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Abstract—Acquiring current, accurate land-use information is
criticalformonitoringandunderstandingtheimpactofanthropogenic
activitiesonnatural environments.Remote sensing technologiesareof
increasing importance because of their capability to acquire informa-
tion for largeareas ina timelymanner, enablingdecisionmakers to be
moreeffectiveincomplexenvironments.Althoughoptical imageryhas
demonstrated to be successful for land cover classification, active
sensors, such as light detection and ranging (LiDAR), have distinct
capabilities that can be exploited to improve classification results.
However, utilization of LiDAR data for land cover classification has
not been fully exploited. Moreover, spatial–spectral classification has
recently gained significant attention since classification accuracy can
be improved by extracting additional information from the neighbor-
ing pixels. Although spatial information has been widely used for
spectraldata, lessattentionhasbeengiventoLiDARdata.Inthiswork,
a new framework for land cover classification using discrete return
LiDAR data is proposed. Pseudo-waveforms are generated from the
LiDAR data and processed by hierarchical segmentation. Spatial
featuresare extracted inaregion-basedwayusinganewunsupervised
strategy for multiple pruning of the segmentation hierarchy. The
proposed framework is validated experimentally on a real dataset
acquiredinanurbanarea.Betterclassificationresultsareexhibitedby
theproposed frameworkcompared to the cases inwhichbasicLiDAR
products such as digital surface model and intensity image are used.
Moreover, the proposed region-based feature extraction strategy
results in improved classification accuracies in comparison with a
more traditional window-based approach.

Index Terms—Classification, hierarchical segmentation (HSeg),
light detection and ranging (LiDAR), pseudo-waveform, support
vector machine (SVM).

I. INTRODUCTION

A CQUIRING current, accurate land-use information is
critical for monitoring and understanding the impact of

anthropogenic activities on natural environments. It is also a
necessary input for planning the infrastructure and managing the
rapid change associated with the recent global urbanization.
Remote sensing technologies are of increasing importance be-
cause of their capability to acquire information on large areas in a
timely manner, enabling decision makers to be more effective in
complex environments. Traditionally, optical remote sensing
technologies, including high spatial resolution multi-spectral
imagery [1], [2], have been the first choice for developing land
cover maps due to the availability of tools for data processing.
More recently, hyperspectral remote sensing has gained attention
in the remote sensing application community, including the
urban areas where signatures of different materials are difficult
to discriminate [3], [4].

Although optical imagery has proved to be successful for land
cover classification, only data acquired daytime and with cloud-
free conditions can be effectively used for such purpose. In
contrast, active sensors such as synthetic aperture radar (SAR)
and light detection and ranging (LiDAR) operate in both day/
night conditions and utilize timing information of the outgoing
pulse and incoming reflected energy to provide vertical informa-
tion. Operating in themicrowave portion of the spectrum, SAR is
also an all-weather sensing technology and has capability to
penetrate vegetation, while the small footprint and pulse rate of
LiDAR allow it to penetrate gaps in canopy. Recently, the use of
multi-sensor data for performing land cover classification [5]–[7]
has gained significant attention in the remote sensing community
due to the capability to exploit complementary information—
spectral information from the optical sensors and structural
information from the active sensors—to improve the overall
classification accuracy of the land cover map.

LiDARhasrecentlybeendemonstratedtobeeffectiveforahigh
resolution 3-Dmapping [8]–[10], but LiDAR data have not been
fully exploited for land cover classification. Most of the classifi-
cation studies that have utilized LiDAR data have focused on the
discrimination or characterization of vegetation [5], [6], [11] and
have been primarily based on data products such as the digital
surface model (DSM), digital elevation model (DEM), intensity,
andrelativeheights(RHs)[6], [12], [13].Abetterrepresentationof
the vertical structure can be obtained by aggregating discrete
elevation and intensity measurements into larger footprints to
create pseudo-waveforms [14]. Also pseudo-waveforms have
been investigated for assessing the forest structure, while they
have not been leveraged in the land cover classification problems.

