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Abstract

Condition-based maintenance (CBM) is becoming increasingly important due to the development of

advanced sensor and ICT technology, so that the condition data can be collected remotely. We propose a

new CBM policy for multi-component systems with continuous stochastic deteriorations. To reduce the

high setup cost of maintenance, a joint maintenance interval is proposed. With the joint maintenance

interval and control limits of components as decision variables, we develop a model for the minimization

of the average long-run maintenance cost rate of the systems. Moreover, a numerical study on a case of

a wind power farm consisting of a large number of non-identical components is performed, including a

sensitivity analysis. At last, our policy is compared to a corrective-maintenance-only policy.

keywords: Condition-based maintenance, Multi-component systems, Joint maintenance

1. Introduction

Condition-based maintenance (CBM) is a maintenance method that recommends maintenance decisions

based on the condition of a component/system [23, 37]. CBM is becoming increasingly important, because

(i) the development of advanced sensor and ICT technology makes the remote acquisition of condition mon-

itoring data (e.g., temperature of engine, wearing of a brake) less costly; and (ii) condition data can improve

diagnostics and prognostic of failures, which helps to reduce maintenance related costs further [23, 37].

Hence, considerable attention from researchers has been attracted to study CBM [37]. Compared with

single-component systems, the maintenance optimization for multi-component systems in a CBM framework

is much more complicated because of economic, structural or stochastic dependencies among the components

[11, 12, 33, 40]. In this paper, we focus on economic dependency and propose a new CBM policy for multi-

component systems with stochastic and continuous deteriorations. To reduce the setup cost of maintenance

for multi-component systems, we propose a joint maintenance interval to synchronize the maintenance activ-

ities of all degrading components in a system. Maintenance strategies with static joint maintenance intervals

are often applied in the industries of advance capital goods (e.g., aviation, oil-gas refinery, renewable energy

and chemical process) due to the convenience of static intervals for the operations planning and coordination

∗Corresponding author: h.peng@tue.nl; other contacts: q.zhu@tue.nl, g.j.v.houtum@tue.nl

1



of maintenance resources (e.g., service engineers, maintenance equipments, spare parts) [12].

In a CBM framework, after several key steps, i.e., data acquisition, data processing, diagnostics and prognos-

tic, maintenance policies will be optimized to minimize the operational costs or maximize the availability of

systems [23]. The main difference between the conventional maintenance models and CBM models is the uti-

lization of condition measurements [37]. Failures usually occur when the degradation level of a system reaches

its failure threshold level, so that the condition monitoring data and stochastic models of the degradation

processes are often necessary to estimate remaining useful lifetimes (RUL) or reliability functions. Si et al.

[39] distinguished two types of probability models of RUL estimation: directly observed CBM models (e.g.,

regression-based models [27, 28], Wiener process [16, 17], Gamma processes [1, 45], Markovian-based models

[24, 30]) and indirectly observed CBM models (e.g., stochastic filtering-based models [49], covariation-based

hazard model [22, 47], hidden Markov model [8, 26]). In this paper, we consider systems with continuously ob-

servable degradation processes, which is a typical feature of systems in the industry of advance capital goods.

For single-component systems, based on the general random coefficient model [27], Wang [48] proposed

a CBM model to determine the optimal control limit and the inspection interval in terms of costs, downtime

or reliability. Gebraeel et al. [16, 17] extended the general degradation model to estimate the RUL distri-

bution from sensor signals, by a Wiener process and Bayesian updating. Using this technique, a single-unit

replacement problem is formulated as a Markov decision process to develop a structured replacement policy

[14]. For monotonic stochastic deteriorations, a Gamma process can be used for condition-based mainte-

nance optimization [1, 45]. The CBM models in this case were developed to have a single-level control

limit [13, 35, 36] or a multi-level control limit [18] under the scenarios of periodic inspection [35], aperi-

odic inspection [13, 18] or continuous monitoring [25] [36]. If the degradation process can be modeled as

discrete states, Markovian-based models were applied. The optimal replacement policies were derived from

observable Markov processes [24, 30] or the evolution of the hidden states [8, 26]. Moreover, Proportional

Hazards Models are also often used to relate the system’s condition variables to the hazard function of a

system [22, 47], so that the maintenance policies can be optimized with respect to the optimal risk value of

the hazard function.

Although many CBM models have been proposed for single-component systems, they cannot be applied

directly for multi-component systems because one has to deal with the economic dependency among the

components. In our model, we consider the economic dependence incurred by the high setup cost of main-

tenance activities, such as sending maintenance personnel and equipment to a remote site. In the litera-

ture within this category, many maintenance models are developed based on failure time data (known as

”age/time-based model”) instead of condition monitoring data. For example, Radner and Jorgenson [38]

introduced an (n,N) policy with a proof of optimality. They distinguished two types of components, 0 and 1,

where n is the age threshold for opportunistic replacements of component 0 when component 1 fails and N is

the preventive replacement threshold of component 0 when component 1 is good. Some numerical evidence

[46] showed that (n, N) policy is near optimality with respect to a wide range of cost parameters. Some

exact methods [21, 34] (e.g., via Markovian framework) for finding the optimal solution are intractable for

systems with large amounts of components, due to the exponentially increasing state spaces. Hence, various

heuristics were proposed to reduce the computational complexity [4, 43, 44]. To reduce the high setup cost,

Dekker and Wilderman developed a maintenance clustering method to coordinate maintenance tasks at the
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system level considering the penalty cost of deviating maintenance schedule from the optimal maintenance

interval of individual components. The proof of optimality by assuming the s-expected deterioration cost

function based on a Weibull process [12, 51] reduced the complexity of the large-scale optimization problem

from O(2n) to O(n2).

