
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


18

Nearest Feature Rules and Dissimilarity 
Representations for Face Recognition Problems 

Mauricio Orozco-Alzate and Germán Castellanos-Domínguez 
Universidad Nacional de Colombia Sede Manizales 

Colombia

1. Introduction 

Over the last decade, face recognition has been a widely-studied area of research. It has been 
mainly motivated by a high and always increasing demand of reliable authentication and 
security systems, as well as by numerous medical-related and human-computer interaction 
applications; such as posture/gesture recognizers, intelligent multimodal systems and 
speech therapy software. In addition, a variety of dimensionality reduction techniques and 
classification rules have been treated. In particular, linear transformations for extracting 
non-facial or non-geometric features and non-parametric pattern classifiers have been 
widely employed in the so-called pixel-based approach, which consists in operating directly on 
the acquired image, without deriving facial features such as the distance between eyes or the 
area of the mouth. 
Face recognition is a particular problem of multi-class classification. In general, we are given 

a set of training objects { }NiX
M

iii
,,1,|,),(: =∈= Rxx ω , each of them (pixels from a face 

image in our particular case) consisting of a M dimensional pattern xi and its label ∈ωi .

In pixel-based face recognition problems, feature extraction and feature selection methods 
are applied in order to reduce the dimensionality. Such methods usually consist in a 

transformation ZX: →φ , such that )(: xz φ= .

The eigenface representation is the simplest and widest used dimensionality reduction 
technique employed in pixel-based face recognition. It consists in the principal component 
analysis (PCA) or the Karhunen-Loève transform (KL), differing mainly at the structure of 
the covariance matrix. Let x be a vector formed by all the rows of an image, the prototype 

faces are arranged on a matrix [ ]xx µxµxX −−= N1 , where [ ]
=

==
N

1n
nN1E xxµ x . Due to 

the fact that the number of training faces N is often smaller than the face dimension d, it is 

more advisable to calculate the eigenvectors of the N×N covariance matrix XX
X

T' = ,

instead of those of the d×d covariance matrix TXX
X

= . The eigenvectors wi corresponding 

to the p largest eigenvalues are called eigenfaces and determine a transformation matrix 

[ ]
pN21eigen wwwW = , where NNp ≤  is the number of principal components to be 

considered in further procedures. A specific value for Np is selected according to some 

Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007
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criterion, e.g. the information percentage on the eigenvalues. A feature point is transformed 
by

( )xµxWz −= T
eigen (1)

This chapter is concerned with four subjects. The first one is a conceptual and experimental 
review of the nearest feature classifiers; some bibliographical remarks as well as theoretical 
and empirical conclusions are given. The second subject is a quantification of the 
computational complexity of the nearest feature rules, by using an economic model which 
takes into account a trade-off between classifier error and evaluation complexity. 
Complexities of these classifiers are estimated in terms of orders (big-oh notation) and 
measured in FLOPs. The study includes error-complexity curves and complexity costs, 
resembling a cost-benefit analysis. The third one corresponds to a face recognition task 
based on dissimilarity representations, which shows that normal density-based (Bayesian) 
classifiers constructed on such representations are an alternative approach to the direct 
application of the nearest neighbor rule. The last subject is aimed to present a conceptual 
discussion on the relationship between the nearest feature rules and dissimilarity 
representations, particularly the so-called generalized dissimilarity representations and their 
potential application to face recognition problems as well as to other applications. Some 
open and apparently promising issues to be considered for further research are also 
discussed in the concluding section. 

2. The nearest feature classifiers 

In classification theory, there is an approach completely independent of statistical 
knowledge or assumptions, the so-called distribution free classification, often referred to as 
nonparametric techniques. Such an approach includes classification algorithms which can be 
described without reference to probability distributions; i.e. without the assumption that the 
forms of the underlying densities are known (Duda et al., 2000). 
Nonparametric procedures can be roughly divided into two branches: firstly, methods for 
estimating the underlying density functions, including the Parzen-window method and the 
kn-nearest neighbor estimation; secondly, procedures for estimating directly the a posteriori 
probabilities such as the well-known k-nearest neighbor rule (k-NN) which, in spite of its 
simplicity, has been successfully used in a considerable variety of applications. Nonetheless, 
it requires a significant amount of storage and computational effort; such a problem can be 
partly solved by using the condensed nearest neighbor rule (CNN) (Hart, 1968). In addition, 
the k-NN classifier suffers of a potential loss of accuracy when a small set of prototypes is 
available. To overcome this shortcoming, the nearest feature classifiers were developed. 
They are also a type of nonparametric techniques, which are based on a measure of distance 
between the query point and the prototypes or a function calculated from them, such as a 
line, a plane or a space. In this work, we consider four different nearest feature rules: k-
nearest-neighbor or k-NN, k-nearest-feature-line or k-NFL, k-nearest-feature-plane or k-
NFP and nearest-feature-space or NFS. The two last ones were proposed in (Chien & Wu, 
2002) as a complete geometric generalization of k-NFL. 
Before defining the nearest feature classifiers, a brief comment on notation is given. 

