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Résumé 

Dans cette thèse, nous analysons le problème de l'intégration de la planification de 

production et de la maintenance préventive, ainsi que l'élaboration du système de contrôle de la 

qualité. Premièrement, on considère un système de production composé d'une machine et de 

plusieurs produits dans un contexte incertain, dont les prix et le coût changent d'une période à 

l'autre. La machine se détériore avec le temps et sa probabilité de défaillance, ainsi que le risque 

de passage à un état hors contrôle augmentent. Le taux de défaillance dans un état dégradé est 

plus élevé et donc, des coûts liés à la qualité s’imposent. Lorsque la machine tombe en panne, 

une maintenance corrective ou une réparation minimale seront initiées pour la remettre en marche 

sans influer ses conditions ou le processus de détérioration. L'augmentation du nombre de 

défaillances de la machine se traduit par un temps d'arrêt supérieur et un taux de disponibilité 

inférieur. D'autre part, la réalisation des plans de production est fortement influencée par la 

disponibilité et la fiabilité de la machine. Les interactions entre la planification de la maintenance 

et celle de la production sont incorporées dans notre modèle mathématique. Dans la première 

étape, l'effet de maintenance sur la qualité est pris en compte. La maintenance préventive est 

considérée comme imparfaite. La condition de la machine est définie par l’âge actuel, et la 

machine dispose de plusieurs niveaux de maintenance avec des caractéristiques différentes 

(coûts, délais d'exécution et impacts sur les conditions du système). La détermination des niveaux 

de maintenance préventive optimaux conduit à un problème d’optimisation difficile. Un modèle 

de maximisation du profit est développé, dans lequel la vente des produits conformes et non 

conformes, les coûts de la production, les stocks tenus, la rupture de stock, la configuration de la 

machine, la maintenance préventive et corrective, le remplacement de la machine et le coût de la 

qualité sont considérés dans la fonction de l’objectif.  

De plus, un système composé de plusieurs machines est étudié. Dans cette extension, les 

nombres optimaux d’inspections est également considéré. La fonction de l’objectif consiste à 
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minimiser le coût total qui est la somme des coûts liés à la maintenance, la production et la 

qualité.   

Ensuite, en tenant compte de la complexité des modèles préposés, nous développons des 

méthodes de résolution efficaces qui sont fondées sur la combinaison d'algorithmes génétiques 

avec des méthodes de recherches locales. On présente un algorithme mimétique qui emploi  

l’algorithme Nelder-Mead, avec un logiciel d'optimisation pour déterminer les valeurs exactes de 

plusieurs variables de décisions à chaque évaluation. La méthode de résolution proposée est 

comparée, en termes de temps d’exécution et de qualités des solutions, avec plusieurs méthodes 

Métaheuristiques. 

Mots-clés 

Planification de la production, Maintenance préventive imparfaite, Inspection, Qualité, 

Modèles intégrés, Métaheuristiques  
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Abstract 

In this thesis, we study the integrated planning of production, maintenance, and quality in 

multi-product, multi-period imperfect systems. First, we consider a production system composed 

of one machine and several products in a time-varying context. The machine deteriorates with 

time and so, the probability of machine failure, or the risk of a shift to an out-of-control state, 

increases. The defective rate in the shifted state is higher and so, quality related costs will be 

imposed. When the machine fails, a corrective maintenance or a minimal repair will be initiated 

to bring the machine in operation without influencing on its conditions or on the deterioration 

process. Increasing the expected number of machine failures results in a higher downtime and a 

lower availability rate. On the other hand, realization of the production plans is significantly 

influenced by the machine availability and reliability. The interactions between maintenance 

scheduling and production planning are incorporated in the mathematical model. In the first step, 

the impact of maintenance on the expected quality level is addressed. The maintenance is also 

imperfect and the machine conditions after maintenance can be anywhere between as-good-as-

new and as-bad-as-old situations. Machine conditions are stated by its effective age, and the 

machine has several maintenance levels with different costs, execution times, and impacts on the 

system conditions. High level maintenances on the one hand have greater influences on the 

improvement of the system state and on the other hand, they occupy more the available 

production time. The optimal determination of such preventive maintenance levels to be 

performed at each maintenance intrusion is a challenging problem. A profit maximization model 

is developed, where the sale of conforming and non-conforming products, costs of production, 

inventory holding, backorder, setup, preventive and corrective maintenance, machine 

replacement, and the quality cost are addressed in the objective function.  

Then, a system with multiple machines is taken into account. In this extension, the number of 

quality inspections is involved in the joint model. The objective function minimizes the total cost 

which is the sum of maintenance, production and quality costs.  
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In order to reduce the gap between the theory and the application of joint models, and taking 

into account the complexity of the integrated problems, we have developed an efficient solution 

method that is based on the combination of genetic algorithms with local search and problem 

specific methods. The proposed memetic algorithm employs Nelder-Mead algorithm along with 

an optimization package for exact determination of the values of several decision variables in 

each chromosome evolution. The method extracts not only the positive knowledge in good 

solutions, but also the negative knowledge in poor individuals to determine the algorithm 

transitions. The method is compared in terms of the solution time and quality to several heuristic 

methods.  

Keywords 

Multi-period production planning, Imperfect preventive maintenance, Inspection, Quality, 

Integrated model, Metaheuristics 
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Chapter One: General Introduction and 

Literature Review 

1.1. Introduction 

During the recent decades, and as the result of industrial globalization, development of 

logistics means, expansion of information structures, and increased competency between 

organizations, the demand for improved efficiency and higher productivity in manufacturing 

sectors, is raised. The market is forcing manufacturers, especially mass producers, to trim back 

prices and to improve the quality, in other words, to address higher customer satisfaction levels. 

In such business conditions, managers have no choice but to look increasingly for cost reductions 

and quality improvements in order to sustain and enlarge their market shares. 

Production and maintenance planning, sale scheduling, and quality systems are the key 

functions in all manufacturing organizations. Generally, these systems are conflicting because of 

being connected to the same resources and subjects. Weak integration of interrelated decisions is 

said as the obstacle between design and application. To improve the planning and scheduling 

operations, the cooperation between different departments is extremely important. 



Chapter I. General introduction and literature review 

 

2 

 

In competitive markets, the managers make use of several approaches, including the pricing 

strategies in order to increase their share, to step into new markets, or to discourage competitors 

entering certain areas. However, such strategies have significant impacts on profitability or on the 

internal processes of the manufacturing systems among them the production, maintenance and 

quality system. Sometimes, the decision makers have a couple of choices for production methods, 

warehousing approaches and marketing strategies with different costs and various outcomes, and 

a good practice to study their effects is the integration of those processes with marketing 

schemes. Time varying costs and prices in planning and scheduling models increase the 

flexibility of decision systems to incorporate such strategies in the low-level decisions. The need 

for explicit inclusion of time-varying components (quality level, costs, demands…) in the lot-

sizing problem is a vital issue in addressing such uncertainties. Fig. 1.1 shows the scope of the 

problem. As this figure shows, the objective is to help the planning departments to deal with the 

combined uncertainties and to improve the predictability of the process. 

In the literature review, we will show that in the most of the existing papers, such strong 

interactions are not considered, or only some limited aspects are taken into account. We believe 

that the joint scheduling and considering the mutual influences results in a more efficient decision 

system and helps the practitioners to accrue the profitability and achieve the organizational goals.  
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Fig. 1.1: The scope of the research. 

 

1.2. Problem definition 

This section is dedicated to the problem definition, first, the coordination of production and 

maintenance planning and quality system are presented, and the interactions between them are 

explained. Our objective is to address the mathematical formulation, the cost evaluations, and the 

solution methods for the “Joint Production, Maintenance, and Quality (JPMQ)” planning 

problem. In section 1.2.2, a profit maximization problem in a single-machine system is 

addressed. The model integrates the four functions; lot-sizing, age-based imperfect maintenance 

planning, and sale scheduling taking into account the quality aspects of the system. In section 
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1.2.3, a cost minimization model is considered that incorporates decisions concerning the optimal 

design of a quality inspection system. The evaluations and mathematical formulations developed 

for the two problems are very complicated and so, the problem cannot be solved in a reasonable 

time. Needless to say that achieving the objective of the research in suggesting efficient decision 

models is accompanied with the applicability and utility of the proposed approaches. To realize 

this goal, and in order to reduce the gap between the theory and the application, in section 1.2.4, 

we discuss the problem of developing efficient solution methods for the proposed JPMQ models.  

1.2.1. Process functions and their interactions 

This section introduces the production and maintenance planning as well as the quality 

control system, and addresses several models in each subject. Finally, the interactions between 

these functions are explained.  

1.2.1.1. Production and sales planning problem 

Production planning is defined as the assignment of resources, including machines, 

inventories, financial resources, manpower, etc. to the manufacturing operations such that a given 

objective function is optimized. A good production plan results in production quality and on time 

delivery of the demand with the least cost. In the literature, the production planning hierarchy 

includes capacity planning for strategic level, aggregate planning for long term programs, master 

production scheduling to split the aggregate plans into smaller midterm elements, and production 

planning and control that deals with the short-term and shop-floor issues. These levels are 

demonstrated in Fig. 1.2.  
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Fig. 1.2: Hierarchy of production planning. 

 

The lot-sizing problem that is considered in this thesis corresponds to the master production 

scheduling in the hierarchy, where the objective is to determine the optimal value of lot-sizes, 

inventories and backorder levels to minimize the total cost. In MPS, the aggregate plans are split 

into monthly or weekly objectives. Therefore, in a planning horizon composed of several periods 

with given demands, our objective in production planning is to determine the lot-sizes to be 

produced on each machine in each period. A setup cost is associated with production decisions 

and inventory holding cost is charged.  

The lot-scheduling problem is deeply studied in the literature. Drexel and Kims (1997) list 

about 120 papers about capacitated lot-sizing problem (CLSP) that indicates the importance of 

the subject. The general form of a CLSP as a mixed integer linear programs is presented in Fig. 

1.3.  

 

Maximize Z1 = PXS - (π·XP + h·XI + b·XB + s·XSET) 

Subject to 

Balance and production system constraints 

Fig. 1.3: Generic model of a CLSP. 

 

   

Capacity planning CP  Technology, production lines, … 

Aggregate production planning APP  Manpower, finances, outsourcing, … 

Master production scheduling MPS  Monthly or weekly plans, lot-schedules, … 

Production planning and control PP&C  Shop-floor and daily issues, inventories, … 
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In this figure, Z1 is the total profit, the decision variables XS, XP, XI, XB, and XSET indicate 

the sale levels, lot-sizes, inventory levels, backorders, and setups, and P, π, h, b, s are the unit 

prices or costs for each product in each period. The constraints establish the link between 

production, sale, demands, inventories, and backorder levels, as well as the model constraints 

such as available times on machines and capacity constraints. Despite the approaches used in the 

majority of lot-scheduling problems, the capacity constraint and the production quality may 

change subject to internal and external causes. For example, a machine failure and consecutive 

corrective maintenance operations will diminish the availability of machine. This issue increases 

the complexity of the CLSP. Karimi et al. (2003) reviewed the CLSP models and solution 

approaches. They categorized the models according to the length of the planning horizon, the 

number of levels in the product structure, the number of products, type of the constraint, demand 

type, setup structure, and some of the successful solution methods for the CLSP (including exact 

methods, specialized heuristics, mathematical programming methods, branch and bound, and 

evolutionary algorithms). 

Sales planning and management covers several topics including the demand predictions, 

pricing and marketing strategies, advertisement programs, organization and direction of the sales 

department. Incorporation of sale decisions in production planning on the one hand, increases the 

problem size and its difficulty, and on the other hand, establishes the link between external 

parameters such as price variations and internal operations. Such a combination contributes in 

maximizing the profit and improving the system performance. Haugen et al. (2007) incorporated 

prices in CLSP in order to handle the capacity violations with implementation of a market 

mechanism.  

1.2.1.2. Maintenance scheduling problem  

Dhillon (2003) defined maintenance as “All actions appropriate for retaining an 

item/part/equipment in, or restoring it to, a given condition.” Preventive maintenance (PM) is the 

set of operations performed to keep an item/equipment in required conditions. These actions are 
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aimed to reduce the failure probabilities and to improve the process quality. Corrective 

maintenance (CM) definition matches with the unscheduled maintenance or repair in order to 

bring back a deficient or failed item/equipment to a normal state. On significance of maintenance 

in the costs, he mentioned that about $300 billion are spent on plant maintenance and operations 

by the U.S. industry, and it is estimated that approximately 80% of this is spent to correct the 

chronic failure of machines, systems, and people. According to the British Ministry of 

Technology Working Party, approximate maintenance cost in 1970 in the United Kingdom, was 

annually £3000 million. 11% of the total operating cost of a military jet, about 5 to 10 percent of 

operating force in manufacturing industry, and approximately $12 billion (15%) of the annual 

budget of the U.S. Department of Defense (in 1997) are spent in preventive and corrective 

maintenance.  

The PM is intended to improve the conditions by lubrication, cleaning, performing certain 

adjustments, replacement of parts and overhaul of machines. Generally, maintenance operations 

can be performed before or after a failure. PM actions can be divided into the following 

categories (Pham, 2003):  

• Clock-based maintenance 

• Age-based maintenance 

• Usage-based maintenance 

• Condition-based maintenance 

• Opportunity-based maintenance 

• Design-out maintenance 

Production systems deteriorate with time and an old machine has smaller expected time-to-

failure and lower quality level. Random failures of machines are of significant importance 

because they incur higher costs and can result in stoppage of upstream and downstream 

processes.  

In PM planning and scheduling, the main questions to be addressed are the time and the type 

of maintenance task to be performed on each machine, inventory of spare parts, and the time for 
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overhauls and replacements. The effect of periodic PM on failure rate and system reliability is 

illustrated in Figures 1.4 and 1.5.  

 

Fig. 1.4: Effect of PM on failure rate. 

 

Fig. 1.5: Effect of PM on reliability. 

 

The age based maintenance is a PM strategy in which the maintenance decisions are related 

to the machine age. In a large number of organizations, maintenance time is not a continuous 

parameter and there are several previously-known opportunities to perform PM. For example, 

some firms schedule their PM in weekends, vacations, before starting a mission, when the 

equipment enters in a station, etc. Therefore, the PM time for them is not a decision variable; 

instead the type of maintenance task subject to several conditions needs to be optimally 

determined. Each component may have several PM options ranging from no-PM to complete 

replacement or overhaul so; the PM planning corresponds to the determination of PM levels for 

each machine in PM interferences. Denoting Y as the set of PM alternatives for all machines and 

all maintenance times, the objective is to minimize the maintenance cost such that the required 
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conditions related to the system reliability and availability is satisfied. Fig. 1.6 shows the general 

form of a discrete time age-based maintenance with multiple PM levels. 

 

Minimize Z2 = CPM(Y) + CCM(Y) + CR(Y) 

Subject to 

Maintenance system constraints 

Fig. 1.6: Generic form of a discrete time age-based maintenance with multiple levels. 

 

In this figure, Z2 is the cost of maintenance system, CPM and CCM are nonlinear functions of 

the preventive and corrective maintenance, and replacement costs, and PMmt is the PM level for 

machine m in jth interference. The constraints link the PM levels to the system conditions, failure 

rates, reliabilities, and availabilities.  

Mathematical modeling of the deterioration process and extracting the optimal PM decisions 

according to the equipment state in a multi-machine system in which the machines are initially in 

different conditions are addresses in this research. 

1.2.1.3. Quality control systems 

One of the outcomes of the system deterioration is the variations in production that causes 

higher nonconformity rates. Despite the machine failures in which the processing operations halt, 

the quality deteriorations are not self-announcing and so, quality control tools are intended to 

detect such degradations. Optimal planning of  quality system improves its performance in 

signaling the shifted states (and getting less false signals in normal operational states) while the 

total cost (including the cost of running the quality system) is minimized. Statistical process 

control (SPC) is a well-known approach to eliminate the process variations by means of control 

charts. A typical control chart is illustrated in Fig. 1.7. After calculation of upper and lower 
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control limits, the quality control process using a control chart includes taking samples from the 

process in certain instants of time and plotting the average of the characteristic on the graph. 

Points situated above or below the control limits and certain rules in these charts are considered 

as a signal of process variation. In this case, a search is initiated to determine the cause of the 

change and to fix the problem. Sometimes, the control chart may generate false signals when the 

process is in-control or no-signal when the process is out-of-control. The capability of the quality 

tool to signal the changes and lower the probability of no-signal in degraded state are important 

factors that impacts on economic efficiency of the quality system. The important factors of 

almost all quality control plans are the sampling frequency, sample size, and the width of in-

control range on the chart (UCL-LCL). However, upper and lower control limits should conform 

also with upper and lower specification limits (USL, and LSL) that define the technically 

acceptable variation range of the characteristic. The process capability indicator; CP for 

symmetric processes is defined as the width of specification limits divided by the width of the 

control limits Cp = (USL-LSL) / (UCL-LCL). The objective of quality control system is to 

increase the process capability while minimizing the costs. 

We may summarize the model of the quality control process as shown in Fig. 1.7. In this 

figure, Z denotes the set of decision variables in the quality system. These decisions are the 

sample sizes, the sampling frequencies, and the width of the control limits for each machine. 

CREW (Z) is the reworking cost (or the price difference between conforming and non-conforming 

products), CINS (Z) is the cost of quality inspection, and CQ (Z) is the other costs may involve the 

rejection cost, guarantee, cost, etc. The set of decisions indicated by Z are related not only to the 

maintenance system, but also to the production decisions. 
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Fig. 1.7: A sample control chart for process mean. 

 

Minimize Z3 = CREW (Z) + CINS(Z) + CQ(Z) 

Subject to  

Quality system constraints 

Fig. 1.8: Typical model of quality control process. 

 

1.2.2. Profit maximization by joint scheduling in single machine systems 

In the previous sections we introduced the key functions of manufacturing system and we 

presented the basic models. The decision variables and constraints are also introduced. The main 

motivation of this research is to address the interactions between these functions and to propose 

the framework for an efficient planning-scheduling system that incorporates interacting decision 

in the same model. Availability and reliability of the machine (that is the main constraint in 
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production planning) are related to (1) the maintenance system that improves the machine 

conditions and (2) the quality system that signals the degraded states of machines. The cost of 

quality system and its constraints deal with (1) the production decisions, and (2) with 

maintenance planning, which manages the machine conditions. In the same way, the performance 

of maintenance system depends on production and quality parameters. These links are depicted in 

Fig. 1.9. 

 

 

Fig. 1.9: Interactions between functions. 

 

Therefore, instead of optimizing three functions separately, we are interested in the joint 

production, maintenance, and quality (JPMQ) models as shown in Fig. 1.10. The efficient 

breakdown of aggregate plans in MPS scheduling requires precise information about the 

production system. For example, available production time for each machine, processing times, 
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and expected quality levels are the most important questions to be addressed. Fluctuations in 

demands and processing times, uncertain quality levels, availability and reliability of the 

machines, etc. are some complexity resources in production planning.  

In the first phase, we are interested in imperfect production systems with one machine 

assigned to production of multiple products in which, the maintenance is imperfect. We assume 

several maintenance levels of machines. The model involves the sale planning and the cost units 

and prices change from one period to another. Time varying costs and prices are in line with our 

objective for developing a flexible model that can consider different scenarios for each system. 

The scope of this research is summarized in Fig. 1.11. 

System Production and sales 
planning 

Imperfect maintenance 
scheduling 

Quality control system 

Variables XS, XP, XI, XB, XSET Y Z 

Maximize Z = Z1  - Z2 - Z3 

Subject to Z1 = PXS - (π·XP + h·XI 

+ b·XB + s·XSET) 

Balance and production 
system constraints 

 

 

 

 

Z2 = CPM(Y) + CCM(Y) 

+ CR(Y) 

Maintenance system 
constraints 

 

 

 

 

 

 

 

 

Z3 = CREW (Z) + 
CINS(Z) + CQ(Z) 

Quality system 
constraints 

Fig. 1.10: Typical JPMQ problem. 
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Fig. 1.11: The problem scope. 

 

1.2.3. JPMQ model in multi-machine systems 

In this extension, we develop the previous model for the case of multiple machines, and we 

also consider the sampling frequency from the quality system as a decision variable. Each 

machine has several PM levels with different costs and execution times. But, a new important 

constraint (stating the economic dependencies between maintenance decisions of different 

machines) applies to the choice of maintenance levels. The financial limitations always play the 

most significant role in decision systems. Solution of the model addresses the assignment of 

maintenance resources to the system components. The machines are initially in different 

conditions and we assume a linear relationship between the cost of PM level and the reduction in 

the machine age. Therefore, in each period, the system state is a function of all previous PM 

decisions. Considering multi-purpose machines that can process several product types results in a 

more complicated type of CLSP. Moreover to the inspection frequency, the length of inspection 

intervals plays a significant role in the performance and cost of the system. Banerjee and Rahim 

(1988) proposed to maintain a constant integrated hazard over the inspection intervals. Quality 

inspections are normally performed in a shorter time slots compared to the preventive 
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maintenance operations, so we assume One PM possibility at the beginning of each period and 

several quality inspections during the periods. After detecting a shifted state by an inspection, a 

search for its cause will be initiated, and in case of machine degradation, an adjustment (or 

process calibration) will be performed to bring the machine in its normal state.  

1.2.4. Optimization methods for JPMQ problems 

The literature review (section 1.3) underlines a significant gap between the theory and the 

application of integrated approaches. Some reasons of this issue are: 

• Complexity of the models: The current models are nonlinear problems with 

troublesome interactions that are too complicated to be exploited in most of the 

manufacturing organizations 

• Limited scope of the current researches: Concentration of the research on a limited 

scope, and disregarding the shop floor facts and limitations that hinder the utilization 

of the models, and so a large variety of industrial needs and several aspects of the 

problem are not studied yet 

• Insufficiency of managerial insights: Neglected the importance of interactions 

between the three functions and the lack of general insights and heuristics in joint 

planning is a significant source of the existing gap. 

In the first and second contributions, we will address the JPMQ problem and, as the third 

one; we develop efficient solution methods, where the aim is to help the implementation of the 

integrated models and to bridge the gap between theory and application. We first study the 

approaches used in existing models and the heuristics developed for solving production and 

maintenance problems. Also, the application of evolutionary algorithms (EAs) and general 

purpose heuristics are considered, then, we make use of advanced strategies to enhance the 

algorithm performance. In the literature review, the goodness of hybrid genetic algorithms in 

solving large problems is shown. We integrate genetic algorithm with tabu search, the Nelder-
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Mead (NM) simplex,  while employing a state-of-the-art optimization package to solve a part of 

the main problem. In most of the EA implementations, the information in good and poor 

solutions is neglected. Extracting the properties of solutions in the population based algorithms 

helps in determination of improvement direction. In the proposed NM, we implement a method to 

extract positive knowledge (properties of good solutions) and negative knowledge (from poor 

solutions) in a memetic algorithm (MA). Despite the tabu search method that the algorithm just 

moves to one of the evaluated neighbor points, NM has the advantage of moving to a solution 

potentially better than the best existing alternative. This method uses the neighbor solutions to 

guess the improvement direction and to propose a contracted, an expanded, and an extended point 

in the optimization direction. Therefore, the NM is more aggressive than the tabu search and 

finds the local optima in a smaller number of evaluations. To prevent the algorithm being trapped 

in a local optima, the population management strategies are implemented in the MA. The goal of 

the population management is to maintain a desired level of genetic diversity in the population. 

The selection of survivors at the end of iteration is based on both the objective function and the 

contribution of the solutions in the heterogeneity. In the meantime, we replace the mutation 

operator in genetic algorithms with intensification and diversification operators. Intensification 

uses the best solutions in the population to introduce new individuals that are likely better than 

the best current solutions. This process is in line with the extraction  of positive knowledge 

implemented in the NM. Diversification is intended to increase the diversity in case it is dropped 

below the desired level. It forces the algorithm to investigate the solution space with fewer 

numbers of delegates in the population; therefore it works better than a random mutation 

operator. Moreover, we use an adaptive approach in which some algorithm parameters are related 

to the execution time from the one hand and to the diversity level of the population from the other 

hand to efficiently balance between the intensification and diversification processes. 

1.3. Literature review 

Our first objective in the literature review is to address the previous researches in the 

contexts of production planning, maintenance scheduling, and quality control. We also 
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investigate existing articles in integration of these three functions. The last part of the review is 

dedicated to the optimization methods in joint problems. The second objective is to establish the 

theoretical fundamentals of the thesis along with the deployed methodologies. 

1.3.1. Lot-scheduling problem 

Production planning is the assignment of resources over time to operations in order to best 

satisfy the constraints and customer needs. The constraints may concern to tradeoffs between 

operations, setup and inventory holding costs, quality and reworking costs, etc. (Graves, 1981). 

Subject to complexities originated from variations and uncertainties, maintenance planning can 

be a very challenging issue. To address the uncertainties and complexities, different production 

planning models as sub-classes of manufacturing systems, including the lot-sizing problem have 

been developed (Kenné et al., 2007). In the capacitated lot-sizing problem (CLSP), the optimal 

quantity of products to be processed on each machine and during each period should be 

determined subject to several constraints. The periods represent the time-slots in the planning 

horizon of say, one week to one month in real cases. The CLSP (sometimes called as a large 

bucket problem) is usually considered as tactical level scheduling that bridge the strategic long-

term goals to the operational short-term plans (Fitouhi and Nourelfath, 2012). Uncertainties in 

CLSP can originate from different sources, but, we are interested in those that are related to the 

system and internal conditions, including processing times, machine availabilities, and quality of 

processed items. Giri (2005) dealt with the system unreliability issue considering the processing 

time as a function of the system conditions in a reactive fashion. Then, assuming the processing 

times as decision variables, they developed an EPQ model with and without safety stocks to 

evaluate lot-sizes as well as the production rates in a joint approach. 

Lee and Chen (2000) studied the problem of scheduling a set of jobs on a set of parallel 

machines, where each machine must be maintained once during the planning horizon. The 

objective was to schedule jobs and maintenance activities so that the total weighted completion 
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time is minimized. They proposed a branch and bound algorithm based on the column generation 

approach for solving both cases of the problem. 

