4,827 research outputs found

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space

    Temporal Model Adaptation for Person Re-Identification

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80%

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner

    Revisiting the Dissimilarity Representation in the Context of Regression

    Get PDF
    In machine learning, a natural way to represent an instance is by using a feature vector. However, several studies have shown that this representation may not accurately characterize an object. For classification problems, the dissimilarity paradigm has been proposed as an alternative to the standard feature-based approach. Encoding each object by pairwise dissimilarities has been demonstrated to improve the data quality because it mitigates some complexities such as class overlap, small disjuncts, and low-sample size. However, its suitability and performance when applied to regression problems have not been fully explored. This study redefines the dissimilarity representation for regression. To this end, we have carried out an extensive experimental evaluation on 34 datasets using two linear regression models. The results show that the dissimilarity approach decreases the error rates of both the traditional linear regression and the linear model with elastic net regularization, and it also reduces the complexity of most regression datasets

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    Mapping microarray gene expression data into dissimilarity spaces for tumor classification

    Get PDF
    Microarray gene expression data sets usually contain a large number of genes, but a small number of samples. In this article, we present a two-stage classification model by combining feature selection with the dissimilarity-based representation paradigm. In the preprocessing stage, the ReliefF algorithm is used to generate a subset with a number of topranked genes; in the learning/classification stage, the samples represented by the previously selected genes are mapped into a dissimilarity space, which is then used to construct a classifier capable of separating the classes more easily than a feature-based model. The ultimate aim of this paper is not to find the best subset of genes, but to analyze the performance of the dissimilarity-based models by means of a comprehensive collection of experiments for the classification of microarray gene expression data. To this end, we compare the classification results of an artificial neural network, a support vector machine and the Fisher’s linear discriminant classifier built on the feature (gene) space with those on the dissimilarity space when varying the number of genes selected by ReliefF, using eight different microarray databases. The results show that the dissimilarity-based classifiers systematically outperform the feature-based models. In addition, classification through the proposed representation appears to be more robust (i.e. less sensitive to the number of genes) than that with the conventional feature-based representation
    • …
    corecore