Contrary to age-based maintenance models, there are only a few condition-based maintenance models pro-

posed for multi-component systems. Wijnmalen and Hontelez [50] used a heuristic algorithm for computing

upper and lower control limits for component repair in systems, which is formulated under Markov deci-

sion framework. Barata et al. [5] proposed a maintenance policy for continuously monitored deteriorating

systems to minimize the s-expected maintenance cost over a given mission duration by using Monte Carlo

simulation. Marseguerra et al. [32] formulated an optimization model with two objectives (availability and

net profit) based on a Markov degradation model and solved it by embedding Monte Carlo simulation in

genetic algorithms. Both models did not include joint maintenance setup costs at system level. Considering

the joint setup costs, Bouvard et al. [7] converted a condition-based maintenance problem into an age-based

maintenance clustering problem, which yielded a schedule with a dynamic optimal maintenance interval.

Castanier et al. [10] introduced a parametric maintenance decision framework to coordinate inspection/re-

placement of a two-component system and minimize the long-run maintenance cost. However, the solution

becomes intractable when extending this model to multi-component systems. Tian and Liao proposed two

maintenance policies for multi-component systems using Proportional Hazard Model [42] and Artificial Neu-

ral Network [41].

Our contribution is that we develop a new mathematical model to optimize the condition-based mainte-

nance policy for systems with a large number of identical/non-identical components subject to high setup

costs. To reduce the high setup costs, our model coordinates the maintenance tasks at the system level

by introducing a static joint maintenance interval. The components are jointly maintained at the next up-

coming maintenance time point if their physical conditions exceed the specified control limits, which can be

easily implemented in the industries of advance capital goods. Under this structure, we develop a nested

enumeration approach to evaluate and minimize the average long-run cost rate by specifying the control

limits of degrading components and the static joint maintenance interval. This model is capable of dealing

with systems consisting of a large number of identical/non-identical components, because the optimal joint

maintenance interval and control limits can be determined sequentially: (i) for a given maintenance interval,

the control limits of components are optimized by decomposing the optimization problems for the whole sys-

tem into the optimization problems of each individual component (ii) next, one can optimize the static joint

maintenance interval by including the setup cost at the system level in the total cost function. Notice that

our model is not only adaptable for components with different degradation processes (e.g., random coefficient

models, Wiener processes and Gamma processes), but also applicable to systems composed of components

with different types of maintenance policies (e.g., age-based maintenance or periodic inspections).

The outline of this paper is as follows. The description of the system and the assumptions are given in

Section 2. The details of the mathematical model are explained in Section 3. In Section 4, a numerical case

of a wind power farm maintenance problem is studied. In this section, our optimal policy is also compared

with an optimal corrective-maintenance-only policy. Moreover, in Section 5, a sensitivity analysis is per-

formed. Finally, the conclusions are stated in Section 6.
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2. System Description

Consider an overall system consisting of m systems. J = {1, 2...,m} denotes the set of systems as shown in

Figure 1. System j ∈ J consists of lj components. For the overall system, all components of all systems are

numbered from 1 to k and I = {1, 2, ..., k} denotes the set of components, where k =
∑
j∈J lj .

Figure 1: Structure of a typical multi-component system

When maintenance actions are taken, a maintenance crew and equipment have to be sent to the field and the

operation of the system is interrupted. Consequently, a high fixed setup cost S is charged on the overall sys-

tem for maintenance actions on its components. Hence, it is economically beneficial to perform maintenance

actions of multiple components simultaneously. Due to the convenience of implementation, maintenance

policies with a fixed interval are commonly adopted in practice. For example, the maintenance of an offshore

wind power farm (the overall system) with multiple wind turbines (the systems) is based on a regular sched-

ule [31], so that the maintenance crew and equipments are only sent to the field at fixed time points. We

consider such a policy with a static maintenance interval τ (a decision variable). Namely, it is possible to

set up maintenance actions only at time points nτ , n ∈ N. In practice, the maintenance interval (in terms of

days or weeks) is small compared with the long life cycles (from 10 to 40 years) of complex systems. Hence,

an infinite time horizon is assumed in this paper.

