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ABSTRACT

In this thesis we propose a novel framework, Latent-Class Hough Forests, for the prob-
lem of 3D object detection and pose estimation in heavily cluttered and occluded scenes.
Firstly, we adapt the state-of-the-art template-based representation, LINEMOD [34, 36],
into a scale-invariant patch descriptor and integrate it into a regression forest using a novel
template-based split function. In training, rather than explicitly collecting representative
negative samples, our method is trained on positive samples only and we treat the class
distributions at the leaf nodes as latent variables. During the inference process we itera-
tively update these distributions, providing accurate estimation of background clutter and
foreground occlusions and thus a better detection rate. Furthermore, as a by-product, the
latent class distributions can provide accurate occlusion aware segmentation masks, even
in the multi-instance scenario. In addition to an existing public dataset, which contains
only single-instance sequences with large amounts of clutter, we have collected a new, more
challenging, dataset for multiple-instance detection containing heavy 2D and 3D clutter as
well as foreground occlusions. We evaluate the Latent-Class Hough Forest on both of these

datasets where we outperform state-of-the art methods.
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CHAPTER 1

INTRODUCTION

In this thesis, we tackle the problem of object detection and pose estimation of rigid 3D
objects in heavily cluttered and occluded scenes using multi-modal input, namely color and
depth images (see Fig. 1.1). We are interested in techniques that do not explicitly depend
on artificial markers nor textural patterns. Furthermore, we are interested in an approach
that does not rely on a priori knowledge about the detection environment, in particular

background clutter and foreground occluder objects.

1.1 Motivation

Accurate localization and pose estimation of 3D objects in everyday scenes is of great im-
portance to many higher level tasks such as augmented reality and household and industrial
robotics to name a few. In particular, algorithms that are robust to the detection environment
are of great interest. For example, for real world use, an algorithm must be able to detect
coffee cups not only in an office environment, but in a kitchen and a park, in the day time
as well as at night. Whilst these tasks are simple for the human visual system, the dras-
tic changes in illumination and the unconstrained variation in the environment make this a
highly challenging task for machine vision.

Below, we give an overview of some impacted domains, highlight key difficulties and
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Fig. 1.1 Detection and pose estimation of 3 object instances under occlusion in a heavily
cluttered scene. (a) The RGB image with augmented 3D axis from pose estimation. (b) The
colourized depth image of the scene. Note, whilst the objects have a textural pattern, this is
not used to aid the detection.

further motivate the need for our study.

1.1.1 Augmented Reality

Augmented Reality (AR) refers to the technique of augmenting the real world with computer
generated content, this is done by superimposing it such that it appears to be part of reality.
AR thus allows the real world (reality) to become interact-able and digitally manipulated,
which has been exploited successfully in many applications such as advertising, commerce,
education and industrial design (see Fig. 1.2 for examples).

The ability to seamlessly augment reality requires two things (i) a region to augment
must be detected in the image (object detection) and (ii) the rotation for the augmented
content must be estimated (pose estimation). Traditionally this has been achieved using
marker-based techniques, where artificial 2D markers (as shown in Fig. 1.3(a) ) are man-
ually applied to the scene or object of interest in large planar areas. These markers use

high contrast patterns and can easily and efficiently be detected, even in bad illumination.
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Fig. 1.2 Examples of augmented reality used in practice. (a) Shows an example for adver-
tising (courtesy of Blippar) (b) an example for interior design (courtesy of Ikea) and (c) an
example used for education purposes (courtesy of iSkull).

Successful detection of markers allows for the rotation to be estimated, by minimizing a
re-projection error (via RANSAC [25] or a similar method) satisfying both requirements.
However, the main drawback of marker-based AR is that markers are invasive and must be
manually placed on the object of interest. This directly counters our ambition of being able

to be used in unconstrained, real-world scenes.

Thus, a second common variant used is known as marker-less AR. Marker-less AR uses
2D textural features which lie on the object, to find 2D-3D correspondences and subse-
quently estimate pose [3, 18, 31, 46, 52, 59]. (see Fig. 1.3(b) for an example). While this
approach has shown great results on highly textured objects [2, 5, 11, 48, 61], in the case of
low-textured objects, unseen background clutter can provide significant false positive cor-
respondences. Furthermore, in the case of texture-less objects (see Fig. 1.3(c)) or when key

textural regions of low-textured objects are occluded this method can completely fail.

Therefore, we believe that for augmented reality to become a ubiquitous feature in life,
there is a definite need for detection and pose estimation algorithms that are able to work
on low-textured and even texture-less objects and are robust against unknown or unseen

background objects and foreground occluders.
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(©)

Fig. 1.3 Examples of augmented reality techniques (courtesy of ARLab). (a) An example
of marker-based AR (b) An example of marker-less AR. (c) A texture-less object, for which
2D feature based marker-less AR cannot be used.

1.1.2 Robotics

The domain of robotics has various sub-fields that could vastly benefit from accurate detec-
tion and pose estimation of objects. For example, one prominent field is that of industrial
part placement, sometimes referred to as bin picking (see Fig. 1.4(a)). In these scenarios,
the task is to separate all parts, for which accurate pose estimation is crucial in calculating
grasping strategies. Whilst environmental factors such as lighting and presence of unseen
objects can be controlled, traditional techniques are still not relevant. For example, artificial
marker-based approaches will not work as they are intrusive and would need to be manually
placed on each object, which would also need to have large planar surfaces. Furthermore,
in these scenarios object occlusion is common and detrimental to marker detection. Con-
versely, most industrial parts are reflective and texture-less, which also means marker-less
approaches based on 2D textural features also fail to work. Thus highlighting the need for

approaches geared toward texture-less objects under partial occlusion.