1.3.2. Maintenance planning problem 

Organizations are engaged increasingly in improvement of the systems availability and 

machines reliability, since they play a crucial role in performance, safety, organizational success, 

and economic efficiency. Therefore, maintenance and PM planning are considered as key 

functions in manufacturing systems. In the traditional approach, PM planning corresponds to the 

selection of an optimal maintenance strategy such as scheduled inspection, preventive 

maintenance, corrective or opportunistic maintenance, group or block replacement, etc. (Ruiz et 

al., 2007). In real systems, the process conditions deteriorate with time, and preventive 

maintenance is aimed to prevent or slow down such deterioration. 

An ideal preventive maintenance is expected to completely restore the machine conditions to 

an as-good-as-new state, but in real cases, only a part of the performance can be re-vitalized. 

After such a PM that is called imperfect maintenance, the system age lies somewhere between as-

good-as-new and as-bad-as-old conditions. Pham and Wang (1996), stated that in most cases the 

maintenance is imperfect and they reviewed the related results. Nakagawa (1980) developed three 

imperfect maintenance models for a single unit system (Fig. 1.12).  

 

With a certain probability, the unit after PM is perfect or unchanged 

 

PM reduces the age (and the failure rate) of the machine (independent from the PM cost) 

 
The age and the failure rate are reduced in proportion to the PM cost (PM level) 

Fig. 1.12: The imperfect maintenance models. 
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According to the third model, the expected cost of system per time unit is given by: 

=  (1.1) 

In this equation, c0 and c1 are the cost of preventive maintenance and replacement, c2 is the 

cost of corrective maintenance, T is the length of inspection interval, and r(t) is the hazard 

function describing the machine failures. Here, we consider this model with multiple PM options 

and we assume a linear relation between the PM cost and the reduction in the machine age. So, a 

maintenance schedule would determine the type of PM for each machine in each maintenance 

intrusion. El-Ferik (2008) studied the optimality condition in imperfect maintenance in a joint lot-

sizing and maintenance planning problem, where the PM task is performed either in failure or 

when the age reaches a pre-determined value.  

Two well-known PM strategies are age-based and condition-based maintenance models. In 

the first approach, PM operations are performed according to the time (or usage), while in the 

condition based maintenance, PM tasks are scheduled based on the condition monitoring data 

such as oil analysis, machine vibration data, acoustic measures, electrical properties (voltage, 

resistance, signal processing,…).  

1.3.3. Design of quality system 

Statistical process control (SPC) and quality sampling are conventional approaches to control 

and improve the production quality and the firm’s productivity. The primary tools of SPC; the 

control charts have been exploited for more than 50 years to reduce the process variability, and 

during the recent years, we are witness of an increased tendency in employing them. Engineering 

design of a control chart incorporates the determination of certain decision variables; most 

important among them are the sample size, width of control limits, and the length of sampling 

intervals. These parameters influence on the long-term quality of the firm’s products, cost 

efficiency of the quality department, and the implementation simplicity of the approach to be 

used in shop-floor level (Saniga, 1989). Among SPC tools, the ̅-chart is one of the frequently 
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used tools to control the variations of process mean. Duncan (1956) was the first who studied the 

economic design of an ̅-chart and he developed the evaluation of sample size, sampling 

intervals, and the control chart parameters. In (Bouslah et al., 2013), the authors suggest an 

acceptance sampling plan to control the quality in an unreliable imperfect system.  

Lin (1991) extended the model of Lee and Rosenblatt (1987) to the case where the process 

follows a general distribution with an increasing failure rate. They established the total cost 

function and found that a periodical inspection policy is the best under some conditions. 

1.3.4. Integrated models 

This section addresses joint scheduling articles, including production-and-maintenance, 

quality-and-maintenance, and the JPMQ models.  

1.3.4.1. Integrated maintenance-quality planning 

The interactions between maintenance and quality have been an interesting research subject 

in the literature. On the one hand, maintenance influences on production quality and on the other 

hand, the feedbacks received from the quality system are a significant basement in PM 

scheduling. Quality inspections are crucial in detecting internal causes of low quality issues, 

including system state and the need for process calibration, therefore the design of quality system 

(decisions such as sampling interval, acceptance-rejection conditions…) impact on the 

performance of the PM system. Most of the existing papers do not deal with these mutual effects 

in a collaborative approach. Lee and Ni (2013) examined the link between maintenance and 

quality in a multi-stage multi-product deteriorating system. The decisions are to clean the 

machine, to maintain it, or to perform a production operation from a set of tasks in a series of 

workstations. They use PM planning to improve the quality, but no decision variable from the 

quality system is taken into account. In the papers of Duncan (1956) and Banerjee and Rahim 

(1988), the optimal design of a quality system is addressed, however, they use the process quality 
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and the function of the “time-to-shift to a deteriorated state” as a given and unchangeable 

parameter dictated by the system. In (Panagiotidou and Tagaras, 2012) the authors formulated a 

cost minimization model for the joint optimization of process control and perfect preventive 

maintenance. The PM is performed either at machine failures or at some critical ages, regardless 

of the quality state of the equipment. The quality system decision variables are sample size, 

acceptance control limit, and sampling frequency and the maintenance system decision is the age 

of performing the scheduled perfect PMs. In fact, perfect PMs that bring the machine in an 

AGAN state (in some papers called as machine replacement) can be very costly, and in real 

implementation of maintenance with sophisticated and expensive machines, the perfect PM 

cannot be justified. So, we believe that an imperfect PM with several maintenance levels along 

with deterioration of machine conditions are closer to real-life problems. Xiang (2013) 

considered the same quality decision variables in the context of imperfect maintenance. The 

process deteriorations are modeled as a discrete time Markov chain and he assumed that with 

known probabilities, the PM brings the machine into a superior state. Cassady et al. (2000) 

suggested a strategy for monitoring single-machine manufacturing process through the 

simultaneous implementation of an x-chart and an age-based PM to uncover the link between 

“failure monitoring” property of control chart and “failure prevention” property of PM. The 

variation of the hazard rate is important in evaluating the link between PM and quality. Ben-Daya 

and Rahim (2000) addressed the effect of maintenance on economic design of a x-chart and 

consider a Weibull shock model with increasing hazard rate. The lengths of inspection intervals 

are determined such that a constant integrated hazard is maintained over all intervals. They 

showed how the quality cost increases with the selected PM level and the reduction in the age of 

system is proportional to the PM level. Fitouhi and Nourelfath (2012) integrated noncyclical 

preventive replacements and corrective maintenance with lot-sizing problem. They developed a 

model for planning, production, and noncyclical preventive maintenance for a single machine, 

subjected to random failures and minimal repairs. Noncyclical PM relaxes the limitation of PM 

time and is the general form of joint scheduling. The approach is appropriate for the cases with 

large variations in demands. 
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1.3.4.2. Integrated maintenance-production planning 

To cope with the current tough competition, many manufacturing companies have invested 

in highly automated production systems with sophisticated equipment. To be economically 

sustainable, such costly equipment should be exploited to the last instant of their maximum 

possible productive time. When an unplanned downtime, caused by a production line failure, 

occurs, it often trims down the system’s productivity and renders the current production plan 

obsolete. Revising the production plan in an emergency situation is usually very expensive and 

often causes increased variability in product quality and in service level. It is, therefore, essential 

that production planning and preventive maintenance activities be carried out in an integrated 

way to hedge against these often avoidable failures and re-planning occurrences (Aghezzaf, 

2008). The effect of machine failure and corrective maintenance on lot-sizing problem is studied 

by Groenevelt et al. (1992). They considered both non-resumption (NR) and abort-resume (AR) 

strategies in a failure prone system, where the repair time is negligible and failure occurs 

according to a Markovian process. Fitouhi and Nourelfath (2014) showed that the integration of 

non-cyclical maintenance and production planning and allowing PM at the beginning or during 

production periods reduces the total cost. Lin and Gong (2006) developed an economic 

production quantity model for a deteriorating process, where the machine is subject to random 

breakdowns. They determined an optimal production uptime that minimizes the expected total 

costs per unit time, consisting of setup, corrective maintenance, inventory carrying, deterioration, 

and lost sales costs. Lee and Ni (2013) developed an advanced job dispatching/maintenance 

policy based on both online condition-monitoring information and the dynamic relationship 

between machine degradation and product quality. In a joint production-maintenance approach, 

Lee and Rosenblatt (1986) assumed that the machine restoration cost at the end of a mission 

depends on the delay of detecting faulty state of the machine. More the machine operates in a 

degraded condition, more is the damage and maintenance cost. Solving the model determines the 

number of PM interferences in the planning horizon. In (Porteus, 1986), the author addressed the 

general form of EPQ models in deteriorating systems taking into account the effect of investment 

on the production system by linking the setup time to investment plans. Lee and Ni (2013) 
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presented a decision-making architecture to determine maintenance and product dispatching 

policies based on condition monitoring information and the relationship between machine 

degradation and the associated product quality. They assumed a Markov decision process for 

long-term decision making and the integer programming for short-term decision making with a 

multi-product, multi-station system. They demonstrate the advantage of the proposed approach 

by comparing the proposed policy with the conventional decision-making approaches. Tagaras 

(1988) formulated a cost model for the simultaneous optimization of process control and 

maintenance activities. The model allows the evaluation of hybrid process control and 

maintenance planning. Its comparison with two disjoint policies, i.e. non-integrated planning of 

preventive maintenance and process control, they underlined the benefits of integration. Xiang 

(2013) presented an integrated model for the joint optimization of statistical process control 

(sampling intervals, sample size and control limit) and preventive maintenance. Aghezzaf et al. 

(2007) assumed that random failures are inherent in a production system. They showed that 

expected total production and maintenance costs are minimized   in integrated planning of 

maintenance and lot-sizing. Nourelfath et al. (2012b) dealt with the problem of joint preventive 

maintenance and tactical production planning, for a production system composed of a set of 

parallel components, in the presence of economic dependence and common cause failures. Lee 

and Rosenblatt (1987) considered the simultaneous determination of production cycle and 

inspection schedules in a production system. They proposed a relationship approach to determine 

whether maintenance by inspection is necessary or not. They also showed that when maintenance 

by inspection is adopted, the optimal inspection schedules are equally spaced throughout the 

production cycle. Lee and Rosenblatt (1989) also extended their work to consider the case where 

no immediate knowledge of the system’s state is available unless inspection of produced items is 

performed. Maintenance activities are subsequently initiated based on the inspection results. The 

stochastic deterioration process considered in their model follows an exponential failure 

distribution. Lee and Rosenblatt succeeded in determining the optimal lot size and inspection 

schedule. 
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1.3.4.3. Joint production-maintenance-quality; JPMQ models 

Regarding the imperfectness of deterioration systems, understanding the relationship 

between production, quality, process inspection, and maintenance can assist managers to perform 

production control and quality assurance in a more effective manner. Chen (2013) developed an 

integrated profit model for imperfect production system incorporating the imperfect rework 

process, scrapped items, and PM errors. He stated that integrating the reworking process into the 

EPQ model was beneficial to the total profit, furthermore, PM was shown to raise the expected 

total profit, and the maximum level of PM would yield the highest expected profit by the 

production system. Ben-Daya (1999) presented an integrated model for the joint optimization of 

production quantity, design of quality control parameters, and maintenance level. The model was 

developed for a process having general shift distribution with increasing hazard rate. The PM 

schedule is coordinated with the quality control inspections. In his model, PM activities reduce 

the rate of process shifts to out of control states in proportion to the selected PM level. This 

change in the quality shifts affects directly on quality control costs and the length of the 

production cycle. Kazzaz and Sloan (2013) examined single-stage production system that 

deteriorates with production actions, and improves with maintenance. The conditions of the 

process can be in any of several discrete states, and transitions from one state to another one 

follow a semi-Markov process. The firm can produce multiple products, which differ by profit 

earned, expected processing time, and impact on equipment deterioration. It can also perform 

different maintenance actions, which differ by their cost, expected down time, and impact on the 

process condition. The firm needs to determine the optimal production and maintenance choices 

in each state in a way that maximizes the long-run expected average reward per unit time. In 

Their paper they  show how the critical ratios can be combined in order to determine the optimal 

policy, simultaneously accounting to the trade-offs involving production profits, maintenance 

costs, and the impact on the process condition. Also, they demonstrate the impact of market 

demand conditions on the optimal policy. The set of sufficient conditions that lead to monotone 

optimal policies are also discussed. Various maintenance policies to prevent system failure and to 

improve system reliability have been studied intensively over the past several decades. Ben-
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Daya, and Duffuaa (1995) discussed the relationship and interaction between maintenance, 

production and quality, and two different approaches were proposed. Lee and Rosenblatt (1989) 

suggested a plan for integrating maintenance and inspection with restoration costs depending on 

the detection delay in a production system that allows product shortages. In the joint approach 

developed in (Nourelfath, Nahas and Ben-Daya, 2016), the authors presented a model for multi-

state system and s-independent components for which, the states are considered to degrade with 

use, and these degradations may lead to production of nonconforming items. 

1.3.5. Solution Methods 

Another course of literature review goes to the development and utilization of optimization 

methods used in joint production, maintenance, and quality (JPMQ) problems, and the strategies 

in improving their efficiency. 

1.3.5.1. Solution approaches used in joint problems 

Lee and Chen (2000) proposed a branch and bound algorithm based on the column 

generation approach for solving two different cases of the problem. Bouslah et al. (2013) 

considered a modified hedging point policy along with simulation based approaches to determine 

the approximate control parameters in a lot-sizing problem formulated as a stochastic dynamic 

programming where the decision variables are the lot-sizes and the production rates. Scholl et al. 

(2012) investigates a simulation approach to solve long and short term maintenance scheduling 

problem in a manufacturing line. Subramanian et al. (2012) modeled an Artificial Bee Colony 

(ABC) algorithm to solve the problem of generating maintenance scheduling and they compared 

it to a Discrete Particle Swarm Optimization (DPSO). They stated that the ABC outperforms the 

latter approach in terms of the performance and the solution quality. The NM algorithm (Nelder 

and Mead, 1965) is a direct search method for optimization of functions where their derivatives 

are unknown or difficult to evaluate. The method is also hybridized with various approaches and 
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has yielded very good results in solving benchmark functions with large search spaces. Khojaste 

Sarakhsi et al. (2016) proposed a hybrid Nelder-Mead (NM) and scatter search algorithm for a 

joint economic lot-sizing problem, where the demands are price-sensitive. They reported a great 

performance of the solution approach for sample problems with different sizes. Fitouhi and 

Nourelfath (2014) developed a simulated annealing (SA) algorithm for an integrated lot-sizing 

and preventive maintenance scheduling problem. Introduced by Kirkpatrick et al. (1983), the SA 

method is based on the principles of thermodynamics annealing. 

1.3.5.2. Evolutionary algorithms and hybrid methods 

Evolutionary algorithms have been successfully used in optimization of large classes of 

problems as well as the JPMQ problems. Compare et al. (2015) offered a multi-objective genetic 

algorithm to maintenance optimization problem where, the model parameters are uncertain. 

Sortrakul et al. (2003) declared efficient performance of genetic algorithm applied to a joint 

production maintenance problem.  

A practice in improving the performance of evolutionary algorithms is the combination of 

population based methods with local search and problem specific heuristics. Sastry et al. (2005) 

stated that “Hybridization can be an extremely effective way of improving the performance and 

effectiveness of Genetic Algorithms. The most common form of hybridization is to couple GAs 

with local search techniques and to incorporate domain-specific knowledge into the search 

process”. Sarker et al. (2013) employed a hybrid approach (combination of an EA with a problem 

specific local search) in solving a joint job-scheduling and maintenance planning problem. 

Memetic algorithms (Moscato and Norman, 1989) are a good example of successful 

hybridization of GA and local search methods. Massaro and Benini (2015) solved multi-objective 

optimization problems using a surrogate-assisted memetic algorithm that preserves the genetic 

diversity within the population. They use artificial neural network in refinement of the solutions. 

The examples of exploiting hybrid methods in optimization problems are noticeable, but, because 
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of the novelty of the JPMQ models, as of best of our knowledge, such approaches are not 

proposed for the JPMQ problems.  

1.3.5.3. Diversity management in EAs 

A possible problem in GA is the fast convergence and being trapped in a local optima. To 

deal with this problem, researchers propose to maintain the population diversity during the 

solution process. Some of the population diversity-maintaining methods, to name, are the sharing 

method (Goldberg and Richardson, 1987), the DCGA (diversity control oriented genetic 

algorithm) (Shimodaira, 1997), the ranked space method (Winston, 1992), and the restricted 

mating method (Eshelman ad Schaffer, 1991). 

In (Vidal et al., 2013) the authors offered a hybrid genetic search with advanced diversity 

control (HGSADC) for a large class of vehicle routing problems (VRP). They compared 

HGSADC with other heuristics, including variable neighborhood search, tabu search, and state-

of-the art VRP heuristics, and reported an impressive efficiency of the algorithm. According to 

them, incorporation of “the contribution of solutions in the population diversity” in the objective 

function improves the algorithm performance. One of our objectives is to develop hybrid 

methods while implementing population management schemes to efficiently solve our JPMQ 

problems.  

However, to implement a population management strategy in genetic algorithm, one should 

address several issues, including the measurement of population diversity, its good value during 

the solution process, the approaches to increase or decrease it when needed, contribution of 

solutions in the heterogeneity, selection for mating or survivor selection, etc. for example, the 

Hamming distance method is offered in binary encoding chromosome structures and for natural 

or real encoding approaches, other distance measurements such as Minkowski method (Yoon and 

Kim, 2013) can be considered. 

Jassadapakorn and Chongstitvatana (2011) afforded a self-adaptation mechanism to control 

the population diversity in GA without needing problem specific parameter settings information. 
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To implement the idea, they introduced the difference-factor in the selection process that 

measures the dissimilarity of chromosomes, and used contribution-measurement defined as the 

rate of at-least-one-better-child in crossover operator to select the type of the crossover operator 

(or crossover configuration). Population diversity is measured by =	∑ ∑ ,
∙ , 

where, n is the population size, Ii is the ith individual, l is the chromosome size, and h is the 

Hamming distance function between two individuals. They communicated better performance of 

the algorithm in the test problems compared to the traditional genetic algorithm with the best 

parameter setting.  

1.4. Outline of the thesis 

The main question of the project is “How to improve the efficiency of production and 

maintenance planning taking into account the quality system?” 

To answer this general question, the following issues are considered: 

1. Modeling and evaluation of the interactions between the key functions 

2. Incorporation of process deterioration in a multi-level imperfect maintenance planning 

system 

3. Effect of quality control parameters on the performance of maintenance and production 

4. Efficient methods for solving JPMQ problems and exploiting the benefits of integration 

In this thesis we develop joint models integrating the key functions; production and sales 

planning, maintenance scheduling, and quality control systems. Therefore, the research 

objectives, contributions, and the implemented methodologies can be summarized as follows: 

Contribution I: For the first contribution, in chapter Two, we develop a profit maximization 

model for JPMQ planning problem in a system composed of one machine, multiple periods, and 

multiple products in imperfect systems, where the nonconformity rate in degraded state of the 

machine is subject to the PM plans. For the production planning, we take into account a 

capacitated lot-sizing problem. The production capacity defined as the available production time 
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in each period is impacted mainly by the maintenance system. The time of preventive and 

corrective maintenance is deduced from the period. The demands are varying from one to another 

period that distinguishes the model from the well-known economic production quantity models. 

Preventive maintenance is also imperfect. Therefore, just a part of the machine conditions after 

preventive maintenance is restored. The improvement is linked to the cost of the selected 

maintenance task. Assuming various possibilities in PM scheduling, a maintenance plan 

addresses the operation types for all interferences. In the first contribution, the PM levels for each 

possible interference in a discrete-time, multi-level maintenance context is addressed in which, 

the choice of no-PM may cancel maintenance in some intrusions. The model also covers sales 

planning taking into account time-varying costs and prices.  

Contribution II: In chapter Three, we develop the integrated approach for a system with 

multiple machines and we incorporate decision variables concerning the quality system. In multi-

machine processes, the maintenance planning is subject to financial limitations or the availability 

of other resources. Therefore, economic dependencies between different components of the 

system are incorporated in the problem. The JPMQ model addresses the optimal assignment of 

these resources to the system components while determining the economic number of quality 

inspections to be performed in on each machine in each period. Moreover, using the concept of 

non-uniform inspections, the time interval between consequent inspections will be determined 

such that the integrated hazard over all intervals in a period is a constant. Non-uniform inspection 

policy is in line with the the economic design of quality systems in systems with an increasing 

hazard rate. Other parts of this contribution are similar to the previous one incorporating the 

multi-product capacitated lot-sizing problem with time-varying demands. 

Contribution III: As the third contribution, chapter Four addresses efficient solution 

methods for the JPMQ problems to reduce the existing gap between theory and application of the 

joint models. We employ hybridization and population management strategies in population 

based heuristics where, the algorithm exploits useful information from the population in order to 

determine the improvement direction, and to force the algorithm to examine un-visited regions of 

the search space. In this contribution we propose a memetic algorithm with state-of-the-art 

population management strategies that can solve different sizes of joint problems presented for 
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the previous contributions. As the local search algorithm, we exploit a tabu-search and a Nelder-

Mead method with implemented tools guiding the algorithm moves. 

1.5. Conclusions 

In this chapter, the need for optimization of decision systems concerning the planning of 

production, maintenance, and quality is discussed and the role of these functions in the 

organizational success is demonstrated. Then, the interactions between the related systems are 

highlighted and some of their mutual interactions are illustrated. We discussed that production 

planning, preventive maintenance scheduling, and decision parameters of the quality systems are 

generally dealt separately in the literature as well as in industry. In problem definition, the 

interactions between these features are highlighted and the need for joint scheduling of the 

decisions is justified. The literature review demonstrated the current state of the integrated 

planning and also, we addressed some properties of the simultaneous scheduling problem. 

Different aspects of the problem are inspected and the benefits of integration are cited. Our 

review showed that the joint scheduling has receiving more interest of researchers and several 

aspects of the problem need to be studied. Various important features corresponding to different 

industries are not incorporated in joint problems. In this thesis we address the incorporation of lot 

sizing and imperfect preventive maintenance planning for the imperfect manufacturing systems. 
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Chapter Two: A Profit Maximization Model 

 

This chapter is dedicated to the article entitled “Joint maintenance scheduling and production 

planning for imperfect processes: A profit-maximization model” submitted to the European 

Journal of Operational Research in November 2015. 

 

The titles, figures, and mathematical formulations are modified to keep the consistency 

through the thesis. 

 

Solution methods based on quadratic and mixed integer formulations of this model are presented 

in appendix A.  
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Résumé 

Cet article intègre l'ordonnancement des lots et la planification de la maintenance préventive 

imparfaite basée sur l'âge, en tenant compte la détérioration de la qualité. L'état de la machine se 

dégrade avec le temps et il peut passer de façon aléatoire, d'un état normal à un état détérioré. Par 

ailleurs, la machine est assujettie à des pannes aléatoires qui sont suivis de réparations minimales. 

Au cours de chaque période, le processus est inspecté à plusieurs reprises et des activités de 

maintenance préventive sont effectuées. L'amélioration de l’état de la machine est proportionnelle 

au niveau de la maintenance préventive. Les variations des coûts et des prix, ainsi que les 

différentes alternatives de maintenance, offrent un modèle flexible qui permet de prendre en 

compte plusieurs scénarios d'entretien et différentes stratégies de production. La formulation 

mathématique repose sur des concepts tirés de la fiabilité, de l'ordonnancement de la production 

par lots et du contrôle de la qualité, pour l'évaluation des coûts et des facteurs en interaction afin 

de maximiser le profit. Trois méthodes de résolution sont proposées et des comparaisons sont 

effectuées, en utilisant des plusieurs instances de problèmes aléatoires. Une analyse de sensibilité 

est effectuée par rapport aux paramètres clés du modèle dont l’effet sur la rentabilité est expliqué. 

Les résultats obtenus montrent que des améliorations substantielles sont possibles grâce à 

l’utilisation de l'approche intégrée proposée dans ce chapitre. 

Mots clés 

Planification de la production, Maintenance imparfaite, Qualité, Intégration, Maximisation 

de la rentabilité 
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Abstract 

 This paper integrates lot-scheduling, sales planning and age-based imperfect maintenance 

with respect to quality deterioration in imperfect systems. The machine condition degrades with 

time and it may randomly switch from an in-control state to a deteriorated condition with 

increased nonconformity rate. Also, the machine is subject to random failures that initiate a 

minimal repair. During each period, the process is inspected in several instants of time and the 

imperfect preventive maintenance activities are performed. Improvement of the machine 

conditions is proportional to the preventive maintenance level. Time-varying costs and prices in 

the periods as well as the several maintenance possibilities for each interference, affords a 

flexible model and allows the consideration of multiple production maintenance scenarios in the 

system. The mathematical formulation employs the concepts of reliability, capacitated lot-

scheduling and quality inspections to evaluate the average of several cost components, where the 

objective function is to maximize the profit. Three solution methods are proposed and 

comparisons are performed using several random problems and a detailed numerical example. 

Sensitivity analysis is conducted with respect to the key parameters of the model and their effect 

on the profitability is discussed. The results underline potential improvements with the joint 

approach. 

Keywords 

Capacitated lot scheduling, Imperfect maintenance, Quality, Integration, Profit maximization 

2.1. Introduction 

Production and sales planning, preventive maintenance (PM) scheduling and quality control 

are the key functions of every manufacturing system. Because of using common resources 
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(financial, human, time, etc.) and due to mutual influences, these functions have important 

interactions and they need to be incorporated in the same model. The value of joint scheduling is 

reported in several papers. For example, Ben-Daya and Duffuaa (1995) stated that integrated 

planning is a beneficiary of the whole system or Cassady et al. (2000) and Kenné et al. (2007) 

reported improved productivity. The significance of integration in the cost effective planning and 

scheduling of industrial operations is proved, but the majority of the existing models deal 

separately with them. Lot scheduling, age based preventive maintenance and economic design of 

quality control systems individually are studied in the literature, for example, one can refer to 

Haugen et al. (2007), Drexl and Kimms (1997), Salvietti and Smith (2008) for lot scheduling; 

Chen (2011), Shafiee and Finkelstein (2015) and Liu et al. (2014) for maintenance planning; and 

Duncan (1956), Banerjee and Rahim (1988), Chen and Yang (2002), and Lee et al. (2012) in 

design of the quality systems. 