Figure 2: Condition-based maintenance of single components with corrective maintenance only
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At the component level, we can continuously monitor the degradation of a certain physical parameter (e.g.,

the temperature of an engine, the wearing of a braking system, the cracks of a stringer). For each component

i ∈ I, Xi(t) is the degradation path over time t ∈ [0,∞) (see Figure 2). In this paper, we assume a soft

failure, which means that a component continues functioning with a lower performance when its degradation

exceeds its soft failure threshold Hi (i.e., Xi(t) > Hi). Such soft failures usually happen to components with

mechanical degradation [9]. For example, the bearing of a wind turbine is not able to deliver satisfactory

performance after a certain percentage of the house thickness is worn [31], which is considered as a soft

failure. When Xi(t) exceeds Hi and a soft failure is observed between two maintenance points (n − 1)τ

and nτ , a corrective maintenance (CM) action (with a cost CCM,i) on the failed component is taken at the

maintenance point nτ . The period from the time point when the soft failure occurs till the maintenance point

nτ is the soft failure period (see Figure 2). Such soft failures can cause quality loss in production or lower

performance in operation with a cost rate Cp,i. For instance, if a wind turbine does not function properly

due to a worn bearing, the aerodynamic power generation from mechanical torque will be less efficient, which

is considered as revenue loss due to the soft failure [31]. The quality loss/low performance cost is equal to

the length of soft failure period times Cp,i.

In order to avoid a high corrective maintenance cost CCM,i and quality loss costs when Xi(t) exceeds Hi, it is

economically beneficial to take maintenance actions pro-actively, which is known as preventive maintenance

(PM), with a lower cost CPM,i (CPM,i < CCM,i). Thus, for each component, we introduce a control limit Ci

to trigger PM actions at the next closest maintenance point, before its degradation exceeds Hi (Ci < Hi), as

shown in Figure 3. When the stochastic degradation increases fast and exceeds both Ci and Hi at the next

closest maintenance point nτ , a CM action will be taken (see Figure 3 (B)). Nevertheless, if the stochastic

degradation increases slow and the degradation level is between Ci and Hi at the next closest maintenance

point nτ , a PM action with a lower cost will be taken (see Figure 3 (A)). Therefore, both τ and Ci, i ∈ I, are

the decision variables of the optimization model. After a maintenance action is taken, the condition of the

component is restored to the original degradation level (also known as ”Repair-As-New”) and the component

continues its operation till the next maintenance action is taken. This process will repeat throughout the

infinite time horizon. The period between two consecutive maintenance actions for a component is defined

as a maintenance cycle (see Figure 2) and the beginning of each cycle is a so-called renewal point. According

to renewal theory, the average cost rate over an infinite time horizon is equal to the average cost rate over

one maintenance (renewal) cycle, Zi(τ, Ci). The s-expected maintenance cost per cycle and the s-expected

maintenance cycle length are derived in Section 3.2.

To solve the maintenance problem for systems with a large number of components, we propose a nested

approach. We first decompose the optimization of the overall system into the optimization problems at indi-

vidual component level to find the optimal control limit of each component C∗i for a given τ by minimizing

the average cost rate of each component . Afterwards, we can find the optimal τ by minimizing the average

maintenance cost rate of the overall system Zsyst(τ). Notice that we assume the components in the overall

system are independent of each other. Hence, the analysis of the overall system can be fully decomposed

into the analysis of individual components. Moreover, we assume that the overall system is composed of a

large number of systems, so that the probability of no component failure within one maintenance interval

is negligible. Hence, a setup of maintenance actions is always needed at each static maintenance point.

Therefore, the average setup cost rate can be modeled as S
τ . Consequently, the minimum average cost rate
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Figure 3: Condition-based maintenance of single components with preventive and corrective maintenance: (A) a PM action is

taken at the next maintenance point if Hi ≥ Xi(t) > Ci; (B) a CM action is taken at the next maintenance point if Xi(t) > Hi

on the overall system level for a given τ is

Zsyst(τ) =
S

τ
+
∑
i∈I

Z∗i (τ)

where Z∗i (τ) = Zi(τ, C
∗
i ), which is the minimum average cost rate for each component with optimal control

limit C∗i for a given τ .

2.1 Notation:

i : index of components in the overall system

n : index of maintenance intervals over the planning horizon

Xi(t) : degradation of component i on a physical condition

τ : maintenance interval at the system level (decision variable)

Ci : control limit on the degradation level of component i (decision variable)

Hi : soft failure threshold on the degradation level of component i

Zi : average cost rate of component i(without setup costs)

Zsyst : average cost rate of the overall system

CPM,i : cost per PM action taken on component i

CCM,i : cost per CM action taken on component i

Cp,i : soft failure cost rate on component i

S : cost per set-up action taken at the system level

2.2 Assumptions

1) The components in the overall system are independent of each other.

2) The time horizon is infinite

3) Maintenance actions are set up at fixed maintenance points nτ, n ∈ N.

4) The system continues its operation with a lower performance when the degradation of components exceeds

the failure thresholds (also known as ”soft failure”).
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5) The overall system is composed of a large number of components.

6) Maintenance actions restore the conditions of components back to their initial degradation levels. (also

known as ”repair-as-new”).

