

detection. First, the ultrasonic sensitivity can be better than that of a uniform FBG due 

to its steep slope at the central peak (or valley) of the spectrum. Furthermore, a PSFBG 

confines its light field to the phase-shifted area and its effective length could be very 

short, thereby allowing it to detect ultrasonic signals up to the megahertz range (Wu et 

al. 2018, Rosenthal et al. 2011) 

 

2.2.2.3.2 Distributed sensors 

Distributed Optical Fiber Sensors (DOFS) are also mainly used for strain and 

temperature measurements. Their fundamental capability is to measure mechanical 

and temperature-variation induced strains along a fiber’s length by means of light back-

scattering occurring whenever the photons of the emitted light interact with the physical 

medium through which it travels (the fiber’s core itself).  
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A comprehensive review of the use of DOFS in structures and the built environment is 

available in Barrias et al. (2016) comprising the applications until 2016 and further in 

Bado and Casas (2021), where the realizations in the period 2016 to 2021 are 

presented. 

Different backscattering technologies are available for measurement of strain, 

temperature, and sound (through the so-called Distributed Acoustic Sensing (DAS) 

with a wide range of sensing ranges from some meters up to some kilometers and 

spatial resolution (Table 2.3).  

 

Table 2.3: Performance differences between the various DOFS sensing techniques (Barrias et al. 2016) 

 

Sensing 
Technology 

Transducer 
type 

Sensing 
range 

Spatial 
Resolution 

Main object of 
measurement 

Raman OTDR Distributed 
1 km 
37 km 

1 cm 
17 m 

Temperature 

Brillouin BOTDR Distributed 20-50 km ≈1 m 

Temperature and 
Strains 

Brillouin BOTDA Distributed 150-200 km 
2 cm (2 km) 
2m (150 
km) 

Temperature and 
Strains 

Rayleigh 
OFDR/DAS 

Distributed 50-70 m ≈1 mm 

Temperature, 
Strains and 
Vibration 

FBG (multiplexed) Quasi-distributed ≈100 channels 
2 mm 
(Bragg 
length) 

Temperature and 
Strains and 
displacement 

 

 

The lack of sufficient monitoring points along a fiber deployment (spatial resolution) is 

an issue entirely surpassed by DOFS (Figure 2.12a). As a matter of fact, the latest 

model of DOFS sampling Optical Backscatter Reflectometer (OBR) Interrogator 

machines (Figure 2.12b) can monitor strains with a spatial resolution of 0.63 mm with 

an accuracy of 1 microstrain. The sampling rate is relatively low, what makes them not 

well suited for high frequency measurements.    
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(a)                               (b) 

  
Figure 2.12: (a) DOFS fiber and (b) ODiSI-6000 model OBR interrogator manufactured by LUNA Technologies 

 

The distributed nature of such fibers enables the mapping of temperature, strain and 

vibration distributions in two or even three dimensions (achievable with a DOFS mesh 

deployment as presented in Rodríguez et al. (2019 a,b) and their identification at any 

point along a fiber, henceforth allowing capturing a clear picture of the global behavior 

of a structure rather than reporting the tensile state of a limited number of points. 

Berrocal et al. (2021) investigates the suitability of DOFS for the assessment of 

performance requirements, namely, deflections and cracking (including crack width 

measurements), in RC structures. In addition, they devised a post-processing 

procedure to show that intuitive contour plots of the beam’s crack pattern can be 

generated based on the strain measurements of DOFS deployed at different beam 

heights. 

 

In distributed acoustic sensing (DAS) an optical fiber is transformed into an array of 

thousands of “virtual microphones.” DAS technology is based on Rayleigh 

backscattering phenomenon occurring of DFOS. Using appropriate interrogation 

schemes and analyses, the dynamic functionality of DOFS can transform a 

conventional fiber into a kilometers-long array of “virtual sensors” (or “virtual 

microphones”) that can detect and locate acoustical signals and vibrations along its 

entire length. Distributed acoustic sensing (DAS) is a technology that utilizes the 

phenomenon that the phase of the Rayleigh backscattered light in the optical fiber is 

highly sensitive to the external acoustic signals and mechanical vibrations. The 

external dynamic perturbations can be quantified and located as a function of distance 

along the whole optical fiber through appropriate interrogation schemes. Thanks to the 

continuous optimization of the performance, state-of-the-art DAS systems are capable 

of quantifying and locating perturbations with a distance resolution down to meter scale 

over a distance of tens of kilometers (Gabai and Eyal 2016). DAS transforms an optical 

fiber into a distributed array of acoustic sensors, which is an analog to the microphone 

array or antenna array, and the array signal processing (ASP) methods developed in 

these fields can be used for DAS.  
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Jiajing et al. (2019) establish a new method for a DAS system with the capability of 

two-dimensional (2D) and three-dimensional (3D) acoustic source localization. This 

facilitates new areas of applications such as location and identification for static, 

dynamic and multiple targets in air or water. 

Phase-sensitive optical time-domain reflectometry (𝜙-OTDR) based on coherent 

detection is one of the most widely used schemes to achieve fiber distributed acoustic 

sensing. By using this technology, a linear response of the vibration intensity is realized 

with a long measurement range of about 30 km, 3-to-10-meter spatial resolution and 

a 3 kS/s sampling rate to the vibration signals (Yang et al. 2016). The accuracy is of 

the order of 0.1 microstrain 

 

2.2.2.4 Electromagnetic sensors 

Gkantou et al. (2019) showcased the possibility of applying novel microwave sensors 

for crack detection in reinforced concrete structures. The microwave measurements 

were analyzed and compared with those from crack width gauges. A strong linear 

relationship between crack propagation and electromagnetic signal across the full 

captured spectrum was found, demonstrating the technique’s capability and its 

potential for further research, offering a reliable, low-cost option for SHM and DT 

capabilities. 

 

2.2.2.5 Accelerometers 

Accelerometer is a type of sensor widely used in the monitoring of the built environment 

(buildings, bridges, dams) under dynamic action. This is due to its easy deployment in 

existing structures. Different principles can be used to manufacture acceleration 

sensors. There are different accelerometer types based on piezoelectric materials, in 

MEMS and in fiber optics. The most widely used have traditionally been the 

piezoelectric crystal ones, which are highly accurate and sensitive. However, these 

accelerometers are expensive, potentially reducing their availability for tests with large 

set-ups. Besides, their high economic value also limits the possibility of using them just 

for a short test period, and they can rarely be used for continuous real-time 

measurements. In the last decade, new digital acceleration sensors based on the Micro 

Electro-Mechanical Systems (MEMS) technology were applied to structural health 

monitoring with promising results. These MEMS digital accelerometers provide similar 

measurement to traditional devices, but at a much lower price, reduced size, and good 

performance (Villacorta et al. 2021). 

For the measurement of acceleration in built infrastructure, the minimum required 

sampling resolution is at least 16 bits with a sampling frequency of 100 Hz. 

Innovative use of accelerometers in SHM that may have a relevant application in digital 

twinning of bridges is under investigation. Normally, sensors are attached to the 

surface or embedded into the structure and, therefore, placed on a fixed location. 

However, for bridges, the use of monitoring by sensors mounted on vehicles has been 

already researched and is likely to increase. These take measurements of deflection 

and/or acceleration of the vehicle as it passes over the bridges or pavements.  Such 

acceleration records can give a more comprehensive view than from sensors set in a 

few fixed locations on the asset. In recent years, the possibility of monitoring bridges 

by indirectly sensing relevant parameters from traveling vehicles has emerged as an 
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approach that would allow for the elimination of the costly installation of sensors and 

monitoring campaigns. This methodology, known as drive-by monitoring is very 

attractive because of the enhanced opportunities of application of dynamic tests as a 

tool for periodic inspections while significantly mitigating their impact on the traffic flow. 

The instrumented vehicle acts as a dynamic measurement device for monitoring and 

provides valuable information on the structural response of the bridge at a low-cost. 

Vibration data gathered by sensors mounted on cars might represent a valuable 

alternative to get the modal characteristics of bridges by standard fixed sensors. 

Moreover, these indirect methods have the potential of opening the way to new 

frontiers of dynamic identification, since they well fit the basic features of the crowd-

sensing.  Based on current trends in the field of automotive, more and more vehicles 

are indeed equipped with sensors, such as accelerometers, which could potentially 

yield huge amounts of vibration data. The studies developed so far confirmed that only 

at low vehicle speeds it is possible to achieve adequate frequency resolution for the 

estimation with sufficient accuracy of the first vibration frequency of a bridge 

(Siringoringo and Fujino 2012). To obtain longer vibration records and therefore 

increase the accuracy and resolution, a possibility is to obtain indirect measurements 

of the vibration response of the tested bridge by means of instrumented vehicles at 

rest on the bridge itself. These sensors-equipped vehicles at rest on the tested bridge 

might be the cars used by bridge inspectors for the periodic in-situ checks. This 

approach allows the collection of sufficiently long records while making the execution 

of OMA (operational modal analysis) tests faster by skipping the sensor installation 

phase. In addition, the mobility of the vehicle can be exploited to perform multiple tests 

on different bridges of the network in a relatively short time, thus reducing the costs 

associated to traffic control and limitation (Ercolessi et al. 2021). The vibration in the 

passing vehicle is monitored and therefore, the vehicle is used as a moving sensor 

that can gather data from a large number of bridges in a short period of time, 

overcoming the cumbersome operations of sensor deployment. The methodology 

requires the preliminary characterization of the dynamic properties of the vehicle 

(calibration) and sensors characterized by high dynamic range to resolve with 

adequate accuracy the dominant response of the instrumented vehicle as well as the 

(typically low amplitude) response of the bridge. The use of this technique for damage 

detection in bridges is further detailed in section 4.2.2. 

Gkoumas et al. (2021) discusses the needs for using CCAM (cooperative, connected, 

and automated mobility) in the drive-by monitoring of transport infrastructure. CCAM 

should be considered for the future development of iSHM (indirect structural health 

monitoring) strategies. The study identifies that additional research is necessary for 

better identification of structural deficiencies through drive-by monitoring. This includes 

a better understanding of the influence of the road roughness profile, the bridge length 

and type, the interacting vehicle load and geometry, the vehicle speed, the interaction 

time between the vehicle and the bridge, the temperature, and other environmental 

effects  

 

2.2.2.6 Self-Sensing and smart materials  

A self-sensing material exhibits a measurable property change in response to external 

stimuli. These materials can intrinsically report on their health or condition in a spatially 

distributed way. They also need less hardware and equipment than the standard 
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sensing technologies. In most cases, the response to external actions (load, 

deformation) is based on the piezoresistive effect. They present a change in electrical 

resistivity upon deformation or pressure (Tallman and Smyl 2020). Therefore, in theory, 

every point in the material becomes a sensor. However, it is not feasible to deploy 

electrodes to measure conductivity changes at every point on a structure. Some 

materials exhibit the piezoresistive effect by themselves, but others that do not exhibit 

piezo-resistivity can be converted into self-sensing materials by adding an additional 

constituent. In this case, electrical transport is a consequence of percolation. The 

composite conducts electricity when sufficiently many conductive fillers have been 

added to form an electrically connected network. 

In the built environment, self-sensing concrete is a field of increasing research. In self-

sensing concrete, a transducer is used to both actuate and sense simultaneously. 

Materials with intrinsic sensing properties, such as carbon nanofibers (CNF), carbon 

nanotube (CNT), semi-conductive or conductive nanoparticles are mixed into concrete, 

forming concrete-based piezoelectric composites. The concept of self-sensing 

concrete is based on piezo-resistivity principle and changes in the volume of electrical 

resistivity of electrically conductive concrete. Concrete is mixed with carbon fiber, 

which comprises as much as 0.2% to 0.5% of the volume. This can detect changes in 

stress or strain in concrete structures before they fail. It works by adding a small 

quantity of short carbon fiber to concrete with a conventional concrete mixer to modify 

the electrical resistance of the concrete in response to strain or stress. As a result, the 

contact between the fiber and cement matrix is impacted when the concrete is 

deformed or stressed, thereby affecting the volume electrical resistivity of the concrete. 

The strain is then determined by measuring the degree of electrical resistance.  

At the present time, the methodologies of converting the profile of electrical resistivity 

into mechanical parameters (change in strain or stress) are still not completely 

developed and many challenges should be still solved to achieve a reliable inverse 

analysis tool. However, in the case of concrete, the presence of cracks breaks the 

conductivity of the network and therefore increases the resistivity of the concrete. 

Smart concrete is capable of sensing very small structural flaws and hence finds 

application in checking the internal condition of structures. In addition, smart concrete 

also helps to arrest the progress of cracks, reinforcing them to make them stronger. 

Further, it takes a lot of force for smart concrete to bend, and it can accept more energy 

before fracture. Smart concrete can also find application in building highways able to 

detect the position, weight, and speed of vehicles. 

Castañeda et al. (2021) presents a multipurpose study that includes the 

characterization of cementitious composites with inclusions of CNTs (carbon 

nanotubes), different test procedures, and a proof-of-concept demonstration in a 

simply supported reinforced concrete beam of the suitability of these types of sensors 

for strain-based SHM. The novelty focuses on the effective integration of the self-

sensing concrete sensors in a structural member and in using information from them 

for damage detection based on strain, demonstrating their suitability for future practical 

SHM applications. 

Environmental conditions and chemicals also affect the accuracy of the output of self-

sensing concrete (Alonso and Puentes 2020). 

In the same category of self-sensing and smart materials are included the textile-

reinforced concrete (TRC). In TRC, multi-axial textile fabrics are used in combination 
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with high-strength fine grained concrete. Typically, a TRC substrate consists of a 

matrix with a maximum aggregate grain size between 1 and 2 mm and high-

performance continuous multifilament made of carbon, or polymer. The main 

advantages of TRC are its high tensile strength and flexible ductile behavior, which 

enables relatively thin-structured concrete elements. Due to the fabrication process of 

the textile, made of rovings, which contain several hundred to several thousand 

individual filaments of roughly 5–25 µm in diameter, it is relatively easy to embed 

distributed optical fibers within the grid, thus performing a reinforcement grid into 

the concrete able to measure strain in several specified directions.  Different 

techniques are available for the automatic incorporation of optical fibers into textile-

based reinforcement structures (Alwis et al. 2021).  

Krzywon et al. (2016) presents a self-monitoring strengthening system based on 

carbon fibers. The textile obtained by deploying the fibers in 2 directions is able not 

only to strengthen concrete structures when bonded externally to the surface, but also, 

to self-monitoring their strain. The carbon fibers play the role of not only tensile 

reinforcement but also strain sensor. However, the same authors have shown that the 

strain measurement with carbon fibers is very sensitive to temperature changes, and, 

therefore, applications of this method in practice require temperature compensation 

(Górski et al. 2018). 

 

2.2.2.7 Corrosion sensors 

Corrosion of the embedded reinforcement is the most common deterioration in 

reinforced concrete structures and is also jointly with fatigue a main stressor in steel 

structures. For this reason, corrosion sensors deserve a top position in the ranking of 

most used sensors in the built environment. In a corroding concrete element, the 

corrosion rate can be determined directly or indirectly by monitoring factors such as 

concrete humidity, chloride content, pH value, concrete resistivity, or the depth of 

chloride ion penetration into the concrete. A complete description of sensors for the 

monitoring of these parameters related to corrosion in concrete structures can be found 

in Taheri (2019). 

Optic sensors have been also developed for corrosion monitoring. Apart from 

measuring pH and chloride concentration, optical fiber sensors can also monitor 

corrosion through the measurement of strain, temperature or change in the refractive 

index of the fibers. The sensors based on measurement of strain and temperature 

have a longer life than the sensors based on measurement of refractive index, 

concentration of chloride ions, and pH. However, the sensors with a short life may have 

a high sensitivity to corrosion at an early stage. 

