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ABSTRACT 
 

Bridge maintenance is vital to the safety, integrity and cost-effectiveness of any transportation 

system, and, therefore, the detection of early structural changes or damage plays a central role in 

any maintenance programme. Although the condition of the large majority of bridges is assessed 

through periodical visual inspections, these are expensive, scattered in time and prone to error, 

which motivated the wide application of Structural Health Monitoring (SHM), especially in large 

newly built bridges. Hence, the need to define warning strategies and systems to minimize the 

disruption of the network. 

Despite widespread research in this field, up to this date the large majority of applications is 

either based on static responses or ambient vibration. Measuring static responses to generate 

health data cannot characterize the dynamic response, which often has its own unique and 

sensitive correlations to some kinds of damage.  On the other hand, ambient vibration analyses 

are typically based on small-magnitude responses that do not provide local damage-sensitive 

information or fail to excite nonlinearities where the damage might be more observable. 

Transient signals generated by traffic have not been used efficiently and robustly for damage 

identification in railway infrastructures. While such large responses induced by trains might 

create more damage-sensitive information in the measured response, it also amplifies the effects 

on those measurements from the environment. The unique combination of moving-loads imposed 

to these structures during short periods can thus be considered an advantage if appropriate 

analyses are undertaken. 

In this context, this thesis exploits unsupervised data-driven SHM in order to propose a 

continuous online procedure for damage identification based on train-induced dynamic bridge 

responses, taking advantage of the large-magnitude loading for enhancing sensitivity to 

small-scale structural changes. The focus is placed on ensuring robustness and efficiency 

implementing a hybrid combination of time series analysis methods and multivariate statistical 

techniques. The novelty lies in the automatic extraction of compact, meaningful information 

related to the bridge condition under a moving window machine learning methodology that 

allows real-time damage detection with a negligible number of false positive detections. 

Furthermore, the unsupervised character of the procedure proposed herein includes the ability of 
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detecting damage in bridges that already exhibit changed structural conditions, through an 

original definition of a confidence boundary that can adapt to new changes detected over time 

and be ready for the detection of additional ones observed in the near future.  

The strategy analysis and validation allowed concluding that the ability to identify early 

damage, imperceptible in the original signals, while avoiding observable changes induced by 

variations in train speed or temperature, was achieved by carefully defining the modelling and 

fusion sequence of the information. In fact, the strategy proved to be efficient and robust even 

when implementing a latent-variable method, which proved effective in removing the operational 

and environmental effects without the need to measure them. 

The effectiveness of the proposed methodology was tested and validated, using a reliable 

digital twin of the complex bowstring-arch railway bridge over the Sado River tuned with 

experimental data acquired from a SHM system installed on site. The methodology proved robust 

to false detections for a comprehensive set of damage scenarios, as well as sensitivity to smaller 

damage levels (earlier in the structure’s life), even when it consists of small stiffness reductions 

that do not impair structural safety. 

 

Keywords: Railway bridges; Structural Health Monitoring; damage identification; online 

assessment; unsupervised learning; data-driven approach; traffic induced dynamic responses; 

time series analysis; multivariate statistical techniques. 
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RESUMO 
 

A manutenção de pontes é vital para a segurança, integridade estrutural e rentabilidade de 

qualquer sistema de transportes. Neste sentido, a deteção precoce de alterações estruturais ou 

danos desempenha um papel central em qualquer programa de manutenção. Embora a grande 

maioria das pontes seja avaliada através de inspeções visuais periódicas, estas são dispendiosas, 

espaçadas no tempo e sujeitas a erros, o que tem motivado a ampla aplicação de sistemas de 

Monitorização da Integridade Estrutural (MIE), especialmente em pontes de grande vão 

construídas recentemente. Existe, portanto, a necessidade de definir estratégias e sistemas de 

alerta para minimizar a interrupção deste tipo de infraestruturas de transporte. 

Apesar da vasta investigação realizada nesta área, a maioria das metodologias desenvolvidas 

são baseadas em respostas estáticas ou de vibração ambiental. A medição de respostas estáticas 

não permite caracterizar a resposta dinâmica da estrutura, que muitas vezes tem correlações 

únicas e sensíveis a alguns tipos de dano. Por outro lado, análises de vibração ambiental são 

tipicamente baseadas em respostas de baixa magnitude que não permitem extrair informação 

relacionada com danos locais, ou, falham a excitar não linearidades onde o dano pode ser mais 

facilmente observado. Por sua vez, os sinais transientes gerados por tráfego não têm sido 

utilizados de forma eficiente e robusta para identificação de dano em infraestruturas ferroviárias. 

Apesar destas respostas de elevada magnitude induzidas pelos comboios poderem gerar 

informação sensível ao dano, também amplificam os efeitos ambientais nas medições. A 

combinação única e conhecida a priori das cargas-móveis impostas a este tipo de estrutura 

durante curtos períodos de tempo pode, portanto, ser considerada uma vantagem se análises 

adequadas forem implementadas. 

A presente dissertação estuda a MIE não supervisionada utilizando uma abordagem direta 

com base em técnicas de inteligência artificial. O principal objetivo centra-se no 

desenvolvimento de um procedimento online e contínuo para identificação de danos, tendo por 

base as respostas dinâmicas da ponte induzidas pela passagem dos comboios. Pretende-se, deste 

modo, aproveitar o carregamento de elevada magnitude para aumentar a sensibilidade a 

alterações estruturais. A estratégia aqui proposta foca-se em garantir robustez e eficiência 

utilizando uma combinação híbrida de métodos de análise de séries temporais e técnicas de 
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análise estatística multivariada. A inovação deste procedimento está na extração automática de 

informação relevante acerca da condição estrutural das pontes, através da implementação de uma 

metodologia de inteligência artificial aplicada em janelas móveis e que permite a deteção de 

danos em tempo real e com um número residual de falsos alertas. O carácter não supervisionado 

do procedimento aqui proposto inclui a capacidade de detetar danos em pontes que já apresentem 

alterações estruturais, através de uma definição inovadora do limite de confiança. Este limite tem 

a aptidão de se adaptar às alterações estruturais detetadas ao longo do tempo, mantendo-se 

operacional para a deteção de novos danos que apareçam num futuro próximo. 

A análise e validação da metodologia permite concluir que a capacidade de, por um lado, 

identificar danos precoces impercetíveis nos sinais em bruto, e por outro, suprimir a influência 

predominante das alterações induzidas pela variação da temperatura ou da velocidade do 

comboio, é alcançada definindo criteriosamente a sequência de modelação dos dados e fusão da 

informação. A metodologia mostra-se eficiente e robusta mesmo com métodos de variável latente 

que garantem a remoção dos efeitos ambientais e operacionais sem ser necessário medi-los. 

A eficácia da metodologia proposta foi testada e validada através da criação de uma réplica 

digital fidedigna da complexa ponte ferroviária sobre o rio Sado, ajustada com recurso a dados 

experimentais adquiridos por um sistema de monitorização instalado no local. A metodologia 

provou ser robusta a falsos alertas para um conjunto alargado de cenários de dano, assim como, 

sensível a danos de pequena escala, mesmo quando estes resultam de reduções de rigidez muito 

baixas que não colocam em causa a segurança estrutural. 

 

Palavras-chave: Pontes ferroviárias; Monitorização da Integridade Estrutural; identificação de 

danos; avaliação em tempo real; aprendizagem estatística não supervisionada; respostas 

dinâmicas de pontes induzidas por comboios; análise de séries temporais; análise estatística 

multivariada. 
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Chapter 1  

INTRODUCTION 
 

1.1 SCOPE 

The critical dependency of modern societies upon transport infrastructure such as roadway or 

railway bridges and tunnels has motivated active research that aims to reduce the costs of 

inspection and maintenance. A large number of bridges are nearing the end of their original 

design life, and since these infrastructure cannot be economically replaced, techniques for 

damage identification are being developed and implemented so that their safe operation may be 

extended beyond the design basis for service life. Structural health monitoring (SHM) represents 

a promising strategy in this ongoing challenge of achieving sustainable infrastructural systems 

since it has the potential to identify structural damage before it becomes critical, enabling early 

preventive actions to be taken to minimize costs (Farrar & Worden, 2013). The main goal of 

SHM should not be to replace the traditional inspection techniques, but to complement them 

with quantitative information. Proactive conservation strategies based on long-term monitoring 

are increasingly recommended for special structures such as long-span bridges. In fact, 

disruption or even the collapse of a bridge can lead to important and irreversible negative 

consequences for society and the economy. In short, SHM offers economical, efficient and 

intelligent technologies to manage the operation and maintenance of infrastructure, thereby 

improving safety, increasing longevity and reducing maintenance (Figure 1.1). 
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Figure 1.1 – Structural Health Monitoring cycle and its advantages. 

The major challenges and limitations related with structural health monitoring techniques for 

damage identification are mentioned throughout this chapter and identified as important 

motivations for the present dissertation. Along with these limitations, the last sections of the 

present chapter point out the main objectives and original contributions, and sets the outline of 

this thesis. 

1.2 MOTIVATION 

Bridge maintenance is vital to the structural integrity and cost-effectiveness of any 

transportation system, and, therefore, the detection of early structural changes or damage plays 

a central role in any maintenance programme (Carey et al., 2013). With specific regard to railway 

bridges, the moving loads imposed to these structures, typically for short periods of time, may 

be undesirable for fatigue or wear life, but can be considered an advantage for observing the full 

range of structural response behaviour, due to the high amplitude of traffic-induced vibrations. 

Additionally, although the large majority of bridges are assessed through periodic visual 

inspections, these are expensive, temporally inconsistent, and prone to human errors in judgment 

and interpretation, which ultimately led to the increasing development and deployment of 



Damage identification in railway bridges based on train induced dynamic responses 

 

3 

structural health monitoring (SHM) systems, particularly for large newly built bridges (Cantero 

& González, 2015). Hence, the need to define warning strategies and systems to minimize the 

disruption of the network (Huang et al., 2012). 

In Portugal alone there are approximately 2.200 railway bridges, 700 of them with more than 

a century. A combination of damage assessment technologies is necessary, and new 

developments in SHM aim at covering as many structures as possible at a reasonable cost. 

Although some bridges are already monitored using sophisticated measurement systems 

employing several sensors, there is a lack of useful and efficient interpretation of the results 

provided, with frequent difficulty in detecting early damage (Magalhães et al., 2012; Cavadas et 

al., 2013; Zhang et al., 2017; Neves et al., 2020). Thus, there is a need for data interpretation 

techniques that provide reliable information to assist engineers in structural management. It is 

crucial to devise robust online continuous SHM systems that allow structures to be designed and 

operated safely, without extended downtime periods associated with additional inspection or 

maintenance. Also, it is important to develop unsupervised data-driven SHM systems that can 

be used in any geometry and that can identify damage in old structures, which already have a 

changed structural condition, in order to support the decision making process related to 

maintenance and conservation strategies. 

Many of the existing damage identification and monitoring algorithms have originally been 

developed in the field of aerospace and mechanical industries. However, these algorithms do not 

fully address the issues that arise in the monitoring of civil structures such as bridges. The main 

challenges for the development of a robust damage detection and monitoring system in case of 

bridges are the following (Sohn & Law, 2000): 

 Bridges involve a significant amount of uncertainties caused by environmental effects 

such as temperature, loading or humidity. Additionally, the uncertainty to estimate 

the strength and stiffness of structural components is significantly higher than for 

example that of truss members commonly used for space structures; 

 Bridges typically display more complicated and unique geometry; consist of many 

different materials; and involve more redundancy in the design than space or 

mechanical structures. These issues make the accurate modelling very difficult even 

with the possibility of model updating and refinement techniques be employed prior 

to damage identification; 
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 The dimension of the bridges requires the instrumentation of a large number of 

sensors and actuators, and the excitation of higher modes, which demands a big 

economical investment. Moreover, the application of forced vibration tests, which are 

commonly used for system identification, can be difficult for bridges in service 

because of the economic and social impact caused by service interruption due to road 

or railway closure. Ambient vibration tests are more suitable since the test can be 

conducted under normal operation of structures and can be easily repeated to collect 

additional modal data sets. One difficulty with ambient tests is related with the 

excitation of higher modes. Therefore, most damage identification for civil structures 

can suffer from lack of data: only a small number of measurement points and a few 

fundamental modes would be available. 

There is no single solution for the correct monitoring and assessment of bridges because of 

the variety of structures, materials, loads, and environmental conditions to consider for a 

particular site. Damage identification techniques in civil engineering structures, including 

bridges, have consistently focused on monitoring modal-based damage-sensitive features, as 

these are directly related to intrinsic parameters of the structure such as stiffness, which is 

expected to change in the presence of damage (Yan et al., 2005; Alvandi & Cremona, 2006; 

Alves et al., 2015; Meixedo et al., 2016; Neves et al., 2020). In addition, modal quantities also 

have the advantage of being used for structural design and for assessing the vulnerability of the 

structures to actions and hazards (Santos et al., 2015). Regardless of these advantages, 

Operational Modal Analysis (OMA)-based information can also be considered insensitive to 

early damage due to the need of identifying high order modes shapes, as mentioned before, 

which is particularly challenging for any real structure’s complex loading combinations and 

environmental variability (Santos et al., 2013).  

Recent works have been using the structural responses generated by traffic on bridges to take 

advantage of the repeatability of these actions, their known behaviour, and their great magnitude 

(Entezami et al., 2019, Nie et al., 2020). Cavadas et al. (2013), gathered data on the displacement 

and rotation along a beam frame subjected to an unknown moving load. Principal component 

and Robust regression analysis were used to reduce dimensionality. Afterwards, data collected 

during a baseline period were used to characterize the natural variation of the parameters, so that 

subsequent variation beyond this baseline range could be flagged as damage. The method 

successfully detected stiffness reductions of 20 % in a beam element 30 cm long. However, only 
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a single load was considered, as well as a controlled load speed and a quasi-static behaviour, 

which are seldom the case in real bridges. Gonzalez & Karoumi (2015) proposed a model-free 

damage detection method that uses deck accelerations and bridge weigh-in-motion data to train 

a machine learning setup based on ANN and a Gaussian process to classify the data into healthy 

or damaged. The method was further developed by Neves et al. (2017), however, the limitations 

found for the proposed strategy were the limited number of damage scenarios and the 

non-consideration of environmental effects. Nie et al. (2020) proposed a data-driven damage 

detection method based on fixed moving principal component analysis to examine structural 

dynamic responses and monitor the damage occurrence. A beam bridge model subjected to 

stochastic loads was used in numerical simulation and experimental tests. The authors mentioned 

that further studies were necessary to determine the optimal number of sensors required for a 

reliable structural condition detection with respect to the sensor locations, structural types, size 

of structures, and quality of recorded data. Azim & Gül (2019) presented a 

sensor-clustering-based time-series analysis method for continuous global monitoring of 

girder-type railway bridges using operational data. The main limitations pointed out by the 

authors were the linear nature of the methods used and the influence of environmental condition 

changes, which was not considered in their study. Moreover, the validation of the methodology 

was carried out with a numerical model that was not experimentally validated. 

Despite the research made in this field, effective implementations of SHM in bridges based 

on traffic-induced dynamic responses that allow for an online and continuous damage 

identification are still scarce. In the majority of these methodologies, their validation is 

performed using numerical simulations on simple structural elements, the type of damage 

studied is limited, the loading scenarios are very specific, the influence of environmental and 

operational variations (EOVs) on the structural response is often underestimated, and/or the 

online and unsupervised character is not fully addressed. All these constraints limit the 

usefulness of SHM for real complex bridges, especially in those where it is expected to be most 

useful, such as older and underperforming structures.  

1.3 OBJECTIVES AND MAIN CONTRIBUTIONS 

In line with the motivation described in the previous section, the major goal of this 

dissertation is to develop a reliable and robust, fully autonomous and online, unsupervised 

data-driven methodology for early damage identification based on train-induced dynamic 
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responses and supported by machine learning. The idea is to take advantage of the fact that 

identical known vehicles cross the bridge regularly, that normally only one train is on the bridge 

at a time and that the positioning of the loads does not change. 

The global objective is achieved through a set of intermediate goals: 

 Test and implement a hybrid combination of advanced techniques found in literature 

to develop a novelty approach for damage identification in railway bridges using 

traffic induced dynamic responses; 

 Design and implement an online monitoring system in a real complex bridge; 

 Develop and experimentally validate a numerical model of the bridge; 

 Apply and validate the methodology in order to detect a comprehensive set of damage 

scenarios in the case study bridge;  

 Test the robustness and efficiency of the methodology; 

 Propose a generic continuous SHM methodology of the railway bridges condition. 

The signals resulting from train crossings correspond to a large mass traveling at significant 

speeds, thus generating features that can obscure information associated with damage. The set 

of techniques studied herein will allow removing all the train-related features in order to expose, 

with high sensitivity, those generated by damage. This approach takes advantage of the 

signals’ large amplitudes and the small influence of temperature and other time dependent 

structural effects. These effects generally produce bias and reduce the sensitivity of the majority 

of the damage identification techniques that rely on long-term trends.  

The following milestones are to be achieved with this research work: 

 the development and implementation of an original online unsupervised data-driven 

damage identification methodology for bridges, based on dynamic responses induced 

by trains; 

 the reduction of the influence of slow environmental actions, such as temperature and 

humidity, as well as material properties, such as shrinkage, creep and relaxation, by 

acquiring signal in short periods of time, as opposed to continuous monitoring; 
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 the development of a methodology capable of detecting damage based on responses 

that can be measured without interfering with the normal service condition of the 

structure; 

 the improvement of the sensitivity of the damage-sensitive features by using larger 

magnitude signals resulting from the passage of trains during short periods of time, 

when compared to ambient vibration or static loads; 

 to prove the importance of feature modelling by showing the supremacy of the 

environmental and operational effects when compared to damage; 

 to show the importance of multi-sensor data fusion to enhance the detection of 

early-damages; 

 the development of a novel approach to define an adaptive confidence boundary that 

successfully detects new damage in bridges already showing structural changes; 

 the validation of the methodology using a reliable digital twin of a complex railway 

bridge.  

In short, the focus is placed on ensuring robustness and efficiency using a hybrid combination 

of time-series models and multivariate statistical techniques. The novelty lies in automatically 

extracting compact, meaningful information sets related to the bridge condition with a moving 

window data-driven methodology that allows an online and real-time damage detection with a 

negligible number of false detections. Furthermore, the unsupervised character of the procedure 

proposed herein includes the ability to detect damage in bridges that already exhibit changed 

structural conditions. This is achieved through an original definition of a confidence boundary 

that can adapt to new changes detected over time, and be ready for the detection of additional 

ones observed in the near future.  

1.4 OUTLINE 

The objectives described in the previous section conducted to an outline of the present 

dissertation divided in seven chapters, being this first one devoted to present the scope, 

motivation and major goals of the thesis. This chapter also aims at giving an overview of the 

limitations of SHM, which are then used to set the original milestones to be reached in the 

present dissertation. 
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During Chapter 2, the reader is introduced to the key concepts, definitions and steps to address 

SHM techniques and to follow this dissertation. An historical overview is conducted, as well as 

a literature review on damage identification. The strategy implemented and followed in this 

thesis for structural health monitoring and to develop a damage identification methodology is 

also presented. 

This dissertation intends to implement an entire SHM process, from the identification of the 

structural vulnerabilities and SHM constraints to the detection, modelling and classification of 

structural changes. In this context, Chapter 3 introduces the case study that will be used 

throughout this work, which consists of the long-span bowstring-arch railway bridge over the 

Sado River. A progressively phased monitoring system, which provided a diverse set of data 

streams ranging from static and dynamic responses to the measurement of environmental and 

operational traffic loads, is described in detail. A data analysis of the measurements obtained 

during different phases of the monitoring system is also presented during this chapter. 

In line with the previous, Chapter 4 addresses a progressive numerical model validation of 

the case study based on the analysis of experimental data from different structural response 

measurements, namely, static deformations under environmental actions, modal vibrations, and 

transient dynamic responses under traffic loads. This chapter also exploits an integrated 

approach that uses structural monitoring measurements in combination with FE modelling to 

understand the structural behaviour of a long-span complex bridge. This progressive validation 

increases the reliability of the numerical model, envisaging further uses such as condition 

assessment or evaluation of safety, capabilities that ultimately begin to realize the concept of a 

digital twin for the structure. 

Chapter 5 is divided according to four main tasks: i) feature extraction, focusing on the 

extraction of damage-sensitive feature from the dynamic responses measured by the monitoring 

system using time-series models, ii) feature modelling, addressing regression-based and latent 

variable-based algorithms capable of distinguishing between the effects provided by “regular” 

actions and novel behaviour, iii) data fusion, for compacting information and enhancing the 

features sensitivity, and iv) feature discrimination, proposing a set of strategies, comprising 

statistical learning, to allow identifying structural changes in real-time and without requiring 

previous knowledge of the structural condition. Different techniques are tested within each task 

in order to select the most promising and best performing combination. To implement the 
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previous mentioned tasks, a comprehensive set of realistic scenarios, healthy and damaged, were 

simulated in different locations along the bridge and with increasing severities.  

Chapter 6, entitled after the ultimate goal of the present dissertation - “Online unsupervised 

procedure for early damage identification based on train induced dynamic responses”, proposes 

and validates a continuous procedure combining time-series techniques and machine learning 

algorithms sequentially applied to the monitoring data, in a moving window process. To assess 

whether the online procedure was reliable for different damage scenarios, a sensitivity analysis 

to damages in different locations and with increasing severities is performed. To study the 

trade-off between robustness and detection swiftness, a parametric analysis is conducted on the 

window lengths and on the number of sensors used by the SHM system. Using several 

train-induced responses from the bridge comprising different types of damage simulated with 

progressively increasing magnitudes, an original adaptive confidence boundary for detecting 

new structural changes is implemented, tested and validated. 

Finally, in Chapter 7, overall conclusions are drawn and the perspectives for future research 

in the field of SHM and damage identification as a consequence of this work are suggested.   
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Chapter 2  

STRUCTURAL HEALTH MONITORING FOR DAMAGE 

IDENTIFICATION 
 

2.1 SCOPE 

The present chapter starts by describing the main background, motivations and approaches to 

Structural Health Monitoring for civil structures. The review is not intended to be exhaustive; 

instead, it is focused in framing the main topics comprising the broad subject of SHM, and in 

providing an overview of the most important trends and innovations. Hereafter, focus is made 

on SHM techniques developed and applied for the purpose of identifying damage in bridges. 

The major challenges and limitations related with these techniques are mentioned throughout 

this chapter. It also aims at reviewing the most important steps for implementing a damage 

identification strategy, which is usually carried out in the context of SHM. In the last section, 

the SHM procedure developed and implemented during this thesis is presented.  

2.2 SHM BACKGROUND 

The SHM emerges as the process of implementing a damage identification strategy for 

aerospace, civil and mechanical engineering infrastructure (Farrar & Worden, 2007). The basic 

idea of SHM is to build up a system similar to the human nervous system, where the brain 

(computer) processes the information and determines actions (maintenance activities), and the 
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nerves (sensors) feel the pain (damage), as shown in Figure 2.1 (Figueiredo et al., 2013). Thus, 

the goal of SHM is to improve the observation of a structural or mechanical system over time 

using periodically spaced measurements to determine the current state of the system health. 

Brain

Nerves

Information Processing Central station, computers

Sensory system Sensors and DAQ systems

 
 Figure 2.1 - SHM analogy with the human nervous system. 

For long-term SHM, the output of this process is periodically updated, providing information 

regarding the ability of the structure to perform its intended function in light of the inevitable 

aging and degradation resulting from operational environments. After extreme events, such as 

earthquakes, vehicle collisions or unanticipated blast loadings, SHM is used for rapid condition 

screening and aims to provide, in nearly real time, reliable information regarding the integrity 

of the structure (Farrar et al., 2001). 

SHM can be divided into two main typologies: static and vibration-based (Posenato et al., 

2010). A review of the historical evolution using vibration-based SHM is presented in the 

following section. 

2.2.1 Historical overview  

The basic premise of vibration-based damage detection is that the damage will alter the 

stiffness, mass or energy dissipation properties of a system, which, in turn, will alter the 

measured dynamic response of the system. Although the basis for vibration-based damage 

detection appears intuitive, its actual application poses many significant technical challenges. 

The most fundamental challenge is the fact that damage is typically a local phenomenon and 
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may not significantly influence the lower-frequency global response of a structure that is 

typically measured during vibration tests. This challenge is supplemented by many practical 

issues associated with making accurate and repeatable vibration measurements at a limited 

number of locations on structures, often operating in adverse environments (Farrar et al., 2001; 

Kong et al., 2015).  

The civil engineering community has studied vibration-based damage detection methods for 

bridges since the early 1980s. Initial studies examined changes in conventional modal properties 

such as frequencies and mode shapes, but the lower frequency global modes of the structure, 

which are the ones that tend to be identified in ambient vibration tests, were found to be 

insensitive to local damage (Farrar & Worden, 2013). In addition, these low-frequency global 

modal properties have been shown to be sensitive to changing operational and environmental 

conditions, which further confound their use as damage indicators (Farrar & James, 1997).  

During the last 20 years, more sophisticated methods of damage identification that extract 

features from the modal parameters such as modal strain energy, uniform load flexibility shapes, 

and finite element model updating similar to that developed for aerospace applications have been 

implemented to bridges with success but also with limitations and challenges yet to be tackled.  

With the objective of reducing errors in the modal extraction, researchers have studied 

damage identification methods using the frequency response functions (FRFs). The FRF-based 

method is very promising because FRF data can be directly obtained without any further data 

extraction and processing (Kong et al., 2015). However, the estimation of mode shapes and FRFs 

require either a single excitation point with many sensors or a roving exciter with one or more 

fixed sensors. In this sense, researchers have started to consider the vehicle response very useful 

in system identification and damage detection. The fact is that in a vehicle-bridge-coupled 

system with time-variant features, the vehicle can serve as both a force transducer and a mobile 

sensor of the system (Kong et al., 2015). Moreover, vehicle dynamic responses such as 

accelerations have similar features as modal shapes but are easy to measure.  

Researchers have also started to develop local active inspection techniques based on pattern 

recognition that monitor very specific portions of the bridge structure such as loss of preload in 

a bolted connection (Park et al., 2008). To account for variability in ambient loading conditions 

and environmental variability, it is imperative that the statistical pattern classifiers and 

associated data modelling procedures be adapted for these SHM applications. Without this 
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technology, it will be difficult to determine if changes in the identified features are caused by 

damage or by varying operational and environmental conditions.  

Unfortunately, bridge design modifications and inspection programme changes are often 

made only in response to catastrophic failures. The collapses of certain bridges around the world 

have pressured authorities to develop solutions to periodically inspect their bridges and to 

support maintenance activities. A very recent example is the collapse of a 200-metre section of 

the Morandi bridge in Italy in 2018, including one of its three supporting towers (Figure 2.2). 

The tragedy killed 43 people and left 600 homeless. In Portugal, on 4 March of 2001, the 

Entre-os-Rios tragedy showed the deficiencies of the bridge management and marked the shift 

to a new era in this field. The disaster occurred after many days of intense rain and consequent 

increase of the river stream, when one of the piers of the Hintze Ribeiro Bridge, over the Douro 

River, collapsed resulting in the partial fall of the deck (Figure 2.3). The collapse dragged 

together a bus and three cars, killing 59 people. 

  

Figure 2.2 - Morandi bridge collapse, Italy, in 2018 (Zennaro, 2019). 

 

Figure 2.3 - Hintze Ribeiro bridge collapse, Portugal, in 2001 (Silva, 2016).  

At present, bridges in Portugal are generally monitored through annual routine inspections, 

as well through principal inspection carried out at each two to six year periods, largely based on 

visual inspection techniques. This procedure is slow, systematic but not based on quantitative 
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measurements and prone to leave portions of the bridge uninspected due to its inaccessibility. 

There is the possibility that damage can go undetected at inspection or that cracks in 

load-carrying members can grow to critical levels between inspection intervals, as happened 

with the I-35 Bridge that collapsed in Minneapolis during the summer of 2007 (National 

Transportation Safety Board, 2008); see Figure 2.4. In addition to these more gradual damage 

accumulation mechanisms, sudden damage leading to bridge collapse also occurs as a result of 

extraordinary events such as collisions.  

