19 research outputs found

    Enhancing Group Social Perceptiveness through a Swarm-based Decision-Making Platform

    Get PDF
    Swarm Intelligence is natural phenomenon that enables social animals to make group decisions in real-time systems. This process has been deeply studied in fish schools, bird flocks, and bee swarms, where collective intelligence has been observed to emerge. The present paper describes swarm.ai—a collaborative technology that enables swarms of humans to collectively converge upon a decision as a real-time system. Then we present the results of a study investigating if groups working as “human swarms” can amplify their social perceptiveness, a key predictor of collective intelligence. Results showed that groups reduced their social perceptiveness errors by more than half when operating as a swarm. A statistical analysis revealed with 99.9% confidence that groups working as swarms had significantly higher social perceptiveness than either individuals working alone or through plurality vote

    Active colloids in complex fluids

    Get PDF
    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties, emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.Comment: 6 figure

    Transition in swimming direction in a model self-propelled inertial swimmer

    Get PDF
    We propose a reciprocal, self-propelled model swimmer at intermediate Reynolds numbers (Re). Our swimmer consists of two unequal spheres that oscillate in antiphase, generating nonlinear steady streaming (SS) flows. We show computationally that the SS flows enable the swimmer to propel itself, and also switch direction as Re increases. We quantify the transition in the swimming direction by collapsing our data on a critical Re and show that the transition in swimming directions corresponds to the reversal of the SS flows. Based on our findings, we propose that SS can be an important physical mechanism for motility at intermediate Re

    Lattice models for granular and active matter fluctuating hydrodynamics

    Get PDF
    This thesis investigates the common nature of granular and active systems, which is rooted in their intrinsic out-of-equilibrium behavior, with the aim of finding minimal models able to reproduce and predict the complex collective behavior observed in experiments and simulations. Granular and active matter are among the most studied systems in out-of-equilibrium statistical physics. The thesis guides readers through the derivation of a fluctuating hydrodynamic description of granular and active matter by means of controlled and transparent mathematical assumptions made on a lattice model. It also shows how a macroscopic description can be provided from microscopic requirements, leading to the prediction of collective states such as cooling, swarming, clustering and the transitions among them. The analytical and numerical results shed new light on the physical connection between the local, microscopic properties of few particles and the macroscopic collective motion of the whole system

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Dynamique collective de particules auto-propulsées : ondes, vortex, essaim, tressage

    Get PDF
    The emergence of coherent motion at large scale has been widely observed in animal populations (bird flocks, fish schools, bacterial swarms...) and more recently in artificial systems. Such ensembles of self-propelled individuals, capable of aligning their velocities, are commonly referred to as polar active materials. They display unique physical properties, which we investigate in this theoretical thesis.We first describe a population of self-propelled colloids. In strong connection with the experiments, we model the dynamics from the individual level to the macroscopic scale. The theoretical results account for the emergence and the structure of coherent patterns: (i)~transition to collective motion, (ii)~propagation of polar spatial structures, (iii)~damping of density fluctuations in a polar liquid, (iv)~heterogeneous vortex in confined geometries.We then follow a more formal perspective, and study the non-linear excitations which propagate in polar active systems. We analyze the hydrodynamic theories of active matter using a dynamical-system framework. This approach makes it possible to rationalize the experimental and numerical observations reported so far.Finally, we propose a complementary approach to characterize active populations. Combining numerical and analytical results, we study the geometric properties of the individual trajectories and their entanglement within three-dimensional flocks. We suggest that these observables should provide powerful tools to describe animal flocks in the wild.L'émergence de mouvements cohérents à grande échelle a été abondamment observée dans les populations animales (nuées d'oiseaux, bancs de poissons, essaims de bactéries...) et plus récemment au sein de systèmes artificiels. De tels ensembles d'individus auto-propulsés, susceptibles d'aligner leurs vitesses, présentent des propriétés physiques singulières. Cette thèse théorique étudie divers aspects de ces systèmes actifs polaires.Dans un premier temps, nous avons modélisé une population de colloïdes auto-propulsés. En étroite association avec les travaux expérimentaux, nous avons décrit la dynamique du niveau individuel à l'échelle macroscopique. Les résultats théoriques expliquent l'émergence et la structure de motifs cohérents : (i) transition vers le mouvement collectif, (ii) propagation de structures spatiales polarisées, (iii) amortissement des fluctuations de densité dans un liquide polaire, (iv) vortex hétérogène dans des géométries confinées.D'un point de vue plus fondamental, nous avons ensuite étudié les excitations non linéaires qui se propagent dans les systèmes actifs polaires. L'analyse des théories hydrodynamiques de la matière active, à l'aide d'outils issus des systèmes dynamiques, a permis de rationaliser les observations expérimentales et numériques reportées jusqu'ici.Enfin, nous avons proposé une approche complémentaire pour caractériser les populations actives. Associant étude numérique et résultats analytiques, nous avons étudié les propriétés géométriques des trajectoires individuelles, ainsi que leur enchevêtrement au sein de groupes tridimensionnels. Ces observables pourraient permettre de sonder efficacement la dynamique de populations animales