Most of the traditional classification methods applied to
spectral reflectance data perform pixel-level classification,
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assuming spatial independence [15]. Similar approaches can
also be considered in a multi-sensor environment involving
LiDAR data. Alternative strategies have been recently pro-
posed for spatial–spectral classification [16], [17]. The ECHO
classifier [18] is probably the first method that has combined
spatial and spectral information. Later, Markov random field
(MRF) models have been extensively investigated [19]. Other
approaches include textural features [20], morphological filters
[1], and segmentation algorithms [21]. The common denomi-
nator of spatial–spectral classification strategies is to include
information from the neighboring pixels. However, defining an
appropriate neighborhood system is nontrivial. The simplest
solution involves a neighborhood of fixed order, such as a
window [18], from which spatial features can be easily ex-
tracted [22]. Although this approach has yielded good results in
general, it suffers from the so-called “border effect” problem
where the neighborhood includes pixels from multiple objects.
The problem can be mitigated by defining the neighborhood
system in an adaptive way. A first solution involves morpho-
logical filters [1], in which spatial features can potentially be
extracted for each pixel from a different neighborhood system
[23]. Another approach is based on segmentation schemes
which subdivide an image into nonoverlapping regions by
adopting homogeneity criteria to assign similar pixels to groups
[24]. Each region in the segmentation map defines a neighbor-
hood for all the pixels within this region, from which spatial
features can then be extracted [25]. Particular attention has
recently been given to multi-level approaches. Images are
composed of objects with different shapes and sizes, so it is
possible to identify objects that are specific to a given level of
detail and not to others. Considering a neighborhood system
with a fixed shape, traditional multi-level methods use a pyra-
mid structure [26] or a set of concentric windows of increasing
size [27], [28]. Similarly, in the case of adaptive neighborhood
systems, different levels of detail can be obtained by consider-
ing different segmentation results [29].

The same concepts that have been utilized for spectral data
could potentially be used in the context of classification of the
LiDAR data. Most research involving LiDAR data has focused
on vegetation classification [11], [30] or building detection [31],
[32], whereas little attention has been given to the problem of
land cover classification.

Oneof thestate-of-the-art segmentationmethods is represented
by the hierarchical segmentation (HSeg) algorithm [33]. HSeg is
one of the few available segmentation approaches that naturally
integrate spatial and spectral information. It involves a combina-
tion of region object finding by hierarchical step-wise optimiza-
tion (HSWO, or iterative best merge region growing) [34] and
region clustering by grouping spectrally similar but spatially
disjoint regions. HSeg reports its output with a segmentation
hierarchy, defined as a set of image segmentations at different
levels of detail, in which segmentation at coarser levels of detail
are producedbymerging regions atfiner levels of detail. It is often
necessary to select a single optimum segmentation level from this
hierarchy, or in general termsmultiple optimum levels need to be
selected if amulti-level approach is considered. However, select-
ing the best level(s) is a nontrivial problem, and, in general, it
depends on the application. The simplest approach consists of
selecting the appropriate level of segmentation interactively with
the software HSegViewer [35], as done in [36]. However, an

automatic procedurewould be desirable. Few approaches that are
basedontheHSegalgorithmhavebeenproposed. Inapreliminary
study [37], joint spectral–spatial homogeneity scores are used to
select the best level(s) in an automatic and unsupervised way. A
different method has been proposed in [38], in which automati-
cally selected markers are used to improve the region merging
process. The method converges naturally to a final segmentation
map,whichcanbeconsideredas thebest segmentation level of the
hierarchy.The strategy is supervised, i.e., a set of training samples
is required to generate the markers.

A drawback of HSeg is the assumption that the best segmenta-
tion level(s) corresponds to one (some) actual level(s) of the
hierarchy. However, it is possible that this assumption is not
justified, since different objects could be well segmented at
different levels of the hierarchy. This issue has been addressed
in the literature by considering binary partition tree (BPT) [39],
which represents a particular segmentation method in which the
pair of most similar neighboring regions is merged at each
iteration. In this context, the process that constructs the final
segmentation by selecting regions at different levels of the hierar-
chy is usually referred to as pruning. The objective of the pruning
strategy is to remove subtrees of the hierarchy that are homoge-
neous with respect to a defined homogeneity criterion. Pruning
strategies have recently been proposed in the remote sensing
literature, based on supervised [40] and unsupervised [7] criteria.
However, these strategies have been specifically developed for
BPT and, therefore, cannot be applied in the HSeg context.