  

Figure 2.4 - Collapsed north section of the Minneapolis I-35W Bridge, USA, in 2007 (WordPress, 2016). 

Even though there is still a long way to go for a successful real-world SHM application in 

civil engineering structures, regulatory requirements are driving current research and 

development of vibration-based bridge monitoring systems. In the USA, the long-term bridge 

performance program was included in the highway legislation. This program attempts to provide 

quantitative data for network and bridge level management and, ultimately, to improve the safety 

assessment of the nation’s bridges (Figueiredo et al., 2010). In Asian countries, regulatory 

requirements, which mandate the companies that construct the bridges to certify their structural 

health periodically, are driving current research and commercial development of vibration-based 

bridge monitoring systems. In Portugal, there are already several bridges with long-term 

monitoring systems. Some examples of bridges incorporated with those systems are: the 25 de 

Abril Bridge in Lisbon (Figure 2.5a), the Lezíria Bridge in Carregado (Figure 2.5b) and the São 

João Bridge in Porto (Figure 2.5c). However, the demand of new processing strategies to 

efficiently extract useful information from data collected by dynamic monitoring systems is 

evidenced by the lack of clear and useful interpretation of the results provided by the monitoring 

systems installed in these bridges (Magalhães et al., 2011). Experience gained by analysing data 

from in situ structures will be crucial in developing new damage-sensitive features as well as 

defining new and improved hardware for the vibration measurements and robust approaches to 

data modelling and classification (Farrar & Worden, 2013). 
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a) b) c) 

Figure 2.5 - Portuguese bridges with long-term monitoring systems: a) 25 de Abril Bridge in Lisbon, b) Lezíria 
Bridge in Carregado and c) São João Bridge in Porto. 

2.2.2 Most common damage scenarios 

In devising an intelligent fault detection system, the primary consideration is an unambiguous 

definition of damage as a prerequisite to providing a unified approach to damage evaluation 

across all the engineering disciplines (Worden & Dulieu-Barton, 2004).   

It is important to distinguish between two different concepts: failure and damage. Failure 

occurs when the structure can no longer operate satisfactorily, while damage can be defined as 

a change in a structural system which affects its present or future performance concerning both 

structural safety and serviceability (Worden & Dulieu-Barton, 2004). Such changes can be 

generated by variations in the material or geometric properties of structural systems, including 

boundary conditions. Implicit in this definition is the concept that damage is not meaningful 

without a comparison between two different states of the system, one of which is assumed to 

represent the initial and often undamaged state. In this sense, failure can be seen as a direct 

consequence of damage occurrence (Farrar et al., 2001).  

On the other hand, a damage occurrence can be classified according to two distinct factors: 

its location and its duration (Cury & Cremona, 2010; Santos, 2014). Regarding its location, 

damage usually starts at a single element, and, considering different scenarios and loads, can 

spread up to partial or entire collapse of a structural system. Concerning its duration, damage 

can be classified as progressive, such as fatigue, corrosion or deformation; or sudden, in case of 

those generated by earthquakes, storms, vehicle collisions or construction accidents.   

Unfortunately, a great number of bridges continues to fail nowadays due to: i) floods (through 

scour effect), ii) train and vehicle collisions, iii) overload, iv) deficiencies in design and detail, 

v) earthquake, vi) exceptional wind, vii) fire occurrences, viii) fatigue, cracking and corrosion 
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of steel elements, ix) insufficient resistance or stiffness, mainly in steel elements or steel 

reinforcement, x) corrosion of pins, hangers, reinforcement and prestress tendons, xi) design 

deficiency of structural bearings under the actions of creep, shrinkage and temperature, xii) fire, 

and xiii) lack of maintenance (Santos, 2014).   

Considering specifically the cases of Portuguese bridges, the most common damage scenarios 

observed are: i) corrosion in metallic components, ii) generalized concrete degradation 

(cracking, delamination, and corrosion of the reinforcement bars), iii) degradation of corrugated 

metal culverts, iv) degradation of the expansion joints, v) degradation of the bearing devices and 

vi) construction defects. The corrosion in metal elements is normally observed in beams, 

bearings, and railings, derived from defects of painting or protective coating. The concrete 

deterioration is mainly caused by debris (traps moisture), deficient drainage or leakage 

(Figueiredo et al., 2013). The degradation of the bearing devices may result in the full restraint 

of its movements or even in the loss of a bearing. Figure 2.6 to Figure 2.9 illustrate some 

damages scenarios commonly observed in Portuguese bridges. 

Figure 2.6 - Cracks and corrosion observed at the foundation and in the simple supported beam bearings of Barra 
bridge (Armando Rito Engenharia, 2016). 

Figure 2.7 - Corrosion of the reinforcement bars in Edgar Cardoso bridge (Armando Rito Engenharia, 2016). 



Chapter 2 

18 

Figure 2.8 - Observed corrosion on the top flange of Eiffel bridge, Viana do Castelo (Cavadas, 2008). 

Figure 2.9 - Deterioration of the connections and corrosion of the metal elements in Soure bridge (Appleton, 
2005). 

2.2.3 Hierarchical structure of damage identification  

Damage identification strategies have been widely classified according to Rytter’s four-level 

hierarchy (Rytter, 1993) based on the amount of damage related knowledge that can be extracted. 

More recently (Worden & Dulieu-Barton, 2004) proposed an additional level which sets up the 

hierarchical classification into five. SHM techniques can thus be classified into one of the 

following levels, according to their ability to answer the following questions:  

 Level 1: Is the damage present in the structural system (detection)?  

 Level 2: Where is the damage located (localization)?  

 Level 3: What kind of damage is present (type)?  

 Level 4: What is the extent of damage (severity)?  

 Level 5: What is the residual lifetime (prediction)?  

The answers to the questions above can be made only in a sequential way, e.g., the answer to 

the severity of damage can only be made with a priori knowledge of the type of damage. Level 

1 is distinguished in the sense that can be accomplished with no prior knowledge of how the 
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system will behave when damaged (Worden & Dulieu-Barton, 2004). While the answers to the 

questions about localization, type and severity of the damage can be regarded as diagnosis, the 

fifth question can be seen as prognosis and its fulfilment typically requires addressing topics 

adjacent to SHM such as fatigue and fracture analysis (Doebling et al., 1996, Farrar et al., 2001, 

Cury & Cremona, 2010, Santos et al., 2013); see Figure 2.10. Identifying the level of damage is 

a key decision to be made when seeking to apply SHM methods and will have a major bearing 

on the approach adopted (Barthorpe, 2011). 

 
Figure 2.10 - Hierarchical structure of damage identification. 

2.3 LITERATURE REVIEW ON DAMAGE IDENTIFICATION  

2.3.1 Overview 

The process of implementing a damage identification strategy involves the observation of a 

structure over a period of time using periodically spaced measurements, the extraction of 

features from these measurements, and the analysis of these features to determine the current 

state of health of the system (Farrar et al., 2001).  

Figure 2.11 shows a flowchart summarizing the main four steps to implement a SHM 

solution. Each of these steps is detailed during the present chapter. Inherent in the data 

acquisition, feature extraction, and feature discrimination for damage identification portions of 

the SHM procedure are data modelling, cleansing, fusion, and compression. These four 

processes are described throughout sections 2.3.6 and 2.3.7. 

 
Figure 2.11 - Flowchart for implementing a SHM strategy. 
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2.3.2 Operational Evaluation  

The first step to developing a SHM strategy is to perform an operational evaluation. This 

phase attempts to provide answers to four questions, which are mentioned in Figure 2.12, 

regarding the implementation of a damage identification investigation (Farrar & Worden, 2007; 

Sohn et al., 2004).  

 
Figure 2.12 - Flowchart with the four main questions to be answered during operational evaluation. 

By providing answers to the above questions, the operational evaluation process begins to set 

limitations on what will be monitored and how the monitoring will be accomplished.  

Safety, economic, operational and social constraints, which must be defined in conjunction 

with designers, owners and authorities, play an important role in operational evaluation, and 

their definition allows answering the first of the four questions (Santos et al., 2013). 

On the other hand, the success of any damage identification technique is directly related to 

the ability to define that damage that has to be detected in as much detail as possible and in as 

quantifiable terms as possible. Here the definition of damage can include issues such as i) the 

type of damage to be detected, ii) the threshold level of damage that must be detected, iii) the 

critical level of damage that produces failure or that will no longer allow for a planned safe shut 

down of the system, iv) locations where the particular type of damage accumulates in the 

structure and v) the tolerable or anticipated rate of damage growth. By taking advantage of each 

structural systems’ unique features, the most convenient sensorial solution can be defined and 

the damage identification process can be tailored in a more efficient way (Farrar et al., 2001; 

Figueiredo et al., 2010; Santos, 2014). 

Additionally, the damage identification process will have to deal with structures that 

experience changing operational and environmental conditions, which will alter the measured 
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system response. It is imperative that these changes are not interpreted as indications of damage. 

Varying temperature is one common environmental condition that must be accounted for during 

the damage identification process. Running equipment or vehicles at varying speeds are other 

operational parameters that can significantly influence dynamic quantities that are being 

measured as part of the damage identification process. Defining and quantifying the operational 

and environmental conditions acting on the structure will help to define the required data 

acquisition system capabilities better, and will also impact other portions of SHM process 

including the data modelling procedures, feature selection and feature discrimination (Farrar & 

Worden, 2013).  

2.3.3 Data Acquisition 

Obtaining accurate measurements of a system’s dynamic response is essential to SHM. There 

are many different sensors and data acquisition systems that can be applied to SHM problem 

and the one employed will be application specific. In this sense, Figure 2.13 details the several 

considerations that one should make during this step.  

2. DATA ACQUISITION

Types and amount of data to be collected

Acc1

Acc2

Acc3

t

t

t

...
...

a. Define data to be acquired.

b. Define data to be used (or not) in the feature extraction process.

a. Sensors placement,

b. Data acquisition, storage and transmittal

    system.

Monitoring typologies

a. Static-based,

b. Vibration-based,

c. Both.

Periodicity in data acquisition

a. Only after extreme events,

b. Periodic intervals,

c. Continuous.

Sources of variability

Changing environmental/testing/data

reduction conditions.

Data modelling procedures

Feedback from feature extraction

Data cleansing procedures

Feedback from data processing
 

Figure 2.13 - Flowchart detailing the step two of SHM strategy. 

The data acquisition portion of the SHM strategy requires selecting the excitation methods; 

the sensor types, numbers, and locations; and the data acquisition/storage/processing/transmittal 

hardware. Economic considerations play a major role in making these decisions.  
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Another consideration regarding data acquisition is how often the data should be collected. 

In some cases, it may be adequate to collect data immediately before and at periodic intervals 

after a severe event. However, in another cases, it may be necessary to collect data almost 

continuously at relatively short time intervals. 

The greatest constraint for the implementation of the data acquisition process is, perhaps, the 

SHM typology. Depending on the outcome of the operational evaluation, SHM can be divided 

into three main typologies: static, vibration-based or both (Posenato et al., 2008; Santos, 2014).  

A fundamental premise regarding data acquisition and sensing is that these systems do not 

measure damage. Rather, they measure the response of a system to its operational and 

environmental loading or the response to inputs from actuators embedded with the sensing 

system. Depending on the sensing technology deployed and the type of damage to be identified, 

the sensor readings may be more or less directly correlated to the presence and location of 

damage. In fact, feature extraction and feature discrimination for damage identification 

procedures are the necessary components of a SHM system that convert the sensor data into 

information related to the structural condition (Farrar & Worden, 2013). 

Because data can be measured under varying conditions, the ability to model the data 

becomes very important to the damage-detection process. Additionally, data cleansing is applied 

by selectively choosing data to accept for, or reject from, the feature selection process (Farrar et 

al., 2001). These two procedures, data modelling and data cleansing, are explain in detail in 

sections 2.3.6 and 2.3.7. 

Finally, it should be noted that the data acquisition portion of a SHM process should not be 

static. Insight gained from the feature extraction process and the damage discrimination process 

will provide information regarding changes that can improve the data acquisition process. 

2.3.4 Feature Extraction  

Identifying features that can accurately distinguish a damaged structure from an undamaged 

one is the focus of most SHM technical literature. Figure 2.14 summarizes the main ideas that 

support the feature extraction (and selection) process.  
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3. FEATURE EXTRACTION

Physical models for feature extraction

a. Extraction of the best features for damage identification.

a. Linear VS nonlinear

b. Purely experimental or analytical /

experimental
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a. Static measurements

b. Vibration measurements

c. Both

Basis for feature selection

a. Numerical analysis

b. Past experience

Data modelling, fusion and compression

Feedback from data processing

Fa

Fb

Fc

 
Figure 2.14 - Flowchart detailing the step three of SHM strategy. 

Fundamentally, feature extraction refers to the process of transforming the measured data into 

some alternative form where the correlation with the damage is more readily observed (Worden 

& Dulieu-Barton, 2004). Often in SHM, the feature extraction process is based on fitting some 

model, either physics-based or data-based, to the measured response data. The parameters of 

these models, quantities derived from the parameters or the predictive errors associated with 

these models, become then the damage-sensitive features (Farrar et al., 2001). These processes 

usually output multivariate data sets, generally named as feature vectors, whose length and 

dimensionality must be as low as possible. In an effort to obtain a low-dimensional feature 

vector, procedures are developed to fuse and compress data from multiple sensors. A common 

example of data fusion is the extraction of mode shapes from the relative amplitude and phase 

information contained in data from a sensor array. Similarly, the extraction of frequencies from 

measured acceleration time histories can be thought of as a data compression process (Santos, 

2014; Meixedo et al., 2016).  

One of the tasks of feature extraction is to eliminate as far as possible, fluctuations on the 

normal condition data. In this sense, various forms of data modelling are employed during the 

feature extraction process in an effort to separate changes in the measured response caused by 

varying operational and environmental conditions from changes caused by damage. 

After the feature extraction comes the feature selection, the process of determining which 

feature to use in the damage detection process (Farrar & Worden, 2013). Ideally, one should 

select a feature that is sensitive to the presence of the damage in the structure and insensitive to 

all forms of operational and environmental variability, which in most real-world applications is 

very difficult to achieve. Past experience with measured data from a system, particularly if 
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damaging events have been previously observed for that system, is often the basis for feature 

selection. Numerical simulation of the damaged system’s response to simulated inputs is another 

mean of identifying features for damage identification (Worden & Dulieu-Barton, 2004).  

It is important to distinguish the concept of feature extraction from feature selection, because 

while the former is almost always done through some mathematically rigorous process, the latter 

can be done by a wide range of techniques ranging from equally mathematically rigorous 

processes to very heuristic or intuitive selection processes.   

Modal or modal-based features are the most common in the literature (Yan et al., 2005a; 

Alvandi & Cremona, 2006; Alves et al., 2015; Meixedo et al., 2016) due to the advantage of 

being directly associated with the mass and, more importantly, with structural stiffness, which 

is expected to change in the presence of damage. Regardless of these advantages, OMA-based 

information can also be considered not sensitive to early damage due to the need of identifying 

high order modes shapes, which proved to be very challenging for real structure monitoring 

(Santos et al., 2013). Symbolic data (Cury & Cremona, 2012), wavelet components (Posenato 

et al., 2010) and basic signal statistics are also examples of techniques successfully applied as 

extractors of damage-sensitive features for both static and dynamic monitoring. 

However, in applications comprising acceleration measurements, autoregressive (AR) 

models have been widely reported for several reasons (Figueiredo et al., 2010; Lautour & 

Omenzetter, 2010; Datteo et al., 2018; Azim & Gül, 2019). One of them is their ability to extract 

features that are sensitive to damage, as the variation in physical parameters (e.g. stiffness) 

indicating the existence of damage manifests itself by a variation in the coefficients of the fitted 

AR models. Moreover, AR models depend solely on the response of the structure, and its 

parameters reflect the inherent structural properties regardless of the excitation sources and their 

respective variations (Entezami & Shariatmadar, 2017). In addition, the computational 

implementation of these models is fairly simple.  

2.3.5 Feature Discrimination  

2.3.5.1 Damage identification approaches  

Once an operational evaluation stage has passed and a sensor network has been designed, the 

SHM system can begin to deliver data. At this stage, one is now faced with the challenge of 

making an accurate assessment of the damage condition of a given structure based on any 
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extracted features. The choice and implementation of algorithms to process the data and carry 

out the identification is arguably the most crucial component of an intelligent damage 

identification strategy.  

Before even choosing the algorithm, it is necessary to choose between two complementary 

approaches to the problem, as described in Figure 2.15. 

 
Figure 2.15 - Flowchart indicating the two possible approaches to the damage identification problem. 

The inverse approach combines an initial model of the structure and measured data to improve 

the model or test a hypothesis. In practice, the model is commonly based on finite element 

analysis. Once the model is built, it is updated based on measured data from the real structure, 

such as acceleration and force responses, often in the form of a modal database, although 

frequency response function data may also be directly used (Friswell, 2008; Colombo et al., 

2019). The goal is to adjust the built model in such a way as to make it conform better with data 

from the real structure. Although, it is important to be aware that the updating step brings up an 

important point; it is very difficult to build an accurate model of a structure since the information 

will be lacking in many areas. For example, the exact nature of bonds or joints on can be difficult 

to specify. Another issue is that material properties may not be known with great accuracy. After 

updating, as far as possible, an accurate model of the structure of interest in its actual condition 

can be obtained. When data from a subsequent monitoring phase become available, if any 

deviations from the normal condition are observed (e.g. the natural frequencies of the structure 

change), a further update of the model will indicate the location and extent of where structural 

changes have occurred, and this provides a damage diagnosis (Doebling et al., 1996).  

Figure 2.16 shows an example of a three-dimensional calibrated numerical model of a railway 

bridge. 

4. FEATURE DISCRIMINATION

Damage identification is an inverse problem

a. Choose an approach.

Model-based

Damage identification is a forward problem

Data-driven
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Figure 2.16 - Three-dimensional numerical model of Alverca railway viaduct (Meixedo et al., 2014). 

Meruane & Heylen (2011) proposed a damage detection method based on an inverse 

approach, which is able to deal with temperature variations. The objective function correlates 

mode shapes and natural frequencies, and a parallel genetic algorithm handles the inverse 

problem. The numerical model of the structure assumes that the elasticity modulus of the 

materials is temperature-dependent. The algorithm updates the temperature and damage 

parameters together. Therefore, it is possible to distinguish between temperature effects and real 

damage events. Simulated data of a three-span bridge and experimental one of the I-40 Bridge 

validate the proposed methodology. Results show that the proposed algorithm is able to assess 

the experimental damage despite of temperature variations. 

In turn, the forward approach does not require the development of numerical or analytical 

models to be fitted with in situ data; instead, it is based on the discipline of machine learning or, 

often more specifically, the pattern recognition aspects of machine learning. The idea is that one 

can learn relationships from data. In the context of SHM, this means that one can learn to assign 

a damage state or class to a given measurement vector from the structure or system of interest. 

The measurement vectors must be formed from measurements that are sensitive to the damage; 

in the normal terminology of pattern recognition, they are referred to as features, as discussed in 

the last section. Once features have been defined, the mapping between the features and the 

diagnosis can be constructed. In the forward approach one can still make effective use of 

law-based models as a means of establishing good features for damage identification (Doebling 

et al., 1996). 
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Posenato et al. (2010) present two statistical-based methodologies for model-free data 

interpretation to identify and localize anomalous behavior in civil engineering structures: i) 

moving principal component analysis and ii) robust regression analysis are demonstrated to be 

useful for damage detection during continuous static monitoring of civil structures. The 

methodologies are tested on numerically simulated elements with sensors for a range of noise in 

measurements. A comparative study with other statistical analyses demonstrates superior 

performance of these methods for damage detection.  Methodologies are then validated on two 

full-scale structures. The results show the ability of the methodology to identify abrupt 

permanent changes in behavior. 

There are pros and cons for both approaches; in any case, the distinction between the two 

philosophies is not as clear-cut as one might wish. The model-based approach depends critically 

on the availability of training data for the initial update step; the data-driven approach also 

establishes a model, but a statistical one. 

2.3.5.2 Statistical modelling   

The portion of the SHM process that is less documented in the technical literature is the 

development of statistical models for discrimination between features from the undamaged and 

damaged structures. Statistical model development is concerned with the implementation of 

algorithms that operate on the extracted features to quantify the damage state of the structure. 

The functional relationship between the selected features and the damage state of the structure 

is often difficult to define. Therefore, the statistical models are derived using machine learning 

techniques. The machine learning algorithms used in statistical model development usually fall 

into two categories i) supervised learning and ii) unsupervised learning, see Figure 2.17.  

When training data is available from both undamaged and damaged structures, supervised 

learning algorithms can be used; group classification and regression analysis are primary 

examples of such algorithms. In the case of group classification, the output of the algorithm is a 

discrete class label. In its most basic form, this algorithm might simply assign a “damage” or 

“not damage” label to features. This type of algorithm is useful in the sense that the algorithms 

can be trained to give the probability of class membership. Using a regression algorithm, the 

outputs are one or more continuous variables. This problem is often nonlinear and is particularly 

suited to neural networks or other machine learning algorithms (Farrar & Worden, 2007). 
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4. FEATURE DISCRIMINATION
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1. It is damaged or undamaged?

2. Where is the damage located?

3. What type of damage it is?

4. What is the extent of the damage?  
Figure 2.17 - Flowchart of statistical model building for feature discrimination. 

Since data obtained from damaged civil engineering structures is rare or inexistent, 

unsupervised learning algorithms have been increasingly observed in the literature. Novelty 

detection methods are the primary class of algorithms used in this situation. This type of 

algorithm is a two-class problem that indicates if the acquired data comes from normal operating 

conditions or not (Farrar & Worden, 2007). There are many novelty detection techniques, e.g. 

outlier analysis, kernel density estimation and auto-associative neural networks (Posenato et al., 

2008; Gonzalez & Karoumi, 2015). All techniques fit a probability distribution to the normal 

condition data then assess the probability of the test data having been generated by the same 

mechanism. As illustrated in Figure 2.18, an outlier is a data point that belongs to a distribution 

that is different from the remaining points of a certain sample, and therefore believed to be 

generated by an alternate mechanism. In damage identification, the data point is different to the 

data acquired from the normal operating condition of the structure and this is assumed to be due 

to the presence of damage. In this case, a normal operating condition means a state of the system 

when there is some assurance, statistical or otherwise, that the system is fit-for-purpose. In some 

cases, there may be macroscopic damage, like a fatigue crack; however, if it is known that the 

crack will not grow under the standard loadings on the system, this state qualifies as a normal 

operating condition. Novelty detection will then look for new cracks or unexpected growth of 

the old crack. Note that for high capital expenditure structures, such as most civil infrastructure, 
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the unsupervised learning algorithms are often required because only data from the undamaged 

condition (baseline) are available (Worden & Dulieu-Barton, 2004).  
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Figure 2.18 - Schemes illustrating novelty detection. 

In spite of the SHM feature discrimination resorting to clustering methods has been reported 

mainly following the supervised strategy of pre-defining cluster partitions to describe one or 

more known structural behaviours, and subsequently compare them with new ones (Cury & 

Cremona, 2010; Silva et al., 2008), this type of  techniques have an unsupervised nature (Santos, 

2014). The major advantage of cluster-based strategies, over those previously described consists 

of the greater sensitivity exhibited by these algorithms, which is related to their capacity to 

analyse data compactness and separation instead of defining boundaries between or around data 

objects (Koutroumbas, 2009; Rendón et al., 2011; Santos, 2014). The works describing 

cluster-based classification for novelty identification refer its high sensitivity to structural  

changes, and associate it with the ability of these methods to analyse compactness and separation 

within feature sets (Santos et al., 2015). 

Regarding the hierarchy discussed in Rytter (1993) and mentioned in section 2.2.3, when 

applied in an unsupervised learning mode, statistical models can typically be used to answer 

questions regarding the existence (and sometimes, but not always, the location) of damage. 

When applied in a supervised learning mode and coupled with analytical models, the statistical 

procedures can, in theory, be used to determine the existence, the location of damage, the type 

of damage, the extent of damage and the remaining useful life of the structure (Farrar et al., 

2001).  

If supervised learning is required, there will be serious demands associated with it; data from 

every important damage situation must be available. The two possible sources of such data are 

physics-based modelling (i.e. from finite element analysis) and experiment. Modelling presents 

problems if the structure or system of interest is geometrically or materially complex; for 
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example, finite element analysis of structures requiring a fine mesh can be extremely time 

consuming even if the material is well understood. The damage itself may be difficult to model 

and it may make the structure dynamically nonlinear. Finally, it might be difficult to anticipate 

the future loading for the system or structure. Unfortunately, the situation is no better for 

experiment. In order to accumulate enough training data, it would be necessary to make copies 

of the system of interest and damage it in all the ways that might occur naturally. For high-value 

structures like bridges, this is simply not possible (Farrar & Worden, 2007). 

In case of unsupervised learning, often referred to as novelty detection, a model of the normal 

condition is created. Later, during monitoring, newly acquired data are compared with the 

model. If there are any significant deviations, the algorithm indicates novelty. The implication 

is that the system has departed from the normal condition, that is, acquired damage. The 

advantage of such an approach is clear; if the training data is generated from a model, only the 

baseline condition is required and this will simplify matters considerably. From an experimental 

point of view, there is no need to damage the structure of interest. Although novelty 

identification is only a level 1 (or sometimes level 2) approach, there are many situations where 

this is sufficient, for example safety-critical systems where any fault on the system would require 

it to be taken out of service (Sohn & Law, 2000).  

It is important to notice that supervised and unsupervised learning come usually associated 

with a forward damage identification approach.  

Statistical models can also be applied to avoid incorrect diagnosis of damage. False diagnoses 

fall into two categories: i) false-positive damage indication (indication of damage when none is 

present) and ii) false-negative damage indication (no indication of damage when damage is 

present). The false-positives are known as Type I and are the primary motivator for economic 

SHM concerns. On the other hand, false-negatives are known as Type II and are the primary 

motivator for life-safety as SHM concerns. Unless the measured features for a given problem 

completely separate the undamaged and damaged condition, there will be Type I and Type II 

errors and the placing of the threshold will mediate their relative frequency.  

Finally, statistical models are used to implement two types of SHM: i) protective and ii) 

predictive (Farrar & Worden, 2013). Protective monitoring refers to the case when 

damage-sensitive features are used to identify impending failure and shut the system down or 

alter its use in some other manner before catastrophic failure results. In this case, the statistical 

models are used to establish thresholds on acceptable levels of feature change. Predictive 
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monitoring refers to the case where one identifies trends in data features that are then used to 

predict when the damage will reach a critical level. This type of monitoring is necessary to 

develop cost-effective maintenance planning. 

2.3.6 Data Modelling  

The ability to perform robust data modelling is one of the biggest challenges facing SHM 

when attempting to transition this technology from research to field deployment and practice on 

in situ structures (Farrar & Worden, 2013). This process can be applied during data acquisition, 

feature extraction or feature discrimination portions of the SHM process.  

As it applies to SHM, data modelling is the process of separating changes in sensor reading 

caused by damage from those caused by varying operational and environmental conditions 

(Farrar et al., 2001). Concerning data modelling issue, the two different situations shown in 

Figure 2.19 can happen. 
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Figure 2.19 – Schematic representation of two type of situations that can happen regarding data modelling.  

In real-world cases, situation A is the most common, since the changes in features distribution 

produced by severe damage are of the same order of magnitude as changes that can be expected 

by varying environmental or operational conditions. In this sense, the ability to normalize the 

data becomes very important to the damage identification process; otherwise, changes in the 

measured response caused by operational and environmental conditions may be mistaken as an 

effect of damage. Additional measurements may be required to provide the information 

necessary to model the measured data and the need for this should be considered in the 

operational evaluation stage (Cury et al., 2012). 
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Among the operational and environmental effects generating changes in structural responses, 

temperature is reported as the most significant (Li et al., 2010; Cury et al., 2012). Figueiredo 

(2010) performed several dynamical tests in the Alamosa Canyon Bridge to examine the 

variability of the deck modal parameters. As shown in Figure 2.20, taking the difference between 

the extreme values and dividing by the maximum value, variations of 5% in the first natural 

frequency and 26% on damping ratio were observed on a single day cycle. This can occur mainly 

due to changes in structural stiffness and boundary conditions.  