Initially, FBG have been used for corrosion detection based on the change in the 

fluorescence intensity of the sensor with the change in pH and also  in the change of 

strain due to the corrosion (Das et al. 2018). However, not only FBG are available for 

discrete monitoring of corrosion effects. Fan and Bao (2021) presents a 

comprehensive review of representative types of fiber optic sensors for monitoring 

corrosion in reinforced concrete. The reviewed types of sensors include grating 

sensors, interferometer sensors, distributed sensors, and reflectometer sensors. Most 

of the FBG-based sensors have been checked in laboratory environment and therefore, 

there is still a need to further investigate their performance in the reinforced concrete 

under real conditions.  
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Long period grating (LPG) sensors are sensitive to the refractive index of the 

surrounding medium (not only of core and cladding) or environment, enabling 

monitoring of corrosion. LPG is sensitive to multiple variables such as strain and 

temperature in addition to refractive index, therefore multiple sensors are needed for 

compensation of strain and temperature changes. Besides, LPG is sensitive to 

bending, which therefore should be avoided in the application of LPG sensors. 

Regarding the most suitable OF corrosion sensor for a specific application, it should 

be pointed out that most of the developed sensors are only suitable for the corrosion 

propagation stage. The LPG sensor that measures the chloride concentration and the 

spectrometer that measures the chloride concentration or pH are suitable to monitor 

corrosion in the initiation and the onset stage, although they are inapplicable in the 

corrosion propagation stage. 

DOFS have been also used to develop corrosion sensors. Fan et al. (2020) built up a 

helix pattern made with DOFS deployed around the steel bar to measure expansive 

strains generated by corrosion of the steel bar (Figure 2.13). The strain measured from 

the sensor was utilized to evaluate the volume of the corrosion products surrounding 

the steel bars, the mass loss in the reinforcement due to corrosion and predict the 

cracking of the concrete cover. 

 

Figure 2.13: Reinforced concrete beams: (a) before concrete casting; (b) after the accelerated corrosion test (Fan 
et al. 2020) 

 

Abbas et al. (2015) presents a sensor for measuring the chloride ions in concrete 

structures using a wireless system. A reliable and continuous measurement of chloride 

ions is achieved by embedding a sensor (Ag/AgCl electrode) inside concrete 

measuring wirelessly its half-cell potential. The sensor does not need external power. 

Zhou et al (2017) presents a similar self-powered and wireless sensor for monitoring 

chloride ions. The measurement results indicate that the proposed passive sensor can 

achieve a reliable communication distance of 16.3m and can reliably measure the 

chloride ion concentration in concrete. 

2.2.2.8 Acoustic emission sensors 

The dynamic perturbation caused by sudden growth in defects, e.g. fatigue crack 

growth, releases elastic waves, which are converted by Acoustic Emission (AE) 

sensors attached on the structure surface to electrical signal. AE technique has been 

studied for assessing damage progression and localization in concrete and metallic 

structures. Acoustic emission sensors can be deployed in metallic, concrete, and 

composite materials (Saravanakumar et al. 2021). The sensors used in AE are usually 

of piezoelectric type, but also optical fibers in the form of FBG can be deployed when 

ultrasonic signals are of interest. Fiber-based distributed acoustic sensors (DAS) are 

another sensor suitable technique for acoustic emission monitoring. The required 

frequency of AE detection may reach megahertz. Furthermore, real-time detection is 
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needed in these sensors since the AE signals cannot be repeated. In this sense, DAS 

face resolution and sensitivity issues in acoustic emission when signals have high 

frequencies. On the other hand, AE detection using FBG has become more realistic 

after the emergence of the PSFBG-based ultrasonic sensor (Wu et al. 2018). 

Thirumalaiselvi and Sasmal (2021) uses unsupervised (k-means clustering) and 

supervised (support vector machines (SVM)) pattern recognition algorithms to classify 

the AE signal dataset recorded at different damage stages. The study found that SVM 

can effectively classify two types of AE sources appropriately, enabling the potential 

application of AE technique for initiation of cracking and its progression. The proposed 

pattern recognition supported acoustic emission-based methodology can distinguish 

between cracks that are new from cracks that are growing. Therefore, the method can 

be very effective in condition monitoring of in-service structures where the information 

of the health of the structure can be automatically and continuously assessed through 

the emitted acoustic signals from formation of micro-cracks.  

Olaszek et al. (2016)  and Tonelli et al. (2020) have shown the successful application 

of this technique in detecting damage and the occurrence of cracking to the case of a 

prestressed concrete bridge and a prestressed concrete beam extracted from an 

existing viaduct, both loaded up to failure. 

A main problem in the acoustic emission technology is the low SNR (signal to noise 

ratio), which is enhanced by the length of the coaxial cables traditionally used by AE 

instrumentation. To overcome this situation, the idea is to closely locate the sensor 

and a signal amplifier, providing a new capability to process signals in close proximity 

to AE transducers at the inspected facility and also creating low-cost and low-weight 

sensor nodes (Bogomolov et al. 2021). 

Monitoring the structures in service using AE can be long-term, and the amount of data 

obtained and handling it is another subject of consideration. Alver et al. (2021) present 

some of the methods and strategies to overcome this problem. As the data rate of AE 

method can be significant and the method requires real time data collection in 24/7 

from multi-channel systems, it is important to develop effective methods to handle big 

data and interpret the results in a timely manner. The data size can be reduced by 

applying principal component analysis. The industrial Internet of Things (IIoT) provides 

a way to address big data issue in SHM. IIoT in AE integrates sensor output with real-

time edge processing algorithms that make faster decision making without transferring 

data to the base station (Asif et al. 2020) 

 

2.2.2.9 Sensing Sheets   

Yao and Glisic (2015) present the sensor technologies based on Large Area 

Electronics (LAE) which enable direct sensing and can be scaled to the level required 

for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing 

sheets based on LAE contain dense arrangements of thin-film sensors, associated 

electronics and various control circuits deposited and integrated on a flexible polyimide 

substrate that can cover large areas of structures. The sensors that can be 

incorporated in the sheet are strain, pressure, temperature and humidity sensors. The 

piezoelectric elements are the most used strain sensors. The strain sensing can be 

considered as a two-dimensional (2D) quasi-distributed sensor. 
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Loupos et al. (2017) show the development of a dielectric-elastomer and micro-

electronics-based skin-like sensing that may offer spatial sensing of reversible 

(repeated) strains in the range of 0.012% to more than 10%, that requires little power 

to operate, is easy to install on an irregular surface, is low cost compared to existing 

sensors, allows simple signal processing, and includes the ability of self-monitoring 

and self-reporting. The system is integrated on a fully distributed and autonomous 

wireless sensor network that can self-monitor. 

 

2.2.2.10 Smartphones  

Smartphones can provide crowd-sensing data. They may include several sensors as 

accelerometer, gyroscope, cameras, microphones, proximity sensors and GPS, which 

could be used in the monitoring of different structural parameters (Mei and Gül 2019, 

Morgenthal et al. 2018). Several studies have shown that smartphones could be used 

as reliable sensors to collect acceleration data and apply them into indirect health 

monitoring techniques to assess structural condition (Feng M. et al. 2015). In the case 

of the application to bridge drive-by monitoring, the conclusion is that the recorded 

vibration of the vehicle is highly dominated by vehicle characteristics, such as 

suspension, mass, and speed. Shirzad-Ghaleroudkhani et al. (2020) used a 

smartphone to detect multiple damage states on a lab-scale bridge model. They 

showed that the damage and boundary conditions in the bridge model could be 

identified using the smartphone on a car model even if the speed, weight, and 

suspension of the car were varied between experiments. It was demonstrated how by 

using a large set of passing cars with different features, the fundamental frequency of 

the bridge was captured. To collect the acceleration from the car, one smartphone, a 

Samsung Galaxy S8 (Samsung Electronics, Seoul, South Korea), with a sampling 

frequency of 400 Hz was used as seen in Figure 2.14.  

 

 

 

(a) 



D5.1 SHM Digital Twin Requirements 

 

  

 35 

 
 

 

(b) 

 

Figure.2.14: a) View of the smartphone on the vehicle. b) the car passing the scale bridge (Shirzad-
Ghaleroudkhani et al. 2020) 

 

Morgenthal et al. (2018) used a microcontroller-based system and smartphone 

systems to measure vibrations on stays of cable-stayed bridges and identify 

frequencies sufficiently accurately even under ambient wind excitations. They 

concluded that the best system to obtain highly accurate force measurements is the 

RPi microcomputer (an external single-board computer called Raspberry Pi (RPi; 

Raspberry Pi Foundation, Cambridge, U.K.)) connected with an external sensor and 

the smartphone acting as a central control unit. 

The first challenge on using mobile phone sensing is the large-scale of devices within 

the structure, resulting in a huge amount of data traffic, which may overwhelm the 

network resources. Therefore, some techniques must be employed to reduce the 

amount of data traffic. This can be achieved by local data aggregation and processing 

on mobile devices and smart phones. The second challenge is the data accuracy. 

Mobile devices and smart phones are equipped with different types of sensors from 

different manufacturers; hence, sensors vary significantly in their sensitivity and noise. 

Thus, there is a need to improve data accuracy by identifying devices that are likely to 

produce accurate sensed data, performing global centralized data aggregation, and 

considering the spatio-temporal mobility patterns of the users. 

 

2.2.3 DATA LOGGERS 

A data logger is an electronic device that records data over time either with a built in 

instrument or sensor or via external instruments and sensors. They are based on a 

digital processor (or computer) and called digital data loggers (DDL). In general, they 

are small, battery-powered, portable, and equipped with a microprocessor, internal 

memory for data storage, and sensors. Some data loggers interface with a personal 

computer, and use software to activate the data logger to view and analyze the 

collected data, while others have a local interface device and can be used as a stand-

alone device. 

One of the primary benefits of using data loggers is the ability to continuously collect 

data on a 24-hour basis. Upon activation, data loggers are typically deployed and left 

unattended to measure and record information for the duration of the monitoring period. 

Data logging and data acquisition are different concepts. A data logger is a data 

acquisition system, but a data acquisition system is not necessarily a data logger. Data 
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loggers typically have slower sample rates. A maximum sample rate of 1 Hz may be 

considered to be very fast for a data logger. Data loggers are implicitly stand-alone 

devices. The unattended and remote nature of many data logger applications implies 

the need in some applications to operate from a DC power source. This unattended 

nature also dictates that data loggers must be extremely reliable since they may 

operate for long periods nonstop with little or no human supervision and may be 

installed in harsh or remote locations. The original model of a stand-alone data logger 

is changing to one of a device that collects data but also has access to wireless 

communications for alarming of events, automatic reporting of data and remote control. 

Data loggers are beginning to serve web pages for current readings, e-mail their 

alarms and FTP their daily results into databases or direct to the users. 

The monitoring frequency, type of sensor, and the method to retrieve data will lead to 

the selection of a suitable data-logger and telemetry system. 

 

2.3 REMOTE SENSING TECHNOLOGIES 

 

2.3.1 INTRODUCTION 

 

Remote sensing is the process of acquiring the physical characteristics of an asset by 

measuring properties by means of reflected and emitted radiations from a distance. 

This principle has been understood from many measuring perspectives. Laser, 

acoustic, thermal, or optic emissions allow collecting a wide variety of physical 

characteristics. Position, velocity, temperature, or variation of elastic properties 

throughout a medium represent some of the potential inferred representations of the 

asset. Typically, satellites, aircrafts or other ground base stations are provided with 

special data-gathering devices for collecting remotely manifold information. This helps 

researchers "sense" things about nature and/or the built environment from a certain 

distance. Some examples are: 

 

• Space or shuttle cameras on satellites and airplanes take images of large areas 

on the Earth's surface. These images allow covering wide regions and allow 

gathering meaningful information at such levels. These images can be used for 

detecting many alterations on the ground’s Earth, i.e., subsidence.  

 

• Radio waves. With applications ranging from astronomy to communication, by 

studying the radio waves originating from many sources, one can learn about 

the target composition, structure, and motion. 

 

• Sonar systems techniques are used to detect the scour profile in piers of 

bridges founded in rivers or in quays of harbors. Ships generate acoustic 

emissions that can be used to create images of the ocean floor without needing 

to travel to the bottom of the ocean.  

 

• High-definition surveying (HDS), or “laser scanning,” is often used to capture a 

highly detailed 3D image of natural landslides or assets belonging to the built 

environment.  
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• Electromagnetic radiations are emitted by radars as geophysical methods to 

image the subsurface. Non-intrusive method of surveying the sub-surface allow 

investigating underground utilities such as concrete, asphalt, metals, pipes, 

cables, or masonry.  

 

It is worth pointing out that these techniques are of a great versatility for condition 

monitoring and survey. Maintenance strategies often rely on such technologies. In 

most cases, these technologies are cost-effective since it is possible to gather a larger 

amount of data than from sensors located at specific positions. However, their 

automated integration within BIM environments and subsequently within Digital Twins 

is yet to come. In the following subsections, a review on the use of such technologies 

in the realm of maintenance of assets of the built environment are discussed together 

with examples presented in the academic literature.  

 

2.3.2 POINT CLOUD 

 

Three-dimensional scanning is a technique used to analyze and capture the shape of 

a real-world 3D objects. The result is a computer-readable 3D collection of  points, 

which can be saved, edited, and even 3D-printed. Nowadays, the increasing need for 

continuous inspections of existing infrastructure and the advent of the digital twin era 

require the development of improved non-invasive data acquisition techniques. Born 

in the field of geomatics, the use of terrestrial laser scanners and photogrammetry 

provide dense and accurate geometric information in the form of point clouds. A point 

cloud is an unstructured and unordered collection of 3 dimensional points in a 

coordinate frame of reference (x,y,z) which normally represent the external surface of 

an object. Depending on the 3D scanning device, points include additional information 

as colour (RGB) or intensity information. Point clouds are increasingly being applied in 

multiple fields within the construction industry, including geometric inspection, 3D 

models generation, and structural health monitoring (Wang and Kim 2019).   

 

2.3.2.1 Laser Scanners 

Laser scanners, also referred as LiDAR (Light Detection And Ranging) are devices 

that emit narrow, intense beams of coherent monochromatic light for measuring 

distances to objects. Measurements recorded with laser scanners are generally based 

in two principles: Time-of-flight and Phase-shift. Scanners using time-of-flight (ToF) 

principle emit light pulses that are reflected back by objects into the measurement 

device (Lemmens 2011). Distance is calculated by multiplying the travel time by the 

speed of light divided by 2. Scanners using phase-shift (PS) principle continuously emit 

sine-modulated waves. The phase of the emitted wave is compared with the phase of 

the wave received back, and the distance is calculated from the phase difference. 

The PS principle allow the laser to record high accuracy, ultra-fast data at a medium 

range (350 m), while the ToF technique allow to reach longer ranges (km), at a slightly 

lower rate and with slightly less accuracy. Laser scanning devices usually integrate the 

LiDAR unit with an opto-mechanical scanner which position, and orientation is 
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accurately determined e.g. by a GNSS and an inertial measurement unit (IMU) 

(Lindenbergh 2019). Measurements at different azimuths and elevations produce a 

point defined by its polar coordinates, which can subsequently be transformed into the 

cartesian system. 

 

Terrestrial Laser Scanning (TLS) is the most popular device to perform 3D scans. It 

can be fixed on or next to a construction for real-time monitoring, but it is usually 

restricted by a blocked sightline between devices and targets. Therefore, capturing all 

scanner targets requires multiple scans from different viewpoints that are subsequently 

merged into a unified point cloud (registration process). For that reason, planning for 

scan (P4S) is needed to obtain quality point clouds, avoid redundancy in data and 

optimize scan duration. Aryan et.al (2021) presents a review of scan planning 

optimization methods and quality criteria, namely, the level of completeness (LoC), 

accuracy (LoA), resolution (LoD) and registrability of the point cloud, to benchmark 

data quality requirements for specific targets and applications. Mobile Mapping 

Systems (MMS) gains popularity as a solution to mobility constraints of TLS. MMS 

generally includes land vehicles and Unmanned Aerial Vehicles (UAVs) which are 

equipped with redundant positioning and orientation sensors (odometers, cameras and 

IMUs) that are integrated along with GNSS and IMU used in fixed scanning systems 

(Lemmens 2011).  

Raw point cloud data is unorganized, disordered and only single-point information can 

be accessed. Therefore, point clouds need to be submitted to a set of computational 

procedures to abstract useful geometrical information. For that purpose, data 

cleansing, data registration, data segmentation and object recognition are identified as 

the main point cloud processing steps as presented in Figure 2.15 (Wang et al. 2020). 