Consider a collection of training faces { }c
N

iii nC,,1i,|,),(:Z ⋅=∈ω= Rzz , where C 

denotes the number of classes and nc the number of objects per class. We assume, without 
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loss of generality, a transformed point z because a dimensionality reduction technique is 
usually applied before using a classifier; however, for the sake of notation simplicity, x and z
will be used indistinctly to denote a pattern. The nearest feature rules are defined as follows. 

2.1 The k-Nearest-Neighbor Rule 

The simplest nonparametric method for classification should be considered k-NN (Cover & 
Hart, 1967). This rule classifies z by assigning it the class label  most frequently represented 
among the k nearest prototypes; i.e., by finding the k neighbors with the minimum distances 
between z and all prototype feature points {zci,1  c  C,1  i  nc}. For k=1, the rule can be 
written as follows: 

( ) ( ),,dmin,d ci
ni1C;c1îĉ

c

zzzz
≤≤≤≤

=  (2) 

where d(z,zci)= z-zci  is usually the Euclidean norm. In this case, the number of distance 

calculations is 
=

=
C

1c cnn .

2.2 The k-Nearest-Feature-Line 

The k-nearest-feature-line rule, or k-NFL (Li & Lu, 1999), is an extension of the k-NN classifier. 
This method generalizes each pair of prototype feature points belonging to the same class, 

{zci,zcj} by a linear function c
ijL , which is called the feature line (see Figure 1). The line is 

expressed by the span ( )cjci
c
ij ,spL zz= . The query z is projected onto c

ijL  as a point c
ijp . This 

projection is computed as 

),,( cicjci
c
ij zzzzp −τ+=  (3) 

where τ=(z-zci)(z-zci)/ zcj-zci 2, which is called the position parameter. The classification of z
is done by assigning it the class label  most frequently represented among the k nearest 
feature lines, for k=1 that means: 

( ) ( ),L,dminL,d c
ij

ji;nji,1C;c1

ĉ

ĵî
c

zz
≠≤≤≤≤

=  (4) 

where ( ) c
ij

c
ijL,d pzz −= . In this case, the number of distance calculations is 

=
−=

C

1c ccL 2/)1n(nn .

Figure 1. Feature line and projection point onto it 
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2.3 The k-Nearest-Feature-Plane 

The k-nearest-feature-plane rule, or k-NFP, is an extension of the k-NFL classifier. This 
classifier assumes that at least three linearly independent prototype points are available for 
each class. It generalizes three feature points {zci,zcj,zcm} of the same class by a feature plane 

c
ijmF  (see Figure 2); which is expressed by the span ( )cmcjci

c
ijm ,,spF zzz= . The query z is 

projected onto c
ijmF  as a point c

ijmp . The projection point can be calculated as follows: 

,
Tc

ijm

1
c
ijm

Tc
ijm

c
ijm

c
ijm zZZZZp

−

=
 (5) 

where [ ]cmcjci
c
ijm zzzZ = . Considering k=1, the query point z is classified by assigning it the 

class label , according to 

( ) ( ),F,dminF,d c
ijm

mji;nmj,i,1C;c1

ĉ

m̂ĵî
c

zz
≠≠≤≤≤≤

=  (6) 

 where ( ) c
ijm

c
ijmF,d pzz −= . In this case, the number of distance calculations is 

=
−−=

C

1c cccF 6/)2n)(1n(nn .

Figure 2. Feature plane and projection point onto it 

2.4 The Nearest-Feature-Space Rule 

The nearest-feature-space rule, or NFS, extends the geometrical concept of k-NFP classifier. It 
generalizes the independent prototypes belonging to the same class by a feature space 

( )
ccn2c1c

c ,,,spS zzz= . The query point z is projected onto the C spaces as follows: 

,
Tc

1
cTccc zZZZZp

−

=  (7) 

where [ ]
ccn2c1c

c zzzZ = . The query point z is classified by assigning it the class label ,

according to 

( ) ( ) c

Cc1

c

Cc1

ĉ minS,dminS,d pzzz −==
≤≤≤≤

 (8) 

The number of distance calculations is always equals to C. 
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2.5 Theoretical geometric differences 

It was geometrically shown in (Chien & Wu, 2002) that the distance of z to c
ijmF  is smaller 

than that to the feature line. Moreover, the distance to the feature line is nearer compared 
with the distance to two prototype feature points. This relation can be written as follows: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )cmcjci
c
mi

c
jm

c
ij

c
ijm ,d,,d,,dminL,d,L,d,L,dminF,d zzzzzzzzzz ≤≤ (9)

In addition,  

( ) ( )c
ijm

Cc1

c F,dminS,d zz
≤≤

= (10)

In consequence, k-NFL classifier is supposed to capture more variations than k-NN, k-NFP 
should handle more variations of each class than k-NFL and NFS should capture more 
variations than k-NFP. So, it is expected that k-NFL performs better than k-NN, k-NFP is 
more accurate than k-NFL and NFS outperforms k-NFP. 