 
Figure 2.20 - Variability in the modal parameters along with the differential temperature across the deck during a 

24-hour test: (a) first natural frequency; and (b) first damping ratio (Figueiredo, 2010). 

As described in Santos (2014), non-modal measurements such as displacements and strain, 

are even more influenced by temperature. As shown in Figure 2.21, the strain time-series 

acquired in the Salgueiro Maia Bridge revealed high correlation with temperature action.  

As expected, the influence of the wind speed can be important for some specific civil 

structures such as high buildings and long-span bridges. In Fujino & Siringoringo (2008), it is 

referred that the vertical amplitude of the bridge response decreases according to a quadratic 

function of wind speed.  

Structural measurements can also suffer important variations caused by traffic, especially in 

the case of heavy loads such as trains. Tests performed with and without traffic on the I-40 bridge 

showed a 4% change in the first-mode frequency (Farrar & Worden, 2013). 

The influence of humidity on structural response seems to be of minor importance when 

compared to temperature. In Peeters & Roeck (2001) the authors concluded that the humidity 

had no relation with natural frequencies of the Z24 overpass.  
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From the literature review, it can be concluded that the effects generated by traffic, 

temperature and wind must be considered when aiming at identifying structural changes in civil 

structures. Humidity, however, was reported as an environmental change with low influence 

(Santos, 2014).  

 
Figure 2.21 - Measurements obtained from the Salgueiro Maia Bridge: (a) strain time-series and (b) temperatures 

(Santos, 2014). 

Regarding data modelling methods, two approaches are generally found in the literature to 

separate changes in damage-sensitive features caused by operational and environmental 

conditions from those caused by damage: i) input-output, based on regression methods (Cavadas 

et al., 2013; Peeters & Roeck, 2001) or ii) output-only, based on latent variable methods 

(Alvandi & Cremona, 2006; Santos et al., 2013). The first removes the effects of the 

environmental and operational effects, establishing relationships between measured actions (e.g. 

temperature, traffic, wind) and measured structural responses (Cury, 2010). When monitoring 

systems do not include the measurement of EOVs, latent variable statistical algorithms that 

“learn” the influence of the operational and environmental conditions from the response data 

can be employed (Santos et al., 2013). This approach has the important advantage of being able 

to suppress independent actions using only structural measurements(Zhou et al., 2010). Also, it 

paves the way for studying complex structural systems whose actions can be of difficult and 

expensive characterization. 
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In this work, some of the most effective methods for each approach are summarized in Figure 

2.22.   

DATA MODELLING APPROACHES

Regression- based methods

Multivariate Linear

Regression (MLR)

Latent-variable methods

Multi-layer Perceptron

(MLP)

Principal Component

Analysis (PCA)

Auto Associative Neural

Networks (ANN)

Mahalanobis Squared

Distance (MSD)

(Input-output) (Output-only)

 
Figure 2.22 - Data modelling approaches. 

2.3.6.1 Regression-based methods 

One of the most direct regression methods used for data modelling is the multivariate linear 

regression (MLR). Its theoretical and computational simplicity along with the fact that most 

physical relations between environmental and operational actions and structural measurements 

have a linear nature, make it appealing for normalization (Santos, 2014). In Cury (2010), a 

multivariate linear regression model was used to find the relation between each modal frequency 

and the sets of temperatures measured in two bridges. Figueiredo (2010), use 24 hours’ modal 

and temperature data from Alamosa Canyon bridge to develop a regression model that predicts 

the first two natural frequencies as a function of the temperature differential across the deck 

including one-time delay. 

However, numerous SHM applications refer the need for using nonlinear methods to 

appropriately model relations between the structural data and the actions. Among nonlinear 

statistical-learning regression algorithms, the Artificial Neural Networks named Multi-Layer 

Perceptron (MLP), have been the most used (Bishop, 1995; Worden et al., 2011). Ni et al. (2009) 

assess the generalization capacity of MLP for describing the relation between temperature and 

modal frequencies. In Cury et al. (2012), MLP was used for modelling the temperature effect in 
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modal frequency data and its better performance over linear regression proved important for 

accurately detecting the effects of retrofitting processes in two bridges. 

In sum, the computational simplicity and the fact that most structural responses are linearly 

correlated with the actions makes the MLR a very appealing normalization method. However, 

the literature review shows that it is less accurate than the nonlinear and nonparametric MLP 

(Santos, 2014). 

2.3.6.2 Latent-variable methods 

Latent-variable methods develop a functional relationship that models how changing 

operational and environmental conditions influence the underlying distribution of the 

damage-sensitive features. When subsequent features are analysed with these algorithms and the 

new set of features are shown not to fit into an appropriate distribution, they might be more 

confidently classified as outliers or, potentially, features from a damaged structure, because the 

varying operational and environmental conditions have been incorporated into the classification 

procedure (Worden et al., 2011). 

Principal Component Analysis (PCA) is one example of this type of method and is considered 

the simplest in terms of computational application (Jolliffe, 2002). In Yan et al. (2005), one of 

the first PCA-based modelling applied to civil SHM works is performed on frequencies obtained 

from numerical and laboratorial case studies, as well as from one year monitoring of the Z24 

overpass. The authors selected the first two principal components with higher deviations related 

to temperature. In Hu et al. (2012), the efficiency of PCA-based modelling approach was verified 

using 3 years of measurements at Pedro e Inês footbridge, in Coimbra, under operational and 

environmental conditions and simulating several realistic damage scenarios. It was considered 

only the largest principal component as related to temperature effect, a choice which is justified 

by the high variance explained by that principal component. Santos et al. (2013) applied 

PCA-based modelling to data acquired from a cable-stayed bridge, but instead of an empirical 

choice of the number of principal components, the authors proposed a successfully systematic 

statistical approach based on randomness hypothesis. Besides the benefit of data normalization 

reduction, PCA is also a powerful tool for compressing data and can be used in the context of 

feature extraction.  

Auto Associative Neural networks (AANN), also known as Nonlinear Principal Component 

Analysis (NLPCA) is very similar in concept to PCA. While PCA is restricted to mapping only 
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linear correlations among variables, NLPCA can reveal the nonlinear correlations present in data 

(Sohn, 2007). 

Several studies have used the AANN to remove the effects of the operational and 

environmental variability and to detect damage. The first reference to the use of AANN in civil 

SHM data normalization was in 2002 by Sohn et al. (2002). The authors used it to normalize 

regression coefficients and concluded about the effectiveness of the method in outlining damage 

under normal environmental conditions. Li et al. (2010) applied the AANN as a signal 

pre-processing tool to distinguish temperature and wind effects on the modal parameters from 

other environmental factors.  

Another method for performing data normalization when direct measures of the 

environmental and operational parameters that are causing variability in the damage-sensitive 

features are not available is based on the Mahalanobis squared-distance (MSD). The MSD has 

been extensively applied in SHM for data modelling ( Farrar & Worden, 2013). For instance, 

Worden et al. (2003) applied the Mahalanobis distance algorithm to vibration data obtained from 

a simplified model of a metallic aircraft wingbox to detect damage in the stringer. Figueiredo et 

al. (2011) addressed the implementation and comparison of four data modelling algorithms, 

AANN, MSD, SVD (Singular Value Decomposition) and FA (Factor Analysis). Tests were 

performed in laboratory considering a base-excited three-story frame structure and varying 

stiffness and mass conditions with the assumption that these sources of variability are 

representative of changing operational and environmental conditions. The authors concluded 

that the MSD seems to be the best data modelling approach in terms of the classification 

performance, the reduced computational efforts (during both training and test), and the fact that 

no assumptions are required regarding its architecture.  

In sum, all three latent-variable methods offer some advantages over regression-based 

normalization techniques because the operational and environmental variables (e.g. traffic 

loading and temperature) do not need to be measured to reveal their influence on the structural 

responses. However, these algorithms have potential problems if the training data are only 

characteristic of a limited range of operational and environmental variability. Hence, all sources 

of variability must be well characterized by the training data so that the algorithms can accurately 

learn their influence on the system’s response.  
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2.3.7 Data cleansing, compression and fusion  

Inherent in the data acquisition, feature extraction, and feature discrimination portions of the 

SHM strategy are data cleansing, fusion, and compression procedures, as well as data modelling, 

detailed in the previous section. 

Data cleansing is the process of selectively choosing data to pass on to, or reject from, the 

feature selection process. This process is usually based on knowledge gained by individuals 

directly involved with the data acquisition (Farrar et al., 2001). As an example, an inspection of 

the test setup may reveal that a sensor was loosely mounted and, hence, based on the judgement 

of the individuals performing the measurement, this set of data or the data from that particular 

sensor may be selectively deleted from the feature selection process. Signal processing 

techniques such as i) filtering to remove noise, ii) resampling, iii) spike removal by median 

filtering, iv) removal of outliers (care is needed here as the presence of outliers is one indication 

that the data is not from normal condition), and v) treatment of missing data values, can also be 

thought of as data cleansing procedures (Worden & Dulieu-Barton, 2004). 

Data compression is the process of reducing the dimensionality of the data, or the features 

extracted from the data, in an effort to facilitate efficient storage of information and to enhance 

the statistical quantification of these parameters. The operational implementation of the 

measurement technologies needed to perform SHM inherently produces large amounts of data. 

A condensation of the data is advantageous and necessary when comparisons of many feature 

sets obtained over the lifetime of the structure are planned (Farrar & Worden, 2013).  

Regarding the data fusion, there are many definitions of this process, but one of the first came 

from the North American Joint Directors of Laboratories, and says that data fusion is “a 

multilevel, multifaceted process dealing with the automatic detection, association, correlation, 

estimation and combination of data from single and multiple sources” (White, 1990). 

The fusion process may combine data from spatially distributed sensors of the same type such 

as an array of strain gauges mounted on a structure. Alternatively, heterogeneous data types 

including kinematic response measurements (e.g. acceleration) along with environmental 

parameter measurements (e.g. temperature) and measures of operational parameters (e.g. traffic 

volume on a bridge) can be combined to determine more easily if damage is present. 

Clearly, data fusion is closely related to the data modelling, cleansing and compression 

processes. In general, fusion models allow information to be combined at the feature extraction, 
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the pattern level or the decision level. The objective at all times is to reach a decision with higher 

confidence than can be reached using any of the information sources alone. 

One of the most famous fusion paradigms is the Omnibus model (Bedworth & O’Brien, 1991) 

illustrated in Figure 2.23. It includes the possibility of action. In the context of SHM, this could 

be repair; in the context of feature discrimination, this could be control. In the event of a sensor 

failure, this could entail the reallocation of sensors or the switching in of redundant sensors. The 

model has a loop structure that makes clear the fact that action need not interrupt the monitoring 

process, but may enhance it. The generality of the model makes it excellent to use when one is 

planning a sensor and data fusion process (Worden & Dulieu-Barton, 2004).  

Decision Making

Context Processing

Pattern Processing

Feature Extraction

Signal Processing

Sensing

Control

Resource Tasking

Hard Decision

Fusion

Sensor

Management
Sensor

Data Fusion

Soft Decision

Fusion

DECIDE

OBSERVE

ORIENTATE ACT

 
Figure 2.23 - The Omnibus model for data fusion (adapted from Worden & Dulieu-Barton, (2004)). 

In the context of feature extraction, data fusion techniques can be classified, according to 

their location within the work-flow of SHM techniques as: centralized strategies (Figure 2.24a), 

pattern-level strategies (Figure 2.24b), or combinations of both (Figure 2.24c) (Worden & 

Dulieu-Barton, 2004; Santos, 2014). In case of vibration-based monitoring, the centralized-level 

is required for converting the large amounts of acceleration data into sets of meaningful vibration 

features such as modal frequencies (Cury, 2010; Hu et al., 2012). Pattern-level data fusion is 

required to convert either these vibration features or static-based measurements in compact 

information that can be statistically classified as “known” or “novel” with high accuracy (Santos, 

2014). PCA (Cavadas et al., 2013) and Symbolic Data (Cury & Cremona, 2010; Santos et al., 

2016) are good examples of such techniques. 
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Figure 2.24 - Classification of data fusion according to its location within the SHM data-flow: a) centralized, b) 

pattern-level and c) both (adapted from Santos, 2014). 

The Mahalanobis distance has been thoroughly used in the context of data fusion due to its 

capacity to describe the variability in multivariate data sets. In fact, a larger number of 

Mahalanobis distance’s  applications is performed on estimations’ errors obtained from PCA, as 

it can be observed in Yan et al. (2005a) and Hu et al. (2012). Distinct strategies also comprise 

the extraction of Mahalanobis distances directly from AR coefficients (Figueiredo et al., 2010). 

2.4 SHM PROCEDURE IMPLEMENTED 

A schematic representation of the proposed SHM for early damage identification followed in 

this dissertation is depicted in Figure 2.25, where all the steps from Figure 2.11 are implemented. 

A long-span bowstring-arch railway bridge was selected as case study, and the first two steps 

of the SHM strategy – Operational Evaluation and Data Acquisition – were applied, as will be 

presented in Chapter 3. In order to accomplish a fully autonomous and real-time monitoring 

system, a process involving moving windows was implemented. Within each window, the 

following four main steps regarding damage identification are performed: 1) feature extraction, 

2) feature modelling, 3) data fusion and 4) feature discrimination. The feature extraction is 

accomplish implementing time-series analysis to the vibration-based measurements acquired by 

the monitoring system installed in the railway bridge. During this step, data compression is 

achieved by transforming the thousands of points from each dynamic response of the structure 
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into a few dozens of features. Subsequently, feature modelling is performed to reduce the 

influence of operational and environmental conditions. Both regression-based and 

latent-variable methods are implemented in order to select the one that better suits the features. 

To enhance sensitivity a pattern-level data fusion is performed afterwards by implementing a 

Mahalanobis distance to merge the features and/or to merge the information from several 

sensors. Finally, feature discrimination is performed as a data-driven approach and 

implementing unsupervised machine learning algorithms, namely, outlier and cluster analyses. 

Chapters 5 and 6 describe, respectively, the strategy and the online procedure based on moving 

windows in detail.  

 
Figure 2.25 - Schematic representation of the SHM implemented for early damage identification. 

As data-driven approaches are usually less computationally complex, they are better suited 

for early damage identification. Moreover, in civil engineering structures the most important 

question to answer is if there is or not a damage. The questions about location and severity are 

usually less important in this type of structures since the simple existence of damage will trigger 

other management procedures (Wenzel, 2009). For those reasons, data-driven approaches are 

followed in the present thesis with the aim of detecting damage (level 1). However, finite 

element models can be used to simulate damage scenarios that are not possible to obtain in any 

other way. These data can be then used to test the validity and robustness of the methodologies 

proposed for damage identification. This approach is followed in Chapter 4, where a progressive 

numerical model validation of the railway bridge over the Sado River is performed, in order to, 
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afterwards, simulate damage scenarios and demonstrate the efficiency of the developed 

methodology.
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Chapter 3  

STRUCTURAL MONITORING SYSTEM OF A BOWSTRING-

ARCH RAILWAY BRIDGE* 
 

3.1 INTRODUCTION 

A bowstring-arch railway bridge over the Sado River was selected as the case study used 

throughout this work, since it is a recent, long-span complex structure that has been monitored 

by LNEC (Laboratório Nacional de Engenharia Civil) from the beginning of its life-cycle. In the 

context of this thesis and with LNEC’s collaboration, an optimized online monitoring system 

with different types of sensors was set up. The present chapter aims at presenting the railway 

bridge over the Sado River, as well as the evolution of the monitoring system installed over the 

years. An analysis of the data acquired is performed and it is shown that dynamic traffic-based 

monitoring system will provide greater sensitivity in detecting the non-linear behaviour of the 

components of the bridge, possibly related to structural changes, due to the effects of high 

amplitude actions induced by regular train loading schemes (axle configuration and loads) 

(Meixedo et al., 2019).  

                                                 
* This chapter is based on the paper:  
Meixedo, A., Ribeiro, D., Santos, J., Calçada, R., Todd, M. (2021). Progressive numerical model validation of a 
bowstring-arch railway bridge based on a structural health monitoring system. Journal of Civil Structural Health 
Monitoring, 11(2): 421–449, DOI: 10.1007/s13349-020-00461-w.  
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After the introduction, sections 3.2 and 3.3, respectively, show the case study and the installed 

monitoring system as well as a discussion regarding the main data acquired. Finally, section 3.4 

lists the concluding remarks of this chapter.  

3.2  BRIDGE OVER THE SADO RIVER 

The composite bowstring-arch bridge over the Sado River is located on the southern line of 

the Portuguese railway network that establishes the connection between Lisbon and Algarve 

(Figure 3.1). The structure was built from November 2008 to August 2010, when it entered in 

operation phase. It is prepared for conventional and tilting passenger trains with speeds up to 

250 km/h, as well as for freight trains with a maximum axle load of 25 t. 

 
Figure 3.1 Bridge over the Sado River: a) overview, b) general view of the deck with the Alfa Pendular train 

crossing. 

This bridge is part of a 28.98 km long railway stretch called the Alcácer bypass, located 

between the Pinheiro Station and km 94 of the above-mentioned Lisbon-Algarve line (Figure 

3.2). This line allows a reduction of travel time in the Lisbon-Algarve connection and increases 

the transfer of passengers from road to railways. Additionally, it improves the capacity of the 
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seaport of Sines, by making faster its connection to the logistic hubs of Poceirão and Elvas and 

to the seaports of Setúbal and Lisbon.  

 

Figure 3.2 - Geographical location of the bypass and schematic representation (adapted from REFER (2010)). 

The bridge has a total length of 480 m, divided into 3 continuous spans each 160 m long, and 

it is part of a longer structure that includes the North access viaduct at 1115 m length and the 

South access viaduct with a length of 1140 m. As shown in Figure 3.3, the deck is suspended 

from three parabolic arches connected by 18 hangers distributed over a single plane on the axis 

of the structure. The hangers have a circular cross-section with a diameter of 200 mm and a 

spacing of 8 m in the longitudinal direction. The superstructure is composed of a steel-concrete 

composite deck, while the substructure, which includes the piers, the abutments and the pile 

foundations, is built in reinforced concrete. As illustrated in Figure 3.3, the deck is fixed on pier 

P1, whereas on piers P2, P3 and P4 only the transverse movements of the deck are restrained, 

while the longitudinal movements are constrained by seismic dampers. The ballasted railway 

track confirms with the Iberian gauge (1.668 m) and is composed of continuously welded rails 

(type UIC60E1) resting on mono-block concrete sleepers. Even though the bridge 

accommodates two rail tracks, only the upstream track is currently in operation, as it can be 

observed in Figure 3.1b. 

The bridge deck consists of a concrete slab laid over a steel box girder (Figure 3.4). The 

concrete slab has a total width of 15.85 m and a cross-section thickness ranging from 200 mm 

at the edge to 430 mm at the bridge’s symmetry plane. The U-shaped steel box girder has a total 

height of 2.6 m and two inclined lateral webs, a 6.20 m wide bottom flange and three top 

flanges – two outer ones connected to the lateral webs and one in the middle connected to the 

cross-section diagonals and hangers. The top outer flanges are 1.50 m wide, the middle one is 
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1.20 m, and their thickness varies between 30 mm and 60 mm. The inclined webs are 30 mm 

thick across the entire length of the deck. 

 
Figure 3.3 - Lateral view of the bridge detailing the bearing devices (adapted from GRID et al. (2006)). 

 
Figure 3.4 - Cross-section of the deck (adapted from GRID et al. (2006)). 

The three parabolic arches have a hexagonal hollow cross-section, with a variable width 

increasing towards the top, as illustrated in Figure 3.5. The maximum rise of the arches is 25.4 m. 

The arches’ webs are 80 mm to 120 mm thick. On the other side, the thickness of the arches’ 

flanges varies between 60 mm in the top section and 120 mm in the bottom section. 
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Figure 3.5 - Section variation in arch cross-section (adapted from GRID et al. (2006)). 

The connection between the deck and the hanger is performed through spherical hinges that 

allow the torsional rotation of the deck and prevent fatigue phenomena. The suspension of the 

deck loads is carried out through the hangers by means of steel diaphragms and two diagonal 

strings at each connection. The bridge deck is supported by four reinforced concrete piers with 

a hexagonal hollow cross-section. Each pier rests on heads of reinforced concrete piles with 

lengths up to 50 m and 2 m diameters.  Piers P1 and P4 are supported by nine piles, while piers 

P2 and P3 by twelve piles. Figure 3.6 details the deck, piers P2/P3 and their foundations through 

a side elevation and a front elevation. 
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Figure 3.6 - Bridge details: a) side elevation, b) front view (adapted from GRID et al. (2006)). 
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At the top of each pier there are two spherical and multidirectional steel sliding bearing 

devices, 4 m apart. The bearing devices have a circular contact surface, with a 910 mm diameter 

on piers P1 and P4, and a 1300 mm diameter on piers P2 and P3, and include an antifriction 

layer in XLIDE material. Figure 3.7 shows the design drawings of the bearings on piers P2 and 

P3, as well as the description of the components and materials of each layer. 
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Figure 3.7 - Design drawings of piers P2/P3: a) half of the bearing lateral view, b) floor plan of the bearing, c) 
schematic representation of the bearing (adapted from GRID et al. (2006)). 

3.3 MONITORING SYSTEM 

Immediately after construction, the modal properties of the bridge, namely its natural 

frequencies, mode shapes and damping coefficients, were assessed through an Ambient 

Vibration Test (AVT). In addition, the structural condition of the railway bridge over the Sado 

River was monitored through periodic visual inspections, and using a monitoring system defined 

with the objective of controlling the global stiffness of the bridge and the global longitudinal 

internal forces, as well as the behaviour of its special devices, such as the bearings, to the 

important actions of temperature and railway traffic. As this is a single-plane bowstring-arch 

structure, the important torsional effect resulting from train loading on only one side of the 

girder, was also taken into account, insofar as the sensors were eccentrically positioned in order 
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to monitor not only the effects due to bending but also the torsion of the structure. Between 2011 

and 2016, the system consisted of static measurements of strain, temperature, and displacement, 

whose responses were evaluated every hour. In 2017 an upgrade of the monitoring system was 

implemented to allow for a better characterization of the dynamic response of the bridge. This 

upgrade consisted of additional dynamic measurements using accelerometers located on the top 

of each pier and along the deck, to take advantage of the excitation induced by the several trains 

that cross the bridge every day.  

The following subsections describe the different phases of the structural monitoring of the 

bridge, including the system’s architecture, the sensors’ network and the analysis of data 

acquired over the years. 

3.3.1 Architecture 

3.3.1.1 Software components 

The architecture of the monitoring system followed the aim of a real-time SHM with 

permanent availability of data. As shown in Figure 3.8, the acquisition and management system 

of the bridge over the Sado River is highly distributed, being located in four distinct hardware 

components. First, the signals from the transducers are acquired through local data acquisition 

units, which then transfer the data to an industrial computer located on the bridge. In turn, this 

component sends the data to the management server using a VPN (Virtual Private Network) 

protocol. Once the data is stored on the database server, it can be accessed by the users. 

 
Figure 3.8 - Architecture of the monitoring system. 

3.3.1.2 Hardware components 

The hardware of the online structural monitoring system is defined bearing in mind the 

sensor’s location and the acquisition of the data with minimum ambient noise. Figure 3.9 shows 

examples of the main hardware components installed on site and Figure 3.10a summarizes the 

sparse distribution of the acquisition units and the programmable automate controllers (PAC). 
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As it is possible to observe, the network of acquisition units tries to maximize the length of 

digital signal transport and minimize the analogue, resulting in high measuring sensitivity. The 

electrical supply is ensured by IP (Infraestruturas de Portugal, S.A. – the road and railway 

infrastructure manager) at the main points needed, as outlined in Figure 3.10b. 

The communication between the several units installed in the bridge over the Sado River is 

based on Ethernet and RS-485 networks. The first one enables the communication between each 

PAC unit and the industrial computer, while the second one establishes the connection between 

the “fast” PAC units and their input boards. Nine PAC are deployed on the main acquisition 

points of the bridge. The four “slow” PAC units are located in the central span, as the five “fast” 

PAC are in the central span and at mid of the first and third spans.   

To allow overcoming the long distances between the sensors and PAC units without loss of 

information, and to guarantee better protection against electromagnetic interference, an eight 

optical fibres cable connects the several PAC units.  

Figure 3.9 - Data acquisition hardware installed in the bridge over the Sado River: a) “slow” PAC, b) Ethernet / 
fibre converter, c) industrial computer, d) optical fibre connection box, e) “fast” PAC, f) “fast” input board. 

a) 

b) 

c) 

d) 

e) 

f) 
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3.3.2 Ambient vibration test 

3.3.2.1 Description 

The AVT was held immediately before the structure entering into operation and covered 25 

sections of the deck and 12 sections of the arches, as indicated in Figure 3.11. The measurements 

were performed by means of fixed references and mobile measuring points, with a total of 15 

uniaxial EpiSensor (ES-U) force balance accelerometers, from Kinemetrics. The ambient 

vibration response was evaluated in 8 successive setups by measuring: i) vertical accelerations 

on the downstream side of the slab; ii) vertical and transverse accelerations on the upstream side 

of the slab; iii) longitudinal accelerations at locations 2, 3, 17, 18, 32 and 33; iv) vertical and 

transverse accelerations in the arches, and v) vertical and longitudinal accelerations over the 

bearings. The ambient vibration data was continuously acquired at 500 Hz for approximately 30 

minutes during each setup. The measurements were made with a precision of ± 2 μg (Min & 

Santos, 2011). 
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Figure 3.11 - Measuring points of the ambient vibration test. 

3.3.2.2 Results 

The AVT allowed the identification of the modal properties of the bridge to establish a 

baseline condition, comprising 22 vibration modes, characterized by their frequencies, mode 

shapes and damping coefficients. This identification was performed by applying the Enhanced 

Frequency Domain Decomposition method (EFDD), available in the ARTeMIS software (SVS, 

2005) (Min & Santos, 2011). Figure 3.12 shows the curves of the average normalized singular 

values of the spectral density matrices. Five lateral modes of the arches are outlined on the first 

curve (Figure 3.12a), as well as sixteen vertical vibration modes associated with the deck and 

arches on the second curve (Figure 3.12b), and one longitudinal mode of the deck on the third 
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curve (Figure 3.12c). The first 10 of the 22 mode shapes, frequencies and damping coefficients 

experimentally identified are plotted in Figure 3.13. 

 
Figure 3.12 - EFDD method: average normalized singular values of the spectral density matrices: a) lateral modes 

of the arches, b) vertical modes of the deck and the arches, c) longitudinal mode of the deck (Min & Santos, 
2011). 

 
Figure 3.13 - Experimental mode shapes, natural frequencies and damping coefficients (Min & Santos, 2011). 
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3.3.3 Static monitoring 

3.3.3.1 Description of the sensors network 

The first phase of the bridge monitoring, carried out between 2011 and 2016, consisted of the 

installation of a system that is mainly concerned with monitoring the stress on the arches and on 

the deck, as shown in Figure 3.14. Figure 3.15 to Figure 3.17 show the scheme and details of the 

instrumented sections. The structural temperature action was measured using NTC thermistors 

and PT100 thermometers. Twelve NTC thermistors were installed in three sections of each arch, 

as outlined in Figure 3.15a,b. Additionally, measurements were also taken from four NTC 

thermistors fixed to the steel box girder and three PT100 sensors embedded in the concrete slab, 

as illustrated in the cross-section of Figure 3.16a. Regarding the stress measurements, responses 

were obtained from the electrical resistance strain gauges installed as a full Wheatstone bridge 

in the arches (Figure 3.15c) and fixed to the steel box (Figure 3.16b,c). To control the increased 

friction in the bearings, the responses measured by a longitudinal displacement transducer 

installed at pier P4 (Figure 3.17) were evaluated.  

P2P1 P3 P4

1/2
1/6

ALGARVELISBON

SA2sn
SA2m

S2m S 2s

SAi: Arch section with strain gauges + NTC thermistors
Sim: Deck section with strain gauges in the steel box
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DL M-P4

S 2s: Deck section with thermistors and PT100

DL M-P4: Upstream longitudinal displacement
transducer

SA1sn
SA1m

SA1ss SA3sn
SA3m

S3m

SA3ss

S1m

 
Figure 3.14 - Sensors installed for static measurements. 

