1,397 research outputs found

    Image segmentation with adaptive region growing based on a polynomial surface model

    Get PDF
    A new method for segmenting intensity images into smooth surface segments is presented. The main idea is to divide the image into flat, planar, convex, concave, and saddle patches that coincide as well as possible with meaningful object features in the image. Therefore, we propose an adaptive region growing algorithm based on low-degree polynomial fitting. The algorithm uses a new adaptive thresholding technique with the L∞ fitting cost as a segmentation criterion. The polynomial degree and the fitting error are automatically adapted during the region growing process. The main contribution is that the algorithm detects outliers and edges, distinguishes between strong and smooth intensity transitions and finds surface segments that are bent in a certain way. As a result, the surface segments corresponding to meaningful object features and the contours separating the surface segments coincide with real-image object edges. Moreover, the curvature-based surface shape information facilitates many tasks in image analysis, such as object recognition performed on the polynomial representation. The polynomial representation provides good image approximation while preserving all the necessary details of the objects in the reconstructed images. The method outperforms existing techniques when segmenting images of objects with diffuse reflecting surfaces

    Superquadrics for segmentation and modeling range data

    Get PDF
    We present a novel approach to reliable and efficient recovery of part-descriptions in terms of superquadric models from range data. We show that superquadrics can directly be recovered from unsegmented data, thus avoiding any presegmentation steps (e.g., in terms of surfaces). The approach is based on the recover-andselect paradigm. We present several experiments on real and synthetic range images, where we demonstrate the stability of the results with respect to viewpoint and noise

    An evolutionary approach to the extraction of object construction trees from 3D point clouds

    Get PDF
    In order to extract a construction tree from a finite set of points sampled on the surface of an object, we present an evolutionary algorithm that evolves set-theoretic expressions made of primitives fitted to the input point-set and modeling operations. To keep relatively simple trees, we use a penalty term in the objective function optimized by the evolutionary algorithm. We show with experiments successes but also limitations of this approach

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Fine-To-Coarse Global Registration of RGB-D Scans

    Full text link
    RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods

    Information-driven navigation

    Get PDF
    En los últimos años, hemos presenciado un progreso enorme de la precisión y la robustez de la “Odometría Visual” (VO) y del “Mapeo y la Localización Simultánea” (SLAM). Esta mejora de su funcionamiento ha permitido las primeras implementaciones comerciales relacionadascon la realidad aumentada (AR), la realidad virtual (VR) y la robótica. En esta tesis, desarrollamos nuevos métodos probabilísticos para mejorar la precisión, robustez y eficiencia de estas técnicas. Las contribuciones de nuestro trabajo están publicadas en tres artículos y se complementan con el lanzamiento de “SID-SLAM”, el software que contiene todas nuestras contribuciones, y del “Minimal Texture dataset”.Nuestra primera contribución es un algoritmo para la selección de puntos basado en Teoría de la Información para sistemas RGB-D VO/SLAM basados en métodos directos y/o en características visuales (features). El objetivo es seleccionar las medidas más informativas, para reducir el tama˜no del problema de optimización con un impacto mínimo en la precisión. Nuestros resultados muestran que nuestro nuevo criterio permitereducir el número de puntos hasta tan sólo 24 de ellos, alcanzando la precisión del estado del arte y reduciendo en hasta 10 veces la demanda computacional.El desarrollo de mejores modelos de incertidumbre para las medidas visuales mejoraría la precisión de la estructura y movimiento multi-vista y llevaría a estimaciones más realistas de la incertidumbre del estado en VO/SLAM. En esta tesis derivamos un modelo de covarianza para residuos multi-vista, que se convierte en un elemento crucial de nuestras contribuciones basadas en Teoría de la Información.La odometría visual y los sistemas de SLAM se dividen típicamente en la literatura en dos categorías, los basados en features y los métodos directos, dependiendo del tipo de residuos que son minimizados. En la última parte de la tesis combinamos nuestras dos contribucionesanteriores en la formulación e implementación de SID-SLAM, el primer sistema completo de SLAM semi-directo RGB-D que utiliza de forma integrada e indistinta features y métodos directos, en un sistema completo dirigido con información. Adicionalmente, grabamos ‘‘Minimal Texture”, un dataset RGB-D con un contenido visual conceptualmente simple pero arduo, con un ground truth preciso para facilitar la investigación del estado del arte en SLAM semi-directo.In the last years, we have witnessed an impressive progress in the accuracy and robustness of Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM). This boost in the performance has enabled the first commercial implementations related to augmented reality (AR), virtual reality (VR) and robotics. In this thesis, we developed new probabilistic methods to further improve the accuracy, robustness and efficiency of VO and SLAM. The contributions of our work are issued in three main publications and complemented with the release of SID-SLAM, the software containing all our contributions, and the challenging Mininal Texture dataset. Our first contribution is an information-theoretic approach to point selection for direct and/or feature-based RGB-D VO/SLAM. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. Our experimental results show that our novel criteria allows us to reduce the number of tracked points down to only 24 of them, achieving state-of-the-art accuracy while reducing 10x the computational demand. Better uncertainty models for visual measurements will impact the accuracy of multi-view structure and motion and will lead to realistic uncertainty estimates of the VO/SLAM states. We derived a novel model for multi-view residual covariances based on perspective deformation, which has become a crucial element in our information-driven approach. Visual odometry and SLAM systems are typically divided in the literature into two categories, feature-based and direct methods, depending on the type of residuals that are minimized. We combined our two previous contributions in the formulation and implementation of SID-SLAM, the first full semi-direct RGB-D SLAM system that uses tightly and indistinctly features and direct methods within a complete information-driven pipeline. Moreover, we recorded Minimal Texture an RGB-D dataset with conceptually simple but challenging content, with accurate ground truth to facilitate state-of-the-art research on semi-direct SLAM.<br /