Such integration requires an increased level of coordination between the related departments 

(Lee et al., 1999; Linderman et al., 2005), and joint models are generally of higher complexity 

levels. Some of the papers on integration of production planning and maintenance scheduling are 

Rahim (1994), and Chareonsuk et al. (1997). Hadidi et al. (2012), Suliman and Jawad (2012), and 

Sung and Ock (1992) studied integration in the context of single machine systems, justifying the 

benefits of integration. Nourelfath and Châtelet (2012) considered economic dependencies and 

common-cause failures of parallel components. Kenné et al. (2007) proposed an integrated model 

for an unreliable system with sale returns.  

In general, production systems may deteriorate with time and so, preventive maintenance is 

aimed to improve the system conditions and the quality. Process deterioration in a joint 

scheduling system is examined by Kazaz and Sloan (2013). Xiang (2013) showed that PM 

improves the quality. Rivera et al. (2013) investigated production planning problems with 

overhaul scheduling in deteriorating systems. By deterioration of the conditions, probability of a 

shift to an out-of-control state with higher nonconformity rate increases. Ho and Quinino (2012) 

studied the shifts between in-control and out-of-control states using an integrated model. Several 

PM models including perfect and imperfect maintenance are considered in joint scheduling 

problems. Perfect maintenance assumes that the system is “as good as new” following a PM. 
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However, this assumption may not be true in practice (Nakagawa, 1980; Pham and Wang, 1996). 

A more realistic assumption is that, upon maintenance, the system lies in a state somewhere 

between ‘as good as new’ and its pre-maintenance condition, i.e., maintenance is imperfect. In 

the existing imperfect maintenance literature, various modeling methods have been used. 

Adopting the concept of age-based maintenance, we assume that the machine age after PM 

reduces proportional to cost of maintenance (Nakagawa, 1980; Pham and Wang, 1996). Imperfect 

maintenance is investigated in several joint models (Tagaras, 1988; Ben-Daya, 1999, and Ben-

Daya and Rahim, 2000). One of the essential questions to be addressed in quality control is the 

time interval between the consecutive inspections. Rahim (1994) showed that non-uniform 

inspections are more efficient. Chareonsuk et al. (1997) determined the PM intervals taking into 

account the cost and reliability of the system. Selecting between constant and variable 

maintenance intervals for complex repairable systems is studied by Percy and Kobbacy (2000). 

Lee and Rosenblatt (1987) stated that equidistant intervals are cost effective. It is generally 

admitted that while periodic PM can be more convenient to schedule, sequential or non-periodic 

PM is more realistic when the system requires more frequent maintenance as it ages. Duncan 

(1956) first established a criterion that measures approximately the average net income of a 

process under surveillance of a control chart when the process is subject to random shifts in the 

process mean. He showed how to determine the sample size, the interval between samples, and 

the control limits that will yield approximately maximum average net income. According to him, 

these PM-inspections should be equally spaced for an exponential failure time function. Banerjee 

and Rahim (1988) extended the Duncan's model to non-Markovian shock models by choosing the 

length of sampling intervals such that the integrated hazard over each interval is the same for all 

intervals. This means that the length of the sampling intervals is defined so as to keep the 

probability of a shift in an interval, given no shift up to its start, constant for all intervals.  

Regarding the link between maintenance and production planning, Bouslah et al. (2013) 

incorporated lot-scheduling with a quality plan in imperfect systems and developed a heuristic 

method to solve the problem. Aghezzaf (2007) and Pal et al. (2013) considered lot-scheduling in 

an imperfect system with reliability parameters. Ji et al. (2007) studied the single machine 

scheduling with several PM periods and showed that the LPT algorithm is the best method for 
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minimizing the total completion time. Fitouhi and Nourelfath (2012) investigated the problem of 

non-cyclical maintenance scheduling in a single-machine. 

Wang (2013) proposed a model to incorporate minimal repair and rework possibilities in 

order to determine the optimal number of inspections, the inspection interval, the EPQ, and the 

PM level. Pinjala et al. (2006) proposed that higher quality levels can be achieved by proactive 

maintenance policies integrated with efficient production and control systems. Pandey et al. 

(2011) integrated preventive maintenance with production scheduling in order to determine the 

optimal batch sequence that minimizes the delay in the primary schedule. In Nourelfath et al. 

(2016), the authors integrated the three functions in a multi-product imperfect system. Dhouib et 

al. (2012) modeled the quality aspects of an imperfect deteriorating system with production and 

inventory control in the context of age-based PM. Chen (2013) investigated the optimal 

inspection interval, PM policy, and production quantity in order to maximize the unit profit 

assuming one PM level to be applied in all interferences. In his approach, a correct PM reduces 

the failure rate and an incorrect PM may shift the system to an out-of-control state.  

The literature review underlines that only a few papers have studied the integration of lot-

scheduling, maintenance, and quality in a unite model and to the best of our knowledge, sales 

planning with multiple PM levels in a joint model with production, maintenance, and quality 

decisions is not addressed in the literature. The existing papers are mainly limited to integration 

of maintenance and production, or maintenance and quality, and there is a significant gap in 

theory and application of the joint models. One of the reasons of such a gap is the lack of studies 

addressing the properties of real systems such as the existence of multiple alternatives for PM 

interferences, the imperfectness of maintenance, availability of the system subject to PM, and the 

lack of efficient solution methods for the joint problems. Incorporation of sale planning in the 

model establishes the missing link between several external parameters (demands, prices…) and 

internal decisions. This study is the first one addressing profit maximization by integration of 

production-sales planning, maintenance scheduling, and quality control in a multi-period multi-

product system with time-varying costs and prices. A large number of PM alternatives, 

restoration cost related to the detection delay as we see in real mechanical systems, and variable 

costs, prices, and demands are the other characteristics of our model. Thus, our approach goes 
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one step beyond the conventional profit maximization of the existing models. By means of a 

sensitivity analysis, we provide insights on the importance of the integrated approach, and on the 

significance of the related parameters on the optimality of the solutions. Since the studied 

problem is inspired from the industrial needs, the proposed model makes contributions not only 

to methodology, but also to knowledge for improving industrial practices. Section 5 presents 

several numerical examples to show that potential improvements in the total profit can be 

achieved with the proposed model, while discussing the effect of the model data on the 

profitability. 

The remainder of this paper is organized as follows: Section 2.2 describes the problem and 

its specifications. Section 2.3 develops an evaluation method for the costs and interacting factors. 

The profit maximization model and solution algorithms are presented in section 2.4. Section 2.5 

provides several numerical illustrations and a comparison of the solution methods. Section 2.6 is 

dedicated to sensitivity analysis and finally, section 2.7 presents our concluding remarks. 

2.2. Problem definition 

Problem parameters and indices 

 Backorder cost of product p in period 

t 

CMR Cost of minimal repair 

 Cost of PM level q 

 Demand of product p in period t 

  Production rate of product p 

ℎ   Holding cost of product p in 

period t 

L Length of the periods 

 Number of PM in each period 

 Number of machine failures in 

interval k of period t 

P, p  Number and index of products 

 Price of conforming item of 

product p in period t 

 Price of nonconforming item of 

product p in period t 

Q, q Number and index of PM levels 
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  Set-up cost for product p in period 

t 

T, t  Number and index of periods 

 Time of PM level q 

TMR Time of minimal repair 

  Nonconformity rate of product p 

in a shifted state 

β  Cost of the process inspection 

η  PM imperfectness factor 

 Unit production cost for product p 

in period t 

,  Parameters of the restoration cost 

 Hazard function of machine 

failures at age y 

  Cost of quality check of product p 

Associate parameters…………………………………………..……………………………… 

 Available production time in 

period t 

 Number of machine failures in 

interval k of period t 

 Probability of shift in interval k of 

period t 

 Cost of quality checking of 

products in period t 

,  Age of the machine at beginning 

and end of the kth interval in 

period t 

,  Number of nonconforming 

and conforming items of product p 

in period t 

Decision variables…………………………………………………………..………………… 

 Backorder level of product p in 

period t 

 Inventory of conforming product p 

at the end of period t 

 Inventory of nonconforming 

product p at the end of period t 

 PM level at the end of interval k of 

period t 

 Set-up decision variable for 

product p in period t 

 Number of conforming items of 

product p sold in period t 
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 Number of nonconforming items 

of product p sold in period t 

 Lot size for product p in period t 

 

The objective of this paper is to develop a profit maximization model for joint determination 

of maintenance schedules and production quantities for imperfect processes. A process is said to 

be imperfect in the sense that it may produce nonconforming items. Production planning includes 

a multi-period multi-product lot-scheduling problem that lies in the context of medium-term 

production planning, and its aim is to satisfy customer demands by addressing the trade-offs 

between various costs. The machine has two types of hazards that are machine failure and shift to 

out-of-control (OOC) state. In the case of failure, the machine cannot perform production 

operations and a minimal repair is instantly initiated. In out-of-control state, the rate of 

nonconformity is increased. It is assumed that shift and failure probabilities are linked to the 

effective age of the machine. Several PM options are considered to improve the machine age. The 

production system is composed of one machine and P products. The planning horizon H includes 

T periods each of length L. Note that in this paper we are using the iscrete-time PM because it is 

the common strategy in most real systems. Most organizations schedule their PM to be performed 

in predefined instants of time (weekends, vacations, between consequent missions, or certain 

seasons, etc.). For example, in aviation and rail transportation, and even in automotive industries, 

a preventive maintenance is not considered while the system is performing a mission. The 

discrete-time, multi-level maintenance strategy is widely used in industries because, instead of 

stopping the function of a machine for a maintenance during a mission, most organizations prefer 

to postpone or to advance PMs such that they coincide with low-load or not-working time 

periods. In these cases, the PM time and the number of maintenance per period is not a question, 

rather the decisions such as to perform or not to perform PM and the optimal maintenance level 

for each intrusion should be determined. PM levels can range from no-PM to a complete overhaul 

of the system. The periods are divided into several equidistant intervals. Excluding the last 

interval, process inspection and preventive maintenance activities are to be performed at the end 

of each interval. Production rate of item p is	 . The machine conditions deteriorate with time 

and so, the probability of a shift to out-of-control state or the probability of machine failure 
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increases. In out-of-control state, the nonconformity rate of product p increases to αp. A minimal 

repair in case of a failure brings the machine in line without influencing on its age. Demands, 

prices, and cost components of the system are given and for the sake of flexibility, we assume 

that they may change from one period to another. Conforming items are considered to satisfy the 

demands, whereas nonconforming items can be sold in the second market. Solving the model 

should determine the lot sizes and the sale levels in the sense of maximizing the total profit. 

Maintenance includes a) several PM levels to be performed at the end of each interval; b) 

corrective maintenance in the case of machine failure; and c) machine restorations (or 

replacement) at the end of each period (M + 1 intervals) . At the beginning of each period, the 

machine is in as-good-as-new condition and its age is zero. By progressing the time, the machine 

age increases and it is more prone to fail or to shift to an out-of-control state. Preventive 

maintenance reduces the machine age and improves its condition. There are several PM options 

labeled from 1 to Q, of which Q is the index of the lowest PM level.  and  are 

respectively the cost and the time of ith PM level. The inspections divide the periods into M + 1 

interval. Let’s consider that the machine age in the kth interval of period t changes from 	to	 . 

Let also, 	denote the PM level at the end of the kth interval of period t. If an inspection results 

in detection of a shift, the items processed in that interval should be quality checked. The 

inspection also ensures that the machine starts the intervals in a normal state and the efficiency of 

PM decreases as the machine age increases. The cost of PM determines the capability of that PM 

level in improving the conditions. So, we presume that PM efficiency corresponds to either cost 

of the related PM option and the rank of PM in the period. This is in line with the existing 

literature on age-based imperfect maintenance (Nakagawa, 1980; Lin et al., 2001; Lai et al., 

2001). With 	 0 < ≤ 1 	as the PM imperfectness factor, the machine age at the beginning of 

the kth interval (k = 2… M + 1) is:  

= 1 − ∙ . (2.1) 

The equation states that the age of machine at the beginning of interval k of period t is 

calculated by multiplying its age at the end of the previous interval by the age reduction factor 

(1 − ∙ ). Nakagawa (1980) proposed the link between the PM cost of imperfect 
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maintenance model and the improvement in the system conditions. The linear relationship 

between the cost of the selected PM level ( ) and the reduction in the age of machine 

is a general assumption that can be simply replaced with any other function for different systems. 

Ben-Daya (2002), Chen (2013), Nakagawa (1980) and Nourelfath, Ben-Daya, and Nahas (2016) 

are some examples from the literature that assume linear link between PM cost and age reduction 

factor. 

The machine failures occur according to a non-homogeneous Poisson Process (NHPP) 

having intensity function ζ (y) as the failure rate of machine at age y. So, the expected number of 

machine failures in the kth interval of period t is: 

= . (2.2) 

Note that the cost and the time of minimal repairs are considerably higher than the preventive 

maintenance. At the end of (M + 1)th interval, the machine will be restored to its perfect 

condition. We consider that the cost of the machine restoration linearly depends on the delay in 

detecting the out-of-control state. The number of process inspections in each period (M) is a 

parameter of the model and it can be easily changed to find its best value. 

Fig. 2.1 shows a sample period with three PM and four intervals. In the 2nd and the 4th 

intervals, a shift has occurred and the machine has started to produce defective items, therefore a 

quality check at the end of these intervals is initiated to separate conforming and nonconforming 

products. The effect of age reduction by PM is not shown in this figure. 
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Fig. 2.1: Sample period with three PMs and four intervals. 

2.3. Evaluation of costs and interacting factors 

This section presents the evaluation of costs, the machine conditions as a function of 

maintenance plans, nonconformity costs, etc. used in mathematical formulation of the model. 

2.3.1. Age of the machine in the intervals and available production time 

The most important part of our evaluation concerns the determination of the machine age in 

intervals. Adopting the idea of linear link between age reduction and PM cost (Ben-Daya, 1999; 

Ben-Daya and Rahim, 2000), we have: 

= 0, t = 1,…, T, (2.3) 

= + − − ∙ , k = 1, …, M + 1; t = 1, …, T, (2.4) 

= + 	− ∙ , t = 1, …, T, (2.5) 

= 1 − ∙ , k = 2, …, M + 1; t = 1, …, T. (2.6) 



Chapter II. A profit maximization model 

48 

 

Equation (3) indicates that the machine age at the beginning of the first interval of each 

period is zero. Equations (2.4) and (2.5) correspond to the machine age at the end of the kth 

interval where, ∙ 	indicates the expected time of minimal repair (See, equation 2.2) and 

finally (2.6) represents the age at the beginning of intervals. The simultaneous solution of these 

equations yields all the age values. 

The available production time in interval k of period t is	 − 	 . Note that the PM time 

and the time of minimal repairs are reduced from the length of the interval. The available 

production time in period t is: 

= ∑ 	 − 	 . (2.7) 

2.3.2. Probability of the shift to out-of-control state and the realization probabilities 

Considering F(t) cumulative distribution (CDF) of the time-to-shift function, the conditional 

probability of a shift in interval k of period t is: 

=	 . (2.8) 

It is assumed that the backorder costs ( ) are larger than the production costs ( ), 

therefore the model forces the solution to take positive values for lot sizes in order to minimize 

the sum of the costs. Also, because the cost of inventory holding is included in the objective 

function; the profit maximization model will not consider positive inventories at the end of the 

last period. But since there are no limitations on the demand levels, it is probable to have some 

backorders at the end of each period (including the last one). 

2.3.3. Cost of production, inventory holding, setup, and backorder 

Production, inventory holding, backorder, and setup costs are respectively: 
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The total production cost:	∑ ∑ ∈ , (2.9)  

The total inventory holding cost:	∑ ∑ ℎ +∈ , (2.10) 

The backorder cost:	∑ ∑ ∈ , (2.11) 

The total setup cost: ∑ ∑ ∈ , (2.12) 

where, 	and 	 	are respectively inventory levels of conforming and nonconforming 

products at the end of period t.  

2.3.4. Preventive and corrective maintenance cost 

The cost of PM in period t is: 

= ∑ . (13) 

Taking into account the expected number of machine failures, the average cost of corrective 

maintenance in period t is: 

= ∙ . (2.14) 

2.3.5. Restoration cost 

It is assumed that the restoration cost corresponds linearly to the delay in detecting the shift. 

If a shift occurs at age t	 	 ≤ ≤ , detection delay will be 	 −  and the conditional 

probability of shift at t given no shift has occurred at the beginning of the interval is  

	 = 	 	 . So, the detection delay or the expected duration of time that the machine 

operates in an out-of-control state in period t is: 

= ∑ − ∙ 	 ∙	
	 ∙ . (2.15) 



Chapter II. A profit maximization model 

50 

 

The restoration cost in period t is: 

=	 + ∙ , (2.16) 

where ξ0 and ξ1 are some constants.  

2.3.6. Cost of process inspection and quality checking of products 

The cost of process inspections in all the T periods is simply: 

= ∙ + 1 ∙ . (2.17)  

It is assumed that by detecting a shift, all the items produced in that interval will be quality 

checked. To evaluate the quality checking cost and the number of conforming and 

nonconforming products we assume that the production is smoothly distributed over all intervals 

in the periods; otherwise we would needs to consider the exact job orders and the instants that the 

processing of each item will be performed. Job scheduling and detailed time of processing each 

job is not in the scope of this problem. With this assumption, the amount of production in an 

interval is proportional to the length of the interval divided by the available production time in 

the period. So, ∙ − /  is the average number of items of product p produced in kth 

interval of period t and  is the probability of a shift in this interval. Therefore, taking into 

account	 ; the unit cost of quality check of product p, the total expected quality checking cost 

for all products in period t is: 

= ∑ ∙ ∙ ∑ ∙ −∈ . (2.18) 

2.3.7. Number of conforming and nonconforming items  

If a shift occurs in interval k of period t (with probability ), then the average time that the 

machine remains in this state before being fixed (in inspection) is − ∙ 		
	 . 
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With the assumption of smooth distribution of productions over all intervals, the expected 

number of items processed in such a state (for product p in period t) is ∙ ∙ − ∙	
	

	 ∙ / . The nonconformity rate in a shifted state is α , so the expected number of 

nonconforming items produced in period t (for product p) will be: 

= ∙ ∑ − ∙ 	 ∙ ∙	
	  (2.19) 

Thence, the number of conforming items would be: 

= − . (2.20) 

2.3.8. Expected sales 

Taking into account the sale prices, the revenue by selling product p in period t would be 

= . +	 . , where 	is the quantity of conforming product and 	is the 

quantity of imperfect items sold in period t. Then the total income in period t is: 

= ∑ = ∑ . +	 . . (2.21) 

In each period, selling levels are bound to the sum of demand and backorders in the period 

i.e. ≤ + . 

2.4. Profit maximization model and solution approach 

2.4.1. The mathematical model and its complexity 

The profit maximization model is as follows: 
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	 = ∙ +	 ∙
∈

− ∙ + ℎ + + ∙ + ∙
∈∈

 

−
∈

− ∙
∈

− ∙ + 1 ∙ −
∈

− ∙ − ∙
∈

 

 (2.22) 

Subject to 

=	 − + − , p = 1, …, P, t = 1, …, T, (2.23) 

= − + , p = 1, …, P, t = 1, …, T, (2.24)  

= + − , p = 1, …, P, t = 1, …, T, (2.25) 

≤ ∙ , p = 1, …, P, t = 1, …, T, (2.26) 

∑ ∈ ≤ , t = 1,…, T,  (2.27) 

= , k = 1, …, M + 1; t = 1, …, T, (2.28) 

= ∑ ∙ ∙ ∑ ∙ −∈ , t = 1, …, T, (2.29) 

= ∑ − ∙ 	 ∙	
	 ∙ , t = 1, …, T, (2.30) 

= ∙ ∑ − ∙ 	 ∙ ∙	
	 , p = 1, …, P, t = 1, …, T, (2.31) 

= ∑ 	 − 	 , t = 1,…, T, (2.32) 

= − / 1 − , k = 1, …, M + 1; t = 1, …, T, (2.33) 

= 1 − ∙ , k = 2, …, M + 1; t = 1, …, T, (2.34) 
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= + − − ∙ , k = 1, …, M + 1; t = 1, …, T, (2.35) 

= + 	− ∙ , t = 1,…, T, (2.36) 

= 0, t = 1,…, T, (2.37) 

= 0, p = 1, …, P (2.38) 

	 = 0, p = 1, …, P	 (2.39)	
	 = 0, p = 1, …, P	 (2.40)	

∈ 0,1 , , , , , , , 	 , , 	 , , ∈ ℝ , 	 ∈ 1,… , .

 (2.41) 

Terms of the objective function (2.22) respectively indicate the total income by conforming 

and nonconforming products, cost of production, inventory holding, backorders and setup, the 

cost of preventive maintenance, cost of minimal repairs, inspection cost, quality checking cost, 

and finally the restoration cost. The flow constraints (2.23) and (2.24) link the inventory, 

backorder and sales to the expected number of products for conforming and nonconforming 

items. Constraint (2.25) links the backorders to the demands and sales. Constraint (2.26) forces 

 = 0 if = 0, and  ≥ 0 if  = 1, where  is the production rate of product p. Constraint 

(2.27) indicates the capacity limitations. Equation (2.28) calculates the expected number of 

machine failures, and (2.29) approximates the quality checking cost. Equation (2.30) is the 

expected time that the machine operates in a out-of-control state and (2.31) is the average number 

of nonconforming items in relation with the production and maintenance decisions. Equation 

(2.32) calculates the available production time in periods as a function of PM plans and (2.33) is 

the probability of a shift in interval k of period t. Equations (2.34) to (2.36) determine the age of 

the machine in all intervals and equations (2.37) to (2.40) state the initial conditions of the 

system. Finally, (2.41) shows the bounds and type of the decision variables and associate 

parameters. 

The model presented in this paper corresponds to a complicated nonlinear mixed-integer 

program. The size of the solution space, even for small problems, is too large. Each evaluation of 
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the problem needs the calculation of several integrals and solving different algebraic equations to 

find the age values. These values are then used to compute the shift and failure probabilities and 

to evaluate the related parts of the model. In fact, four sets of original decision variables are 

production lot-sizes, sales levels, PM-schedule. These variables and the model parameters such as 

the number of process inspections interact nonlinearly with each other.  

2.4.2. Search space and solution methods 

For developing a solution approach, we first need to select the probability distribution of 

time-to-shift and time-to-failure functions. Weibull distribution has the flexibility to cover 

different failure functions and it can model different cases of the hazard function. This function is 

broadly used in reliability and failure models. In this paper, we use the Weibull distribution to 

model the time-to-shift and time-to-failure functions.  

With any arbitrary PM-schedule, the machine age and the shift and failure probabilities can 

be calculated and the interacting factors can be evaluated. Thence, the problem reduces to a linear 

mixed integer program (MIP), which can be solved with existing solvers. Considering T the 

number of periods, M the number of maintenance opportunities per period, and Q the number of 

PM options, the total number of maintenance plans is	 ∙ . For example, for the case of T = 3,  

M = 3, and Q = 4 (The numerical example of section 2.5), the size of the search space is about  

2.6 × 105. Three solution methods are presented as follows. 

2.4.2.1. Method 1: The integrated approach 

Considering that each PM plan results in a complete solution of the problem, this property is 

used in our first approach. After generating a PM plans, the expected cost of PM plan, expected 

number of machine failures, the cost of corrective maintenance, and the cost of machine 

inspections for each period can be computed. Calculation of the age values and shift probabilities 

yields the available production time and the average nonconformity rate for each period. These 
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factors can be used to form the related lot-scheduling sub-problem which can be solved with 

existing methods. The approach is programmed in Visual Basic 2010 that generates PM plans 

and calls CPLEX to solve the lot-scheduling problem. Since CPLEX is used to solve the lot-

scheduling problem, and all the PM plans are examined in the algorithm, the results of this 

method are the exact and the optimal solution of the problem. Of course, CPLEX can be replaced 

with any existing heuristic within the structure of the algorithm. On our system (Intel core i7 – 

3.4 GHz, 16 GB of RAM), each evaluation of the sample problem of section 2.5 takes about 0.6 

Sec and the solution time using the integrated method is about 1.8 days. In tactical level planning, 

the maximum scheduling time and so, the size of the problem that can be evaluated to its 

optimality is limited according to the organization needs.  

2.4.2.2. Method 2: nonintegrated method 

We propose a non-integrated approach in which, the maintenance problem is solved 

separately from the production planning problem. In this process, the PM planning is optimized 

independently such that the total cost of the maintenance system is minimized subject to several 

predefined machine availability conditions. It also comprises the case of PM plans with the least 

cost. We can evaluate the conditions of the production system (i.e. the available production time 

and the expected nonconformity rate for each period) for each plan. This information can then be 

used to establish the production planning sub-problem, which is a mixed integer program. 

Solving the model (with CPLEX) yields the lot sizes, inventory levels and backorders for all the 

products in the planning horizon.  

2.4.2.3. Method 3: Time decomposition method  

In this approach, the model is decoupled into T single period integrated problems, where T is 

the number of periods. The solution process starts from the first period. The PM plan for a single 

period is called a partial PM plan (a complete PM plan is composed of T partial plans). The 
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number of possibilities in a partial PM plan (size of the partial solution space) is much less than 

the cases of integrated approach, therefore, we can enumerate all partial plans. These plans are 

evaluated to have a partial solution. The solution results of the first period (inventory levels of 

conforming and nonconforming products and backorders) are used to update the data of the 

second period. Then, the solution process continues with solving the updated problem related to 

the second period. New inventory and backorder levels are sifted to the third period and this 

process continues to the end of the planning horizon.  

2.4.2.4. Method 4: Uniform PM levels 

In this approach, uniform PM levels are considered for all the maintenance intrusions and the best 

solution (with the highest profit) is considered as the result of this approach.  

2.5. Numerical example 

In this example, the time-to-shift function follows a Weibull distribution with parameters  

and	   

( = ). Similarly, the time-to-failure is another Weibull function with 

parameters  and  ( = . We consider that the shifts and the failures belong to 

the same deterioration process ( = ). Price of nonconforming product is set at 25% of the price 

of conforming item. The problem data are provided in Tables 2.1 and 2.2, where (T, M, Q, P) = 

(3, 3, 4, 3). The unit quality costs ( ) are respectively 4, 5, and 6. 
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Table 2.1: Production data. 