 

Ea down

Ea: arch strain gauges
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a) b) c) 

Figure 3.15 - Arch sections: a) NTC thermistors (Ta) location, b) NTC thermistors (Ta) installation, c) strain 
gauges (Ea) location. 

Ta1Ta2

Ta3Ta4

Ta1 Ta2
Ta3 Ta4

SA2sn, SA2ss
SA2m
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a) b) c) 

Figure 3.16 - Bridge cross section: NTC thermistors in the steel box (Ts) and PT100 sensors in the concrete 
slab (Tc), b) strain gauges on the steel box (Es), c) electric strain gauge (Es) installation. 

 
a) b) 

Figure 3.17 - Longitudinal displacement transducer (DL): a) cross section location, b) sensor installation. 

3.3.3.2 Data analysis 

Between 2011 and 2016, visual inspections allowed observing, for the bearing devices 

located on piers P2 and P3, excessive deformations of the spherical cup (Figure 3.18a), excessive 

relative displacements between the upper plate and the spherical cup (Figure 3.18b) and an 

apparently insufficient thickness of the sliding element (XLIDE) located between the upper plate 

and the spherical cup (Figure 3.18c). These findings suggested that the bearings were not fully 

unrestrained and could result in increased friction between the piers and the deck.   

   

Figure 3.18 - Information obtained from visual inspections carried out on the bearings of piers P2 and 
P3 of the bridge over the Sado River. 

However, as observed in Figure 3.19, the static-based global monitoring was not specifically 

tailored to capture these slight changes in the behaviour of the bridge. This figure shows the 

evolution of the longitudinal displacements of the bearings on pier P4, the only one comprising 

Tc: PT100 sensors in the concrete slab

Tc2
Tc1 Tc3
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Ts: NTC thermistors on the steel box
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dedicated sensors at that time, along with the temperatures measured on the arch (upper fiber – 

Ta1, and bottom fiber – Ta2), steel box (Ts3) and concrete slab (Tc2), between November 2011 

and November 2016. Comparing the two plots, it is possible to observe that the longitudinal 

displacement is characterized by a long-period cycle directly related with the annual temperature 

variation. Therefore, there is a direct correlation between the expansion and contraction of the 

bridge and the seasonal variation of the temperature. Moreover, no deviations or unexpected 

variations are identified, suggesting that the changes on the bearings of piers P2 and P3 did not 

influence the overall response of the bridge measured between the deck and pier P4. 
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Figure 3.19 - Data acquired between November 2011 and November 2016: a) longitudinal displacements of the 
upstream bearing located on pier P4 and b) temperature measurements on the middle arch (Ta1 and Ta2), steel 

box (Ts3) and concrete slab (Tc2).  

Although visual inspections suggested changes in the behaviour of the bearing devices, it was 

not possible to estimate their exact time frame. Therefore, these observations led to the 

conclusion that more sensors needed to be installed, specifically in the bearings that presented 

structural changes, and, above all, that the migration from static to dynamic monitoring is of the 

utmost importance in order to take advantage of the excitation induced by the several trains that 

cross the bridge every day. 
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3.3.4 Dynamic monitoring 

3.3.4.1 Description of the sensors network 

In 2017 an additional set of transducers was installed on the bridge over the Sado River 

(Figure 3.20a), mainly for the dynamic measurement of accelerations. This new set included two 

pairs of optical sensors, model E3SAT31, at both ends of the bridge, to capture the speed of the 

trains and carry out the detection of the axles and four longitudinal MEMS DC accelerometers, 

model PCB 3711E112G, on the piers between the bearings (Figure 3.20b). The set of sensors 

also comprised one vertical piezoelectric accelerometer, model PCB 393A03, fixed at mid-span 

of the concrete slab, two triaxial EpiSensors (ES-T) force balance accelerometers at thirds of the 

mid-span steel box girder, and twelve vertical EpiSensors (ES-U) force balance accelerometers 

fixed along each span of the steel box girder (Figure 3.20c). Measurements of the longitudinal 

displacement transducers were also acquired from sensors adjacent to each of the eight bearing 

devices (Figure 3.20b).  
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Figure 3.20 – Dynamic monitoring system installed in the railway bridge over the Sado River: a) overview, b) 
longitudinal accelerometer, displacement transducer, and optical sensor, c) triaxial and vertical accelerometers. 
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Unlike the static data acquisition system, which saves measurements every hour, this system 

acquires the responses of the bridge continuously, in order to save the time history while the 

train is crossing the bridge, at a sampling rate between 500 Hz and 2000 Hz depending on the 

aliasing requisites. 

3.3.4.2 Data analysis 

In order to assess the evolution of the friction coefficient of the bearings, an analysis of the 

data acquired continuously on piers P2, P3 and P4 was conducted using longitudinal 

accelerometers and longitudinal displacement transducers.  

Figure 3.21a presents the analysis of the behaviour of the bearings on each pier for a period 

of 24 hours. The bearing response depends on the combined action of a vertical load (FN) and a 

horizontal load (FH). For a friction coefficient μ, the bearing will slide if the criteria of yielding 

(FH = μ|FN|) is verified. The sliding of the bearing varies depending on the temperature and the 

train-induced vibration applied at a specific instant. The longitudinal accelerations shown in 

Figure 3.21a allow observing that 17 trains crossed the bridge over the Sado River on 

December 2, 2016. The amplitude of these responses varies, depending on the type of train. 

Furthermore, the responses measured by the accelerometer on pier P4 display higher amplitudes, 

when compared with the ones on piers P2 and P3. A direct correspondence can also be observed 

between the acceleration measurements for each train that crossed the bridge and the 

displacement of the upstream bearing on pier P4, highlighted by dashed lines. During the 

observation period shown in Figure 3.21a, the bearing on pier P4 slides in one direction in the 

morning, in the opposite direction in the afternoon, and changes direction again during the night. 

This behaviour is clearly influenced by the variation of the structure’s temperature throughout 

the day. Due to the sun exposure of the bridge, the upper fibre of the arch (Ta1) presents the 

greatest temperature variation. On the other hand, the transducers located on the bearings of 

piers P2 and P3 recorded near-null longitudinal displacements during the passage of all trains. 

Each plot of Figure 3.21a comprises a dashed window highlighting the responses acquired 

between 9 and 10 am, shown in Figure 3.21b. Over the course of this one-hour window, all 

longitudinal accelerometers recorded amplified responses during the passage of 2 trains. The 

upstream bearing on pier P4 systematically slides when a train is passing, always in the same 

direction but with different amplitudes. It is not possible to observe the influence of temperature 

on the behaviour of the bearing here, but it is easier to identify the bearing displacement caused 
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by a passing train. However, the bearings on piers P2 and P3 show near-null values during the 

passage of the same trains, which corroborates the conclusions obtained in the visual inspections. 

In addition, it can be observed that during this hour the temperatures in the steel box (Ts3), in 

the concrete slab (Tc2) and in the middle arch (Ta1-upper fibre and Ta2 - bottom fibre) are 

practically stable. 
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Figure 3.21 - Analysis of the longitudinal accelerations and displacements on piers P2, P3 and P4, and the 
temperature of the structure measured on December 2, 2016: a) for 24 hours and b) for 1 hour. 
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This analysis allowed observing the combined actions of temperature and train-induced 

vibration in the bearing devices. It is possible to conclude that the static deformation imposed to 

the bearing devices by the temperature is more preponderant than the dynamic longitudinal 

displacement inflicted by a passage of a train. The degradation of the friction coefficient alters 

the behaviour of the bearing, which can lead to the full restraint of its movements, as verified in 

piers P2 and P3. It was found that a dynamic monitoring system has the advantage of detecting 

bearing defects based on the excitation induced by passing trains. With the passage of several 

trains, the diagnosis can be validated, and false positives can be dismissed in a short period of 

time. 

3.4 CONCLUDING REMARKS 

This chapter presented the case study used throughout this work and addressed the 

implementation of a progressively phased in-situ structural monitoring system. The case study 

is the long-span bowstring-arch railway bridge over the Sado River comprising an extensive 

network of sensors, which have provided a diverse set of data streams ranging from static and 

dynamic responses to the measurement of environmental and operational traffic loads. 

By analysing experimental data from the ambient vibration test and static monitoring, it was 

possible to estimate the modal parameters, as well as the responses to important slow actions, 

such as temperature. However, the experimental information alone did not enable the 

identification of changes in the behaviour of the bearing devices, which were suggested by visual 

inspection. 

On the other hand, it was concluded that a continuous dynamic monitoring based on the 

analysis of traffic loading allowed the identification of changes in the structural responses and 

pointed out the existence of restraints in the movements of the bearing devices on piers P2 and 

P3. 

Using the comprehensive set of sensors that result from this operational evaluation and data 

acquisition, the structural health condition of the railway bridge over the Sado River can be 

continuously monitored and, the traffic-induced responses can be used to implement a damage 

identification methodology.  
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Chapter 4  

NUMERICAL MODEL VALIDATION OF A BOWSTRING-

ARCH RAILWAY BRIDGE* 
 

4.1 INTRODUCTION 

To obtain different damage scenarios in civil engineering structures, especially bridges, that 

allow to test and validate the damage identification methodologies developed, is particularly 

difficult. Since, also in this case study, it was not possible to obtain such conditions 

experimentally, a digital twin of the bridge over the Sado River was implemented.  

This chapter presents a progressive numerical model validation of the bowstring-arch railway 

bridge over the Sado River based on the analysis of experimental data from different structural 

response measurements, namely, static deformations under environmental actions, modal 

vibrations, and transient dynamic responses under traffic loads. This chapter also addresses an 

integrated approach that uses SHM measurements in combination with finite element (FE) 

modelling to understand the structural behaviour of a long-span complex bridge.  

The first phase consists of defining a detailed baseline FE model of the bridge, envisaging 

the initial condition of the structure immediately after construction, and its validation using 

                                                 
* This chapter is based on the paper: 
Meixedo, A., Ribeiro, D., Santos, J., Calçada, R., Todd, M. (2021). Progressive numerical model validation of a 
bowstring-arch railway bridge based on a structural health monitoring system. Journal of Civil Structural Health 
Monitoring, 11(2): 421–449, DOI: 10.1007/s13349-020-00461-w. 
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modal parameters (natural frequencies and mode shapes) derived from the AVT. Since overall 

in-service deflections in general do not exercise the non-linear regime of the bridge response, 

the second phase focuses on the analysis of static response data and temperature measurements 

to validate the non-linear behaviour of the structural system, particularly at the bearing devices, 

under slow actions. The third and final phase addresses the dynamic analysis under traffic 

actions, which provides greater sensitivity in the detection of non-linear behaviour due to the 

effects of high amplitude actions induced by regular train loading profiles. To guarantee the 

accuracy of the baseline numerical model, particularly under temperature and traffic actions, it 

was necessary to use contact restrictions in some specific bearing devices. This improvement is 

in line with the structural changes detected in some bearing devices through visual inspections.  

As a result, an updated numerical model capable of reproducing the modal, static, and 

dynamic structural responses was achieved. This progressively stepped validation will increase 

the reliability of the numerical model, envisaging further uses, such as condition assessment, 

simulations under extreme loading scenarios, evaluation of safety and serviceability or risk 

analysis. Such capabilities ultimately begin to realize the concept of a digital twin for the 

structure.  

After the introduction, section 4.2 describes the numerical model and explains the details of 

the non-linear analyses. Afterwards, in section 4.3, the validation of the numerical model is 

presented with the simulation of the responses to ambient vibration, environmental actions and 

traffic loads, considering abnormal restrains observed in the bearing devices of the bridge. 

Finally, section 4.4 lists the concluding remarks obtained with the work from the present chapter, 

along with the main achievements.  

4.2 NUMERICAL MODELLING 

4.2.1 Description 

A 3D finite element numerical model of the bridge was developed in the ANSYS (2016) 

software. The deck, hangers and arches were previously modelled by Albuquerque et al. (2015). 

The assessment of the structural changes discussed in Chapter 3 led to the need to develop a 

numerical model that accurately simulates the longitudinal response of the bridge and the 

non-linear behaviour of the bearings. For that purpose, the upgraded numerical model developed 
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in the present study also includes the track, the bearing devices, the piers and the foundations, 

as shown in Figure 4.1. 

X Y
Z

 

a) 

 

 

b) c) 

Figure 4.1 - 3D numerical model of the railway bridge over the Sado River: a) lateral view, b) middle span detail, 
c) front view. 

Among the modelled structural elements, those defined as beam finite elements consist of 

piers, sleepers, ballast-containing beams, rails, arches, hangers, transverse stiffeners, 

diaphragms and diagonals. Shell elements were used to model the concrete slab and the steel 

box girder, while the pads, the ballast layer and the foundations were modelled using linear 

spring-dashpot assemblies. The mass of the non-structural elements and the ballast layer was 

distributed along the concrete slab. Concentrated mass elements were used to reproduce the mass 

of the arches’ diaphragms and the mass of the sleepers, which were simply positioned at their 

extremities. The connection between the concrete slab and the upper flanges of the steel box 

girder, as well as the connection between the deck and the track, were performed using rigid 

links. Special attention was paid to the bearing devices, as they can strongly influence the 

performance of the bridge. Hence, in order to simulate the sliding behaviour of the bearings, 
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non-linear contact elements were applied. Moreover, constraint elements located between the 

bearings were used to restrict the transversal movement in each pier, and the longitudinal and 

transversal movements in the case of the first pier. It is worth mentioning that the seismic 

dampers were not modelled, as they are not activated during serviceability loads, such as the 

ones caused by passing trains or environmental actions. Figure 4.2 illustrates a schematic 

representation of the numerical model highlighting the different types of finite elements that 

were used.   

Arch

Ballast

Pier

Foundations

Bearing

Steel box girder Diaphragms

Concrete slab

Ballast containg beams

Rail pads Sleeper

Sleeper

Arch

Hanger
Rail

 
Figure 4.2 - Schematic cross-section representation of the FE numerical model. 

A mesh of elements with a discretization of less than 2 m in the longitudinal direction was 

adopted for most of the deck. However, a more refined mesh was defined at the central third of 

the central span for a more precise characterization of the dynamic responses under traffic loads 

(Figure 4.3b). To ensure a correct representation of the transition zones between the structure 

and the embankment, an extension of the track and sleepers, spaced 0.6 m, was modelled at both 
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ends of the bridge (Figure 4.3a). The numerical model of the bridge includes 25924 nodes and 

38620 finite elements. 

a) b) 

Figure 4.3 - Details of the numerical model: a) transition zone, b) refined mesh in the second span. 

4.2.2 Geometrical and mechanical properties 

The following subsections present a detailed explanation of the main geometrical and 

mechanical parameters of the different structural components of the numerical model. 

4.2.2.1 Superstructure 

The steel of the deck was defined with a modulus of elasticity of 210 GPa, a Poisson’s ratio 

of 0.3 and a density of 7850 kg/m3, while the concrete slab was defined with a density of 

2500 kg/m3, a Poisson’s ratio of 0.15 and a modulus of elasticity of 43 GPa, based on the updated 

model presented by Albuquerque et al. (2015).  

The mass of the non-structural elements and of the track ballast is distributed in the sections 

of the concrete slab emphasized in Figure 4.2. The values considered in each section are 

summarized in Table 4.1. The diagonal elements located in each diaphragm have the geometrical 

properties specified in Table 4.2. The arches were composed of variable cross-sections, with 

varying thickness, width and height, both of flanges and webs. Their geometric and mechanical 

characteristics were reproduced in the numerical model along with the nodal masses added to 

the hanger-to-arch connections, which replicate the diaphragms built in those locations. 

Regarding the hangers, their cross-sections consist of a circumference with a 200 mm diameter 

and the properties presented in Table 4.2. Both the arches and the hangers were modelled in steel 

with the same characteristics as the one used in the deck box girder.  
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Table 4.1 - Distributed mass regarding the track ballast and non-structural elements of the deck’s slab. 

SECTION MASS (kg/m3) DESCRIPTION 

 190 Concrete slab covering (waterproofing, light concrete and screed) 

 1121 Track ballast and concrete slab covering 

 77 Prefabricated concrete slab 

 735 Lightweight concrete and metallic bridge-rail 

Table 4.2 - Geometrical parameters of the diagonals of the diaphragms and hangers. 

NUMERICAL MODEL DETAIL CROSS-SECTION GEOMETRICAL PROPERTIES 

 

z

y

A = 0.035x0.60 = 0.021 m2 

Iy = 0.214E-05 m4 

Iz = 0.630E-03 m4 

J = 0.828E-05 m4 

 

z

y

 

A = 3.14E-02 m2 

Iy = 7.85E-05 m4 

Iz = 7.85E-05 m4 

J = 1.57E-04 m4 

4.2.2.2 Bearings 

The bearing devices were modelled using non-linear contact elements CONTA178 (ANSYS, 

2016). These elements allow contact and sliding between any pair of nodes, and are able to 

withstand compression forces normal to their plane and friction forces along the tangential 

directions based on the Coulomb model. Their friction coefficient μ was defined as 1.5% during 

the numerical analysis, based on the specifications of the design (REFER, 2010).  

As observed in Figure 4.4, the force deflection relationships for the contact element were 

separated in the normal and tangential (sliding) directions. In the normal direction, when the 

normal force (FN) is negative, the contact status remains closed. In this circumstance, in the 

tangential direction, if the absolute value of the tangential force (FS) is below μ|FN|, the contact 

element works as a linear spring; otherwise, if FS = μ|FN|, sliding will occur. As FN becomes 

positive, the contact is broken and no force is transmitted (FN = 0, FS = 0). This non-linear  

contact problem is solved by the Penalty method (Mijar & Arora, 2000).  



Damage identification in railway bridges based on train induced dynamic responses 

 

67 

  

a) b) 

Figure 4.4 - Force-deflection relationship of the contact element: a) normal direction, b) tangential direction. 

4.2.2.3 Substructure 

The piers are composed of three different types of reinforced concrete cross-sections, namely, 

a solid rectangular section, a rectangular hollow-section, and an elliptical hollow-section. The 

geometric properties of each section are presented in Table 4.3. The two central piers were 

modelled with the same height (25.72 m), while the first and fourth are slightly shorter (23.10 m 

and 23.68 m, respectively). The piers were modelled using a concrete with a density of 

2500 kg/m3, a Poisson’s ratio of 0.15 and a modulus of elasticity of 43 GPa.  

Table 4.3 - Geometrical properties of the piers. 

NUMERICAL MODEL DETAIL CROSS-SECTION GEOMETRICAL PROPERTIES 

 

z

y

 

A = 44.20 m2 
Iy = 99.60 m4 

Iz = 266.12 m4 
J = 250.81 m4 

z

y

 

A = 19.36 m2 
Iy = 72.77 m4 

Iz = 167.57 m4 
J = 164.50 m4 

z

y

 

A = 42.74 m2 
Iy = 234.78 m4 
Iz = 406.44 m4 
J = 560.07 m4 

 
The boundary conditions were modelled using the results obtained from in-situ geotechnical 

tests conducted during the construction of the bridge (REFER, 2010).  The Standard Penetration 
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Test (SPT) was done twice on each pier, while the Crosshole Test was specifically conducted 

on pier P3. Table 4.4 summarizes the N-values of the SPT and the shear wave velocity of the 

soil (Vs) obtained from the in-situ tests previously mentioned, together with the classification of 

the soil resulting from the laboratory analyses of the samples collected during the same tests.  

Table 4.4 – Geotechnical properties at each pier location. 

Depth
  (m)

Soil
Classif.

Soil
Classif.

Soil
Classif.

Soil
Classif.

N
(SPT)

N
(SPT)

N
(SPT)

N
(SPT)

K
(kN/m)

average K
(kN/m)

average K
(kN/m)

average K
(kN/m)

averageVs (m/s)
CrossHole

P1 P2 P4P3
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The flowchart presented in Figure 4.5 illustrates the several steps taken to obtain an 

equivalent soil stiffness in each direction, which was later included in the numerical model of 

the bridge using spring elements. The equivalent soil stiffness (ktrans and krot) computed on each 

pier is indicated in Table 4.5. 

 Pier

k trans,x

k trans,z

k trans,y

k rot,z
k rot,x

k rot,y

IN SITU TESTS

Cross-hole test (Pier 3):

V
s 
– shear wave velocity

 ν
s
 – soil Poisson coef.

SPT test (Piers 1 to 4):
SPT N values in each pier

LAB TESTS

For each soil layer:

Ɣ - Weight/volume

CORRELATION

Find V
s
for remaining piers location (P1, P2 

and P4) based on a 3rd polynomial equation:

1.a  Springs each 0.5 m with k
average

;
1.b  Apply unit load (F) in each direction;
1.c  Measure the displacement (d);
1.d.  Find k

trans,equivalent 
= F/d;

2.a.  Apply unit Moment (M) in each direction;
2.b.  Measure the rotation (θ);
2.c.  Find k

rot,mequivalent 
= M/θ. 

 

 

 

FE model using spring elements 
in each direction  to simulate the 
foundation. 

 FOUNDATION NUMERICAL MODELFOUNDATION NUMERICAL MODEL

 EQUATIONS AND RELATIONS

  
 

Compute k
average 

by layer

G0=V s
2γ
g

G
G0

=1

E s=2G (1+ν )

G
0
 – small-strain shear modulus;

G  –  shear modulus; 
g – gravity;
E

S
 – Soil Elasticity Modulus.

 
 

Vesic Relation:

k s=
0.65
d

x
12√Es d

4

E p I p
x

E s

1 − ν 2

K
s
 – Coefficiente of subgrade reaction (kN/m3)

E
p
 I

p
– Flexural rigidity of foundation

d – Pile diameter 

Winkler model:

k i=
(Bi)(Li)
6

x (2 ks ,i)( k s,i +1) ;

k i=
(B i)(Li − 1)

6
x (2 k s , i)( ks ,i − 1)

k
I
 – Coefficient of subgrade reaction (kN/m) 

B
I
 – Pile group width

L
I
– Pile length

 
Figure 4.5 - Flowchart describing the simulation of the soil stiffness.  

Table 4.5 - Equivalent soil stiffness considered on each pier. 

PARAMETER P1 P2 P3 P4 UNITS 

ktrans,x 1.11E+06  1.43E+06  1.25E+06  1.00E+06  kN/m 
ktrans,y 1.11E+06  1.67E+06  1.25E+06  1.00E+06  kN/m 
ktrans,z 1.00E+12  1.00E+12  1.00E+12  1.00E+12  kN/m 
krot,x 1.33E+09  2.09E+09  2.09E+09  1.19E+09  kN/m 
krot,y 1.33E+09  1.61E+09  1.61E+09  1.19E+09  kN/m 
krot,z 1.93E+09  3.70E+09  3.70E+09 1.72E+09  kN/m 
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4.2.2.4 Railway track 

The geometric and mechanical properties of the UIC60 rail were adopted following the 

guidelines of the EN 13674-1(2007) and UIC 861-3 (E) (1969) standards. The modulus of 

elasticity, density weight and Poisson’s ratio of the steel were considered equal to 210 GPa, 

7850 kg/m3 and 0.30, respectively. The main properties of the track, such as the stiffness and 

damping of the ballast and rail pads, were adopted from the literature or from previous research 

works and summarized in Table 4.6. It is worth pointing out that the ballast mass was distributed 

over the slab and that the inertia and geometry of these elements were corrected to consider the 

different mesh discretization adopted along the deck. 

Table 4.6 - Mechanical properties of the numerical model of the track. 

DESIGNATION PARAMETER VALUE UNITS REFERENCE 

Ballast 

Longitudinal stiffness Kbal,l 30 MN/m/m (UIC 774-3-R, 2001) 
Transversal stiffness Kbal,t 7.5 MN/m/m 

(ERRI D 202/RP 11, 1999) 
Vertical stiffness Kbal,v 100 MN/m/m 
Damping (3 directions) Cbal 50 kN.s/m/m (Wu, & Yang, 2003) 

Rail pads 

Longitudinal stiffness Kfas,l 20 MN/m 
(Zhai, et al., 2009) 

Transversal stiffness Kfas,t 20 MN/m 
Vertical stiffness Kfas,v 160 MN/m (Paixão, et al., 2014) 
Rotational stiffness Kfas,r 45 kN.m/rad (ERRI D 202/RP 11, 1999) 
Longitudinal damping Cfas,l 50 kN.s/m 

(Zhai, et al., 2009) 
Transversal damping Cfas,t 50 kN.s/m 
Vertical damping Cfas,v 17 kN.s/m (Paixão, et al., 2014) 

Concrete sleeper 
Modulus of elasticity Ec,sleeper 30 GPa 

(Paixão, et al., 2014) 
Poisson’s ratio νc,sleeper 0.25 - 

4.2.3 Non-linear numerical analyses 

4.2.3.1 Static analysis 

The structural static behaviour of the bridge was simulated in the FE model by running a 

time-history analysis using experimental data as input, as described in Figure 4.6. The simulation 

procedure consisted of using the temperatures acquired every hour on site over the course of one 

year, some of which are shown in Figure 4.7, as input for the numerical simulations, and 

obtaining the corresponding output, composed of time-series of displacements and 

deformations. Each time series used in the numerical simulation consists of over 8400 data 

points, spanning over a period of 12 months (between November 2015 and November 2016). 

Figure 4.7 also shows a lateral view and a section detail of the numerical model, including the 

experimental temperatures from one hour of a day in November. A clustering strategy was 
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considered regarding the input of the experimentally acquired temperatures. As it is possible to 

observe, the steel box was divided into four clusters (Ts1, Ts2, Ts3 and Ts4), the concrete slab 

was divided into three (Tc1, Tc2 and Tc3), and each arch was also divided into three clusters 

(SA2sn, SA2m and SA2ss), with the temperature being introduced in the upper (Ta1) and bottom 

(Ta2) part of the arch section. A reference temperature of 30º C was considered in the 

simulations, according to the average seasonal temperature at the time the bridge construction 

was completed. 

 
Figure 4.6 – Steps to simulate the static response of the bridge under thermal loads. 

 
Figure 4.7 - Experimental temperatures used as input for the numerical time history simulation. 

To ensure that the numerical model accurately describes the structural behaviour of the bridge 

during the numerical analysis, the non-linear contact elements simulating the bearings were 
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activated. The Full Newton-Raphson Method implemented in the ANSYS software was used to 

solve the non-linear problem.  

4.2.3.2 Dynamic analysis 

Dynamic numerical simulations were conducted in order to reproduce the structural quantities 

that were measured in the exact locations of the real sensors, installed on site. To faithfully 

reproduce these structural responses, the action of the measured temperature (from the sensors 

mentioned in Chapter 3) precisely during each train passage, the train speed and geometry, as 

well as the Rayleigh damping are introduced as inputs in the numerical model (Figure 4.8). 

 
Figure 4.8 - Steps to simulate the dynamic response of the bridge under traffic loads. 

Using the measurements of the optical sensors setup installed at both ends of the bridge, it is 

possible to compute the speed of the train and identify the type of train, according to its 

geometry. Figure 4.9 shows an example of the optical sensors’ response when an Alfa Pendular 

(AP) train crosses the bridge over the Sado River. Each peak in the response of the optical 

sensors is generated by the passage of an axle through the optical beam. Given that the axles are 

easily identified, and knowing the distance (d) between the two synchronously logged optical 

sensors setup, as well as the time interval (t) in which each axle crosses the laser, the train speed 

(V) can be seamlessly obtained as . 
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Figure 4.9 - Axle detection based on measurements from the optical sensors during the passage of an AP train. 

All the dynamic analyses mentioned hereinafter in this chapter were carried out for the AP 

train, which has a total length of approximately 150 m comprising four motor vehicles (BAS, 

BBS, BBN and BAN) and two hauled vehicles (RNB and RNH) (Ribeiro et al., 2013). The axle 

loads considered during the dynamic analysis vary between 128.8 kN and 138.4 kN, according 

to the loading scheme presented in Figure 4.10a. Usually, the AP train crosses the bridge near 

its maximum speed, which is 220 km/h. Figure 4.10b shows the dynamic signature of the train, 

which characterizes the dynamic excitation imposed by the train on the infrastructure, for a 

wavelength range of 4 m to 30 m, as well as the corresponding frequency response, in the range 

of DC to 14 Hz, for a train speed of 216 km/h. The dynamic signature depends on the axle load 

values and the distances between axles, and is given by the following expression (ERRI D 

202/RP 11, 1999): 

S (λ)= max, P cos 2πxλ + P sin 2πxλ  (4.1) 

where i is the number of axles of the train, Pk is the static load of axle k, xk is the distance between 

axle k and the first axle of the train, and λ is the wavelength of excitation. In Figure 4.10b, the 

most important dynamic component of this train’s action is highlighted, with a wavelength of 

25.9 m, associated with a regular distance between groups of four axles and a frequency of 

2.362 Hz for an AP train at a speed of 216 km/h. 
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Figure 4.10 - AP train: a) load scheme, b) dynamic signatures. 