Another notable field is that of household robotics (See Fig 1.4(b)1.4(c)), for which
robots must be able to navigate around unconstrained human environments. A key element
of this is the ability to recognize objects in previously unseen environments, and accurately

estimate their pose so that grasping or avoidance strategies can be calculated. In contrast
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to industrial applications, in this scenario the environment is completely unknown and thus
it is important to have methods that are highly robust to changing, dynamic environments.
Again, marker based detection would be inappropriate for this domain and similarly to the
industrial environment many household objects are often texture-less thus limiting the effect

of 2D texture-based marker-less approaches.

=]

Fig. 1.4 Exemplary robotic applications (a) An example of bin picking (courtesy of AH
Automation) (b) & (c) Examples of household robotics (courtesy of Technische Universitat
Munchen)

1.2 Challenges

It is clear that marker-less methods are more suited for the task of object detection and pose
estimation in unknown environments as they require no manual intervention and placement
of markers. Furthermore, we argue that marker-less systems are more generalized as objects
in the real world are indeed marker-less. However, as we are interested in methods suited for
texture-less objects, traditional marker-less approaches based solely on 2D textural features
will not suffice. Nevertheless, The recent introduction of consumer-level depth sensors have

allowed for substantial improvement over traditional 2D approaches as finer 3D geometrical
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features can be captured. However, there still remain several challenges to address including
heavy 2D and 3D clutter, large scale and pose changes due to free-moving cameras as well

as partial occlusions of the target object.

In the field of 2D object detection, part or patch-based methods, such as Hough Forests
[26], have had much success. In addition to being robust against foreground occlusions, they
remove detection disambiguation by clustering votes over many local regions into mutually
consistent hypothesis. Furthermore, these methods typically separate foreground regions
from background clutter/occluders by a discriminatively learnt model, additionally reduc-
ing the rate of false positives. However, for practical use, this requires the collection of a
representative negative training set which is also able to generalize to unseen environments.
At present there is a huge disparity in the number of RGB-D image datasets vs. 2D image
datasets and furthermore, it is not clear how to select such a representative set in order to not
create a unintentional bias to particular environments. In fact, many studies have shown that
classifiers can show a significant drop in performance when evaluated on images outside of

the training domain [20, 58, 79].

State-of-the-art approaches in 3D detection and pose estimation [21, 36] avoid this issue
by training just from 3D models of the target object. Whilst previously the requirement of
3D models may have been a disadvantage, with recent innovations in surface reconstruc-
tion techniques [54, 82] these can now be obtained easily and efficiently using hand-held
RGB-D cameras. Using these models, 3D features, either simple point-pair features [21] or
holistic templates [36] are extracted from the model and matched to the scene at test time
providing promising results, even for texture-less objects in heavily cluttered environments.
While these results are encouraging, these methods have only been evaluated under little or
no occlusion and under the assumption of only one instance present per image. However, as
these methods have no knowledge of the background distribution in training, heavy back-

ground clutter can cause false regions to have significant responses. While this is a more
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RGB-D images #iterations=0 #iterations=2 #iterations=10

Fig. 1.5 An illustration of the algorithm used to update the latent class distributions.
Columns 2-4 show intermediate results from different number of iterations of the algorithm,
where row 1 shows the foreground confidence map, Z, and row 2 shows the resulting Hough
voting space. Note the contrast of the vote images have been enhanced for visualization.

prominent issue in the point-to-point methods, as planar regions of target objects are easily

matched to background clutter, holistic template matching is by no means immune to this.

1.3 Main Contributions

Motivated by these issues, we present the Latent-Class Hough Forest; a framework for 3D
object detection and pose estimation. Unlike the traditional Hough Forest [26], which ex-
plicitly exploits classification labels during training, we train only from positive samples and
use only the regression term. However, unlike a regression forest [23] we maintain class dis-
tributions at leaf nodes. During testing, these distributions are considered as latent variables
that are iteratively updated, providing more accurate voting results. Furthermore, as a by-
product, our method also produces accurate occlusion-aware figure-ground segmentation
masks, which are useful for further post-processing procedures such as efficient occlusion-
aware registration [84]. Fig. 1.5 illustrates this iterative procedure, the effect it has on the

output voting results and the figure-ground segmentation masks.
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Our main contributions can be summarized as follows:

* We propose the Latent-Class Hough Forest, a novel patch-based approach to 3D ob-
ject detection and pose estimation; It performs one-class learning at the training stage,

and iteratively infers latent class distributions at test time.

* We adapt the state-of-the-art 3D holistic template feature, LINEMOD [34, 36], to be
a scale invariant patch descriptor and integrate it into the random forest framework

via a novel template-based splitting function.

* During the inference stage, we jointly estimate the objects 3D location and pose as
well as a pixel wise visibility map, which can be used as an occlusion aware figure-

ground segmentation for result refinement.

* We provide a new, more challenging public dataset for multi-instance 3D object de-
tection and pose estimation, comprising near and far range 2D and 3D clutter as well

as foreground occlusions

1.4 Outline Of Thesis

In the remainder of this thesis we first discuss related literature in Chapter 2 before introduc-
ing our method and providing a quantitative and qualitative evaluation in Chapter 3. Finally,

in Sec. 4, we conclude with some final remarks and a discussion of future work.



CHAPTER 2

RELATED WORK

Image features and object representation play a crucial part of any detection algorithm and
there are many differing methods used. Traditionally, edge and gradient features have been
used to describe local image textures [2, 5, 11, 49, 61] and object-boundaries [17, 35, 66]
as they are less sensitive to illumination change than color information alone. However,
methods relying solely on 2D image features can be heavily degraded by slight changes
in illumination and contrast and additionally, 2D image features frequently fail to capture

discriminative information from texture-less objects.