 

Figure.2.15: Point Cloud Analysis (Wang et al. 2020) 

 

Depending on the sensor physical limitation and the complexity of the scan 

environment and targets, raw point cloud data might contain various types of outliers, 

poorly scanned areas and shadows (gaps). Thus, a pre-processing step for data 

preparation and cleansing is necessary to set data ready for subsequent processing 

steps.  Rashidi and Brilakis (2016) proposed a method for data preparation based on 

three steps, i.e., outlier removal, gap filling and density balancing, providing reviewed 

criteria to perform each step. 

Generally, criteria for outlier removal are based on the information of the 

neighbourhood points.  Most popular methods are based on parametric factors, 

namely,  Distance-to-plane factor:  a point is considered an outlier if  its distance to a 
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plane fitted to its k-nearest neighbours exceeds a certain threshold; Spherical distance 

factor: the point is considered an outlier if the diameter of a sphere including its k-

nearest neighbours exceeds a certain threshold; K-nearest-neighbour reciprocity 

factor: outliers are identified using reciprocal inclusion on k-neighbouring of vicinity 

points (Rashidi and Brilakis, 2016). Other outlier filtering approaches as statistical 

outlier removal (SOR), spatial frequency (SF) filters and morphological filters are 

commonly used too (Carrihlo et al., 2018). Gap-filling methods have been developed 

to compensate data lags due to constrained scanning positioning and object sight 

occlusions, becoming an essential step in 3D reconstruction. Guo et al. 

(2018)reviewed existing algorithms for hole filling , which describe volume and surface-

based methods conducted on point clouds or meshes.  

Point cloud registration is defined as the process of finding the spatial transformation 

for aligning two or more-point clouds into the same reference system (Figure 2.16). 

Registration is used for full geometric reconstruction of specific targets when they are 

scanned from different positions, fitting scans to existing CAD models, recognizing 3D 

objects within the scanned scene (recognition-by-fitting) and aligning scans from the 

same target taken by different acquisition systems or at different times (Castellani and 

Bartoli 2020) 

 

Figure.2.16: Point Cloud Analysis (Castellani and Bartoli 2020) 

 

Registration methods can be classified into two categories: fine (or local) registration 

and coarse (or global) registration. 

The most commonly used method for fine registration is the Iterative Closest Points 

(ICP) algorithm (Besl and McKay 1992). However, ICP-based only performs well when 

the two-point clouds are close enough to each other since the optimization function 

can easily find local minima that do not correspond to correct alignments. Additionally, 

most of these methods are very susceptible to the presence of outliers, that could 

distort the optimization results (Castellani and Bartoli 2020). Therefore, a common 

practice is to divide the registration procedure into two steps:  first, a less accurate 

registration method is performed to roughly align the geometries, and then ICP-based 

methods are used to improve the initial alignment. 

Coarse registration is a widely studied problem, especially for fitting captured point 

clouds with existing geometrical models. A common practice is performing manual 
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alignment between point clouds using point correspondences obtained placing visual 

targets in the scan site. However, this work can easily become tedious when managing 

large data sets. Then, automated coarse registration study field has gained importance 

and several approaches have been taken in the last decade. A common approach for 

automated coarse registration is the usage of geometric descriptors in both point 

clouds, which are normally computed from the geometrical characteristics of the point 

neighbourhood, and then used to perform the registration (Rusu et al. 2008, Rusu et 

al. 2009). Another approach is identifying key-points in both point clouds, normally 

computed from geometric descriptors formerly mentioned (Allaire et al. 2008, Trzcinski 

et al. 2013). Aiger et al. (2008) proposed a registration approach that is based on 4-

Point Congruent Set (4-PCS) algorithm. The algorithm and its improved variants 

(Theiler et al. 2014, Mellado et al. 2014) use key-points to calculate congruent 4-point 

bases and choose the best transformation between pair of bases that minimizes 

distance between point clouds. Despite 4-PCS supposed a great advance to the 

automated coarse registration problem, the built environment present high levels of 

symmetry, occluded data and clutter that might lead these algorithms to be ineffective. 

However, some authors are taking advantage of these as-built characteristics to 

developed new registration algorithms. Bueno et. Al (2018) developed a 4-plane 

congruent set (4-PlCS), inspired in 4-PCS algorithm, which take advantage of the great 

number of planar elements that are normally found in the built environment (Figure 

2.17). The algorithm is robust; however, computation time might be considerable for 

large datasets. 

 

Figure.2.17: 4-plane congruent registration example (Bueno et al. 2018) 
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Once registration is performed, points forming the final point cloud need to be classified 

into regions defined by specific geometric characteristics. Points that share geometric 

features are equally labelled and then grouped into continuous regions, forming 

segments. Several segmentation methodologies are proposed in literature. Nguyen 

and Le (2013) and posteriorly Wang et al. (2019) present through review of such 

methods  and classify segmentation methods into 5 categories: Attribute-based, edge-

based, region-based and graph-based.  

Attribute-based methods directly cluster points basing on geometric features either 

computed from point neighbourhood (e.g., normal, curvature…) or provided by the 

scanner device (reflectance, colour). These methods are easy to understand and 

implement, however, their results rely on neighbouring points, thus being sensitive to 

the presence of noise.  

Edge-based methods detect boundaries of regions in the point cloud and obtain 

segments by allocating points within those boundaries. The principle for boundary 

detection is to identify points with rapid density changes. Common parameters used 

for boundary detection are curvature, normal, gradients and higher order derivatives. 

Despite these methods present a fast segmentation, they are sensitive to noise and 

uneven point cloud density. 

Region-based methods can be classified into seeded and unseeded methods. Seeded 

methods start the segmentation process at random seed points, from which the region 

will grow adding neighbouring point if certain criteria are met. Seeded methods are 

highly dependent on initial seed points and the criteria used to add point to regions, 

which could lead to under/over-segmentation. On the other hand, unseeded methods 

include all points in a single region, and then start subdividing. Determining the division 

criteria is a challenging task in these methods, which need a large amount of prior 

knowledge needed (region models, number of regions, etc). In general, region-based 

methods are more robust than edge methods, but they have problems determining 

region boundaries, leading to over or under-segmentation.  

Graph-based methods consider the point cloud in terms of a graph model. Compared 

to other methods, graph-based methods provide better performance in segmenting 

complex point clouds, also in the presence of noise and uneven density distribution. 

However, most of these methods need to be pre-trained or need special co-registered 

sensors to function. 

Model-based methods rely on the principle that complex objects can be decomposed 

into simple geometric primitives that can be mathematically fitted to point cloud regions. 

Most model fitting approaches are based on the Hough Transform (HT) and in Random 

Sample Consensus (RANSAC). As these approaches are purely mathematical, they 

provide robust and fast segmentation against outliers. RANSAC is also able to process 

large point cloud data sets. However, their accuracy is limited when dealing with 

multiple point cloud sources (Wang et al. 2019). 

To generate semantically rich 3D models, another layer of abstraction is needed, 

where segments or single points are grouped and labelled into object classes, 

instances, and relations among them (Tang et al. 2010).  In the construction industry, 

these labels are generally associated to BIM elements such as walls, floors, roofs, 

pipes, columns, beams, etc. Some of these objects can be directly recognized by 

simply generating a library of geometrical features from CAD/BIM objects that clearly 
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identify objects that are known to be present in the scene. This method is useful for 

easily identifying pipe installation using their local curvature as a shape descriptor 

(Czerniawski et al., 2016). The rest of elements are usually identified using human-

codified algorithms based on previous knowledge referred to identifiable semantic 

features such as size, position, orientation, topology, and density of the objects within 

the point cloud (Pu and Vosselman, 2009). Despite that these methods can be effective 

and easy to implement, they are very specific to the use case and are limited to be 

used with simple geometries. Scan-vs-BIM methods can also be developed to identify 

objects within the scanned scene by projecting the points onto CAD/BIM models which 

have been previously co-registered (Bosché et al. 2015).  Actually, most research 

regarding object recognition techniques is pointing towards the use of supervised and 

unsupervised deep learning methods, as is described in the following section. 

Deep learning has already become the most powerful data processing tool for 

computer vision, successfully performing classification, segmentation, and object 

recognition tasks, mostly due to a wide development of Convolutional Neural Networks 

(CNN) (See chapter 2.1.2). 3D point clouds could be understood as 2D images with 

additional 3D spatial information, however, the irregularities in point density distribution 

and the lack of structure and order prevent from directly adapting computer vision deep 

learning techniques, which are performed implemented over ordered, regular and grid-

structured data inputs. Research has taken two different approaches to overcome this 

challenge: converting the point clouds into a structured grid format and developing new 

deep learning approaches to use the raw point as an input (Bello et al. 2020). 

Approaches to structure point clouds can be broadly classified in two groups: voxel-

based approaches and multi-view approaches. Voxel-based methods convert point 

clouds into a grid of fix-sized voxels where 3D CNNs can be applied. 3D shapeNets 

(Wu et al. 2015), VoxNet (Maturana and Scherer 2015) and OctNet (Riegler et al. 

2017) are representative for this approach. Multi-view approaches take advantage of 

the already matured 2D CNNs by converting point clouds in a collection of 2D images. 

A representative example of these approaches are MultiviewCNNs (Su et al. 2015) 

with improvements like using optimum viewpoint selection (Kanezaki et al.2018) and 

multi-resolution methods (Qi et al. 2016). 

Approaches for processing raw point clouds using deep learning are being increasingly 

developed since the release of PointNet (Qi et al., 2017a,b), which has served as a 

foundation for the development of many supervised and unsupervised (autoencoders) 

point-based methods, which have been extensively reviewed (Liu et al.2019, Bello et 

al. 2020)  

In the construction industry deep learning approaches have been mainly used in 

semantic segmentation of as-built facilities. Perez-Perez et al. (2021) proposed a new 

deep learning architecture called Scan2BIM-NET, for semantically segmenting BIM 

elements such as floors, ceilings, beams, columns and pipes in industrial facilities. 

Pierdicca et al. (2020)proposed a Scan-to-BIM semantic segmentation on cultural 

heritage based on an improved Dynamic Graph for Convolutional Neural Network 

(DGCNN) by adding extra features like normals and colours. In bridge engineering, 

Kim and Kim (2020)  successfully performed automated bridge component 

segmentation using PointNet architectures introducing subspace partitions of the 

bridge location. They also compared PointCNN, DGCNN and PointNet to classify the 

components of bridges, showing higher accuracy in DGCNN since it can learn point 
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relations with surrounding elements. Taking advantage of the classification 

opportunities provided by the DGCNN, the same authors proposed an automatic BIM 

modelling from point clouds with incomplete scanned elements, achieving a 99% of 

complete elements modelled (Kim,and Kim 2021). Lee et al. (2021) proposed an 

improved Hierarchical DGCNN (HGCNN) based on PointNet and DGCNN for 

segmenting railway bridge components which presented increased accuracy, specially 

for bridges with tall elements such as electric poles. Generally, the lack of training data 

sets is highlighted as one of the main limitations in deep learning approaches for the 

construction industry. Therefore, the generation of useful synthetic data from existing 

BIM models (Ma et  al. 2020) and the development of efficient and accurate models 

that need reduced training data (Xia et al., 2022) might be useful considerations for 

future approaches. 

Detailed geometrical information provided by 3D point clouds is being applied for 

structural health monitoring applications, including beam analysis, structural inspection, 

and Finite Element Method calibration.  

Surveying historical structures using point cloud-based methods are effective for 

evaluating their structural health. Korumaz et al. (2017) proposed a methodology in 

which point cloud data was used to perform deviation analysis and FE modelling of 

heritage buildings.  The method was applied in a medieval period brick minaret. Mesh 

and solid models were generated from the point cloud data. Solid models allowed the 

calculation of surface imperfections, degree of inclination of the structure with respect 

to the vertical while meshes were used in FE analysis software to perform modal and 

push-over analyses Sánchez-Rodríguez et al. (2018) used a method to detect 

structural faults on masonry bridges. The method first segmented the bridge to identify 

its piers and their faces, and then parametrized their pose using elevation and azimuth 

angles obtained from PCA (Figure 2.18). Depending on the relative pose of pier faces, 

multiple damages can be assessed.  

 

 

Figure.2.18: Bridge segmentation and piers identification (Sanchez-Rodríguez et.al. 2018). 

 

Sánchez-Aparicio et al. (2014) perform a full geometric characterization of the Saint 

Torcato church (Portugal) combining TLS and UAV SfM (Figure 2.19). The hybrid point 
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cloud was converted to CAD using parametric features and NURBS for complex 

geometries. After CAD modelling, crack detection could be performed using digital 

image processing on the images overlapped with the point cloud. Additionally, a FE 

model was generated and calibrated using modal analysis to be compared with 

previous acceleration data. 

 

  

Figure.2.19: Photogrammetric point cloud acquisitions and crack detection (Sánchez-Aparicio et al. 2014). 

 

For bridge inspection, Artese and Zinno (2020)used a terrestrial laser scanner to scan 

a single straight line under a bridge to obtain the dynamic deformation when a dynamic 

load is applied during a load test  as shown in Figure 2.120. The TLS was equipped 

with a GNSS system to be synchronized with the moving load, which is also monitored 

using a digital camera with integrated UTC time. The line of points obtained at different 

timestamps were interpolated using cubic polynomials. The method was tested in three 

different bridges and verified to provide reliable measurement to estimate the 

behaviour of structures.  

 

Figure.2.20: Scanning scheme and deflection interpolation (Artese and Zinno 2020) 

 

Similarly, Riveiro et.al. (2012) and Riveiro et al. (2013) validated the use of laser 

scanner and photogrammetry to perform routine bridge inspections of the minimum 

vertical under-clearance. The lower surface of the bridge was interpolated using 4th 
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degree polynomials and its distance to the ground-plane was calculated. Cha et al. 

(2019)conducted deformation analysis using shape deformation model from the point 

cloud extracted from a bridge (Figure 2.21).  The model consists of a voxel grid 

generated from the point cloud compressed using an octree data structure . This allows 

efficient management of the data. Deformation between multiple octrees is calculated 

using the Hausdorff distance.  

 

 

Figure.2.21: Bridge voxelization (Cha et.al, 2019) 

 

Results showed considerable agreement with LVDT measurements when the 

deflection is not smaller than the resolution of the octree.  Later, the octree method 

was verified in laboratory using multiple specimens (Cha et al. 2020). Erdélyi et al. 

(2017) and Erdélyi et al. (2020) conducted geometry-based deformation analysis 

based on regression plane modelling using RANSAC for specific fenced parts of the 

bridge, monitoring the descend of the de centroid of the fenced planes obtaining 

accurate deformation shapes  

Point cloud data has been used in laboratory test to verify its effectivity to monitor steel 

and concrete beam deformation. Cabaleiro et. al. (2015) designed a novel algorithm 

to automatically obtain deformations in steel beams subjected to bending and torsional 

loading using Lidar data. The algorithm fitted surface slices to segmented beam 

flanges. Twist and bending information were calculated using the variation of the 

normal angle of each slice against a straight theoretical beam without deformation. 

The proposed methodology also allowed to allocate maximum stress positions. Same 

authors proposed an alternative method using Bivariate polynomial surface fitting 

based on Bernoulli beam theory with torsional effects (Cabaleiro et  al. 2016). The 

method allowed to conduct deformation verifications, as well as realistic 3D modelling 

of the deformed beam (Figure 2.22). 
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Figure.2.22: Scanned I-shaped beam polysurface fitting and twist angle calculation (Cabaleiro et  al. 2015) 

 

Mistretta et al. (2019) evaluated deformations on reinforced concrete beams measured 

using close-range photogrammetry based on Structure from Motion (SfM) and were 

compared to TLS measurements during a bending load test. Comparison between 

point clouds was stablished using mesh-to-mesh and modelling approaches, showing 

minimum errors below 1mm. The study concluded that both, TLS and Close Range 

Photogrammetry (CRP) are suitable methods for evaluating structural deformations, 

however, CRP has clear advantages in equipment costs. 