In order to perform the necessary dynamic analysis to predict the response of the bridge 

subjected to a moving train, the damping was considered using a Rayleigh damping matrix ( ), 

which assumes the linear combination of the mass ( ) and stiffness ( ) matrices: = +  (4.2) 

where  and  are the mass and stiffness proportional damping coefficients, which can be 

obtained by applying the least-squares method, using the following expression, that implies the 

prior knowledge of frequency and damping coefficient values identified in the AVT 

(Figure 3.13) (Calçada, 2001):  = 2 + 2  (4.3) 

The least-squares method finds the optimal values of the coefficients (c1 and c2) by 

minimizing the sum ( ) of squared residuals, e.g., the difference between the experimental ( ) 

and numerical ( ) damping values of the considered mode shapes:  
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= ( − ) = ( − 4 − )  (4.4) 

The minimum value of the sum of squares was found by setting the gradient functions to zero: 

⎩⎨
⎧ = 0= 0 (4.5) 

which leads to the following system of equations: 
 

⎩⎪⎨
⎪⎧ 14 1 + =

4 + =  (4.6) 

The obtained Rayleigh damping curve is illustrated in Figure 4.11.  

 
Figure 4.11 - Relation between the damping ratio and the natural frequencies identified in the AVT. 

Once again, the contact elements simulating the bearings were activated, hence, the 

non-linear problem was solved based on the Full Newton-Raphson method, while the dynamic 

analyses were performed by the Newmark direct integration method, using a moving loads 

methodology (Ribeiro et al., 2012). The integration time step (∆ ) used in the analyses was 

0.005 s. The analyses were concluded two seconds after the vehicle crossed the viaduct to take 

into account the period of free vibration of the structure. 
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4.3 EXPERIMENTAL VALIDATION 

4.3.1 Validation based on ambient vibration  

To validate the accuracy of the baseline numerical model in replicating the stiffness and mass 

distribution across the geometry of the bridge, the numerical modal properties of the bridge over 

the Sado River were compared with those experimentally identified in the AVT described in 

section 3.3.2. Table 4.7 presents the experimental and numerical frequencies and the MAC 

(Modal Assurance Criterion) values for 10 of the 22 vibration modes experimentally identified. 

The frequency Fitting Error ( ) was defined as: = ( , − , )/ , × 100 (%) (4.7) 

where ,  and ,  are the experimental and numerical frequencies obtained for mode i. 

The average value of the fitting error, across the identified mode shapes, is equal to 2.01%, 

whereas the average MAC value obtained is 0.94. Figure 4.12 shows a very high coefficient of 

determination (  =  0.9993) between the 22 numerical and experimental frequencies. The 

mode shapes corresponding to 10 of the 22 frequencies identified in the experimental and 

numerical modal analysis are plotted in Figure 4.13. The numerical vibration modes were 

identified using the materials and geometric properties defined in the design and construction 

phases, with the exception of the modulus of elasticity of the concrete slab, previously updated 

by Albuquerque et al. (2015). No abnormal behaviour or structural change needed be considered 

to update the numerical model. However, it is important to note that during the numerical modal 

analysis, the non-linear contact elements simulating the behaviour of the bearings were inactive, 

since they are not mobilized in an ambient vibration test.   

Table 4.7 - Natural frequencies and MAC values. 

MODE 
NUMBER 

EXPERIMENTAL 
FREQ (Hz) 

NUMERICAL 
FREQ (Hz) 

FE (%) MAC 
MODE 
TYPE 

1 0.462 0.466 0.87% 0.95 1st LA 
2 0.886 0.847 4.40% 0.95 1st V 
3 0.898 0.867 3.45% 0.98 1st LAD 
4 1.023 0.989 3.32% 0.90 2nd V 
5 1.146 1.146 0.00% 0.99 1st L 
6 1.198 1.178 1.67% 0.98 3rd V  
7 1.343 1.316 2.01% 0.98 2nd LA 
8 1.482 1.493 -0.74% 0.91 4th V 
9 1.612 1.536 4.71% 0.86 5th V 

10 2.090 2.081 0.43% 0.93 6th V 
LA – Lateral Arches; V – Vertical, LAD – Lateral Arch & Deck coupled, L – Longitudinal. 
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Figure 4.12 - Agreement between numerical and experimental modal frequencies. 
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Figure 4.13 - Numerical mode shapes. 

4.3.2 Validation using the response to environmental loading  

Validation based on environmental loading was conducted using two distinct numerical 

models. The first, the baseline model, was defined considering partially restrained displacements 

between piers P2, P3 and P4 and the deck, assuming the non-linear behaviour of the bearings 
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and a friction coefficient equal to 1.5%, according to the data from the bearing manufacturer. 

The second, the updated model, was considered with fully restrained movements between piers 

P2 and P3 and the deck, based on the conclusions obtained in visual inspections and dynamic 

monitoring.  

The comparison between the numerical responses (baseline and updated models) and the 

experimental time-history responses of the bridge over a year of thermal loads, acquired between 

November 2015 and November 2016, is illustrated in Figure 4.14 to Figure 4.16. Figure 4.14a,b 

show that the baseline numerical model overestimated the longitudinal displacements of the 

upstream bearing on pier P4. The difference between numerical and experimental data is 

particularly relevant during the summer months, as the temperature variability doubles that 

observed during winter. When conducting the same comparison using the results of non-linear 

static analyses performed in the updated model, a much greater correlation was obtained between 

numerical and experimental static responses (Figure 4.14). This outcome allows concluding that 

the longitudinal displacements of the bearings on pier P4 are influenced by the restrictions 

imposed on those installed on piers P2 and P3. This conclusion would hardly be obtained by 

analysing the experimental longitudinal displacements of P4 alone, whereas the comparison with 

the numerical simulation responses obtained using the environmental conditions measured on 

site allows the direct observation of the differences induced by structural changes.  

Regarding the deformations of the steel box girder and the arch, Figure 4.15 and Figure 4.16 

show that these elements are not significantly influenced by the defects of the bearings, since 

the responses obtained with the baseline numerical model are identical to those obtained with 

the updated numerical model. This observation allows concluding that the consequences of the 

restraints in the bearings on the global stresses of the arch and deck are very small. Nevertheless, 

a good correlation in terms of arch deformations and steel box deformations can be observed, 

particularly in the 1-month time-series shown in each of these figures. 

The scatter plots shown in these figures for each structural response confirm the high 

correlation between the responses of the updated numerical model and the experimental 

measurements, wherein the coefficients of determination (R2) show values of 0.981 for 

longitudinal displacements, 0.936 for steel box deformations and 0.903 for arch deformations. 
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Figure 4.14 - Numerical and experimental longitudinal displacements of the bearing on the upstream side of pier 

P4: a) time-history comparison, b) detail of the time-history, c) scatter plot and R2. 
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Figure 4.15 - Numerical and experimental deformations of the steel box on the downstream side of the central 

deck at the mid-span section of the bridge: a) time-history comparison, b) detail of the time-history, c) scatter plot 
and R2. 
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Figure 4.16 - Numerical and experimental deformations on the upper fiber at 1/6 of the central arch section: 

a) time-history comparison, b) detail of the time-history, c) scatter plot and R2. 

4.3.3 Validation based on train induced dynamic responses   

The analysis discussed in section 3.3.4 showed that the use of acceleration signals analysed 

in the time-domain during the passage of trains is more sensitive to slight structural changes, 

and, therefore, should result in a more precise validation of the model.  

Numerical simulations were conducted considering the AP train as a set of moving loads 

(Ribeiro et al., 2012) crossing the bridge over the Sado River at 216 km/h. With this approach, 

in addition to considering environmental effects, as explained in the previous section, 

operational effects are considered.  

4.3.3.1 Analysis of displacement data  

Regarding the validation of longitudinal displacements under train loads, a comparison was 

made between the numerical responses (baseline and updated models) and the experimental 

displacement time-history responses of the bridge (Figure 4.17 to Figure 4.19). As for the 

validation under environmental loading, the baseline numerical model was considered with 

partially restrained movements between piers P2, P3, P4 and the deck, assuming the non-linear 
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behaviour of the bearings, and the updated numerical model was considered with fully restrained 

movements between the piers P2 and P3 and the deck.  

As expected, Figure 4.17a, Figure 4.18a and Figure 4.19a, obtained for piers P2, P3 and P4, 

respectively, show a significant difference between numerical and experimental responses, since 

the experimental bearing displacements identified on piers P2 and P3 show near-null values 

during the passage of trains, while the numerical ones do not. Regarding pier P4, the 

experimental bearing displacements seem to be influenced by the restriction imposed on those 

installed on piers P2 and P3, as previously observed in the displacements obtained under 

environmental loading. 

The results shown in Figure 4.17b, Figure 4.18b and Figure 4.19b were obtained through 

non-linear dynamic analyses performed in the updated model but using the same experimental 

input data. In these plots, a very high correlation between numerical and experimental responses 

was achieved, not only for the near-null displacements observed on piers P2 and P3, but also, 

and more importantly, for the case of pier P4, where no specific model updating took place. A 

maximum displacement of 1.28 mm was obtained for the bearings located on pier P4 for an AP 

train crossing the bridge over the Sado River at 216 km/h. In a scenario in which all bearing 

displacements would be unrestricted, the maximum displacement on pier P4 would be 

approximately 2 mm, as shown in Figure 4.19a. It should be noted that no comparison was made 

for the bearings located on pier P1, since, as previously mentioned, these are mechanically fixed, 

according to the bridge design.  
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Figure 4.17 - Numerical and experimental longitudinal displacements of the bearing on the upstream side of pier 

P2, with the AP train crossing the bridge at 216 km/h: a) baseline model, b) updated model. 
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Figure 4.18 - Numerical and experimental longitudinal displacements of the bearing on the upstream side of pier 

P3, with the AP train crossing the bridge at 216 km/h: a) baseline model, b) updated model. 
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Figure 4.19 - Numerical and experimental longitudinal displacements of the bearing on the upstream side of pier 

P4, with the AP train crossing the bridge at 216 km/h: a) baseline model, b) updated model. 

4.3.3.2 Analysis of acceleration data 

In addition to the validation of the longitudinal displacements measured at each bearing 

device, the longitudinal accelerations measured on top of each pier were also computed for the 

same baseline and updated numerical models. Figure 4.20 to Figure 4.23 illustrate the 

comparison between numerical and experimental longitudinal accelerations on piers P1, P2, P3 

and P4, respectively, considering the numerical models in the baseline (a) and updated (b) 

conditions. The records were filtered using a low-pass digital filter with a cut-off frequency of 

15 Hz.  
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In general, with the restraining of the bearings located on piers P2 and P3, a visible 

improvement was achieved, both in the time and frequency domains, as observed in the standard 

deviation values of the differences between numerical and experimental responses, shown in 

these figures. As expected, the longitudinal accelerations acquired on piers P2 and P3 were the 

ones that showed the greatest differences between the responses measured in the baseline and 

updated models, with a decrease in the standard deviation values of 21% and 11%, respectively. 

In contrast, those computed for the measurements on pier P1 decreased by only 0.68%, since the 

deck is fixed to this pier. The bearings on pier P4 appear to be working correctly, and, as a result, 

the standard deviation of the differences between the numerical and experimental accelerations 

measured on pier P4 decreased 1.28%, considerably less than on piers P2 and P3. 

Regarding the auto-spectra resulting from the longitudinal accelerations measured at each 

pier (Figure 4.20 to Figure 4.23), the main frequency is repeatedly 2.3 Hz, which illustrates a 

clear correspondence with the main peak of the dynamic signatures of the trains (Figure 4.10b), 

for both numerical models comprising unrestrained and restrained bearing devices.  
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Figure 4.20 - Numerical and experimental longitudinal accelerations and corresponding auto-spectra measured 

between the bearings of pier P1, with the AP train at 216 km/h: a) baseline model, b) updated model. 
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Figure 4.21 - Numerical and experimental longitudinal accelerations and corresponding auto-spectra measured 

between the bearings of pier P2, with the AP train at 216 km/h: a) baseline model, b) updated model. 

0 2 4 6 8 10
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

Lo
ng

.A
cc

el
er

at
io

n 
(m

/s
  )

Frequency [Hz]

2

A
m

pl
itu

de

AL-P3 Numerical - Baseline Model
AL-P3 Experimental

a)

b)

10-5

AL-P3 Numerical - Updated Model
AL-P3 Experimental

AL-P3 Numerical - Updated Model
AL-P3 Experimental

AL-P3

DownstreamUpstream

AL-P

0 2 4 6 8 10
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

Lo
ng

.A
cc

el
er

at
io

n 
(m

/s
  )

Frequency [Hz]

0

A
m

pl
itu

de

5 10 150

x

Standard deviation = 0.0064

Standard deviation = 0.0058 (-11%)

AL-P3 Numerical - Baseline Model
AL-P3 Experimental

5 10 150

x 10-5

0

2

1

2

3

4

1

2

3

4

 
Figure 4.22 - Numerical and experimental longitudinal accelerations and corresponding auto-spectra measured 

between the bearings of pier P3, with the AP train at 216 km/h: a) baseline model, b) updated model. 
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Figure 4.23 - Numerical and experimental longitudinal accelerations and corresponding auto-spectra measured 

between the bearings of pier P4, with the AP train at 216 km/h: a) baseline model, b) updated model. 

While the accelerometers installed on the piers are influenced by structural changes in the 

bearing devices, those installed on the bridge deck appear to be not as sensitive, since the 

responses obtained with the baseline numerical model coincide with those obtained with the 

updated numerical model (Figure 4.24 and Figure 4.25).  
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Figure 4.24 - Numerical and experimental vertical accelerations and corresponding auto-spectra measured on the 

concrete slab in the mid-span section, with the AP train at 216 km/h. 
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Figure 4.25 - Numerical and experimental vertical accelerations and corresponding auto-spectra measured on the 

steel box girder in the mid-span section, with the AP train at 216 km/h. 

In Figure 4.24 and in Figure 4.25 it is possible to observe the auto-spectra resulting from the 

vertical accelerations measured in the concrete slab and the steel box girder, respectively, where 

the frequencies around 2.3 Hz are related to the main vibration modes of the structure, namely, 

torsion and bending modes. The preponderance of these modes is to be expected since the train 

loading is eccentric to the single-plane bowstring-arch structure. 

The comparison between the experimental and numerical records of vertical acceleration 

measured on the concrete slab (Figure 4.24) and on the steel box girder (Figure 4.25) in the 

mid-span section shows a very good agreement, both in the time and frequency domains. 

4.4 CONCLUDING REMARKS 

The present chapter addressed the progressive numerical validation of the complex non-linear 

FE model of the bridge over the Sado River using the measurements from the monitoring system 

installed on site and performing modal analysis under ambient vibration, static analysis based 

on temperature loading and dynamic analysis based on traffic loading. One of the main outcomes 

was a fully validated numerical model that will be used, in the next chapters, as a tool for 

generate several scenarios (undamaged and damaged) to validate the damage identification 

methodology. 

The validation of the numerical model based on ambient vibration and modal analysis, 

revealed to be adequate to define the baseline numerical model. However, it is insufficient to 



Damage identification in railway bridges based on train induced dynamic responses 

 

87 

perform SHM or identify structural changes, since it does not mobilize mechanical devices such 

as bearings (or joints). 

The static validation approach based on environmental loading provided a step forward in the 

accuracy of the model validation, when compared to the ambient vibration analysis, due to the 

imposition of greater displacements on the structural elements. Based on a correlation analysis 

between experimental and numerical results, the restraints of the bearing devices on piers P2 

and P3 were clearly identified, which is in line with the structural changes detected through 

visual inspections. Without the support of a numerical model, these changes would not be easily 

identified using the data from the installed static monitoring system, which did not include the 

measurement of the displacements of these specific bearings. This is, in fact, another main 

outcome of this chapter, to illustrate the combined use of measurements and modelling, and the 

need to adapt both components over the course of a project to better understand the structural 

behaviour of the bridge.  

The validation of the model based on dynamic monitoring under traffic loads was carried out 

in order to take advantage of the large displacements and vibrations imposed by this type of 

operational action. The model allowed analysing the influence that the restraints of the bearing 

devices impose on the longitudinal behaviour (displacements and accelerations) of the piers, and 

to the vertical accelerations of the deck. It was shown that the use of numerical modelling and 

its validation by comparison with the monitoring data, allows the detection of the restraint to the 

movements of the bearing devices on piers P2 and P3 without the need to measure the 

longitudinal displacements in the bearings. Instead, longitudinal accelerations on top of the piers, 

where the bearings are located, can be measured using low-cost sensors.  

Based on this fully validated numerical model, the following chapters will consider the 

simulation of damage scenarios with different levels of severity and at several locations on the 

bridge. The damage identification methodology will be implemented, tested and validated to 

prove capable of automatically extracting meaningful information related to the structural 

condition of railway bridges. 
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Chapter 5  

MACHINE LEARNING STRATEGY FOR EARLY DAMAGE 

IDENTIFICATION BASED ON TRAIN INDUCED DYNAMIC 

RESPONSES* 
 

5.1 INTRODUCTION 

This chapter presents a machine learning strategy consisting of a hybrid combination of 

time-series analysis methods and multivariate statistical techniques. Different combinations of 

techniques are implemented and tested in order to achieve the most robust, generic and effective 

one. The choices made regarding the techniques implemented within each step are explained 

and justified throughout the chapter. 

Damage-sensitive features of train induced responses are extracted and allow taking 

advantage, not only of the repeatability of the loading, but also, and more importantly, of its 

great magnitude, thus enhancing the sensitivity to small-magnitude structural changes. A 

comparison between the performance obtained from AR and autoregressive with exogenous 

input (ARX) models as feature extractors is conducted. The use of a regression-based method 

                                                 
* This chapter is based on the papers:  
Meixedo, A., Santos, J., Ribeiro, D., Calçada, R., Todd, M. (2021). Damage detection in railway bridges using 
traffic-induced dynamic responses. Engineering Structures. 238 (112189). DOI: 10.1016/j.engstruct.2021.112189. 
Meixedo, A., Santos, J., Ribeiro, D., Calçada, R., Todd, M. (2021). Online unsupervised detection of structural 
changes using train-induced dynamic responses. Mechanical Systems and Signal Processing [submitted and 
revised]. 
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such as MLR or a latent-variable method such as PCA grants the strategy the ability to remove 

EOVs and proves the importance of feature modelling. Feature discrimination is addressed by 

evaluating the performance of outlier analysis and clustering algorithms. The ability to identify 

early damage, imperceptible in the original signals, while avoiding observable changes induced 

by variations in train speed or temperature, is achieved by carefully defining the modelling and 

fusion sequence of the information. 

The effectiveness of the proposed strategy is demonstrated in the railway bridge over the 

Sado River. The experimentally validated finite element model presented in Chapter 4 was used, 

along with experimental values of temperature, noise, and train loadings and speeds, to 

realistically simulate baseline and damage scenarios. 

After the introduction, section 5.2 gives an overview of the machine learning strategy 

implemented during the chapter. Section 5.3 explains the simulation of realistic damage 

scenarios, necessary because such conditions could not be experimentally measure. In sections 

5.4 to 5.7 the several steps of the proposed strategy, namely feature extraction, feature 

modelling, data fusion and feature discrimination, respectively, are implemented. Finally, 

section 5.8 draws the main concluding remarks from the work presented in this chapter, along 

with the main achievements. 

5.2 OVERVIEW 

The unsupervised data-driven SHM strategy implemented in this chapter for identifying 

damage in bridges, based on traffic-induced dynamic responses, aims at being robust and generic 

enough to be applied to any type of bridge, and entails the four operations shown in Figure 5.1: 

i) damage-sensitive feature extraction from the acquired structural responses, ii) feature 

modelling to remove EOVs, iii) data fusion to merge multi-sensor features without losing 

damage-related information, and, iv) feature discrimination to classify the extracted features in 

two categories, healthy or damaged. 

Feature extraction is addressed in this chapter by comparing the performance of AR and ARX 

models. The AR/ARX models are fitted to the acceleration responses of the monitored structure, 

and their parameters are extracted resulting in as many sets of multivariate data as the number 

of sensors installed. 
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Afterwards, the suppression of thermal and operational variations is conducted following two 

alternative approaches, one based on structural response measurements alone and the other based 

on both actions and structural response measurements. This is accomplished through the parallel 

implementation of two multivariate statistical tools: the latent-variable method PCA for the first 

approach using AR or ARX-based features, and the regression-based method MLR for the 

second approach using AR-based features. 

In order to improve sensitivity, a Mahalanobis distance is implemented to the modelled 

features, allowing for an effective fusion, first of the AR or ARX-based features from each 

sensor and, in a second stage, of the multi-sensor information only for AR-based features. In 

case of AR-based features, the data fusion step is performed either for features based on actions 

and structural responses measurements or for features based only on structural responses 

measurements. The data fusion of the ARX-based features is performed using only structural 

responses measurements. 

The outcome after implementing the data fusion step to the AR-based features is a damage 

index, , for each train crossing. In the last stage, an outlier analysis is implemented to 

automatically discriminate each  into healthy or damaged, using a statistical confidence 

boundary, , based on the Gaussian inverse cumulative distribution function. In case of 

ARX-based features, a cluster analysis is performed to the multi-sensor features using the 

iterative k-means algorithm. The goal is to separate the healthy features and the damaged 

features into different clusters. 

Although this methodology comprises a set of baseline features to define the , it is 

considered unsupervised, since the responses acquired to build this baseline regard the state 

condition of the bridge at the time it begins to be monitored, which does not necessarily 

correspond to an undamaged state. For either existing or new bridges, regardless of their 

geometry, the only data needed to implement this methodology is the train crossing signals for 

one or more types of trains at their different operating speeds and for several temperatures. As a 

consequence, structural changes signalled by the methodology comprise progressive damages 

in relation to the condition defined during the baseline. In addition, and more importantly, one 

of the great advantages of the methodology is the speed at which the baseline can be defined. It 

can be promptly established during one day for several types of trains with different loads 

crossing the bridge. The environmental effects can also be considered since the weather 

(temperature and wind) varies according to the time of day.  
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Figure 5.1 – Flowchart of different techniques implemented in the damage identification machine learning 

strategy. 
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5.3 SIMULATION OF BASELINE AND DAMAGE SCENARIOS 

A realistic simulation of baseline (healthy) and damage scenarios was conducted using the 

reliable digital twin of the railway bridge over the Sado River, in order to test and validate the 

strategy proposed herein, since it is not possible to obtain such conditions experimentally in 

operating infrastructures of high expenditure values, such as the one being addresses herein. 

After a successfully numerical validation of the methodology, it can be applied directly to 

experimental data from different types of bridges.  

5.3.1 Baseline scenarios 

Different combinations for the baseline condition, that aim at reproducing the bridge 

responses considering the variability of train type, speed, temperature actions, and loads, are 

summarized in Figure 5.2. These baseline scenarios compose the training dictionary and do not 

include any damage on any location. 

AP

Train

Summer

Autumn

Winter

Spring

210km/h

215km/h

220km/h

Loading scheme 1

210km/h

215km/h

220km/h

215km/h

220km/h

215km/h

220km/h

IC

Train

Summer

Autumn

Winter

Spring

185km/h

190km/h

195km/h

185km/h

190km/h

195km/h

185km/h

190km/h

185km/h

190km/h

Loading scheme 2

Loading scheme 3

Loading scheme 4

Loading scheme 5

Loading scheme 6

Loading scheme 7

Loading scheme 1

Loading scheme 2

Loading scheme 3

Loading scheme 4

Loading scheme 5

Loading scheme 6

Loading scheme 7

Loading scheme 1

Loading scheme 2

Loading scheme 3

Loading scheme 4

Loading scheme 5

Loading scheme 6

Loading scheme 7

Loading scheme 1

Loading scheme 2

Loading scheme 3

Loading scheme 4

Loading scheme 5

Loading scheme 6

Loading scheme 7

Loading scheme 1

Loading scheme 2

Loading scheme 3

Loading scheme 1

Loading scheme 2

Loading scheme 3

Loading scheme 1

Loading scheme 2

Loading scheme 3

Loading scheme 1

Loading scheme 2

Loading scheme 3

 
Figure 5.2 – Combination of 100 simulations for the baseline (undamaged) condition. 

During each simulation, real temperatures measured by the SHM system precisely during 

each train crossing were introduced as input to the numerical elements. The average values for 

each season were 30ºC for summer, 16ºC for autumn, 10ºC for winter and 21ºC for spring, but 
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the dispersion across the structure was considered by measuring and using temperature values 

in all elements of the bridge. The simulations included passages of two of the passenger trains 

that normally cross the bridge over the Sado River, namely, the AP and the Intercity (IC) trains. 

Their common speeds on the bridge are 220 km/h for the AP train and 190 km/h for the IC train. 

The average axle loads of the AP train were presented in Figure 4.10a and of the IC train are 

illustrated in Figure 5.3. A total of ten different loading schemes were taken, according to the 

experimental observations previously made by Pimentel et al. (2008). Three train speeds were 

considered for each type of train, as observed in Figure 5.2, resulting in 100 dynamic simulations 

for the baseline condition, each taking approximately 10 hours of calculation time on a 4.2 GHz 

Quad-Core desktop with 32.0 GB of RAM. 

 
Figure 5.3 – IC train and corresponding loading scheme. 

5.3.2 Damage scenarios 

The damage scenarios were chosen based on possible vulnerabilities identified for the type 

of structural system, taking into account its materials, connections, behaviour and loadings 

(Santos, 2014). Among the several scenarios that can be considered, those related to friction 

increments in mechanical moving elements of the structural system (such as bearing devices), 

and those associated with corrosion in structural and reinforcing steel as well as cracking of 

concrete, were assumed as the most likely (Akesson, 2008; Khan, 2010; Santos, 2014; Wardhana 

et al., 2003) and therefore simulated to validate the techniques presented herein. While friction 

increments were simulated in all bearing devices, cracking and corrosion were considered in 

several sections across the structure to ensure representativeness. Hence, damage scenarios were 

simulated, along with dynamic traffic loading, according to four different classes: 

i) damage in the bearing devices (type D1); 

ii) damage in the concrete slab (type D2); 
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iii) damage in the diaphragms (type D3); 

iv) damage in the arches (type D4). 

The locations of each type of damage are illustrated in Figure 5.4, where different codes were 

assigned to each location depending on the damage type. For instance, D2:m1 is a damage in 

the concrete slab located in the first mid-span. Each scenario was simulated considering only 

one damage location. Nevertheless, if, by any chance, two or more damage scenarios in different 

locations are observed at the same time, the effects from multiple damage locations are expected 

to superimpose, and the influence on the features extracted from the data will be greater. 

Therefore, multiple damage scenario will be more observable in the features, when compared to 

single scenarios. For this reason, only single-scenario damages were simulated to test the 

proposed methodology under the most challenging conditions. 
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Figure 5.4 – Types of damages and their location on the bridge over Sado River. 

Regarding damages of type D1, discrete damages comprising four severities were simulated, 

namely increases of the friction coefficient from a reference value of 1.5% to 1.8%, 2.4%, 3.0% 

as well as to the full restraint of the movements between the pier and the deck. The remaining 

damage scenarios were simulated as 5%, 10% and 20% stiffness reductions in the chosen 

sections of the bridge (Figure 5.4). The damage type D2 consisted of a stiffness reduction in the 

cross section of the concrete slab, 2 m long along the bridge’s longitudinal axis, and a 

damage-to-span length ratio of 1.25%. The damage type D3 was simulated as local stiffness 

reductions in single diaphragms, which consist of sections of the deck directly suspended by 

each hanger. For each location of the damage type D4, a stiffness reduction was applied in an 

arch extension of 8 m, which represents 4.7% of the arc length. These structural changes were 

simulated by reducing the modulus of elasticity of the concrete (damage type D2) and of the 
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steel (damage types D3 and D4). Thus, a total of 114 damage scenarios were simulated for AP 

train crossings at 220 km/h, using the loading scheme presented in Figure 4.10a and adding as 

input the temperatures measured on site. Additional damage scenarios could have been 

simulated for different combinations of EOVs. However, as it will be discussed in section 5.5, 

the proposed methodology is effective in removing these effects and keeping only those 

generated by structural changes. 