3. Model Formulation and Analysis

In this section, the degradation model of components within a single maintenance cycle is introduced in

Subsection 3.1. The optimization model is formulated both at the component and system level in Subsection

3.2.

3.1 Degradation Model

As mentioned in the literature in Section 1, there are several approaches to model the stochastic degradation

paths of components (e.g., Random Coefficient Model, Gamma process, Brownian Motion or Markov Pro-

cess). In this paper, we use the Random Coefficient Model [27], because it is relatively flexible and convenient

for describing the degradation pathes derived from physics of failures, such as law of physics and material

science. According to the Random Coefficient Model, Xi(t̂; Φi,Θi), the degradation level of component i

at time t̂ ∈ [0,∞) in a single maintenance cycle, is a random variable, given a set of constant parameters

Φi = {φi,1, ..., φi,Q}, Q ∈ N; and a set of random parameters, Θi = {θi,1, ..., θi,V }, V ∈ N, following certain

probability distributions. The probability that the degradation at time t̂ does not exceed a threshold χ is

equal to the probability that the passage time Tχ of the threshold χ is less than time t̂

P r{Tχ ≤ t̂} = Pr{X(t̂; Φi,Θi) ≥ χ}, ∀i ∈ I. (1)

EXAMPLE 1: In order to clarify the model, a simple example is given. Consider a component i in the system

with a degradation path Xi(t; Φi,Θi) = φi,1 + θi,1t
φi,2 where Φi = {φi,1, φi,2} and Θi = {θi,1}. Equation (1)

can be written in terms of Fθi,1 (the cumulative density function of random variable θi,1, θi,1 ≥ 0):

Pr{Tχ ≤ t̂} = Pr{φi,1 + θi,1t̂
φi,2 ≥ χ}

= Pr{θi,1 ≥
χ− φi,1
t̂φi,2

}

= 1− Fθi,1
(χ− φi,1

t̂φi,2

)
(2)

♦

For component i, the cumulative distribution functions of passage time TCi and THi (when the degra-

dation level exceeds Ci and Hi) can be derived based on Equation (1) given the degradation path function

Xi(t̂; Φi,Θi) and the probability distributions of Θi. Recalling the proposed policy explained in section 2

(see Figure 3), maintenance actions are taken at fixed time points. Hence, the probability that the control

limit Ci is reached between time point (n− 1)τ and nτ can be expressed as

Pr{Xi

(
(n− 1)τ ; Φi,Θi

)
≤ Ci < Xi(nτ ; Φi,Θi)} = Pr{(n− 1)τ ≤ TCi < nτ} ∀n ∈ N, i ∈ I (3)
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The probability that soft failure threshold Hi is reached before time point nτ can be expressed as

Pr{Xi(nτ ; Φi,Θi) > Hi} = Pr{THi < nτ} ∀n ∈ N, i ∈ I (4)

where Ci < Hi and TCi ≤ THi . After Ci is reached between (n− 1)τ and nτ , there are two possibilities for

the maintenance action at nτ as mentioned in Section 2: preventive maintenance (PM) if Ci ≤ Xi(nτ) < Hi

and corrective maintenance (CM) if Xi(nτ) ≥ Hi. Thus, the probability that either PM or CM occurs at

time nτ after the degradation level of component i has reached its control limit Ci between time (n − 1)τ

and nτ can be derived based on Equations (1), (3) and (4):

Pr{PM at nτ} = Pr{THi > nτ, (n− 1)τ ≤ TCi < nτ} (5)

Pr{CM at nτ} = Pr{THi ≤ nτ, (n− 1)τ ≤ TCi < nτ} (6)

EXAMPLE 1 (continued): According to Equations (2) and (3), the probability of reaching the control limit

Ci between (n− 1)τ and nτ can be obtained as

Pr{(n− 1)τ ≤ TCi < nτ} = Fθi,1

( Ci − φi,1(
(n− 1)τ

)φi,2 )− Fθi,1(Ci − φi,1(nτ)φi,2

)
, ∀n ∈ N, i ∈ I (7)

For component i, the probability that either PM or CM occurs at time point nτ after the degradation reaches

Ci between (n− 1)τ and nτ can be derived from Equations (5) and (6):

Pr{PM at nτ} = Pr
{
θi,1 <

Hi − φi,1
(nτ)φi,2

,
Ci − φi,1(

(n− 1)τ
)φi,2 ≥ θi,1 > Ci − φi,1

(nτ)φi,2

}

=

{ Fθi,1

(
Ci−φi,1(

(n−1)τ
)φi,2 )− Fθi,1(Ci−φi,1(nτ)φi,2

)
if

Hi−φi,1
(nτ)φi,2

>
Ci−φi,1(

(n−1)τ
)φi,2

Fθi,1

(
Hi−φi,1
(nτ)φi,2

)
− Fθi,1

(
Ci−φi,1
(nτ)φi,2

)
if

Hi−φi,1
(nτ)φi,2

≤ Ci−φi,1(
(n−1)τ

)φi,2 (8)

and

Pr{CM at nτ} = Pr
{
θi,1 ≥

Hi − φi,1
(nτ)φi,2

,
Ci − φi,1(

(n− 1)τ
)φi,2 ≥ θi,1 > Ci − φi,1

(nτ)φi,2

}

=

{ 0 if
Hi−φi,1
(nτ)φi,2

>
Ci−φi,1(

(n−1)τ
)φi,2

Fθi,1

(
Ci−φi,1(

(n−1)τ
)φi,2 )− Fθi,1(Hi−φi,1(nτ)φi,2

)
if

Hi−φi,1
(nτ)φi,2

≤ Ci−φi,1(
(n−1)τ

)φi,2 (9)