 

2.3.2.2 Radars 

RADAR is a short form for Radio Detection and Ranging systems. The basic working 

principle of all the radio systems is the same. The radio uses a transmitter to produce 

an electromagnetic signal that is then propagated into the space using an antenna. 

When this signal strikes an object, it gets reflected back, and this reflected signal is 

known to be the echo signal.  When the antenna detects the echo signal, it gets fed 

into the receiver. The receiver then processes the echoed signal to get useful data out 

of it. Signals are often noise filtered. The output from the receiver passes to user-

defined threshold decision systems. For finding the range of the object, the system 

uses the time taken by the signal to get reflected. For the target location, an angle is 

calculated from the direction of the echo signal to the direction where the antenna is 

pointing. For moving objects, the Doppler Effect is used to calculate the speed and 

range of such object. 

 

The use of radars nowadays is vast. From weather predictions to aerospace, radars 

provide a continuous stream of data in manifold applications. Waves are characterized 

as pulsar or continuous.  From the perspective of the use of radars with maintenance 

purposes of assets within the built environment, specific technologies apply. The 

discussion herein is focused on these technologies only.  

• Space borne synthetic Aperture Radar. SB-SAR 

• Ground-based synthetic Aperture Radar. GB-SAR 
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Space borne Synthetic Aperture Radar 

SAR has got a broad range of applications. For space borne remote sensing, earth 

observing satellites are currently in operation. These satellites have imaging sensors 

working in different spectral areas. Optical, infrared or radio waves are often used. 

Radio waves are robust when it comes to weather conditions. The usage of optical 

sensors depends not only on daylight but also on the actual weather conditions. Clouds 

and heavy rain are impenetrable for this wavelength. Infrared sensors which are 

applicable day and night are even more sensitive on weather conditions. Consequently, 

radar sensors represent a completion of the sensor collection for remote sensing. 

Synthetic Aperture Radar is a remote sensing method that allows high-resolution 

ground surveillance by combining (synthesizing) the return echoes of radar pulses 

emitted from a rapidly moving observation platform. 

 

Beyond the overall availability of SAR images there are further pros for the utilization 

of radar. The coherent nature of SAR enables the user to process images of 

subsequent overflights for interferometric analyses.  

Interferometric synthetic aperture radar, abbreviated InSAR , is a radar technique used 

in geodesy and remote sensing. This geodetic method uses two or more synthetic 

aperture radar (SAR) images to generate maps of surface deformation or digital elevation, 

using differences in the phase of the waves returning to the satellite or aircraft. The 

technique can potentially measure millimetre-scale changes in deformation over spans of 

days to years. It has applications for geophysical monitoring of natural hazards, for 

example earthquakes, volcanoes and landslides, and in structural engineering, in 

particular monitoring of subsidence and structural stability. Early exploitation of satellite-

based InSAR included use of Seasat data in the 1980s, but the potential of the technique 

was expanded in the 1990s, with the launch of ERS-1 (1991), JERS-1 (1992), RADARSAT-

1 and ERS-2 (1995). These platforms provided the stable, well-defined orbits and short 

baselines necessary for InSAR. More recently, the 11-day NASA STS-99 mission in 

February 2000 used a SAR antenna mounted on the space shuttle to gather data for the 

Shuttle Radar Topography Mission. In 2002, The European Space Agencyy ESA launched 

the ASAR instrument, designed as a successor to ERS, aboard Envisat. While the majority 

of InSAR to date has utilised the C-band sensors, recent missions such as the ALOS 

PALSAR, TerraSAR-X and COSMO-SkyMed are expanding the available data in the L- 

and X-band. Most recently, ESA launched Sentinel-1A and Sentinel-1B – two C-band 

sensors. Together, they provide InSAR coverage on a global scale and on a 6-day repeat 

cycle.  The availability of such sets of data for civilian applications represent a major 

pivotal point for civil engineering. For instance, European data sets such as Sentinels 

(https://sentinels.copernicus.eu/web/sentinel/home) represents a contribution for 

humankind with manifold applications.   

 

The feasibility of using spaceborne high resolution synthetic aperture radar (SAR) data 

to sense bridge deformations at periodic time intervals without the need to install any 

equipment on a bridge has been studied recently. By then, satellite-based InSAR 

technology was effectively implemented for long-term bridge deformation monitoring 

with millimeter range precision. This represents an interesting perspective for 

augmenting conventional inspection methods (Figure 2.23).  

https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Geodesy
https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Synthetic_aperture_radar
https://en.wikipedia.org/wiki/Synthetic_aperture_radar
https://en.wikipedia.org/wiki/Radar_imaging
https://en.wikipedia.org/wiki/Digital_elevation_map
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Structural_engineering
https://en.wikipedia.org/wiki/Subsidence
https://en.wikipedia.org/wiki/Structural_stability
https://sentinels.copernicus.eu/web/sentinel/home


D5.1 SHM Digital Twin Requirements 

 

  

 48 

 
 

 

 

Figure 2.23. Aerial view of the bridges analyzed by Hoppe using satellite-based interferometric images 

 

In Italy, as a part of an experimental campaign planned within the 2019–2021 DPC-

Reluis Project, information retrieved from satellite data and on-site vibrational 

measurements was merged. The “Ponte della Musica–Armando Trovajoli” bridge was 

selected as test site (Ponzo et al. 2020). They exploited long sequences of satellite 

SAR acquisitions collected from ascending and descending orbits by the Italian 

COSMO-Skymed (CSK) constellation over the wide urban area of Rome (Figure 2.24). 

The available data were analyzed in a GIS Software and categorized according to 

structural needs.  

 

Figure 2.24. Time series for displacements. Ascending orbit (Ponzo et al. 2020).  

 
 
Also in Italy, a fusion between SB-Insar (COSMO-SkyMed) and Ground Penetrating Radar 
for the analysis of a steel truss bridge has been presented by D’Amico et al. (2020) as 
shown in Figure 2.25.  
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Figure 2.25. PS-outcome of the InSAR data (D’Amico et al. 2020).  

 
 

Recently in Hong Kong, a multi-temporal DInSAR approach for remote exploration of 
deformation characteristics and mechanisms of bridges was presented (Qin et al. 
2019). The nature of the studied bridges was complex (cable-stayed, multi-spanned 
arches) and a set of damage sensitive points was identified in those assets (Figure 
2.26).  

 

Figure 2.26. Usage of Space borne SAR for analysis of Stonecutters Bridge, Hong Kong (Qin et al. 2019).   

 

In a nearby location, displacements of the Hong-Kong-Zhuhai-Macao bridge (HZMB) 

were derived using Persistent-AScatter Interfereometruc Synthetic Aperture Radar 

(PS-InSAR). An analysis of the time series was presented by Xiong et al (2021) quite 

recently (Figure 2.27).   
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Figure 2.27. Amplitude images acquired in the radar imaging geometry, HZMB, Hong Kong (Xiong et al. 2021).   

 

In Viena, Austria, a comprehensive study performed by Schögl et al. (2021) of the 

Seitenhafen bridge using Sentinel-1 imagery was presented. Atmospheric correction 

of InSAR measurements using high spatial tropospheric delay maps (GACOS) was 

also included (Figure 2.28).  

 

 

Figure 2.28. Analysis of Seitenhafen bridge using space borne data (Schögl et al. 2021).   

 

Ground-Based Synthetic Aperture Radar 

Closer to Earth, Terrestrial or ground-based SAR interferometry (GBInSAR or TInSAR) is 

a remote sensing technique for the displacement monitoring of slopes, rock scarps, 

volcanoes, landslides, buildings, bridges, etc. This technique is based on the same 

operational principles of the satellite SAR interferometry, but the synthetic aperture of the 

radar (SAR) is obtained by an antenna moving on a rail instead of a satellite moving around 

an orbit. SAR technique allows 2D radar image of the investigated scenario to be achieved, 

with a high range resolution (along the instrumental line of sight) and cross-range 

resolution (along the scan direction). Two antennas respectively emit and receive 

microwave signals and, by calculating the phase difference between two measurements 

taken in two different times, it is possible to compute the displacement of all the pixels of 
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the SAR image. The accuracy in the displacement measurement is of the same order of 

magnitude as the EM wavelength and depends also on the specific local and atmospheric 

conditions. Microwave interferometry systems for remote static and dynamic monitoring 

are available in the market. For instance, IBIS (Image by Interferometric Survey-Structure), 

which is developed by IDS and University of Florence, is used on bridges and other 

structures including buildings, historical monuments and towers.  In static, the IBIS-FS is 

ideal for structure load testing; structure displacement and collapse hazards; cultural 

heritage preservation. When used for understanding the dynamics of the assets, the IBIS-

FS is used for frequency measurements or structural modal shape analysis. Examples of 

GBInSAR can also be found in the literature.  

Erdélyi et al. (2020) presented a spatial data analysis for deformation monitoring of 

bridge structures. An analysis of the static and dynamic vibrational data using a GB-

SAR on the Liberty Bridge (the border between Slovakia and Austria) was developed 

as seen in Figure 2.29.    

 

Figure 2.29. Analysis of Liberty bridge using Ground-Based data (Erdélyi et al. 2020).   

 

Hu et al. (2019) presented a twofold analysis on a slope and on a bridge. These 

techniques were applied to monitor the Liusha Peninsula landslide and Baishazhou 

Yangtze River Bridge. These case studies were measured using a differential GB SAR 

together with other techniques such as virtual reality-based panoramic technology and 

ground-based real aperture radar (GB-RAR). Results were presented and compared 

from both time- and frequency domains (Figure 2.30).    

 

 

Figure 2.230. Analysis of Baishazhou Yangtze River Bridge using Ground-Based SAR and RAR (Hu et al. 2019).   

 

The Nanjing–Dashengguan high-speed railway bridge (NDHRB), located in the 

Nanjing section of the middle and lower reaches of the Yangtze River in China, was 
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also monitored using GB-SAR by Huang et al. (2020). An IBIS-S sensor was used to 

study the dynamic behavior of the bridge (Figure 2.31).  

 

Figure 2.31. Analysis of Nanjing–Dashengguan bridge using Ground-Based data (Huang et al. 2020).   

 

In Italy, Miccinesi et al. (2021) performed a bridge monitoring using a Multi-Monostatic GB 
SAR. The radar used was a modified version of IBIS-FM MIMO (with four antennae 
connected).  An experimental study of the Varlungo Bridge in Florence was presented as 
well (Figure 2.32).  

 

 

Figure 2.32. Experimental setup at the Varlungo Bridge in Florence, Italy (Miccinesi et al. 2021).   

 

In Iran, Pieraccini et al. (2019) performed dynamic studies for masonry bridge monitoring 
using GB-SAR. The Veresk bridge as well as the Kaflan-Kuh bridge were analyzed.  The 
equipment was a prototype operating in the Ku-Band (Figure 2.31).  
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Figure 2.31. Analysis of the Kaflan-Kuh bridge, Northern Iran using Ground-Based data (Pieraccini et al. 2019).   

Xing et al. (2020) presented comprehensive research on bridge monitoring using GB-SAR. 
The ground-based radar system was used in Wuhan on a bridge in service crossing the 
Yangtze River. Improved projection methods for computing the deflection of the bridge 
were included (Figure 2.32).  

 

Figure 2.32. Analysis of a steel bridge crossing the Yangtze river in Wuhan, China (Xing et al. 2020)   

 

2.3.2.3 Infrared thermometers 

The Infrared Thermography (IRT) has been developed to detect existing sub-surface 

deteriorations including delamination and voids in concrete. As shown in Figure 2.33, 

when there is a delamination inside the concrete, the surface temperature is different 

from the sound area. With this feature, by scanning the surface of the concrete, the 

delamination can be detected (Hiasa et al. 2018). The IRT camera can also be installed 

on a vehicle with a normal moving speed to achieve faster inspection compared to 

other NDT methods (Hiasa et al. 2017). Figure 2.34 shows an example of concrete 

scanning using vehicle on which IRT cameras are stationed. The detection 

performance relies on temperature gradients, which means it is quite important to 

select the scanning time range in a day. Infrared thermography can be used to identify 

concrete elements in a structure under construction from a cloud of points due to the 

changes of temperature in the concrete along the hardening process. It may help to 

detect concrete elements in regions where the photo images are not clear enough due 
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to deficient lighting. Poor or undesirable ambient light conditions produce low quality 

images that significantly affect the accuracy of data extracted from related images and 

lead to a high level of errors. Thermal images offer more data than traditional digital 

photos. Temperature and humidity differences are the main parameters that are 

utilized to improve the quality of images for image processing. Pazhoohesh et al. 

(2021) present an innovative approach based on thermal image analysis to overcome 

problems related to the image quality. Thirty preliminary tests and three case studies 

were implemented to show the feasibility of the method. A range of improvement 

between 8 to 48% was attained that confirms the great potential of thermal images to 

overcome the limitation of image-based approaches. 

 

Figure 2.33. Delamination detection using IRT camera (Hiasa et al. 2018). 

 

 
 

Figure 2.34 IRT camera setup on a vehicle and images from IRT camera (Hiasa et al. 2017). 

 

As shown in Figure 2.35, Matsumoto et al. (2014) presented the time zone when the 

inspection can be executed. Watase et al. (2015) investigated the favourable time 

windows for IRT for concrete delamination evaluation by using plates with different 

thickness and delamination with different depth. The different thickness of plate and 

the depth of delamination could influence the time window. Hiasa et al. (2017,2018). 

explored the time window for good inspection of IRT by using experimental and 
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numerical methods and found that optimal conditions for IRT implementation on 

concrete bridge decks was during night-time under the clear sky conditions. They also 

investigated the effect and correlation of delamination size and shape for using IRT 

through finite element modeling (FEM) and found that the delamination depth 

information could be estimated by incorporating IRT with FEM. To segment 

delamination from IRT images, a proper temperature threshold is necessary as IRT 

images can also be processed by using similar techniques as for visual images taken 

by standard cameras. They investigated the temperature threshold using FEM and 

found that the temperature threshold of delaminated areas of concrete slab with the 

depths of 1.27 and 2.54 cm defined by FEM simulation could give better prediction 

performance than directly judging from IRT images with naked eye. In addition, 

discussed the considerations and issues in the application of IRT for concrete scanning 

at normal driving speeds such as thermal contrast, time window, camera specification, 

distance, and utilization speed and they gave detailed recommendations of how to 

address the mentioned issues. They also implemented a high definition (HD) camera 

along with the IRT cameras to scan concrete to get visual images. 