Recently there has been a surge of interest in using depth information for object detec-
tion as this cue offers several advantages over traditional 2D features such as invariance to
illumination, colour and texture and additionally allows us to exploit local surface proper-
ties. Furthermore, with the introduction of consumer-level real-time depth cameras, such as
Microsoft’s Kinect [51], this a much more appealing and practical option. Similarly to the
2D, RGB modality, there have been many local 3D point descriptors [14, 21, 39, 63, 70, 81]
and larger surface descriptors [34, 42, 74] proposed. In fact many representations use a

combination of both modalities to achieve superior results [34, 42, 60].

Objects are represented by the extracted image features, either as a collection of many lo-

cal features in a part-based representation, or holistically as a template-based representation.
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Template-based representations model the features jointly, and as such are very information
rich. For example, Dalal and Triggs introduced the Histogram of Oriented Gradients [17]
which describes the local distribution of image gradients on a grid across the object to form
a holistic representation. This representation has further been extended to incorporate depth
gradients [42] and normal vectors [74]. However, the representation of features is very im-
portant for efficiency and accuracy and often there is a trade-off between descriptiveness
and time of computation and comparison. Recently Hinterstoisser ef al.[35] proposed us-
ing only locally dominant orientations instead of local gradient distributions. They encode
these points in a bitwise manner similar to [78] and obtain much greater efficiency without
compromising accuracy. This method has further been extended to use 3D information such
as normal vectors to further improve the descriptiveness of the template [34]. Rios-Cabrera
and Tuytelaars [60], further extend this multi-modal representation by using a negative data
set to select more prominent points to represent the object, further increasing efficiency and

accuracy.

The prevalent approach for detection with template-based representations is the sliding
windows approach, in which you centre a bounding box at varying scales and locations and
test for object presence. Usually, template-based representations are used in conjunction
with a vast background set to train classifiers to label each window as either background or
foreground [17, 71, 80]. These approaches quantize templates together and can thus offer
greater generalization ability, however they are not able to transfer context to the detection

such as 3D pose.

Therefore, another successful approach to detection with template-based representations
is by computing a direct template similarity at each location. One prominent method is
to use the similarity of image edges to template edges to measure similarity [7, 28, 37,
62], which, while effective, rely on extracting contour edges, via the Canny detector [12]

for example, which are sensitive against illumination, motion blur and background noise.
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Furthermore, many of these methods do not account for edge direction and [56] show that
not using orientation information can lead to a large amount false positives from background

clutter.

Steger [69] attempts to remedy this by using image gradients instead of edges, however
this method is not robust even against small deformations. However, Hinterstoisser ef al.[35]
successfully adapt this similarity metric to account for local deformations and translations
and apply it to texture-less object. They show how to integrate multiple modalities for in-
creased robustness [34] and additionally, show that how, when given a 3D model, a discrete
set of templates can be learnt, annotated with their 3D pose and efficiently located using
this similarity measure, thus allowing simultaneous detection and pose estimation [36]. For

a full review on prior template matching techniques we refer the reader to [10].

Nevertheless, it is important to note that holistic template-based representations are in-
herently rigid, and, even with techniques such as orientation binning and gradient spreading
[17, 34], they are only robust to small deformations; As a consequence, matching usually
degrades rapidly in the presence of foreground occlusions [34, 69]. Although there have
been approaches that incorporate occlusion reasoning, they either try to learn occlusion pat-
terns from data [27, 41] which can exhibit severe dataset bias, or make strong assumptions
about the occluder shape and location [38] which does not generalize well to unconstrained

environments.

Alternatively, part-based representations provide a high level of robustness to local de-
formations and unconstrained foreground occlusions. The simplest form is to assume a set
of 2D-3D part or point correspondences and use the individual detection of these to jointly
estimate location and pose [3, 18, 31, 46, 52, 59]. However, detection of such points often
relies on the presence of 2D texture, which is often not representative of many real world

objects.

Rather than model objects as a collection of unrelated features, other part-based repre-
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sentations model the relationship between these local features, either explicitly [15, 21, 22,
24, 45] by their spatial relationships, or implicitly [26, 43, 50, 55, 66] by a spatial relation-
ship to an anchor point such as the object centre (not necessarily a feature). In recent studies,
these representations have been used in conjunction with a form a generalized Hough voting
[4] to perform detection that is robust to intra-class variations, deformations and foreground
occlusions. Under this framework, detected local parts can transfer contextual knowledge
for object detection and pose estimation. This is done by individual parts voting, in a Hough
space, for the object anchor point(s) [16, 26, 43, 55, 67, 71-73] or the object 3D rotation
[21, 23, 26] and local maxima are chosen as hypotheses. Furthermore, under these schemes
local features are usually quantized together which in turn often generalizes better to slight

variations in translation, local shape and viewpoint.

Hough-based methods have worked extremely well in the case where there is no back-
ground clutter present [23, 67, 72, 73] and even in the case of previously unseen back-
grounds [14, 21, 43]. However, as local features are naturally less discriminative, they can
often be strongly matched in background clutter. As a consequence, these methods are of-
ten combined with vast amounts of background information within a learning framework
[26, 55, 71], in which an explicit background/foreground separation is learnt parametrically
causing far less false positives to be generated. However, the efficacy of these approaches
are heavily dependent on how representative the background training data is of the "real
world", and this benefit does not always transfer across different domains. In fact, it has
been shown that significant performance degradation can occur when the negative training

set is not representative of target domain [20, 58, 79].

One-class classification is a branch of learning based methods focussed on learning only
from the positive/target class. The aim of one-class classification is to discriminate the
positive class from unknown outliers by learning only from positive samples. This branch

of learning was first coined by by Moya et al.[53] but has also be viewed as outlier rejection
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or novelty detection depending on the specific application domain.

