146 research outputs found

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    A robust image watermarking technique based on quantization noise visibility thresholds

    Get PDF
    International audienceA tremendous amount of digital multimedia data is broadcasted daily over the internet. Since digital data can be very quickly and easily duplicated, intellectual property right protection techniques have become important and first appeared about fifty years ago (see [I.J. Cox, M.L. Miller, The First 50 Years of Electronic Watermarking, EURASIP J. Appl. Signal Process. 2 (2002) 126-132. [52]] for an extended review). Digital watermarking was born. Since its inception, many watermarking techniques have appeared, in all possible transformed spaces. However, an important lack in watermarking literature concerns the human visual system models. Several human visual system (HVS) model based watermarking techniques were designed in the late 1990's. Due to the weak robustness results, especially concerning geometrical distortions, the interest in such studies has reduced. In this paper, we intend to take advantage of recent advances in HVS models and watermarking techniques to revisit this issue. We will demonstrate that it is possible to resist too many attacks, including geometrical distortions, in HVS based watermarking algorithms. The perceptual model used here takes into account advanced features of the HVS identified from psychophysics experiments conducted in our laboratory. This model has been successfully applied in quality assessment and image coding schemes M. Carnec, P. Le Callet, D. Barba, An image quality assessment method based on perception of structural information, IEEE Internat. Conf. Image Process. 3 (2003) 185-188, N. Bekkat, A. Saadane, D. Barba, Masking effects in the quality assessment of coded images, in: SPIE Human Vision and Electronic Imaging V, 3959 (2000) 211-219. In this paper the human visual system model is used to create a perceptual mask in order to optimize the watermark strength. The optimal watermark obtained satisfies both invisibility and robustness requirements. Contrary to most watermarking schemes using advanced perceptual masks, in order to best thwart the de-synchronization problem induced by geometrical distortions, we propose here a Fourier domain embedding and detection technique optimizing the amplitude of the watermark. Finally, the robustness of the scheme obtained is assessed against all attacks provided by the Stirmark benchmark. This work proposes a new digital rights management technique using an advanced human visual system model that is able to resist various kind of attacks including many geometrical distortions
    corecore