    Multimodal Range Image Segmentation

    Get PDF

    Efficient 3D Segmentation, Registration and Mapping for Mobile Robots

    Get PDF
    Sometimes simple is better! For certain situations and tasks, simple but robust methods can achieve the same or better results in the same or less time than related sophisticated approaches. In the context of robots operating in real-world environments, key challenges are perceiving objects of interest and obstacles as well as building maps of the environment and localizing therein. The goal of this thesis is to carefully analyze such problem formulations, to deduce valid assumptions and simplifications, and to develop simple solutions that are both robust and fast. All approaches make use of sensors capturing 3D information, such as consumer RGBD cameras. Comparative evaluations show the performance of the developed approaches. For identifying objects and regions of interest in manipulation tasks, a real-time object segmentation pipeline is proposed. It exploits several common assumptions of manipulation tasks such as objects being on horizontal support surfaces (and well separated). It achieves real-time performance by using particularly efficient approximations in the individual processing steps, subsampling the input data where possible, and processing only relevant subsets of the data. The resulting pipeline segments 3D input data with up to 30Hz. In order to obtain complete segmentations of the 3D input data, a second pipeline is proposed that approximates the sampled surface, smooths the underlying data, and segments the smoothed surface into coherent regions belonging to the same geometric primitive. It uses different primitive models and can reliably segment input data into planes, cylinders and spheres. A thorough comparative evaluation shows state-of-the-art performance while computing such segmentations in near real-time. The second part of the thesis addresses the registration of 3D input data, i.e., consistently aligning input captured from different view poses. Several methods are presented for different types of input data. For the particular application of mapping with micro aerial vehicles where the 3D input data is particularly sparse, a pipeline is proposed that uses the same approximate surface reconstruction to exploit the measurement topology and a surface-to-surface registration algorithm that robustly aligns the data. Optimization of the resulting graph of determined view poses then yields globally consistent 3D maps. For sequences of RGBD data this pipeline is extended to include additional subsampling steps and an initial alignment of the data in local windows in the pose graph. In both cases, comparative evaluations show a robust and fast alignment of the input data

    Latent-Class Hough Forests for 3D object detection and pose estimation of rigid objects

    Get PDF
    In this thesis we propose a novel framework, Latent-Class Hough Forests, for the problem of 3D object detection and pose estimation in heavily cluttered and occluded scenes. Firstly, we adapt the state-of-the-art template-based representation, LINEMOD [34, 36], into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. In training, rather than explicitly collecting representative negative samples, our method is trained on positive samples only and we treat the class distributions at the leaf nodes as latent variables. During the inference process we iteratively update these distributions, providing accurate estimation of background clutter and foreground occlusions and thus a better detection rate. Furthermore, as a by-product, the latent class distributions can provide accurate occlusion aware segmentation masks, even in the multi-instance scenario. In addition to an existing public dataset, which contains only single-instance sequences with large amounts of clutter, we have collected a new, more challenging, dataset for multiple-instance detection containing heavy 2D and 3D clutter as well as foreground occlusions. We evaluate the Latent-Class Hough Forest on both of these datasets where we outperform state-of-the art methods.Open Acces
    corecore