    Fluid Mechanics of Plankton

    Get PDF
    The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book

    Experimental analysis and modelling of the behavioural interactions underlying the coordination of collective motion and the propagation of information in fish schools

    Get PDF
    Les bancs de poissons sont des entités pouvant regrouper plusieurs milliers d'individus qui se déplacent de façon synchronisée, dans un environnement sujet à de multiples perturbations, qu'elles soient endogènes (e.g. le départ soudain d'un congénère) ou exogènes (e.g. l'attaque d'un prédateur). La coordination de ces bancs de poissons, décentralisée, n'est pas encore totalement comprise. Si les mécanismes sous-jacents aux interactions sociales proposés dans des travaux précédents reproduisent qualitativement les structures collectives observées dans la nature, la quantification de ces interactions et l'accord quantitatif entre ces mesures individuelles et les motifs collectifs sont encore rares dans les recherches récentes et forment l'objet principal de cette thèse. L'approche de ce travail repose sur une étroite combinaison entre les méthodes expérimentales et de modélisation dans l'objectif de découvrir les liens entre les comportements individuels et les structures observées à l'échelle collective. Nous avons caractérisé et quantifié les interactions et mécanismes à l'origine, d'abord, de la coordination des individus dans les bancs de poissons et, ensuite, de la propagation d'information, quand le groupe subit une perturbation endogène ou exogène. Ces travaux, tous réalisés en étudiant la même espèce de poisson d'eau douce, le nez-rouge (Hemigrammus rhodostomus), ont mobilisé une diversité de méthodes expérimentales, d'analyses statistique et de modélisation, à l'interface de l'éthologie, de la physique statistique et des sciences computationnelles.Fish schools are systems in which thousands of individuals can move in a synchronised manner in a changing environment, with endogenous perturbations (e.g. when a congener leaves the group) or exogenous (e.g. the attack of a predator). The coordination of fish schools, decentralised, is not completely understood yet. If the mechanisms underlying social interactions discussed in previous studies qualitatively match the social patterns observed in nature, the quantification of these interactions and the quantitative match between individual measurements and collective patterns are still sparse in recent works and are the main focus of this thesis. This work combines closely experimental and modelling methods in order to investigate the links between the individual behaviours and the patterns observed at the collective scale. We have characterised and quantified the interactions and mechanisms at the origin of, first, the coordination of individuals in fish schools and, second, the propagation of information, when the group is under endogenous or exogenous perturbations. This thesis focuses on one freshwater fish species, the rummy-nose tetra (Hemigrammus rhodostomus), and is the result of a diversity of experimental methods, statistical analyses and modelling, at the interface of ethology, statistical physics and computational sciences
    corecore