The objective of this paper is to propose a new framework for
land cover classification using discrete return LiDAR data as a
preliminary step before fully exploiting synergistic effects
between the hyperspectral and LiDAR data. In particular,
pseudo-waveforms are generated from the LiDAR data and
used in the successive steps of the framework. The HSeg
algorithm is used to process the pseudo-waveforms and subdi-
vide the image into homogeneous regions. Multiple levels are
extracted from the segmentation hierarchy by a new unsuper-
vised pruning strategy. At this point, spatial features (e.g.,
textural) are extracted from the regions following a region-
based approach. Finally, the extracted features are combined
with the original pseudo-waveforms and classified using a
support vector machine (SVM). The proposed framework is
validated experimentally on a real dataset acquired in an urban
area at the University of Houston, Houston, TX, USA. The
results are compared to those obtained by considering basic
LIDAR products, such as DSM and intensity. Moreover,
an analysis in conjunction with hyperspectral data is conducted
to demonstrate complementary capability of hyperspectral and
LiDAR data for performing land cover classification.

The paper is organized as follows. In Section II, the proposed
framework for land cover classification based on pseudo-
waveforms and HSeg is described. Section III presents the
dataset used in the experimental analysis and the correspond-
ing results. Conclusion and future works are presented in
Section IV.

II. PROPOSED METHOD

We propose a new framework for land cover classification
based on pseudo-waveforms generated from discrete return
LiDAR data and object-based spatial analysis. The flowchart
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of the proposed framework is shown in Fig. 1. It is composed of
five steps: 1) generation of pseudo-waveforms from discrete
return LiDAR data; 2) processing of pseudo-waveforms with
the HSeg algorithm to subdivide the data into spatially homoge-
neous regions; 3) extraction of multiple levels from the segmen-
tation hierarchy by a new unsupervised pruning strategy;
4) extraction of spatial features from the regions by following
a region-based approach; and 5) combining the extracted spatial
features with the original pseudo-waveforms to generate final
classification results. It is important to note that the processes of
pseudo-waveform generation and object-based feature extrac-
tion are completely unsupervised, i.e., they are based only on the
information contained in the acquired LiDAR data and do not
require labeled training samples. The training samples are used
only in the last step of the framework to construct the classifica-
tion model and obtain the final classification map. The following
sections detail the methodology.

A. Pseudo-Waveform Generation

The pseudo-waveforms from LiDAR point cloud data are
generated using the following method:

Algorithm 1: Pseudo-waveform generation

Input: LiDAR point cloud data, parameters , , and

Output: pseudo-waveform data

1) Classify LiDAR point cloud data into ground and non-
ground points.

2) Generate digital terrain model (DTM) with spatial resolu-
tion ( , ) using only ground points and the natural neighbor
(NN) interpolation algorithm.

3) Assign LiDAR points to corresponding pixels based on the
and coordinates of the point.

4) Extract ground elevation of the points from the DTM.

5) Subtract ground elevation values from the elevation of the
point (elevation above sea level) and the new value ( ) now
corresponds to the elevation above ground unit.

6) For a given pixel, define 3-D voxels with the same
horizontal dimension as the DTM grid structure ( , )
and vertical dimension ( ), then stack them for pseudo-wave-
form generation. These voxels represent the LiDAR signal
response as a function of elevation, and the LiDAR points
are assigned to corresponding voxels based on the value of
the points.

7) Generate the pseudo-waveform from this voxel structure by
summing intensity values of all points within each voxel.

8) Normalize the pseudo-waveform data by dividing the
values stored in the voxels by the number of points used to
generate the corresponding pseudo-waveform. This operation is
necessary to address the issue of nonuniform point density
distribution, which could be generated, e.g., by acquiring the
data in multiple strips with side overlap.

B. HSeg Algorithm

The HSeg algorithm combines region growing, which pro-
duces spatially connected regions, with clustering, which groups
similar spatially disjoint regions. The algorithm is summarized in
the following, while we refer the reader to [33] for a detailed
description of the method.

Algorithm 2: HSeg algorithm

Input: image, dissimilarity criterion (DC), parameter

Output: segmentation hierarchy

1) Initialize segmentation by assigning each pixel to a region
label. If presegmentation is provided, label each pixel accord-
ingly; otherwise label each pixel as a separate region.

2) Calculate DC value dissim_val between all pairs of regions.

3) Setmerging threshold thresh_val equal to the smallest value
dissim_val between pairs of spatially adjacent regions. A spa-
tially adjacent region for a given region contains pixels located in
the neighborhood (e.g., four- or eight-neighborhood) of the
considered region’s pixels.