Classical approaches to one-class classification include those introduced by Tax and
Duin [75, 76], which try to learn closed decision boundaries, in the form of a tight hyper-
sphere, around the target class in the feature space. However, these methods suffer when
the data dimensionality is high or if there are low density regions in the positive data, in
which case these regions may be wrongly rejected as outliers. An alternate approach, as
described by Scholkopf et al.[64, 65] is to use hyper-planes, instead of a hyper-sphere, to
separate non-target regions. However, these methods try to make the hyper-plane maximally
distant from the origin, in turn using the origin as a priori information about the outlier
distribution. Conversely, other approaches attempt to artificially generate a negative, outlier,
dataset [19, 32, 77], however the generalization ability can depend heavily on the procedure
used for data generation and carry the risk of adding unintentional bias into the negative set.

For an in-depth review of once-class classification techniques, we refer the reader to [40].

In this thesis, we tackle the problem of object detection and pose estimation of rigid,
textureless, 3D objects in heavily cluttered and occluded scenes, without a priori knowledge
about the detection environment, in particular background clutter and foreground occluder
objects. In table 2.1 we summarise some of the more related works to this problem high-
lighting the aspects that each cover. As can be seen, LINEMOD [34] and the method of
Drost et al.[21] are very closely related to the goals of this thesis. LINEMOD [34] is in-
herently a holistic template matching system, which while providing a rich description of
the object, can suffer from partial occlusions. On the other hand the method of Drost et
al.performs object matching at a local level, using point-pair features, which can be much
more robust to occlusion but can suffer from many false positives as large planar regions of
target objects are easily matched to background clutter. In this thesis, we introduce Latent-
Class Hough Forests, which aim to leverage the benefits of both approaches by using rich,

but local, patch based template descriptors (see Sec. 3.0.1). Furthermore, similar to [26], we
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Related Work

exploit background information to aid classification performance, but unlike [26] we train

only from foreground samples and instead infer the foreground-background distributions at

test time (see Sec. 3.0.2).

Requires
Approach 3D Pose (Ijllllll\flt:(l).re:l Occlusion Knowledge Performance
pp Estimation Robustness of
ment
Background
83.0% on
LIN[EIZ]IOD Yes Yes No No dataset of
[36]
Drost ef 79.3% on
al[2 1? Yes Yes Yes No dataset of
) [36]
. 97.2% on
Rios-Cabrera Yes Yes No Yes dataset of
et al.[60]
[36]
90.4% on
Fanelli et ETH Face
al.[23] Yes No No Yes Pose Dataset
(9]
98.6% on
Gall er UIUC-Multi
al.[26] No Yes Yes Yes Car Dataset

[1]

Table 2.1 A summary of related works, highlighting the aspects they cover and their perfor-

mance.




CHAPTER 3

METHODOLOGY

Our goal is to achieve accurate 3D object detection and pose estimation via one-class train-
ing, whilst being robust to background clutter and foreground occlusions. To this end, we
use only synthetic renderings of a 3D model for training. To leverage the inherent robust-
ness to foreground occlusions, we adopt the state-of-the-art patch-based detector, Hough
Forests [26], and for the patch representation we use the state-of-the-art 3D template de-
scriptor, LINEMOD [34, 36]. However, combining these components naively does not
work for the following reasons: i) The absence of negative training data means that we
cannot leverage the classification term of the Hough Forest, thus, relinquishing the ability
to filter out false results caused by background clutter. ii) It is not clear how to integrate a
template-based feature into the random forest framework; The main issue is that the syn-
thetic training images have empty space in the background whereas the testing patches will
not. Thus, doing a naive holistic patch comparison, or the two-dimenson/ two-pixel tests
(as used in [23, 67, 73]) can lead to test patches taking the incorrect route at split functions.
iii) LINEMOD, in its current form, is not a scale-invariant descriptor; this gives rise to fur-
ther issues, such as should we train detectors for multiple scales and how finely should we

sample these scales in both the training and testing phases.

To address these issues, we propose the Latent-Class Hough Forest (LCHF); an adapta-
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tion of the conventional Hough Forest that performs one-class learning at the training stage,
but uses a novel, iterative approach to infer latent class distributions at test time. In Sec.
3.0.1 we discuss how to build a LCHF, in particular we discuss how to adapt LINEMOD
into a scale-invariant feature and how to integrate it into the random forest framework via a
novel template-based split function. Following this, In Sec 3.0.2, we discuss how testing is
performed with the LCHF and how we can iteratively update the latent class distributions
and use them to refine our results.

It 1s important to note that the applicability of Latent-Class Hough Forests has a few
prerequisites. Namely, the existence of a 3D mesh model of the target object for training

and input from an RGB-D camera at test time.

3.0.1 Learning

Latent-Class Hough Forests are an ensemble of randomized binary decision trees trained
using the general random forest framework [8]. During training, each tree is built using a
random subset of the complete training data. Each intermediate node in the tree is assigned a
split function and threshold to optimize a measure of information gain; this test is then used
to route incoming samples either left or right. This process is repeated until some stopping
criteria is met, where a leaf node containing application-specific contextual information is
formed. Each stage in this learning process is highly application dependent and we will

discuss each in turn below.

Training Data

In order to capture reasonable viewpoint coverage of the target object, we render synthetic
RGB and depth images by placing a virtual camera at each vertex of a subdivided icosa-
hedron of a fixed radius, as described in [33]. A tree is trained from a set of patches,

{P; = (¢i, D;, T;,0;)}, sampled from the training images, where ¢; = (x;,y;) is the cen-
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tral pixel, D; is the raw depth map of the patch, 7; is the template describing the patch
and 0; = (0;,0,,0.,0,4, 0, 0,,) is the 3D offset from the patch center to the object cen-
ter and the 3 Euler angles representing the object pose. The patch template is defined as
T = ({(’);”}me M ,Ai), where O are the aligned reference patches for each modality,
m, which are either the image gradient or normal vector orientations and A; = {(r,m)},
where r = (A - x, \ - y) is a discrete set of pairs made up of the 2D offsets (x, y) scaled by A
which is equal to the templates depth at the central pixel, and modalities, m, of the template
features. The template features are evenly spread across the patch; features capturing the
image gradients are taken only from the object contours and features capturing the surface
normals are taken from the body of the object, the collection and representation of template

features is the same as described in [34, 36].