Regardless of the distribution of θi,1, the sum of the probabilities of PM and CM in the interval of nτ is equal

to the probability of reaching Ci between (n− 1)τ and nτ , as derived in Equation (7) . ♦

3.2 Evaluation and Optimization

As mentioned in Section 2, we propose a nested approach to find the optimal maintenance policy (i.e., the

control limits Ci of all components and the maintenance interval τ) by minimizing the average long-run cost

rate of the overall system.
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Evaluation and optimization for each component

We evaluate the average long-run maintenance cost rate for component i ∈ I incurred by preventive mainte-

nance, corrective maintenance and soft failure. According to the Renewal Theory, the average long-run cost

Zi(τ, Ci) is equal to the s-expected maintenance cost per cycle E
[
Ki(τ, Ci)

]
divided by the s-expected cycle

length E
[
Li(τ, Ci)

]
. The s-expected maintenance cost per cycle E

[
Ki(τ, Ci)

]
is given as

E
[
Ki(τ, Ci)

]
=
∑
n∈N

[
Pr{PM at nτ}CPM,i + Pr{CM at nτ}CCM,i

]
+ E

[
Di(τ, Ci)

]
Cp,i (10)

where Pr{PM at nτ} and Pr{CM at nτ} can be obtained from Equations (5) and (6), CPM,i and CCM,i

are the costs of preventive maintenance and corrective maintenance on component i respectively, excluding

the setup cost. The soft failure cost in Equation (10) is evaluated by the product of the s-expected soft

failure period E
[
Di(τ, Ci)

]
and the penalty cost rate Cp,i, as described in Section 2. The s-expected soft

failure period E
[
Di(τ, Ci)

]
can be derived as

E
[
Di(τ, Ci)

]
=
∑
n∈N

∫ nτ

(n−1)τ

(∫ nτ

x

(nτ − y)fTHi |TCi (y|x)dy

)
fTCi (x)dx, ∀ i ∈ I (11)

where fTCi (x) is the probability density function of passage time TCi and fTHi |TCi (y|x) is the conditional

probability density function of passage time THi , given that TCi = x.

Moreover, the s-expected cycle length E
[
Li(τ, Ci)

]
is given as

E
[
Li(τ, Ci)

]
=
∑
n∈N

nτPr{(n− 1)τ ≤ TCi < nτ}, ∀i ∈ I (12)

EXAMPLE 1 (continued): Assuming that the degradation rate θi,1 follows a Weibull distribution with αi

and βi, the distribution of passage time TCi can be derived as

fTCi (x) = φi,2βi

(Ci − φi,1
αi

)βi
x−(φi,2βi+1)exp

[
−
(C − φi,1
αixφi,2

)βi]
, ∀i ∈ I

And the s-expected soft failure period can be derived according to Equation (11)

E
[
Di(τ, Ci)

]
=
∑
n∈N

[∫ nτ

(n−1)τ

[
nτ −

(Hi − φi,1
Ci − φi,1

)(1/φi,2)
x
]+

fTCi (x)dx

]
, ∀i ∈ I (13)

♦

Hence, the optimization for Ci is formulated as

min
Ci

Zi(τ, Ci) =
E
[
Ki(τ, Ci)

]
E
[
Li(τ, Ci)

]
s.t. 0 < Ci < Hi ∀i ∈ I

9



Notice that the maintenance interval τ is treated as a given parameter instead of a decision variable in this

suboptimization problem, so that the optimal control limit C∗i (τ) can be obtained for each component for a

given τ .

Evaluation and optimization of the overall system

Since each τ value has its corresponding C∗i (τ) and Z∗i (τ), the average long-run cost rate of the overall

system Zsyst(τ) can be minimized by enumerating τ . Zsyst(τ) includes not only the sum of the minimum

optimal average cost rates of all components
∑
i∈I Z

∗
i (τ), but also the average setup cost rate S

τ . Hence, the

optimization model is

min
τ

Zsyst(τ) =
S

τ
+
∑
i∈I

Z∗i (τ)

s.t. 0 < τ < Mτ

where Mτ is the upper bound of the maintenance interval τ . In practice, there can be a limit on τ suggested

by manufacturers or industry regulations [15]. The detailed explanation of the algorithm is summarized in

Appendix C.