The visual images from HD camera could assist IRT to discard false-positive prediction 

of delamination. The image processing approaches in abovementioned applications 

are general image processing methods such as binarization, morphology, thresholding, 

gradient analysis, blob analysis, and so on. Besides, the machine learning or deep 

learning methods can also be applied to process the thermal images. Omar and Nehdi 

(2017) used an unsupervised learning method, k-means clustering, to segment the 

mosaicked thermogram of entire bridge deck and identified the objective threshold 

separately. Based on the different thresholds, the detection of delamination was 

performed at a higher accuracy. In addition to using a vehicle to do concrete scanning, 

Ellenberg et al. (2014) installed IRT cameras and an HD camera on UAV to scan 

pedestrian bridges. Fig. 2.36 shows hovers and marker. The colour images collected 

from the HD camera were applied to identify the deck manually to support the location 

purposes of thermal images. By using the gradient-based threshold image processing 

method, the delamination areas were segmented from the thermal images. The UAV-

borne thermal imaging system makes the IRT-based delamination detection become 

more flexible. 
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Figure 2.35. Diurnal temperature flow in a concrete structure with delamination (Matsumoto et al. 2014) 

 
 
Figure 2.36. (a) Picture of the UAV hovering near the pedestrian bridge; (b) image taken by the UAV showing the 

markers previously placed; (c) markers identified using the image processing algorithm (Ellenberg et al.  2014) 

 
 

2.3.2.1 Unmanned Aerial Vehicles 

 

The aerial photogrammetry can be considered as the principal means that the 

photogrammetry has developed. It was the basic data source for making maps by 

photogrammetric means. In last years the use of Unmanned Aerial Vehicles (UAVs) 

has enabled a low-cost alternative to manned aerial photogrammetry. This rapid 

development can be explained by the spreading of low-cost platform combined with 

digital cameras and GNSS system, and the rising of digital photogrammetry (Linder, 

2016). Today the use of UAV compared with traditional airborne platform decreases 

the operational costs, reduces the risk of access in harsh environment and still 

maintains high accuracy potential (Barrile et al. 2019). 
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Using UAVs and aerial photogrammetry principles is possible to obtain a map, digital 

model and 3d data of the surveyed area or the object. Currently, analytical tools, such 

as algorithm for acquisition and software for the generation and manipulation of the 

photogrammetric data are well developed by scientists. However, these methods are 

highly empirical and quantitative and qualitative data rely on analysts. Consequentially 

replication of the existing results can be difficult. For this reason, to ensure data quality 

and result’s accuracy, researchers are focusing on standardization and protocol for 

information extractions and the integration in a complete process workflow. (Barrile at 

al. 2019) 
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3 REQUIREMENTS FOR SHM MEASUREMENTS BASED ON DT 
 

As stated in Boje et al. (2020), “the main challenge on using sensors with DT appears 

when dealing with the spatio-temporal resolutions, demanding a successful integration 

of sensors of different capabilities, reading frequencies, accuracies, their respective 

locations and the inter-dependencies between sensor clusters and networks. The 

research literature seems to point towards the use of IoT as a means of sensor data 

capture, almost being taken for granted. However, the delicate intricacies of sensor 

dynamics for each DT application domain and interoperability with the rest of the DT 

components remain largely un-explored.” And they add: “BIM lacks semantic 

completeness in areas such as control systems, including sensor networks, social 

systems, and urban artefacts beyond the scope of buildings, thus requiring a holistic, 

scalable semantic approach that factors in dynamic data at different levels.” 

Therefore, it seems that the interactions between SHM and DT should address both 

directions, therefore in the following chapters these requirements are analysed.   

 

3.1 DIRECTION 1: WHAT DOES A SHM SYSTEM REQUIRE FROM A DT?  

 

The main requirement from SHM system to DT is the possibility to match structural 

monitoring system to the digital model and to deploy sensor data visualizations directly 

onto BIM models, i.e., the possibility for the SHM system to be digitally replicated 

(Davila et al. 2017). To develop a more detailed requirements, the problem is sub-

divided in smaller parts.  

 

BIM lacks semantic completeness in the area of sensor networks and important 

research effort is necessary into this direction. It is necessary to develop BIM models 

that allow an effective integration of SHM data with other data sets. Only in this way, 

the SHM data will be fully implemented in the asset management. The work presented 

by Davila et al. (2018) is pointing out in this direction. An approach is presented that 

allows the automatic generation of parametric BIM models of structural monitoring 

systems, including time-series sensor data, and it enables data-driven and dynamic 

visualization in an interactive 3D environment. 

 

Existing structures information may not be available in digital form. Twinning (or BIM 

modelling) is often obtained from CAD models or from point clouds obtained with laser 

scanning in their As-Built forms. This means that almost every object is approximated 

in order to transform point-cloud-based descriptors (in non-parametric formats) into 

parametric primitives. In this sense, it is still difficult or often not feasible to achieve a 

desired level of geometric approximation for resulting geometrical digital twin. This lack 

of accuracy in the geometric description can negatively affect the SHM to be efficiently 

implemented in DT. Therefore, additionally to the possibility of being fully modelled, 

SHM requires from a DT a geometric-accuracy-based evaluation system for twinning 

and updating. However, for many assets of the Built Environment, it can be arguably 

stated that these differences are negligible.  
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For instance, Lu and Brilakis (2019) explains that the produced geometric digital twins 

are too ideal to depict the real geometry of bridges. In addition, none of the existing 

methods for modelling existing structures have explicitly demonstrated how to evaluate 

the resulting IFC data models in terms of spatial accuracy using quantitative 

measurements. The method developed by them achieves an average modelling 

distance of 7.05 cm while the manual method achieves 7.69 cm.  

Modern SHM systems can gather huge amounts of data using different sensing 

techniques, monitoring different parameters (e.g. displacement, acceleration, 

pressure) and with different formats, which makes difficult the management and 

processing of data. In addition, regarding the whole life-cycle of the built asset, 

interoperability problems may arise when combining data acquired in the design, 

construction and operational phases with different monitoring systems. A DT can 

manage the data obtained during all those phases and can also improve the SHM by 

facilitating more intuitive data interpretation, providing a user-friendly interface to 

communicate with various stakeholders, allowing for the identification of 

malfunctioning sensors and thus contributing to the self-checking of monitoring system 

durability 

 

3.2 DIRECTION 2: WHAT A DIGITAL TWIN REQUIRES FROM A SHM SYSTEM?. 

 

Mainly, a DT requires all the processes/tools that allow the appropriate connection 

between the physical asset and the virtual environment. Monitoring systems allow the 

time evolution of the physical part. It has been like that for many decades. As a result, 

it would ideally be replicated/fed in the digital twin. And, therefore, the monitored data 

should be easily transformed into digital format. As a general idea, the DT requires 

from the SHM system appropriate, accurate data provided in real-time that can be 

analysed to inform and predict the behaviour of the built asset, and facilitate decision-

making 

According to Boje et al. (2020): “The process of monitoring relies on the sensor network 

underneath and its ability to select and filter data which is relevant for day-to-day 

operational management. This data has to be conveyed in a machine interpretable 

way and subsequently be used for decision making by remote agents (AI or humans) 

on its virtual counterpart.” 

This main requirement can be split in 3 separate but interconnected phases: 

1. First, the SHM system should allow the knowledge of the actual condition state 

of the real structure via the use of the digital twin.  

2. The SHM should provide the data and tools for the prediction of the future 

condition/response of the real structure by an analysis of the DT response 

(estimation of future evolution of performance indicators) 

3. The SHM should provide the tools for and adaptive response of the structure 

within the required performance goals based on the calculation of performance 

indicators obtained through the SHM System. 

Some SHM systems will be better suited than others to fulfil such objectives. To get a 

full digital replica of the built asset at least 3 basic requirements are foreseen: 
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1. The SHM system should be able to monitor a much area of the physical twin 

as possible. Redundant information is desirable. This is better achieved by 

distributed monitoring systems rather than by local sensors. In the absence of 

a large number of local sensors, the optimum placement of the available ones 

is of paramount importance regarding the quality and profitability of the 

gathered data. Available optimum sensor placement methods are summarized 

in Tan and Zhang (2020).   

2. The SHM system should be able not only to detect incorrect performances or 

damages once they were produced (condition state), but also to monitor the 

active progression of the damage to forecast future incorrect performance and 

allow for a proactive and predictive maintenance. 

3. As a consequence of the above, in some cases where fast (in time) response 

is required, the SHM system should be fast in gathering and analysing the data. 

In this sense, the SHM must guarantee that operational and occupational data 

could be monitored and analysed in (almost) real-time, providing valuable 

insights on how the asset is used, currently performing and in future evolving 

depending on the prospective applied maintenance interventions. Normally, for 

construction assets and regarding the monitoring of dynamic structural 

performance, a minimum sampling frequency is around 100 Hz.  

It is also required that the SHM is comprehensive, in the sense to be able to analyse 

all aspects that can be due to any malfunction of the asset, independent if during the 

planning of the monitoring campaign this malfunction was not considered. It means 

that the analysis of the gathered data by the SHM system should be exhaustive and 

able to discover any defect even if not thought to be present.  

One example that illustrates this problem corresponds to the Interstate-40 Mississippi 

River bridge in Arkansas. A visual inspection carried out in May 2021, detected the 

presence of a tie-beam fracture that forced an emergency shutdown of the bridge. 

Although state officials initially stated that the fracture in one of the 50-year-old bridge’s 

two tied-arch truss navigation spans was not present during its most recent inspection 

in September 2020, a drone video from May 2019, that was re-visioned after the 

incident occurred, clearly shows the break already beginning to form (Figure 3.1). 

According to Arkansas DOT officials, the five-hour drone video was focused solely on 

assessing the 50-year-old structure’s rods and connectors. Although the crack was 

already present in the video image, nobody took care to check for fatigue cracks in the 

main members, as this was not the aim of the inspection and the contract.  

 

Figure 3.1: Drone footage from 2019 shows the crack already existed. (Photo courtesy of ARDOT via YouTube) 
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This example points the fact that SHM is not just deploying sensors accurate enough 

to record the damage, but also the post-processing techniques should be as 

automatized as possible to proceed with a full analysis of the recorded data. In this 

case the automated process of image analysis with the usage of AI techniques would 

enable prompt detection of crack and would not rely on mere human-centred analysis.  

Although strictly dependent on sensing capabilities, the concept of monitoring is 

achieved at the stage when the influx of sensor data has pre-defined structure and 

meaning. The SHM system should not only collect data but obtain the data in a pre-

defined format. This coincides with the building automation systems (BAS) in the case 

of the built environment, by which actuations are triggered when certain conditions 

occur.  

More specifically, requirements of different data-gathering techniques, such as 

sensors, images, and remote sensing devices, under systematic use in several 

ASHVIN demonstration sites are discussed in Chapter 5.  

 

3.3 SENSORS 

 

From the perspective of the requirements, sensors are classified according to their 

sample rate. Sensors with high sample rate (>10Hz) are treated differently than 

sensors with low sample rates (<10Hz). Even though there is not an established border 

between both categories, it is useful for the consideration of storage and edge 

computing needs and capacities. Edge computing refers in this context to the 

computation and analysis of results directly at the node.  

 

• Accelerometers (High sample rate). These devices require high throughput 

capabilities with a desirable format: JSON. Very often, the acquired data (in the 

time domain) is bulky and not needed in large volumes. Thus, edge computing 

capabilities allow filtering data to its minimum expression for efficiency 

purposes. It is also required to precisely locate these devices at the geometrical 

model.  In the particular case of accelerometers, a relative autonomy to power 

supply, time synchronization, data storage capacity (locally) and adequate 

connectivity are desired. When it comes to non-technical requirements, 

sensitive data handling and encryption is needed (for privacy).  Using condition 

and structural health monitoring data and numerical models, reliability levels 

will be compared before and after the maintenance intervention. With the 

condition assessment of the structural health monitoring, from obtained data 

and numerical models, reliability levels will be compared periodically. Then 

deterioration and maintenance interventions could be evaluated. 

 

• Environmental magnitudes, inclinometers, transduces, etc (Low sample rate). 

These devices require low throughput capabilities with a desirable format: 

JSON. It is also required to precisely locate these devices at the geometrical 

model.  API access to nearby web-based applications is also a very desirable 

feature.  
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• Fibre optics. Throughput capabilities ranging from low to ultra-high (when used 

measuring ultrasonic signals in the range of MHz. It is also required to precisely 

locate these devices at the geometrical model. Interrogators with open API 

capabilities and seamless access to the data is of an utmost importance for 

proper integration.  

 

3.4 IMAGES 

 

From the perspective of the requirements, cameras require precise locations for 

various purposes. Replicability of image-gathering implies accurate documentation of 

the spatial location of the camera position together with available photographic 

metadata. When it comes to non-technical requirements, sensitive data involving 

human beings imply proper data anonymization (face blurring, car number blurring). 

Sensitive data handling and encryption is needed. Using condition and structural 

health monitoring image data on an historical basis implies replicability in time.  Then 

deterioration and maintenance interventions could be evaluated. On the other hand, 

UAV used for inspection, deliver data on condition of the structures (e.g. cracks, 

delamination, water leakage, etc.), allowing full reproducibility and traceability of the 

visual records as well as the corresponding results over time. Replicable flights using 

drones is feasible yet implies careful control from the user. Therefore it is necessary to 

use software for flight planning, that will allow to adjust critical imaging parameters, 

such as camera sensor, flying height, ground speed, forward overlap, side overlap, 

ground pixel size & imaging frame rate. Flight coordinates (in the form of .srt files) must 

also be delivered systematically.  

 

3.5 REMOTE SENSING  

 

From the perspective of the requirements, Terrestrial Laser Scanners require 

extremely high throughput capabilities. Desired formats such as .xyz or .ply are 

considerably populated with information and thus, require specific treatment if handled 

in IoT platforms. Replicability issues are also of great concern if successive scans are 

performed in time. Spatial location and referring of the point clouds is of an utmost 

importance. A similar treatment of requirements can be established with Ground-based 

SAR.  

When it comes to Satellite geospatial data, it is desirable to access to Copernicus open 

DIAS platforms via API (onda-dias.eu). Deformations, landslides, water levels, snow 

quantities or subsidence can be extracted from space-borne imagery. Records of 

environmental information around the structure to contextualize and enrich other 

measurements are also needed. This information can be related to vehicles traffic, 

structural behaviour, and data quality 
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4 REQUIREMENTS FOR SHM SYSTEMS BASED ON DT 
 

4.1 GENERAL CONCEPTS 

 

The concept of SHM system refers not just to a single technique, but it includes several 

functions, each of which must be designed carefully. These functions include (1) 

instrumentation, (2) excitation, (3) data acquisition, (4) signal processing, (5) sensor 

fault identification, (6) feature extraction, (7) feature processing, (8) damage detection, 

and (9) alarms and reports.  

A typical SHM system contains three main elements: a sensor system, a data 

processing system (data processing system consists of data acquisition, transmission, 

aggregation, processing, and storage) and a health evaluation system. Wireless 

sensor network (WSN) system was studied as data processing system for SHM. 

A monitoring system (different from a SHM system) generally contains three 

components: (1) a measuring device, (2) a method of reading that device, and (3) a 

method of storing the measurements.  

A SHM system able to be used in a DT framework for bridges and buildings with very 

different characteristics in their dimensions and modal properties requires the system 

to be scalable. This means, allowing the number of sensors to be varied, and 

reconfigurable, so that the location of the sensors could be changed to adapt the set-

up to the structure to be monitored. The system must be also distributed, consisting 

of a set of autonomous modules that must be able to acquire and process data from a 

set of sensors by exchanging synchronization information with the other modules and 

with the control module.  Other requirements are the ability to acquire the signal from 

a high number of sensors and to generate proper input signals to command the 

excitation devices, possibility of acquiring and integrating information from other 

sensors, both analogue and digital and of autonomous operation with recording in a 

cloud database. 

One important issue when considering the SHM as part of a DT is the autonomy of the 

systems and the possible ways to obtain energy for their operation (see 4.1.2) and the 

possibility of real-time damage detection. 

Requirements of the SHM system include the need of data quality (accuracy and 

noise reduction and collection of the data in the optimum locations to get the maximum 

information from the recorded data), storage capacity of the SHM data-base system 

and robustness/redundancy of the sensors in the case of long-term monitoring.  

 

Data quality can be affected by data transferring, data fusion and synchronization 

between sensors, data volume, monitoring time, temperature, humidity, and wind, 

which can explain data variance. According to Davila and Oyedele (2021): “An 

essential requirement of the DT paradigm is the synchronization of states between the 

physical asset and the digital asset. The synchronization entails a two-way data 

exchange, in which the digital asset obtains data regarding the current and previous 

states of the physical asset; and, the physical assets get information about how to 

update its operational parameters.” Therefore, an important requirement of the 

monitoring system is the requirement of full synchronization between physical and 
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digital assets. The rate of synchronisation is a very important aspect as real-time data 

synchronisation is considered to be a must for DTs in Industry 4.0 manufacturing. 

However, in the built environment, and following the nomenclature by Park et al. (2020), 

the periodical building and infrastructure inspections appropriate for long-term 

monitoring could be categorized as “footprint synchronisation”, in which 

synchronisation is carried out at uniform intervals and all the time-series historical data 

is aggregated and synchronised. However, for anomaly detection, simulation update 

and real-time operational optimisations it is more appropriate the “snapshot 

synchronisation”, in which only data regarding a certain point in time is synchronised 

on demand.  

The SHM must be provided monitoring data in a way that can be integrated within data 

models that can guarantee interoperability among digital systems. Interoperability 

can be defined as the ability to effectively, accurately, and consistently communicate 

and exchange information, within different information technology systems. The most 

widely used data model in the construction sector is the Industry Foundation Classes 

(IFC). However, IFC does not have yet the capabilities required to fully describe asset 

operations and to enable asset condition monitoring (Davila et al. 2017).  