Split Function

Given a set of patches, S, arriving at a node, a split function, h;, is created by choosing a
random patch, P;, and evaluating its similarity against all other patches, P; € S. Along
with a randomly chosen threshold, 7;, the incoming patches can be split into two distinct
subsets S; = {P;|h; (P;) < 7;} and S, = S\ S;. The original similarity measure of [34],
adapted to work over patches, is formulated as:

A
(PP = ( maz_fo (OF (¢; +71),07" (t))) (3.1)

(rm) teR(c;+r)

where R (x) defines a small search window centred at location x and f,,, (O;“ (z), 00 (y))

computes the dot product between quantized orientations at locations x and y for modality,
m. Note, for clarity we keep the max operator and the explicit function, f,, in the formu-
lation, however, we refer the reader to [34] for a discussion on how to compute these with
constant time complexity using pre-processing techniques.

As neither the patch description, P;, nor the similarity measure, €, account for scale, this



18 Methodology

similarity measure will only work if the patches, P; and P; are of the same scale. To remedy
this, inspired by [67], we achieve scale-invariance by using the depth of the patch center to

scale the offsets, . More formally, we define a scale-invariant similarity measure, £’, as:

Ay
P = & (s, (07 )07 ).

(3.2)

gx(cmr) = Cx‘*'ﬁ

where D, (a) is the depth value at location a in patch P,.

This similarity measure is still not sufficient, as given two patches, both represent-
ing the same part of the target object, one synthetically generated and one from a testing
image (containing background noise), the functions f,, (O (s; (¢; + 1)), O (1)) and
fm (OF (i (¢; + 1)) O, (t)) will produce significantly different values if any template fea-
tures, (r,m) € A,;, from the selected template falls in the empty, background, space in the
training patch or on to a foreground occluder in the testing patch. This can then cause the

two patches to proceed down the tree in different directions, see Fig. 3.1 for an illustration

of this issue. To this end, we alter the similarity function is as follows:

A
" (P, P;) = (r%:n) (teR@?cfm)b(Pijﬂ’) “fm (Oi (si(ci +1)),0j (75))>,

t(Pi Pyyr) - =0 ([IDi (i (e + 7)) = Di(e)| = [Dj (s (¢ + 7)) = Dj ()] <€)
(3.3)

where ((P;, P;, ) is an indicator function that removes template features that are not spa-
tially consistent with the patch’s 3D surface from having an effect on the similarity score.
The efficacy of this indicator function is illustrated in Fig 3.1. Finally, we can express the
split function of a node as h; (P;) = " (P;, P;).

The effectiveness of a particular splitting function is evaluated by the information gain,
however, as no negative data is present at training we cannot use the formulation of the

Hough Forest [26]. Instead, we measure only the entropy of the offset and pose regression
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Fig. 3.1 A conceptual view of how our similarity measurement works. Left: rows 1 & 2
show two patches, one from training and one from testing; both are of different scale which
is handled by Eq 3.2. Row 3 shows the learnt template, 7, at the highlighted node. Right:
Shows how without the indicator function (Eq 3.3) the two patches can go down different
paths in the tree, leading to wrong results.

by using the trace of the covariance matrix described by Fanelli et al.[23]. This process is
then repeated multiple times and the split, (h;, 7;), producing the highest information gain

is selected as the nodes split function.

Constructing Leaf Nodes

The training data is recursively split by this process until the tree has reached a maximum
depth or the number of samples arriving at a node fall below a threshold. When this criteria
is met a leaf node is formed from the patches reaching it. The leaf node stores votes for
both the center position of the object, (6, 6,, 6. ), and the pose, (0,4, 0,;, 0r,). Following the
approach of Girshick ef al.[29] we only store the modes of the distribution which we find
efficiently via the mean shift algorithm. Finally, similar to the Hough Forest [26], we create
a class distribution at the leaf, however, as no background information reaches the leaves

during training this distribution is initialized to py, = 1 and p;, = 0 for the foreground and
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background probabilities respectively.

3.0.2 Inference

We want to estimate the probability of the random event, F(6), that the target object exists
in the scene under the 6 degrees of freedom pose 0 = (0,,6,,0.,0,4,0,,6,,). We can
calculate this by aggregating the conditional probabilities P(E(6)|P) for each patch, P. As
we only model the effect that positive patches have on the pose estimation, the existence of
an estimation at 6 in the pose space assumes the vote originates from a foreground patch,
that is py, = 1, which is assumed for all patches initially. Thus, for a patch P evaluated on

tree 7 and reaching leaf node /, we can formalise the conditional probability as:

p(E®)|P;T)=p(E©),p), =1/P)

=p(E®)py, =1.P)p (v}, =1[P)

(3.4)

where plf o 1s the foreground probability at the leaf node, [. Finally, for a forest, /', we simply

average the probabilities over all trees:

L

p(E0)[P; F) = 7 Xt:p(E (0) [P:Th) (3.5)

The first factor, p (E (0) |psy = 1,P), can be estimated by passing each patch down the
forest and accumulating the votes stored at the leaf, in which votes from multiple trees can
be combined in an additive manner, this gives us the same probabilities as in Eq. 3.5 up to a
constant factor. The estimation is then deferred to the ability of locating local maxima in this
aggregated space which, traditionally, has been done by either exhaustively searching the
space combined with non-max suppression or by treating each vote as a point in the space
and using mean shift to locate the modes. However, these approaches are usually applied

to low dimensional (2D) spaces [26, 44, 57] or in cases where many of the data points
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(pixels) have already been removed via some pre-processing [23, 73]. In our case, the pose
voting space is 6 dimensional and in the case of evaluating all patches in a VGA image for
several trees in the forest, the number of data points becomes very large and this solution is
highly inefficient. To this end, we propose a three-stage localization technique; We initially
aggregate all votes into a 2D voting space i.e. p (E ((6,,6,)) |P) and use this space to locate
the hypothesis with non-max suppression. We then further process the votes from patches
within the bounding box of these hypothesis to locate modes in the 3D translation space,
(0.,6,,0.), and finally use the patches to find the modes in the rotation space, (64, i, 0r0),

given the estimated translation.

