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Transition in swimming direction in a model self-propelled inertial swimmer
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We propose a reciprocal, self-propelled model swimmer at intermediate Reynolds
numbers (Re). Our swimmer consists of two unequal spheres that oscillate in antiphase,
generating nonlinear steady streaming (SS) flows. We show computationally that the SS
flows enable the swimmer to propel itself, and also switch direction as Re increases. We
quantify the transition in the swimming direction by collapsing our data on a critical Re
and show that the transition in swimming directions corresponds to the reversal of the SS
flows. Based on our findings, we propose that SS can be an important physical mechanism
for motility at intermediate Re.
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Understanding motility requires connections between fundamental physics and biology [1–3]
and has many applications, including drug-delivering nanomachines [4,5] and autonomous under-
water vehicles [6–8]. Swimming regimes can be classified by the Reynolds number (Re), which
characterizes the relative importance of inertial over viscous forces. Although there is a large
body of work on motility in Stokes flows (Re � 1), in which viscous forces dominate, and at
high Re (Re � 1), in which inertial forces dominate, less is known about the intermediate regime
Reint ∼ 1–1000 [2,9,10].

The Reint regime encompasses an enormous diversity of organisms, ranging from larvae (of,
e.g., fish, squid, ascidian) and large ciliates, to nematodes, copepods, plankton, and jellyfish.
These swimmers employ a variety of motility mechanisms: jet propulsion [11,12], anguilliform
locomotion [13–17], rowing [18,19], aquatic flapping flight [20], and ciliate beating [21,22].
Plankton have even been proposed to contribute to the large-scale transport of nutrients and
dissolved gases in the ocean [23–27]. However, most prior studies on Reint motility have focused on
the details of specific organisms [11–14,16–22,24,25,28]. As a result, few general models exist for
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FIG. 1. Reciprocal oscillation of the spherobot swimmer over one cycle. Spheres’ centers of mass (COM)
(blue circles) and the spherobot COM (green circle) are indicated. The distance between the spheres’ centers
d (t ) is d0 at the equilibrium distance, d0 − A at minimum distance, and d0 + A at maximum distance. The total
amplitude is A = AR + Ar .

motility at Reint; examples are an extension of the Stokesian squirmer to include inertia [27,29–33],
which makes assumptions about the generation of flow due to small-amplitude oscillations on the
surface of a spherical swimmer and the flapping-plate model, which is a lumped-torsional-flexibility
model that uses passive pitching and responds to an actuation [34,35]. Still, there is a lack of
understanding regarding the unifying physical mechanisms that swimmers at Reint exhibit. To
develop a theoretical basis for swimming, more models with varying degrees of freedom that
operate under different conditions at Reint are needed. Only then can we make progress in better
understanding biological swimmers and designing artificial ones at intermediate scales.

Steady streaming (SS) is the nonzero, time-averaged flow that arises at Reint due to oscillations
of a rigid body in a fluid and has been studied for various cases, such as around a single sphere
[36–40], cylinder, near a wall. While SS has been used to manipulate particles [41–45] and cells
[46] via external vibrations, it has not been used as a mechanism for self-propulsion, even though
there have been suggestions that it may be relevant for the enhanced motility of Synechococcus
cyanobacteria [47].

In this Rapid Communication, we propose a simple, reciprocal and self-propelled model
swimmer, termed the spherobot, that uses steady streaming flows for propulsion. The spherobot is
composed of two unequal spheres that oscillate with respect to each other, in antiphase, generating
SS flows [Fig. 1(a)]. We computationally studied the spherobot’s motility over a broad range of
parameters: viscosity, sphere amplitudes, distance between the spheres, sphere radii, and sphere-
radii ratio. At Re = 0, the spherobot cannot swim because of Purcell’s scallop theorem [48]:
its reciprocal stroke does not break time-reversal symmetry. At low, nonzero Re the spherobot
started to swim and, interestingly, switched swimming direction from a small-sphere-leading to
a large-sphere-leading regime. We found that the point of transition collapsed to a critical value
when the appropriate Reynolds number was used, which revealed a strong dependence on the SS
flows of the small sphere. Analyzing the flow fields, we showed that the transition in swimming
direction corresponds to the reversal of SS flows around the spherobot that occurs as the Reynolds
number increases.

Methods. The spherobot was composed of two unequal spheres with radii r, R, which were
coupled to one another by prescribing the distance between their centers. To model this com-
putationally, we tethered the two spheres using an active spring with a time-dependent resting
length d (t ) = d0 + A sin(ωt ), in which d0 is the equilibrium distance between the sphere centers,
A = 0.5(dmax − dmin) is the amplitude of the spherobot, and ω is the frequency of oscillation
(Fig. 1). Equal and opposite (spring) forces were applied to the spheres that acted to keep
them approximately at the prescribed distance apart (error ≈ 10−7 m). Thus, the model ensures
a geometrically reciprocal cycle and an internally-vibrated swimmer (no applied external fields or
forces). Because the same force is applied to both spheres, the one with the smaller mass (the small
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sphere) will have a larger amplitude Ar than the one with the bigger mass (large sphere), AR (i.e., if
r � R then Ar � AR). In most simulations we have Ar ≈ 4AR. The amplitude of the spherobot A is
the sum of the two, A = Ar + AR (Fig. 1). Both spheres were neutrally buoyant with respect to the
surrounding fluid. To simulate the spherobot in a fluid, we used an exactly constrained immersed
boundary (CIB) method [49,50]. The CIB scheme is implemented in IBAMR [51,52], which provides
several variants of the immersed boundary (IB) method [53] for fluid-structure interactions. The
spherobot was immersed in a fluid that occupied a finite cell with no-slip walls. The visualization
and analysis of the flow fields was done in VisIt [54]. Further details on the model and method are
given in the Supplemental Material (SM) [55].