Product 
Demand Production cost Backorder cost Holding cost Setup cost Price Conforming 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

P
er

io
d
 1 45 50 100 30 50 70 110 130 180 3 5.5 2.2 500 800 450 170 320 65 

2 30 40 150 26 47 74 110 130 170 2.5 6.1 2.5 550 780 420 150 300 70 

3 60 70 50 33 49 68 120 130 170 3.2 6.5 2.4 530 830 400 180 340 68 

 

Table 2.2: Maintenance data. 

Cost of PM options  CPM 5000, 500, 200, 0 Time of minimal repair  TMR 0.02 Length of period L 1 

Time of PM options  TPM 0.05, 0.003, 0.001, 0 Inspection cost  β 40 Time-to-shift 
parameters 

λ 40 

Production rates  450, 400, 350 Imperfectness factor η 0,9 φ 2.5 

Nonconformity rates  0.7, 0.7, 0.7 Restoration parameters 
(constant and variable) 

ξ0 200 Time-to-failure 
parameters 

θ 20 

Cost of minimal repair  CMR 500 ξ1 3000 ρ 2.5 
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2.5.1. Optimal solution 

The optimal solution of the problem is evaluated with the first solution approach and its 

optimality is confirmed by comparing it with the best solution of enumeration method. The 

solution time in method 1 is about 2500 minutes for evaluating all the PM alternatives. Of course, 

one can use other methods such as heuristic approaches or genetic algorithm to get a promising 

solution in a very shorter time, but these methods do not guarantee the optimality of the results. 

Since we are interested in the best solution of the integrated approach, the enumeration of all PM 

possibilities is a time-consuming but reliable way to find the best solution. The detailed results, 

PM plans, and the objective value are shown in Table 2.3. The machine availability rates in the 

three periods under this plan are respectively 84%, 84%, and 78%. The PM plan shows the level 

of maintenance to be performed in each interval and period, e.g. 3, 0, and 3 are the PM levels are 

the first period.  
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Table 2.3: Decision variables. 

 
Lot-sizes  

(xp
t) 

Setup  
(Sp

t) 
Conforming 

inventory (ICp
t) 

Nonconforming 
inventory (INp

t) 

Period→ 1 2 3 1 2 3 1 2 3 1 2 3 

P
ro

d
u
ct

s 1 105 0 103 1 0 1 30 0 0 0 0 0 

2 71 56 120 1 1 1 0 0 0 0 16 0 

3 151 246 31 1 1 1 0 7 32 0 0 0 

 
Conforming sale  

(XSp
t) 

Nonconforming 
sale (XNp

t) 
Backorder  

(Bp
t) 

 

Period→ 1 2 3 1 2 3 1 2 3    

P
ro

d
u
ct

s 1 45 30 60 31 0 43 0 0 0    

2 50 40 70 20 0 67 0 0 0    

3 100 150 50 44 72 13 0 0 0    

Optimal PM plan: (3, 0, 3), (3, 0, 3), (3, 3, 3)  Objective value (total profit): 24059 
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2.5.2. Benefits of the joint scheduling  

Table 2.4 shows the results obtained from the three solution methods as well as the solution 

data in case of uniform PM levels for all maintenance intrusions. The solution quality in 

integrated method is higher than the two other approaches. The second method has yielded the 

worst results. In this Table, “Mfg. Cost” is the sum of production cost, inventory holding cost, 

backorder cost, and setup cost. The cost of preventive and corrective maintenance and the 

restoration costs is reported as the “PM cost”, and the “QC. Cost” is the sum of quality checking 

and process inspection. The sale amount corresponds to both conforming and nonconforming 

items.  
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Table 2.4: Solution results. 

 
Total Profit 

(Optimality gap) 
Mfg. 
Cost 

PM 
cost 

QC. 
Cost 

Total 
sale 

PM plan 
Solution 

time 
(minutes) 

Method 1 24059 (Optimal) 54602 24805 4445 107911 (3,0,3),(3,0,3),(3,3,3) 2500 

Method 2 5233 (360%) 78284 21078 4698 109293 (3,3,3),(3,3,3),(3,3,3) < 2 

Method 3 22116 (8.8%) 52199 26668 4197 105180 (3,0,3),(3,0,3),(3,0,3) 3 

First PM level 5010 (380%) 40870 49408 2532 97820 (0,0,0), (0,0,0), (0,0,0) - 

Second PM level 8525 (182%) 73862 23584 4790 110761 (1,1,1), (1,1,1), (1,1,1) - 

Third PM level 6616 (263%) 76379 22098 4740 109833 (2,2,2), (2,2,2), (2,2,2) - 

Forth PM level 5233 (360%) 78284 21078 4698 109293 (3,3,3), (3,3,3), (3,3,3) - 

 



Chapter II. A profit maximization model 

62 

 

As shown in this Table, the profit is highly sensitive to the maintenance and applying the 

same level for all PM events, even in the best case is very far from the best solution. As expected, 

minimizing the maintenance cost independent from the production and quality systems has 

resulted in a very poor solution.  

To study the robustness of the algorithm, 40 random problems are uniformly generated and 

solved by the three solution methods (as well as applying uniform PM levels). We have 

considered different problem sizes (up to 8 periods, 8 PM options for the machine, and 6 

maintenance opportunities per period). The combinations are selected such that the generated 

problems can be solved in a reasonable time (not more than 2 days). The problem data (cost units, 

prices, shift and failure parameters, etc.) are selected between ±50% the average values given in 

Tables 2.1 and 2.2 (To avoid trivial and unreasonable instances). 

Table 2.5 shows the minimum and the average gaps between the integrated and the other 

methods. It also shows the number of instances in the given optimality ranges for the 40 sample 

problems.  

 

Table 2.5: Optimality gaps to the best solution. 

 Min. Gap Average Gap 0 to 10% 10-50% >50% 

Method 2 1.3% 53.1% 4 12 24 

Method 3 0% 31.1% 13 17 10 

Uniform levels 0.2% 37.4% 15 21 4 

 

The above table underlines the significance of the joint scheduling of production, sales, 

maintenance and quality. The time-decomposition method performs better than the two other 

approaches because it still employs integrated solution but in multiple periods. The improvement 

in integration is very significant which justifies the implementation of joint approaches in 

planning the production, maintenance, and quality.  
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2.6. Sensitivity analysis 

This section discusses the effect of several parameters on the problem and presents a 

sensitivity analysis. 

2.6.1. Effect of maintenance budget 

The total maintenance cost in the planning horizon or “maintenance budget” is the sum of 

the cost of all PM levels in the plan and is an appropriate indicator of the maintenance quality. 

Fig. 2.2 represents the effect of maintenance budget on the profit. It shows that increasing the PM 

budget, first improves the profit because it diminishes the cost of minimal repairs and quality. 

But, more increase in the PM budget cannot be compensated by the decrease in the cost of 

corrective maintenance and the quality. The presented approach can determine the optimal PM 

budget in periods. Fig. 2.3 illustrates the variations of the rate of out-of-control state and the 

machine availability rate with the maintenance budget. The proportion of time that the machine 

operates in a degraded state influences on the quality. This parameter almost linearly diminishes 

with the increase in the PM budget. Selecting higher PM levels results in a fewer number of the 

machine failures and smaller corrective maintenance time. The availability rate of the machine 

first improves with the PM budget, but since the high level maintenance requires more time to be 

performed, in case of very high PM levels, its time may not be compensated with the reduction in 

the corrective maintenance time. These graphs represent the effect of PM plans on different 

performance measures. The availability rate of the machine is important in production planning 

and smaller rates can cause considerable losses and capacity issues. In the same way, cost of the 

corrective maintenance, cost of the machine restorations and the quality cost also reduce with the 

PM budget. These facts are shown in Figures 2.4 and 2.5. Again, selecting the higher PM levels, 

the expected number of the machine failures and the expected time of operating in a shifted state 

decrease, so the cost of corrective maintenance and the restoration cost diminish. The shape of 

these functions depends on the distribution of the time-to-shift, and the time-to-failure functions. 
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In Fig. 2.5, the decrease in the expected time of operating in an out-of-control state directly 

influences on the cost of quality.  

 

Fig. 2.2: Profit as a function of maintenance 
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Fig. 2.3: Variations of availability and rate of OOC state with maintenance 

 

 

Fig. 2.4: Restoration and corrective maintenance cost with the PM budget.  
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Fig. 2.5: Quality cost as a function of the PM budget. 

2.6.2. Sensitivity analysis 

Table 2.6 shows the effect of changes in some of the problem parameters on the profit, 

maintenance, production and the quality cost. The values of parameters are increased or 

decreased by 25% compared to their initial values in the sample problem and the changes in the 

cost components are listed in the table. The results obtained by increasing the parameter are 

reported in the “+” column, and the results by decreasing the parameter are listed in the “−” 

column. The first row of this table shows the different cost components for the optimal solution 

of the original problem. The other data indicate the variations (in percent) from the optimal 

solution. The three parameters with the highest impacts on each cost component are as follows: 
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 Unit processing costs 

 Time-to-shift function 

Total maintenance cost 

 Time-to-shift function 

 Time-to-failure function 

 Cost of minimal repair 

Total cost of the production planning (lot-sizing) problem 

 Unit processing cost 

 Time-to-shift function 

 Time-to-failure function 

Total quality cost 

 Time-to-shift function 

 Time-to-failure function 

 Time of minimal repair 

Total sales 

 Price of conforming products 

 Price of nonconforming products 

 Time-to-shift function 

As presented in this table, the time-to-shift and time-to-failure functions are present in the list of 

the most influencing three parameters for all the cost components. 
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Table 2.6: Effect of changing parameters on the solution. 

  Profit PM cost Mfg. Cost QC. Cost Sales 

  + − + − + − + − + − 

Optimal solution 24059 25285  54602 3965  107911  

Unit processing cost -52% 52% 0% 0% 23% -23% 0% 0% 0% 0% 

Restoration constants -4% 4% 4% -4% 0% 0% 0% 0% 0% 0% 

Cost of minimal repair -11% 11% 11% -11% 0% 0% 0% 0% 0% 0% 

Time of minimal repair -6% 5% 5% -4% 2% -1% 3% -3% 1% -1% 

Cost of PM levels -10% 10% 10% -10% 0% 0% 0% 0% 0% 0% 

Time of PM levels -2% 2% 1% -1% 1% -1% 1% -1% 0% 0% 

Price of conforming 99% -99% 0% 0% 0% 0% 0% 0% 22% -22% 

Price of nonconforming 13% -13% 0% 0% 0% 0% 0% 0% 3% -3% 

Inspection cost 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Shift parameter 19% -48% -4% 31% -14% 10% -29% 13% -5% 2% 

Failure parameter 11% -18% -12% 21% 3% -5% 5% -10% 1% -2% 
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In each column, the maximum increase and decrease in the cost component are highlighted, 

for example, the PM cost is more influenced by the cost of minimal repair and the parameters of 

the shift and failure function. The manufacturing cost is more changed with the unit production 

cost and the time-to-shift function, whereas the probability functions show greater impact on the 

quality cost. Finally, the prices of conforming and time-to-shift function are the most striking 

parameters affecting on the sales. The profit as the difference of sales and costs is impacted 

mostly by the price of conforming items and the unit production cost.  

2.6.3. Effect of process inspection and process deterioration 

The number of process inspections mostly effects on the quality cost defined as the sum of 

the costs of inspection and quality checking of the products. Fig. 2.6 shows the variations of QC 

cost and the expected number of defective items (In case of the best PM level and production of 

the first product with the highest possibility) as a function of the number of process inspections. 

Considering different number of process inspections in the joint model and evaluating the related 

profit can be conveniently used in determination of M. 

In the time-to-failure function, the integrated hazard over a period is θtρ, so the expected 

number of failures in a period in which the machine age changes from 0 to 1, is θ. Similarly, the 

number of times that the machine shifts in such a period is λ. We call λ + θ the deterioration rate. 

The share of machine failures in the total deterioration rate defines the proportion of time that 

machine failures occur compared to the quality shifts. In some systems, most of deteriorations are 

quality shifts, but, in some cases, the failures can be dominant deteriorating. In our sample 

problem, θ / (λ + θ) = 57% indicates the rate of machine failures in the deterioration process. Fig. 

2.7 shows the variations of the quality checking cost and the corrective maintenance cost as a 

function of the state of deterioration process (θ / (λ + θ )), while λ + θ = 60 is kept constant. 

Larger values of this parameter indicate that the system is more prone to failures rather than to 

quality degradations, therefore, the number of machine failures and its cost increased from 47 to 

891. In the meantime, the quality cost has decreased from 40 to 375. This information are useful 
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in deciding the best maintenance levels and the production strategies because PM alternatives 

may result in various deterioration processes. 

 

Fig. 2.6: Effect of the number of quality inspections on cost and quality of production. 
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Fig. 2.7: System costs as a function of the state of deterioration process. 

The distribution governing the time-to-shift and the time-to-failure functions are important in 

the shape of all figures the sensitivity analysis results, but in case  of the given sample problem, 

the PM cost shows a linear increase with the rate of failure in the total shift and failure 

occurrences. 
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period multi-product capacitated lot-scheduling model is developed to maximize the profit by 

addressing simultaneous production-sale planning, maintenance scheduling, and the quality 

inspections. Evaluation of different costs and interacting factors are discussed and a mathematical 

model is developed. Assumption of time-varying costs and prices yields the required flexibility to 

examine different alternatives (in the production process, inventory management, etc.) and to 

study the pricing-marketing strategies and the effect of external parameters in relation to the 

internal decisions. On the other hand, we suggested a solution method to find the optimal PM 

plan and related lot-schedule. In this paper, a specific property of the model is employed that can 

guarantee the optimality of the solution. Results obtained from solving the illustrative examples 

indicate that the model is consistent and integration has improved the average optimality gaps by 

53.1% in method 2 and 31.1% in method 3. Sensitivity analysis suggests that machine restoration 

cost, CPM, CMR and failure rate are the most influential factors in the maintenance cost, 

whereas, the unit production cost and the prices are the most significant parameters influencing 

on the profit and the manufacturing cost. From the robustness point of view, we found that the 

optimal solution corresponding to the lot-sizing problem is highly sensitive and it changed with 

variations of all of the parameters, but the optimal PM plan mainly varies with the maintenance-

related parameters (deterioration function, failure function, and time and cost of preventive and 

corrective maintenance). The processing rates, machine availabilities, and deterioration and 

failure functions had the greatest impacts on the lot-sizing problem, while the variations in selling 

prices and setup costs had the smallest effect. 

Taking into account the very large search space and the complexity of the problem, it is 

important to develop efficient solution methods to exploit the benefits of integration in a short 

solution time. We are currently developing meta-heuristic approaches and testing their capability 

in solving large-size problems. For future research, the model may consider complicated cases of 

multi-machine systems, and it may deal with the determination of optimal sequence of processing 

the jobs in a deteriorating system. 
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Chapter Three: A Cost Minimization Approach 

This chapter is dedicated to the article entitled “A cost minimization model for joint lot-

scheduling and maintenance planning under quality constraints” submitted to the International 

Journal of Production Research in November 2015. 

 

The titles, figures, and mathematical formulations are modified to keep the consistency 

through the thesis. 
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Résumé 

Dans cet article, nous étudions la planification intégrée de la production, de la maintenance 

préventive imparfaite en tenant compte de contraintes de qualité. On considère un système de 

production multi-machine, multi-produit sur un horizon de plusieurs périodes. Les machines se 

détériorent avec le temps. La planification de la production correspond à un problème de 

détermination des tailles de lots capacitaires, où la disponibilité de la machine est soumise aux 

plans de la maintenance préventive. La qualité de la production est incertaine et dépend à la fois, 

du système de qualité et de la maintenance. La planification de la maintenance correspond à un 

modèle de la maintenance imparfaite à des temps discrets. Les inspections de processus sont 

conçues pour détecter l'état actuel du système. L’inspection est accompagnée de la vérification de 

la qualité des sous-lots pour séparer les produits défectueux, et les retravailler avant de les 

envoyer aux clients. On propose une approche intégrée qui coordonne les décisions des trois 

systèmes, où la fonction de l’objectif minimise le coût total de système. L’évaluation des coûts et 

des facteurs en interaction est présentée et un algorithme génétique est proposé pour résoudre le 

problème d'optimisation combinatoire résultant. Une analyse de sensibilité est effectuée et 

l'intégration de la maintenance, la production et la qualité est illustrées par plusieurs exemples 

numériques. 

Mots clés 

Ordonnancement de lots, Maintenance préventive, Qualité, Inspection, Processus imparfait 
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Abstract 

In this paper, production planning, imperfect preventive maintenance scheduling and design 

of the quality system are simultaneously investigated. The production system is multi-machine, 

multi-product and multi-period model in which, the machines deteriorate with time and so, they 

may fail or shift to a quality degraded state with higher defective rate. The production planning 

corresponds to a capacitated lot-scheduling problem, where the machine availability is subject to 

the preventive maintenance. The production quality is uncertain and it depends on both 

maintenance and quality systems. Maintenance scheduling corresponds to a discrete time 

imperfect model with a large number of alternatives for PM interferences. The process 

inspections are considered to detect the current state of the system. Detecting a shift in the 

process mean by inspection initiates certain courses of actions, including the quality check of the 

related sub-lots in order to separate and rework the defective items before sending to a customer. 

We propose a joint approach that coordinates the decisions of the three systems, where the 

objective function minimizes the total cost of the system. Evaluation of costs and interacting 

factors is presented and a genetic algorithm is proposed to solve the resulting huge combinatorial 

optimization problem. A sensitivity analysis is conducted, and the integration of maintenance, 

production and quality is illustrated using numerical examples.  

Keywords 

Capacitated lot-scheduling, Preventive maintenance, Quality, Inspection, Imperfect process 

3.1. Introduction 

Fulfillment of customer demands on time, with higher quality levels, and affordable prices is 

a challenging issue in all production systems. In spite of strong interactions, production, 
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maintenance, and quality decisions are generally treated separately in the literature. Benefits of 

integration are reported in several papers. Linderman et al. (2005) reported 0.7% to 52.7% 

reduced total cost in coordinated design of maintenance and quality systems. Liu et al. (2015) 

declared higher benefit in the joint determination of product lot-sizes and PM policies. Aramon et 

al. (2014) reported 21% cost savings by integration. Colledani and Tolio (2012) presented a 

model linking the production rate to machine deterioration and maintenance plans and showed 

that the performance can improve by integrating these functions in the system level. Aghezzaf et 

al. (2007) studied the integration of preventive maintenance and lot-scheduling problem and 

showed that the two systems are linked. Nourelfath et al. (2010) investigated the integration of 

lot-scheduling and preventive maintenance (PM) scheduling in multi-state systems. Machani and 

Nourelfath (2012) solved the integrated problem introduced in (Nourelfath et al., 2010) using a 

variable neighborhood search. In (Mokhtari et al., 2012), the authors investigated the link 

between maintenance and availability of machines and developed a mixed integer program for 

joint scheduling. They solved the problem using population based variable neighborhood search. 

Also, Xiang (2013) cited considerable savings by integration in all the studied cases. Alfares et 

al. (2005) incorporated inventory management in joint scheduling of production and maintenance 

in a deteriorating system. Radhoui et al. (2009) proposed optimal buffer size in a single machine 

failure-prone system. In (Aghezzaf et al., 2016) the authors investigate the link between operating 

age of machine influencing on the production capacity and the system reliability in a joint model. 

The production capacity in a deteriorating system is also studied by Yalaoui et al. (2014), where a 

hybrid model is proposed to deal with the bi-objective production-maintenance problem. 

In order to establish the link between maintenance and quality, Ben-Daya (2002) considered 

the normal and degraded state where, the defective rate in out-of-control state is higher. Chen 

(2013) considered the same idea with two imperfect states and established the link between 

imperfect maintenance and quality degradations. Ponser and Tapiero (1987) developed quality 

measures for a system that deteriorates with time. Such quality deteriorations are not self-

announcing, so process inspection and quality control tools are used to detect the machine 

conditions. The design of such quality processes needs to be integrated with maintenance 

scheduling. Xiang (2013) considered a discrete-time Markov chain model to incorporate the 

design of x-control chart and maintenance decisions. 
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Nourelfath et al. (2014) dealt with the integration of production, maintenance and quality in a 

multi-state production system in which the machines may randomly switch to a degraded state 

with lower quality. The tradeoff between two systems is also addressed in (Berrichi et al., 2010), 

where a bi-objective formulation of the model is presented, and an Ant Colony optimization is 

developed to solve the problem. 

In (Panagiotidou and Tagaras, 2007), the authors considered two quality states that are 

distinguished with different hazard rates and various degradation functions. They showed that an 

aggressive policy whereby the process is maintained as soon as a shift is detected is not always 

optimal.  

The maintenance time and optimal length of PM intervals is investigated in several studies. 

Duncan (1956) was the first who studied approximate measure of average net income in a process 

under surveillance of a control chart. He showed that for an exponential failure time function, the 

process inspections should be equally spaced. Banerjee and Rahim (1988) extended the Duncan's 

work to non-Markovian models by choosing the length of sampling intervals such that the 

integrated hazard over all intervals is constant. Rahim (1994) showed that non-uniform 

inspections are more efficient in joint scheduling of economic production quantities, process 

inspections, and determination of control chart parameters. Levrat et al. (2008) modelled a 

discrete time production-maintenance planning in which, the maintenance operations are 

performed at machine failures. Van Dijkhuizen and Van Harten (1998) considered perfect 

maintenance in a two-stage planning model, where first, a maintenance interval is determined 

based on the technical information. Then, exact PM time is determined using the operational data. 

Aghezzaf and Najid (2008) developed both cyclic and acyclic maintenance models, while 

considering the production capacity as a function of maintenance.  

Existing literature shows the significance of joint models and reveals that only limited cases 

of real-life applications are addressed in the literature. Most of the existing papers integrate only 

two functions (maintenance and production or maintenance and quality), and even in these 

papers, usually the consequences of one system in a reactive manner are considered in optimal 

design of the other system. For example, the defective rate in deteriorated state is incorporated in 

maintenance scheduling. Inclusion of decision variables from the three functions in one model is 
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scarce in the literature. A large number of organizations perform their maintenance operations at 

specific times, where the production is naturally stopped (vacations, between shifts…). For these 

cases, the choice of operations in each maintenance opportunity, especially in case of limited 

resources, is a perplexing decision. Integration of discrete time multi-choice maintenance with 

resource limitations and capacitated lot scheduling, taking into account the optimal number of 

process inspections related to the design of a quality system is the main contribution of this 

research. Each machine has multiple maintenance options and in a system involving more than 

one machine, the number of maintenance alternatives is very large. Limitation of maintenance 

resources (here, budget limitation is considered) results in a very difficult model. Sampling 

interval or the number of inspections during a period is a decision variable from the quality 

system that is linked to the maintenance and production decisions. Furthermore, a genetic 

algorithm (GA) is proposed to solve the huge combinatorial problem. 

The rest of this paper is organized as follows. In Section 3.2, the problem definition is 

provided. Section 3.3 develops the formulations and evaluations. Section 3.4 discusses the 

mathematical model, as well as the proposed solution method. A sample problem and a 

sensitivity analysis are presented in section 3.5. Section 3.6 concludes the study. 

3.2. Problem definition 

In the following sections, the production, maintenance, and quality systems and their features 

and interactions are explained.  

3.1.1. Production system 

A capacitated lot-scheduling problem in a multi-machine, multi-product, multi-period 

context is considered. Demand for the products in each period is known and unsatisfied orders 

will charge the backorder cost to the system. Over production imposes the inventory holding cost 

and switching to a new product type on a machine is accompanied with a setup charge. Defective 
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rates and expected availability production times depend on the preventive maintenance (PM) 

plans. The total cost of the system to be minimized is the sum of production, maintenance, and 

quality costs.  

3.1.2. Maintenance system 

At the beginning of each period the machines are in normal state, but by progressing the 

time, the machines deteriorate and so, the failure probability increases. Machine failures are 

instantly detected and a minimal repair is initiated upon a failure to bring the machine in 

operation. This type of repairs does not influence on the machine age. Financial consequences of 

failures and the time to bring a failed machine in operation are large, so the preventive 

maintenance is aimed to improve the conditions by reducing the effective age of the machines. 

The imperfect preventive maintenance with multiple PM options for each machine is considered 

and it is assumed that, reduction in the machine age linearly depends on the cost of the selected 

maintenance level. Several organizations schedule their PM activities at specific times (between 

shifts, in weekends, vacations, between consequent missions, etc.), so, in these cases, the 

maintenance time is not a decision variable. Instead, in each maintenance opportunity, they 

should decide the PM level to be performed on each machine (the lowest PM level can concern to 

a no-PM alternative). This is the concept of discrete time maintenance problem with several 

maintenance scenarios. We assume a maintenance opportunity at the beginning of each period 

and the solution of the model determines the optimal PM level for each machine in each period.  

3.1.3. Quality system 

Two possible states of each machine are (1) the normal (or in-control) state with negligible 

defective rate and (2) the shifted (or out-of-control) state with higher nonconformity. During each 

period, several error-free process inspections are considered to detect the machine's state. These 

inspections divide the period into several inspection-intervals. At the beginning of each 
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inspection-interval, the machine is in normal state, but by progressing the time, the machine 

conditions deteriorate and the probability of a shift to a degraded state increases. By detecting a 

shifted state upon an inspection (1) the machine will be corrected that imposes an adjustment 

cost, and (2) the sub-lots produced in that interval will be quality checked to separate the 

defective items. Such nonconforming products will be reworked before sending to a customer. 

The last inspection will be executed at the end of the period and at least one process inspection in 

each period is required. The optimal number of quality inspections depends on the machine 

conditions and the costs of machine inspection, quality checking, and rework. Given the number 

of process inspections, the length of intervals will be determined such that the integrated hazard 

over all intervals is constant (Banerjee and Rahim 1988). A sample period with a PM and four 

inspection intervals are illustrated in Fig. 3.1. 

 

 

Fig. 3.1: Production periods and intervals. 

  

Period T … Period 1 Period 2 

                    1                             2                  3           4 

PM  Intervals 

Inspections & 
Adjustments 

Period T 
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3.2. Evaluations 

In this section, the notations are summarized and the evaluation of costs and interacting 

factors are explained. 

