research

Mapping microarray gene expression data into dissimilarity spaces for tumor classification

Abstract

Microarray gene expression data sets usually contain a large number of genes, but a small number of samples. In this article, we present a two-stage classification model by combining feature selection with the dissimilarity-based representation paradigm. In the preprocessing stage, the ReliefF algorithm is used to generate a subset with a number of topranked genes; in the learning/classification stage, the samples represented by the previously selected genes are mapped into a dissimilarity space, which is then used to construct a classifier capable of separating the classes more easily than a feature-based model. The ultimate aim of this paper is not to find the best subset of genes, but to analyze the performance of the dissimilarity-based models by means of a comprehensive collection of experiments for the classification of microarray gene expression data. To this end, we compare the classification results of an artificial neural network, a support vector machine and the Fisher’s linear discriminant classifier built on the feature (gene) space with those on the dissimilarity space when varying the number of genes selected by ReliefF, using eight different microarray databases. The results show that the dissimilarity-based classifiers systematically outperform the feature-based models. In addition, classification through the proposed representation appears to be more robust (i.e. less sensitive to the number of genes) than that with the conventional feature-based representation

    Similar works