The second factor of Eq (3.4), p (pyy, = 1|P), is traditionally estimated from the learnt
class distribution at the leaf nodes. However, in the LCHF this is a latent distribution and all
leaf nodes are in initially set to have ps, = 1. Therefore, we propose a method similar to the
co-training concept to iteratively update these distributions from the observable unlabelled

data in the scene.

Co-training [6] is a technique, that has seen much success in many applications [13, 47,
83], where the main idea is to have two independent classifiers, in which each iteratively
predicts labels for the unlabelled data and then uses these labels to update the other classi-
fier. In the seminal work of Blum & Mitchell [6] it was stated that each classifier should be
trained from different views/feature representations of the data, but it was later shown that
using two classifiers trained originally on the same view will suffice [30], and this is the vari-
ant most similar to our method. In our work we make the assumption that as a Latent-Class
Hough Forest is a classifier, a subset of Latent-Class Hough Trees can make a sub-forest
which is a classifier in its own right. Furthermore as the trees are trained independently, two
sub-forests can be viewed as two independent classifiers. Thus, to obtain classifiers for each
iteration of the co-training, we randomly partition the Latent-Class Hough Forest, F, into

two forest subsets, F; & F.
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Following this, given a forest, F, we select a random subset of the image patches and
predict their labels by evaluating Eq (3.4) to obtain an initial object hypotheses set, © =
{0%}. For the N most likely hypotheses, we backproject the contributing votes to their
corresponding patches to obtain a consensus patch set, /{; as done in [43]. This patch set is
then further reduced to a consensus pixel set, 11, as follows:

1 = U ( U 9(7%9%')),

ice \P;eK; (3.6)

g (P;,0") ={p; € Pjld(cj,0;) < ag Nd(pj,c;) < 2}

where p; are pixels, d is the euclidean distance function, & is the diameter of the target
objects 3D model and « and (5 are scaling coefficients. The consensus pixel set contains the
pixels from patches that vote for the selected hypotheses and are also spatially consistent

with the hypothesis that they vote for.

All pixels in II are then labelled as foreground pixels and all others as background, thus
producing two labelled datasets from the patches extracted around those pixels, Pt and P~.
These datasets are then passed as input to the second classifier, , where each leaf node, [,
accumulates the patches that arrive at it, P;, and updates the leaf probability distribution as

follows:
o= {Pi|Pie (PLNP")} |
fg |73l|

(3.7)

This process is then repeated for a fixed number of iterations. Once finished, the final hy-
potheses set is produced by passing all patches down the complete forest, / and evaluating
Eq (3.5) using the newly learnt plfg. The overall principle of this co-training algorithm is

depicted in Algorithm 1 and in Fig. 1.5.

Additionally, as a by-product of this process, we can produce a pixel-wise foreground
confidence map, Z, of the input image by labelling each pixel by the average pﬁcg (see Fig

1.5). Using the confidence map, Z, and the final set of hypotheses, ©, we can produce a
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Algorithm 1 Update Latent-Class Distributions

Require: An input image, Z; A Latent-Class Hough Forest, F
1: repeat

2: Randomly draw a subset of trees F; from F; F; = F \ F;.
3: Randomly sample a set of patches [P from /.
4: Propagate P down F; collect hypotheses set © with Eq (3.5).
5: Backproject top N hypotheses to obtain a consensus set II (Eq. (3.6)).
6: Partition P € P into positive and negative sets using the consensus set.
P ={P|P eI}
P =P\ P

7: Propagate P+ and P~ down F; and update the leaf node distributions with Eq (3.7).
8: until Maximum iteration

final image segmentation mask, M, by

M= (B(¢)n2) (3.8)

0ieO

where B () is a function that computes the bounding box from the hypothesis . This final
segmentation, although not currently used, is useful for further refinement of the hypotheses,

for example by using it as input for an occlusion-aware ICP alignment.

It is important to note this co-training algorithm does not have an objective function that
it is attempting to minimize and instead just runs a fixed number of times. Whilst this has
shown to be effective from our experimental evaluation, using a carefully designed objective
function would likely improve accuracy. One such objective function could be to measure
the error between the RGB-D information and a projection of the target object 3D model

under the current estimation, however this is left as a task for future work.

Furthermore, there is no guarantee that the method will converge to a set of stable hy-
potheses or result in all pixels being labelled as background data. This is because it is heavily
reliant on how accurately each sub-forest classifies pixels as this will effect the classification

results of other sub-forests. Thus, in this work we use a fixed number of iterations of this
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algorithm and a study of the convergence properties of this algorithm is an interesting task

left for future work.

3.1 Experiments

We perform experiments on two 3D pose estimation datasets. The first is the publicly avail-
able dataset of of Hinterstoisser ef al.[36], which contains 13 distinct objects each associated
with an individual test sequence comprising of over 1,100 images with close and far range
2D and 3D clutter. Each test image is annotated with ground truth position and 3D pose.