2.6 Asymptotic behavior of the nearest feature rules 

The problem of determining the error bound for the nearest feature rules can be addressed 
following the procedure to derive the error rate for the nearest neighbor rule; i.e. k-NN for 
k=1. The nearest feature rules are sub-optimal procedures as the k-NN rule; that is, they lead 
to an error rate greater than the minimum possible, the Bayes rate (Duda et al., 2000). In 
particular, for the k-NN rule with an unlimited number of prototypes, the error rate is never 
worse than twice the Bayes rate. 
In this sense, the infinite-sample conditional average probability of error P(e|x) and the 
unconditional average probability of error P(e) are analyzed to find their minimum possible 
values: P*(e|x) and P*(e) respectively. Values of P(e|x) and P(e) are related, through the 
density p(x), by 

.dx)x(p)x|e(P)e(P = (11)

Let us define the m-th state of nature ωm(x) by )x|(Pmax)x|(P i
i

m ω=ω . The probability of 

error is minimized by the Bayes’ decision rule, minimizing P(e|x) for every x, thus 

)x|(P1)x|e(*P mω−= , (12)

and

= dx)x(p)x|e(*P*P . (13)

Expression (13) is called the Bayes rate.
A conditional probability of error P(e|x,x’) must be defined because the nearest neighbor 
rule depends on the samples, particularly on both the nearest prototype x’ to a test point x 
and on the point x itself. P(e|x) is obtained by averaging over x’ 

= 'dx)x|'x(p)'x,x|e(P)x|e(P . (14)
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In order to simplify the analysis of (14), the infinite-sample case, i. e. when n goes to infinity, 
is considered. In those conditions, the conditional density p(x’|x) approaches to a delta 

function centered at x:p(x’|x)→δ(x’-x) (See also (Duda et al., 2000) for a detailed 
demonstration). Now, an expression for P(e|x,x’) is derived as follows: 

Let (x1,θ1),(x2,θ2),…,(xn,θn) be n independently drawn labelled samples, where 

{ }c1j ,, ωω∈θ  for j=1,…,n. Suppose that a test point (x,θ) and its nearest training sample 

(xj’,θj’) are selected. Since the states of nature, when x and xj’ were drawn, are independent, 
we have 

)'x|'(P)x|(P)'x,x|',(P jjjj θθ=θθ ; (15) 

according to the nearest neighbor rule, an error is made if θ≠θj and, consequently, the 
conditional probability of error Pn(e|x,xj’) is given by 

.)'x|(P)x|(P1

)'x,x|',(P1)'x,x|e(P

c

1i

jii

c

1i

jiijn

=

=

ωω−=

ω=θω=θ−=

 (16) 

Substituting (16) in (14): 

=

=
∞→

ω−=

−δωω−=

c

1i

i
2

c

1i

iin
n

)x|(P1

'dx)x'x()'x|(P)x|(P1)x|e(Plim

 (17) 

In addition, if )e(PlimP n
n ∞→

=  and using (11) and (17) we have 

ω−=

=

=

=

=

∞→

∞→

∞→

dx)x(p)x|(P1

dx)x(p)x|e(Plim

dx)x(p)x|e(Plim

)e(PlimP

c

1i

i
2

n
n

n
n

n
n

 (18) 

Comparing (13) and (18), it can easily be seen that P* is a lower bound on P. In order to 

calculate an upper bound, expression 
=

ω
c

1i
i

2 )x|(P  in (18) is examined to determine how it 

is minimized. Such an expression can be rewritten as 

= ≠

ω+ω=ω
c

1i mi

i
2

m
2

i
2 )x|(P)x|(P)x|(P , (19) 
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and the bound for 
=

ω
c

1i
i

2 )x|(P  is found by minimizing the term 
≠

ω
mi

i

2 )x|(P , s.t.: 

0)x|(P i ≥ω (20)

≠

=ω−=ω
mi

mi )x|e(*P)x|(P1)x|(P (21)

=
ω

c

1i
i

2 )x|(P  is minimized if mj,i),x|(P)x|(P ji ≠∀ω=ω . Besides, from (21) we have: 

=−

≠
−=ω

mi)x|e(*P1

mi
1c

)x|e(*P

)x|(P i (22)

The following inequalities can be derived from the expressions above: 

=
−

+−≥ω
c

1i

2
2

i
2

1c

)x|e(*P
))x|e(*P1()x|(P (23)

and

=
−

−≤ω−
c

1i

i
2 )x|e(*P

1c

c
)x|e(*P2)x|(P1 (24)

By substituting (24) in (18), it can be seen that P 2P*. Furthermore, a tight expression can be 
obtained by observing the variance of P*(e|x) (Duda et al., 2000): 