In addition, as the digital and the physical part of the DT rely on the existence of the 

sensors, to guarantee the correct communication, there should be some kind of 

automatic check of the data reliability. This must integrate procedures to automatically 

detect outliers and how some non-expected data can be interpreted as a malfunction 

of the monitoring system itself rather than as a malfunction of the physical twin. 

Therefore, auto-checking is another requirement of DT to SHM. 

Although different data can have different quality metrics, such as damaged pixels for 

image data and lost signals for sensor readings, a quantitative assessment can 

generally include metrics in three aspects, i.e. missing values, erroneous values, and 

conformance to standards in terms of naming convention, units, and scale. Then, a 

score can be computed to represent data quality by weighted summing the metrics. 

Furthermore, to reach a balance between data quality and costs and time to collect 

data, a quality threshold for different data can be setup so that only data reaching the 

threshold can be fed into relevant applications. The threshold can be determined based 

on relative importance of the building, its components, and intended applications. 

Examples are already available on the link of DT and SHM for operation and 

maintenance decision-making. Shim et al. (2019) presented a design concept for a 

digital twin-based maintenance system for bridges. The method is based on image 

processing of inspection records. Surface damage detection is automatically 

performed, and feedback in technical format can be sent to the information system in 

real time. In Lin et al.(2021), it is shown how with only acceleration and displacement 

transducers it is possible to build a DT of a long-span cable stayed bridge by carrying 

out a series of shake table tests in an scale model of the Sutong bridge in China. The 

DT consists of an updated FE model of the initial drawings. This study suggests that 

with the advance of FE modelling, structural health monitoring and model updating 

techniques, the digital twin technology can be used for fragility analysis-based seismic 

performance assessment of long-span cable-stayed bridges. To accurately assess the 

seismic collapse of a long-span cable-stayed bridge, the digital twin should be the 

nonlinearly updated FE model using the latest response data recorded by the sensory 

system installed on the bridge.  
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4.1.1 Wireless sensors networks 

 

Sensors network can be wired or wireless. Wireless systems use basically the same 

measurement devices (or transducers) as wired systems, but they use a transmitter 

and receiver system instead of lead wires. The key difference is that in wireless 

sensors network (WSN), sensors work independently while data transferring is based 

on wireless communication techniques rather than cables. It is recognized that WSN 

is easier to install and maintain, more stable, and more cost-effective in the long-term 

(Zhou et al. 2019). Due to their high installation costs, wired sensor networks are 

generally only feasible for long-term monitoring. WSNs has gained research interest 

due to its ability to reduce the costs associated with the installation and maintenance 

of SHM systems. However, in practice, the wired system is still implemented more 

widely because WSN faces several technical challenges that can affect its reliability 

and data quality, mainly for long-term SHM, e.g. the lack of power supply, distributed 

sensors control, and unstable sensor communication (FHWA 2014). 

Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, 

and wireless communications capabilities. WSN system is applied in the data 

processing phase for SHM (Figure 4.1). These sensors can communicate either 

among each other or directly to an external base-station.  These wireless architectures 

send data of reduced size at specific time intervals (synchronous mode) or 

asynchronously to specific events. These systems are very versatile and require a 

synchronization system for the time base to be common to all sensors. According to 

the communication network type (single-hop and multi-hop), sensor nodes can 

transmit the measured data either directly or by forwarding data packets of each other 

to the base station. Base station is a device, which has much higher communication 

capabilities, more memory, and much higher processing power than the wireless senor 

node. It usually acts as a gateway to other sensor nodes, which receives and sends 

data between sensor nodes and remote user. 

A diagram showing the process of SHM using WSNs is presented in Figure 4.2. 

 

 

Figure 4.1: Architecture of SHM system using WSN (Abdulkarem et al. 2020) 
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Figure 4.2: SHM using WSNs (Noel et al. 2017) 

 

WSN refers to a collection of distributed and dedicated sensors for monitoring and 

recording conditions of environments, equipment, structural response. The sensors in 

WSNs are called nodes and they measure environmental conditions such as indoor 

temperature and relative air humidity, structural conditions such as acceleration, strain, 

displacement, etc. This raw data is processed to extract features for performance 

monitoring. The typical architecture of a sensor node is shown in Figure 4.3. 

The main issues when deploying WSN for SHM are the time delay, scalability, 

synchronization, and energy consumption.  

Time delay requirements depend on the type of SHM implemented. In the case of 

long-term monitoring the requirement is not so strict. In fact, a time delay of, for 

instance, 10 hours to collect, process and aggregate data at the base station can be 

acceptable as long as data transmission is reliable. However, this is a real issue when 

the SHM is intended to monitor a sudden event hampering the structure, as an 

earthquake or other natural disaster. 

 

 

Figure 4.3: Sensor node block diagram ((Abdulkarem et al. 2020) 

 

Scalability is a network’s ability to grow in size while continuing to provide a quality of 

service that meets application requirements with an acceptable complexity. Ensuring 

scalability is particularly challenging in WSNs for SHM due to the huge quantity of data 

collection and transmission required. Scalability depends on several factors: data 

transmission rate, data storage availability, power consumption, time-synchronization 
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error, and processing algorithms. In general, a network can successfully scale as long 

as the maximum network node time-synchronization remains below 120 microseconds. 

The requirement of scalability for a monitoring system can be better achieved by WSNs. 

Wireless sensor networks allow for a distributed processing instead of a centralized 

processing normally used with wire-based systems. As presented in figure 4.4, in WSN 

data processing can be done in 3 different ways: centralized, local or cluster-based. 

The selection of the processing method is mainly based on the type of damage 

detection technique used for the structure. However, other factors should be also 

considered. For instance,. centralized processing is the data processing technique 

typically used in WSNs for SHM. If delay is an issue, centralized processing should be 

avoided. An advantage of local processing over cluster-based processing is that it 

improves network robustness (the failure of a sensor node does not mean the failure 

of the complete network). In clustering, sensors nodes are grouped into clusters and 

each cluster has a node designated as the cluster-head (CH). In a given cluster, all 

nodes, except for the CH, can only communicate with the CH. The CH can 

communicate with all nodes in its cluster and nearby CHs. Clustering improves 

scalability, simplifies routing, and extends the network lifespan.  In general, the primary 

goal of using cluster-based processing is to reduce the overall network energy 

consumption and improve the scalability. 

 

 

Figure 4.4: Network Data processing types (Noel et al. 2017)  

 

In addition to the sensor nodes, WSNs consist of gateway nodes that act as the bridge 

between the local sensors and the remote applications such as cloud hosted 

databases and online web pages that visualize data. In recent years, WSNs gained 

attention due to the emergence of IoT and proliferation in MEMS technologies. 

Synchronizing and transmitting massive amount of data in WSNs are considered to 

be a real challenge due to limitation of battery and data rate related to sensor node. 

Time synchronization between the sensor nodes is crucially important for accurate 

vibration-based damage identifications.   It is more or less accepted that the maximum 

node time synchronization error must be below 120 μs. WSNs for SHM have similar 

quality of service requirements to normal WSNs except that network time 

synchronization errors must be minimized. Time synchronization error depends on 
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clock synchronization errors, non-simultaneity in sensor start-up, differences in 

sampling frequency and non-uniform sampling intervals. 

The practice of performing SHM algorithms directly on the sensor node can be used 

to save considerable energy within WSN by taking the advantage of inherent local 

processing that is performed within the embedded microprocessor of the sensor node. 

Transmitting data requires more energy consumption than processing data. To 

reduce network data traffic and energy consumption, it is important to consider 

challenges associated with employing distributed data processing in WSN in 

conjunction with requirements of SHM algorithms. Data transmitting and energy 

consumption can be highly minimized by performing the data processing in the sensor 

node.  Energy efficiency is reduced by high volume of data collected and transmitted. 

Significant data reduction can be achieved by distributing processing throughout the 

network as opposed to centralizing processing at the base station. Another way of 

energy saving is the so-called event-based wakeup scheme or time-triggered sampling 

mode. The sensors are normally maintained in the sleep mode, and they start 

measuring when the signal level reaches some targeted threshold (as an example, 

sensor node only wake-up when the moving average of the vibration signal exceeds a 

pre-defined wake-up threshold). However, one of the challenges of purely event-based 

wakeup schemes is ensuring synchronicity between sensor nodes. Finally, energy 

harvesting techniques (4.1.2) have the potential to greatly improve WSNs lifespan. To 

date only a small number of WSNs for SHM have employed energy harvesting systems 

to extend network lifespan and optimize network design. 

A comprehensive review of academic wireless prototypes and commercial wireless 

platforms used for SHM is available in Abdulkarem et al. (2020). MEMS sensor node 

is called mote, which can be considered the most popular commercialized platform. 

There are several alternative low-cost platforms that are used for SHM application 

instead of existing commercial wireless platforms. For instance, Arduino is an open-

source microcomputer platform that provides several board variants. 

A practical example of a wireless smart sensor network for vibration-based structural 

health monitoring can be found in Navabian et al. (2020) 

The sampling rates normally required for successful SHM (around 100 Hz), increases 

the amount of collected data and, consequently, the amount of data aggregated, 

processed and transmitted in the overall network, that may be taken into account when 

designing a WSN.  

 

4.1.2 Energy harvesting 

 

In the same way that sensor data can be transmitted wirelessly, it is also interesting to 

get energy for the SHM system without the need to use direct connection to power grid 

or batteries. This becomes more important when the sensors are located in remote 

locations or in places with difficult access. The ability to power the sensor nodes 

without wires or periodic battery replacement would allow for fully independent, long-

term sensor nodes. The idea is to get energy from the close environment. In Weaver 

(2011), an extensive literature review on energy harvesting is presented, followed by 

approximate power requirements for an example Wireless Sensor Node. In the case 

of bridges, it also examines the availability of in situ energy on and around a highway 
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and the estimation of theoretical power available from each source. One possibility for 

bridges and buildings is the use of the self-vibration due to the operational loads to 

create energy using piezoelectric materials.  

 

4.1.3 Data storage 

 

Image and sensor data needs to be transferred to and hosted in an operational 

database on a server. This can be a physical server on site or a cloud-hosted server. 

The server specifications and data storage requirements need to be assessed with 

reference to the estimated expected data volumes. In this sense, requirements for data 

storage from a DT approach has two main aspects: 

1. Historic data: Where the DT is required to provide a damage detection and 

prognosis of future performance, first the un-damaged state of the physical asset 

performing in a correct way should be appraised. In some cases, this can require a 

large volume of data, mainly when the identified damage features are sensible to 

environmental conditions (temperature, humidity). This requires the collection and 

storage of data involving long periods of time, at a minimum one year to reflect all 

possible environmental scenarios.  

For a single sensor channel, Table 4.1, taken from CIRIA report shows approximate 

typical data volumes which could be expected at different sample rates. These are the 

volumes required for data that is present in an operational database on a server.  

Table 4.1: Typical volumes of data from a sensor ( from CIRIA 2020 ) 

Sample rate Rate per day Date per month Date per year 

1 reading per hour 7 kB 0.21 MB 2.6 MB 

1 Hz 25 MB 0.75 GB 9 GB 

10 Hz 253 MB 7.5 GB 90.2 GB 

100 Hz 2.47 GB 75.2 GB 902 GB 
 

Based on current technology, an example large SHM system with a high proportion of 

dynamic sensors (sensor channels with data saved at 100Hz for some of the time, 

related to specific high wind or traffic events), would be estimated to produce an annual 

volume of data in the range 36TB to 600TB, depending on how much dynamic data is 

stored (CIRIA 2020). 

2. Real-time data: As the DT should react in real-time to the changing conditions of 

the physical asset, the huge amount of data must be also processed in real-time, what 

derives on low amounts of data to be stored. Once the data is gathered, processed 

and transferred to the digital twin, this data can be already abandoned or archived  and 

the storage capacity provided for a new set of fresh data.   

Different data types need different formats. Most formats (e.g. .csv and .pdf) are 

common and traditional formats, while new formats, such as .hdf5 and .ifc, are being 

increasingly adopted. The former is good at handling massive SHM data. The latter 

can encode geometric (e.g. geometry of components and damages) as well as some 

semantic data (e.g. condition indexes) in BIM (Huthwohl et al. 2018 ). 
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4.1.4 Interoperability between different SHM systems 

 

With the increasing diversity of data types, a standard and software neutral schema is 

necessary to integrate and share data efficiently. Thus, Industry Foundation Classes 

(IFC), which is based on EXPRESS and STEP language and is originally designed for 

buildings, has been borrowed in the bridge sector. Continuous efforts are made to 

extend IFC for bridge projects (Huthwohl et al.2018, Zhang et al. 2016). Huthwohl et 

al. showed how in three steps, IFC in its latest version provides sufficient functionality 

to serve as a basis for integrating relevant defect information and imagery coming from 

standard bridge inspections. This is achieved by standardizing type defects and 

properties from existing bridge inspections manuals from different countries, modelling 

these defects entities as objects, modelling their properties and their relationships, and 

mapping to appropriate existing IFC entities.  

The latest IFC schema can encode various data for bridge O&M (e.g. alignments, 

geometry and structure conditions) and can be converted to XML (i.e. ifcXML). 

However, Transportation Agencies can take different approaches to organize bridge 

components. The bridge can be divided into components (e.g. girder and deck) or into 

finite elements (Masahiro and Takashi, 2013). These requirements can affect the way 

that inspection data are recorded. Thus, it is crucial to ensure that data schema 

matches the monitoring and inspection procedures to smoothly integrate the data into 

the database. 

Although studies are beginning to apply .ifc format and extend schemas (e.g. XML and 

IFC) for bridge operation and management, they mainly encode geometry and 

structured data and only recently begin to cover semantic and unstructured data (e.g. 

inspection results). However, many data types are not covered, especially those that 

are usually not included in digital models (e.g. environment and traffic data in bridges) 

or those that are difficult to represent by a structured format (e.g. topology of bridges). 

Such data can be critical for maintenance applications. Hence, the lack of neutral 

formats and schemas can hinder these applications if needed data are not integrated 

to enable relevant functions. 

Davila et al. (2017) discusses the issue of integration of sensor data into BIM. The 

paper explains the modelling of structural performance monitoring systems in a 

Building Information Modelling (BIM) environment and how this permits sensor data to 

be visualized directly on BIM models. It is concluded that the data model standards are 

not yet sufficient to describe monitoring systems and processes, and there are no 

formalized directives or standards to manage and visualize sensor data in a BIM 

environment. The case study shown in the paper explains how to facilitate more 

streamlined approaches to structural monitoring and data management and allow for 

a quick interpretation of general trends in structural behavior. 

 

4.1.5 Systems for operational monitoring in buildings 

 

In residential and industrial buildings, apart from the need of a correct structural health 

monitoring, it is also of importance the monitoring of the correct functional performance 

to provide correct live standards to their residents and users. Sensing technologies are 

essential to data-driven O&M of buildings. In buildings, data is available on: 
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1. Computerized Maintenance Management Systems (CMMS) which are intended to 

handle emergency work-orders and occupant service requests. They include 

frequency of thermal complaints, HVAC frequency failure among others 

2. Building Automation Systems (BAS): temperature, humidity, CO2, airflow, 

occupancy sensors, valves, dampers 

3. Lighting control systems: can be used for energy efficiency analysis and 

improvements    

4. Metering: the meter data types can include utility meters (e.g., electricity, natural 

gas, water) and sub-meters for end-uses (e.g., lighting, plug loads, heating, cooling). 

5. Access control and security camera networks. These networks in office buildings 

can monitor the entry/exit events at the doors, stairwells, and elevators, and in turn, 

can help characterize the occupancy patterns. For example, the occupancy count can 

be estimated from access cards such as RFID (Radio Frequency Identification) tags 

and magnetic stripe cards. Security camera networks are increasingly designed with 

built-in computer vision capabilities – which are primarily intended for intrusion 

detection. However, these security cameras can also be used as computer vision-

based image processing sensors to estimate the building or floor level occupancy 

counts. 