For further experimentation, we propose a new dataset consisting of 6 additional 3D
objects. We provide a dense 3D reconstruction of each object obtained via a commercially
available 3D scanning tool [68]. For each object, similarly to [36], we provide an individ-
ual testing sequence containing over 700 images annotated with ground truth position and
3D pose. Testing sequences were obtained by a freely moving handheld RGB-D camera
and ground truth was calculated using marker boards and verified manually. The testing
images were sampled to produce sequences that are uniformly distributed in the pose space
by [0° — 360°], [-80° — 80°] and [—70° — 70°] in the yaw, roll and pitch angles respec-
tively. Unlike the dataset of [36], our testing sequences contain multiple object instances
and foreground occlusions in addition to near and far range 2D and 3D clutter, making it
more challenging for the task of 3D object detection and pose estimation. Some example
frames from this dataset can be seen in Fig 3.2.

In Sec. 3.1.1 we perform self comparison tests highlighting the benefits of adding scale-
invariance to the template similarity measure (Eq. (3.2)) and using co-training to update
the latent class distributions (Algorithm 1). Following this, in Sec. 3.1.2 we present a
comparison of our method against the state of the art methods, namely LINEMOD [34, 36]
and the method of Drost et al.[21].

In all experiments, Latent-Class Hough Forests are trained only from synthetically gen-
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Fig. 3.2 Example frames from the testing sequence of our new dataset. As can be see, the
testing images are taken from different viewpoints and scales and include both near and far
range 2D and 3D clutter as well as partial occlusions. From top to bottom: Camera, Coffee
Cup, Joystick, Juice Carton, Milk and Shampoo.

erated images from the 3D model of the target object (as described in Sec. 3.0.1) and tested

on all images present in the test set in a frame-by-frame manner.
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In all tests we use the metric defined in [36] to determine if an estimation is correct.
More formally, for a 3D model M, with ground truth rotation R and translation 7", given

an estimated rotation, R and translation, T , the matching score is defined as

m = avg||(Rx +T) — (Rx + T)|| (3.9)
reM

for non-symmetric objects and

m = avg min ||(Rxy +T) — (Ray + T)|| (3.10)

n ||
wleszeM

for symmetric objects. An estimation is deemed correct if m < k,,,d, where k,, is a chosen

coefficient and d is the diameter of M.

Unlike [36], in which only the top detection from each image is selected, we compute
precision-recall curves and present the F1-Score which is the harmonic mean of precision
and recall. This is a more accurate form of comparison for generic object detection, as di-
rectly comparing detections is inaccurate as some images may be harder than others, which
is especially true in the case of occlusion and heavy clutter (as in our new dataset). For
example, one image may have a top score of 0.6 for the target object, whereas another may
have a top score of 0.9 for a false positive and a score of 0.89 for the target object; by
only selecting the top scores, the 0.6 detection is correct and the 0.89 is treated as incorrect.
Therefore, similarly to [60], we argue a more meaningful evaluation is to sort all detection
scores across all images and calculate the general performance of the detector, which is

given by the precision-recall curves.

In all experiments, unless otherwise stated, the parameters for our method are as follows.
For each object class we train a Latent-Class Hough Forest comprising of 10 trees with a
maximum depth of 25 trained from randomly selected set of training patches. Image patch

templates centred at a pixel consist of 20 features in both the color gradient and normal
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channel. These features are selected anywhere in a search window centred at the central

pixel with a maximum size of, but not further than, % of the bounding box size in any
direction and are chosen randomly in the same method as described in [34, 36]. For the co-
training stage we set the number of iterations empirically as 10 and the number of hypothesis
to be backprojected per iteration as N = 5.

The main parameters that effect performance are the size of the feature search window,
which, if set too small, can fail to capture sufficient detail about the object, but if too large
can become susceptible to foreground occlusions. Additionally, the number of hypothesis
to be backprojected in the co-training stage must be set greater than the number of instances
present in all datasets. Furthermore, the choice of the coefficient, k,, can effect the evalu-
ation performance as it controls the correctness threshold. We set k,, to the value of 0.15
in all experiments which, for example, allows the estimation of an object, with a diameter
of 10 cm, to only have a 15 mm error. We find this value allows for a small error tolerance
whilst still providing visually correct results.

It is important to note that these parameters were chosen empirically by testing on a
small subset of the test set and then fixed and used for the final evaluation. It is of interest

to see how the overall performance on these datasets varies with these parameters and is left

as exercise for future work.

3.1.1 Self Comparisons

We perform two self comparisons on the dataset of Hinterstoisser et al.[36]. Firstly we
compare the results of our method with and without updating the latent class distributions.
As can be seen in Fig. 3.3 our approach with updating distributions improves the F1-Score
by 2.8% on average and up to 8.2% on some objects. The biggest gains are seen in objects
which have large amounts of indistinct planar regions, for which background clutter can

easily be confused at the patch level. For example, the biggest improvements are seen in the
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Camera, Holepuncher and Phone objects which contain large planar regions. Furthermore,
in Fig. 3.3 we also compare the results of LINEMOD using holistic templates with the
original similarity measure (Eq. (3.1)) and the scale-invariant similarity measure (Eq. (3.2)).
As the scale-invariant version is trained using only one scale, the performance is increased
6-fold (623 templates as opposed to 3738). Furthermore, the performance is also increased
by 7.2% on average, this is due to the fact that templates are able to be matched at scales
not seen in the normal template learning stage.

Comparison on the dataset of Hinterstoisser et al.[36]

= LINEMOD = LINEMOD SI = Ours w/o Update Ours With Update

—sm; " Average, 0.817

/-

| I
) | = Average, 0.702

0.8
o | m Average, 0.630
807
@

0.6

0.5 -l

. ™ Average, 0.789

Ape Benchvise  Driller Cam Can Iron Lamp Phone Cat Holepunch Duck Box Glue Average

Fig. 3.3 F1-Scores for the 13 objects in the dataset of Hinterstoisser et al.[36]. We compare
our approach with and without updating the latent class variables (Sec. 3.0.2). We addi-
tionally show results of the scale-invariant LINEMOD templates vs. non-scale invariant
templates.