Fig. 1. Flowchart of the proposed framework.
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4) Merge pairs of spatially adjacent regions with dissim_val =
thresh_val.

5) If , merge pairs of nonadjacent regions with
. The parameter sets

the relative importance of spatially adjacent regions with respect
to nonadjacent ones.

6) Stop if convergence is achieved, otherwise return to Step 2.

Different measures can be used to compute DCs between
the regions. Two criteria were considered in this study. We refer
the reader to [35] for a detailed description of all measures
implemented in the HSeg software. The first criterion is repre-
sented by the square root of band sum mean squared error
(SRBSMSE) and is based on minimizing the increase of the
mean squared error between the region mean image and
the original data. The SRBSMSE criterion between the two
regions and is defined as

where is the number of pixels for region ( ), ( ) is
the mean value for band and region ( ), and is the total
number of bands.

The second criterion is related to the spectral angle mapper
(SAM), which is defined as

Merging of spatially nonadjacent regions is computationally
demanding.A significant improvement can be obtained using the
RHSeg version of the algorithm, which is based on a recursive
divide-and-conquer approximation of HSeg and its efficient
parallel implementation [33].

HSeg produces as output a hierarchy of segmentation levels.
However, for practical applications, a subset of one or several
segmentation levels must be selected from this hierarchy. In
particular, in our context, spatial features are extracted from
multiple levels. A new strategy for selecting multiple levels from
the segmentation hierarchy is proposed in Section II-C.

C. Multiple Pruning

The proposed strategy extracts multiple levels from the seg-
mentation hierarchy in an unsupervised way by following a
pruning approach. Pruning consists of removing subtrees of
the hierarchy that are homogeneous with respect to a defined
homogeneity criterion. In this way, the final segmentation does
not represent one of the actual levels of the hierarchy, but
incorporates regions selected potentially from different levels.
The strategy can be thought of as automatically performing a
multi-level analysis, i.e., multiple segmentation maps are ex-
tracted by pruning the hierarchy in different ways.

An example of pruning applied to the segmentation hierarchy
given by the HSeg algorithm is shown in Fig. 2. The segmenta-
tion hierarchy is shown in Fig. 2(a) (we note that this represents

the output of the second step “HSeg segmentation” shown in
Fig. 1). The top level represents the last iteration of the merging
process, in which the entire image is composed of a single region
(in red). Two main characteristics of the HSeg algorithm are
illustrated in this example: 1) Unlike other HSeg algorithms,
such as BPT, more than two regions can be merged into a single
region simultaneously. For example, three different regions
(yellow, orange, and cyan) at level are merged into a single
region (cyan) at level ; 2) Spatially, nonadjacent regions can
be merged. For example, two nonadjacent regions (red and
magenta) at level are merged into a single region (red) at
level . The result of the pruning is represented in Fig. 2(b), in
which the segmentation hierarchy is cut, in general, at different
levels. The final segmentation map is obtained by composing all
the regions, as shown in Fig. 2(c) (this coincideswith the result of
the third step “multiple pruning” represented in Fig. 1). Although
a single pruning of the hierarchy is effectively shown in Fig. 2,
multiple pruning is shown in Fig. 3, in which three different
prunings of the hierarchy are performed. Different prunings are
associated with different segmentation maps, which characterize
the image at different levels of detail.

The pruning process can be represented as follows: Assume
that regions that are distinct at
a generic level of the hierarchy are merged into a single
region at level . The problem consists of determiningwhether
a cut of the hierarchy is required between level and level
for the considered regions. We propose first to characterize
each region of the hierarchy in terms of local statistics. In
particular, we consider second-order statistics such as standard

Fig. 2. Example of HSeg pruning: (a) hierarchical segmentation using HSeg
algorithm, (b) pruning of the HSeg, and (c) final segmentation map.