5.3.3 Noise distribution 

To obtain the most similar and reliable reproduction of the real SHM data, the noise measured 

on site by each accelerometer was added to the corresponding numerical output. These noise 

distributions were acquired while no trains were travelling over the bridge and under different 

ambient conditions. Each simulation was corrupted with different noise signals acquired at 

different days, thus ensuring the most representative validation for the techniques developed 

herein. Figure 5.5 presents an example of a vertical acceleration bridge response at the central 

mid-span of the concrete slab for an AP train crossing, before and after being corrupted. The 

noise distribution applied to the response, which was measured by accelerometer Ac1 of the 

SHM system, is also shown. 
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Figure 5.5 – Noise distribution and vertical acceleration bridge response before and after being corrupted. 
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5.3.4 Numerical simulation 

The dynamic numerical simulations conducted in the present work aimed at reproducing the 

structural quantities measured in the exact locations of the 23 accelerometers installed on site 

(Figure 3.20a), when a train crosses the bridge. The numerical simulations implemented to 

obtain responses describing damaged and undamaged structural conditions followed the 

procedure described in section 4.2.3.2, using different train loading configurations at different 

speeds (according to Figure 5.2), as well as temperature data acquired on site (Figure 3.14) as 

input. The acceleration responses were then ‘corrupted’ with the noise distributions measured 

on site, as shown in the previous section. 

The time-series illustrated in Figure 5.6 are examples of simulated responses for undamaged 

baseline conditions, acquired from the accelerometer located at the central mid-span of the 

concrete slab (Ac1). The variations associated with different train types, loading schemes, train 

speed and temperature actions are shown in this figure. 
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Figure 5.6 – Baseline time-series simulations of sensor Ac1: a) using different loading schemes of the AP train at 

220 km/h, b) using different loading schemes of the IC train at 190 km/h, c) using temperature measurements 
from different seasons, d) with the AP train traveling at different speeds. 
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A clear distinction between the bridge responses to the crossings of the AP train (Figure 5.6a) 

and the IC train (Figure 5.6b) can be observed, showing the need of considering different train 

types for the development of damage identification strategies. Conversely, the same plots allow 

observing that different loading schemes, representing the variability between identical trains, 

generate smaller changes in the dynamic responses. Temperature action and train speed also 

influence the structural response imposed by trains crossing the bridge, as it can be readily 

observed in Figure 5.6c and Figure 5.6d for AP train crossings. 

Figure 5.7 shows examples of simulated responses of the Ac1 accelerometer for damaged 

scenarios in the concrete slab (D2: m2) and in the bearing devices on pier P2 (D1: P2), during a 

summer day and with the AP train crossing the bridge at 220 km/h.  
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Figure 5.7 – Time-series obtained in a summer day for the AP train at 220 km/h: a) stiffness reduction D2:m2 and 
vertical acceleration from sensor Ac1, b) stiffness reduction D2:m2 and vertical acceleration from sensor AsV3 

and c) friction increase D1:P2 and vertical acceleration from sensor Ac1. 
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The influence of damage scenarios on the signal obtained for train crossings appears to be 

much smaller than that observed for changes in temperature actions, train type and train speed, 

even when analysing sensors adjacent to the damages and for the largest magnitudes considered 

(20% stiffness reduction and full restraint of the bearing). This conclusion can be easily derived 

from Figure 5.7, where the high overlapping of the time-series obtained from the baseline 

condition and the remaining ones puts in evidence the small magnitude of the simulated damage 

scenarios, which can be considered as early damage. 

5.4 FEATURE EXTRACTION 

Feature extraction is addressed in this section by implementing AR models and ARX models 

to the acceleration responses measured by the railway bridge over the Sado River to the train 

crossings for several structural conditions, as synthetized in Figure 5.8. The features obtained 

from each approach are compared and an evaluation of the performance of both models is 

conducted. 
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Figure 5.8 – Schematic representation summarising the portion of the machine learning strategy implemented in 

section 5.4. 

5.4.1 Theoretical background 

Features are extracted from a statistical time series analysis. In this section, a brief discussion 

about the autoregressive model with exogenous inputs (ARX) and the autoregressive (AR) 

model is presented. The ARX model regresses the current measurement upon finite 

measurements of its past and upon an exogenous input series: 

= + +  (5.1) 
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where , , and  are output, input, and error terms of the model at the signal value , 

respectively. On the other hand, ,  and ,  represent the orders and the parameters of the 

output and input data, respectively. The ARX model can be simplified to the AR model if  is 

set to zero: 

= +  (5.2) 

The process of extracting the AR/ARX parameters,  and , is based on fitting the AR/ARX 

models to vibration time-domain responses, acquired from different sensors, in the undamaged 

and damaged conditions. The vectors of the AR/ARX model parameters in the baseline and 

damaged state conditions are used as the damage-sensitive features, which depend on sensors 

from multiple locations. Typical time-series lead to an overdetermined set of equations that must 

be solved to obtain optimal estimates of the AR and ARX coefficients. There are several methods 

that can be used to solve the coefficients; the least-squares method was the one applied in this 

study (Box & Jenkins, 1976). 

Regarding the ARX model, the accelerometer located at the central mid-span of the concrete 

slab (Ac1 – Figure 3.20), named as the reference channel, was defined as output, , since it is 

located in a central point of the bridge and is representative of its global behaviour. Each of the 

other installed accelerometers was defined as the input signal, .   

5.4.2 Model order 

The AR/ARX model orders should be rationally determined considering the data 

characteristics. This is a key issue, since a higher-order model may better match the data, but 

may not be generalized to other data sets. On the other hand, if one selects a low-order model, it 

will not necessarily capture the underlying response of the physical system (Farrar & Worden, 

2013). The Akaike Information Criterion (AIC) has been reported as one of the most efficient 

techniques for order optimization (Bishop 1995; Figueiredo et al., 2010). The AIC is a measure 

of the goodness-of-fit of an estimated statistical model that is based on the trade-off between 

fitting accuracy and number of estimated parameters. In the context of ARX models this criterion 

assume the form = + 2  (5.3) 
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where  is the number of estimated parameters,  the number of predicted data points, and = /  the average sum-of-square residual ( ) errors. To find out an optimum order, 

one should examine a wide range of orders and choose a number with the minimum AIC value. 

With the purpose of establishing a common appropriate order, analyses of the AIC values 

were performed for twenty-two independent ARX ( , ) models of increasing order ( == 1,2, … ,50).  Figure 5.9a shows the average AIC function resulting from analyses carried 

out on the 100 baseline time-series. As observed, after the model order 30 the AIC values tend 

to stabilize indicating that higher orders do not provide relevant information for the construction 

of the model. 

Herein, the Normalized Root Mean Square Error (NRMSE) fitness value (Eq. 5.4) was also 

used to quantify the model accuracy according to the ARX order defined.  

= 1 − ∑ ( − )∑ ( − )  (5.4) 

where,  is the measured data,  is the simulated data through the ARX model, and  is the 

mean of the measured dataset. For each baseline structural condition, the parameters were 

estimated using the least squares technique applied to time-series from all twenty-three 

accelerometers, and the NRMSE values were computed for ARX models of increasing order. 

Figure 5.9b plots the average NRMSE values, which represent the difference between the actual 

data and the ARX model predicted data. It is possible to observe that the accuracy of the ARX 

model gradually increases with the ARX model order and appears to stabilize close to 30, 

whereby both the input and output orders of the ARX model were set to 30. The same output 

order was adopted for the AR model.  

10 20 30 40 50
ARX Order

-30

-25

-20

-15

-10

AI
C

1

-29.70
-29.60
-29.50
-29.40
-29.30
-29.20

AI
C

26 28 30 32 34
AR Order (p)

5 10 15 20 25 30 35 4090

92

94

96

98

100

M
od

el
Ac

cu
ra

cy
-N

R
M

SE
 (%

)

ARX Order
a) b)

45 50

 
Figure 5.9 – Model order definition: a) average AIC function for twenty-two independent ARX ( , ) models 
of increasing order using the 100 baseline time series and b) model accuracy according to the ARX model order. 
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Based on these assessments, for each structural condition and for each accelerometer, 

individual AR (30) and ARX (30, 30) models were implemented to fit the corresponding 

time-series and their parameters were used as damage-sensitive features.  

5.4.3 AR models 

Thirty AR parameters extracted for each of the 100 simulations of the baseline condition and 

114 simulations of the damaged condition, using the measurements from the accelerometer 

located at the central mid-span of the concrete slab (Ac1), are shown in Figure 5.10.  
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Figure 5.10 – AR features obtained from the accelerations responses in the mid-span section of the concrete slab 
(Ac1): a) for each of the 100 simulations of the baseline (undamaged) condition, b) for each of the 114 damage 

scenarios. 
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A comparison of the features’ amplitude between scenarios allows observing a higher 

variability of the AR parameters for EOVs (Figure 5.10a) than for damages (Figure 5.10b). 

Additional damage-sensitive features were extracted likewise from each one of the remaining 

22 accelerometers installed on site comprising time-series with 2112 measurements, which 

resulted in a three-dimensional feature matrix of 214-by-30-by-23 elements. In this sense, the 

AR model proved to be also an effective data fusion tool by transforming 2112 points into 30 

features. 

To illustrate the feature extraction procedure, Figure 5.11 details four AR parameters (AR1, 

AR10, AR15 and AR20) obtained for sensor Ac1, as well as all the thirty AR parameters 

represented by box-and-whisker plots. The features are divided into two major groups according 

to the structural condition: baseline (first 100 simulations) and damaged (114 subsequent 

simulations). 

In the plots shown in Figure 5.11a, for each baseline condition, the seven identical symbols 

in a row (regarding shape and colour), in the case of the AP train, and the three symbols in a 

row, in the case of the IC train, represent the different loading schemes considered for each train 

type and speed, and for each temperature. For each damage location (codes from Figure 5.4), a 

sequence of three or four symbols represents different levels of severity (low to high from left 

to right), according to the magnitude choices described in 5.3.2. A comparison between the 

values of the AR1, AR10, AR15 and AR20 parameters across all 214 scenarios allows 

concluding that each feature is describing distinct trends of the analysed data. The main changes 

in the amplitudes of these parameters are induced by the type and speed of the train. In addition, 

for each value of train speed, the observed changes in the amplitude of these parameters are 

generated by variations in the values of structural temperature (spanning all four seasonal 

average temperatures). The loading schemes are the operational influencing parameter with the 

least impact on the parameter variability in the baseline simulations, as previously observed. 

Figure 5.11b confirms that the distributions of all thirty AR parameters from damage 

scenarios vary significantly less when compared to the distributions of baseline conditions, 

which leads to a preponderance of EOVs, regardless of the type of damage as well as its location 

and severity. 

 



Chapter 5 

104 

AR
1

-4

-2

0

2

4

AR
2

AR
3

AR
4

AR
5

AR
6

AR
7

AR
8

AR
9

AR
10

AR
11

AR
12

AR
13

AR
14

AR
15

AR
16

AR
17

AR
18

AR
19

AR
20

AR
21

AR
22

AR
23

AR
24

AR
25

AR
26

AR
27

AR
28

AR
29

AR
30

AR
 p

ar
am

et
er

Baseline condition Damaged scenarios(Standardized to unit standard deviation)

Damage scenarios
AU

T
SP

R
SU

M
W

IN
AU

T
SP

R
SU

M
W

IN
AU

T
SU

M
AU

T
SU

M
AU

T
SP

R
SU

M
W

IN
AU

T
SP

R
SU

M
W

IN
P2 P3 P4 e1 e2 e3 e4 m

1
m

2
m

3
q1

n
q1

s
q2

n
q2

s
q3

n
q3

s
m

1
m

2
m

3
s1

n
s1

s
s2

s
s3

n
s3

s
e1 e2

n
e2

s
e3

n
e3

s
e4 t1

n
t1

s
t2

n
t2

s
t3

n
t3

s

AP 220km/h AP 215km/h AP 210km/h
IC 195km/h IC 190km/h IC 185km/h

D1
D2

D3
D4 Ac1

DownstreamUpstream

Ac1

Am
pl

itu
de

AR
1

Am
pl

itu
de

AR
10

-0.4
-0.2

0
0.2
0.4

-60
-40
-20

s2
n

a)

b)

0
20

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
Structural Condition

Baseline condition - Influence of EOVs

Am
pl

itu
de

AR
15

Am
pl

itu
de

AR
20

-20

0

20

-40

-20

0

20

40

 
Figure 5.11 – For all 214 structural conditions considering the responses of accelerometer Ac1: a) amplitude of 

four of the thirty AR parameters, b) box-and-whiskers plots representing the thirty AR parameters. 

The importance of a disperse sensors network can be observed in Figure 5.12 where the AR 

features are extracted from different sensors, namely, sensor Ac1 (Figure 5.12a), sensor AL-P3 

(Figure 5.12b) and sensor AsTt2 (Figure 5.12c). It illustrates the features obtained from two 

simulations of the baseline condition: 

a) AP|220km/h|SUM: the AP train crossing the bridge at 220 km/h in a summer day; 

b) AP|210km/h|AUT: the AP train crossing the bridge at 210 km/h during an autumn day. 
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The features extracted from the following four damage scenarios are also shown: 

a) D1 (P3: restrained), the full restraint of the bearing devices at pier P3; 

b) D2 (m2:20%), the 20% stiffness reduction in the central mid-span of the concrete slab; 

c) D3 (m2:20%), the 20% stiffness reduction at the diaphragm, also in the central mid-span; 

d) D4 (t2s:20%), the 20% stiffness reduction in the arch at one-third south of the central 

span. 

The bar charts presented in Figure 5.12 were drawn from the sum of the differences between 

the amplitude of the parameters from each of these scenarios and the amplitude of the parameters 

from the baseline condition AP|220km/h|SUM. 

 
Figure 5.12 – AR features obtained from the accelerations responses measured by three sensors regarding two 

baseline and four damaged structural conditions: a) Ac1, b) AL-P3 and c) AsTt2. 

The plots show that the parameters’ amplitudes for sensor Ac1 (Figure 5.12a), located at 

mid-span, are those with the most significant changes from one of the baseline scenarios, 

especially for the damage condition adjacent to this sensor - D2 (m2:20%). Regarding the sensor 

AL-P3, the features with higher amplitude were observed for the parameters of the damage 

scenario D1 (P3: restrained), which is the closest to this sensor (Figure 5.12b). The AR 

parameters extracted from the transversal accelerometer AsTt2, located in the steel-box girder 

at the southern third of the central span (Figure 5.12c), show more sensitivity to a damage 
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simulated in the same section but in the arch – D4 (t2s:20%) and to a damage in the mid-span 

of the concrete slab – D2 (m2:20%). 

5.4.4 ARX models 

Sixty ARX damage-sensitive features extracted for baseline and damaged conditions, 

considering as output the measurements from the accelerometer located at the central mid-span 

of the concrete slab (Ac1), and as input the measurements of the accelerometer located at the 

central mid-span of the steel box girder (AsV3), are shown in Figure 5.13. 

As observed with the AR parameters, comparing the undamaged (Figure 5.13a) and the 

damaged features (Figure 5.13b), the ARX parameters present a higher variability in the 

presence of a range of EOVs, compared to a range of damage scenarios. The outcome after 

implementing the ARX model to each structural condition and to each of the remaining 21 

accelerometers was a 3D feature matrix of 214-by-60-by-22 elements. 

Figure 5.14 details two ARX output parameters (ARX1 and ARX10) and two ARX input 

parameters (ARX50 and ARX60) obtained considering the output sensor Ac1 and the input 

sensor AsV3, as well as all the sixty ARX parameters (ARX1 to ARX60) represented by 

box-and-whisker plots. 

In Figure 5.14a, a comparison between the values of the ARX1 and ARX10 output parameters 

across all 214 scenarios allows concluding that each feature is describing distinct inner 

relationships of the analysed data and that the features from the baseline condition have a much 

higher amplitude variation than the features from damage scenarios. However, the input 

parameters ARX50 and ARX60 exhibit a completely different behaviour, since for them, the 

influence of EOVs (baseline) is not as predominant when compared to the influence of damage, 

as it is in the other two parameters (ARX1 and ARX10). Instead, the amplitude of the features 

has an identical magnitude in all 214 structural conditions.  

This trend can also be observed in the box-and-whisker plots presented in Figure 5.14b. For 

the output parameters (ARX1 to ARX30), there is an increased importance of the distributions 

of baseline conditions, and, consequently, of EOVs, in relation to the distributions of damage 

scenarios, while, for the input parameters (ARX31 to ARX60) these distributions are more 

similar, which denotes an increase in the damage preponderance.   
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Figure 5.14 – For all 214 structural conditions, considering the responses of accelerometer Ac1 as output and 

sensor AsV3 as input: a) amplitude of four of the sixty ARX parameters, b) box-and-whiskers plots representing 
the sixty ARX parameters. 
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Figure 5.15 shows that ARX features extracted for different state conditions represent very 

distinct distributions depending on the input sensor. In this figure, the signal obtained from 

sensor Ac1 was taken as the output and each one of the sensors AsV3 (Figure 5.15a), AL-P3 

(Figure 5.15b) and AsTt2 (Figure 5.15c) as the input. As for the study conducted with the AR 

model in Figure 5.12,  Figure 5.15 illustrates the ARX features extracted from two simulations 

of the baseline condition: AP|220km/h|SUM and AP|210km/h|AUT; and from four damage 

scenarios: D1 (P3: restrained), D2 (m2:20%), D3 (m2:20%), and D4 (t2s:20%). The bar charts 

presented in this figure were also drawn from the sum of the differences between the amplitude 

of the parameters from each of these scenarios and the amplitude of the parameters from the 

baseline condition AP|220km/h|SUM. 

 
Figure 5.15 – ARX features obtained for the accelerations responses from one output sensor and three different 

input sensors regarding two baseline and four damaged structural conditions: a) Ac1 and AsV3, b) Ac1 and 
AL-P3, c) Ac1 and AsTt2. 
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sensor are more sensitive to damage scenario D2 (m2:20%), which is adjacent to this sensor. A 

comparison between the bar charts between Figure 5.12a and Figure 5.15 indicates a similarity 

in the relative amplitude obtained when using the signal from sensor Ac1 as output in both the 

AR and ARX models. Regarding the input sensor AL-P3 (Figure 5.15b), the features with the 

highest amplitude are those of the parameters of the damage scenario D1 (P3: restrained), which 

is also the closest to this sensor, as can be clearly confirmed in the bar chart of Figure 5.15b. By 

comparing these results with those obtained with the AR model (Figure 5.12b), a considerable 

increase in the relative amplitude of the features is observed in the bar chart of Figure 5.15b. 

This bar chart also shows the importance of considering and modelling EOVs, since the input 

parameters from the baseline condition AP|210km/h|AUT present an equal or higher relative 

amplitude than the damage scenarios D2, D3 and D4. Figure 5.15c presents the ARX input 

parameters extracted from sensor AsTt2, which are highly sensitive to damage 

D1 (P3: restrained) and damage D2 (m2:20%). Its corresponding bar chart allows observing 

that, in this case, the ARX input parameters from the damage scenario D3 (m2:20%) and the 

baseline scenario AP|210km/h|AUT have less sensitivity than those extracted from the baseline 

scenario AP|220km/h|SUM. 

As a result from this study, the clear advantage of crossing information between sensors has 

shown that ARX models allow for an improvement in terms of the knowledge extracted from 

the features, which may lead to greater sensitivity, when compared to AR models. 

5.5 FEATURE MODELLING 

The analysis of the AR/ARX parameters shown in sections 5.4.3 and 5.4.4, as well as the 

time series presented in section 5.3.4, allow drawing some conclusions about the difficulty in 

distinguishing damage and undamaged scenarios, since changes in environmental and 

operational actions generally result in larger changes in the parameters. Therefore, it is necessary 

to adequately model these parameters to remove the changes generated by EOVs and highlight 

those generated by damage. As summarized in Figure 5.16, in this section, feature modelling is 

performed to the AR parameters using regression-based and latent-variable methods, while the 

ARX parameters are normalized implementing only a latent-variable method. A comparison 

between both types of methods to model features is conducted, as well as the study of the 

performance obtained when using AR or ARX-based features. 
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Figure 5.16 – Schematic representation summarising the portion of the machine learning strategy implemented in 

section 5.5. 

5.5.1 Latent-variable method 

5.5.1.1 Theoretical background 

One of the main obstacles in implementing vibration-based SHM systems in operational 

conditions is the challenge in separating (assumed unmeasured) environmental and operational 

effects from the dynamic responses in order to obtain features that are primarily sensitive to 

damage. To overcome this problem, a latent-variable method as the principal components 

analysis (PCA) (Yan et al., 2005) is used here for feature modelling. PCA is a multivariate 

statistical method that produces a set of linearly uncorrelated vectors called principal 

components or scores, from a multivariate set of vector data. Assuming that environmental 

conditions have a linear effect on the identified parameters, PCA of continuous monitoring 

results may efficiently remove EOVs (Yan et al., 2005; Hu et al., 2012; Ribeiro et al., 2021). 

Considering an n-by-m matrix  with the original features extracted from the dynamic responses, 

where m is the number of ARX/AR parameters and n is the number of simulations for the 

baseline condition, a transformation to another set of m parameters, , designated principal 

components or scores, can be achieved by the following equation: = ∙  (5.5) 

where  is an m-by-m orthonormal linear transformation matrix that applies a rotation to the 

original coordinate system. The covariance matrix of the ARX/AR parameters in the baseline 

condition, Σ, is related to the covariance matrix of the scores, , as follows: Σ = ∙ ∙  (5.6) 
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in which  and  are matrixes obtained by the singular value decomposition of the covariance 

matrix Σ of the ARX/AR parameters. The columns of  are the eigenvectors and the diagonal 

matrix  comprises the eigenvalues of the matrix Σ in descending order. Hence, the eigenvalues 

stored in  are the variances of the components of  and express the relative importance of each 

principal component in the entire data set variation (Yan et al., 2005).  

As demonstrated by Santos et al. (2013), the PCA is able to retain meaningful information 

related to environmental and operational effects in the first components, whereas variations 

related to other effects, especially those of small-magnitude, such as early-damage, may be 

summarized in latter components. Since the aim of the present work is to detect damage, which 

has generally a local effect, the feature modelling procedure consists of removing the most 

significant principal components from the features and retaining the rest for subsequent 

statistical analysis. With this in mind, the matrix  can be divided into a matrix with the first  

eigenvalues and a matrix with the remaining m-p eigenvalues. Defining the number of  

components remains an open question with regard to the representation of the multivariate data; 

although several approaches have been proposed, there is still no definitive answer (Härdle & 

Simar, 2015). In this work, the value of  (or the number of principal components to discard) is 

determined based on a rule of thumb in which the cumulative percentage of the variance reaches 

80% (Härdle & Simar, 2015; Jolliffe, 2002). After choosing , the m-p components of the matrix 

 can be obtained using Equation (5.5) and a transformation matrix  built with the remaining 

m-p columns of . Those m-p components can be remapped to the original space using the 

following:  = ∙ ∙  (5.7) 

where  is the n-by-m matrix of PCA-based features, expected to be less sensitive to EOVs 

and to be more sensitive to the damage cases. This procedure is then repeated for each sensor.  

5.5.1.2 AR-PCA-based features 

PCA-based modelling, as described in the previous section, was applied to the AR 

parameters, and a 23-by-30 matrix with PCA-based features was obtained for each train crossing. 

The important advantage of fitting a latent-variable method, instead of a regression-based 

method, is the ability to remove the influence of temperature and train speed without having to 

measure them. Since the cumulative percentage of variance of the first principal component (PC) 
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was greater than 80% for different structural conditions, this PC was the only one discarded 

during the modelling process (i.e. = 1). 

Figure 5.17 shows the four AR parameters for accelerometer Ac1, obtained after 

implementing the PCA-based modelling, and the thirty box-and-whiskers plots for the thirty 

AR-PCA-based features. The comparison of these plots with those shown in Figure 5.11a shows 

an evident suppression of the changes generated by EOVs, which can be corroborated for all 

parameters by the distributions shown in Figure 5.17b.  
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Figure 5.17 – For all 214 structural conditions considering the responses of accelerometer Ac1: a) amplitude of 

four of the thirty AR-PCA-based features, b) box-and-whiskers plots representing the thirty AR-PCA-based 
features. 
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5.5.1.3 ARX-PCA-based features 

The implementation of the PCA modelling to the ARX parameters resulted in a 22-by-60 

matrix with PCA-based features for each train crossing. Since the cumulative percentage of the 

variance of the sum of the first three principal components was higher than 80% for different 

structural conditions, these three PCs were discarded during the modelling process (i.e., = 3). 

Figure 5.18a shows four series of parameters, across the 214 scenarios, obtained for an ARX 

model comprising accelerometer Ac1 (output) and accelerometer AsV3 (input), after the 

application of the PCA. Figure 5.18b shows the boxplots obtained from the 60 ARX-PCA-based 

features.  

The direct comparison of these action-free ARX parameters (Figure 5.18) with those shown 

before applying PCA (Figure 5.14) shows that, in fact, feature modelling allowed minimizing 

the differences generated by the effects of train type and speed and by temperature, shown in 

grey box-and-whiskers plots, which significantly reduce from one figure to the other. The same 

is not observed in the features from damage cases, represented in green box-and-whiskers plots, 

which remain identical or even increase.  
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Figure 5.18 – For all 214 structural conditions considering the responses of accelerometer Ac1: a) amplitude of 
four of the sixty ARX-PCA-based features, b) box-and-whiskers plots representing the sixty ARX-PCA-based 

features. 

As corroborated by Figure 5.18b, the EOVs were mitigated and a clear improvement is 

obtained, especially for the first thirty parameters (the output), which after feature modelling 

reveal distributions that are similar to those from the thirty input parameters (ARX31-ARX60). 

Also, comparing the AR-PCA-based features (Figure 5.17b) with the ARX-PCA-based features 

(Figure 5.18b), the second ones show a bigger improvement between the distributions of the 

baseline simulations and the damage scenarios. 

5.5.2 Regression-based method 

Given the results obtained with the PCA in the modelling of the AR features were not as good 

as when modelling the ARX features, MLR model was applied only to the AR features in order 

to improve sensitivity.  

5.5.2.1 Theoretical background 

In this work, the MLR model uses a set of measured train speeds and bridge temperatures as 

inputs and delivers a matrix output that represents the estimated (or predicted) AR parameters. 

Given  AR parameters,  baseline simulations and  operational / environmental actions, the 

multivariate regression model is expressed by the following (Johnson & Wichern, 2013): = ∙ +  (5.8) 
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where  is the n-by-(s+1) input temperature and speed matrix,  is a (s+1)-by-m matrix of 

coefficients that weights each environmental / operational input,  is the n-by-m regression 

error and  is an n-by-m output matrix of predicted AR parameters. The coefficients of the model 

parameters  are obtained through the least squares method and given by the following equation: = ( ∙ ) ∙ ∙  (5.9) 

Once the model is calibrated, i.e., the optimal weights are evaluated, new data can be used as 

input ( ) and the residual error matrix ̂ , which corresponds to the damage-sensitive features 

from which the environmental and operational effects are removed, is denoted by:  ̂ = − ∙  (5.10) 

This procedure is repeated for the parameters of each sensor.  

5.5.2.2 AR-MLR-based features 

The regression models were fitted to the AR parameters to obtain, for each of the 214 train 

crossings, a new matrix of AR parameters of the same size (30-by-23), which is assumed to be 

independent (as much as possible, given the error associated with modelling) from 

environmental and operational effects. Regressions were applied using the AR parameters as 

dependent, or predicted, variables (Y in Eq.(5.8)), and temperature measurements and train 

speeds as explanatory variables (X in Eq.(5.8)). 