3.1.2 Comparison to State-of-the-arts

We compare our method to two state-of-the-art methods, namely LINEMOD [34, 36] and
the method of Drost ef al.[21]. For LINEMOD, we use our own implementation for based
on [34] and using the improvements of template generation from [36], however it is im-
portant to note that we can not achieve the same performance as reported by the authors '.
Additionally, for the method of Drost et al.[21], we use a binary version kindly provided by

the author and set the parameters to the recommended defaults. Furthermore, for the method

'Unfortunately, the authors state that the available, OpenCV version of their algorithm (which ours is based
on) will perform much worse, without further elaboration.
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of Drost ef al.[21] we remove points further than 2000mm to reduce the effect of noise, as
recommended by the authors. Note, this should not effect accuracy as all target objects are
safely within this range.

In Fig. 3.4 we show the average precision-recall curves across all objects in both datasets
respectively and in Tables 3.1 and 3.2 we show the F1-Score per object for each dataset. All
methods show worse performance on the new dataset, which is to be suspected due to the in-
troduction of occlusions as well as multiple object instances. As can be seen we outperform
both state-of-the-arts in both datasets. However, a point to note is that by just picking the
top detection from each image, as done in [36], the method of Drost et al.and LINEMOD
are shown to be almost equal in accuracy (see [36] for this comparison), however, when
considering the precision-recall curve, as we do, the method of Drost ef al.has consider-
ably lower precision values. This is due to the fact that this method does not take object
boundaries into consideration, thus large planar regions of the target object can have a large
surface overlap in the background clutter causing many false positives in addition to the true
positives. Conversely, our method maintains high levels of precision at high recall which is
due to the inferred latent class distributions simplifying the Hough space. In Fig. 3.5 we

present some qualitative results on both datasets.
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Fig. 3.4 Average Precision-Recall curve over all objects in the dataset of Hinterstoisser et
al.[36] (a) and our dataset (b). The shaded region represents one standard deviation above

and below the precision value at a given recall value.

Approach LINEMOD | Drost ef al. Our
Approach
Sequence (# F1-Score
images)
Ape(1235) 0.533 0.628 0.855
Bench Vise 0.846 0.237 0.961
(1214)
Driller (1187) 0.691 0.597 0.905
Cam (1200) 0.640 0.513 0.718
Can (1195) 0.512 0.510 0.709
Iron (1151) 0.683 0.405 0.735
Lamp (1226) 0.675 0.776 0.921
Phone (1224) 0.563 0.471 0.728
Cat (1178) 0.656 0.566 0.888
Hole Punch 0.516 0.500 0.875
(1236)
Duck (1253) 0.580 0.313 0.907
Box (1252) 0.860 0.826 0.740
Glue (1219) 0.438 0.382 0.678
Average (15770) 0.630 0.517 0.817

Table 3.1 F1-Scores for LINEMOD, the method of Drost et al.and our approach for each

object class for the dataset of Hinterstoisser et al.[36].
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Approach LINEMOD | Drost et al. Our
Approach

Sequence (# F1-Score

images)

Coffee Cup (708) 0.819 0.867 0.877

Shampoo (1058) 0.625 0.651 0.759

Joystick (1032) 0.454 0.277 0.534

Camera (708) 0.422 0.407 0.372

Juice Carton 0.494 0.604 0.870

(859)

Milk (860) 0.176 0.259 0.385

Average (5229) 0.498 0.511 0.633

Table 3.2 F1-Scores for LINEMOD, the method of Drost et al.and our approach for each
object class for our new dataset.
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Fig. 3.5 Some qualitative results on both datasets. Rows 1-6 show, from left to right, the
original RGB image, the final segmentation mask, the final Hough vote map and the aug-
mented 3D axis of the estimated result. The final row shows some incorrect results.
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CONCLUSIONS

In this thesis we have introduced a novel framework for accurate 3D object detection and
pose estimation of multiple object instances in cluttered and occluded scenes. We have
demonstrated that these challenges can be efficiently met via the adoption of a state-of-the-
art template-based representation into a patch-based regression forest. During training we
employ a one-class learning scheme, i.e. training with positive samples only rather than in-
volving negative examples. In turn, during inference, we engage the proposed Latent-Class
Hough Forest that iteratively produces a more accurate estimation of the clutter/occluder
distribution by considering class distribution as latent variables. As a result, apart from ac-
curate detection results we can, further, obtain highly representative occlusion-aware masks
facilitating further tasks such as scene layout understanding, occlusion aware ICP or online
domain adaption to name a few. Our method is evaluated using both the public dataset of
Hinterstoisser et al. [36] and our new challenging one containing foreground occlusion and
multiple object instances. Experimental evaluation provides evidence of our novel Latent-
Class Hough Forest outperforming all baselines highlighting the potential benefits of part-

based strategies to address the issues of such a challenging problem.
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4.1 Future Work

While the experimental results are a promising step in the direction of accurate 3D object
detection and pose estimation in cluttered and occluded scenes, there is still work left to
do. For example, the current method does not engage any optimization techniques and as a
result is far from real-time, which is a must for real world use. However, one task for future
work would be to utilize SSE instructions as described in [34] into the patch-based feature to
provide massive speed-ups. Furthermore, whilst the occlusion-aware segmentation masks
are currently a by-product of the system, a promising direction for future research would be
to use these to refine results of both detection and pose estimation in a feedback manner.
Furthermore, the current method works on a frame-by-frame basis and all latent-class vari-
ables are re-initialized on each frame. Whilst this is useful if the scene is highly dynamic, in
most real world situations objects need to be tracked against static scenes. In such scenarios,
rich models of the background can be built over time further improving the detection and

pose estimation results as well as run-time speed.
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