389 research outputs found

    HypeRvieW: an open source desktop application for hyperspectral remote-sensing data processing

    Get PDF
    In this article, we present a desktop application for the analysis, reference data generation, registration, and supervised spatial-spectral classification of hyperspectral remote-sensing images through a simple and intuitive interface. Regarding the classification ability, the different classification schemes are implemented by using a chain structure as a base. It consists of five configurable stages that must be executed in a fixed order: preprocessing, spatial processing, pixel-wise classification, combination, and post-processing. The modular implementation makes its extension easy by adding new algorithms for each stage or new classification chains. The tool has been designed as a platform that is open to the incorporation of algorithms by the users interested in comparing classification schemes. As an example of use, a classification scheme based on the Quick Shift (QS) algorithm for segmentation and on Extreme Learning Machines (ELMs) or Support Vector Machines (SVMs) for classification is also proposed. The application is license-free, runs on the Linux operating system, and was developed in C language using the GTK library, as well as other free libraries to build the graphical user interfaces (GUIs)This work was supported by the Xunta de Galicia, Programme for Consolidation of Competitive Research Groups [2014/008]; Ministry of Science and Innovation, Government of Spain, cofounded by the FEDER funds of European Union [TIN2013-41129-P]S

    Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

    Full text link
    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient

    Spectral-Spatial Classification of Hyperspectral Data based on a Stochastic Minimum Spanning Forest Approach

    Get PDF
    International audienceIn this paper, a new method for supervised hyperspectral data classification is proposed. In particular, the notion of stochastic Minimum Spanning Forest (MSF) is introduced. For a given hyperspectral image, a pixelwise classification is first performed. From this classification map, M marker maps are generated by randomly selecting pixels and labeling them as markers for the construction of Minimum Spanning Forests. The next step consists in building an MSF from each of the M marker maps. Finally, all the M realizations are aggregated with a maximum vote decision rule, in order to build the final classification map. The proposed method is tested on three different data sets of hyperspectral airborne images with different resolutions and contexts. The influence of the number of markers and of the number of realizations M on the results are investigated in experiments. The performance of the proposed method is compared to several classification techniques (both pixelwise and spectral-spatial) using standard quantitative criteria and visual qualitative evaluation

    A Framework for Land Cover Classification Using Discrete Return LiDAR Data: Adopting Pseudo-Waveform and Hierarchical Segmentation

    Get PDF
    Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach

    Design of an Adaptive Classification Procedure for the Analysis of High-Dimensional Data with Limited Training Samples

    Get PDF
    In a typical supervised classification procedure the availability of training samples has a fundamental effect on classifier performance. For a fixed number of training samples classifier performance is degraded as the number of dimensions (features) is increased. This phenomenon has a significant influence on the analysis of hyperspectral data sets where the ratio of training samples to dimensionality is small. Objectives of this research are to develop novel methods for mitigating the detrimental effects arising from this small ratio and to reduce the effort required by an analyst in terms of training sample selection. An iterative method is developed where semi-labeled samples (classification outputs) are used with the original training samples to estimate parameters and establish a positive feedback procedure wherein parameter estimation and classification enhance each other in an iterative fashion. This work is comprised of four discrete phases. First, the role of semi-labeled samples on parameter estimates is investigated. In this phase it is demonstrated that an iterative procedure based on positive feedback is achievable. Second, a maximum likelihood pixel-wise adaptive classifier is designed. Third, a family of adaptive covariance estimators is developed that combines the adaptive classifiers and covariance estimators to deal with cases where the training sample set is extremely small. Finally, to fully utilize the rich spectral and spatial information contained in hyperspectral data and enhance the performance and robustness of the proposed adaptive classifier, an adaptive Bayesian contextual classifier based on the Markov random field is developed

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification

    Editorial Foreword to the Special Issue on Artificial Intelligence for Hyper- and Multi-spectral Remote Sensing Image Processing

    Get PDF
    In the current age of widespread application of artificial intelligence (AI) across various facets of life, satellite remote sensing is no outlier. Thanks to the ongoing enhancements in the spatial and temporal resolutions of satellite images, they are emerging as invaluable assets in areas such as land-use analysis, meteorology, change detection, and beyond. Accurate analysis and classification at various levels of hyperspectral images (HSIs) and multispectral remote sensing images (RSIs) are essential for extracting valuable insights from these datasets

    Integration of Spatial and Spectral Information for Hyperspectral Image Classification

    Get PDF
    Hyperspectral imaging has become a powerful tool in biomedical and agriculture fields in the recent years and the interest amongst researchers has increased immensely. Hyperspectral imaging combines conventional imaging and spectroscopy to acquire both spatial and spectral information from an object. Consequently, a hyperspectral image data contains not only spectral information of objects, but also the spatial arrangement of objects. Information captured in neighboring locations may provide useful supplementary knowledge for analysis. Therefore, this dissertation investigates the integration of information from both the spectral and spatial domains to enhance hyperspectral image classification performance. The major impediment to the combined spatial and spectral approach is that most spatial methods were only developed for single image band. Based on the traditional singleimage based local Geary measure, this dissertation successfully proposes a Multidimensional Local Spatial Autocorrelation (MLSA) for hyperspectral image data. Based on the proposed spatial measure, this research work develops a collaborative band selection strategy that combines both the spectral separability measure (divergence) and spatial homogeneity measure (MLSA) for hyperspectral band selection task. In order to calculate the divergence more efficiently, a set of recursive equations for the calculation of divergence with an additional band is derived to overcome the computational restrictions. Moreover, this dissertation proposes a collaborative classification method which integrates the spectral distance and spatial autocorrelation during the decision-making process. Therefore, this method fully utilizes the spatial-spectral relationships inherent in the data, and thus improves the classification performance. In addition, the usefulness of the proposed band selection and classification method is evaluated with four case studies. The case studies include detection and identification of tumor on poultry carcasses, fecal on apple surface, cancer on mouse skin and crop in agricultural filed using hyperspectral imagery. Through the case studies, the performances of the proposed methods are assessed. It clearly shows the necessity and efficiency of integrating spatial information for hyperspectral image processing

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201
    corecore