[ ] [ ]

0*Pdx)x(p)x|e(*P

dx)x(p*P)x|e(*Px|)e(*Pvar

22

2

≥−=

−=
(25)

and, in consequence, 

≥ 22 *Pdx)x(p)x|e(*P (26)

Using (24) and (26) in (18), we obtain the inequality: 

−
−≤≤ *P

1c

c
2*PP*P , (27)

which shows that the nearest neighbour error rate P in a multi-class (c classes) problem, 
having an infinite collection of training data, is always less than or equal to twice the Bayes 
rate. An elegant conclusion from (27) is given in (Duda et al., 2000): “at least half of the 
classification information in an infinite data set resides in the nearest neighbor”. 
Having an arbitrarily large number of prototypes, training or representation sets are fully 
informative and representative of the underlying processes. Since the nearest feature rules 
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attempt to enrich the representation and, under the condition cited above, available 
prototypes are fully representative, we intuitively do not expect a difference between the 
asymptotic behavior of the k-NN rule and the asymptotic behavior of the nearest feature 
classifiers for the infinite-sample case. The finite-sample case cannot be addressed by using 
such a simple reasoning. In fact, questions such as how rapidly the performance converges 
to the asymptotic value have still not been solved for the k-NN rule (Duda et al., 2000). 

3. Quantifying the Computational Complexity of the Nearest Feature 
Classifiers 

This section is devoted to quantifying the computational complexity of the nearest feature 
classifiers, by using an economic model which takes into account a trade-off between 
classifier error and evaluation complexity. The model is applied to the face recognition 
problem, which is the framework where these classifiers were originally proposed. 
Classifiers are also studied by measuring them in orders, denoted by the Landau symbol O 
(big-oh notation). 

3.1 Complexity of the Nearest Feature Classifiers 

Due to, as mentioned above, the nearest feature classifiers are non-parametric, the number 
of samples in the training set (prototypes) has a strong influence on the evaluation 
complexity. Since in modern computer systems, additions and multiplications are 
comparable in complexity (de Ridder et al., 2002), we can consider that: 

• sum of two d-dimensional vectors costs d additions, therefore it has a complexity of d, 

• multiplication of two d-dimensional vectors costs d additions and d multiplications, so 
it has a complexity of 2d, 

• a scalar-vector multiplication has a complexity of d, 

• multiplying a m×d matrix by a d×1 vector has a complexity of 2dm, 

• multiplying a m×d matrix by a d×m matrix has a complexity of m2(2d-1),

• a m×m matrix inversion has a complexity of O(m3).
Considering that Euclidean distance d(z1,z2) is used in all of them, whose complexity is 3d if 
z1 and z2 are d-dimensional, then we have: 
1. k-NN: distances to all prototypes have to be calculated (2nd) and the minimum will 

have to be stored in a sorted list of k nearest prototypes (n⋅log2k). The total complexity 
therefore is n(3d+log2k). 

2. k-NFL: projection points onto lines (Eq. (3)) have to be calculated (14dnL) and also 
distances to all feature lines (2dnL). The minimum will have to be stored in a sorted list 

of k nearest prototypes (nL⋅log2k). In consequence, the total complexity is nL(16d+log2k). 
3. k-NFP: projection points on planes (Eq. (5)) have to be calculated (nFO(30d+36)) and 

also distances to all feature planes (2dnF). The minimum will have to be stored in a 

sorted list of k nearest prototypes (nF⋅log2k). The total complexity therefore is 
nF(2d+log2k+O(30d+36)).

4. NFS: projection points on spaces (Eq. (7)) have to be calculated 

( )( )( )3
c

2
cc n1d2ndn4C +++  and also distances to all feature spaces (2dC) and the 

minimum will have to be found (C⋅log2C). Consequently, the total complexity is 

( )( )Clogd2n1d2ndn4C 2
3
c

2
cc +++++ .
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3.2 Error-Complexity Curves 

Complexity can be empirically studied by exploring the error-complexity trade-off. As in a 
cost-benefit analysis, a series of experiments should be conducted, varying the number of 
prototypes in order to investigate the dependency of the performance on it. For feature 
extraction, the eigenface representation was applied (cf. Section 1). Obviously, 
computational complexity can be lowered by retaining as fewer eigenfaces as possible; 
nonetheless, 40 eigenfaces are sufficient for a very good description of the training set (Chin 
& Suter, 2004). 
We have used k=1 for all the classifiers; nonetheless, k could be optimized by the leave-one-
out procedure. Data sets used here as examples are: 

• The AT&T (previously ORL) Database of Faces, with C=40, d=93×112 pixels which was 

reduced up to d=40 and { }.5,4,3Cn ⋅∈

• The Sheffield (previously UMIST) Face Database, with C=20, d=93×112 pixels which 

was reduced up to d=40 and { }.9,7,5,3Cn ⋅∈

Error e (in %, measured on an independent set of 5 examples per class) vs. computational 
complexity f (in FLOPs) for the AT&T database of faces is shown in Figure 3. Similarly, the 
error e (in %, measured on an independent set of 9 examples per class) vs. computational 
complexity f (in FLOPs) for the Sheffield Face Database is shown in Figure 4. In both cases 
the number of FLOPs corresponds to the classification of a single example z.