Notations 

Indices and parameters 

,  Index and number of machines 

,  Index and number of products 

,  Index and number of periods 

 Index of intervals in periods 

 Unit backorder cost 

 Process adjustment cost 

 Cost of minimal repair 

Cost of kth PM level 

 Customer demand 

 Production rate 

ℎ  Inventory holding cost 

 Fixed length of periods 

 Available PM budget 

 Number of the preventive 

maintenance levels 

 Unit reworking cost 

 Setup cost 

 Time of minimal repair 

 Initial age of machine 

 Defective rate in out-of-control state 

of the machine 

 Unit cost of quality check 

,  Parameters of Weibull distribution 

for time-to-failure function 

,  Parameters of Weibull distribution 

for time-to-shift function 

 Manufacturing cost 

 Cost of process inspection 

Dependent variables……………………………………………………………………… 

 Available production time  Expected duration of a shifted state 
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 Process inspection cost 

 Lot size 

 Number of machine failures 

 Preventive maintenance cost 

 Probability of shift in the jth interval 

 Probability of shift in period 

 Cost of quality checking 

 Total process adjustment cost 

 Total maintenance system cost 

 Total production system cost 

 Total quality system cost 

 Total reworking cost 

 Age at the beginning of a period 

 Age at the end of an interval 

 Age at the end of a period 

Decision variables……………………………………………………………………… 

 Backorder level 

 Inventory level 

 Setup variable 

 Production level 

 Number of process inspections 

 Preventive maintenance level 

, ,  and  are the production planning variables, concerns to the quality 

system, and  to the maintenance system. 

3.2.1. Cost of production system and its constraints 

Total cost of the production system (  is the sum of manufacturing cost, setup cost, 

inventory holding costs, and backorder cost for all combinations of products and machines. We 

have:  

= ∑ ∑ ∑ +∈∈ + ∑ ℎ +∈∈  (3.1) 
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Binary variable of setup (Spmt) and production level ( ) are linked together, so 

≤  (3.2) 

Total lot-size of product p in period t is:  

= ∑ ∈  (3.3) 

The balance equation between production, inventory, backorder, and demand in capacitated 

lot - scheduling problem is given by: 

− = − + −  (3.4) 

Inventory and backorder levels will take their appropriate values because their coefficients in 

the objective function are positive, and the objective is a minimization function, so only one of 

each pair of these variables can be non-zero. If production and backorder costs are assigned 

properly (i.e. > ), production levels will be positive values, otherwise no-production case 

is preferable. Also, the inventory levels at the end of the last period will be zero because of the 

cost minimization, and the backorder levels will be minimized according to the production 

capacities. The available production time of machine m in period t is the remaining time in period 

after performing minimal repairs, so:  

= −  (3.5) 

In (3.5),  is the expected number of machine failures in period t, TMRm is the time of 

minimal repair of machine m, and L is the length of periods. Total production of a machine is 

constrained to the available production time. 

∑ ≤∈  (3.6) 
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3.2.2. The machine age in periods and intervals 

Let us assume that the time-to-shift function follows a Weibull distribution with parameters 

λm and φm i.e. = ∙ ∙ ∙  and its cumulative function is = 1 −
 , so the conditional probability of a shift at age t given the machine was in control at age 

t0 is: 

| = = ∙ ∙ ∙ ∙ ∙ , >  (3.7) 

To determine the machine age in periods ( , ), we adopt the imperfect maintenance 

concept (Nakagawa, 1988) in which the machine age after the PM is somewhere between as-

good-as-new and as-bad-as-old conditions. Using his model, we suppose that the reduction in the 

machine age by PM linearly depends on the cost of maintenance task, so the machine age m at the 

beginning of period t + 1 is: 

, = 1 −  (3.8) 

where,  is the PM level for machine m in period t,  is the cost of kth PM level for 

machine m, and 1  is the cost of the highest PM level. Let us assume that the time-to-

failure function is also a Weibull function with parameters θm and ρm, i.e. = ∙
∙ ∙  and its cumulative distribution is = 1 − . The instantaneous 

hazard function is 1 −⁄ = ∙ ∙ , and so, the expected number of 

machine failures in period t is: 

= ∙ −  (3.9) 

The expected minimal repair time is ∙ , where  is the average minimal 

repair time of machine m. During minimal repairs, the machine is not operational and its age is 

not increasing, so, the machine age at the end of period t given it is operational while it is 

available will be: 

= + = + − ∙ − ∙  (3.10) 
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Since the initial age of machine m at the beginning of the first period is W , one can use 

equations (3.8) and (3.10) to recursively calculate the machine ages in the periods. 

The number of process inspections (and so, the number of intervals) for machine m in period 

t is NImt, and the machine age at the end of each interval is ymjt. Banerjee and Rahim (1988) 

showed that in a Weibull shock model, the optimal strategy in determining the length of 

inspection intervals is to maintain a constant integrated hazard over them. The integrated hazard 

over the jth interval (considering the time-to-shift function) is as follows: 

 , , − , ,  (3.11) 

Using the concept of constant integrated hazard over all intervals in a period and considering 

; the number of process inspections for machine m in period t, these quality inspections 

divide the period into  intervals, the integrated hazard over each interval should be 

− / . Therefore, for interval j in period t, we have , , − , , =
. Starting from the first interval (j = 1), − = . Note 

that with the given notation , ,  is the machine age at the beginning of the first interval and it is 

equal to , so = + . For the next interval (case j = 2), again the 

constant integrated hazard indicates that − = . Substitution of 

 from the previous equation yields = + 2 .Continuing this 

approach gives the following general equation: 

, , = + ∙  (3.12) 

Therefore, the machine age at the end of interval j (beginning of interval j-1) can be 

calculated from the following equation:  

, , = / ∙ , + 1 − / ∙  (3.13) 
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3.2.3. Probability of shift in periods and intervals 

Given the time-to-shift function and the machine age in periods and intervals, the conditional 

probability of a shift occurs in period t given it was initially in a normal state is: 

= 1 −  (3.14) 

Similarly, the conditional probability of a shift in interval j is = 1 −
. Substitution of (3.11) and (3.14) in the latter gives: 

= 1 − 1 − /  (3.15) 

3.2.4. Cost of maintenance system and its constraints 

The total cost of preventive maintenance in period t is:  

= ∑ ∈  (3.16) 

where,  is the PM level of machine m in period t and  is its cost. Considering 

the limitation of PM budget, following constraint holds. 

≤ 	, ∀ ∈  (3.17) 

Finally, with equation (3.9), the expected minimal repair cost in period t will be: 

= ∑ ∙∈  (3.18) 

The total cost of the maintenance system is the sum of preventive and corrective 

maintenance costs. 

= ∑ +∈  (3.19) 
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3.2.5. Cost of quality system 

If process inspection shows that the quality degradation has occurred (a) the process will be 

adjusted, (b) all the sob-lots produced in the related interval will be quality checked, and (c) the 

defective items will be reworked. The inspection cost for machine m in period t is:  

= ∙  (3.20) 

Since, the job-scheduling is not in the scope of this problem, and for simplification purposes, 

we suppose that the production is smoothly distributed over the periods. The sub-lot or the part of 

product p processed in interval j depends on the length of the interval. So, size of the sub-lot is 

∙ , , − , , / . Therefore, the expected quality checking cost for product p 

over all intervals is ∑ ∙ ∙ ∙ , , − , , / . Since ∑ , , −
, ,  is  and  is constant in all intervals, the quality checking cost of product p 

will be . ∙ . By substitution of from (3.15), and considering all products, the 

total expected quality checking cost is: 

= 1 − 1 − / ∙ ∑ ∙∈  (3.21) 

If a shift occurs at age  in interval j, from this instant of time until the end of the interval, 

the machine will work in a shifted state. Given the number of process inspections ( ), the 

expected shifted state time that machine m operates in out-of-control conditions in period t, is: 

= 1 − 1 − / ∙ − ∙ |  (3.22) 

Note that |  is the conditional probability of a shift at τ given it was in normal state 

at age . Therefore, the proportion of time that machine m works in out-of-control state in 

period t is / , the number of defective items of product p in this period will be 

/ − ∙ ∙ , where  is the nonconformity rate in shifted state of the 

machine. Hence, the total expected reworking cost for machine m is given by: 

= ∙ ∑ ∙∈ ∙  (3.23) 
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Finally, we assumed that detecting a shift, initiates the process adjustment. Considering the 

probability of shift in intervals, total expected cost of machine adjustments in period t is: 

= ∙ ∙ 1 − 1 − /  (3.24) 

Total cost of the quality system is the sum of inspection cost, quality checking cost, 

reworking cost, and the process adjustment cost for all machines in all periods. 

= ∑ ∑ + + +∈∈  (3.25) 

All these cost components depend on the number of process inspections. To find the optimal 

number of process inspections, taking into account the worst case product with the maximum 

production level, we need to minimize the cost of the quality system for each machine in each 

period. Then, the optimal  values can be evaluated using numerical analysis or existing 

solvers.  

3.3. Mathematical model and the search space 

The integrated model minimizes the total cost of the system.  

	 + +  (3.26) 

The components of the objective function are explained is sections 3.1, 3.4, and 3.5, and the 

model constraints are (a) the link between setups and production levels; inequality (3.2), (b) the 

balance equation between lot-sizes, inventories, backorders, and demands; equation (3.4), (c) the 

production capacity; inequality (3.6), and (d) the maintenance budget constraint; inequality 

(3.17). 

The integrated model presented in this paper is a nonlinear problem with complicated 

evaluations. The sources of its difficulty are originated from the challenging interactions between 

maintenance and production from the one hand, and between maintenance and quality from the 

other hand. Also, determining the optimal number of process inspections minimizing the quality 

cost (eq. 4.25) is very hard. The number of possible scenarios for maintenance is ∏ , 
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where,  is the number of PM levels for machine m, and T is the number of periods. With 

decision variables related to production and quality systems, size of the solution space is very 

huge, which justifies the need for efficient solution methods.  

Meta-heuristic methods and genetic algorithms are able to deal with large, non-linear 

problems, and they can find promising solutions in a reasonable resolution time. In this paper, a 

standard form genetic algorithm is adopted. For more information about genetic algorithms, one 

can refer to existing papers including Reeves (2003). 

3.4. Solution method 

Genetic algorithms are widely employed in the literature for solving production and 

maintenance problems. Because of good global optimization capabilities, flexibility in adapting 

to our model, and successful implementations in similar problems, we adopted a genetic 

algorithm to solve the problem. For more details on genetic algorithms one can refer for instance 

to Reeves (2003). The first step in a GA based approach is to define the chromosome structure. 

Considering that with a PM and a process inspection plan, the exact solution of the lot-scheduling 

problem can be evaluated, we encode only maintenance and quality decision variables (PMmt and 

NImt) in the chromosome. The exact value of other decision variables (xpmt, Spmt, Ipt, Bpt) will be 

found using existing solvers (In this study, we use CPLEX optimization package). Therefore, a 

chromosome is a vector of size 2 × × . The first ×  elements (integers between 1 and a 

maximum upper limit) indicate the number of process inspections for each machine in each 

period. The second part of the vector corresponds to the PM levels (integers between 1 to Qm) for 

each machine-period combinations. The first population is generated by randomization 

(population size is ps), then, using tournament method, two parents are selected for uniform 

crossover (Reeves, 2003). Selection of parents is based on the objective function and the 

crossover execution is controlled by parameter pc. To keep the best solutions, ne elites are directly 

copied into the next generation. To prevent premature convergence, mutation is considered which 

assigns new values to some genes. Probability of mutation of a gene is controlled by parameter 
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pm. As the population size reaches ps, the first population is replaced by the new one, and the 

process continues until the total solution time Tmax is satisfied. The algorithm parameters, ps, pc, 

pm, and ne are calibrated using the meta-calibration method developed by Mercer and Sampson 

(1978). Eiben and Smith (2011), state that this method works very well in calibration of genetic 

algorithms. The parameters of the algorithm are the population size, the selection pressure (or the 

number of individuals that are randomly selected from the population for the tournament 

selection method), the mutation probability, and the number of elites to be directly transferred to 

the next generation. The first step in our genetic algorithm is the algorithm calibration using the 

meta-calibration method. The performance criteria is defined as the average of several (in this 

case, 5) replications of the algorithm with a given vector of the algorithm parameters executed for 

a limited time (50 Sec.). After generating a random set of such vectors, a Meta algorithm is 

executed and the average objective value for 5 replications is calculated as the fitness of each 

vector of parameters. Then, using the genetic operators (selection, crossover, and mutation) a new 

set of parameter values are generated and incorporated in the population. The process continues 

for a limited time (1000 Sec.), and the best vector is considered as the calibrated values of the 

algorithm parameters. The solution process and the procedure of chromosome evaluation are 

illustrated in Fig. 3.2. 

3.5. Experimental results 

Let us first consider a problem with M = 3 machines, P = 2 products, T = 6 periods, and the 

length of periods L = 1. Each machine has Qm = 4 PM levels and the maintenance budget 

limitation for all periods is PMBt = 1000. The problem data are given in Table 3.1. 
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Solution method 

1. Parameter calibration 

2. Initialization of the first population; P1 and evaluate the chromosomes 

3. Do 

3.1. Copy ne elite solutions from P1 to P2 

3.2. Do 

3.2.1. Select two parents p1 and p2 form P1 (tournament method) 

3.2.2. Crossover: Generate a child p with uniform crossover 

3.2.3. Mutation: Replace randomly selected genes of p with new values 

3.2.4. Evaluate p 

3.2.5. Add p to P2 

3.3. Loop until the size of P2 is ps 

3.4. Replace P1 by P2 

4. Loop until the stop condition is satisfied (solution time = Tmax) 

5. Return the best solution 

 

Chromosome evaluation procedure 

1. Calculate the age reduction factors   

2. Compute the age values;  and  

3. Evaluate the maintenance system cost (sections 3.3.2, 3.3.3, and 3.3.4. 

4. Evaluate the quality system cost (section 3.3.5) 

5. Solve the lot-scheduling problem using CPLEX (Section 3.3.1) 

6. Return the decision variables and the objective function 

Fig. 3.2: Solution method and procedure of chromosome evaluation. 
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Table 3.1: Problem data. 

    spm   αpm   
CMRm TMRm νm λ φ θ ρ Wm0 ACm 

CPM 

(Thousands) 
Product 1 2 1 2 

M
ach

in
e 

1 40 - 0.6 - 800 0.02 50 1 2.5 1 2.5 2 40 3000,500,200,0 

2 30 10 0.4 0.5 700 0.01 30 0.177 2.5 0.177 2.5 2 20 5000,500,200,0 

3 - 35 - 0.8 900 0.015 40 0.064 2.5 0.064 2.5 2 30 4000,600,300,0 

  
gpm πpm 

p hp bp βp Rp 
dpt 

Product 1 2 1 2 1 2 3 4 5 6 

M
ach

in
e 

1 2500 - 6 - 1 2 25 1 2 3500 4000 1500 2500 1000 5000 

2 1000 1500 8 9 2 3 40 2 3 2500 2000 1500 1500 3500 3500 

3 - 3000 - 10                       
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After algorithm tuning with the meta-calibration method (execution time is 1000 Sec.), the 

selected values are population size = 25, selection pressure = 5, ne = 4, and pm = 0.04. The 

problem is solved with the genetic algorithm and the results are presented in Table 3.2, where the 

value of the objective function is 462,832. The solution time was set to 30 minutes and the 

solution reported in this Table, is the best one among 30 replications. Note that on longer runs up 

to 5 hours, no better solution was found. The violation penalty for the PM budget is 10. 

 

Table 3.2: The best solution found by the genetic algorithm. 

 T  1 2 3 4 5 6 

PM levels 

M=1 1 1 1 1 1 1 

M=2 2 2 1 2 1 2 

M=3 2 2 3 2 3 2 

Number of 
process 
Inspections 

M=1 20 21 22 23 23 23 

M=2 13 17 20 23 24 26 

M=3 9 12 16 18 21 23 

Production 
Levels 

P=1, M=1 2168 2080 2013 1961 1922 1893 

P=1, M=2 983 974 967 957 951 630 

P=1, M=3 0 0 0 0 0 0 

P=2, M=1 0 0 0 0 0 0 

P=2, M=2 0 0 0 0 0 467 

P=2, M=3 2500 2000 1500 2238 2904 2891 

Setups 

P=1, M=1 1 1 1 1 1 1 

P=1, M=2 1 1 1 1 1 1 

P=1, M=3 0 0 0 0 0 0 

P=2, M=1 0 0 0 0 0 0 

P=2, M=2 0 0 0 0 0 1 

P=2, M=3 1 1 1 1 1 1 

Backorders 
P=1 349 1295 0 0 0 1 

P=2 0 0 0 0 0 0 

Inventories P=1 0 0 185 603 2476 0 
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P=2 0 0 0 738 142 0 

 

Table 3.3 shows the effect of the different PM budget levels on the production, maintenance, 

and quality systems.  

 

Table 3.3: The effect of different maintenance cost limitations on the system. 

PMBmt Total cost TCPS TCMS TCQS Optimal PM plan 

250 507470 333846 93493 80131 2,2,3,2,2,2,3,3,2,3,3,3,3,3,3,3,3,3 

500 474715 314332 82036 78347 1,1,1,1,2,2,3,3,3,3,3,2,3,3,3,3,2,3 

750 466906 311765 78219 76923 1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3 

1000 462832 311384 77075 74373 1,1,1,1,1,1,2,2,1,2,1,2,2,2,3,2,3,2 

1250 462680 311403 77416 73861 1,1,1,1,1,1,2,3,1,2,2,2,2,1,3,2,2,2 

1500 459190 310889 76130 72170 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,1 

2000 456547 310648 76060 69839 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

2500 456547 310648 76060 69839 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

3000 395486 290681 51473 53332 1,0,1,1,0,1,1,3,1,1,3,1,1,3,1,1,3,1 

 

Increasing the maintenance budget reduces all cost components. However, in some cases, 

higher PM levels may not be compensated by the decrease in the other costs and so; there would 

be an optimal maintenance point that the proposed model is able to find it. The large savings for 

small PMB values are mainly because of the significance of the corrective maintenance in the 

process. The economic consequences of downtime are very big and even low-cost preventive 

maintenances have chief impacts on the expected number of failures. In Fig. 3.3, the effect of the 

initial age and the number of quality inspections on the duration of time that the machine remains 

in a normal state is presented (for the first machine). We see that by increasing the initial age of 

the machine, the expected duration of the normal operating state diminishes. The process 

inspections help to maintain the machine in an in-control state, but increasing the number of 

quality inspections cannot be justified because of its cost. Such an impact is presented in Fig. 3.4. 
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The graph is based on data of the first machine. When the machine age before PM is higher, more 

process inspections are required. 

 

Fig. 3.3: Effect of the initial age of machine on the duration of normal working state. 

In this figure, more frequent quality inspections diminish the average time of out-of-control 

state. However, increasing the residual life after PM quickly diminishes the time of the normal 

operational state.  
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Fig. 3.4: The effect of process inspections on the quality cost. 

 

According to the obtained results, the quality cost quickly increases when the number of 

quality inspections reduces to the very small numbers (like 0 and 1 at the left ide of the optimal 

number of process inspections), but at the right-side, the quality cost increases slightly. This 

graph states that a conservative inspection plan with fewer numbers of inspections may be very 

risky.  

As illustrated in Fig. 3.5, older machines are more responsive to maintenance as they show a 

higher cost reduction by the same PM costs. Therefore, in a system with resource limitations, the 

priority of high level maintenances is yielded to more risky components.  
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Fig. 3.5: Impact of maintenance level on the total cost of the quality system. 

 

According to Fig. 3.5, when the residual life after PM is high, the machine is less responsive 

to low-level maintenances. Reductions in the total quality cost with low-level PM (smaller PM 

costs) in old machines are almost negligible. But, younger machines are good choices for 

lowlevel maintenances.  

Availability of the machine defined as the rate of remaining time after minimal repairs, and 

its reliability is significantly influenced by the maintenance. Fig. 3.6 shows the machine 

availability rate as a function of its age. In machine 3, increasing the age has resulted in 

completely unavailable machine that should be considered in production capacity and lot-

scheduling.  
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Fig. 3.6: Effect of the machine age on its availability rate. 

 

Several factors, such as reworking cost, quality checking costs, inspection and adjustment 

costs influence on the optimal number of process inspections. Machine deteriorations are 

followed by the higher number of process inspections. This issue is illustrated in Fig. 3.7.  
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Fig. 3.7: The optimal number of process inspections as a function of the machine age. 

 

Process inspections can relief the effect of aging in processes.  The optimal number of 

inspections linearly increases with the residual age after PM. 

3.6. Conclusions 

Production planning, maintenance scheduling and quality systems are three key functions in 

manufacturing systems. There are strong interactions between these systems, but this link is 

generally neglected in the literature. Considering the large diversity of models in real-life 

applications concerning production, maintenance, or quality, just a limited number of industrial 

applications are addressed in joint scheduling. In this paper, an age-based imperfect maintenance 

is integrated with lot-scheduling problem while considering the number of process inspections of 

the quality system as a decision variable. The production system is composed of several 

machines and multiple products an each machine has a set of maintenance levels with different 
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costs and various impacts on the system. In our discrete time maintenance model, a PM can be 

performed at the beginning of each period and finding the optimal maintenance plan in a 

constrained system is a difficult problem and has real-life applications. The model is formulated 

and evaluation of costs and interacting factors is explained. Also, a solution method based on 

genetic algorithms is presented and a sensitivity analysis is conducted. According to the 

numerical analysis, we saw that the maintenance limitation (PM budget), the deterioration and 

failure functions, and the time and the cost of preventive and corrective maintenance respectively 

have the greatest effects on the optimal PM plan. These results interpret the robustness and 

sensitivity of the solutions and indicate how the optimal solution changes with them. In relation 

to the lot-sizing part of problem, the processing rates and the availability times completely 

change the optimal solution of this problem. 

Considering the complexity of the integrated models and the huge size of the solution spaces, 

developing efficient solution methods is important in real applications of the model. Also, the 

model can be extended to involve the cases of assembly and disassembly systems in which the 

products are linked together as elements of a sub-assembly. 
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Chapter Four: Optimization Methods 

This chapter is dedicated to the article entitled “A memetic algorithm with population 

management to solve an integrated production, maintenance, and quality planning problem” is 

submitted to IIE Transactions in January 2016. 

 

The titles, figures, and mathematical formulations have been revised to keep the text 

consistency through the thesis. In the submitted version, the mathematical model and the data of 

the sample problem are included as an appendix.   

 

The sample problem and solution results presented in this section correspond to the profit 

maximization model of chapter II. However, similar results (in terms of the algorithm efficiency) 

are obtained when applying the algorithm to the model of chapter III. These results are 

summarized in appendix B. 
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Résumé 

Au cours des dernières années, la planification intégrée de la production, de la maintenance, 

et la  qualité ont suscité l'intérêt de plusieurs chercheurs. Ces problèmes intégrés sont très 

difficiles à résoudre. Par conséquent, afin d'exploiter les avantages des modèles intégrés, il faut 

développer des méthodes de résolution efficaces. La gestion de la population dans les algorithmes 

évolutionnaires a un impact sur la qualité des algorithmes. Dans cet article, nous proposons un 

algorithme mimétique avec gestion  de la population. Le modèle étudié permet d’intégrer 

l'ordonnancement  des lots et la planification de la maintenance imparfaite basé sur l'âge avec des 

aspects de qualité en considérant des systèmes imparfaits qui se détériorent avec le temps. La 

méthode de résolution proposée se compose d’un algorithme génétique bénéficiant  des méthodes 

de recherche locale et, plusieurs outils de gestion de la population sont considérés pour éviter la 

convergence prématurée, ou  pour améliorer la qualité des solutions. La mesure de la diversité de 

la population, l’utilisation des stratégies d'intensification et de diversification, l’exploitation d’un 

logiciel d'optimisation comme une méthode exclusive de problème, ainsi que l'intégration de 

l'algorithme génétique avec des méthodes de recherche avec tabous et Nelder-Mead sont les 

principales caractéristiques de l'approche proposée. Des comparaisons de l'algorithme avec des 

heuristiques existantes montrent que l'approche proposée est plus performante en termes de temps 

de résolution et de qualité des solutions. 

Mots clés 

Production, Maintenance, Qualité, Algorithme mimétique, Gestion de la population, 

Diversité 
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Abstract 

During the recent years, integration of production planning, maintenance scheduling, and the 

quality system parameters in a single model has drawn the interest of several researchers, but 

generally, such joint problems are very difficult to be solved in a reasonable time or effort. 

Therefore, to exploit the benefits of joint models, we need to develop efficient solution methods. 

Population management in evolutionary algorithms impacts on the quality of the algorithms. In 

this paper, we propose a memetic algorithm with population management to solve a joint model 

integrating lot-sizing and age based imperfect maintenance with quality aspects in deteriorating 

systems. More specifically, a genetic algorithm is hybridized with local search methods and in 

the meantime; several population management tools are considered to avoid premature 

convergence or to improve the quality of the solutions. Measuring the population diversity, using 

intensification and diversification strategies, exploiting an optimization package as a problem 

specific method in memetic algorithm, and integrating genetic algorithm with Nelder-Mead and 

Tabu-search methods are the main specifications of the proposed approach. Comprehensive 

experiments and comparison of the algorithm with existing heuristics are provided. The proposed 

approach represents better performance in terms of the solution time and quality. 

Keywords 

Production, Maintenance, Quality, Memetic algorithm, Population management, Diversity 

4.1. Introduction 

In this paper, first, the value of integration of production planning and maintenance 

scheduling is addressed. Then, the solution methods used in solving joint models are discussed. 

Finally, the objectives and the proposed algorithm are introduced.  
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4.1.1. Integration of production and maintenance in imperfect systems 

The idea of integrating production planning and maintenance scheduling with imperfect 

systems is motivated by the need to coordinate the complex interactions between different 

functions. Production, maintenance and quality systems strongly interact (Nourelfath et al., 

2016). Existing literature on integration highlights the significance of improvements achieved by 

the joint models (Xiang, 2013; Cassady et al., 2000; Kenné, Gharbi, and Beit, 2007). This 

approach is a beneficiary of the whole system (Ben-Daya and Duffuaa, 1995; Ben-Daya, 2007; 

Lou, Cheng, and Ji, 2015; Hadidi, Al-Turki, and Abdur-Rahim, 2012; Suliman and Jawad, 2012; 

Sung and Ock, 1992; Cassady and Kutanoglu, 2003 and 2005; Pandey, Kulkarni, and Vrat, 2011; 

and Nourelfath, Nahas, and Ben-Daya, 2016) and improves the productivity (Cassady et al., 

2000; Kenné, Gharbi, and Beit 2007) or the profitability (Chen, 2013; Beheshti, Nourelfath, and 

Gendreau, 2014). The model developed by (Brandolese et al., 1996) uses integrated production-

maintenance scheduling to minimize the total cost and plant utilization in a system composed of 

flexible parallel machines assigned to production of several products in a single stage. 