The swimming velocity of the spherobot was measured after steady state had been reached and
was defined as the net displacement of the spherobot center of mass over one cycle. We defined the
Reynolds number as Re = Arr/δ2 = Arrω/ν because, as we will show, it is the ratio that determines
the transition between small-sphere-leading and large-sphere-leading regimes; δ = √

ν/ω is the
oscillatory boundary layer thickness and ν is the kinematic viscosity of the fluid. We carried out
simulations in two and three dimensions (2D and 3D) and found qualitative agreement. We focused
on 2D because it allowed us to study a much broader parameter space. The range studied in Re was
0.001 � Re � 150. All other parameter ranges (amplitude, radii, etc.) are shown in the SM, Table
S1 [55].

Results. We initially placed the spherobot in the simulation box at constant A, AR, Ar , d0, f ,
R, and r. We varied the Re via the kinematic viscosity ν. As a validation, we ran a simulation at
Re = 0 and confirmed that the spherobot did not swim (no net displacement) because of Purcell’s
theorem for reciprocal swimmers [48]. As soon as Re > 0 (lowest value Re = 0.001), the spherobot
began to swim in the direction of the small sphere (Fig. 2), i.e., the small-sphere-leading regime.
As Re increased, the speed of the spherobot increased until reaching a maximum at Re ≈ 2. Above
Re ≈ 2 the spherobot slowed down and eventually had no net displacement (even though the spheres
oscillated) at Re ≈ 20. As Re increased further, the spherobot switched direction to swim with the
large sphere on the front, i.e., the large-sphere-leading regime, where its increasing speed started to
plateau as Re increased further. We then ran a broader parameter sweep varying R, r, A, AR, Ar , and
d0 in addition to the viscosity ν. We found that the transition only depended on the small sphere’s
radius and amplitude (in addition to viscosity) and that it was independent of all the other length
scales R, AR, and d0. The transition-point data collapsed (within the scatter on a single, critical
dimensionless number Re = Arr/δ2 ≈ 20) (Fig. 2).

To gain insight into the propulsion mechanism and the switch in swimming direction, we turned
our attention to the flow fields generated by the spherobot. Based on classical work on steady
streaming generated by a single oscillating sphere, we expected each sphere of the spherobot to
generate SS flows, which are time-averaged flows by definition. We also anticipated the SS flows
around the spherobot to be different than the classical SS flows around a sphere for two reasons.
First, the small sphere’s oscillation amplitude Ar was of the same order of magnitude as the sphere
radius, i.e., ε = Ar/r ≈ O(1), unlike the assumption for classical steady streaming in which ε � 1
[36,37,56]. Second, it was unclear what the cumulative SS flows of two spheres oscillating in
antiphase should be, as it has only been studied for spheres and cylinders in phase [41,57–59].
Bearing these considerations in mind, we calculated the time-averaged flow fields around the
spherobot, varying the same parameters as before (Fig. 2). We found that the switch in the swimming
direction at Re ≈ 20 corresponded to the reversal of the SS flows both parallel and perpendicular
to the axis of oscillation. Specifically, in the small-sphere-leading regime (Re < 20), the fluid, on
average, was pulled in towards the spheres along the axis of oscillation and was pushed out away
from the spheres along the axis perpendicular to the oscillation [Fig. 3(a)]. On the contrary, in the
large-sphere-leading regime (Re > 20), the fluid, on average, did the opposite—it was pushed away
from the spheres along the direction of swimming (with a strong downward jet below the small
sphere) and was pulled in towards the gap between the spheres in the direction perpendicular to
swimming [Fig. 3(b)].

021101-3



THOMAS DOMBROWSKI et al.

FIG. 2. Velocity of the spherobot as a function of Re in 2D for the range of A, d0, R, and r shown in
the legend. The inset shows the small-sphere-leading regime plotted on a semilogarithmic x scale. Parameters
A, d0, R, and r are nondimensionalized by the length scale, r0 = 0.15 m, the radius for the small sphere.
Line color indicates A, line saturation indicates d0, line style indicates R, and symbols indicate r. Negative
velocity indicates swimming in the direction of the small sphere, and positive velocity indicates swimming in
the direction of the large sphere. Vertical dashed lines denote critical Re for the transition.