4. Numerical Study

To demonstrate the use of our model, we provide an example of a wind power farm with 20 wind turbines in

this section. In each wind turbine, there are three main components: main bearing, gearbox and generator

(see Figure 4). Hence, the total number of components in the wind power farm is 60, i ∈ I = {1, ..., 60}. For

each component, micro-sensors can be installed to continuously monitor the rotational loads [31]. The wind

power is generated from the rotational torque converted from aerodynamic force on wind blades. Hence, the

three components experience the mechanic load from the torque (see Figure 4) and their degradations can be

described by the Lundberg-Palmgren model [19, 52]. Taking the main bearing as an example, the maximum

load capacity P can be calculated by the Lundberg-Palmgren formula [29], which is a monotonic degradation:

P = F ∗N 1
a (14)

where the bearing load F depending on wind force is a random variable, which can be monitored continuously

over time t by micro-sensors. Moreover, the bearing life in number of revolutions N can be recorded and a is

a given constant depending on the types of bearing [29]. When the bearing load is above the maximum load

capacity, a soft failure occurs. Suppose this mechanical degradation process is the failure mechanism of the

three components [19, 52], the degradation Xi(t;φi,1, φi,2, θi,1) can be described by the Random Coefficient

Model [27] based on the Lundberg Palmgren formula:

Xi(t;φi,1, φi,2, θi,1) = φi,1 + θi,1 ∗ tφi,2 , ∀i ∈ I

where the life time t represents N by converting the number of revolutions into operation days. The positive

random parameter θi,1 represents the load F in the Lundberg-Palmgren formula. The constant parameter

φi,2 is equal to 1/a and the constant parameter φi,1 is the initial degradation level. Notice that the soft
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failure threshold H is equivalent to the maximum load capacity P and the passage time TH is equivalent to

N in the Lundberg Palmgren formula. The distribution of θi,1 is assumed to be a Weibull distribution with

two parameters: αi and βi, which can be obtained by condition data fitting [27, 28]. Therefore, we can use

the mathematical expressions of Example 1 in Subsection 3.1 (Equations (7), (8), (9) and (13) ) to formulate

the degradation path of the Lundberg-Palmgren formula.

Figure 4: Major components in a wind turbine [2]

The parameter setting in Table 1 is obtained from the existing literature of wind turbine research and based

on general cases [3, 6, 20]. The optimal maintenance policy can be obtained by solving the model in Sub-

section 3.2 with Example 1..

Parameter Explanation Main Bearing: Gearbox: Generator:

i ∈ {1, ..., 20} i ∈ {21, ..., 40} i ∈ {41, ..., 60}
CPM,i PM cost [K-Euro] CPM,i = 7 CPM,i = 15 CPM,i = 10

CCM,i CM cost [K-Euro] CCM,i = 30 CCM,i = 70 CCM,i = 50

Cp,i Soft failure cost rate [K-Euro] Cp,i = 7.2 Cp,i = 7.2 Cp,i = 7.2

S Setup cost, S=50 [K-Euro] - - -

αi Scale parameter of Weibull distribution αi = 2.12 αi = 2.52 αi = 1.02

βi Shape parameter of Weibull distribution βi = 7.9 βi = 7.5 βi = 6.9

Hi Soft failure threshold Hi = 10 Hi = 20 Hi = 15

φi,1 Initial degradation level φi,1 = 1 φi,1 = 2 φi,1 = 3

φi,2 Constant parameter for different rotational

mechanisms

φi,2 = 0.33 φi,2 = 0.41 φi,2 = 0.51

Gi
∗ Estimated passage time of Hi [days] Gi = 96.07 Gi = 141.11 Gi = 143.43

Table 1: The parameter setting (*: Gi = (Hi − αi)/E{θi}, where E{θi} is the mean value of the Weibull distribution)

By the nested enumeration algorithm (see Appendix C), the optimal maintenance policy is found and shown

in Table 2. The optimal policy is to set the maintenance interval at 36.1 days and the control limits on the

physical condition of the three types of components (main bearing, gearbox and generator) are 8.11, 17.12

and 12.72 respectively. The resulting average maintenance cost rate of this wind power farm with 20 wind

turbines (60 components) is 7424 Euros per day.
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Optimal Policy Values Explanation

Zsyst(τ∗) 7424 the minimum average cost rate of the overall system [ Euro / day]

τ∗ 36.1 the optimal maintenance interval of the overall system [day]{
C∗

a(τ∗), C∗
b (τ∗), C∗

c (τ∗)
}

{8.11, 17.12, 12.72} the optimal control limits of each component{
Za(τ∗), Zb(τ∗), Zc(τ∗)

}
{94.3, 126.2, 81.2} the minimum average maintenance cost rate of each component [Euro / day].

Table 2: The optimal maintenance policy of the numerical example in Table 1 (index: a = Main Bearing, i ∈ {1, ..., 20} ; b =

Gearbox, i ∈ {21, ..., 40} ; c = Generator, i ∈ {41, ..., 60})

In Figure 5, the average cost rate of the overall system Zsyst(τ) is a function of the maintenance interval τ ,

in terms of the sum of two elements: the setup cost rate S
τ and the maintenance cost rate of all components∑

i∈I Z
∗
i (τ). When τ increases, S

τ decreases due to the less frequent setups of maintenance actions, on

one hand; but on the other hand,
∑
i∈I Z

∗
i (τ) increases due to the higher probability that CM occurs in a

maintenance interval and higher s-expected soft failure costs.