However, such joint models are generally non-linear and difficult to be solved in a 

reasonable time or with rational computational effort. Exploiting the benefits of integrated 

models necessitates the development of efficient solution methods. In the next section, some 

solution approaches used in solving the joint models are discussed. 

4.1.2. Solution methods of integrated models and application of memetic algorithms  

Maravelias and Sung (2009) classified the solution methods in solving integrated problems 

into: (a) hierarchical methods, (b) iterative methods, and (c) full-space methods. In the first two 

methods, the problem is decomposed into two smaller (master and slave) sub-problems. Full-

space methods try to solve directly the integrated problem. Some examples of the solution 

methods used in solving the integrated problems are genetic algorithms (Sortrakul, Nachtmann, 

and Cassady, 2005), tabu-search method (Pineyro and Viera, 2010), approximation of non-linear 
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functions (Lee and Rosenblatt, 1989), iterative solutions (Aghezzaf, Jamali, and Ait-Kadi, 2007; 

Dhouib, Gharbi, and BenAziza, 2012; Suliman and Jawad, 2012), approximate algorithm based 

on lagrangian decomposition (Aghezzaf and Najid, 2008; Alaoui-Selsouli, Mohafid and Najid, 

2012), variable neighborhood search (Machani and Nourelfath, 2012), simulation based methods 

(Roux et al., 2013; Liao and Chen, 2003), hybridization of genetic algorithm with tabu-search 

(Gopalakrishnan, Mohan, and He, 2001), chaotic partial swarm optimization (Leng, Ren, and 

Gao, 2006), memetic algorithms (Layegh, Jolai, and Amalnik, 2009; Sörensen and Sevaux, 2006; 

Franca, Mendes, and Moscato, 2001), simulated annealing (Loukil, Taghem, and Fortemps, 

2007), harmony search (Zammori, Braglia, and Castellano, 2014), and ant colony optimization 

(Samrout et al., 2005, Berrichi et al., 2010). Moghaddam and Usher (2011) compared the 

efficiency and accuracy of exact and heuristic algorithms and concluded that the solution time of 

exact methods exponentially increases by the problem size, whereas the solution time in heuristic 

methods is almost constant and considerably low. They proposed heuristic methods for large 

problems. Iravani and Duenyas (2002) formulated the joint production inventory system in a 

single machine deteriorating system using a Markov decision structure and showed that the 

performance of dis-integrated policies can be inadequate. Modeling with Markov decision 

process and using integer programming formulation is also considered in the paper of (Aramon 

Bajestani et al., 2014) for joint scheduling in a multi-machine deteriorating system. According to 

them, online condition monitoring in maintenance and production planning has reduced the costs 

to 21%. 

As we see, evolutionary algorithms (EAs) have been widely and successfully used in solving 

difficult and large problems. Lacksonen (2001) compared genetic algorithm, Hooke-Jeeves 

pattern search, Nelder-Mead algorithm (NM), and simulated annealing in solving different 

discrete optimization problems and reported that GA was the most robust as it founds near 

optimal solution of all test problems, but it requires more replications. Among the existing 

evolutionary algorithms, MAs have been increasingly employed in solving problems in 

operations research and computer sciences (Hart, Krasnogor, and Smith 2004). Memetic 

algorithms exploit the benefits of integrating population-based search and local improvement 

methods. Merz (2000) showed that by such a combination, the power of EA is considerably 

improved. Efficiency and robustness of MAs in solving complex planning and scheduling 
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problems and their capability in balancing between exploitation and exploration are our 

motivation in adopting a memetic algorithm to solve the integrated production-maintenance 

problem.   

4.1.3. Objectives 

The literature review first, illuminates the value of joint scheduling and shows that just a few 

papers have addressed the integration of production planning and maintenance scheduling in 

imperfect systems, and second, underlines the gap between the theory and application of joint 

models. To the best of our knowledge, very few implementations of joint models have been 

reported yet. Neglected the importance of interactions between planning functions, the novelty of 

the research resulted in multiple unaddressed issues in real life problems, complexity of the 

models resulted in hardness of solving them, and the inadequacy of general insights to help 

practitioners in shop-floor decisions are the main grounds of the gap between theory and 

application of joint models. As the main contribution of this paper, we develop a solution method 

based on memetic algorithms for an integrated problem from the literature. In the meantime, we 

implement innovative strategies to improve the algorithm efficiency. For the first time in similar 

problem, we not only make use the properties of good solutions (known as positive knowledge) 

but also, the characteristics of poor solutions (negative knowledge) in algorithm transitions. The 

proposed method uses population management to maintain the diversity during the solution 

process. Hybridization of genetic algorithm with local search methods is carried out in two 

points. First, using CPLEX to solve a part of the model that is a linear program, and then, we use 

Nelder-Mead or tabu-search algorithms to enhance its performance.  

The rest of this paper is organized as follows. In section 4.2, the integrated model is 

introduced and the problem of solving definition discusses the integrated production-maintenance 

scheduling problem. Section 4.3 is presents the solution method and search management tools 

and section 4.4 provides a comprehensive examination of the algorithm performance and 

comparisons. Section 4.5 includes our concluding remarks. 
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4.2. Problem definition and solution method 

In this section, first, a general explanation of the joint production and maintenance model in 

imperfect systems is presented and then, a solution method is introduced.  

4.2.1. Joint scheduling model 

Integration of multiple decisions in a single model is an appropriate way to deal with the 

interactions between production planning, maintenance scheduling and quality control. The main 

objective in this paper is to implement existing, and novel strategies used in combinatorial 

optimization to develop efficient solution methods to an integrated model proposed in (Beheshti 

et al., 2014). They proposed a profit maximization model to integrate the three functions in 

imperfect systems. The model addresses the optimal maintenance schedule as well as the 

production lot sizes and selling levels, such that the variable demands are met. It takes into 

account imperfect production system and time-varying costs in the context of age-based 

imperfect maintenance. Dealing with degrading machines and imperfectness of maintenance as 

notable properties of real systems, introducing multiple maintenance options, industrial 

applications of the model, and quantifying the link between maintenance and quality that may be 

used, for example, in six-sigma projects, are the main motivations of selection the model. The 

mathematical formulation of the joint model and its explanation can be found in chapter II. 

4.2.2. Solution method and its features 

In order to exploit the benefits of integration, it is essential to develop efficient solution 

methods for joint problems. The literature reported the good performance of the memetic 

algorithm in solving complicated models. Introduced by Moscato and Norman (1989), Memetic 

algorithm (also called hybrid genetic algorithms or genetic local search) is a population-based 
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approach that combines GA with problem specific heuristics or local search methods. Some of its 

recent implementations are Schemeleva et al. (2012), Cheng et al. (2011), Layegh et al. (2009), 

Boudia and Prins (2009). A literature review of memetic algorithms can be found in Neri and 

Cotta (2012). Memetic algorithms are also employed in solving production-maintenance 

problems (França et al., 2001). The literature shows the importance of preserving the population 

diversity on efficiency and productivity of a population-based heuristics (Laguna et al., 1999, 

Ferland et al., 2001). Vidal et al. (2013, 2014) reported an impressive increase in the algorithm’s 

efficiency in population management. Hertz and Widmer (2003) discussed that maintaining the 

population diversity is critical in efficiency of evolutionary algorithms. This concern is even 

more important in memetic algorithms, because the local search forces the exploration to focus 

on some restricted regions. The concept of a memetic algorithm with population management 

(MAPM) was first introduced by Sörensen and Sevaux (2006), where the aim was to dynamically 

preserve the diversity of a small population of high-quality individuals and to avoid slow or 

premature convergence. Using numerical comparisons they showed that the MAPM outperforms 

very similar hybrid genetic algorithms without population management. Vidal et al. (2012) 

developed a hybrid genetic algorithm (HGA) for the multi-depot and periodic vehicle routing 

problem. They proposed a mechanism that addresses both the objective value and its contribution 

to population diversity in the evaluation of individuals. Lozano et al. (2008) took into account a 

replacement strategy to preserve the heterogeneity. On the other hand, calculating the diversity 

factor has its own significance. Nsakanda et al. (2007) showed that the method of measuring the 

population diversity has an important effect on the results and they proposed a new approach 

based on computing the distance and the similarity of chromosomes. Vidal et al. (2012) used the 

Hamming distance method to a set of close neighbors. In Lozano et al. (2008), the diversity 

contribution of a chromosome is defined as the distance of an offspring to its nearest neighbor.  

In this article, a memetic algorithm with population management for the integrated 

production-maintenance problem is proposed. The algorithm employs CPLEX optimization 

package to solve the linear part of the problem, and in the meantime, it exploits Nelder-Mead or 

tabu-search methods to improve the performance. Population management strategies are used to 

well-organize the solution process and both positive and negative knowledge (information 

extracted from better and worse solutions) are used in the solution process. Intensification of 
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good solutions, diversification of the population, adaptive control of the algorithm parameters, 

and survivor selection based on the contribution of individuals in the population heterogeneity 

are the implemented strategies. Performance indicators (the solution time and quality, and the 

algorithm robustness) are used to compare it to other heuristics or different configurations of 

MAPM. 

4.3. Memetic algorithm with population management 

Encoding the solutions in a chromosome structure, generation of the first population, parent 

selection, crossover operator, a function for propagating the search process in the solution space, 

and selecting survivors that contribute in the next generation are the standard features of every 

genetic algorithm that are explained in the next sections. For more details on genetic algorithms, 

one can refer to Reeves (1997) and Reeves (2010). Memetic algorithms are combination of GA 

with local search methods. We have implemented this combination in two phases, first, using 

CPLEX to solve the linear part of the problem and second, using Nelder-Mead method to 

improve the algorithm efficiency. It also, utilizes population management strategies to maintain 

the diversity. In this section, first we present the process flow of the MAPM and then, we explain 

in detail the implemented features and genetic operators. 

4.3.1. MAPM algorithm 

The process flow of MAPM is presented in Fig. 4.1. The solution starts with parameter 

calibration. Then, after the creation of the initial generation, the population diversity is evaluated 

the dynamic parameters are assigned to control the diversity. Then, a child is created either by 

crossover, intensification of good solutions, or diversification of the population. Each 

chromosome evaluation comes with solving the linear part of the model with CPLEX. The child 

goes through an improvement process (education) with Nelder-Mead or tabu-search algorithms. 

Then, the solution will be added to the population until the population size is doubled. At this 
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time, the survivor selection is initiated to remove some solutions before starting the next iteration. 

Selection of survivors is based on the biased fitness, which considers both the objective function 

and the chromosome diversity contribution. A maximum solution time determines the stop 

condition of the algorithm.  

 

• Parameter calibration (§ 4.3.11) 

• Generate the initial population (§ 4.3.4)) 

• Do (Solution process) 

o Evaluate the population diversity (§ 4.3.5) 

o Update the dynamic parameters (§ 4.3.11) 

o Do (Generation of the next population) 

 Generate a child by 

o Crossover (§ 4.3.7) 

o Intensification of top-half solutions of the 

population (§ 4.3.8) 

o Diversification of the whole population (§ 4.3.8) 

 Perform local search on the child (§ 4.3.9) 

 Add the child to the population 

o Loop until the size of the population is doubled 

o Perform survivor selection (§ 4.3.10) 

• Loop until the stop condition is satisfied 

• Return the best solution 

Fig. 4.1: Process flow of MAPM. 
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4.3.2. Solution encoding and search space 

Taking into account the mathematical formulation of the integrated profit maximization 

problem (Chapter II), the decision variables are the maintenance plan ( ), lot-schedules ( ), 

backorders ( ), setup variables ( ), inventory levels of conforming and nonconforming 

products (  and ) And the sales level of conforming and nonconforming items (  and 

), where p is the index of products (from 1 to P), t is the index of periods (from 1 to T), and k 

is the index of PM intrusions in a period (from 1 to M)., where the elements are the PM options 

for each maintenance (integers between 1 to Q, where Q is the total number of maintenance 

levels). Investigation of the model shows that, given a PM schedule, the problem reduces to a 

linear mixed integer program (MIP) that can be solved using existing methods. Solving this MIP 

yields the exact value of the other decision variables. Therefore, each PM schedule as a 

chromosome corresponds to a complete solution. For example, ̂ = [2, 0, 1, 0, 0, 2, 1, 2, 0] is a 

chromosome (a PM schedule or a solution) of a problem with T = 3 periods and M = 3 PM per 

period, where PM options are {0, 1, and 2}. In this example 2, 0, and 1 are PM levels in the first 

period, etc.  

4.3.3. Evaluation of chromosomes 

To extract a full solution out of a chromosome, the generic procedure of Fig. 4.2 is 

presented.  
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• Given a chromosome ̂, for each interval in each period:  

o Calculate the machine age; wmt, ymt. 

o Evaluate the shift probabilities; 	 . 

o Compute the cost of preventive maintenance, inspection, restoration, and minimal 

repair (terms of the objective function). 

o Determine the average nonconformity rates and the available production times; 

APTmt. 

• Sub-problem formation; given defective rate and APTt, model the related lot-scheduling 

problem using first and second terms of the objective function and the constraints  

• Solve the MIP with CPLEX and get the objective and the value of decision variables 

• Calculate the total objective value 

Fig. 4.2: Evaluation of chromosomes. 

4.3.4. Initialization of the population 

The population size (λ) is an important factor affecting the scalability and performance of 

evolutionary algorithms. Experiments show that large population sizes are not necessary and 

many authors suggest that a small population such as 30 is enough to produce satisfactory results 

(Reeves, 1997). In this section, the population is determined in the calibration process (between 

10 and 50. The initial population is generated according to a uniform random process. 

4.3.5. Population diversity and distance measurement methods 

To prevent premature convergence of the algorithm, the population diversity is controlled to 

stay above a minimum allowed range. Each time it falls below the limit, certain parameters of the 

algorithm are modified such that it generates more diverse solutions. These adjustments and 

related issues are explained in the next sections. Shannon entropy originated from information 
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theory is one of the methods used in the literature to quantify the population diversity in genetic 

algorithms (San Jose-Revuelta, 2007; Guchait et al., 2013). Furthermore, in intensification and 

diversification of the solutions, we need to quantify the distance between two chromosomes. In 

this section, Shannon entropy and the general form of the distance function; Minkowski distance 

method (Yoon and Kim, 2013) is utilized to quantify the population diversity and the distance 

between chromosomes.  

Given the number of possible genetic values (M), and the length of chromosome (L), the 

entropy of ith value in location j is = −	 ln	 		 > 0
0		 = 0 	, where 	  is the occurrence rate 

of ith value in location j, and ln is the logarithm function. So, the normalized entropy of 

population P is the average of all entropies divided by the maximum entropy i.e.  

= ∑ ∑ .  (5.1) 

Note that the maximum entropy in a population (when all the occurrence rates are the same) 

is	− .  

The normalized distance between two solutions A and B; based on the Minkowski distance 

method is 

∆ , = ∑ | | /
∆∙ /  (5.2) 

where ai and bi are ith genes in A and B, r is the parameter of the distance function, ∆ is the 

greatest difference between gene values, and ∆ ∙ /  is the maximum possible distance between 

two chromosomes. Note that, r = 1 in this function returns the Manhattan distance, r = 2 

corresponds to the Euclidian distance, and r  ∞ is related to the Chebyshev distance.  

The distance between solution A and population P is defined as the normalized minimum 

distance between A and the population members, i.e.  

, = min∈ ∆ ,  (4.3) 
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4.3.6. Neighborhood structure 

For a given solution A, a neighbor point B is a chromosome that one of its genes is only one 

unit different from A. In this case; the distance between A and B (neighborhood circle) is 

∆ , = ∆ ∙ / . In other words, A and B are adjacent if they are in the neighborhood circle. 

For example, B = [2, 0, 0, 0, 0, 2, 1, 2, 0] and C = [2, 0, 2, 0, 0, 2, 1, 2, 0] are two neighbors of 

A= [2, 0, 1, 0, 0, 2, 1, 2, 0].  

4.3.7. Selection and crossover 

The selection process takes the advantage of a tournament method (Reeves, 2003) with 

selection pressure  and picks the parents by a uniform probability function. Selection is based 

on the fitness of individuals. Then, the two parents are combined to generate a child. Among the 

existing methods, uniform crossover that is considered in this paper has the flexibility to handle 

the amount of disruptions by its recombination parameter (Pr). This parameter is used to control 

the bias of reproduction toward parents. By increasing it, the similarity of child j to parent j (j = 1 

or 2) increases. Fig. 4.3 shows an example of uniform crossover. On the other hand, the 

probability of calling the crossover process is controlled by another parameter Pc. The first 

offspring is considered as the output of this operator. 

 

Parent a a1 a2 a3 a4 a5 a6 

Parent b b1 b2 b3 b4 b5 b6 

Child a1 b2 a3 a4 b5 b6 

Fig. 4.3: Uniform crossover. 

In crossover, parent selection, and the move strategy in the tabu-search algorithm, other 

approaches are tested and compared. We did not found significant difference between uniform, 

one-point, two-point, and three-parent crossover methods. Also, the tournament method in parent 
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selection procedure performed slightly better than the roulette wheel method but there was no 

significant difference between the tournament and the universal sampling method. The move in 

tabu-search algorithm (the neighborhood selection strategy) has two parameters; the 

neighborhood radius and the number of randomly generated neighbors that participate in the 

selection process. The best value of these parameters (along with the other parameters of the 

algorithm) is selected in the calibration process.  

4.3.8. Intensification and diversification strategies 

The objectives of intensification and diversification are to ensure that the best solution of the 

current search space is found and also, to force the search process to investigate not-visited areas. 

Intensification uses the data of top-half solutions, whereas diversification considers the whole 

population. The method is based on the distance between the solutions and the current 

population. In this approach, several random chromosomes are generated and their distance to the 

current population is calculated. Distance measurement is based on Minkowski method that is 

explained in section 4.3.4. In case of intensification, a solution with the minimum distance, and in 

case of diversification, a solution with the maximum distance is selected. The intensification-

diversification power; ζ is the number of solutions that compete in the selection process. 

4.3.9. Local search methods 

Memetic algorithms (MA) are integration of the genetic algorithms (GA) and local search 

approaches. The proposed method exploits this advantage in two phases of the algorithm, first; 

the evaluation of each chromosome is comprised of solving a mixed integer problem with the 

existing methods; and second, we make use of one of the two proposed alternatives; the Nelder-

Mead algorithm (NM) or the tabu-search method (TS) to improve the performance of the 

evolutionary algorithm (EA).  
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4.3.9.1. Using CPLEX to solve the linear part of the problem 

As explained in section 4.3.1, just a part of the decision variables are encoded in the 

chromosome (partial encoding) and the exact value of the other variables would be found using 

an existing solver. In section 4.3.2, the evaluation of chromosomes is discussed and the CPLEX 

software is suggested to solve the related MIP model.  

4.3.9.2. Using Nelder-Mead algorithm as local search 

Nelder-Mead algorithm (NM) introduced by Nelder and Mead (1965) is a search method to 

optimize functions whose derivatives are difficult to evaluate. The method is used in solving 

different problems, for example, Khojaste Sarakhsi et al. (2016) utilized it to solve a lot-

scheduling problem. Fig. 4.4 shows the algorithm flowchart. The objective in NM is to exploit 

the information from several neighbor solutions in transitions toward the local optima. In this 

method, we consider not only better solutions (positive knowledge), but also the worse solutions 

(negative knowledge) to introduce three candidate moves. Then, the best answer among them is 

considered as the algorithm transition. The three candidates are (1) The contracted point (XC) that 

is the best neighbor, (2) The reflected point (XR) that is the reflection of the given solution one 

step in improvement direction, and (3) The expanded point (XE) which is the expansion of the 

given solution two steps in the improvement direction.  
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Given a solution p to be improved: 

1. Repeat 

1.1. Generate the sub-population P (N neighbor points of p) and evaluate them 

1.2. Determine the improvement (reflection) vector D 

For each gene position j ∈ {1,..., L}  

For each solution ̂ ∈ P 

If ̂ is better than p then =	 ̂ −	  ( ̂ , , and  are respectively jth 

elements of ̂, p, and D) 

Else =	 −	 ̂  
1.3. Determine the reflected point; XR, the expanded point; XE, and the contracted 

point; XC and modify them if needed 

i. XR = p + D 

ii. XE = p + 2×D 

iii. XC = best solution in P 

1.4. Move to the best solution among the candidates (p = max {XR, XE, XC}) 

2. Loop until the Stop Condition is satisfied (number of attempts that fail to improve 

the solution) 

Fig. 4.4: Nelder-Mead algorithm. 

 

For example, suppose that the given solution p is {1, 1, 3, 0, 2} and the two neighbors are  

̂  = {1, 1, 4, 0, 2} and ̂  = {1, 1, 3, 0, 1}, where ̂  > p and ̂  < p. So, the reflection vector, 

reflected point, and expanded point are respectively D = {0, 0, 1, 0, 1}, XR = p + D = {1, 1, 4, 0, 

3}, and XE = p +2 * D = {1, 1, 5, 0, 4}. In some cases, the generated solutions can be infeasible 

(because of the value of genes), accordingly; these genes will be modified to the nearest possible 

values. As this example shows, both good and bad solutions participate in determination of the 

next solution. In contrast to tabu-search in which the poor solution are discarded, NM exploits the 
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information from all evaluated points to determine the best move and also, it is not limited to 

move to one of neighbor points. 

4.3.9.3. Using tabu-search method as local search 

Tabu-search (TS) algorithm is successfully used to solve a wide variety of optimization 

problems (Gendreau and Potvin, 2003) and its aggressive capability makes it a good choice of 

local search in Memetic algorithms. Fig. 4.5 shows the general form of a tabu-search algorithm 

that is considered in this article. 

Given a solution p to be improved: 

1. Repeat 

1.1. Generate the sub-population P (N neighbor points of p) and evaluate them 

1.2. Determine the best neighbor solution ̂ in P 

1.3. Move to the best non-tabu solution (let p = ̂) 
1.4. Add p to the tabu list 

1.5. If the size of tabu list exceeds the allowed number (TLS), remove the oldest 

member from the list 

2. Loop until the stop condition is satisfied (number of attempts that fail to improve the 

solution) 

Fig. 4.5: Standard tabu-search algorithm. 

4.3.10. Survivor selection 

While the algorithm is running, the population size increases until it is doubled (2λ). At this 

moment, the iteration is completed, and before introducing the next generation, some individuals 

should be discarded. The selection of survivors in MAPM is based on both their fitness and their 

contribution in the population diversity. Fitness of a chromosome is the value of the objective 
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function as presented in section 4.3.2, and contribution of a solution in the population diversity is 

the average distance between the chromosome and the population (section 4.3.4). Let us consider 

that Rf(p) and Rd(p) are respectively the rank of chromosome p in the population, based on its 

fitness and its diversity contribution. The biased fitness of p is B(p) = γ × Rf(p) + (1- γ) × Rd(p), 

where γ is the bias parameter (0 ≤ γ ≤ 1). Selection of survivors is based on the biased fitness and 

the parameter  increases during the algorithm execution such that, at the final phases of the 

solution process, higher priorities are yielded to the better solutions. This process helps to keep 

the diverse solutions, but it cannot introduce new genetic material to the population, so 

diversification (section 4.3.6) is considered to deal with this issue. 

4.3.11. Parameter calibration 

Metaheuristics and evolutionary algorithm have multiple parameters that should be assigned 

properly (parameter tuning) in order to improve the efficiency of the algorithm. Multiple 

interpretations of the efficiency criteria, tuning methods, structural and parametric tuning, and 

conceptual framework for parameter tuning and related issues are discussed in Eiben and Smith 

(2011). They show that the Meta-Calibration method (Mercer and Sampson 1978), works well 

especially in calibration of genetic algorithms (Smith, 2012). The algorithm has both static and 

dynamic parameters. The static parameters do not change after initialization, whereas the 

dynamic parameters will be updated according to the population diversity and the remaining 

solution time. Static parameters are determined by the Meta - calibration method. We handle it as 

an optimization problem with real value encoding method in chromosome representation of the 

parameters. After introducing a random population (of size 5) of parameter vectors, the base level 

algorithm is executed for a fixed duration of time (200 Sec). The capability of each vector is 

tested for several times (5 replications) and utility of a vector is considered as the average fitness 

of the final solutions. Then, using a general GA with the tournament method for parent selection 

(tournament size 2), one-point recombination (crossover probability 0.5), and swap method for 

mutation (mutation probability is 0.05), new vectors are introduced and the process is continued. 

The stop condition is the number of iterations (25). The best parameter vector is then considered 
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as the calibrated parameters of the algorithm. Table 4.1 shows the static parameters and their 

range of variations.  

 

Table 4.1: Static parameters. 

Parameter  From – to 

Population size λ 10 – 50 

Selection pressure Φ 2 – 5 

Intensification-diversification power ζ 0 – 1 

Stop condition in local search ItNI 1 – 50 

Minkowski R value in distance function r 0 – 3 

4.3.12. Adjustment of dynamic parameters 

Ye et al. (2010) showed that adaptive GA (dynamically adjusting the algorithm parameters) 

outperforms standard GA in optimization problems. In MAPM, by controlling the minimum 

entropy level (ψ) and the parameter of the biased fitness function, we initially force the algorithm 

to keep higher diversity levels (prohibiting the loss diversity) and then, we let them to linearly 

decrease by progressing the time. Each time that the population entropy is less than ψ, the 

algorithm is forced to improve the heterogeneity by decreasing the probability of local search 

(pe), crossover (pc), and intensification (pi) to the benefit of diversification (pd). Dynamic 

parameters, their variations range, and starting values are presented in Table 4.2. To increase a 

parameter, its value is replaced by (upper limit + current value) / 2 and to decrease a parameter, it 

is replaced by (lower limit + current value) / 2. Also, for ease of implementation, it is assumed 

that pc = pi. 
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Table 4.2: Dynamic parameters. 