6. IT networks also provide insights into building occupancy patterns. The Internet of 

Things (IoT) systems such as networks of mobile devices and wearables are also 

emerging data sources to monitor thermal comfort, indoor air quality, and occupancy 

patterns. 

7. Human Resources (HR) databases can provide insights into occupant comfort, 

satisfaction, and productivity. For example, metrics inherent in HR databases such as 

sick days, absenteeism, and employee performance assessments can be analyzed in 

tandem with indoor environmental quality indicators. 

 

In this context, a monitoring framework based on BIM and IoT was implemented by 

Kang et al. (2018), providing a comprehensive view of the buildings' state and 

improved information utilization efficiency. Fargnoli, et al. (2019) integrated BIM-based 

approaches in a Product-Service System context to improve the management of 

building equipment O&M, and they implemented the framework for elevators of an 

existing building. 

 

4.2 NON-CONFORMANT PERFORMANCE: DAMAGE DETECTION 

 

Damage and abnormal performance detection are the objectives of a SHM system. In 

the case of a physics (model)-based approach for the digital twin, it is necessary that 

the geometry of the asset and the deployment location of the sensors are known with 

a high accuracy. Otherwise, the comparison of the response of the virtual and physic 

twin will not be accurate enough and this can derive on wrong decision-making. In the 

case of data-driven models this requirement is not so important as the damage 

detection method does not need to consider a physic-based model.  

Classification for damage identification techniques distinguishes between methods 

used for continuous monitoring of structural performance and methods applicable to 
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the detection of damage, caused by extreme events. For example, a system that uses 

continuous or periodical accelerometer measurements from sensors located 

permanently to a bridge is different in terms of instrumentation and data acquisition 

requirements from a system that does not acquire data except during and immediately 

following an earthquake or a hurricane. It should be noted that the primary distinction 

between these situations are the sensors and data acquisition system requirements. 

However, the same kind of analytical techniques can be applied to the data to 

determine the integrity of the structure 

 

4.2.1 SHM systems for crack detection 

 

Electrical properties of cementitious materials can be used to detect and locate defects 

such as cracks in concrete. 

Options for direct sensing of crack damage include piezoelectric and acoustic 

techniques that are based on the analysis of wave propagation in the structure. By 

using active sensors (that serve as wave emitters and receivers) and by performing 

the appropriate analysis, it is possible to detect and localize cracks 

Yao et al. (2014) summarize the knowledge about cracking in concrete and steel and 

its sources, review both existing and emerging methods for crack detection and 

characterization, and identify the advantages and challenges for these methods. Two 

sensing approaches (direct and indirect) and two data analysis approaches (model-

based and model-free or data-driven) are identified to envelop all existing technologies 

for crack detection.  In direct sensing, the crack is detected and localized directly as 

an unusual change in the output from the sensors affected by the crack. Typical 

examples of technologies that enable direct sensing include discrete strain sensors 

(electrical or fiber optic, short gage, or long-gage), distributed strain sensors (electrical 

or fiber optic), wave monitoring sensors (acoustic emission and wave propagation 

sensors), and eddy current sensors. Discrete sensors (electric or fiber optic, short-

gage, or long-gage) that are sparsely spaced in real structures may suffer from 

insufficient spatial coverage. This can be solved by using distributed optical fiber 

sensors (DOFS). 

Indirect sensing methods are based on measurements made by sensors that are not 

necessarily in direct contact with damage (e.g., accelerometers, strain sensors that are 

not at the location of the damage, remote sensors, etc.). As opposed to direct sensing 

where the damage is detected directly as a noticeable change in output signals of 

affected sensors, in the case of indirect sensing, the sensors usually do not manifest 

noticeable changes in output signals. Consequently, the recorded data must be 

analyzed using various classes of sophisticated algorithms in order to ascertain crack 

detection and perform crack characterization by data mining. Two approaches in data 

analysis are identified: model-based and model-free (data-driven). The main 

challenges for the application of model-free approaches are related to its sensitivity to 

noise generated by loading or environmental variations and the lack of supervised 

training for algorithms. Both challenges can lead to false positive and negative 

detections of cracks, which reduces the reliability of such methods in real-life settings. 

For instance, in bridges, various methods have been applied to identify existence and 

location of damages objectively and accurately, including statistical approaches, e.g. 



D5.1 SHM Digital Twin Requirements 

 

  

 73 

 
 

regression, hypothesis testing, and regularization (Pan and Yu 2019), and supervised 

ML models, e.g. SVM, and ANN (Pan et al. 2018). Unsupervised ML, e.g. k-means 

clustering, can also be applied to detect damages or categorize damages so that the 

thresholds are determined more objectively (Omar et al. 2018). In some cases, control 

charts are used to facilitate data analysis by enhanced visualization of the mean, upper, 

and lower limits of responses (Chen and Durango-Cohen 2015). 

 

4.2.2 Damage and non-conformant performance detection in buildings 

 

In buildings, the detection of anomalies (malfunctions) for asset monitoring is 

challenging and problematic due to the high degree of system complexity and large 

scale and the number of components in this highly integrated system. Various tools 

and systems have been developed to improve O&M management, such as 

Computerized Maintenance Management Systems (CMMS), Computer-Aided Facility 

Management (CAFM) systems, Building Automation Systems (BAS), and Integrated 

Workplace Management Systems (IWMS) (Sapp 2015). But it still requires significant 

effort and time for facilities management (FM) professionals to extract the diverse O&M 

information they need (e.g., data within CMMS, specifications, 3D models). CMMS, IT 

network, access and security control, and HR databases can provide insights into 

traditionally unmeasured quantities regarding occupancy, occupant behaviour, 

perceived comfort, satisfaction, and productivity. However, there is still a lack of an 

integrated platform that could manage information distributed in different databases 

and support various activities in O&M phases. 

IFC is not well suited for asset condition monitoring in the built environment. For this 

reason, Lu et al. (2020b) presents a DT-based anomaly detection system and an 

appropriate method of data integration based on the extension of IFC. A case study is 

presented related to centrifugal pumps in the heating, ventilation, and air-cooling 

(HVAC) system. The proposed DT-based anomaly detection methodology can carry 

out a continuous anomaly detection of pumps.  

Non-conformant performance is checked when change points are detected where the 

generative parameters of the building operational data sequence drift. Combined with 

the external building operation information, real anomalies that result from asset 

failures could be filtered as the trigger for following-up early warnings. Generally, the 

anomaly detection of asset monitoring for O&M management requires cross-

referencing of multiple data sources for building facilities information. A comprehensive 

solution is necessary for streamlining anomaly detection, in which data interoperability 

and reusability need to be significantly enhanced. Digital Twins (DTs) are considered 

to be such a comprehensive solution. 

For point anomaly detection, the so-called normal operation conditions (baseline) 

must be defined based on either historical operation data or simulation models, which 

serve as baselines and are thereafter compared with current behaviour to detect 

anomalies. Typically, process history-based methods are extensively adopted 

because they depend on the past building operational data without requiring any 

physical interpretation of the systems. Moreover, their data-driven nature makes these 

methods extremely easy and inexpensive to implement, as long as data satisfying 

quality requirements are available. 
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Change point detection is a form of contextual anomaly detection, which looks for 

abrupt variations or change points in the generative parameters of the building 

operational data sequence. More precisely, the found change points could be 

suspicious candidates for anomalies but not necessarily need to be an anomaly, 

serving as an early warning symptom for the problem within the underlying building 

system. Cross-referenced external contextual information must be integrated to help 

determine whether the detected change point attributes to the normal condition 

variations or emerging anomalies. However, the workflow and information exchange 

behind the cross-referencing process is very complex. Fortunately, DT of buildings is 

a solution that integrates multiple fragmented data sources and thus greatly enhances 

the data availability for buildings (Gunay et al. 2019). With the help of the DT model, 

normal operating condition changes could be excluded, leaving only the suspicious 

anomalies that help facility managers identify the problems as early as possible. 

Effective data integration through information sharing is a critical factor in achieving 

effective anomaly detection, especially for excluding change points caused by normal 

operating condition changes, to avoid any false alarms. The fragmented nature of 

building data sources presents a challenge in developing a valid anomaly detection 

strategy. 

The O&M data is usually saved in different formats. It thus requires great efforts and 

time for FM staff to extract the diverse and scattered O&M information required. A 

unified and standardized data schema is needed for information integration and 

achieving smart asset management in the O&M phase. Because of the flexibility and 

consistency of IFC schema in the building lifecycle, IFC schema is the most suitable 

and fundamental data schema for wider BIM implementation and information 

integration 

 

4.2.3 Vibration-based damage detection 

 

Avci et al. (2021) present a complete review of vibration-based damage detection 

techniques in built assets. Their main contribution is the description about the transition 

from traditional methods to Machine Learning and Deep Learning methods. Some of 

the main conclusions obtained from the analyzed techniques are as follows: 

1.- Machine learning techniques are based on feature extraction and feature 

classification. For this reason, the ML-based methods are more generic and 

advantageous than non-ML based methods in vibration-based structural damage 

detection in civil structures. 

2.- Modal parameters (frequencies, mode shapes and damping) are not recommended 

as damage-sensitive features in ML-based methods as they are low sensitive to certain 

types of structural damage and because of their sensitivity to environmental and 

operational effects.  

3.- Convolutional Neural Networks (CNN) are able to detect and locate damage directly 

through the raw acceleration time-histories without any need for data preprocessing or 

hand-crafted feature extraction. 

Because ambient excitation is always present, the techniques used for identification of 

modal parameters only based on structural responses (OMA: Operational Modal 
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Analysis) can be applied to continuously process time series acquired by a permanent 

installation of a set of accelerometers. The processing of data collected by dynamic 

monitoring systems with the aim of identifying structural deficiencies comprehends not 

only the identification of modal parameters but also removal of the environmental and 

operational effects on natural frequencies and mode shapes 

Damage detection based on Machine-learning techniques does not conflict with 

model-based methodology. The output of ML can be incorporated into the structural 

analysis model and improve the accuracy of the model-based approach. The final goal 

of ML is to achieve unsupervised damage detection with self-learning ability.  

In the last years, there has been significant research which shows that data measured 

on a passing vehicle contains valuable information about the bridge condition. These 

methods are so-called “Drive-by” bridge monitoring in which sensors are installed 

on vehicles and used to infer information about the condition of a bridge as they pass 

over it (Malekjafarian et al. 2015). Mei et al. (2019) proposed an indirect damage 

detection method based on mel frequency cepstral coefficients to detect multiple 

damage states on a lab-scale bridge-vehicle model. They showed that the damage in 

the bridge model could be identified using the sensors deployed on a car model even 

if the speed, weight, and suspension of the car were varied between experiments. 

Hester and González (2017) discuss the merits and limitations of using drive-by 

monitoring to detect localized damage in a bridge. Yang et al. (2020) present a 

comprehensive review of the different vehicle-based methods for damage detection in 

bridges, jointly with their main advantages and disadvantages and applications of the 

techniques to highway bridges and railway tracks.  

 

4.3 PREDICTION OF FUTURE PERFORMANCE 

 

A successful damage prediction model would require the assessment of the structure’s 

current health, a forecast of the structure’s load, and a computational tool able to 

describe the behavior of the given structure. The computational tool can be either 

model-based or data-driven based. In any case, predictive loading model (including 

environmental effects) requires additional sensors to describe loads and, consequently, 

additional data collection, aggregation, and processing requirements. The predictive 

model itself would further increase networking and data processing, which may be 

challenging for WSNs due to the huge increase on the amount of data to deal with. 

 

4.3.1 Model-based 

 

Finite Element (FE) models are the most common approach to embed data and 

mechanical models into software, which automates computation while simulate and 

visualize damages, modal properties, and deterioration processes and can model the 

future performance of the construction. FE models are usually created according to 

structure´s profile data, e.g. drawings and 3D models. However, initial FE models have 

discrepancies with reality. Therefore, they should be updated before being used for FE 

analysis, using actual SHM data or structure´s profile collected by NDTs (e.g. LiDAR 

and LDV). (Dai et al. 2014). The updating process can be improved by sensitivity 
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analysis and optimizing algorithms, e.g. GA, which can find optimal parameters that 

minimize the difference between reality and FE models.  

 

4.3.2 Data-driven based 

 

The work by Tibaduiza-Burgos et al. (2020) presents a review of data-driven algorithms 

for damage identification in structural health-monitoring applications. The review 

covers damage detection, localization, classification, extension, and prognosis. It also 

includes information on the types of sensors used as well as on the development of 

data-driven algorithms for damage identification. 
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5 CASE STUDIES: DEMONSTRATION PROJECTS FOR BRIDGES 

AND BUILDINGS 
 

5.1  DESCRIPTION OF CASE STUDIES 

 

5.1.1 DEMO#1: BRIDGES IN HIGH SPEED RAILWAYS NETWORKS. 

 

Alta Velocidad Española (AVE) is a service of high-speed rail in Spain operated by 

Renfe, the Spanish national railway company, at speeds of up to 310 km/h (193 mph). 

AVE trains run on a network of high-speed rail tracks owned and managed by ADIF 

(Administrador de Infraestructuras Ferroviarias). The first line was opened in 1992, 

connecting the cities of Madrid, Córdoba and Seville. Unlike the rest of the Iberian 

broad gauge network, the AVE uses standard gauge. This permits direct connections 

to outside Spain through the link to the French network at the Perthus Tunnel. AVE 

trains are operated by RENFE, but private companies may be able to operate trains in 

the future using other brands, in accordance with European Union legislation. Alta 

Velocidad Española translates to "Spanish High Speed", but the acronym also stands 

for the word “ave”, meaning "bird". Figure 5.1 displays the network at February 2021 

in which “in service”, “under construction”, “projected” and “in partial service” branches 

are highlighted. 

 

Figure 5.1: High Speed Railway Network. Spain. February 2021. Source Wikipedia  

 

The branch of the Highspeed Railway; Madrid-Bajadoz has been under construction 

in recent years. It is supposed to connect in the years to come two major European 

cities in nearly 3 hours by train: Lisbon and Madrid. The map provided in Figure 5.1 

shows its specific location. Its origin is some 50 kilometres South of Madrid and then 

the line goes South-West direction towards Badajoz. Presently, it has been built only 
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on the Spanish side. The length of the double line from Madrid to Badajoz is 437 

kilometres and it includes several viaducts, bridges, and tunnels. European funds 

(FEDER) under the challenge of sustainable transportation helped develop this 

strategic infrastructure. Figure 5.1 displays a schematic overview of the major stations 

connected by the line. 

The branch of the Highspeed Railway; Plasencia-Bajadoz is expected to open in the 

years to come. Presently, works on the mechanics, electrics, services, and other 

necessary infrastructure are being finished. The railways as well as major 

infrastructure are being tested and monitored. The Spanish design and engineering 

firm GEOCISA, which is a collaborator in ASHVIN, is currently performing systematic 

load tests on the bridges belonging to this branch. The company has access to load 

tests of more than 15 bridges of different sizes. The bridges vary in type from simple 

underpasses to complex arch bridges, including a top-5 world record defined by a 

concrete arch (Almonte Viaduct). Geocisa has provided access to the documentation 

of those assets. 

These routine load tests are meant to verify standards on the design and construction 

of the bridges. Load tests consist of the development of a structural model representing 

a realistic load that is put on the bridge. Measurements related to the response of the 

structure when subjected to those loads are taken and compared. If results are within 

tolerances, the bridge is considered as acceptable for operational stage. 

The load tests represent an ideal milestone for twinning bridges. On the one hand, 

specific, bespoke structural models are performed. On the other hand, measurements 

quantifying the structural response are taken. If both results are matched using not 

only basic comparisons but comprehensive digital twinning, the asset enters the 

service phase not only physically, but also virtually. The demonstrator #1 is aimed at 

establishing requirements, procedures and for the generation of the most realistic 

virtual replica of the physical bridges that can be used during operation. Presently, 

current numerical methods focus primarily on the virtual reproduction of the assets. 