Figure 5.19a shows the series of four parameters across the 214 scenarios obtained for the 

Ac1 accelerometer, after the application of the MLR. The direct comparison of these action-free 

AR parameters with those shown before the feature modelling (Figure 5.11a) allows observing 

that, in fact, the feature modelling enabled removing the effects generated by the type and speed 

of the train and by temperature, but not those generated by damage. 

As shown in Figure 5.19b, not only have the effects of the EOVs been mitigated, but an 

important improvement can be observed in the distinction between simulations of baseline and 

damage conditions in all thirty parameters. More importantly, a clear upgrading when compared 

with AR-PCA-based features (Figure 5.17) is achieved.  
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Figure 5.19 – For all 214 structural conditions considering the responses of the Ac1 accelerometer: a) amplitude 
of four of the thirty AR-MLR-based features, b) box-and-whiskers plots representing the thirty AR-MLR-based 

features. 

5.6 DATA FUSION 

The steps performed in the present section are summarised in Figure 5.20. To fuse the data 

obtained from all AR-based features, a Mahalanobis distance (MD) measure was implemented 

on the estimation errors based on structural responses measurements alone (PCA), and on the 

estimation errors based on both actions and structural responses measurements (MLR). In this 
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case, the 30 AR-based features are first merged into one for each sensor and, afterwards, the 

information from all sensors is also merged in order to achieve a univariate damage indicator. 

In the case of the ARX-PCA-based features, the Mahalanobis distance is applied only to merge 

the 60 features from each sensor. 
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Figure 5.20 – Schematic representation summarising the portion of the machine learning strategy implemented in 

section 5.6. 

5.6.1 Theoretical Background 

The MD was selected since it is based on the AR/ARX parameters’ centre and covariance, 

therefore enabling additional sensitivity if these quantities are computed using only the AR/ARX 

parameters extracted from the baseline conditions. With this approach, the MD measures the 

distance between the representative baseline and each set of features extracted from a train 

crossing. Smaller MD values represent greater similarities with the representative baseline, 

while higher values reveal greater differences, and, therefore, more dissimilar structural 

conditions. The analytical expression of MD for each simulation   is given by: 

= ( − ̅) ∙ ∙ ( − ̅)  (5.11) 

where  is a vector of  features representing the potential damage/outlier, ̅ is the matrix of 

the means of the features estimated on baseline simulations, and  is the covariance matrix of 

the baseline simulations.  

The MD can be applied in two different stages: 

a) stage 1: to merge features; 



Damage identification in railway bridges based on train induced dynamic responses 

 

119 

b) stage 2: to merge sensors. 

In the first stage, the MD is computed for each simulation and each sensor resulting in a 

matrix with  Mahalanobis distances for  sensors, where  is the total number of simulations. 

In the second case, a new MD can be applied to the n-by-k matrix in order to obtain a vector 

n-by-1 merging the information from all the sensors and providing a damage index ( ) for each 

simulation. When data from a structural state that differs from the baseline is tested, the  value 

is expected to increase substantially. The first stage was applied to both AR and ARX features, 

while the second stage was applied only to the AR damage-sensitive features.  

5.6.2 Fusion of AR-based features 

5.6.2.1 Based on structural response measurements alone 

With the objective of merging all the AR parameters obtained for each acceleration sensor, 

the Mahalanobis distance was implemented to the PCA-based features as shown in Figure 5.21a 

for the Ac1, AL-P3, and AsTt2 sensors. The MD allowed transforming, for each sensor and train 

crossing, the 30 AR parameters into one single feature (a distance in the feature space), which 

exhibits higher values for different structural conditions and nominal values for identical 

structural scenarios. The outcome of this procedure is a vector of 214-by-1, of distances, one for 

each of the 23 sensors.  

The three plots in Figure 5.21a show the difference in sensitivity for different sensors in each 

structural condition. The accelerometer located at the central mid-span of the concrete slab (Ac1) 

exhibits an important global sensitivity to damage, since there is a distinction between the 

baseline simulations and the damage scenarios, but it is not efficient in distinguish the different 

types of simulated damages. Conversely, the longitudinal accelerometer on pier P3 (AL-P3) is 

more sensitive to damages on piers P3 and P4, with special emphasis on the damage related to 

the full restrain of the bearing devices on pier P3. The transversal accelerometer located in the 

steel box at one-third south of the central span (AsTt2) also allows distinguishing between 

certain specific types and magnitudes of damage. Figure 5.21b allows observing the distribution 

obtained from each accelerometer (presented in Figure 3.20a) and its improved sensitivity to 

distinguish baseline and damage conditions. 
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Figure 5.21 – Mahalanobis distance of the AR-PCA-based features for all 214 structural conditions: a) 

considering the responses from accelerometers Ac1, AL-P3 and AsTt2, b) box-and-whiskers plots for each sensor 
combination. 

In order to detect all damage scenarios, a data fusion of the PCA-based features of the 23 

sensors located on the bridge was also performed. It consisted of implementing the MD to the 

23 distances representing each sensor, thus resulting in a single DI 214-by-1 vector that 

represents all the data acquired through the 23 sensors. As a result, a clearer distinction between 

simulations of the baseline condition and damage scenarios was achieved, as presented in Figure 

5.22, with the important advantage of not having to accurately measure temperature, nor identify 

the type and speed of the train. Merging the information from all sensors, it is clear that the 

damages related to the restrain of the bearing devices and the stiffness reduction of the concrete 

slab near the piers (e1 and e2) are those to which the sensing system appears to be more sensitive. 
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Figure 5.22 – DI values obtained with AR-PCA-based features for all 214 structural conditions considering the 

responses from all sensors. 

5.6.2.2 Based on measured actions and structural responses 

The same procedure, as the one detailed in the previous section, was implemented to the 30 

AR-MLR-based features, which also resulted in a 214-by-1 vector of distances for each sensor. 

Figure 5.23a shows an important sensitivity increment of each sensor in distinguish baseline 

from damaged conditions, when compared with the features before fusion from Figure 5.19, 

especially when observing the box-and-whiskers distributions in Figure 5.23b.  

Using the MLR-based damage-sensitive features of all 23 sensors, the single series of  

values presented in Figure 5.24 was accomplished. With this fusion of the sensors information, 

it is possible to clearly distinguish baseline from damage conditions and a clear improvement is 

verified in relation to the results obtained with the AR-PCA-based features after fusion (Figure 

5.22). This improvement is achieved due to the actions measurements (temperature and train 

speed), which allowed for a more precise removal of the EOVs’ influence and, consequently, a 

more efficient detection of damage. The combination of the information retained in this feature 

describing the data from all sensors also shows that the sensing system is more sensitive to 

damages on the bearing devices of Pier P4 (illustrated by green squares in Figure 5.24), and on 

the concrete slab near the piers (e1 and e2, represented by blue asterisks), since these damages 

have the higher  values. 
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Figure 5.23 – Mahalanobis distance of the AR-MLR-based features for all 214 structural conditions: a) 

considering the responses from accelerometers Ac1, AL-P3 and AsTt2, b) box-and-whiskers plots for each sensor 
combination. 
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Figure 5.24 – DI values obtained with AR-MLR-based features for all 214 structural conditions considering the 

responses from all sensors. 
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5.6.3 Fusion of ARX-based features 

As with the AR damage-sensitive features, the MD allows transforming, for each sensor and 

for each train crossing, the 60 ARX-PCA-based parameters into one single distance-based 

feature. The outcome of this procedure is a 214-by-1 vector of distances for each sensor. The 

three plots from Figure 5.25a clearly show a sensitivity improvement for sensors’ cluster 

Ac1+AsV3, Ac1+AL-P3, and Ac1+AsTt2 to each structural condition. Figure 5.25b shows the 

distribution obtained from each of the twenty-two sensors’ clusters (with the locations presented 

in Figure 3.20a), which suggests an evident separation between the simulations of the baseline 

condition and the damage scenarios.  
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Figure 5.25 – Mahalanobis distance of the ARX-PCA-based features for all 214 structural conditions: a) 

considering the responses from accelerometers Ac1+AsV3, Ac1+AL-P3 and Ac1+AsTt2, b) box-and-whiskers 
plots for each sensor combination. 
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There is an undeniable superior performance of the ARX model in relation to the AR model 

when comparing the MD outcomes (Figure 5.21, Figure 5.23 and Figure 5.25) as noted earlier. 

For this reason, the sensors’ information from the ARX features were not merged using the 

Mahalanobis distance and different approaches were implemented for AR and ARX features 

discrimination, as detailed in the following section.   

5.7 FEATURE DISCRIMINATION 

Time-series analysis and distance measures can help perform data analysis and suggest the 

existence of different structural behaviours within a data set, as shown in the previous sections. 

However, the development of online SHM strategies should resort to machine learning 

algorithms that can autonomously decide whether one or more distinct structural behaviours are 

being observed from patterns in the features. Hence, feature discrimination is addressed herein 

using unsupervised discrimination algorithms. 

As illustrated in Figure 5.26, outlier analysis is performed to the AR-based features, while 

cluster analysis is implemented using the ARX-based features. A comparison between 

approaches is conducted and the best combination of methods to be included in the machine 

learning strategy used to conduct online unsupervised damage identification is chosen.   
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Figure 5.26 – Schematic representation summarising the portion of the machine learning strategy implemented in 

section 5.7. 
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5.7.1 Outlier analysis  

5.7.1.1 Theoretical background 

Generally, the literature assumes that the Mahalanobis squared distance can be approximated 

by a chi-squared distribution in n-dimensional space, thus the Mahalanobis distance can be 

approximated by a normal (or Gaussian) distribution and an outlier analysis can be performed 

based on a statistical threshold (Datteo et al., 2018; Worden et al., 2002; Yeager et al., 2019). 

Under this hypothesis, a confidence boundary to detect a  that constitutes an outlier can be 

estimated by the Gaussian inverse cumulative distribution function (ICDF) considering a mean ̅ and standard deviation  of the baseline feature vector, and for a level of significance . The 

inverse function can be defined in terms of the Gaussian cumulative distribution function (CDF) 

as follows: = (1 − ) (5.12) 

where, ( | ̅, ) = 1√2 ∝ ,  ℝ (5.13) 

Thus, a feature is considered to be an outlier when its  is equal or greater than . It is 

important to note that the selection of  carries a trade-off between the Type I error 

(false-positive indication of damage) and the Type II error (false-negative indication of damage) 

(Farrar & Worden, 2013). 

5.7.1.2 AR-statistical-based automatic damage detection 

The automatic detection of damages based on a  computed using the Gaussian ICDF is 

presented in this section using the AR damage-sensitive features after modelling and fusion. A 

significance level of 1% was defined, as it is commonly observed in several SHM works 

addressing damage identification (Farrar & Worden, 2013; Santos et al., 2015; Tomé et al., 

2020). Figure 5.27 allows observing the effectiveness of the methodology which, both for the 

features based on measured actions and structural responses (MLR-based), and for those based 

only on measured structural responses (PCA-based), allows distinguishing baseline from 

damage scenarios. The approach based on an output-only method (Figure 5.27a) exhibits one 

(0.88%) Type II error concerning a stiffness reduction in the arch of the second span in a section 

near pier P3 (e3n). On the other hand, the approach that uses an input-output method for feature 
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modelling exhibits one (1%) Type I error, regarding the crossing of an AP train at 220 km/h on 

a summer day with a loading scheme 5 (Figure 5.27b).  
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Figure 5.27 – Automatic damage detection using  values for all 214 structural conditions considering the 
responses from all sensors and a CB determined for a significance level of 1%: a) PCA-based features, b) 

MLR-based features. 

5.7.2 Cluster analysis  

5.7.2.1 Theoretical background 

The aim of the clustering process is to divide a dataset into groups, which must be as compact 

and separate as possible (Rendón, et al., 2011). This can be mathematically posed as an attempt 

to minimize the dissimilarity between features assigned to the same cluster (within-cluster 

distance), which, consequently, maximizes the dissimilarity between the features assigned to 

different clusters (between-cluster distance) (Cury & Cremona, 2010). Considering a given 



Damage identification in railway bridges based on train induced dynamic responses 

 

127 

partition containing  clusters, =  { , … , }, the overall within-cluster dissimilarity ( ) 

and the overall dissimilarity  can be defined as:  

( ) = 12 ( )( )  (5.14) 

= 12  (5.15) 

in which the between-cluster dissimilarity is given by the subtraction ( ) = − ( ). 

Here,  is the total number of features and ( ) is a many-to-one allocation rule that assigns 

feature  to cluster , based on a dissimilarity measure  defined between each pair of features 

 and  (Marian Ralbovsky et al., 2014). The best-known clustering algorithm is iterative and 

called k-means (Hastie et al., 2011). The k-means requires that the number of <  clusters be 

initially defined along with a randomly defined set of  clusters’ prototypes. This task is called 

initialization. Afterwards, each iteration starts by allocating the features to the clusters according 

to an allocation rule, ( ), that assigns each feature to the least dissimilar (closest) cluster 

prototype. The second step of each k-means’ iteration is called representation and consists of 

defining the centroids of the  clusters as their prototypes and assuming that each feature 

belongs to the cluster whose prototype is closest. These two steps, allocation and representation, 

are subsequently repeated until an objective function, which depends on the compactness and 

separation of the cluster, reaches its global minimum value. The k-means considers the squared 

within-cluster dissimilarity measured across the  clusters as an objective function (Hastie et 

al., 2011). Clusters’ dissimilarities are generally defined as distance metrics. Among these, the 

Euclidean (square root of the sum-of-squares) is used here.  

5.7.2.2 ARX-clustering-based automatic damage detection 

Using the ARX-PCA-based features after fusion, shown in Figure 5.25, for each sensor 

cluster, the dissimilarities between undamaged and damaged conditions can be computed and 

represented in distance matrices. Figure 5.28a presents the matrix for baseline conditions, while 

Figure 5.28b shows the matrix considering baseline and damaged structural conditions, where 

dark blue represents the null distance (identical features) and yellow represents the most 

dissimilar features of the analysed sample set (maximum distance). A straightforward 

observation of Figure 5.28b allows conclusions to be drawn regarding the existence of two 
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compact groups of samples: darker regions within the matrix separated by lighter regions of the 

same matrix. These two groups correspond unmistakably to the two distinct structural conditions 

simulated: damaged and undamaged (baseline). It can also be observed that the baseline group 

of features is much more compact than the set of damage-related features, since the first consists 

of a darker blue colour, while the second exhibits greener areas since it is composed of numerous 

distinct structural conditions. Conversely, Figure 5.28a reveals a uniform distribution of colours 

throughout the entire sample set, suggesting that no changes occurred in the structure during 

those train crossings. 
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Figure 5.28 – Dissimilarity matrices obtained from: a) baseline conditions, b) undamaged and damaged 

conditions (dark blue=identical features, yellow=most dissimilar ones). 

As previously mentioned, the k-means clustering method requires that the number of clusters 

be defined in advance and provided as input (in the initialization phase). For damage detection, 

there is no way of knowing this number in advance (Santos et al., 2016), which requires that 

multiple partitions, comprising different numbers of clusters, be tested and their outcomes 

analysed using cluster validity indices (Hastie et al., 2011). Numerous validity indices have been 

proposed and tested, not only in specific literature but also in SHM applications. Herein, the 

global silhouette index (SIL) is used, since it revealed a superior performance in previous studies 

(Santos et al., 2015, 2016), in which its formulation is carefully described. 

The application of the k-means along with the SIL index is exemplified here using the features 

extracted from the sample time-series. For the present work, it is important to note that, among 

the  tested, the partition that generates the highest SIL value is the one that is expected to best 

describe the analysed feature set (Rendón et al., 2011), and should, therefore, be considered for 

SHM purposes. Using the ARX-PCA-based features after fusion, shown in Figure 5.25, the SIL 

indices extracted from five cluster partitions, shown with ‘o’ marks in Figure 5.29a, exhibit a 
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maximum for = 2 clusters. The corresponding features’ allocations were automatically 

generated by the k-means method and are shown in Figure 5.29b for four of the twenty-two 

sensor clusters: i) AL-P2 + Ac1, ii) AsV1 + Ac1, iii) AsTt2+Ac1, and v) AsV3+Ac1. These plots 

demonstrate that the clustering method is capable of dividing the features without any human 

interaction or input. In Figure 5.29b can be observed the dissimilarity between the two centroids 

of six different combinations of sensors, while the plots in the diagonal of this figure show that 

the two clusters found for each couple of sensors are compact over time and separated when the 

simulated damages start. This result undeniably shows that the k-means method is capable of 

analysing the feature set and, in a fully automated manner, separating it according to the 

structural conditions observed on site. Also, it is demonstrated that the clusters have the 

advantage of allowing a multidimensional representation of the features, unlike the Mahalanobis 

distance, which is unidimensional.  
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Figure 5.29 – Allocation of damage-sensitive features into clusters: a) silhouette index (SIL), b) clusters defined 

for all structural conditions and their centroids for four of the twenty-two sensors couples. 
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5.8 CONCLUDING REMARKS 

This chapter presents a novel SHM machine learning strategy for conducting unsupervised 

damage detection on railway bridges based on traffic-induced responses, applying time series 

analysis and multivariate statistics algorithms. The proposed strategy consists of fusing sets of 

acceleration measurements to improve sensitivity and combines different techniques: 

i) AR or ARX models for features extraction; 

ii) PCA or MLR for feature modelling; 

iii) Mahalanobis distance for data fusion; 

iv) outlier analysis or cluster analysis for feature discrimination. 

The effectiveness of the proposed strategy was tested using the validated digital twin of the 

bridge over the Sado River and experimental data acquired with the SHM system installed on 

site. Dynamic numerical simulations of several structural conditions (undamaged and damaged) 

using only experimentally obtained actions as input, namely temperature, noise, train loadings 

and speeds were conducted. To obtain the most similar and reliable reproduction of the real 

SHM data, each simulation was polluted with different noise signals acquired on site by each 

accelerometer, on different days, thus ensuring the most appropriate validation of the 

methodology developed herein. Damage severities of 5%, 10% and 20% of stiffness reductions 

in the concrete slab, diaphragm and arches were simulated, as well as friction increases in the 

movements of the bearing devices from a reference value of 1.5% to 1.8%, 2.4%, 3.0% and the 

full restraint of these elements. 

 The damage-sensitive features were extracted by fitting AR (30) and ARX (30,30) models 

to the bridge accelerations induced by train crossings in different locations along the bridge. The 

study of the AR/ARX parameters obtained from different structural conditions, allowed drawing 

conclusions about the superiority of the EOVs when compared with damage, proving the 

importance of feature modelling. On the other hand, the analysis of the AR/ARX parameters 

from different sensors showed that the information stored for each type of damage is different. 

Also, this type of time-series analysis proved capable of accurately generalizing the information 

present in data, while performing significant compressive fusion (thirty features in case of AR 

model and sixty features in case of ARX model are extracted from 2112 measurement points). 

A comparison between the performance obtained from AR and ARX models as feature 

extractors was conducted, and it was concluded that ARX models lead to increased sensitivity 
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to damage due to their ability to capture cross information between the sensors (the input and 

the output). These linear models proved sufficiently robust to extract features from responses 

that result of slightly nonlinear systems, such as the train-bridge system.      

To overcome the challenge of EOV events corrupting the raw data obtained in operational 

conditions, both MLR and PCA were implemented to study the trade-off between modelling the 

features using latent-variable (output-only) or regression-based (input-output) methods. Both 

approaches were applied using features extracted with AR models and allowed for an undeniable 

reduction in the effects of EOVs, although the features obtained with MLR allowed for a clearer 

distinction between undamaged and damaged AR-based features. The PCA was also applied to 

the ARX-based features and proved its importance and effectiveness in removing observable 

changes induced by variations in train speed or temperature without the need to measure them. 

It was shown that the EOVs can be more effectively normalized using ARX models rather than 

AR models. 

To describe the variability present in the modelled features, a Mahalanobis distance was 

implemented to the thirty AR-based features and sixty ARX-based features obtained from each 

sensor. It was possible to verify that different sensors have greater or lesser sensitivity, 

depending on the location of the damage. As noted earlier, the performance of the ARX-based 

features was considerably superior to the AR-based features. To enhance sensitivity of the 

AR-based features, the information from all the sensors was merged and a single damage index 

for each train crossing was defined and obtained. This step proved to be crucial to achieve the 

highest possible level of information fusion and to obtain a clear distinction between undamaged 

and damaged conditions for AR-MLR-based and AR-PCA-based features. Notwithstanding, the 

damage indicator values obtained with AR-MLR-based features proved to be more sensitive 

than those obtained with AR-PCA-based features.  

In order to automatically detect the presence of damage, an outlier analysis was performed in 

the AR-based features using a CB computed for a significance level of 1%. The robustness and 

effectiveness of the proposed strategy was demonstrated by automatically detecting the damage 

scenarios as different from those belonging to the undamaged baseline. Using features modelled 

based on measured actions and structural responses (MLR-based), only one false-positive was 

exhibited (1% incidence), while with features modelled based on structural response 

measurements alone (PCA-based), only one false-negative was obtained (0.88% incidence). 

Further performance enhancement was achieved by performing a cluster analysis using the 
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ARX-based features. This step allowed to effectively separate, in a fully automated manner and 

without human intervention, the features according to the structural conditions observed on site.  

In short, the strategy that considers ARX models for feature extraction, PCA for feature 

modelling and a cluster analysis for feature discrimination proved to be the most efficient and 

sensitive hybrid combination of techniques. The results showed that even when using an SHM 

system without the ability of measuring environmental and operational effects, it is possible to 

successfully detect different types of damage using the bridge’s responses to train crossings. 

This strategy also has the advantages of minimizing the number of sensors that need to be 

installed and, consequently, the cost of the SHM system, as well as allowing for a more 

automatic and straightforward implementation. 

Based on this robust and effective machine learning strategy, an online unsupervised 

procedure for damage identification in real-time and without user intervention was developed, 

implemented, and validated, as detailed in the next chapter.  
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Chapter 6  

ONLINE UNSUPERVISED PROCEDURE FOR EARLY 

DAMAGE IDENTIFICATION BASED ON TRAIN INDUCED 

DYNAMIC RESPONSES * 
 

6.1 INTRODUCTION 

This chapter proposes an online unsupervised data-driven procedure for early damage 

identification based on train induced dynamic bridge responses. The machine learning 

methodology implemented herein also includes a novel approach to define an adaptive 

confidence boundary that successfully detects new damage in bridges already showing structural 

changes. To ensure a real-time continuous assessment and avoid false detections, a hybrid 

combination of ARX models, PCA, and clustering algorithms is sequentially applied to the 

monitoring data, in a moving window process.   

The efficiency of the developed methodology is tested and validated, using the digital twin 

of the bridge over the Sado River tuned with experimental data acquired from the SHM system 

installed on site. The robustness of the methodology to false detections is demonstrated for a 

comprehensive set of damage scenarios, as well as its sensitivity to smaller damage levels 

                                                 
* This chapter is based on the paper:  
Meixedo, A., Santos, J., Ribeiro, D., Calçada, R., Todd, M. (2021). Online unsupervised detection of structural 
changes using train-induced dynamic responses. Mechanical Systems and Signal Processing [submitted and 
revised]. 
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(earlier in life), even when it consists of small stiffness reductions that do not impair structural 

safety and are imperceptible in the original signals.  

After the introduction, section 6.2 describes the online unsupervised procedure for damage 

identification. In section 6.3 a sensitivity analysis is performed to different damage locations. 

Section 6.4 assesses the most robust window lengths and section 6.5 studies the effectiveness of 

smaller sensor networks. In section 6.6 an adaptive confidence boundary capable of 

automatically adapting to detect new damages after the occurrence of previous ones is 

implemented and validated. Finally, section 6.7 draws the main concluding remarks from the 

present chapter. 

6.2 ONLINE METHODOLOGY DEVELOPED 

In Chapter 5, it was demonstrated that the combination of the ARX model, PCA, and data 

fusion is the most effective in extracting and modelling features and detecting damage under a 

variety of confounding environmental and operational conditions. It was also observed that the 

cluster analysis is capable of automatically distinguishing between baseline and damaged 

conditions. However, the output of cluster analysis requires user intervention to assess whether 

clusters are compact or dispersed over time, and therefore difficult to apply in automated online 

SHM. To circumvent this limitation, instead of relying on the allocation of features to clusters 

over time, the average dissimilarity between clusters, , is implemented (Santos et al., 2015):    

= 1( − 1)  (6.1) 

where  is the number of clusters belonging to the partition with the highest SIL,  and  are 

two of the K clusters, and  is the dissimilarity measured between their centroids. If no damage 

occurs and the structural behaviour remains unchanged (as in Figure 5.28a), the clusters 

generated by the k-means are similar and will generate small DC values. Conversely, if damage 

is observed, the k-means generates dissimilar and separate clusters (as in Figure 5.28b) and, 

consequently, large DC values. 

The online methodology developed aims to provide continuous binary information of the type 

TRUE/FALSE regarding the existence of damage. It consists of successively extracting 

parameters from time series, statistically modelling the features, and classifying the structural 

response, using the algorithms described in Chapter 5, within moving windows of SHM data to 
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obtain a set of DC values. These windows are defined with a fixed number of train crossings. 

Due to the fact that the DC value does not provide TRUE/FALSE information on its own, the 

proposed methodology requires an additional step. It consists of statistically testing the DC 

values obtained within each window’s length. The statistical testing of each set of DC values 

results in the definition of a CB, which is exceeded only if the target structural system exhibits 

changes. The CBs are defined by statistically testing the DC distribution, under the premise that 

residual errors obtained from unchanged structures are only influenced by random effects. This 

premise is commonly used in SHM works addressing damage detection (Glaser & Tolman, 

2008, Posenato et al., 2010) and is generally associated with the use of the Gaussian statistical 

distribution. Under this hypothesis, a CB to detect a DC that constitutes an outlier can be 

estimated by the Gaussian ICDF (Eq. 5.12 and Eq. 5.13), considering a mean ̅ and standard 

deviation  of the baseline DC vector, and for a level of significance . 

The moving windows online procedure proposed is detailed in the flowchart of Figure 6.1 

and is divided into two main stages: i) the baseline and CB build and ii) the online damage 

identification. 

After the initialization, which consists of defining the total number of trains crossings, , that 

compose the baseline (Figure 6.1a), as well as the number of trains crossings within each 

window (Figure 6.1b), the machine learning strategy described in Chapter 5, which combines 

ARX models, PCA, MD and clustering techniques, is applied to the responses measured during 

the passage of the trains within each window . During the first stage, after extracting the baseline 

ARX features (Figure 6.1c), the coefficients of PCA (Figure 6.1d) and the covariance and mean 

matrices (Figure 6.1e) of the baseline features are obtained. At the end of this stage, the baseline 

DC vector (Figure 6.1f) is achieved and used to estimate the CB (Figure 6.1g). 

During the second stage, the moving windows process is implemented in real time, and the 

machine learning strategy is implemented in each window  (Figure 6.1h). Here, after extracting 

the ARX parameters from the window’s time series (Figure 6.1i), the baseline PCA 

transformation is obtained (Figure 6.1j), and the baseline covariance and mean matrices are used 

for MD-based feature fusion (Figure 6.1k). The corresponding damage-sensitive distances are 

used as inputs for clustering. The outcome of the windowing process consists of one DC value 

per window  (Figure 6.1l), and the detection is based on comparing each of these values with 

the CB (Figure 6.1m). An average distance between clusters, DC, lower than CB suggests that 

the changes measured during the corresponding window  were generated by EOVs and, 
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consequently that the structure may be assumed to be unchanged during that window (Figure 

6.1n). Conversely, a DC higher than the CB suggests the occurrence of damage during the same 

period (Figure 6.1o). In the case of damage identification, after  train crossings a new baseline 

may be defined, which will allow to identify when a new type of damage occur.    
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Figure 6.1 – Flowchart of online damage identification methodology based on moving windows. 

The first stage of the methodology (Figure 6.1a-g), which concerns defining the CB, was 

implemented for a significance level of 1% and for = 100 trains. Figure 6.2 shows the CB 

defined for undamaged structural responses under different environmental and operational 

conditions. The DC series shown in Figure 6.3 as examples were obtained during the 
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implementation of the second stage (Figure 6.1h-o) for one hundred healthy structural conditions 

and for four types of damage: 

i) D1 located in pier P4; 

ii) D2 located in the first mid-span of the concrete slab (m1); 

iii) D3 located in the diaphragm at 1/6 north of the third span (s3n); 

iv) D4 located in the arch at 1/3 south of the second span (t2s). 