Parameter  From – to Starting value 

Bias parameter in survivor selection γ 0.5 – 1 0.5 

Crossover probability pc 0 – 1 0.25 

Intensification probability pi 0 – 1 0.25 

Diversification probability pd 0 – 0.25 0. 5 

Minimum entropy level ψ 0 – 0.5 0.5 

4.4. Computational results 

This section illustrates the performance of the proposed algorithm and compares it to existing 

heuristics. Also, we show the advantage of population management in MAPM. The algorithm is 

implemented in VB.net and the numerical tests are performed on an Intel core i7 – 3.4 GHz with 

16 GB of RAM. 

4.4.1. The algorithms and heuristics 

Five different algorithms and heuristics used in this section are summarized in Table 4.3. 

MAPM-NM and MAPM-TS are the main approaches that respectively use NM and TS as local 

search. The third method is a stand-alone implementation of a tabu - search algorithm as 

explained in section 4.3.9. If TS fails to improve the solution in a certain number of iterations 

(defined by ItNI), a new start point is selected and the process continues. To show the effect of 

population management, we consider MAPM and MA, two memetic algorithms with and without 

population management. In these cases, local search (NM and TS but, not CPLEX) is disabled in 

order to underline the effect of population management on the performance. MA uses mutation 

instead of intensification-diversification processes, where the probability of mutation in a gene is 

controlled by parameter pm. 
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Table 4.3: The algorithm variants and heuristics. 

Abbreviation Description 

MAPM-NM A memetic algorithm with population management using the Nelder-Mead 
for local search 

MAPM-TS A memetic algorithm with population management using tabu-search for 
local search 

TS A Tabu-search algorithm as presented in section 4.3.9 

MAPM A memetic algorithm with population management (no local search) uses 
intensification, diversification and biased fitness in survivor selection 

MA A memetic algorithm without population management in which, 
intensification and diversification processes are replaced by a mutation 
operator (no local search) 

4.4.2. Test problems and size of the search space 

The data of a sample problem; called P1 with T = 12 periods, P = 2 products, M = 3 

maintenance per period, and Q = 4 PM levels is presented in Table 4.4. Moreover, a smaller 

version; P2 (with the first 6 periods of P1) and P3; a set of 50 random problems are also 

considered. The random problems are created by uniform randomization, where T ∈ (1…12), (M, 

P, and Q) ∈ (1…5), other data between 0.5 to 1.5 times the average data given for the first 

product in the first period. These instances are used to study the performance and robustness of 

the algorithm with different problem sizes. 

The specifications of the sample problems P1...P3 are summarized in Table 4.5. 
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Table 4.4: Problem data (P1). 

Product 
(p)  

dp
t πp

t bp
t hp

t sp
t PCp

t 

1 2 1 2 1 2 1 2 1 2 1 2 

P
er

io
d

 (
t)

 

1 50 116 67 124 31 51 4 11 441 845 182 319 

2 76 83 60 137 32 58 4 11 419 822 174 307 

3 82 95 60 123 30 50 4 12 436 844 172 315 

4 97 109 65 120 32 50 5 11 433 830 181 309 

5 95 87 69 136 31 51 4 10 428 824 170 309 

6 52 123 64 129 31 50 4 12 425 828 176 301 

7 67 86 68 128 30 57 5 10 444 804 176 315 

8 57 126 66 136 34 57 5 10 433 811 183 304 

9 61 109 68 123 31 54 5 10 424 815 173 301 

10 72 120 63 121 34 57 4 12 426 803 183 304 

11 51 128 60 125 34 55 4 12 445 840 177 319 

12 57 128 69 120 31 57 5 12 401 830 170 309 

k 1 2 3 4 5 Parameter Value Parameter Value 

CPM(k) 3000 2000 1000 500 0 CMR 500 L 1 

TPM(k) 0.02 0.015 0.01 0.005 0 TMR 0.02 λ 50 

g(k) 200 250    ν 40 φ 4 

α(k) 0.7 0.7    η 0.9 θ 30 

 4 5    ξ1 500 ρ 4 

      ξ2 3000   

  

Table 4.5: Sample problems. 

Problem Description Problem size 

P1 The sample problem presented in Table 4.4  4.7×1021 

P2 Data of the first 6 periods of P1 6.9×1010 

P3 Set of 50 random problems ≤1042 



Chapter IV. Optimization methods 

133 

 

4.4.3. Parameter settings for the joint scheduling problem 

The values of the algorithm parameters are set using the meta-calibration method of section 

4.3.11. With slight modifications, the parameter values; (λ, Φ, ζ, ItNI, r) related to the 

chromosome lengths (T×M) are:  

• (10, 3, 5, 10, 2)  for   T×M  ≤ 10 

• (15, 3, 5, 20, 2)  for 10 < T×M ≤ 20 

• (20, 5, 10, 30, 2) for 20 < T×M  ≤ 30 

• (40, 6, 25, 50, 2)  for 30 < T×M  ≤ 50 

The size of the tabu list in TS is set to the chromosome length, mutation probability in MA is 

pm = 0.05, and if not indicated, the considered solution time is 5×T×M×Q. 

4.4.4. The best solution of the test problems with different algorithms 

Problems P1 and P2 are solved with MAPM-NM, MAPM, and TS algorithms. The best and 

the average solution in 30 replications for each problem, the solution time, and the best 

chromosome (PM schedules) are presented in Table 4.6. The plans found by the MAPM-NM for 

all the test problems are the best solutions. The methods developed in this article are able to solve 

various types of the JPMQ problems. 
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Table 4.6: Solutions of the sample problems with different algorithms. 

  Algorithm 
Solution 

time 
Min 

objective 
Average 
objective 

Max 
objective 

Best PM plan 

P1 

MAPM-NM 

1080 

223032 223935 224932 

1,1,0,3,0,2,2,0,2,2,0,1,4,0,4,3,0,4,1,1,1,4,0,4,4,0,4,3,0,4,3,0,4,4,0,4 
MAPM-TS 221759 222817 224932 

MAPM 183568 201463 221720 

TS 220261 222461 224035 

P2 

MAPM-NM 

540 

106806 107998 109076 

2,0,4,3,0,4,4,0,4,3,0,4,4,0,4,3,0,4 
MAPM-TS 104519 106883 109076 

MAPM 76990 88872 101699 

TS 103937 106692 109076 
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4.4.5. Robustness of the algorithm 

Capability of the algorithm and the solution quality is also investigated in solving the set of 

50 random problems (P3) using MAPM-NM, MAPM-TS, TS, and MA algorithms. The 

proportion of times that the solution found by an algorithm was the best solution (the success 

rates) is shown in Table 4.7. 

Table 4.7: Average success rates in 50 random problems. 

MAPM-NM MAPM-TS TS MA 

Success rate 76% 32% 8% 0 

 

Accordingly, MAPM-NM yields the higher success rate among four algorithms and so, it can 

be conveniently used to solve the joint problem. Only in 12 out of 50 problems, the solution 

found by MAPM-NM was very close but not the best solution. By increasing the solution time, 

the gap between the success rates decrease, but almost in all cases, MAPM-NM yields better 

solutions. 

The results of 30 replications of MAPM-NM, MAPM-TS, and TS for P1 with two different 

solution times are shown in Figures 4.6 and 4.7.  
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Fig. 4.6: Results of 30 replications in 50 seconds. 

  

Fig. 4.7: Results of 30 replications in 200 seconds. 

 

130

140

150

160

170

180

190

200

210

220

0,5 1 1,5 2 2,5 3 3,5

O
b
je

ct
iv

e
v
a
lu

e
 (

T
h
o
u
sa

n
d
s)

M
A
P
M

-
N

M

M
A
P
M

-

T
S

T
S

Solution time = 50

130

140

150

160

170

180

190

200

210

220

0,5 1 1,5 2 2,5 3 3,5

O
b
je

ct
iv

e
v
a
lu

e
 (

T
h
o
u
sa

n
d
s)

M
A
P
M

-
N

M

M
A
P
M

-
T
S

T
S

Solution time = 200



Chapter IV. Optimization methods 

137 

 

In both cases, MAPM-NM outperforms MAPM-TS. The two variants of MAPM perform 

better than tabu-search algorithm and as expected, increasing the solution time has resulted in the 

improvement of the final solution (smaller total costs). The minimum, average, maximum and 

variance of the solutions are listed in Table 4.8. Similar results were obtained in different solution 

times and problems, therefore, we remark that the proposed algorithm is robust and, integration 

of genetic algorithm with a Nelder-Mead method has resulted in a better performance.  

Table 4.8: Solution data in different execution times (30 replications; P1). 

 Run time = 50 Sec. Run time = 200 Sec. 

 
MAPM-

NM 
MAPM-

TS 
TS 

MAPM-
NM 

MAPM-
TS 

TS 

Min 190859 155342 148174 216988 214902 211564 

Max 217227 214620 212720 220502 220000 219564 

Average 203841 187664 180018 218678 217160 216262 

Success rate 66.67% 16.67% 16.67% 60.00% 16.67% 23.33% 

Standard dev.  8413.3 17404.5 19434.3 1008.3 1621.9 2676.7 

  

The standard deviation values indicate the better performance of MAPM-NM, and small 

standard deviation compared to the average value shows the robustness of the algorithm. The 

average success rate in MAPM-NM is higher and in 20 out of 30 replications (in 50 Sec results) 

and in 18 out of 30 replications (in 200 Sec results) the solution of MAPM-NM was very close 

but not the best solution. 

4.4.6. Performance of local search methods 

The performance of tabu-search and Nelder-Mead algorithms are compared in 30 

replications of the algorithms for 200 Seconds. Fig. 4.8 shows the dispersion of the solutions. In a 

pairwise comparison, in all the cases (70%) the Nelder-Mead outperformed the tabu-search and 

as shown in this figure, range of the results in NM is very smaller while the quality of solutions is 
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also higher. Therefore, the Nelder-Mead method and extracting positive and negative knowledge 

in algorithm transitions has improved the performance. 

 

Fig.  4.8: Performance of NM and TS (P1). 

4.4.7. Evolution of the best solution and effect of the population management 

Figures 4.9 and 4.10 illustrate the evolution of the best solution in memetic algorithm with 

and without population management. Population diversity in MAPM smoothly reduces with the 

solution time, whereas in MA without population management, the heterogeneity is quickly lost 

(mutation probability is pm = 0.05). In MAPM, the best solution has quickly improved and the 

final solution is better than the results of MA.  
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Fig. 4.9: Evolution of the best solution and entropy variations in MAPM. 

 

Fig. 4.10: Evolution of the best solution and entropy variations in MA. 
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Using intensification and diversification strategies and maintaining the population diversity 

in MAPM has resulted in obtaining better solutions in each instant of time. In 30 replications of 

the two algorithms (for 200 Sec.), in 93% of the cases, MAPM has outperformed MA, and a 

statistical analysis (F-test) indicates a significant difference between the means of the two 

algorithms (F = 83.7 compared to FCRITICAL = 4). This fact can be seen in the distribution of the 

final solutions illustrated in Fig. 4.11. Good performance of MAPM compared to MA 

corresponds to the population management strategies, including the biased fitness, intensification, 

and diversification processes. 

 

 

Fig. 4.11: Distribution of solutions in 30 replications of MAPM and MA (problem P1). 
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level of integration is almost new in the literature, similar papers and so, the existing solution 

methods are very restricted. This study is the first one addressing a MAPM to solve joint 

problems in imperfect processes. The goal of population management is to balance between 

exploration and exploitation capabilities of population-based evolutionary algorithms. To carry 

out this idea, we adopted several strategies, including the diversity contribution of individuals in 

survival selection, inserting intensified or diversified solutions to maintain the heterogeneity, and 

adaptive control of diversity related parameters during the execution of the algorithm. Nelder-

Mead and tabu-search methods are proposed for local search while, the algorithm makes use of 

CPLEX to solve the linear part of the model. We also introduced an approach to exploit both 

positive and negative knowledge of the neighbor points. The results show that the MAPM-NM 

algorithm outperforms MA, TS and other configurations proposed in this section. Finally, several 

investigations are conducted and the impact of population management in the algorithm 

efficiency is demonstrated. The proposed algorithm is efficient in terms of solution time and 

quality, and it can solve different instances of the problem.  

Examining the performance of other heuristic methods such as ant colony optimization 

compared to the presented algorithm, and developing fast and robust methods for very large 

problems with multiple machines are proposed for the future studies. 
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Chapter Five: General Conclusions 

In this thesis the problem of joint production planning and maintenance scheduling in 

imperfect systems is studied. Production planning, maintenance scheduling, and quality systems 

decisions interact with each other and so, the optimality of the plans cannot be guaranteed if the 

interactions are not taken into consideration. Despite such strong relationships, these three 

systems are generally addressed separately in the literature as well as in industry. The increased 

level of competency between organizations and the enhanced request for improvement in the 

manufacturing industry has motivated the incorporation of those inter-relevant decisions in a joint 

model. integrated approach not only results in reduction of total cost, but also it may bring a 

higher quality and customer satisfaction levels. The first chapter of this thesis is dedicated to a 

general statement of the problem and investigation of the existing literature from different points 

of view. The research questions and the methodology are also discussed.  

In chapter two, we considered a single machine production system with a profit 

maximization objective. The machine is subject to deterioration of its conditions with time. Such 

degradation increases the risk of machine failure as well as the expected non-conformity rate. The 

machine has several PM levels that are distinguished by their time, cost, and effects on the 

machine. The discrete time maintenance models are broadly used in industries. In fact, a lot of 

maintenance systems schedule their operations at some specific times; between two consequent 

missions, in vacations, or when the workload is low. Therefore, the maintenance time for them is 
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not a decision variable, but, selecting the most appropriate maintenance alternative among a large 

number of possible scenarios for each PM intrusion is a challenging issue. Assuming a linear 

relationship between the cost of PM and the improvement in the machine state, we presented the 

methods for evaluating different costs and interaction factors and then, the joint model is 

formulated. The machine availability in influenced by the time of minimal repairs that are 

initiated after each machine failure and by the preventive maintenance time. Related to a PM 

plan, the model yields the expected available time in each production period. Then, a mixed 

integer linear model is solved to determine the exact value of the lot-sizes, inventory and 

backorder levels, and the setup decision variables. The results obtained from solving several 

random problems shows significant gaps between the profit of the joint model and the solutions 

by non-integrated and iterative approaches. In most of the production systems, the consequences 

of a random failure are much higher than the cost of and time of preventive maintenance. Our 

sensitivity analysis showed that the solutions are highly influenced by the cost and the time of 

minimal repair, the deterioration process and the failure function. Also, we presented the 

importance and the process of determining the optimal PM budget and we showed how 

deviations from this optimal point may influence on the cost or the profit.  Poor maintenance with 

lower cost increases the rate of machine failures and diminishes the availability of the machine. 

On the other hand, expending more in maintenance with selecting higher PM levels, the increased 

preventive maintenance cost cannot be compensated with the decrease in quality and corrective 

maintenance cost. In our first contribution, the impact of maintenance on the quality system as 

the expected non-conformity rate in relation to the machine age is taken into account. 

Then, in chapter Three, we addressed a joint model that involves decision variables of the 

quality system. Solving the problem yields the optimal number of quality inspections for each 

machine in each period. The optimal numbers of process inspections correspond not only to the 

maintenance plans but also to the production decisions. The production system is composed of 

several machines, and each machine has its own maintenance options. Considering all PM levels 

of all the machines, the total number of PM alternatives for each maintenance intrusion is very 

huge. On the other hand, performing PM is constrained to a limited budget, so the problem is to 

determine the optimal PM level for each machine such that the total cost of maintenance does not 

exceed the allowed budget. This maintenance limitation plays the role of economic dependency 
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between different components of a system. Evaluation of the optimal number of quality 

inspections regarding the effective age of machines and the production plans is discussed. The 

optimal inspection process is highly sensitive to the machine conditions and the deterioration 

function. The numerical example shows that reliability and availability of the machine are vastly 

influenced by the machine age and the maintenance plans. The genetic algorithm presented to 

solve the problem is able to find good solutions in a relatively short time. However, increasing 

the size of the problem resulted in slower improvement speed, underlines the need for more 

efficient solution methods. 

The joint models developed in chapters Two and Three correspond to nonlinear complicated 

programs that are very hard to solve in a reasonable time or computational effort. Specifically, 

the multi-machine multi-period problem with parameters related to the quality system is too 

difficult. The literature review revealed a significant gap between theory and application of joint 

models that one of its reasons returns to the difficulty of solving the joint problems. To exploit 

the benefits of the proposed approaches we need to bind an efficient solution method with the 

models. In section Four, we proposed a memetic algorithm with population management; MAPM 

that uses the Nelder-Mead algorithm. Memetic algorithms are the combination of GA with 

problem specific and local search methods. The MAPM exploits the benefits of such integration 

in two phases. First, each chromosome evaluation uses CPLEX to find the exact value of the lot-

sizing problem, and it also utilizes a Nelder-Mead method (in MAPM-NM), or a Tabu-search 

method (in MAPM-TS) to promote the search power of the genetic algorithm. The MAPM-NM 

method exploits not only the positive knowledge of good solutions, but also the negative 

knowledge of the poor solutions in the improvement process. The suggested MAPM is the first 

algorithm to solve the integrated production–maintenance planning problem in imperfect 

systems. The implemented population management is aimed to control the population diversity 

during the execution process. Its main objectives are to prevent premature convergence and to 

force the search process to examine the whole solution space. Diversification of the current 

population and intensification of the best solutions are designed to replace the blind mutation 

operator of the genetic algorithms. A set of 50 random problems is used to compare the 

performance of APM-NM and MAPM-TS with several meta-heuristics. The results show that 

MAPM-NM outperforms all other approaches and the gaps to the best solution in MAPM-NM 
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and MAPM-TS are respectively 0.5% and 6%. The random problems used in performance 

analysis belong to a wide range of problem sizes so; we remark that the method is capable to 

solve different instances of the joint problems. In MAPM-NM, both the solution quality in a 

limited execution time and the solution time to reach a targeted objective level are better. 

In the presented models, the machines and products are statistically and structurally 

independent from each other, but in real systems, the production decisions are relevant because of 

the final product structure and bill of materials. We considered the time and budget constraints in 

the maintenance model, and the production plans were subject to the availability of machines. In 

a large number of industries, the system components (products, machines, or available resources) 

have intrinsic correlations. For example, in case of systems with assembly-disassembly 

operations, the planning departments need to take into account not only the production flow 

dictated by the product structure, but also the buffers between consequent processes. These 

organizations are generally characterized with the large number of machines and so, they 

generally use a condition-based maintenance approach. In this scheme, the machines are 

inspected in certain instants of time and the PM alternatives are designed according to the 

machine state and operation-finance limits. These organizations may employ quality sampling 

plans to verify the production conformity. Integration of decisions in such systems will be an 

interesting issue for future extensions of this research. Also, developing heuristics and testing 

other solution methods, comparing their results with the solution methods proposed in this thesis, 

and taking into account well-known features of real system in joint models can be other windows 

of future studies in this context.  
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Appendix A 

Quadratic and mixed integer reformulations and a heuristic method for 

solving the model presented in chapter II 

Abstract 

Integration of interrelated decisions in a joint model (proposed in chapter Two) has resulted 

in a complicated problem that is very difficult to be solved in a rational effort. Exploiting the 

benefits of integration necessitates the development of efficient solution approaches. Here, the 

general features of the joint problems and the important considerations to be implemented in the 

solution methods are discussed. We propose a quadratic and a mixed integer reformulation for the 

joint problem along with a Nelder-Mead method to solve and compare the performance of the 

solution methods. These approaches are then used in solving a sample problem and the methods 

are compared in terms of their efficiency and quality of solutions. 

Keywords 

Integration, Production, Maintenance, Mixed Integer, Quadratic, Non-Linear Problem. 

A.1. Introduction 

Joint production, maintenance, and quality (JPMQ) problems, are complicated nonlinear 

models with discrete, not-differentiable, and non-convex search spaces, and so they generally are 

very difficult to be solved in a reasonable time. Most of the existing papers in this field are 
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nonlinear optimization models and the main solution methods are heuristics and evolutionary 

algorithms. Dhouib et al. (2012) studied joint scheduling in imperfect cell and considered a 

numerical solution procedure to solve the problem. Machani and Nourelfath (2012) proposed a 

variable neighborhood search for the joint noncyclical preventive maintenance scheduling in a 

single machine system. Mosinski et al. (2012) investigated a simulation approach to solve long 

and short term maintenance scheduling problem in a manufacturing line. The proposed model 

comprises a discrete optimization with several PM choices. Arora and Huang (1994) studied 

discrete non-linear problems and summarized various methods for solving them. Anandhakumar 

et al. (2011) modeled an Artificial Bee Colony (ABC) algorithm to solve the problem of 

generating maintenance schedules and compared it to a Discrete Particle Swarm Optimization. 

They discuss that ABC outperforms the latter approach in terms of performance and the solution 

quality.  

Our objective in this appendix is to develop linear and quadratic formulations and heuristic 

methods for the joint production, maintenance scheduling problem in single machine systems 

(the problem introduced in  chapter Two).  

In the next sections, we first explain the problem and the mathematical model. In section 

A.3, the quadratic and mixed integer formulations of the joint model are presented. In section A.4 

the solution methods are discussed and in section A.5, a numerical example and comparison of 

the solution methods are discussed. Finally, in section A.6 some concluding remarks are 

presented. 

A.2. Problem definition 

Production, maintenance, and quality decisions are strongly interacting with each other and 

their integration in one decision model can benefit the whole system and may result in better 

solutions. But generally, such a combination results in difficult nonlinear optimization problems 

that existing solution methods are not easily applicable to them. Therefore, exploiting the benefits 

of integrated models necessitates the development of efficient solution methods. The literature 
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review highlighted the need for development of capable solution methods. In this appendix, we 

consider the joint model of chapter two, integrating lot-sizing and imperfect preventive 

maintenance planning taking into account the quality aspects of an imperfect production system. 

The problem is the combination of lot sizing and a discrete-time maintenance that takes into 

account the impact of PM on both non-conformity rates (influencing on the quality system) and 

machine availabilities (influencing on the production planning problem). The system is composed 

of one machine and several products in a multi-period horizon, where the objective function 

maximizes the profit. There are several maintenance intrusions in each period. The cost and 

specifications of these PM options are different and so, they have various effects on the machine. 

It is assumed that the preventive maintenance reduces the effective age of the machine. Younger 

machines (with smaller effective ages) are more reliable, so the probability of machine failure 

and the probability of a shift to a deteriorated state are smaller. Therefore, the expected cost of 

corrective maintenance and quality-related problems are linked to the effective age of machine 

and this latter is subject to the maintenance schedule. By increasing the age of machine in a 

period, the probability of a shift to an out-of-control state increases. In the out-of-control state, 

the rate of nonconformity and the risk of a machine failure is higher. In real applications, the 

consequences of an unforeseen stop can be extremely high and it may result in stoppage of the 

whole or a part of production system. The evaluation methods and the mathematical model are 

developed and discussed in the previous section. 

It is shown that with an arbitrary PM schedule, one can apply the evaluation method and 

compute the expected available production time. Also, expected non-conformity rate depending 

on such a PM plan can be evaluated. Given these interacting factors, the nonlinear joint model 

reduces to a linear mixed-integer problem that can be solved using existing approaches. 

Our objective in this appendix is to propose quadratic programming (QP) and mixed integer 

linear formulations (MIP) to the discrete nonlinear optimization program discussed in chapter 

Two. The mixed integer linear models and certain type of the quadratic problems can be solved 

with existing methods (such as branch and bound) or solvers (such as Cplex). These approaches 

are not applicable to the larger problems because the problem size and the number of decision 
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variables exponentially increase with the model parameters. To find promising solutions for large 

problems, we have proposed a Nelder-Mad algorithm in section A.4. 

A.3. Quadratic and mixed integer formulations 

A.3.1. The general model 

The JPMQ model for the single machine systems presented in chapter Two incorporates all 

the cost components and the decision variables from the lot-sizing, maintenance, and quality 

systems in an integrated problem.  

Considering X; the set of all decision variables of the production system, Y the set of 

variables of the maintenance system, and Z the set of variables concerning to the quality system, 

the general representation of the integrated models (profit maximization problem) is as follows: 

	 − , − , ,  (A.1) 

Subject to 

, , <=>  (A.2) 

, <=>  (A.3) 

, , <=>  (A.4) 

In this general model, F(X) stands for the linear part of the objective function related to the 

lot scheduling problem, ,  is the cost of maintenance system as a function of maintenance 

and quality-related decisions (Y and Z), and , ,  is the cost of the quality system as a 

function of production, maintenance, and quality decision variables. It is assumed that the 

maintenance cost is independent from the production related decision. The cost of the quality 

system is subject to the maintenance decisions (it impacts on the production quality), production 

levels (in case of no production, quality cost is zero), and quality decisions themselves (length of 

sampling intervals, sample size etc.). First set of the constraint indicated with , ,  concerns 
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production planning part of the model, ,  is the set of maintenance system constraints, and 

, ,  is the set of quality constraints. The presented formulation states that the production 

system is subject to all the decision variables (X, Y, and Z), maintenance system is just related to 

maintenance and quality decisions (Y, Z), and the quality system may be constrained to 

maintenance and production decisions as well as the quality system parameters. The generic 

JPMQ model is illustrated in Fig. A.1. 

 

Variables X Y Z 

Max profit 

Production  

System 

F(X,Y,Z) 

+

- 

Maintenance  

System 

G(Y, Z) 

- 
Quality system 

H(X, Y, Z) 

 

Production cost +  Preventive maintenance cost +  Nonconformity cost +  

Inventory holding cost +  Corrective maintenance cost + Sampling and inspection cost 

Setup cost +  Restoration cost System running cost 

Backorder cost     

Subject to 
Lot sizing constraints , , =  

Maintenance constraints , =  

Quality constraints , , =  

C
o

n
st

ra
in

ts
 

·  Balance equation 

    
·  Demands 

·  Production and setup 

·  Production capacity 

 

·  Relationship between 

effective ages and maintenance 
schedule   

·  Maintenance intrinsic 

constraints 

    ·  Quality constraints 

Interactions 

Available production 

time 
Quality level and 

customer satisfaction 
 

Nonconformity rate 

Problem type LP or MIP NLP NLP 

Fig. A.1: General form of integrated problems and interactions between sub-systems. 
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As shown in Fig. A.1, the objective function maximizes the profit, where the cost function is 

the sum of the production system cost (processing cost, inventory holding cost, backorder cost, 

and setup cost), the cost of maintenance system (inspection cost, preventive maintenance cost, 

and corrective maintenance), and the cost of quality system (cost of nonconformity, sampling 

cost, cost of running the quality inspection system etc.). There are several constraints concerning 

each system. For example, balance equation to link lot sizes, demands, backorders, and 

inventories or the relationship between lot-sizes and setup costs (lot-sizing problem generally is a 

linear; LP or mixed integer; MIP problem). In maintenance system, several constraints are to 

establish the link between maintenance cost and the effective age of machine or between age of 

machine and expected nonconformity rate. Maintenance model is generally a complex and 

nonlinear; NLP program. Also, constraints of the quality system link the cost of quality system to 

decision variables of the quality system (such as the number of quality inspections and the time 

of sampling, sample sizes etc.). Similar to the maintenance problem, quality planning mostly 

results in NLP problems.  