Models are generally calibrated with existing laboratory or real tests. The twinning of 

these bridges also includes the integration of data from sensors for model updating or 

hybrid simulations within the realm of such simulations. A close inspection of the pool 

of bridges has already been given. Together with Geocisa, documentation of all assets 

has been studied. Among all bridges, three assets have been selected for 

implementation of the ASHVIN set of measurements, from which two are shown in 

Figure 5.2. In Table 5.1 the overview of implemented SHM systems for Demo#1 are 

presented, which are integrated into ASHVIN DT platform.  

   

Figure 5.2: Valdelinares Viaduct (left) and La Plata Viaduct (right)  
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Table 5.1: Planned measurements for demonstration site #1. 

 

Type of  

data 

Device/sensor  Rate Volume Data 

format 

Data collecting1 

 

Storing of data 

Deflection at 

midspan and 

displacement 

of supports 

LVDT +- 5 mm 100-to-200 

samples per 

second 

2-3 Hours of 

continuous 

measurement 

Txt Data from sensors is sent 

using a HBM MGCPlus 

data logger. 

Locally and then sent 

to the Mainflux 

platform. 

 Inclination  WitMotion WT901B 

TTL 

100-to-200 

samples per 

second 

2-3 Hours of 

continuous 

measurement 

JSON  Data is directly sent to 

Mainflux using a MQQT  

Directly to Mainflux 

Format 

 Acceleration BeanAir (MQQT 

Protocol). ADX345 + 

ESP32. Netplus 

100-to-200 

samples per 

second 

2-3 Hours of 

continuous 

measurement 

.txt Data is directly sent to 

Mainflux using a MQQT  

Directly to Mainflux 

Format 

 Environmental 

conditions 

(Temperature 

and Humidity) 

 DHT22 1 samples per 

minute 

2-3 Days of 

continuous 

measurement 

 JSON Data is directly sent to 

Mainflux using a MQQT  

Directly to Mainflux 

Format 

Deflections 

(remote 

sensing) 

Interferometer 200 samples 

per second 

Episodic Point Cloud A radar interferometer is 

owned by the company 

GEOZONE which 

collaborates with 

Geocisa.  

Locally, treated and 

subsequently sent 

to Mainflux 
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5.1.2 DEMO#2: RESIDENTIAL BUILDING IN POLAND 

 

This demonstration building is a typical example of the residential building that needs 

intermediate renovation activities. This two-storey building was constructed in 1921, it 

has 7 flats and 16 building occupants, it is located in Gdynia in Poland. It is a public 

building that has a function of social housing. The building is owned by the City of 

Gdynia, the unit that is responsible for the building management is the Municipal 

Buildings and Housing Administration of Gdynia. The living area is 260m2 and the 

heat is generated by the tiled stoves (for coal and wood). The building envelope is not 

insulated. The building has very low energy performance estimated as 689 kWh/m2 

year, see Figure. 

 

 

Figure 5.3 Gdynia. Residential Building 

Building refurbishment aims to protect the building from heat loss and to drastically 

reduce the energy consumption needed to heat the building and to heat the water. In 

the vast majority of cases, excessive heat loss is one of the reasons for the high 

operating costs of buildings. These are the result of poor insulation of external walls, 

leaky windows and insufficiently efficient heating systems. That is why many buildings 

need to be renovated (in some cases need to undergo the deep renovation). 

Renovation activities contribute to reduction of the energy demand of a building. 

Building refurbishment concerns already existing buildings, which due to their age and 

technical condition do not meet modern requirements. This is caused by the fact that 

before, the regulations were not as strict as they are now, and the construction process 

was focused on savings rather than heat loss aspects.  

Municipal Buildings and Housing Administration of Gdynia has only old paper 

documentation and this slow down the decision about the renovation. There is no 

information about the existing building technical and energetic condition. In addition, 

the housing administration has neither a license for commercial computer-aided design 

(CAD) nor building information modelling software. 

ASHVIN should provide accurate digital twin information of existing building as 

a baseline for better planning of the renovation process. The goal is to support 

the building owner and develop a digital twin that accurately describe the 

energetic behavior of the building. This allows the Investor to select the most 

suitable and adjusted to the building condition renovation scenario.  

In Table 5.2 the overview of implemented SHM systems for Demo #2 are presented, 

which are integrated into ASHVIN DT platform. 
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Table 5.2 Planned measurements for demonstration site #2. 

Type of 

data 

Device/sensor  Rate Volume  Data 

format 

Data collecting2 

 

Storing of data 

Temperature, 

humidity, CO2, 

CO, VOC,  PM 

2.5 and PM 10, 

pressure 

Nanoenvi IAQ device 

 

10 min 

measurement 

0.05GBper 

year 

json MQTT Mainflux platform 

Wall 

Temperature 

Thermocouples.  1 

measurement / 

hour 

10 Mb /year JSON MQTT Mainflux platform 
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5.1.3 DEMO#3: ZADAR AIRPORT 

 

Zadar airport is one of nine civil airports in Republic Croatia. It is situated in the middle 

of the Adriatic coast, 7 km east of the City of Zadar (Figure 5.3). Zadar Airport was 

opened in 1969 as an addition to the existing military runway, and with the construction 

of a civilian runway, it became the only airport in Croatia with two runways. The airport 

had a steady growth of traffic during the 1970s and 1980s, when tourism in Croatia, 

and especially in Dalmatia, reached its peak at the time. However, this was abruptly 

interrupted by the war in Croatia in the first half of the 1990s, when the Zadar airport 

was occupied and severely damaged.  

After the war the airport was partially repaired. After the post-war renovation traffic 

grew steadily from 1996 to 2006, from 20.000 to 65.000 passengers. Zadar Airport 

experienced its new rise in 2007 after which it has not only reached pre-war numbers 

but has increased traffic tenfold since its renovation reaching more than 800.000 

passengers. In 2019, just prior to the COVID-19 decline of airline traffic worldwide 

Zadar airport was among the top 5 in terms of traffic growth (+37,6% increase in 

passenger traffic, ACI EUROPE Airport Traffic Report, www.aci-europe.org).  

The Zadar Airport is responsible for transport operating services and maintenance and 

developments regarding airport infrastructure. Traffic infrastructure, which includes all 

operational areas for receiving and dispatching passengers and aircraft, was built, as 

already stated above, almost 50 years ago. In that period there were several partial 

renovations of asphalt surfaces, but no major reconstructions. This means that the 

essential infrastructure of the airport including runways is not in a very good condition 

degrading further rapidly, starting to influence the safety of traffic. In addition to its 

existing runway 04-22 (length of 2000m), the airport is also using all operational areas 

in the military part of the airport (runway 13-31 (length 2500m, width 45m) , tracks A, 

H, F, G and K) Zemunik Air Base (which is an air center for the Croatian Air Force).  

At the Zadar airport the implementation of UAV for the visual inspection of operational 

areas will be explored. The aim is to utilize the UAV for infrastructure inspections, 

which would minimize the impact on airport operations and ensure a full reproducibility 

and traceability of the records over time. The AI algorithms for crack detection will be 

then applied and used for the improvement of the existing decision making and 

maintenance planning of the operational areas. 

In Table 5.3 the overview of implemented SHM systems for Demo #3 are presented, 

which are going to be integrated into ASHVIN DT platform 

 

Figure 5.3: Zadar airport terminal building (left) and runway (right)   

http://www.aci-europe.org/
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Table 1 Planned measurements for demonstration site #3. 

Type of 

data 

Device/sensor  Rate Volume  Data 

format 

Data collecting3 

 

Storing of data 

Images Camera and drone every 3 

months 

~100 GB per 

year 

e.g. jpg, point 

cloud, etc. 

Collected data is stored on 

local server 

Local server and 

Mainflux platform 

Environmental 

data 

(temperature, 

humidity, wind 

Weather station Every hour  open source 

link to xml 

file4 

 

Open source data Meteo.hr 
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5.1.4 DEMO#7: ROAD BRIDGE - BARCELONA AREA 

 

This demonstration site is the PR-04-B015 bridge, that is located within the 

Metropolitan Area of Barcelona (Spain). Its main objective is to connect two main road 

axes: the AP-7 Highway (heading North) and the A-2 Road (Heading West), Figure 

5.4. This connection belongs to a strategic link for users of those axes whose aim is to 

avoid urban areas while crossing the Metropolitan Area of Barcelona. The link helps 

reducing approximately in 12 Kilometers the distance with the present connection 

between roads. It is a strategic asset for transporting goods from Barcelona port to 

northern Europe. The PR-04-B015 bridge is a continuous beam drawn on a 

horizontally curved alignment (Figure 5.4). Two separated viaducts are defined by the 

driving direction (heading North or West). The structures allow bridging a river 

(Llobregat), a creek (Rubi), several roads and a line of railways. Both viaducts are 

supported by 12 piers with varying span. The cross-section is a composite bridge. Box 

section with variable web height (3,5 m-5,0 m) and a concrete slab with varying width 

(11,50 m-17,00 m). Longitudinally, the cross-section is provided with stiffeners and 

transversally, with stiffeners and diaphragms. The total length of the structure is 

approximately 840 meters. 

 

 

Figure 5.4: Road bridge. Barcelona Area 

 

In Table 5.4 the overview of implemented SHM systems for Demo #7 are presented, 

which are integrated into ASHVIN DT platform 
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Table 2 Planned measurements for demonstration site #7. 

Type of 

data 

Device/sensor  Rate Volume Data 

format 

Data collecting5 

 

Storing of data 

Expansion 

Joints 

Laser +- 5 mm 100-to-200 

samples per 

second 

2-3 Hours of 

continuous 

measurement 

Txt Data from sensors is sent 

using a HBM MGCPlus 

data logger. 

Locally and then sent 

to the Mainflux 

platform. 

 Inclination  WitMotion WT901B 

TTL 

100-to-200 

samples per 

second 

2-3 Hours of 

continuous 

measurement 

JSON  Data is directly sent to 

Mainflux using a MQQT  

Directly to Mainflux 

Format 

 Acceleration BeanAir (MQQT 

Protocol). ADX345 + 

ESP32. Netplus 

100-to-200 

samples per 

second 

2-3 Hours of 

continuous 

measurement 

.txt Data is directly sent to 

Mainflux using a MQQT  

Directly to Mainflux 

Format 

 Environmental 

conditions 

(Temperature 

and Humidity) 

 DHT22 1 samples per 

minute 

2-3 Days of 

continuous 

measurement 

 JSON Data is directly sent to 

Mainflux using a MQQT  

Directly to Mainflux 

Format 

Initial 

imperfections 

(remote 

sensing) 

Terrestrial Laser 

Scanner 

Point Cloud. 

Millions per 

hour 

Episodic Point Cloud TLS local collection Locally, treated and 

subsequently sent to 

Mainflux 
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Cameras for traffic 

measurement 

(anonymized)  

DJI Mavic Air 2.  Continuous, 

Slow motion 

(180 FPS) 

- .JPG - local collection Local drive. Post-

processed and 

sent to Mainflux 

Platform 

Cameras for telemetry  DJI Mavic Air 2.  Continuous, 

4K (30 FPS) 

- .MP4 - local collection Local drive. Post-

processed and 

sent to Mainflux 

Platform 

Thermocouples  Low rate 

(0,01 

continuous ) 

- JSON - Data is directly sent to 

Mainflux using a MQQT 

Mainflux Platform 

Space borne data Sentinel 2. Radar Daily 

(Historic) 

 .JPG 

.txt 

Post-processed data is 

sent to Mainflux 

Mainflux and 

Ashvin 
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5.1.5 DEMO#9: MUNICH STADIUM - ROOF 

 

The Olympic Roof in Munich was built for the 1972 Olympic Games and will soon 

celebrate its 50th anniversary. This impressive cable net structure is, both from an 

aesthetic - architectural point of view and as a technical venture, an icon of the 

construction and engineering art of the second half of the 20th century. 

The Olympiapark ensemble is one of the most important event venues and sports 

centres in the south of Germany. 

The Olympic tent roof structure consists of four almost independent and highly 

prestressed cable net constructions (Figure 5.5). In total, the cable net forms a roof 

area of 74,000m2. Prior to the upcoming anniversary, a comprehensive structural 

survey was carried out by sbp (Stuttgart) and Prof. Feix ingenieure (Munich). As part 

of this investigation, a complete static model of the cable net construction was done 

by sbp for the first time since the roof's existence. The core task was to determine the 

existing internal force or pre-stressing state in the cable net structure using novel 

calculation techniques in combination with cable force measurements. 

 

 

Figure 5.5: Munich Olympic Stadium roof 

 

In Table 5.5 the overview of implemented SHM systems for Demo #9 are presented, 

which are integrated into ASHVIN DT platform 
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Table 5.5 Planned measurements for demonstration site #9 

Type of data Device/sensor  Rate Volume  Data 

format 

Data collecting6 Storing of data 

Measurement 

of deflections 

of the cable net 

Terrestrial Laser Scanner - - Point Cloud - Data stored in AIP. 

Images of the 

roof cladding 

(Plexiglas) 

Camera and drone every 3 

months 

~100 GB per 

year 

e.g. jpg, 

point cloud, 

etc. 

Not defined yet not defined yet 

Space borne 

data 

Sentinel 2. Radar Daily 

(Historic) 
 

.JPG 

.txt 

Post-processed data is 

sent to Mainflux 

Mainflux and 

Ashvin 
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6 CONCLUSIONS 
 

The Digital Twin of an asset aimed at maintenance purposes requires a robust and 

distributed source of data along the physical twin able to gather the asset behaviour 

and performance. Ideally, the nature of the incoming data/information   is varied and 

multiple. In addition, like in a nervous system, distributed information can be 

centralized and processed. Therefore, multiple data-gathering techniques are needed. 

DT requires a massive monitoring capacity and often, cost-efficient sensors are 

required. In this document, three sources of data to feed the digital representation of 

the asset have been studied: 

• Sensors 

• Images 

• Remote-sensing techniques 

However, for a good performance of the digital twin, raw data coming from sensors, 

images or via remote techniques should be converted into information that can be used 

for efficient decision-making. To this end, data should be post-processed and 

converted into performance indicators and finally into Key Performance Indicators. 

This can be achieved by an SHM system.  

For each of the aforementioned monitoring techniques, as well as for SHM systems, a 

dissection of requirements for meaningful implementation of a physical asset from the 

built environment in the form of a Digital Twin has been presented in this deliverable, 

leading to the following conclusions. 

Regarding data collection techniques (sensors, radars, scanners, drones, cameras 

etc.), apart from the general requirements of accuracy and robustness, inherent to any 

data collection device, the following specific requirements were identified for an 

efficient implementation into a DT: 

1. Sampling rate 

2. Volume of data 

3. Data format 

4. Data collecting 

5. Data storing 

In addition, in the case of image-based data and remote sensing, replicability of data 

is an important issue. In the first case, image-data implies accurate documentation of 

the spatial location of the camera position or UAV positioning, together with available 

photographic metadata. Concerning remote sensing, replicability issues are also of 

great concern if successive scans are performed in time. Spatial location and referring 

to the point clouds is of an utmost importance too. These requirements have been 

reported and quantified based on their application to several demonstration projects 

dealt with in the ASHVIN project as presented in chapter 5. 

Concerning SHM Systems, specific requirements for DT application were identified as 

follows: 

1. The SHM system should be distributed along the structure / built asset in order 

to be able to monitor as many areas of the physical twin as possible. Redundant 

information is desirable. The SHM should be scalable 
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2. When fast response is required from the DT, the SHM system should be fast in 

gathering and analysing the data. 

3. It is also required to be comprehensive, in the sense that the analysis of the 

gathered data by the SHM system should be exhaustive and able to discover 

any defect even if not thought to be present. 

4. Ability to acquire the signal from a high number of sensors and to generate 

proper input signals to command the response of the DT. 

5. Autonomy of the system regarding possible ways to obtain energy for their 

operation 

6. An important aspect of the monitoring system is the requirement of full 

synchronization between physical and digital assets. 

7. The SHM must provide monitoring data in a way that can be integrated within 

data models that can guarantee interoperability (ability to effectively, accurately, 

and consistently communicate and exchange information, within different 

information technology Systems) among digital systems.  

8. Auto-checking: The system must integrate procedures to automatically detect 

outliers and how some non-expected data can be interpreted as a malfunction 

of the monitoring system itself rather than as a malfunction of the physical twin. 
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