Figure 3. Classifier complexity f (in FLOPs) vs. e (in %) for the AT&T database of faces 

When NFS is applied for three prototypes per class, it becomes k-NFP. It is noteworthy that 
performance could decline. In practice, k-NFP classifier is not advisable because its 
computational complexity becomes too high. If a sufficient number of prototypes is 
available, for example 5 or 9 prototypes per class for each database, the best choice would be 
k-NFL. Only in those cases where the number of prototypes is not large enough to cover 
variations for each object, the more expensive nearest feature classifiers should be used. 
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Figure 4. Classifier complexity f (in FLOPs) vs. e (in %) for the AT&T database of faces 

3.3 The economics of nearest feature classification 

In (de Ridder et al., 2002), a simple economic model for comparing classification error to 
computational complexity was proposed. According to such approach, cost of classification 
errors (€ce) and cost of complexity (€cp) can be compared by the cost of a single error (€c0) as 
follows: 

pe cc = , (28) 

f1027.1
sv1015.3

fc
ce 10

7

c
0 ⋅×=

⋅⋅×

⋅
=⋅ − , (29) 

where e is the probability of misclassification, v is the number of FLOPs per second (there 
are 3.15×107 seconds in a year), cc is the total annual cost of ownership for a computer, f is 
the number of FLOPs needed to classify a single sample z and s is the percentage of CPU 
time allotted to classification. It was found experimentally that cc= €104, v=107 and s=0.25 are 
reasonable values. 
A direct comparison between two classifiers A and B can be done by a slight modification of 
(29):

AB

AB10
A,B

ee

ff
1027.1c

−

−
⋅×= − , (30) 

Eq. (30) represents the cost of using classifier B instead of another classifier A. Interesting 
cases are those with (eB-eA)<0; that is, selecting a classifier which improves the performance. 
For these cases, cB,A>0 indicates that classifier B complexity is larger than that of classifier A 
and, in consequence, the improvement must be paid. Conversely, if cB,A>0 we would have a 
cheaper and better classifier. Costs of interesting cases for the AT&T Database of Faces and 
the Sheffield Face Database are shown in Tables 1 and 2, respectively. 



Nearest Feature Rules and Dissimilarity Representations for Face Recognition Problems 347

A
Classifier 

k-NN k-NFL k-NFP NFS 

B 3 prototypes per class 

k-NN — — — — 

k-NFL 0.0002 — — — 

k-NFP 0.0027 0.0068 — * 

NFS 0.0018 0.0044 * — 

 4 prototypes per class 

k-NN — — — — 

k-NFL 0.0007 — — — 

k-NFP 0.0143 0.0690 — * 

NFS 0.0037 0.0161 * — 

 5 prototypes per class 

k-NN — — — — 

k-NFL 0.0015 — * -0.0190 

k-NFP 0.0558 * — 0.1438 

NFS 0.0117 — — — 

*: eB=eA; —: (eB - eA) > 0 

Table 1. Economics of nearest feature classifiers. AT&T database of faces 

A
Classifier 

k-NN k-NFL k-NFP NFS 

B 3 prototypes per class 

k-NN — — — — 

k-NFL 0.0001 — -0.0015 -0.0013 

k-NFP 0.0027 — — * 

NFS 0.0024 — * — 

 5 prototypes per class 

k-NN — — — — 

k-NFL 0.0022 — — — 

k-NFP 0.0253 0.0368 — * 

NFS 0.0039 0.0048 * — 

 7 prototypes per class 

k-NN — — — * 

k-NFL 0.0016 — -0.1287 -0.0041 

k-NFP 0.2623 — — 0.2452 

NFS * — — — 

 9 prototypes per class 

k-NN — — — — 

k-NFL 0.0084 — * * 

k-NFP 0.6261 * — * 

NFS 0.0233 * * — 

*: eB=eA; —: (eB - eA) > 0 

Table 2. Economics of nearest feature classifiers. Sheffield face database 
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k-NFP classifier is always the most expensive option. The cheaper solution which gives an 
acceptable error in comparison with the best possible performance is k-NFL; in fact, in 
several cases using k-NFL instead of other nearest feature classifier is a saving on the cost of 
error-complexity. In general, costs of preferring NFS are acceptable. 

