4,913 research outputs found

    Preventive maintenance and replacement scheduling : models and algorithms.

    Get PDF
    Preventive maintenance is a broad term that encompasses a set of activities aimed at improving the overall reliability and availability of a system. Preventive maintenance involves a basic trade-off between the costs of conducting maintenance/replacement activities and the cost savings achieved by reducing the overall rate of occurrence of system failures. Designers of preventive maintenance schedules must weigh these individual costs in an attempt to minimize the overall cost of system operation. They may also be interested in maximizing the system reliability, subject to some sort of budget constraint. In this dissertation, we present a complete discussion about the problem definition and review the literature. We develop new nonlinear mixed-integer optimization models, solve them by standard nonlinear optimization algorithms, and analyze their computational results. In addition, we extend the optimization models by considering engineering economy features and reformulate them as a multi-objective optimization model. We optimize this model by generational and steady state genetic algorithms as well as by a simulated annealing algorithm and demonstrate the computational results obtained by implementation of these algorithms. We perform a sensitivity analysis on the parameters of the optimization models and present a comparison between exact and metaheuristic algorithms in terms of computational efficiency and accuracy. Finally, we present a new mathematical function to model age reduction and improvement factor parameter used in optimization models. In addition, we develop a practical procedure to estimate the effect of maintenance activity on failure rate and effective age of multi component systems

    Optimal Maintenance Schedule for a Wind Power Turbine with Aging Components

    Get PDF
    Wind power is one of the most important sources of renewable energy available today. A large part of the cost of wind energy is due to the cost of maintaining wind power equipment. When a wind turbine component fails to function, it might need to be replaced under circumstances that are less than ideal. This is known as corrective maintenance. To minimize unnecessary costs, a more active maintenance policy based on the life expectancy of the key components is preferred. Optimal scheduling of preventive maintenance activities requires advanced mathematical modeling. In this paper, an optimal preventive maintenance algorithm is designed using the renewal-reward theorem. In the multi-component setting, our approach involves a new idea of virtual maintenance that allows us to treat each replacement event as a renewal event even if some components are not replaced by new ones. The proposed optimization algorithm is applied to a four-component model of a wind turbine, and the optimal maintenance plans are computed for various initial conditions. The modeling results clearly show the benefit of PM planning compared to a pure CM strategy (about 30% lower maintenance cost)

    Integration of production, maintenance and quality : Modelling and solution approaches