Furthermore, in both regimes it is clear that the velocity vectors along the oscillation axis are
larger around the small sphere than the large sphere (Fig. 3). In fact, through control volume
analysis, we found that for both regimes, the momentum flux on the side of the small sphere was
larger than the momentum flux on the side of the large sphere (the ones along the perpendicular
axis generated fluxes that canceled each other). Though initially unexpected, this finding makes
sense together with the collapse, which depends on the Re of the small sphere only (Fig. 2). The
net momentum flux of course switches direction as the swimming direction switches (see Fig. S4
[55]). Our data, thus, strongly suggest that the transition in the spherobot’s swimming direction
results from the SS flows, and this reversal is associated with the change in the direction of the net
momentum flux [55].

Discussion. To better understand the reversal of SS flows, we will consider what is known for
one sphere. Analytic solutions have been obtained under the small-amplitude assumption Ar � r
and in the two limiting cases relating the sphere radius to the boundary layer thickness, δ � r and
δ � r. The two limiting cases demonstrate a reversal in direction, shown schematically in Figs. 3(c)
and 3(e) [36,37,56]. In the first case, the boundary layer thickness is much larger than the radius,
δ � r [Fig. 3(c)]. By symmetry, we consider only one quadrant of flow. A single vortex that is
the boundary layer is generated near the surface of the sphere, which pulls fluid along the axis of
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FIG. 3. Left column: Small-sphere-leading regime at Re = 2. Right column: Large-sphere-leading regime
at Re = 30. Spherobot velocity field superimposed with the vorticity field and streamlines in (a) the small-
sphere-leading regime and (b) the large-sphere-leading regime. The largest dimensionless velocity magnitude
in (a), (b) is |vmax|/ f r = 0.88. Schematic diagrams showing the reversal of steady streaming flows for one
sphere in the limiting cases (c) δ � r, and (e) δ � r. Due to symmetry, the lower left quadrant is indicated
with a dashed line. Velocity vector plot superimposed with the vorticity field for one sphere at (d) Re = 2 and
(f) Re = 30. The largest dimensionless velocity magnitude in (d), (f) is |vmax|/ f r = 1.1.

oscillation and pushes fluid out in the perpendicular. In the second case, the boundary layer thickness
is much smaller than the radius of the sphere, δ � r [Fig. 3(e)]. Two vortices are generated swirling
in opposite directions. The boundary layer is confined into an inner vortex close to the surface of
the sphere (same direction as in the first case) but there is an additional outer vortex in the opposite
direction—it pushes fluid out along the axis of oscillation and pulls it in along the perpendicular.
The analytical limiting solutions that we just described provide us with a qualitative picture; we
cannot use them for a direct comparison because neither Ar � r nor δ � r or δ � r hold true
for our system. Instead, we compare our results to experiments and simulations that have similar
parameters to the spherobot, i.e., ε = Ar/r = O(1) and r/δ = O(1).

Unlike the spherobot where the reversal of flows corresponds to a switch in the direction
of swimming, the point where reversal of flows occurs for a single sphere is not well defined
[36,38,60,61]. Experimental studies have indicated that the inner vortex can be observed for r/δ � 4
[62], whereas both experiments and simulations indicate the coexistence of inner and outer vortices
with opposing flows for r/δ � 7 [62–66]. It was also shown that the reversal of flows depends on
the sphere’s amplitude, yet a specific scaling was not found [38,60–62]. Relating all this back to
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the spherobot, our data collapse gave Re = Arr/δ2 as the critical parameter for the transition in
the swimming direction, a scaling that includes an amplitude dependence, as suggested by previous
work [38,41,43,44,60–62]. Moreover, we found that when plotting the dimensionless velocity of
the spherobot as a function of r/δ, the transition in swimming (Re ≈ 20) occurred in the range
r/δ ≈ [3.5, 7] (see Fig. S7 [55]), again in agreement with previous reports on the reversal of SS
flows for a sphere.

We can make an analogy that the large sphere of the spherobot acts as the body of the swimmer
while the small sphere acts as the flagellum. In fact, it is interesting that the SS flows, which
are unrelated to the squirmer models, in the small-sphere-leading regime resemble the flow field
of Stokesian pullers and in the large-sphere-leading regime resemble the flow field of Stokesian
pushers [67–69]. However, the organisms that swim as pullers and pushers such as algae and
bacteria, respectively, have different appendages that are responsible for “pulling” and “pushing.”
What is remarkable here is that the geometry of the spherobot does not have to change—the small
sphere can act as an effective flagellum that can both “pull” and “push” depending only on the
critical parameter Re = Arr/δ2. For example, our swimmer can switch its swimming direction by
only changing its displacement amplitude.

To conclude, we have proposed a model spherobot swimmer that utilizes SS to propel itself.
The main findings of the current Rapid Communication are (i) a transition in the swimming
direction that collapses onto a single critical Reynolds number and (ii) the physical mechanism
for the transition in swimming is the reversal of SS flows. Based on our findings, we propose that
SS can be an important physical mechanism present more generally in motility at Reint both in
biological organisms and also when designing artificial swimmers [45,47,70,71]. Finally, we expect
to find interesting emergent collective behavior of multiple spherobot swimmers as nonlinearities
accumulate leading to different steady states and patterns.
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