4. Dissimilarity-based face recognition 

The concept of proximity is essential in learning processes. Identifying differences or, 
conversely, detecting shared commonalities are typically carried out by using a suitable 
proximity measure, often referred to as a dissimilarity. Such a proximity can be modelled in 
different ways, according to the nature of data; e.g. as a classical distance between vector 
representations or by using edit distances between structural descriptions, such as shapes or 
sequences. 
A wide-scope approach, the dissimilarity representation for pattern recognition (P kalska & 
Duin, 2005a), was proposed on the basis of such proximity measures. Statistical and 
structural learning techniques can be directly used with dissimilarity representations, 
naturally fitting for a variety of applications, e.g. face recognition problems. In addition, 
since dissimilarity measures are considered very general, they are not constrained to 
Euclidean or metric behaviors, neither to positive semidefinite structures as it is imposed 
beforehand in kernel methods. The aim of this Section is to review the practical foundations 
of the dissimilarity-based approach and to explore its application for a simple face 
recognition problem. 

4.1 Dissimilarity representations 

A dissimilarity representation of objects is based on their pairwise comparisons. Consider a 
representation set R:={p1,p2,…,pn} and a dissimilarity measure d. An object x is represented 
as a vector of the dissimilarities computed between x and the prototypes from R, i.e. 

D(x,R)=[d(x,p1),d(x,p2),…,d(x,pn)]. For a set T of N objects, it extends to an N×n dissimilarity 
matrix (P kalska et al., 2006): 
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where djk=D(xj,pk).
For dissimilarities, the geometry is contained in the definition, giving the possibility to 
include physical background knowledge; in contrast, feature-based representations usually 
suppose a Euclidean geometry. Important properties of dissimilarity matrices, such as 
metric nature, tests for Euclidean behavior, transformations and corrections of non-
Euclidean dissimilarities and embeddings, are discussed in (P kalska & Duin, 2005b). 

When the entire T is used as R, the dissimilarity representation is expressed as an N×N
dissimilarity matrix D(T,T). Nonetheless, R may be properly chosen by prototype selection 
procedures (P kalska et al., 2006). 
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4.2 Classifiers in dissimilarity spaces 

Building a classifier in a dissimilarity space consists in applying a traditional classification 
rule, considering dissimilarities as features; that is, in practice, a dissimilarity-based 
classification problem is addressed as a traditional feature-based one. Even though the 
nearest neighbor rule is the reference method to discriminate between objects represented 
by dissimilarities, it suffers from a number of limitations. Previous studies (P kalska et al., 
2001; P kalska & Duin, 2002; Paclík & Duin, 2003; P kalska et al., 2004; Orozco-Alzate et al., 
2006) have shown that Bayesian (normal density based) classifiers, particularly the linear 
(LDC) and quadratic (QDC) normal based classifiers, perform well in dissimilarity spaces 
and, sometimes, offer a more accurate solution. For a 2-class problem, the LDC based on the 
representation set R is given by 
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and the QDC is derived as 
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where C is the sample covariance matrix, C(1) and C(2) are the estimated class covariance 
matrices, and m(1) and m(2) are the mean vectors, computed in the dissimilarity space D(T,R). 
P(1) and P(2) are the class prior probabilities. If C is singular, a regularized version must be 

used. In practice, the following regularization is suggested for λ=0.01 (P kalska et al., 2006): 

( ) ( )CdiagC1Creg λ+λ−=λ (34)

Nonetheless, regularization parameter should be optimized in order to obtain the best 
possible results for the normal density based classifiers. 
Other classifiers can be used in dissimilarity spaces, usually by a straightforward 
implementation. Nearest mean linear classifiers, Fisher linear discriminants, support vector 
machines (SVMs), among others are particularly interesting for being used in generalized 
dissimilarity spaces. In addition, traditional as well as specially derived clustering 
techniques can be implemented for dissimilarity representations, see (P kalska & Duin, 
2005c) for a detailed discussion. 

4.3 Experimental results 

As in Section 3.2, experiments were conducted on the AT&T and the Sheffield datasets, 
using 40 eigenfaces for an initial representation. Dissimilarity representations were 
constructed by calculating pairwise Euclidean distances on the eigenface representations. In 
order to compare different classifiers, the k-NN rule and the LDC and QDC classifiers built 
on the dissimilarity representations were used. Experiments were performed 25 times for 
randomly chosen training and test sets. Since in this study we are particularly interested in 
recognition accuracy rather than in computational complexity and storage requirements, the 
entire training set T has been used as the representation set R. Nonetheless, R may be 
properly reduced by prototype selection procedures (P kalska et al., 2006). Training and 
testing sets were generated by selecting equal partitions for the classes.  
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Figures 5 and 6 present the results, in terms of classification errors as a function of the 
number of training objects randomly chosen. Figure 5 presents the results for the AT&T 
database; similarly, the results for the Sheffield dataset are shown in Figure 6. Standard 
deviations for averaged test error decrease rapidly, varying around 0.15 and 0.08 after at 
least 6 training objects per class are available; for clarity reasons, standard deviations are not 
given. 