    Get PDF
    Dans cette thèse, nous analysons le problème de l'intégration de la planification de production et de la maintenance préventive, ainsi que l'élaboration du système de contrôle de la qualité. Premièrement, on considère un système de production composé d'une machine et de plusieurs produits dans un contexte incertain, dont les prix et le coût changent d'une période à l'autre. La machine se détériore avec le temps et sa probabilité de défaillance, ainsi que le risque de passage à un état hors contrôle augmentent. Le taux de défaillance dans un état dégradé est plus élevé et donc, des coûts liés à la qualité s’imposent. Lorsque la machine tombe en panne, une maintenance corrective ou une réparation minimale seront initiées pour la remettre en marche sans influer ses conditions ou le processus de détérioration. L'augmentation du nombre de défaillances de la machine se traduit par un temps d'arrêt supérieur et un taux de disponibilité inférieur. D'autre part, la réalisation des plans de production est fortement influencée par la disponibilité et la fiabilité de la machine. Les interactions entre la planification de la maintenance et celle de la production sont incorporées dans notre modèle mathématique. Dans la première étape, l'effet de maintenance sur la qualité est pris en compte. La maintenance préventive est considérée comme imparfaite. La condition de la machine est définie par l’âge actuel, et la machine dispose de plusieurs niveaux de maintenance avec des caractéristiques différentes (coûts, délais d'exécution et impacts sur les conditions du système). La détermination des niveaux de maintenance préventive optimaux conduit à un problème d’optimisation difficile. Un modèle de maximisation du profit est développé, dans lequel la vente des produits conformes et non conformes, les coûts de la production, les stocks tenus, la rupture de stock, la configuration de la machine, la maintenance préventive et corrective, le remplacement de la machine et le coût de la qualité sont considérés dans la fonction de l’objectif. De plus, un système composé de plusieurs machines est étudié. Dans cette extension, les nombres optimaux d’inspections est également considéré. La fonction de l’objectif consiste à minimiser le coût total qui est la somme des coûts liés à la maintenance, la production et la qualité. Ensuite, en tenant compte de la complexité des modèles préposés, nous développons des méthodes de résolution efficaces qui sont fondées sur la combinaison d'algorithmes génétiques avec des méthodes de recherches locales. On présente un algorithme mimétique qui emploi l’algorithme Nelder-Mead, avec un logiciel d'optimisation pour déterminer les valeurs exactes de plusieurs variables de décisions à chaque évaluation. La méthode de résolution proposée est comparée, en termes de temps d’exécution et de qualités des solutions, avec plusieurs méthodes Métaheuristiques. Mots-clés : Planification de la production, Maintenance préventive imparfaite, Inspection, Qualité, Modèles intégrés, MétaheuristiquesIn this thesis, we study the integrated planning of production, maintenance, and quality in multi-product, multi-period imperfect systems. First, we consider a production system composed of one machine and several products in a time-varying context. The machine deteriorates with time and so, the probability of machine failure, or the risk of a shift to an out-of-control state, increases. The defective rate in the shifted state is higher and so, quality related costs will be imposed. When the machine fails, a corrective maintenance or a minimal repair will be initiated to bring the machine in operation without influencing on its conditions or on the deterioration process. Increasing the expected number of machine failures results in a higher downtime and a lower availability rate. On the other hand, realization of the production plans is significantly influenced by the machine availability and reliability. The interactions between maintenance scheduling and production planning are incorporated in the mathematical model. In the first step, the impact of maintenance on the expected quality level is addressed. The maintenance is also imperfect and the machine conditions after maintenance can be anywhere between as-good-as-new and as-bad-as-old situations. Machine conditions are stated by its effective age, and the machine has several maintenance levels with different costs, execution times, and impacts on the system conditions. High level maintenances on the one hand have greater influences on the improvement of the system state and on the other hand, they occupy more the available production time. The optimal determination of such preventive maintenance levels to be performed at each maintenance intrusion is a challenging problem. A profit maximization model is developed, where the sale of conforming and non-conforming products, costs of production, inventory holding, backorder, setup, preventive and corrective maintenance, machine replacement, and the quality cost are addressed in the objective function. Then, a system with multiple machines is taken into account. In this extension, the number of quality inspections is involved in the joint model. The objective function minimizes the total cost which is the sum of maintenance, production and quality costs. In order to reduce the gap between the theory and the application of joint models, and taking into account the complexity of the integrated problems, we have developed an efficient solution method that is based on the combination of genetic algorithms with local search and problem specific methods. The proposed memetic algorithm employs Nelder-Mead algorithm along with an optimization package for exact determination of the values of several decision variables in each chromosome evolution. The method extracts not only the positive knowledge in good solutions, but also the negative knowledge in poor individuals to determine the algorithm transitions. The method is compared in terms of the solution time and quality to several heuristic methods. Keywords : Multi-period production planning, Imperfect preventive maintenance, Inspection, Quality, Integrated model, Metaheuristic

    Cost optimization of maintenance scheduling for wind turbines with aging components