Fig. 3. Example of multiple pruning.
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deviation. Considering a generic pixel of the image, the standard
deviation value associated with the given region tends to vary
across the hierarchy, as highlighted in the example shown in
Fig. 4. The graph shows the standard deviation value as a
function of the hierarchy level. At the beginning, when the
considered region is composed only by the selected pixel, the
standard deviation is equal to zero, whereas the maximum value
is reached at the end, when the entire image is merged into a
single region. We define as the standard deviation value
associated with the region . The value is compared to the
threshold value , which represents a measure of homogeneity.
If , then the region is not homogeneous, so the
hierarchy is cut between level and level in order to have

distinct homogeneous regions . The
main problem is determining the value of the threshold . We
propose to select the threshold in an automatic and adaptive way.
Adaptation means the threshold depends on the considered
region , i.e., . This is done by considering the
pixels belonging to the region and comput-
ing the standard deviation in afixedwindowof
size [ , ] for each of them. The threshold value for the
region is computed by applying an operator function on the
standard deviation values associated with the
pixels belonging to the given region. Among different operators
(e.g., minimum, mean, median), the median produced the best
empirical results for our data. However, calculating the threshold
value directly in this way could be misleading. A pixel
belonging to the spatial boundary between different objects is
intrinsically characterized by a large standard deviation value if it
is computed in a window. However, the pixels could belong to a
very homogeneous object, which could be characterized in the
segmentation hierarchy by a low standard deviation region. To
alleviate this problem, for a generic pixel , we consider as not
necessarily the standard deviation computed by centering the
window at the pixel, but the value , where is
a vector of standard deviation values calculated by centering the
window at the pixel’s neighborhoods (e.g., eight-neighborhood
was used in our study). We note that the standard deviation is

naturally defined for single-band images. However, in our
context, data are composed of several bands, so the standard
deviation is first computed for each band separately, and then the
mean value is considered.

Pruning of the hierarchy depends on the size [ , ] of the
window used to compute the standard deviation and conse-
quently the homogeneity threshold . Therefore, the multiple
prunings can be obtained by varying the window size.Moreover,
although the strategy has been proposed for pruning the seg-
mentation hierarchy generated by the HSeg algorithm in con-
junction with LiDAR data, it can be applied to any other HSeg
method and data type, such as multi- or hyperspectral images.

The proposed segmentation hierarchy pruning is summarized
in the following:

Algorithm 3: Segmentation hierarchy pruning

Input: image, segmentation hierarchy, parameter

Output: segmentation map

1) Calculate for each pixel of the image the standard
deviation values , using a window of size [ , ] centered
at the pixel and at the pixel’s neighborhoods, respectively.
Consider .

2) Consider each section of the hierarchy in which
regions that are distinct at a generic level

are merged into a single region at level .

3) Calculate for the region the standard deviation value .

4) Calculate for the region the homogeneity threshold value
, where is the set of standard deviation values

associated with the pixels belonging to the considered region.

5) If , cut the hierarchy between levels and in
order to have distinct homogeneous regions

in the final segmentation map.

Fig. 4. Example of standard deviation value associatedwith the belonging region
for a considered pixel as a function of the segmentation level.

TABLE I
NUMBER OF TRAINING AND TEST SAMPLES FOR THE UNIVERSITY OF HOUSTON DATASET

JUNG et al.: FRAMEWORK FOR LAND COVER CLASSIFICATION USING DISCRETE RETURN LIDAR DATA 495



D. Object-Based Feature Extraction and Classification

At the end of the pruning strategy, different segmentation
maps are obtained, which represent the data at different levels of
detail. These segmentation maps can be used to extract spatial
features (e.g., textural) from the resulting regions.

In particular, we consider the occurrence and co-occurrence
textural statistics [20], [41]. The occurrence statistics, orfirst-order
features,arecomputeddirectlybyconsideringtheoriginalvaluesof
the data. Among different measures, mean and standard deviation
gave the best empirical results for the data used in these experi-
ments. The co-occurrence statistics, or second-order features, are
based on the grey-level co-occurrence matrix (GLCM). On the
basis of this matrix, different texture descriptors can be extracted.
Among the 14 descriptors proposed originally in [41],we consider
six different parameters: homogeneity, contrast, dissimilarity,

entropy, secondmoment, and correlation.Wenote that the textural
features are extracted independently from each band of the data.

The last step of the proposed framework consists of generating
the final classification map. The extracted features are combined
with the original pseudo-waveforms and classified. We adopt a
standard SVM classifier, which has shown good performance for
most remote sensing tasks [42]. We refer the reader to [43] for
more details about SVM.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental LiDAR and Hyperspectral Data

The dataset [44] used in this work comprises discrete return
LiDAR and a hyperspectral image, acquired over the University
of Houston campus. The LiDAR data were acquired on June 22,

Fig. 5. Ground reference for the University of Houston dataset.