With these definitions and considering the model presented in chapter 2, we have: 

= , , , , , ,  (A.5) 

= , , , , , ,  (A.6) 

= 	  (A.7) 

The cost functions of production, maintenance, and quality systems are: 

=	∑ ∑ ∙ +	 ∙∈ − ∑ ∑ ∙ + ℎ + +∈∈
∙ + ∙  (A.8) 

, = ∑ ∑∈ − ∙ ∑ ∑∈ + ∙ + ∙ ∑ ∈  (A.9) 

, , = 	 ∙ + 1 ∙ + ∑ ∑ ∙ ∙ ∑ ∙ −∈∈ + ∙
∑ − ∙ 	 ∙ ∙	

	 ∙ −  (A.10) 

In F, the first term is the total sale of conforming and nonconforming products with different 

prices, and the second term is the sum of processing cost, inventory holding costs for conforming 
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and nonconforming products, setup cost, and the backorder cost. In G, the terms indicate 

respectively to the preventive maintenance cost, corrective maintenance cost, and restoration cost 

and H, is the sum of the costs of process inspection, product quality inspection (in case of 

detecting a deteriorated state to separate defective items) and the cost of the lost profit caused by 

the production imperfectness. Note that the maintenance cost function (G) is independent from 

the production planning system with X as its decision variables).  

A.3.2. Full and partial maintenance schedules 

As explained in chapter 2, a complete PM schedule explicitly specifying the maintenance 

levels to be performed in each PM time, yields a complete solution of the whole problem (in this 

model, M the number of process inspections is a parameter). Given such a full plan, one can 

evaluate the interacting factors and nonlinear components of the problem and so, the model 

reduces to a mixed integer linear program (MILP) that can be solved using existing methods or 

optimization software. A sample PM schedule for a problem with T = 6 periods and M = 3 PM 

per period is illustrated in Fig. A.2. The machine has 4 PM levels (0, 1, 2, and 3). 

 

Period Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

PM intrusion 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

PM level 2 1 3 0 0 1 2 0 1 3 1 2 2 2 1 0 1 1 

Fig. A.2: A sample PM Schedule. 

The PM plan illustrated in Fig. A.2 is a vector of integers; that can be split into smaller 

vectors called as partial PM plans indicating the maintenance plan for each period, thence, 2-1-3 

in Fig. A.1 is a partial plan (the maintenance schedule) in period 1.  

Since, a restoration takes place at the end of each period, the machine is initially in its  

as-good-as-new conditions when each mission starts, therefore, the state of the machine in each 

period just depends on the maintenance plan in that period and it is independent from the 
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previous decisions. With this property, the partial maintenance schedules are statistically and 

economically independent from each other. Each partial plan corresponds to a specific state of the 

machine, distinguished by available production time in the period and an expected nonconformity 

rate. A full PM plan is a vector of M×T (with QM×T possibilities) whereas the length of a partial 

plan is just M with N = QM possibilities.  

A.3.3. Quadratic formulation of the model 

Let us assume APT(j) is the available production time, subject to the jth partial plan, so the 

available production time in period t will be: 

= ∑ ∙  (A.11) 

Where  is the new binary decision variable defined as: 

= 	 	 	 	 	 	 	   (A.12) 

Since only one partial plan should be assigned to each period, the new constraint holds: 

∑ = 1 (A.13) 

In quadratic formulation using the new variable yjt we first need to replace the factors related 

to the maintenance plan in H and the constraints as follows. Defining D1; the expected duration 

of production time; = ∑ −  and the rate of shifted operational time under 

partial plan j; = ∑ − ∙ 	 ∙	
	  corresponding to the jth partial 

plan, the quality cost H will be: 

, , = 	 ∙ + 1 ∙ + ∑ ∑ ∙ ∙∈∈ ∑ ∙ + ∙ α ∙
− ∙ ∑ ∙  (A.14) 

Similarly, the maintenance cost function G would be: 

, = ∑ ∙  (A.15) 
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where,  is the maintenance cost function in a period subject to the jth partial plan. 

Substitution of equations A.11, A.14, A.15 and the interacting factors U1(j) and U2(j) as well as 

the new constraint (A.13) in the original model of chapter 2, yields the quadratic formulation of 

the model as follows: 

Max − ∑ ∙ − 	 ∙ + 1 ∙ − ∑ ∑ ∙ ∙∈∈ ∑ ∙ − ∙
α ∙ − ∙ ∑ ∙  (A.16) 

Subject to: 

= ∙ α ∑ ∙ , p = 1, …, P, t = 1, …, T, (A.17) 

=	 − + − , p = 1, …, P, t = 1, …, T, (A.18) 

= − + , p = 1, …, P, t = 1, …, T, (A.19)  

= + − , p = 1, …, P, t = 1, …, T, (A.20) 

≤ ∙ , p = 1, …, P, t = 1, …, T, (A.21) 

∑ ∈ ≤ ∑ ∗ , t = 1,…, T,  (A.22) 

∑ = 1 (A.23) 

A.3.4. Mixed integer formulation of the main problem 

The quadratic terms of the model in A.16 and A.17 are the multiplication of production 

levels ( ) and the variable corresponding to the assignment of partial plans to the periods (yjt). 

Since the latter is a binary variable, the term ∙  can be replaced with an equivalent decision 

variable as follows: 

= ∙  (A.24) 

In this case, the following linear constraints should be added to the model: 
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≤  (A.25) 

≤ ∙  (A.26) 

In A.26, ( ≤ ) is the processing rate of product p. These constraints will force =
0 if one of the right hand values is 0, considering a proper positive coefficient of  in the 

objective function will force the variable to take its maximum value (i.e. = ∙  ), so 

with these modifications, the quadratic terms of the model can be replaced with . The model 

reduces to a mixed integer linear problem and the number of decision variables and the model 

constraints increase. As an example, the quadratic term ∑ ∑ ∙ ∙∈∈ ∑ ∙  will 

change to ∑ ∑ ∈∈ ∑ ∙ . 

A.4. The solution methods 

A.4.1. Solution method for MILP and QP formulations 

In this appendix, we use Cplex package to optimize the MILP program. The quadratic 

formulation is more difficult and solving it requires certain conditions mainly the solution space 

needs to be convex. Moreover to the existing algorithms such as branch and bound and dynamic 

programming, the MILP formulation can be efficiently solved using several optimization 

packages. In this section, Cplex is used to evaluate and the MILP. 

A.4.2. Nelder-Mead algorithm as a general solution method 

Considering a full PM as a complete solution of the problem, a vector of size M×T with real 

values indicating the PM level for maintenance interferences, these vectors can be considered as 

the solution structure in a heuristic algorithm. A neighbor solution is a vector of the same length 

that only one of its components differs from the current solution. We limit the difference to 1, so 
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for example, 2,1,3,0,0,1,2,0,1,3,1,2,2,2,1,1,1,1 and 2,1,3,0,0,1,2,0,1,3,1,2,2,1,1,0,1,1 are two 

neighbors of the sample solution presented in Fig. A.2.  

Nelder-Mead algorithm (NM) introduced by Nelder and Mead (1965) is a search method to 

optimize functions whose derivatives are difficult to evaluate. The method is used in solving 

different problems, for example, Khojaste Sarakhsi et al. (2016) employed it to solve a lot-sizing 

problem. Fig. A.3 shows the algorithm flowchart. The objective in NM is to exploit the 

information from several neighbor solutions in transitions toward the local optima. In this 

method, we consider not only better solutions (positive knowledge), but also the worse solutions 

(negative knowledge) to introduce three candidate moves. Then, the best solution among them is 

considered as the algorithm transition. The three candidates are (1) The contracted point (XC) that 

is the best neighbor, (2) The reflected point (XR) that is the reflection of the given solution one 

step in improvement direction, and (3) The expanded point (XE) which is the expansion of the 

given solution two steps in the improvement direction.  
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Given a solution p to be improved: 

1. Repeat 

1.1. Generate the sub-population P (N neighbor points of p) and evaluate them 

1.2. Determine the improvement (reflection) vector D 

For each gene position j ∈ {1,..., L}  

For each solution ̂ ∈ P 

If ̂ is better than p then =	 ̂ −	  ( ̂ , , and  are respectively jth 

elements of ̂, p, and D) 

Else =	 −	 ̂  
1.3. Determine the reflected point; XR, the expanded point; XE, and the contracted 

point; XC and modify them if needed 

iv. XR = p + D 

v. XE = p + 2×D 

vi. XC = best solution in P 

1.4. Move to the best solution among the candidates (p = max {XR, XE, XC}) 

2. Loop until the Stop Condition is satisfied (number of attempts that fail to improve 

the solution) 

Fig. A.3: Nelder-Mead algorithm. 

 

For example, suppose that the given solution p is {1, 1, 3, 0, 2} and the two neighbors are  

̂  = {1, 1, 4, 0, 2} and ̂  = {1, 1, 3, 0, 1}, where ̂  > p and ̂  < p. So, the reflection vector, 

reflected point, and expanded point are respectively D = {0, 0, 1, 0, 1}, XR = p + D = {1, 1, 4, 0, 

3}, and XE = p +2 × D = {1, 1, 5, 0, 4}. In some cases, the generated solutions can be infeasible 

(because of value of genes), accordingly; these genes will be modified to the nearest possible 

values. As this example shows, both good and bad solutions participate in determination of the 

next solution. In contrast to tabu-search in which the poor solution are generally discarded, the 
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Nelder-Mead algorithm exploits the information from all evaluated points to determine the best 

move and also, it is not limited to move to one of the neighbor points. 

A.5. Numerical example 

Let us consider a sample problem with T = 3 periods and P = 3 products, where the machine 

has Q = 4 PM levels and M = 3 maintenances per period. The problem data are given in Tables 

A.1 and A.2. The search space for the original problem is about 2.6 ×105 

 

Table A.1: Production data. 

Product 
Demand Production cost Backorder cost Holding cost 

1 2 3 1 2 3 1 2 3 1 2 3 

P
er

io
d

 1 45 50 100 30 50 70 110 130 180 3 5.5 2.2 

2 30 40 150 26 47 74 110 130 170 2.5 6.1 2.5 

3 60 70 50 33 49 68 120 130 170 3.2 6.5 2.4 

Setup cost Price Conforming 

1 2 3 1 2 3 

500 800 450 170 320 65 

550 780 420 150 300 70 

530 830 400 180 340 68 
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Table A.2: Maintenance data. 

Cost of PM options  CPM 5000, 500, 200, 0 Time of minimal repair  TMR 0.02 

Time of PM options  TPM 0.05, 0.003, 0.001, 0 Inspection cost  β 40 

Production rates  450, 400, 350 Imperfectness factor η 0,9 

Nonconformity rates  0.7, 0.7, 0.7 Restoration parameters 
(constant and variable) 

ξ0 200 

Cost of minimal repair  CMR 500 ξ1 3000 

Length of period L 1 

Time-to-shift 
parameters 

λ 40 

φ 2.5 

Time-to-failure 
parameters 

θ 20 

ρ 2.5 

 

The first step in application of quadratic and MILP formulations is the evaluation of the costs 

and interacting factors related to the partial PM plans. Using the data of the sample problem, a 

part of the partial plans and their parameters (for the first five possibilities) are presented in Table 

A.3. Note that the sample problem has QMP = 2.6×105 partial plan.  

 

Table A.3: Maintenance cost and interacting factors of partial PM plans. 

J Partial plan F(j) APT(j) U1(j) U2(j) 

1 0,0,0 16629 0.81 0.14 0.59 

2 0,0,1 13203 0.83 0.26 0.68 

3 0,0,2 12969 0.83 0.27 0.68 

4 0,0,3 12810 0.83 0.27 0.68 

5 0,1,0 13203 0.83 0.28 0.73 

A.5.1. Solving the quadratic model 

As an example, with introduced variable yjt, the cost of the maintenance system in three 

periods is 16629 (y11 + y12 + y13) + 13203 (y21 + y22 + y23) + 12969 (y31 + y32 + y33) + 12810 (y41 + 
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y42 + y43) + 13203 (y51 + y52 + y53).  The available production time in period t is APTt = 0.81y1t + 

0.83y2t + 0.83y3t + 0.83y4t + 0.83y5t, where ∑ = 1. 

Solving this problem with the existing packages such as Cplex is limited to the cases where 

the problem is convex. For the presented problem, the Cplex fails to evaluate the model with the 

error of nonconvex model (The matrix is not positive semi-definite). 

A.5.1. Solving the mixed integer linear model 

As explained previously, the quadratic model can be converted to a mixed integer linear 

program (MILP). The number of decision variables and constraints is MILP is larger than the 

quadratic model. Solving the sample problem with all the 64 partial plans takes about 1169 

seconds and it finds the optimal solution. 

The value of the penalty should be selected properly according to the other terms of the 

objective function and by testing several values. However, the solution time even for this small 

problem is very large and increasing the size of the problem results in inefficiency of the MILP 

method. The solution time of MILP as a function of the number of partial PM plans is presented 

in Fig. A.4. 

A.5.1. Solving with the heuristic method 

The Nelder-Mead algorithm is able to solve different instances of the problem and in most 

cases, the time to find the optimal solution is considerably short. Fig. A.5 shows the evolution of 

the best solution in a sample run of the Nelder-Mead algorithm. The average time to find the 

optimal solution in 30 replications was 41 Seconds. However, the optimality of the solutions 

found by NM algorithm are not guaranteed. 
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Fig. A.4: Solution time as a function of the number of partial PM plans. 

 

 

Fig. A.5: Evolution of the best solution in Nelder-Mead method. 
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A.6. Conclusions 

Considering the interactions between maintenance scheduling, production planning, and 

decision variables related to the quality system, literature shows that their integration in a joint 

model can result in improvement of profit or reduction in the total system cost. But, such models 

are generally hard to solve in a reasonable effort. Since the system starts each period in its as-

good-as-new conditions, the state of the machine in each period is independent from the 

maintenance tasks performed in the previous periods. Dividing a large PM plan to several partial 

schedules and evaluating the costs and interacting factors for each partial plan, the maintenance 

scheduling problem is reformulated as a quadratic and a mixed integer linear program. The 

generic form of the joint models is presented and a heuristic method based on Nelder-Mead 

algorithm is also proposed to solve the original problem. Since the objective and a constraint of 

the quadratic formulation are of the second order, most of the existing packages are not able to 

deal with the quadratic program, but, the mixed integer formulation can be evaluated using 

existing methods or optimization tools. The issue in MILP formulation is the huge size of the 

problem that exponentially increases with the model parameters and with the number of partial 

plans. Also, proper selection of the penalties is a challenging issue which influences on the final 

solution. Despite the problem size, the proposed Nelder-Mead method efficiently finds promising 

solutions (or the optimal solutions in most cases) in a shorter solution time.  
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Appendix B 

The results of applying the solution method on the problem of chapter III 

 

This appendix illustrates the performance of the solution method proposed in chapter Four 

used in solving the cost minimization model of chapter Three. The algorithm is able to solve 

different instances of the problem with different sizes. Since the performance of the algorithm is 

similar to the results presented in chapter Four, and to avoid restating them, the results are 

summarized in this appendix. 

B.1. The mathematical model 

Notations 

Indices and parameters 

,  Index and number of machines 

,  Index and number of products 

,  Index and number of periods 

 Index of intervals in periods 

 Unit backorder cost 

 Process adjustment cost 

 Cost of minimal repair 

Cost of kth PM level 

 Customer demand 

 Production rate 

ℎ  Inventory holding cost 

 Fixed length of periods 

 Available PM budget 

 Number of the preventive 

maintenance levels 
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 Unit reworking cost 

 Setup cost 

 Time of minimal repair 

 Initial age of machine 

 Defective rate in out-of-control 

state of the machine 

 Unit cost of quality check 

,  Parameters of Weibull distribution 

for time-to-failure function 

,  Parameters of Weibull distribution 

for time-to-shift function 

 Manufacturing cost 

 Cost of process inspection 

 Available production time 

 Expected duration of a shifted 

state 

 Process inspection cost 

 Lot size 

 Number of machine failures 

 Preventive maintenance cost 

 Probability of shift in the jth 

interval 

 Probability of shift in period 

 Cost of quality checking 

 Total process adjustment cost 

 Total maintenance system cost 

 Total production system cost 

 Total quality system cost 

 Total reworking cost 

 Age at the beginning of a period 

 Age at the end of an interval 

 Age at the end of a period 

Decision variables……………………………………………………………………… 

 Backorder level 

 Inventory level 

 Setup variable 

 Production level 

 Number of process inspections 

 Preventive maintenance level 

 

, ,  and  are the production planning variables, concerns to the quality 

system, and  to the maintenance system. 
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	 + +  (B.1) 

 

= ∑ ∑ ∑ +∈∈ + ∑ ℎ +∈∈  (B.2) 

= ∑ +∈  (B.3) 

= ∑ ∑ + + +∈∈  (B.4) 

= ∑ ∈  (B.5) 

= ∑ ∙∈  (B.6) 

= ∙ −  (B.7) 

≤ 	, ∀ ∈  (B.8) 

= ∙  (B.9) 

= 1 − 1 − / ∙ ∑ ∙∈  (B.10) 

= ∙ ∑ ∙∈ ∙  (B.11) 

= ∙ ∙ 1 − 1 − /  (B.12) 

= −  (B.13) 

= ∑ ∈  (B.14) 

≤  (B.15) 

− = − + −  (B.16) 

∑ ≤∈  (B.17) 

| = = ∙ ∙ ∙ ∙ ∙ , >  (B.18) 

= 1 −  (B.19) 

= 1 − 1 − /  (B.20) 
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= 1 − 1 − / ∙ − ∙ |  (B.21) 

, = 1 −  (B.22) 

= +  (B.23) 

 , , − , , =  (B.24) 

, , = + ∙  (B.25) 

, , = / ∙ , + 1 − / ∙  (B.26) 

 

The objective function (B.1) represents the total cost of the system; the sum of production, 

maintenance and quality costs. Equations (B.2), (B.3) and (B.4) respectively indicate the costs of 

production system, maintenance system, and quality system. (B.5) is the cost of preventive 

maintenance, (B.6) is the cost of corrective maintenance, and (B.7) is the expected number of 

machine failures in periods. Constraint (B.8) corresponds to the maintenance budget limitation, 

(B.9) is the process inspection cost, (B.10) is the quality checking cost, (B.11) is related to 

reworking cost of defective items, and (B.12) evaluates the average machine adjustment cost after 

detecting quality shifts in the process mean. Equation (B.13) computes the machine availability 

after corrective maintenances, (B.14) evaluates the lot-sizes produce in each period, (B.15) 

establishes the link between production and setup variables, and (B.16) is the balance equation 

between variables and parameters of the lot-scheduling problem. Production limitations are 

defined by (B.17). Equations (B.18), (B.19), and (B.20) represent the time-to-shift function, the 

probability of a shift in a period, and the probability of a shift in interval j of period t.  (B.21) is 

the expected time that machine m operates in out-of-control state in period t. The other equations 

(B.22)-(B.26) evaluate the age of machines in periods and intervals. 
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B.2. Test problems and size of the search space 

The data of a problem; called P1 with T = 6 periods, P = 2 products, M = 3 maintenance per 

period, and Q = 4 PM levels are presented in chapter III (Section 3.5). Moreover, a larger version 

P2 (with T = 12 periods) is considered. P2 is the replication of the data of P1 (demand of period 

7 is the same as period 1, etc.). A set of 50 random problems is also generated to compare the 

performance and robustness of the algorithm. These samples are created by uniform 

randomization, where T ∈ (1…12), (M, P, and Q) ∈ (1…5), other data between 0.5 to 1.5 times 

the average of data given for the first product, first machine, in the first period. 

All the test problems and size of the search spaces are summarized in Table B.1. 

 

 

Table B.1: Sample problems. 

Problem Description Problem size 

P1 The sample problem given in the chapter III (Section 3.5) 6.9×1010 

P2 Larger version of P1 with 12 periods 4.7×1021 

P3 Set of 50 problems <8.7×1041 

B.3. Parameter settings for the joint scheduling problem 

The values of the algorithm parameters are set using the meta-calibration method of section 

4.3.11. With slight modifications, the parameter values; (λ, Φ, ζ, ItNI, r) related to the 

chromosome lengths (T×M) are:  

• (10, 3, 5, 10, 2)  for   T×M  ≤ 10 

• (15, 3, 5, 20, 2)  for 10 < T×M ≤ 20 

• (20, 5, 10, 30, 2) for 20 < T×M  ≤ 30 

• (40, 6, 25, 50, 2)  for 30 < T×M  ≤ 50 
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The size of the tabu list in TS is set to the chromosome length, mutation probability in MA is 

pm = 0.05, and if not indicated, the considered solution time is 5×T×M×Q. 

B.4. The best solution of the test problems with different algorithms 

Problems P1… P3 are solved with MAPM-NM, MAPM, and TS algorithms. The best and 

the average solution in 30 replications for each problem, the solution time, and the best 

chromosome (PM schedules) are presented in Table B.2. The plans found by the MAPM-NM for 

all the test problems are the best solutions. The methods developed in this section are able to 

solve various types of the JPMQ problems. 

Table B.2: Solutions of the sample problems with different algorithms. 

  Algorithm 
Solution 

time 
Max 

objective 
Average 
objective 

Min 
objective 

Best PM plan 

P1 

MAPM-NM 

360 

434799 430718 428502 

0,1,2,0,2,1,3,2,1,3,1,2,3,2,2
,3,2,2 

MAPM-TS 436984 432513 428502 

MAPM 486378 453888 432518 

TS 442132 435914 431103 

P2 

MAPM-NM 

720 

936129 920568 900212 
0,1,2,0,2,0,3,1,1,2,0,2,3,1,2
,3,2,3,1,2,2,1,3,1,3,3,1,3,1,
3,1,2,2,2,3,2 

MAPM-TS 957820 934289 916503 

MAPM 1023466 993364 964520 

TS 984536 942825 923710 

 

B.5. Robustness of the algorithm 

Capability of the algorithm and the solution quality is also investigated in solving the set of 

50 random problems (P5) using MAPM-NM, MAPM-TS, TS, and MA algorithms. For each 

problem, the gap to the best solution is calculated and the average gaps are shown in Table B.3. 
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Table B.3: Average gaps to the best solution in 50 random problems. 

MAPM-NM MAPM-TS TS MA 

Success rate 73.3% 26.7% 6.7% 20.0% 

 

Accordingly, MAPM-NM yields the smallest gap among four algorithms and so, it can be 

conveniently used to solve the joint problem. Only in 8 out of 30 problems, the solution found by 

MAPM-NM was very close but not the best solution. By increasing the solution time, the gap 

decreases, but almost in all cases, this algorithm yields the better solutions. 

The results of 30 replications of MAPM-NM, MAPM-TS, and TS for P1 with two different 

solution times are shown in Figures B.1 and B.2.  

 

  

Fig. B.1: Results of 30 replications in 100 seconds. 

 

In both cases, MAPM-NM outperforms MAPM-TS. The two variants of MAPM perform 

better than tabu-search algorithm and as expected, increasing the solution time has resulted in the 

0,410

0,420

0,430

0,440

0,450

0,460

0,470

0,480

O
b
je

ct
iv

e
v
a
lu

e
 (

M
ill

io
n
s)

M
A
P
M

-

N
M

M
A
P
M

-

T
S

T
S



Appendix B. The results of applying the solution method on the cost minimization problem 

187 

 

improvement of the final solution (smaller total costs). The minimum, average, maximum and 

variance of the solutions are listed in Table 5.7. Similar results were obtained in different solution 

times and problems, therefore, we remark that the proposed algorithm is robust and, integration 

of genetic algorithm with a Nelder-Mead method has resulted in a better performance.  

 

  

Fig. B.2: Results of 30 replications in 360 seconds. 

Table B.4: Solution data in different execution times (30 replications; P1). 

 Run time = 50 Sec. Run time = 200 Sec. 

 
MAPM-

NM 
MAPM-

TS 
TS 

MAPM-
NM 

MAPM-
TS 

TS 

Min 436480 440946 449824 428502 428502 430416 

Max 447647 461061 475252 434518 442487 461695 

Average 442881 451009 462878 431614 435668 446816 

Average gap 
to the best 
solution 

1.5% 3.3% 6.0% 0.7% 1.7% 4.3% 
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Standard dev.  3199 5635 8417 1679 3990 9916 

 

The standard deviation values indicate the better performance of MAPM-NM, and small 

standard deviation compared to the average value shows the robustness of the algorithm. The 

average gap to the best solution in MAPM-NM is also smaller and in 5 out of 30 replications (in 

50 Sec results); the solution of MAPM-NM was very close to but not the best solution. 

B.6. Evolution of the best solution and effect of the population management 

Figures B.3 and B.4 illustrates the evolution of the best solution in memetic algorithm with 

and without population management. Population diversity in MAPM smoothly reduces with the 

solution time, whereas in MA without population management, the heterogeneity is quickly lost 

(mutation probability is pm = 0.05). 

 

Fig. B.3: Evolution of the best solution and entropy variations in MAPM. 
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Fig. B.4: Evolution of the best solution and entropy variations in MA. 

 

Using intensification and diversification strategies and maintaining the population diversity 

in MAPM has resulted in obtaining better solutions in each instant of time. In 30 replications of 

the two algorithms (for 50 Sec.), in 78% of cases, MAPM has outperformed MA, and a statistical 

analysis (F-test) indicates a significant difference between the means of the two algorithms  

(F = 28.3 compared to FCRITICAL = 3.9). This fact can be seen in the distribution of the final 

solutions illustrated in Fig. B.5. 
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Fig. B.5: Distribution of solutions in 50 replications of MAPM and MA (problem P1). 
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