Figure 5. Average classification error as a function of the number of prototypes per class for 
the ORL database of faces 

Figure 6. Average classification error as a function of the number of prototypes per class for 
the Sheffield database of faces 
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Experiments confirm that Bayesian classifiers outperform the 1-NN classifier, whenever a 
sufficient number of prototypes is available. Moreover, LDC for both data sets outperforms 
the 1-NN rule and the QDC; nonetheless, it shows a loss of accuracy when certain number of 
prototypes is provided. Therefore, a further study on a proper regularization for the LDC 
should be conducted. 

5. Nearest feature rules and dissimilarity representations 

Recently, a number of research advances on dissimilarity representations has been carried 
out. They showed that learning from dissimilarity representations is a feasible alternative to 
learning from feature-based descriptions (P kalska & Duin, 2002; Paclík & Duin, 2003; 
P kalska & Duin, 2005a). In spite of those remarkable advances, the work is not completed 
yet; particularly, meaningful transformations and manipulations of dissimilarity 
representations are still an open and promising field for future research. Particularly, 
manipulations to enrich the original dissimilarity representations might be useful; e.g. by 
using a geometrical generalization. 
In such a way, a dissimilarity representation of an object x, which is defined as a set of 
dissimilarities between x and the objects of a collection R:={p1,p2,…,pn}, expressed as a 
vector D(x,R)=[d(x,p1),d(x,p2),…,d(x,pn)], is generalized by considering a new set R 
composed by objects lying in another space, e.g. lines or planes. Considering such a 
generalized representation, the entire scope of pattern recognition can be studied: 
representation, data understanding, transformations, classification, etc. In addition, new 
applications should be considered in order to describe other pattern recognition problems 
where dissimilarity representations and generalized dissimilarity representations might be 
advantageous. In summary, the task consists in studying classification in generalized 
dissimilarity representations; that is, constructing classifiers on spaces equipped with a 

dissimilarity measure ρ: X×Xg→R, where Xg stands for a generalization of X. In general, 
dimension of Xg is higher than that of X. 

5.1 Generalization of Dissimilarity Representations 

The generalization consists in creating matrices DL(T,RL) and DF(T,RF) by using the 
information available at the original representation D(T,R). DL(T,RL) and DF(T,RF) are called 
generalized dissimilarity representations and their structures are:  
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where djk=DL(xj,Lk); and 
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where djk=DF(xj, Fk).
D(T, RL) and D(T, RF) are high dimensional matrices because the original representation set 
R is generalized by combining all the pairs (RL) and all the triplets (RF) of prototypes of the 
same class. In consequence, a suitable procedure for feature selection (dimensionality 
reduction) is needed in order to avoid the curse of the dimensionality. 
A dissimilarity matrix D(T,R)=(dij) is composed of C×C submatrices as follows: 
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where Dii and Dij, i  j contain intraclass and interclass distances respectively. All the 
possible dissimilarities between objects are available but the original feature points are not. 
Nonetheless, it is possible to compute the distances to feature lines from the dissimilarities. 
The problem consists in computing the height of a scalene triangle as shown in Figure 7.

Figure 7. Height of a scalene triangle corresponding to the distance to a feature line 

Let us define s=(djk+dij+dik)/2. Then, the area of the triangle is given by: 

;)ds)(ds)(ds(sA ikijjk −−−=  (38) 

but we also know that area, assuming dij as base, is: 

2

hd
A

ij
=  (39) 

So, we can solve (38) and (39) for h, which is the distance to the feature line. The generalized 
dissimilarity representation in (35) is constructed by replacing each entry of D(T,RL) by the 
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corresponding value of h. The distance dij in Figure 7 must be an intraclass one; that is, 
ii

ij Dd ∈ .

Computing the distances to the feature planes in terms of dissimilarities consists in 
calculating the height of an irregular (scalene) tetrahedron as shown in Figure 8. 

Figure 8. Height of an irregular tetrahedron corresponding to the distance to a feature plane 