Fig. 6. False-color composite of the University of Houston dataset obtained from LiDAR data: (a) pseudo-waveform (RGB: bands 20, 10, and 15), (b) DSM, and
(c) intensity.
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2012, between the times 14:37:55 and 15:38:10 UTC. The data
were acquired by Optech Gemini system [45] which has maxi-
mum pulse repetition rate of 167 kHz and can fly up to 4000 m
above ground level. It can record up to four returns from a return
pulse. The average height of the sensor at the time of acquisition
was 2000 ft above ground level, which resulted in average point
density of on the ground. The hyperspectral
imagery (acquired with the ITRES-CASI 1500 sensor [46])
consists of 144 spectral bands in the 380–1050 nm region
and was processed (radiometric correction, attitude processing,
GPS processing, geo-correction, etc.) to yield the final geo-
corrected image cube representing at-sensor spectral radiance,

. Processing software provided by the
manufacturer (ITRES) was utilized for this postprocessing. The
hyperspectral data were acquired on June 23, 2012 between
the times 17:37:10 and 17:39:50 UTC. The average height of
the sensor above ground was 5500 ft, which resulted in 2.5-m
spatial resolution data.

The study area represents an urban scenario, with 15 classes
that are listed in Table I. The ground reference map is shown in

Fig. 5. The scene includes vegetation classes, as well as classes
representing common materials in a typical urban analysis task.
These classes were identified by photo-interpreting a very high
resolution optical imagery of the scene acquired during the same
collection. “Grass” was represented as three classes—healthy,
stressed, and synthetic. Healthy and stressed grass was identified
through a threshold of the normalized difference vegetation
index (NDVI); synthetic grass represents artificial grass/turf.
Parking lots were categorized into two distinct types—1 and 2
(one represents empty lots, and two represents lots with cars).
Other classes in the dataset, as listed in Table I, are self-
explanatory. From the available ground reference, 30 samples
per class were selected randomly as training samples. The
remaining pixels constituted the test set.

B. Experimental Setup

LiDAR points were classified into ground and nonground
points using LASTools [47] with “-metro” option since the
study area is located in the southeastern part of the metropolitan

Fig. 7. False-color composite of the University of Houston dataset obtained from hyperspectral data (RGB: bands 105, 61, and 40).

Fig. 8. Example of pseudo-waveforms from LiDAR data (in red) and spectral signatures from hyperspectral data (in black) for (a) tree, (b) residential, (c) commercial,
(d) grass stressed, (e) road, and (f) water classes.
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city, Houston. The same grid structure of the hyperspectral
data with 2.5-m spatial resolution was adopted in generating
pseudo-waveform data from the discrete return LiDAR data. The
DTM with the same 2.5-m grid structure was generated using
only ground points and the NN interpolation algorithm. For a
given pixel, 80 voxels with the same horizontal dimension as the
grid ( , ) and 1-m vertical resolution
( ) were created. The voxels were designated such that
the 1) bottom, 2) 10th, and 3) top voxel corresponds to the
LiDAR signal at 1) 9 m below the ground elevation, 2) ground
elevation, and 3) 70 m above the ground elevation of the
corresponding pixel location, and each layer of the voxel struc-
ture can be interpreted as a band that represents LiDAR signal
response at the corresponding elevation above the ground. The
DSM and intensity images were also generated from the original
LiDAR point cloud data to compare the results obtained using
these data to those obtained using pseudo-waveforms. The DSM
was generated using the same 2.5-m grid structure by calculating
the maximum elevation of the points within every pixel. The
intensity image was generated from the point cloud data by first
summing all intensity value of points assigned to the pixel and
then by dividing the sum by the number of points of the pixel.

LiDAR products and hyperspectral image are shown in
Figs. 6 and 7, respectively. Moreover, for some specific
pixels of the images, represented with crosses and related to
different classes, we show in Fig. 8 the pseudo-waveform and

the corresponding spectral signature: 1) Tree, 2) Residential,
3) Commercial, 4)Grass stressed, 5) Road, and 6)Water. These
examples illustrate that the structural differences represented in
pseudo-waveforms can be utilized in the classification process.
We especially note that two classes, i.e., Residential and Com-
mercial, are spectrally similar but have different structural
characteristics.