Figure 5: Average cost rate [K-Euros per day] at the system level over τ [days]

To obtain further insight, the optimal solution of a single component is analyzed. Taking component 1 as

an example, we investigate the changes of the average maintenance cost rate Z1(τ, C1) under given τ values

over the control limit C1 as shown in Figure 6. For τ = 15, 20 and 25, the optimal control limit C∗1 (τ) is

9.28, 8.92, and 8.83 respectively and the minimum average cost rate Z1(τ, C∗1 ) is 75.0, 82.2 and 91.9 Euros

per day. We can observe that the larger τ value is, the higher Z1(τ, C∗1 ) and the lower C∗1 becomes. This is

because the probability that CM occurs in a maintenance interval increases and the s-expected soft failure

cost becomes higher. Consequently, the average cost rate of maintenance for each component increases, even
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though lower control limits are set on the degradation levels. (The plot of Z1 under a larger τ value is

included in Appendix A)

Figure 6: Average cost rate [K-Euros per day] on component 1 over C1 for various τ value

To evaluate the performance of our model, we also calculate the optimal maintenance policy of the model

without the control limits Ci for PM actions, i.e., there are only CM actions for components. In this CM-only

policy, a CM actions is performed when the degradation of a component Xi(t) in the overall system reaches

Hi. The formulas for evaluating the CM-only policy are given in Appendix B. Using the same parameter

setting in Table 1, the optimal solution of the CM-only policy suggests to have a joint maintenance interval

of τ̃ = 5.98 days and the corresponding average cost rate Z̃syst(τ
∗) is 36817 Euros per day (see Table 3).

Notice that the maintenance interval of this policy is much smaller than the policy with control limits,

because a shorter maintenance interval helps to decrease the CM probability and soft failures costs when no

PM actions are taken.

Optimal Policy Values Explanation

Z̃syst(τ∗) 36817 the minimum average cost rate of the overall system [ Euro / day]

τ̃∗ 5.98 the optimal maintenance interval of the overall system [day]{
Z̃a(τ∗), Z̃b(τ∗), Z̃c(τ∗)

}
{432.1, 553.8, 438.3} the minimum average maintenance cost rate of each component [Euro / day].

Table 3: The optimal maintenance policy under corrective-maintenance-only scenario (index: a = Main Bearing, i ∈ {1, ..., 20}
; b = Gearbox, i ∈ {21, ..., 40} ; c = Generator, i ∈ {41, ..., 60})

The comparison of the optimal policies in Table 2 and Table 3 demonstrates that the model with control

limit (Zsyst(τ
∗, C∗i ) = 7424) outperforms the CM-only policy (Z̃syst(τ

∗) = 36817). In this wind power farm

case, about 80% cost reduction can be achieved by implementing the optimal maintenance policy of our

model.
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5. Sensitivity Analysis

A sensitivity analysis is performed based on varying one parameter from Table 1 by 50 % from the original

setting and the rest of parameter setting remains unchanged. Four cost parameters (CPM,i, CCM,i, S and

Cp,i) and the degradation rate αi are chosen from Table 1 to perform the analysis. Based on the fluctuation

of 50% on the parameter setting, the sensitivity of the optimal maintenance policy can be observed in Table 4.

Zsyst(τ∗) τ∗ C∗
a(τ) C∗

b (τ) C∗
c (τ)

Original optimal solution 7424 36.1 8.11 17.12 12.72

New parameter setting:

CPM,i ∗ 50% 86% 94% 99% 97% 98%

CPM,i ∗ 150% 108% 105% 101% 102% 102%

CCM,i ∗ 50% 98% 106% 101% 101% 102%

CCM,i ∗ 150% 101% 97% 98% 99% 99%

S ∗ 50% 90% 56% 109% 106% 108%

S ∗ 150% 112% 113% 96% 97% 97%

Cp,i ∗ 50% 96% 103% 102% 103% 102%

Cp,i ∗ 150% 103% 97% 98% 99% 99%

αi ∗ 50% 22% 411% 97% 98% 98%

αi ∗ 150% 276% 33% 102% 102% 104%

Table 4: Sensitivity analysis: the percentages of the new optimal solutions divided by the original optimal solution. Notice

that only one of the parameters in the original parameter setting changes by ±50% and the rest remains the same. (index a =

main bearing, b = gearbox, c= generator)

The results of the sensitivity analysis match our intuition. The optimal maintenance interval τ∗ increases

when the PM cost CPM,i or setup cost S increases, which implies that it is economically beneficial to have

longer maintenance interval and less frequent maintenance setups when the preventive maintenance and the

set-up are more expensive. The optimal control limits increase when CPM,i increases, which means at the

individual component level the control policy becomes less strict to avoid high CPM,i. However, when τ be-

comes larger due to a higher S, the optimal control limits decrease in order to avoid the high CM cost CCM,i

and soft failure costs at the individual component level. In other words, the optimal maintenance interval

and control limits decrease when Cp,i or CCM,i increases, which suggests that it is economically beneficial to

have more frequent maintenance setups and tighter control over the degradations of components. Compared

with the changes in the cost parameters, the optimal solution is much more sensitive to the change in the

degradation rate αi. If αi increases, namely, the degradation is faster and s-expected maintenance cycle

length gets shorter; the probability of CM and soft failure cost will increase, which also results in a higher

Zsyst(τ
∗) and a shorter τ∗.