    Get PDF
    A major part of the wind turbine operation cost is resulted from the maintenance of its components. This thesis deals with the theory, algorithms, and applications concerning minimization of the maintenance cost of wind power turbines, using mathematical modelling to find the optimal schedules of preventive maintenance activities for multi-component systems.\ua0 \ua0 The main contributions of this thesis are covered by the four papers appended. The unifying goal of these papers is to produce new optimization models resulting in effective and fast algorithms for preventive maintenance time schedules. The features of the multi-component systems addressed in our project are: aging components, long-term, and short-term planning, planning for a wind power farm, end of the lifetime of the wind farm, maintenance contracts, and condition monitoring data.\ua0 \ua0 For the long-term maintenance planning problem, this thesis contains an optimization framework that recognizes different phases of the wind turbine lifetime. For short-term planning problem, this thesis contains two modeling frameworks, which both focus on the planning of the next preventive maintenance activities. Our virtual experiments show that the developed optimization models adopt realistic assumptions and can be accurately solved in seconds. One of these two frameworks is further extended so that available condition monitoring data can be incorporated for regular updates of the components\u27 hazard functions. In collaboration with the Swedish Wind Power Technology Center at Chalmers and its member companies, we test this method with real-world wind farm data. Our case studies demonstrate that this framework may result in remarkable savings due to the smart scheduling of preventive maintenance activities by monitoring the ages of the components as well as operation data of the wind turbines. \ua0 \ua0 We believe that in the future, the proposed optimization model for short-term planning based on the component age and condition monitoring data can be used as a key module in a maintenance scheduling app

    Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams

    No full text
    International audienceThe paper deals with a maintenance grouping approach for multi-component systems whose components are connected in series. The considered systems are required to serve a sequence of missions with limited breaks/stoppage durations while maintenance teams (repairmen) are limited and may vary over time. The optimization of the maintenance grouping decision for such multi-component systems leads to a NP-complete problem. The aim of the paper is to propose and to optimize a dynamic maintenance decision rule on a rolling horizon. The heuristic optimization scheme for the maintenance decision is developed by implementing two optimization algorithms (genetic algorithm and MULTIFIT) to find an optimal maintenance planning under both availability and limited repairmen constraints. Thanks to the proposed maintenance approach, impacts of availability constraints or/and limited maintenance teams on the maintenance planning and grouping are highlighted. In addition, the proposed grouping approach allows also updating online the maintenance planning in dynamic contexts such as the change of required availability level and/or the change of repairmen over time. A numerical example of a 20-component system is introduced to illustrate the use and the advantages of the proposed approach in the maintenance optimization framework

    Joint maintenance-inventory optimisation of parallel production systems

    Get PDF
    We model a joint inspection and spare parts inventory policy for maintaining machines in a parallel system, where simultaneous downtime seriously impacts upon production performance and has a significant financial consequence. This dependency between system components means that analysis of realistic maintenance models is intractable. Therefore we use simulation and a numerical optimisation tool to study the cost-optimality of several policies. Inspection maintenance is modelled using the delay-time concept. Critical spare parts replenishment is considered using several variants of a periodic review policy. In particular, our results indicate that the cost-optimal policy is characterised by equal frequencies of inspection and replenishment, and delivery of spare parts that coincides with maintenance intervention. In general, our model provides a framework for studying the interaction of spare parts ordering with maintenance scheduling. The sensitivity analysis that we present offers insights for the effective management of such parallel systems, not only in a paper-making plant, which motivates our modelling development, but also in other manufacturing contexts

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    A condition-based maintenance policy for multi-component systems with a high maintenance setup cost

    Get PDF
    Condition-based maintenance (CBM) is becoming increasingly important due to the development of advanced sensor and ICT technology, so that the condition data can be collected remotely. We propose a new CBM policy for multi-component systems with continuous stochastic deteriorations. To reduce the high setup cost of maintenance, a joint maintenance interval is proposed. With the joint maintenance interval and control limits of components as decision variables, we develop a model for the minimization of the average long-run maintenance cost rate of the systems. Moreover, a numerical study on a case of a wind power farm consisting of a large number of non-identical components is performed, including a sensitivity analysis. At last, our policy is compared to a corrective-maintenance-only policy
    corecore