Let us define s=(djk+dij+dik)/2. Then, the volume of a tetrahedron is given by: 
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So, we can solve (40) and (41) for h, which is the distance to the feature plane. The 
generalized dissimilarity representation in (36) is constructed by replacing each entry of 
D(T, RF) by the corresponding value of h. Distances dij, dik and djk in Figure 8 must be 
intraclass. 
Experiments have shown that nearest feature rules are especially profitable when variations 
and conditions are not fully represented by the original prototypes; for example the case of 
small or non-representative training sets. The improvement in such a case respect to the k-
NN rule (the reference method) is due to the feature lines/planes' ability to expand the 
representational capacity of the available points, accounting for new conditions not 
represented by the original set (Li & Lu, 1999; Chien and Wu, 2002; Orozco-Alzate, 2005; 
Orozco-Alzate & Castellanos-Domínguez, 2006). Those are precisely the conditions in face 
recognition problems, where the number of prototypes is typically limited to few images per 
class and the number of classes is high: tens or even one hundred people. As a result, the 
effectiveness of the nearest feature rules is remarkable for this problem.  
Representations to be studied include generalizations by feature lines, feature planes and 
the feature space. These representations are not square, having two or three zeros per 
column for feature lines and feature planes respectively. First, generalizations of metric 
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representations will be considered because the generalization procedure requires 
constructing triangles and tetrahedrons and, as a consequence, generalizing non-metric 
dissimilarity representations might produce complex numbers when solving equations for 
heights. 
To construct classifiers based on generalized dissimilarity representations, we should 
proceed similarly as dissimilarity-based classifiers are built. That is, using a training set T 
and a representation set R containing prototype examples from T. Prototype lines or planes 
considered will be selected by some prototype selection procedure; classifiers should be 
built on D(T,RL) and D(T,RF). Different sizes for the representation set R must be considered. 
Enriching the dissimilarity representations implies a considerable number of calculations. 
The number of feature lines and planes grows rapidly as the number of prototypes per class 
increases; in consequence, computational effort may become high, especially if a generalized 
representation is computed for an entire set. When applying traditional statistical classifiers 
to dissimilarity representations, dissimilarities to prototypes may be treated as features. As a 
result, classifiers built in enriched dissimilarity spaces are also subject to the curse of 
dimensionality phenomenon. In general, for generalized dissimilarity representations 
Dg(T,Rg), the number of training objects is small relative to the number of prototype lines or 
planes.
According to the two reasons above, it is important to use dimensionality reduction 
techniques —feature extraction and feature selection methods— before building classifiers 
in generalized dissimilarity representations. Systematic approaches for prototype selection 
such as exhaustive search and the forward selection process lead to an optimal 
representation set; however, they require a considerable number of calculations. 
Consequently, due to the increased dimensionality of the enriched representations, the 
application of a systematic prototype selection method will be computationally expensive. 
Nonetheless, it has been shown that non-optimal and computationally simple procedures 
such as Random and RandomC may work well (P kalska et al., 2006). 

6. Conclusion 

In this chapter, we presented a series of theoretical and experimental considerations 
regarding the nearest feature rules and dissimilarity representations for face recognition 
problems, analyzed separately as well as a combined approach. Firstly, a study about the 
asymptotic behavior of the nearest feature classifiers was conducted, following the well-
known procedure derived for the k-NN rule. We concluded that, if an arbitrarily large 
number of samples is available, there is no significant difference between k-NN and its 
geometric generalizations: the nearest feature rules. Moreover, as for k-NN, it is not possible 
to say something general about the asymptotic behavior in the finite-sample case. It might 
be possible to perform an analysis for specific distributions; perhaps without loss of 
generality. Consequently, further conceptual considerations and experiments are required. 
Quantifying the computational complexity of classifiers is very important in the selection of 
a particular algorithm. Complexity of algorithms is usually measured in terms of orders; 
nonetheless, such an approach is not precise. An evaluation of the error-complexity trade-off 
for the nearest feature classifiers has been presented in Section 3. We have also studied the 
complexity of nearest feature classifiers, in terms of the number of additions and 
multiplications associated to their evaluation, as well as through error-complexity curves 
and a comparative study considering error and complexity. It was shown that k-NFP is too 
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expensive for practical applications and that k-NFL and NFS are better options to overcome 
the representational limitations of k-NN. Even though nearest feature rules are well-
performing classifiers, their computational complexity is too high. If there is a maximum 
acceptable response delay for the particular application and a considerable number of 
prototypes is available, an effective way to overcome this shortcoming might be to use 
parallel computation. 
We have explored and tested a dissimilarity-based strategy for face recognition. Two simple 
classification problems were conducted: the classic ORL database and the Sheffield data set. 
Dissimilarity representation was derived by applying the eigenface transformation and, 
afterwards, the Euclidean distance between the eigenface representations. Such a 
representation allowed us for using traditional statistical decision rules, particularly normal 
density based classifiers. The 1-NN rule was employed as a reference for performance 
comparison. Those experiments confirm that Bayesian classifiers outperform the 1-NN 
classifier, when a sufficient number of prototypes is provided. The LDC constructed for both 
the ORL and the Sheffield problems, always outperforms the 1-NN rule; however, LDC 
shows a loss of accuracy when certain number of prototypes is provided. Therefore, a 
further study on a proper regularization for the LDC should be conducted in order to obtain 
an improvement of this classifier. 
Finally, an approach to combine the nearest feature rules and dissimilarity representations 
was proposed. There are several ways to use the nearest feature rules for enriching a given 
dissimilarity representation. To begin with, we suggested considering generalizations by 
feature lines and feature planes, restricted to metric dissimilarities in order to avoid complex 
numbers when solving equations for heights. However, such a restriction can be overcome 
by using Euclidean embeddings. In addition, combined classifiers seem to be an option 
because a new and extended representation can be constructed by combining the original 
and the generalized ones. As a result, there are several fundamental and applied research 
problems to be faced in future research work. 
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