6. Conclusions

In this paper, we proposed a new condition-based maintenance model for multi-component systems with con-

tinuous stochastic deteriorations. In order to reduce the high setup cost of maintenance for multi-component
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systems, we used a joint maintenance interval τ to coordinate the maintenance tasks. In addition, we intro-

duced the control limits Ci on the degradation levels of components to trigger the preventive maintenance

actions. The optimal maintenance control limits of components and the optimal joint maintenance interval

were determined by minimizing the average long-run cost rate related to maintenance and failures. A nested

enumeration approach was proposed to solve this large-scale optimization problem. We first decomposed

the optimization of the overall system into the optimization at the individual component level to obtain the

optimal Ci for a given τ . Afterwards, we enumerated τ to find the minimum average maintenance cost rates

of the overall system. The numerical example with a wind power farm demonstrated that our model and

the nested enumeration approach can be applied on complex systems with a large number of non-identical

components. Comparing with a corrective-maintenance-only policy, our optimal maintenance policy has a

large cost-saving potential. Moreover, a sensitivity analysis was conducted to investigate the influence of

different parameter settings on the optimal solutions.

Our model can be utilized to solve the maintenance scheduling problems of various engineering systems

with a large number of non-identical components (e.g., offshore platforms, solar energy farms), because 1) it

is convenient in practice to implement such a static maintenance interval for planning; 2) different physics

of failures and degradations models can be described by the random coefficient model; 3) our model can be

integrated with different maintenance policies (e.g., age-based maintenance, periodic inspection) due to the

static maintenance interval.

For future research, the maintenance interval can be dynamic, rather than static, in order to further re-

duce the average long-run cost rate. Another possible extension of the model is to consider the system

structures or the dependency of components in the systems. Moreover, the effect of hard failures on the

maintenance policies of complex systems can also be investigated, since many components in a system are

subject to multiple failure processes (e.g., random shocks, wear-out, and crack growth). Finally, it is also

possible to include additional constraints in our model, such as the resource capacity or the service level

target.

7. Appendices:

A. The average cost rate of component 1 over two decision vari-

ables C1 and τ

We plot the the average cost rate of component 1 as a function of both C1 and τ in Figure 7.

B. Description of CM-only policy

For each component i ∈ I, the CM-only policy implies that there is no PM action taken, so that no control

limit Ci is set on the degradation before Hi is reached (see Figure 2). Or equivalently, Ci = Hi. The
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Figure 7: Average cost rate on component 1 over τ and C1 (Left: 3D plot; Right: contour plot)

optimization algorithm of our model in Section 3.2 remains unchanged, and Equation (5), (6), (10), (12) and

(11) are derived as follows:

E
[
Ki(τ,Hi)

]
=
∑
n∈N

[
Pr{PM at nτ}CPM,i + Pr{CM at nτ}CCM,i + E

[
Di(τ,Hi)

]
Cp,i

]

and

E
[
Li(τ,Hi)

]
=
∑
n∈N

nτPr{(n− 1)τ ≤ THi < nτ}

where

Pr{PM at nτ} = 0

Pr{CM at nτ} = Pr{(n− 1)τ ≤ THi < nτ}

E
[
Di(τ,Hi)

]
=
∑
n∈N

∫ nτ

(n−1)τ
(nτ − x) fTHi (x)dx

C. Optimization Algorithm

The procedure of the nested enumeration algorithm can be summarized as follows:

Notice different grid sizes can be used for optimizing Ci and τ , which will also affect the computational

duration. In this paper, we use the grid size Hi/500 and Mτ/500 for Ci and τ respectively. The upper

bound Mτ is a very large value (at least larger than maxi∈I{Gi}.). In this paper, we choose Mτ ] = 300 days

[15].
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Algorithm 1 Nested optimization algorithm.

Initialize

for all τ ∈ (0,Mτ ] do

for all i ∈ I do

for all Ci ∈ [φi,1, Hi] do

Zi(τ, Ci) =
E

[
Ki(τ,Ci)

]
E

[
Li(τ,Ci)

]
end for

C∗i (τ) = argmin{Zi(τ, Ci)}, i ∈ I
end for

Zsyst(τ) = S
τ +

∑
i∈I Z

∗
i (τ)

end for

τ∗ = argmin{Zsyst(τ)}
Results: optimal maintenance policy {τ∗, C∗i (τ∗)},∀i ∈ I
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