The HSeg algorithm was applied to pseudo-waveform, DSM,
intensity, and hyperspectral data by adopting a four-neighborhood
connectivity. In terms of DC, the pseudo-waveform and hyper-
spectral data were processed using the SAM criterion [48] (we
note that in this way all available bands are considered by the
algorithm). However, since this criterion is not meaningful for
single-band images, the SRBSMSE measure was adopted for
DSM and intensity data. For all cases, the parameter , which
sets the importance of nonadjacent regions in the region growing
process, was fixed to 0.1.

The strategy proposed for segmentation hierarchy pruning
requires setting two main parameters. The number of prunings
of the hierarchy, i.e., the number of segmentation maps ex-
tracted from the HSeg result, is an input. For all the cases, we
considered three different prunings. For each pruning, it is
necessary to define the parameter , which is
related to the size of the window used for computing the
homogeneity threshold. Windows with size [3, 3], [5, 5], and
[7, 7] were considered.

Fig. 9. Result of the proposed pruning strategy on the segmentation hierarchy generated by the HSeg algorithm on the pseudo-waveforms data: (a) segmentation map
and (b) pruning level map.
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The features were normalized in the range [0, 1]. SVM
classification was accomplished using a Gaussian RBF kernel.
The SVM hyper-parameters were selected by a fivefold cross
validation applied on the training set. The and parameters
were selected in the range [ , ] and [ , ], respectively.
The LIBSVM library [49] was used to solve the SVM classifi-
cation problem. Classification performances were evaluated by
different measures: 1) the overall accuracy (OA), 2) the Kappa
statistic [50], 3) the classification accuracies obtained for indi-
vidual classes, and 4) the average accuracy (AA).

The experimental analysis can be subdivided into two main
parts. In the first part, we compared the classification results
obtained by considering the proposed framework, in which
pseudo-waveforms were used, with the results obtained by
adopting basic LiDAR products, such as DSM and intensity.
Moreover, the results given by the proposed object-based feature
extraction were compared to those given by a more traditional
window-based approach. In this case, for a fair comparison, the
same window sizes were considered. In the second part, the
analysis of hyperspectral and LiDAR data was conducted to
demonstrate complementary of the two data sources for perform-
ing land cover classification.

C. Experimental Results and Discussion

Before presenting the results in terms of classification accura-
cies, we evaluate the proposed pruning strategy in a qualitative
way.Weshow inFig. 9 the result obtainedbyapplying the pruning
strategy on the segmentation hierarchy generated by the HSeg
algorithmonthepseudo-waveformdata. In thiscase, theparameter
[ , ] necessary for estimating the homogeneity threshold was
set to [3, 3]. Therefore, the resulting segmentation map (random
colors have been assigned to different regions), shown in Fig. 9(a),

represents afiner level of detail of the image.A good segmentation
result has been obtained, as highlighted by the zoomed parts of the
image. Moreover, we show in Fig. 9(b), the corresponding
pruning level map. The color of the map refers to the level in
which the segmentation hierarchy was cut for the considered
region. For example, blue and red regions were extracted from
thefirst and last levels of the hierarchy, respectively. It is clear how
the segmentation map was effectively obtained by extracting
different regions from different levels of the hierarchy.

In the first part of the experiments, classification accuracies
based on the proposed framework by adopting pseudo-waveforms
were compared with the results obtained by considering basic
LiDAR products, such as DSM and intensity (IN). The results are
summarized in Table II. In general, the proposed framework
in conjunction with pseudo-waveform data greatly improved
the classification accuracies in comparison with the other cases
(DSM and intensity). When only the original (ORI) data were
considered, the pseudo-waveform gave , and OA
was equal to 37.78%and 33.59% for theDSMand intensity cases,
respectively. Higher accuracies were exhibited by pseudo-wa-
veforms also when spatial features were added to the original
data. Comparing region-based (R) and window-based (W)
feature extraction approaches, better results were obtained
using the proposed approach. For example, by adding the
first-order textural features (SP1), the OA for the pseudo-
waveform case was equal to 84.01% and 75.65% for the
region-based and the window-based approaches, respectively.
Similar improvements were also verified by considering
DSM ( and 50.00%, respectively) and intensity
( and 49.20%, respectively) data. These results
validated the effectiveness of the proposed region-based feature
extraction strategy. Similar considerations can also be per-
formed by adding the second-order textural features (SP2), in
which a further improvement of the accuracies was verified.