For both stage 1 and stage 2, moving windows with 15 trains and the responses of all sensors 

installed on site were considered. 

15 25 35 45 55 65 75 85 95
0

500

1000

1500

Train crossings

Ba
se

lin
e 

D
C AP 220km/h

AP 215km/h
AP 210km/h

IC 195km/h
IC 190km/h
IC 185km/h

CB

 
Figure 6.2 – Stage 1 of the methodology: CB defined for a significance level of 1% and for = 100 trains. 

 
Figure 6.3 – Stage 2 of the methodology: DC values obtained for one hundred healthy scenarios and four types of 

damages with different severities: a) D1-P4: μ=1.8%, μ=2.4%, μ=3.0%, μ=full restrain, b) D2-m1: 5%, 10%, 
20%, c) D3-s3n: 5%, 10%, 20% and d) D4-t2s: 5%, 10%, 20%. 
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The effectiveness of the online procedure to detect different types of damage with different 

severities is shown in Figure 6.3, since for each type of damage, each symbol represents a 

different severity, increasing from left to right (μ=1.8%, μ=2.4%, μ=3.0%, μ=full restrain for 

D1; 5%, 10% and 20% for D2, D3 and D4). It can be observed that, with the exception of damage 

D2, the value of DC increases with the severity. 

Bearing in mind the small severity of the damages simulated and the realistic character of the 

numerical simulations conducted (Section 5.3), which include the effects of noise, temperature, 

and train loading measured on site, it can be observed that the developed methodology is highly 

sensitive to damage because it allows detecting stiffness reductions as small as 5%. Furthermore, 

among the one hundred undamaged scenarios tested in stage 2, no false positives were detected. 

6.3 SENSITIVITY TO DIFFERENT DAMAGE LOCATIONS 

To evaluate whether the results achieved so far may be generalized to different damage states, 

a more extensive sample of structural conditions (described in section 5.3 in the locations shown 

in Figure 5.4) was tested and applied to the same damage detection methodology. 

The 114 online analyses conducted herein comprised 10.146 windows, each with 15 trains. 

Several unchanged structural conditions were already evaluated in Figure 6.3, and no false 

positives were obtained; only the sensitivity to new damage scenarios was evaluated using the 

same window size and the DC values extracted immediately after a damage incidence. These 

DC values are presented in Figure 6.4, as well as the corresponding CB. 

The results show that, even if the single-valued DC represents the responses acquired from 

multiple sensors, it is sufficiently sensitive to highlight small magnitude damage with local 

character and in different structural elements. Only five false negatives were observed in a total 

span of 114 very different damage scenarios, namely, two in the concrete slab, one in the 

diaphragm and two in the arches, all with a stiffness reduction of only 5%. These results strongly 

suggest that the proposed methodology is, in fact, robust and may be used for damage 

identification throughout the entire structural system. 
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Figure 6.4 – DC values obtained considering four types of damage (D1, D2, D3 and D4) with different severities 

(D1: μ=1.8%, μ=2.4%, μ=3.0%, μ=full restrain, D2 to D4: 5%, 10%, 20%) in all the locations shown in 
Figure 5.4. 

6.4 ASSESSING THE MOST ROBUST WINDOW LENGTHS 

The example presented in section 6.3 showed that the proposed methodology was capable of 

detecting a 5% to 20% stiffness reduction, as well as different bearing restraints, in four types 

of damage (D1, D2, D3, D4) and in different locations, with a low number of false detections. 

This performance is, however, affected by the number of trains per window. The trade-off 

between detection rapidity and robustness is next studied by applying the damage detection 

procedure using windows with different lengths, i.e., with a varying number of trains per window 

between six and twenty. 

As in Figure 6.4, the simulated responses of all accelerometers deployed on site were 

considered and a total of 1.710 DC vectors (114 different damages and 15 different windows 

lengths) were obtained from 155.610 independent windows. The results achieved with this 

analysis are summarized in Figure 6.5, where the percentage of false detections, taken as the 

incidence of false positives (false damage alerts) and false negative occurrences (true damage 

states that were not detected by the method), depending on the length of the window, is 

presented. The bars in this chart show that important amounts of false detections are obtained 

for window lengths between 6 and 13 trains, both for undamaged and damaged scenarios. Also, 

it is shown that most of the false detections are related to damage in the concrete slab (D2) and 
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in the arch (D4). This can be associated with the sensor locations, since no sensor has been 

installed in the arches, and the concrete slab has only one sensor located in the central mid-span. 

With a window length of 14 trains, false detection reduces to 6%, but it is with a window of 15 

trains that only 2% of false detections are reached, which corresponds to a most robust detection 

process. As presented in Figure 6.4, these 2% are associated with damages with a severity of 

only 5%. The analysis was also performed for windows including 16 to 20 trains, but the 

improvement in terms of false detections was residual, if not null, which suggests that a 

substantial number of additional trains would be needed to achieve a 0% of false detections. It 

can also be observed that the percentage of false positives is zero with window lengths of 15 or 

more trains. 
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Figure 6.5 – Percentage of false detection incidences depending on the window length. 

6.5 STUDYING THE EFFECTIVENESS OF DIFFERENT SENSOR SETUPS 

To assess whether the number of sensors used to detect different types of damage may be 

optimized, a study on the false detection incidences as a function of the monitoring system 

configuration is considered. For all structural conditions mentioned in the previous sections, the 

online damage identification procedure was implemented with a window length of 15 trains, but 

considering the responses obtained with four possible configurations of an SHM system 

progressively adjusted for smaller numbers of sensors than those installed on site. 

Figure 6.6 shows the percentage of false detections got for each configuration, with the lowest 

value (2%) achieved with the 23 accelerometers currently installed on site. If the vertical 

accelerometers installed on the downstream side of the steel box-girder were removed, there 

would be a 2% increase in false detections. The third SHM system configuration also excludes 

the vertical accelerometers located at 1/3 of the first and third spans and leads to an increase of 

1% in the false detections. Finally, if only seven sensors remained, namely, the longitudinal 

accelerometers on the four piers, the vertical accelerometer on the second mid-span of the 
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concrete slab, and the vertical accelerometers in the steel box girder at each mid-span, 7% false 

detections would be observed. 

It is worth noticing that among the four configurations, the increment of false detections with 

the reduction of the number of sensors only happens for damage cases with a 5% severity. The 

scenarios comprising higher severities are always flawlessly detected.    
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Figure 6.6 – Percentage of false detection incidences depending on the number of sensors. 

6.6 DEFINING AN ADAPTIVE CONFIDENCE BOUNDARY  

Thus far, the proposed online damage identification methodology was applied considering a 

single CB build based on responses from unchanged structural conditions. However, in case a 

specific type of damage occurs, it is desirable for the CB to adapt in order to identify future 

damage that may arise over time. Figure 6.7 shows an application of CB progression, where 

additional damage scenarios (types D1, D2, D3 and D4) were simulated to implement this 

procedure. 
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Figure 6.7 – Adaptive CB for different types of damage. 

In Figure 6.7a, the CB1 was defined, as in the previous sections, for the baseline (undamaged) 

condition using = 50 trains crossings and a time window of 15 trains. The implementation of 

the damage identification online procedure proposed lead to the substantial increase of the DC 

values and exceedance of the CB1, when a train crosses the bridge with a damage in the bearing 

of pier P4 (D1). The DC values progressively decrease as the windows contain more trains from 

a damaged structure than for a baseline condition. 

In Figure 6.7b, a new baseline and confidence boundary (CB2) were defined using the bridge 

response from the 50 train crossings simulated with damage in the bearing of pier P4 (D1). This 

new baseline containing not only PCA coefficients, but also Mahalanobis distances with the new 

covariance and mean matrices, acquired from the bridge responses with damage D1, allowed 

defining a new confidence boundary (CB2) and, subsequently, detecting the new type of damage 

that occurred in the concrete slab (D2). 

Afterwards, the CB3 was built considering new 50 train crossings simulated with the structure 

damaged on the concrete slab (D2), resulting in the detection of a damage on the diaphragm 

(D3), as shown in Figure 6.7c. 

The same strategy was applied to detect a damage on the arch (D4) after a damage on the 

diaphragm (D3) has occurred (Figure 6.7d). 
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This analysis has shown the effectiveness of the proposed adaptive CB in automatically 

detecting new types of damage. The procedure herein implemented proved be successful, not 

only regarding the detection of damage, but also, on preventing false damage alerts.       

6.7 CONCLUDING REMARKS 

This chapter presented a comprehensive SHM methodology for conducting continuous online 

damage identification, using train induced responses, integrating several algorithms that address 

detection, EOVs, and online, autonomous classification. This methodology included the 

sequential implementation of ARX models, PCA transformation, and clustering algorithms to 

the observed data, using a moving window procedure. The unsupervised machine learning 

strategy proposed herein also includes an innovative approach to define an adaptive confidence 

boundary, which can be automatically updated to detect new damage that would progressively 

occur.     

To assess whether the online procedure was reliable for different damage scenarios, the 

proposed methodology was applied to a representative set of simulated stiffness reductions (5%, 

10% and 20%) in the concrete slab, diaphragm and arches, as well as friction increases in the 

movements of the bearing devices. This analysis allowed observing that changes as small as 5% 

of stiffness reduction may be detected in the vast majority of scenarios, using a simple system 

composed of a few sensors installed on a long-span bridge, while all the remaining severities 

and friction increments can be detected without false detections. 

To study the trade-off between robustness and detection swiftness, a parametric analysis was 

conducted on the window lengths and on the number of sensors used by the SHM monitoring 

system. From this analysis it was shown that small stiffness reductions can be reliably detected 

with negligible false detection incidences (taken as the sum of “false alerts” and missed true 

detections) of 2% or less if the moving windows comprise 15 or more trains. Smaller windows 

lead to larger false detection rates. The detection can be achieved once the first train crosses the 

bridge after the damage occurrence. 

The low percentage of false detections is accomplished considering the simple monitoring 

system currently installed on site. The effectiveness and performance of the proposed approach 

for damage identification with a smaller number of sensors was also investigated. The results 

demonstrate that if the number of sensors were reduced from twenty-three to just seven, on a 

480 m long bridge, the proposed methodology could be effectively used, but an increase of 5% 
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in false detections would be observed. Nonetheless, it should be noted that the damage cases that 

would not be detected are only those with the lowest severity (5% of stiffness reduction).  

Finally, using several train induced responses from the bridge comprising progressively 

different types of damage, the effectiveness of an original adaptive CB in detecting new 

structural changes that may occur in a structure already damaged was also successfully 

demonstrated.    
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Chapter 7  

CONCLUSIONS AND FUTURE DEVELOPMENTS 
 

7.1 CONCLUSIONS 

The present thesis is focus on exploit unsupervised data-driven SHM in order to propose a 

continuous online procedure for damage identification based on train induced dynamic bridge 

responses. This procedure also includes a novel approach to define an adaptive confidence 

boundary that successfully detects new damage in bridges already showing structural changes. 

To achieve these goals a machine learning methodology was developed, implemented and 

validated with a complex case study. 

In Chapter 2, an historical overview of the studies carried out in the field of vibration-based 

SHM, with special focus on bridges, was presented. The main definitions and concepts related 

to structural health monitoring and damage identification approaches are given. The main goals 

and components of an SHM system were defined and a literature review on damage 

identification was conducted. Finally, the strategy followed in this thesis for damage 

identification using structural health monitoring was also presented.  

In Chapter 3, the railway bridge over the Sado River, used as case study in this thesis, was 

presented. The implementation of a progressively phased in-situ structural monitoring system 

was described. Immediately after construction, the modal properties of the long-span railway 

bridge, namely its natural frequencies, mode shapes and damping coefficients were assessed 

through an ambient vibration test. In addition, the structural health condition of the bridge over 
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the Sado River was monitored through periodic visual inspections, and using a comprehensive 

structural monitoring system defined with the objective of controlling the global stiffness of the 

bridge and the global longitudinal internal forces, as well as the behaviour of its special devices, 

such as the bearings, to the important actions of temperature and railway traffic. As this is a 

single-plane bowstring-arch structure, the important torsional effect resulting from train loading 

on only one side of the girder was also considered, insofar as the sensors were eccentrically 

positioned in order to monitor not only the effects due to bending but also the torsion of the 

structure. Between 2011 and 2016, the system consisted of static measurements of strain, 

temperature, and displacement, whose responses were acquired and evaluated every hour. In 

2017 an upgrade of the monitoring system was implemented to allow for a better characterization 

of the dynamic response of the bridge and the behaviour of the bearing devices. This upgrade 

consisted mainly of additional dynamic measurements using accelerometers located on the top 

of each pier and along the deck, to take advantage of the excitation induced by the several trains 

that cross the bridge every day.  

By analysing experimental data from the ambient vibration test and static monitoring, it was 

possible to estimate the modal parameters, as well as the responses to important slow actions, 

such as temperature. However, the experimental information alone did not enable the 

identification of changes in the behaviour of the bearing devices, which were suggested by visual 

inspection. On the other hand, it was concluded that a continuous dynamic monitoring based on 

the analysis of traffic loading allowed the identification of changes in the structural responses 

and pointed out the existence of restraints in the movements of the bearing devices on piers P2 

and P3. It was found that a dynamic monitoring system has the advantage of detecting bearing 

defects based on the train induced responses. With the passage of several trains, the diagnosis 

can be validated, and false positives can be dismissed in a short period of time. 

Chapter 4 addressed the progressive validation of a complex non-linear FE model of the 

bridge over the Sado River using the measurements from the monitoring system installed on site 

and performing modal analysis under ambient vibration, static analysis based on temperature 

loading and dynamic analysis based on traffic loading. One of the main outcomes was a reliable 

digital twin used as a tool for generate realistic simulations of healthy and damage scenarios, in 

order to test and validate the machine learning strategy developed herein, since it was not 

possible to obtain such conditions experimentally.  
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The validation of the numerical model based on ambient vibration and modal analysis, 

revealed appropriate to define the baseline numerical model. However, it was concluded that 

this type of numerical model is insufficient to perform SHM or identify structural changes, since 

it does not mobilize mechanical devices such as bearings (or joints). 

When compared to the ambient vibration analysis, the static validation approach based on 

environmental loading allowed concluding that the imposition of greater displacements on the 

structural elements provides a step forward in the accuracy of the model validation. Based on 

correlation analysis between experimental and numerical results, the restraints of the bearing 

devices on piers P2 and P3 were clearly identified, which is in line with the structural changes 

detected through visual inspections. Without the support of a numerical model, these changes 

would not be easily identified using the data from the installed static monitoring system, which 

did not include the measurement of the displacements of these specific bearings. This is, in fact, 

another main outcome of Chapter 4, to illustrate the combined use of measurements and 

modelling, and the need to adapt both components over the course of a project to better 

understand the structural behaviour of the bridge.  

The validation of the model based on dynamic monitoring under traffic loads was carried out 

to take advantage of the large displacements and vibrations imposed by this type of operational 

action. The model allowed analysing the influence that the restraints of the bearing devices 

impose on the longitudinal behaviour (displacements and accelerations) of the piers, and to the 

vertical accelerations of the deck. It was concluded that the use of numerical modelling and its 

validation by comparison with SHM data, allows the detection of the restraint to the movements 

of the bearing devices on piers P2 and P3 without the need to measure the longitudinal 

displacements in the bearings. Instead, longitudinal accelerations on top of the piers, where the 

bearings are located, can be measured using low-cost sensors. 

The results achieved in Chapter 4 allowed concluding that a dynamic traffic-based monitoring 

system is capable of detecting structural changes that would not be easily detected by an ambient 

vibration or static monitoring. It also has the advantages of allowing data to be collected in a 

very short period of time thus reducing the influence of noise, sensor drifts and other external 

effects.  

In Chapter 5, a novel SHM machine learning strategy for conducting unsupervised damage 

identification in railway bridges based on traffic induced dynamic responses, comprising time 

series analysis and multivariate statistics algorithms, was presented and implemented. The 
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developed strategy consists of fusing sets of acceleration measurements to improve sensitivity 

and combines different techniques: i) AR or ARX models for features extraction, ii) PCA or 

MLR for feature modelling, iii) Mahalanobis distance for data fusion and iv) outlier analysis or 

cluster analysis for feature discrimination. The signals resulting from train crossings correspond 

to an important mass travelling at significant speeds, thus generating features that can hide those 

associated with damage. The study of the performance of different combinations of techniques 

aimed at removing all the train-related features to expose, with high sensitivity, those generated 

by damage. 

The effectiveness of the proposed strategy was tested using the fully validated numerical 

model of the bridge over the Sado River and experimental data acquired with the structural 

monitoring system installed on site. Dynamic numerical simulations of several structural 

conditions (undamaged and damaged) using only experimentally obtained actions as input, 

namely temperature, noise, train loadings and speeds were conducted. After a successfully 

validation of the methodology, it can be applied directly to experimental data from different 

types of bridges.  

To obtain the most similar and reliable reproduction of the real SHM data, the responses 

obtained with the simulations were collected on the exact locations of the accelerometers 

installed on site. Furthermore, each simulation was polluted with different noise signals acquired 

on site by each accelerometer, on different days, thus ensuring the most appropriate validation 

of the methodology developed herein. Damage severities of 5%, 10% and 20% of stiffness 

reductions in the concrete slab, diaphragm and arches were simulated, as well as friction 

increases in the movements of the bearing devices from a reference value of 1.5% to 1.8%, 2.4%, 

3.0% and the full restraint of these elements. 

 The damage-sensitive features were extracted by fitting AR (30) and ARX (30, 30) models 

to the bridge accelerations induced by train crossings in different locations along the bridge. The 

study of the AR/ARX parameters obtained from different structural conditions, allowed drawing 

conclusions about the superior influence of the EOVs when compared with damage, proving the 

importance of feature modelling. On the other hand, the analysis of the AR/ARX parameters 

from different sensors allowed concluding that the information stored for each type of damage 

is different. Besides, this type of time-series analysis proved capable of accurately generalizing 

the information present in data, while performing significant compressive fusion (thirty features 

in case of AR model and sixty features in case of ARX model are extracted from 2112 
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measurement points). A comparison between the performance obtained from AR and ARX 

models as feature extractors was conducted, and it was concluded that ARX models lead to 

increased sensitivity to damage due to their ability to capture cross information between the 

sensors (the input and the output). These linear models proved to be sufficiently robust to extract 

features from responses that result of slightly nonlinear systems, such as the train-bridge system.      

To overcome the challenge of EOV events corrupting the raw data obtained in operational 

conditions, both MLR and PCA were implemented to study the trade-off between modelling the 

features using latent-variable (output-only) or regression-based (input-output) methods. Both 

approaches were developed using features extracted with AR models and allowed for an 

undeniable reduction in the effects of EOVs, although it was concluded that the features obtained 

with MLR enable a clearer distinction between undamaged and damaged AR-based features. 

The PCA was also applied to the ARX-based features and proved its importance and 

effectiveness in removing observable changes induced by variations in train speed or 

temperature without the need to measure them. It was also concluded that the EOVs can be more 

effectively normalized using ARX models rather than AR models. 

To describe the variability present in the modelled features, a Mahalanobis distance was 

implemented to the thirty AR-based features and sixty ARX-based features of each sensor. This 

implementation allowed concluding that different sensors have greater or lesser sensitivity, 

depending on the location of the damage. Moreover, this step allowed corroborating the 

conclusion that the performance of the ARX-based features is considerably superior to the 

AR-based features. 

To enhance sensitivity of the AR-based features, the information from all the sensors was 

merged and a single damage indicator for each train crossing was defined and obtained. This 

step proved to be crucial to achieve the highest possible level of information fusion and to obtain 

a clear distinction between undamaged and damaged conditions for AR-MLR-based and 

AR-PCA-based features. Notwithstanding, it was concluded that the damage indicator values 

obtained with AR-MLR-based features are more sensitive than those obtained with 

AR-PCA-based features.  

To automatically detect the presence of damage, an outlier analysis was performed in the 

AR-based features using a statistical CB implemented for a significance level of 1%. The 

robustness and effectiveness of the developed strategy was demonstrated by automatically 

detecting the damage scenarios as different from those belonging to the undamaged baseline. 
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Using features modelled based on measured actions and structural responses (MLR-based), only 

one false-positive was exhibited (1% incidence), while with features modelled based on 

structural response measurements alone (PCA-based), only one false-negative was obtained 

(0.88% incidence). In view of these outcomes, it can be concluded that a strategy comprising 

the PCA for modelling the AR features is not only effective, but also advantageous, since it does 

not require the measurement of the actions. 

However, further performance enhancement was achieved by implementing a cluster analysis 

to the ARX-based features. This step allowed to effectively separate, in a fully automated 

manner, the features according to the structural conditions observed on site. Moreover, since the 

clusters have de advantage of allowing a multidimensional representation of the features, unlike 

the Mahalanobis distance that is unidimensional, it was concluded that the information retained 

is more accurate, thus improving sensitivity to damage.    

Therefore, the machine learning strategy comprising ARX models for feature extraction, PCA 

for feature modelling and a cluster analysis for feature discrimination proved to be the most 

effective and sensitive hybrid combination of techniques. An additional important conclusion 

obtained from this work is that, even with an SHM system not capable of measuring 

environmental and operational effects, it is possible to successfully detect different types of 

damage using the bridge’s responses to train crossings. This achievement renders the strategy 

the ability to be less dependent on spatial actions very difficult to characterize, thus contributing 

for the normalization of SHM procedures. This strategy also has the advantages of minimizing 

the number of sensors that need to be installed and, consequently, the cost of the SHM system, 

as well as allowing for a more automatic and straightforward implementation.  

Given the main goal of developing a fully online unsupervised damage identification 

methodology, Chapter 6 presented a comprehensive SHM procedure for conducting continuous 

real-time autonomous classification. This methodology includes the sequential implementation 

of ARX models, PCA transformation, and clustering algorithms to the observed data, using a 

moving window procedure. The machine learning strategy developed also includes an 

innovative approach to define an adaptive confidence boundary, which can be automatically 

updated to detect new damage that would progressively occur. Throughout Chapter 6 the 

robustness and the effectiveness of the methodology was tested. 

To assess whether the online procedure was reliable for different damage scenarios, the 

proposed methodology was applied to the representative set of simulated structural conditions 
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(undamaged and damaged). This analysis allowed concluding that, for the global SHM system 

installed, changes as small as 5% of stiffness reduction may be detected in most damage 

scenarios and locations, using a simple system composed of a few sensors installed on a 

long-span bridge, while all the remaining severities and friction increments can be detected 

without false detections. 

To study the trade-off between robustness and detection swiftness, a parametric analysis was 

conducted on the window lengths and on the number of sensors used by the SHM monitoring 

system. From this analysis, it was concluded that small stiffness reductions can be reliably 

detected with negligible false detection incidences (taken as the sum of “false alerts” and missed 

true detections) of 2% or less if the moving window comprises 15 or more trains. Smaller 

windows lead to larger false detection rates. Additionally, it was concluded that the percentage 

of false positives is zero with window lengths of 15 or more trains. In line with this outcome, 

using a different case study the window length may be set based on the number of false positives. 

It was also possible to conclude that the detection can be achieved once the first train crosses the 

bridge after the damage occurrence, which guarantees the real-time assessment.  

The low percentage of false detections is accomplished considering the simple monitoring 

system currently installed on site. The effectiveness and performance of the proposed approach 

for damage identification with a smaller number of sensors was also investigated. The results 

allowed concluding that if the number of sensors were reduced from twenty-three to just seven, 

on a 480 m long bridge, the proposed methodology could be effectively used, but an increase of 

5% in false detections would be observed. Nonetheless, it should be noted that the damage cases 

that would not be detected are only those with the lowest severity (5% of stiffness reduction).  

Finally, using several train-induced responses from the bridge comprising progressively 

different types of damage, an original adaptive CB to detect new structural changes that may 

occur in a structure already damaged was developed and tested. The procedure implemented 

allowed concluding about the effectiveness of the adaptive CB not only in detecting new 

damage, but also in avoiding false damage alerts. It is worth noting that one of the great 

advantages of the methodology developed is the speed at which the baseline and the CB can be 

defined. It can be promptly established during one day for several types of trains with different 

loads crossing the bridge. The environmental effects can also be considered since the weather 

(temperature and wind) varies according to the time of day.  
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7.2 FUTURE DEVELOPMENTS 

The work described throughout the present dissertation focuses on developing an online 

unsupervised methodology for the identification of damage based on train-induced dynamic 

responses. However, the course of this research raised several topics, issues and additional 

objectives that were not addressed. In this context, some topics requiring further analysis are 

referred in the following paragraphs: 

a) Since the train-bridge system may exhibit a nonlinear behaviour, the use of an alternative 

non-linear feature extractor, such as the nonlinear autoregressive exogenous (NARX) 

neural network model, may result in a sensitivity improvement for damage identification, 

and is considered as a very interesting future development. 

b) The most natural future development for the work conducted in the present dissertation 

consists in locating the damage. The potential of the ARX model was clearly proved 

during this dissertation, and their sensitivity to sensors located in different positions 

along the bridge was also demonstrated, which gives a good indication about the possible 

success on implementing a step for damage localization.  In the sequence of the previous 

research recommendation, the combination of the NARX as feature extractors with the 

application of cluster analysis for feature discrimination can result in the ability to locate 

damage. The idea is to use the SHM system already installed on site and define different 

clusters of sensors along the bridge that will be the input and output parameters of the 

NARX model. As near the damage a specific cluster of sensors is, more sensitive the 

NARX parameters from this cluster are expected to be, and consequently, the damage 

indicator will also be higher for this cluster of sensors than for the remaining ones.  

c) An important issue to be addressed is the definition of different alert levels. As shown in 

Chapter 6, the DC values tend to increase as the damage increases. In this sense, alert 

levels can be defined, for instance, using probabilistic methods applied to the DC values 

gathered over time. To choose these alert levels, additional simulations of damage 

scenarios with increasing severities using the digital twin of the structure can be 

implemented. The correspondent corrective measures and immediate actions, to take 

after the trigger of a certain alert, should be defined in collaboration with the bridge 

manager. 



Damage identification in railway bridges based on train induced dynamic responses 

 

153 

d) It would be interesting to apply the methodology proposed using only experimental data. 

In fact, as reported in Chapter 3, structural changes were found in the bearing devices of 

piers P2 and P3 of the bridge over the Sado River. However, in that moment, only the 

static monitoring system was installed, so the data acquired could not be used to apply 

the methodology. The structural changes observed in the bearing devices may, over time, 

induce changes in the structural behaviour of the bridge, which are expected to be 

detected with the developed methodology for additional validation of its effectiveness, 

robustness and sensitivity.  

e) During the work presented in this thesis the focus was always to develop a robust and 

generic unsupervised methodology to detect damages based on traffic induced responses 

in order to give significant contribution for the transition of SHM from academia to 

industry. Even though the developed methodology analysed several damage scenarios, 

in different locations and with different severities, was limited to a single case study. It 

would be interesting to investigate how the proposed procedure behave when applied to 

a different structure. 

f) A further validation of the applicability of the methodology, to demonstrate their 

versatility and confirm their robustness and efficiency, would be to exploit the detection 

of completely different types of damages, such as wheel defects, using sensors installed 

on the rail track.  

g) The implementation of the methodology to detect damages in railway bridges based on 

responses measured by sensors installed on the train is another interesting and ambitious 

future development. The ability of detecting damages based on the responses of the train 

would have the tremendous advantage of monitoring daily several structures using a 

single sensors’ network. 

h) Civil structures tend to be one-of-a-kind, large capital assets, that are generally kept in 

good condition by the managers with appropriate inspection and maintenance actions. 

As such, bridge data acquired under damaged conditions is generally scarce. Therefore, 

the effectiveness of the methodologies such as the one implemented herein tend to be 

validated using digital twins, with a reliable description of the structure’s stiffness, mass, 

and boundary conditions, as well as its response to environmental and operational 

actions. In this sense, it is important to evolve towards the development of digital twins 

for different types of railway bridges.  
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