TABLE II
OA, AA, KAPPA, AND CLASS ACCURACIES ACHIEVED ON THE UNIVERSITY OF HOUSTON DATASET USING LIDAR DATA
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Considering the pseudo-waveform (DSM and intensity) data,
OA was equal to 87.95% (70.65% and 67.63%) and 81.36%
(61.88% and 61.46%) for the region-based and the window-
based approaches, respectively. The best result ( )
was obtained when we considered both first- and second-order
textural features extracted from pseudo-waveform data by
following a region-based approach. This indicates that utilizing
pseudo-waveform data generated from the raw LiDAR point
cloud has really significantly improved the overall classifica-
tion accuracy for these data.

In the second part of the experimental analysis, we investi-
gated the classification accuracies obtained by applying the
proposed framework to the hyperspectral data. The results are
shown in Table III. For hyperspectral data, we observed a
classification accuracy pattern similar to that described previ-
ously for LiDAR data. In particular, also for hyperspectral data,
classification accuracies were improved as we added the textural
features to the original spectral signatures. Moreover, better
results were obtained by extracting features by following a
region-based approach. The best result was verified when both
first- and second-order features were considered (OA equals to
95.17% and 87.95% for hyperspectral and pseudo-waveform
data, respectively). Analyzing in greater detail the class accura-
cies, six classes ( , , , , , and ) yielded weak
classification results when only the original pseudo-waveform
data were considered ( : 39.88%, : 41.67%, : 0.00%, :
0.00%, : 21.74%, and : 28.40%). However, the inclusion
of textural features improved the accuracies for these weak
classes ( : 45.83%, : 46.15%, : 80.92%, :
87.12%, : 55.9%, and : 68.51%). Although the OA

for the hyperspectral data was higher than that obtained for the
pseudo-waveform data, when both first- and second-order
textural features were utilized in addition to the original data,
three classes ( , , and ) yielded better accuracies for the
pseudo-waveform case. These observations indicate that these
classes (Residential, Commercial, and Railway) can be better
separated using the structural information provided by the
pseudo-waveform data. These observations suggest how a fur-
ther improvement of the overall classification accuracy can be
obtained by fusing LiDAR and hyperspectral data.

IV. CONCLUSION

In this work, we have proposed a new framework for land
cover classification using discrete return LiDAR data. In partic-
ular, pseudo-waveforms have been generated from the discrete
return LiDAR data and processed by the HSeg segmentation
algorithm. A new strategy for multiple pruning of the segmenta-
tion hierarchy has been proposed in order to extract spatial
features from homogeneous regions by following a region-based
approach. Finally, the extracted features have been combined
with the original pseudo-waveforms data and classified using
SVM classification.

Novelties and key points of the proposed framework can be
summarized as follows: 1) the land cover classification problem
has been addressed in an innovative way by incorporating
pseudo-waveforms and object-based spatial analysis; 2) the
effectiveness of the state-of-the-art HSeg algorithm has been
validated on LiDAR data, whereas previous research has
been conducted on multi- and hyperspectral data; 3) the HSeg

TABLE III
OA, AA, KAPPA, AND CLASS ACCURACIES ACHIEVED ON THE UNIVERSITY OF HOUSTON DATASET USING PSEUDO-WAVEFORM AND HYPERSPECTRAL DATA
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algorithm has been used as a preprocessing step for object-based
feature extraction, while it was used for different purposes in the
previous works (e.g., as postprocessing for spatial regularization
[33], [36] or as preprocessing for ground reference design [51],
[52]); and 4) the pruning of the segmentation hierarchy has been
addressed by a new unsupervised multi-level strategy.

The proposed framework has been validated experimentally
on a dataset acquired in an urban area at the University of
Houston. The experimental results reveal that the proposed
framework, in conjunction with pseudo-waveform data, has
given an improvement of the classification accuracies with
respect to the cases in which basic LiDAR products, such as
DSM or intensity, have been used. Moreover, the proposed
region-based feature extraction process has been able to give
better results in comparison with a more traditional window-
based approach. Finally, although the best accuracies have been
obtained, in general, by considering the hyperspectral data, the
use of pseudo-waveforms has shown a promising performance.
In particular, some classes have been classified better using
LiDAR data than with the hyperspectral data. This suggests
classification accuracies may be further improved by fusing the
LiDAR and hyperspectral data. Future research will be con-
ducted to fully exploit synergistic effects between the LiDAR
and hyperspectral data for performing land cover classification.
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